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Abstract

We study the problem of estimating the source of a network cascade given a time series of
noisy information about the spread. Initially, there is a single vertex affected by the cascade
(the source) and the cascade spreads in discrete time steps across the network. Although the
cascade evolution is hidden, one observes a noisy measurement of the evolution at each time
step. Given this information, we aim to reliably estimate the cascade source as fast as possible.

We investigate Bayesian and minimax formulations of the source estimation problem, and
derive near-optimal estimators for simple cascade dynamics and network topologies. In the
Bayesian setting, samples are taken until the error of the Bayes-optimal estimator falls below a
threshold. For the minimax setting, we design a novel multi-hypothesis sequential probability
ratio test. These optimal estimators require log log n/ log(k − 1) observations for a k-regular

tree network, and (log n)
1

`+1 observations for a `-dimensional lattice. We then discuss conjec-
tures on source estimation in general topologies. Finally, we provide simulations which validate
our theoretical results on trees and lattices, and illustrate the effectiveness of our methods for
estimating the sources of cascades on Erdős-Rényi graphs.

1 Introduction

Network-based interactions lie at the core of many dynamic systems, including social behavior, bio-
logical processes and wireless communications. Unfortunately, the decentralized nature of networks
often make them susceptible to cascading failures in which behaviors or information originating from
a small subset of nodes diffuse rapidly throughout the rest of the network. Examples include viral
spread in contact networks (see e.g., [8]), misinformation in social networks [5, 14, 16, 41] and mal-
ware in cyber-physical networks [22, 26, 45, 51]. In all of these scenarios, the rapid spread of the
cascade can have devastating effects. It is therefore of the utmost importance to track the cascade
and contain it as fast as possible.

A fundamental challenge in accomplishing this task is that information about the cascade is
usually noisy or uncertain in real-time settings. To illustrate this point, suppose that a virus is
spreading over a contact network. When the number of individuals is large, it may be infeasible
to force everyone to quarantine, hence diagnostic tests may be administered to track and contain
the spread. If there are not enough diagnostic tests to test the entire population at a given point
in time, there is uncertainty in the status of individuals who are not tested. Moreover, diagnostic
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tests are typically not perfectly accurate, so even among the tested individuals there may be false
positives and negatives.

Nevertheless, by observing the results of many rounds of testing over time, it is natural to expect
that one can accurately estimate the spread of the virus using the right testing and information
aggregation strategies. On the other hand, if one waits too long to obtain reasonable estimates, the
cascade will spread to a large subset of the population, which is undesirable. The goal of this work is
to characterize inference algorithms which achieve the optimal tradeoff between the estimation error
and the time until estimation. Moreover, we study how the structure of the underlying network
influences the design and performance of such algorithms.

1.1 Summary of contributions

For the most part, existing theoretical work on estimating the source of a network cascade takes
the perspective of a reconstruction problem: given a large, known set of infected nodes, the goal
is to identify the source among them [23, 13, 35, 46, 47, 36, 37, 38, 50, 49]. In contrast, we study
source estimation from the novel perspective of real-time inference: by monitoring real-time signals
from each node, we aim to find the source before the number of affected nodes is large. The two
paradigms of source estimation are fundamentally different, and as such, require drastically different
models and methods.

We mathematically formalize the task of real-time source estimation as follows. Consider a
statistical model of network cascades with noisy observations where, at discrete timesteps, each
node produces a signal that is an independent sample from a pre-change distribution Q0 if the node
has not yet been affected by the cascade, else the signal is an independent sample from a post-
change distribution Q1. Initially, a single unknown vertex (the source) is affected by the cascade,
and the cascade propagates to neighbors of affected vertices at each timestep. Our objective is
to design algorithms that estimate the unknown source as fast as possible. We provide the first
solution to this problem, to the best of our knowledge, and derive optimal source estimators from
Bayesian and minimax perspectives.

To develop a concrete characterization of optimal source estimators, we focus on simple cascade
dynamics and networks. The cascade dynamics we consider are deterministic: at each timestep,
the cascade spreads to all neighbors of currently-affected nodes. We assume the network topology
is either a k-regular tree or a `-dimensional lattice; we do so because such networks are simple
to describe, they represent a diverse family of topologies, and they enjoy convenient symmetry
properties which simplify our analysis considerably. We further assume that there is a known set
of n candidate nodes which contains the unknown source. When n is large, we show that at least
log logn/ log(k − 1) timesteps of noisy observations are required for reliable source estimation in

k-regular trees, while at least (log n)
1

`+1 timesteps are required for `-dimensional lattices.
We then derive optimal estimation algorithms whose performance matches the lower bounds

described above. We show that the optimal algorithm in the Bayesian formulation of the source
estimation problem is a simple procedure that continues to observe noisy observations of the cascade
propagation until the Bayes-optimal estimator is sufficiently accurate. In the minimax formulation,
we phrase source estimation as a n-ary hypothesis testing problem among the n candidate nodes
and show that a natural test based on likelihood ratios – called the multi-hypothesis sequential
probability ratio test (MSPRT) – is optimal. Interestingly, the design of the MSPRT which matches
the lower bounds can be viewed as a multi-scale search procedure: it simultaneously identifies the
general area of the source while also performing a local, fine-grained analysis to obtain more precise
estimates.

Admittedly, our setting of deterministic cascade dynamics on regular trees or lattices is simplistic
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compared to more realistic cascade and network models [20, 27, 30, 3, 25, 3, 7]. However, we find
that our setting leads to a mathematically rich problem and serves as an important starting point
for understanding the source estimation problem for more complex propagation dynamics and
networks. On a more technical level, we present a mostly unified treatment of optimal source
estimation algorithms on regular trees and lattices, with only minor differences between the two.
This suggests that our methods could be generalized to describe optimal source estimators for
arbitrary topologies, though this requires significantly more effort so we leave it to future work. We
discuss in detail the potential extensions of our work to arbitrary topologies, providing conjectures
on the structure and performance of optimal algorithms. Finally, we assess the performance of
the estimators we develop through simulations. In addition to validating our theory for tree and
lattice topologies, we show that our estimators perform well on natural models of random networks
(Erdős-Rényi graphs). Strikingly, even when there is a moderate amount of noise in vertex signals,
our estimators can reliably locate the cascade source in Erdős-Rényi graphs before 40 vertices are
infected for networks with up to 2000 vertices. This provides strong evidence that our methods
may be applicable quite broadly.

1.2 Related work

Source estimation from a noiseless snapshot. Perhaps the most well-known work on estimat-
ing the source of a cascade is by Shah and Zaman [36, 37, 38]. In their formulation of the problem,
the cascade spreads randomly via the Susceptible-Infected process, and a single snapshot of the set
of infected vertices is observed at a later point in time. They derive an expression for the maximum
likelihood estimate of the source in trees and study properties of the estimator. Many authors
have expanded on these ideas and methods in subsequent work, studying for instance the effect of
multiple observations, multiple sources, confidence sets for the source, different network models,
and different cascade models [23, 13, 35, 46, 47, 50, 49]. We emphasize that while this literature on
source estimation is similar in spirit to the problem we consider in this paper, it is fundamentally
different from modeling and algorithmic perspectives. For instance, the literature cited above is
of a static nature, where we have a single (or a fixed number of) perfect-information snapshot(s)
of a large cascade. On the other hand, we consider dynamic settings where we obtain noisy and
incomplete measurements of a small but growing cascade. Moreover, the methods developed in
the literature cited above (e.g., rumor centrality, Jordan centrality) have no obvious counterpart in
our setting, since they are computed based on known infections. However, in the model of noisy,
real-time measurements considered in this paper, it is impossible to know exactly which vertices
are infected.

Cascade inference from a noisy time series. A growing body of literature uses the data model
(2.1) to perform inference of cascades, including detecting the presence of a cascade [54, 52, 53, 34,
33, 15, 48], estimating the source [39, 40] and controlling its spread [17, 18, 29]. The closest work
to ours in terms of methods and analysis is by Zou, Veeravalli, Li and Towsley [54], who studied
the following quickest detection problem: a cascade spreads via unknown dynamics, and the goal
is to stop sampling once the cascade affects a given number of vertices. Their test, which can be
viewed as an adaptation of the CUSUM procedure, is agnostic to the spreading dynamics of the
cascade and is optimal in the regime where samples are taken much frequently than the growth of
the cascade. By contrast, we consider the regime of large networks and where samples are taken
at a comparative rate to the growth of the cascade. Moreover, our results reveal the effect of the
network topology on the performance of inference procedures, which is not the case in [54].

Finally, we remark that compared to our prior conference submissions on the source estimation
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problem [39, 40], the current paper provides a unified and substantially more general solution.
In particular, [40] only provided a Bayesian solution for lattices and [39] established results for
the minimax setting under a somewhat unnatural, but mathematically simpler, constraint on the
stopping time and estimator.

1.3 Notation

Let R and Z denote the set of reals and integers, respectively. For a graph G = (V,E), let V denote
the set of vertices and let E denote the set of edges. For u, v ∈ V , d(u, v) represents the shortest
path distance between u and v in G. For v ∈ V and a non-negative integer s, Nv(s) is the s-hop
neighborhood of v; that is, Nv(s) := {u ∈ V : d(u, v) ≤ s}.

We utilize standard asymptotic notation throughout. In particular, for two functions g(n) and
h(n), we say g(n) . h(n) if there is c > 0 such that for n sufficiently large, g(n) ≤ ch(n). We say
g(n) � h(n) (in words, g(n) and h(n) are orderwise equivalent) if and only if there are c1, c2 > 0
such that c1h(n) ≤ g(n) ≤ c2h(n) for n sufficiently large. We say g(n) ∼ h(n) (in words, g(n) is
equal to h(n) up to first-order terms) if limn→∞ g(n)/h(n) = 1.

1.4 Organization

The rest of the paper is organized as follows. In Section 2, we formally define our model of cascade
evolution with noisy observations, as well as the Bayesian and minimax optimality criteria. In
Section 3, we provide a description and overview of our results on optimal estimation in regular
trees and lattices, as well as a discussion on how one might extend our techniques to general
topologies. In Section 4, we provide numerical results on the performance of optimal estimators
from simulations on trees, lattices and Erdős-Rényi graphs.The remaining sections are devoted to
the proofs of our main results. The proofs of main results on the Bayesian setting are in Section
5, and proofs for the main results in the minimax setting are in Section 6. Sections 7 and 8
contain supporting results for the proofs in Sections 5 and 6. We conclude in Section 9. Additional
combinatorial results concerning the topology of regular trees and lattices can be found in Appendix
A and B.

2 Problem formulation

We begin by describing the most general formulation of the source estimation problem. Let G be a
graph with vertex set and edge set given by V and E, respectively. Initially, a single vertex v∗ ∈ V
is affected by the cascade; we call this vertex the cascade source. From v∗, the cascade spreads
over time via the edges of the graph according to a known random or deterministic discrete-time
process. Examples of cascade dynamics include variants of the susceptible-infected (SI) process,
the independent cascade model and the linear threshold model (see [20] and references therein).

For any v ∈ V and any time index t ≥ 0, let xv(t) ∈ {0, 1} denote the private state of v, where
xv(t) = 1 if v is affected by the cascade at time t, otherwise xv(t) = 0. The private states are not
observable, but the system instead monitors the public signals {yu(t)}u∈V , defined as

yu(t) ∼

{
Q0 xu(t) = 0;

Q1 xu(t) = 1,
(2.1)

where Q0 and Q1 are two mutually absolutely continuous probability measures. We can think of
yu(t) ∼ Q0 being typical behavior and yu(t) ∼ Q1 as anomalous behavior caused by the cascade.

4



As a shorthand, we denote y(t) := {yu(t)}u∈V to be the collection of all public states at time t. See
Figure 1 for an illustration of this data model. We remark that this data model has been studied in
recent literature in the context of cascade source estimation [39, 40], quickest detection of cascades
[54, 52, 53, 34, 33, 15, 48], and control of cascades [18, 29, 17].

u

v

yu(t) ∼ Q1 yv(t) ∼ Q0

Figure 1: Illustration of the data model at a given time t. The nodes in red have been affected
by the cascade, and the black nodes are unaffected, though this information is hidden from the
observer. The public signals of the red nodes are sampled from Q1, while the public signals of the
black nodes are sampled from Q0.

Remark 2.1. The data model in (2.1) can capture a variety of realistic scenarios. In the context of
viral spread for instance, a common symptom of sickness is a fever. If the public signals correspond
to the body temperature of individuals in the population, one may expect that yv(t) will be close to
the typical body temperature of the individual represented by vertex v if they do not carry the virus,
else yv(t) is expected to be significantly higher if the individual does carry the virus.

Another practical example of (2.1) is diagnostic testing with errors, which is used for malware
detection in computer networks [2] and tracking the spread of infectious diseases [9]. Suppose that
at a given point in time, each vertex is given a diagnostic test with probability p, independently over
all vertices. If a test is taken, the output is either 0 (the vertex is not affected) or 1 (the vertex is
affected). With probability ε, the result of the test will be incorrect. To formulate this in terms of
(2.1), let the support of Q0 and Q1 be {0, 1,×}, where 0 indicates a test result of 0, 1 indicates a test
result of 1, and × indicates that a test was not taken. The distributions Q0 := (q0(0), q0(1), q0(×))
and Q1 := (q1(0), q1(1), q1(×)) are given by

q0(0) = p(1− ε)
q0(1) = pε

q0(×) = 1− p
and


q1(0) = pε

q1(1) = p(1− ε)
q1(×) = 1− p.

Given the data model (2.1), the problem of estimating the cascade source can be phrased as a
sequential multi-hypothesis testing problem: given the collection of hypotheses {Hv}v∈V where Hv

is the hypothesis that v is the source, our goal is to output a hypothesis with a small probability of
error. At the same time, it is also important that we come to a decision as fast as possible in order
to minimize the number of vertices affected by the cascade. This reveals a fundamental tradeoff:
when more samples are taken, one can obtain more reliable estimates of the source at the cost of
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allowing the cascade to spread further. An optimal procedure will achieve the best possible tradeoff
between the estimation error and the number of samples needed.

We shall proceed by formalizing these ideas. Observe that any source estimator can be rep-
resented by the pair (T, v̂), where T is a stopping time indicating when to stop sampling and
v̂ := {v̂(t)}t≥0 is a sequence of source estimators so that v̂(t) is the estimate of the source given the
data at time t. The final source estimate produced by (T, v̂) is v̂(T ). We shall also assume that a
candidate set U ⊂ V is known, so that the unknown source is an element of U . We remark that the
size of U , denoted by |U |, measures in a sense the initial uncertainty around the source location. As
a matter of notation, we let Pv be the probability measure corresponding to the hypothesis Hv (v is
the source). Similarly, Ev denotes the expectation with respect to the measure Pv. If the location
of the source is given by a probability distribution π := {πv}v∈V (where πv is the probability that
the source is v), we denote Pπ and Eπ to be the probability measure and expectation operator with
respect to π, respectively. Formally, we may write

Pπ(·) :=
∑
v∈V

πvPv(·) and Eπ[·] :=
∑
v∈V

πvEv[·]. (2.2)

We remark that often in this paper, we will consider the operator Eπ(t)[·] where π(t) is the posterior
distribution of the source after observing the public signals y(0), . . . , y(t). In such a case, Eπ(t)[·]
would be a random variable, since it is equal to the conditional expectation E[·|y(0), . . . , y(t)].

We next define the performance metrics used the evaluate the effectiveness of a source estimator.
For a source estimator (T, v̂), we shall study the expected number of samples, given by Ev[T ] when
v is the source. The estimation error is the expected distance between v̂(T ) and the source, given
by Ev[d(v, v̂(T ))] when v is the source. Here, we recall from Section 1.3 that d(·, ·) denotes the
shortest-path distance between two vertices in G.

We study two natural ways to capture the tradeoff between estimation error and the expected
number of samples.

A Bayesian perspective. Denote the source vertex by v∗, and suppose that the prior distribution
for the source is uniform over the elements of the candidate set U ; we denote this prior by π(U).
We say that the optimal procedure solves the following optimization problem:

inf
T,v̂

Eπ(U) [d(v∗, v̂(T )) + T ] = inf
T,v̂

1

|U |
∑
v∈U

Ev [d(v, v̂(T )) + T ] , (2.3)

where we recall that Eπ(U) denotes the expectation operator with respect to the measure π(U). In
words, (2.3) is the sum of the estimation error and the expected number of samples. If only the
first term in (2.3) was present, the optimal strategy would be to set T = ∞, since more samples
can only help in bringing down the estimation error. On the other hand, if only the second term
in (2.3) was present, the optimal strategy would be to set T = 0. The estimator that solves (2.3)
therefore achieves the best tradeoff between the two extremes. We remark that it is standard in
Bayesian formulations of sequential testing problems to minimize the sum of the error and expected
number of samples [32, 31]. Furthermore, we remark that one may consider other ways to quantify
the tradeoff between estimation error and time – for instance, by replacing T with h(T ) for some
increasing function h. While we focus on the formulation (2.3) for simplicity and ease of exposition,
the methods we develop can also handle a large class of functions h.

A minimax perspective. As an alternative to the Bayesian approach, one can formalize the trade-
off between the estimation error and expected number of samples via the following optimization
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problem:
inf
T,v̂

max
v∈U

Ev[T ] subject to max
v∈U

Ev[d(v, v̂(T ))] ≤ α, (2.4)

where maxv∈U Ev[d(v, v̂(T ))] is the worst-case estimation error, α is a specified bound on the worst-
case estimation error and maxv∈U Ev[T ] is the worst-case expected runtime of the procedure. As
in the Bayesian case, we may consider two extremes. When α = ∞, the optimal choice is T = 0,
whereas when α = 0 the optimal choice is T = ∞.1 For intermediate values of α, the optimal
algorithm indeed achieves a tradeoff between the estimation error and the worst-case expected
runtime.

3 Results

The goal of our work is to characterize optimal estimators based on the formulations in (2.3) and
(2.4). We are particularly interested in how the structure and performance of optimal estimators
depend on the network topology. In order to provide a tractable theoretical analysis, we focus
on simple networks and cascade dynamics. The cascade dynamics we consider is outlined in the
following assumption.

Assumption 3.1 (Cascade dynamics). Initially, a single vertex v∗ (the source) is affected by the
cascade. The cascade then spreads deterministically in discrete time steps, so that vertex v is
affected by the cascade at time t if and only if d(v, v∗) ≤ t.

We consider two classes of networks – regular trees and lattices – which are defined formally below.

Definition 3.2 (Infinite k-regular tree). Let vr be a designed root vertex, and let Tk(1) be the tree
with k leaves attached to vr. Given Tk(m), we construct Tk(m+ 1) by attaching k−1 leaves to each
leaf in Tk(m). The infinite k-regular tree Tk is the limiting graph obtained when m → ∞; that is,
(u, v) is an edge in Tk if and only if (u, v) is an edge in Tk(m) for some positive integer m.

Definition 3.3 (Infinite `-dimensional lattice). Label elements of the vertex set by Z`. There is an
edge between vertices u, v in the infinite `-dimensional lattice if and only if

∑`
i=1 |ui − vi| = 1.2

See Figure 2 for an illustration of the cascade dynamics and the evolution of observed signals
on regular trees and lattices. We choose to study regular trees and lattices for several reasons.
For one, they have strong symmetry properties (e.g., the local structure around all vertices are the
same) which makes it easier to explicitly determine the performance of optimal algorithms. Second,
we present a unified treatment of source estimation on regular trees and lattices (except for minor
differences), even though the two families of graphs have extremely different topologies; perhaps
the most obvious difference is that trees are acyclic while lattices contain many cycles of varying
lengths. This indicates that it may be possible to generalize our methods to other topologies as
well (see Section 3.3 for further discussion on this point). We also remark that it is a common
assumption in the theoretical analysis of cascade models and inference tasks that the underlying
graph has infinitely many vertices [28, 40, 39, 19, 6, 37, 38, 23, 13, 35]. Moreover, the infinite graph
setting allows us to capture scenarios where the size of the cascade is small compared to the total
population without unnecessarily complicating our mathematical analysis.

1More precisely, if there exists an estimator v̂ such that v̂(t) → v∗ as t → ∞, then the stopping time T = ∞ is
optimal. If such an estimator does not exist, there is no feasible solution to (2.4) when α = 0.

2The 2-regular tree T2 is the same as the 1-dimensional lattice. Henceforth, we shall identify T2 as the 1-dimensional
lattice and always consider k-regular trees with k ≥ 3. Indeed, from our analysis, it can be seen that the relevant
properties of T2 make the graph most naturally associated with the class of lattices.
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v∗
v

yv∗(0) ∼ Q1 yv(0) ∼ Q0

(a) t = 0

v∗
v

yv∗(1) ∼ Q1 yv(1) ∼ Q0

(b) t = 1

v∗
v

yv∗(2) ∼ Q1 yv(2) ∼ Q1

(c) t = 2

yv∗(0) ∼ Q1 yv(0) ∼ Q0

v∗

v

(d) t = 0

yv∗(1) ∼ Q1 yv(1) ∼ Q0

v∗

v

(e) t = 1

yv∗(2) ∼ Q1 yv(2) ∼ Q1

v∗

v

(f) t = 2

Figure 2: Illustration of cascade propagation and observations in 3-regular trees (a-c) and 2-
dimensional lattices (d-f). In each image, the red nodes are those affected by the cascade, and
the black are unaffected, though this information is hidden from the observer. Notice that the
public signals for the cascade source v∗ are always sampled from Q1, whereas the public signals for
another vertex v are initially sampled from Q0 and change to samples from Q1 once the cascade
spreads sufficiently far.

There are several network and cascade models that are arguably more realistic than the ones we
study in this paper; see for instance [20, 27, 30, 3, 25, 3, 7]. However, even for the simple networks
and cascade dynamics we consider, we expect that an exact characterization of optimal source
estimators is mathematically intractable. The reason for this is that we may interpret the problem
of source estimation as a sequential multi-hypothesis testing problem, where different hypotheses
correspond to different potential sources. In the two-hypothesis case, the optimal hypothesis test
is known to be the sequential probability ratio test (SPRT), which is a relatively simple procedure
that tracks the cumulative log-likelihood ratio over time and stops when it achieves a particular
threshold [44]. When there are more than two hypotheses, the optimal test has a complicated
form and is difficult to analyze [4]. To carry out a tractable analysis, we therefore characterize
optimal source estimators in asymptotic regimes, where the number of possible source vertices – in
other words, the size of the candidate set – tends to infinity. Formally, we consider a sequence of
candidate sets and study asymptotic properties of optimal estimators when the size of the candidate
set grows large. As we shall see, the analysis of optimal estimators depends not only on the size
of the candidate set, but also its topology. For instance, if two vertices in the candidate set are
adjacent, there is a lot of overlap in the set of potential infections caused by each vertex. Hence
it takes more effort and information to decide between the two vertices. On the other extreme, if
two vertices in the candidate set are very far apart, it takes comparatively less effort to distinguish
between them. One can therefore imagine that a worst-case candidate set is one where all vertices
are as close to each other as possible. This idea is formally captured in the following assumption.
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Assumption 3.4. We assume the sequence of candidate sets {Vn}n satisfies the following:

1. For all positive integers n, Vn ⊂ V and |Vn| = n;

2. There is a designated vertex v0 ∈ V and a sequence of integers {rn}n such that for all positive
integers n,

Nv0(rn) ⊆ Vn ⊂ Nv0(rn + 1).

Above, we recall that Nv0(r) is the r-hop neighborhood of v0. The second condition in Assump-
tion 3.4, which states that Vn is approximately a neighborhood of some arbitrary vertex, correctly
captures the notion of a worst-case candidate set in the sense that it maximizes the number of ver-
tex pairs that are close to each other. On a more technical note, by assuming a specific topological
structure for the candidate set, we have enough detail to carry out a precise mathematical analysis
of optimal estimators.

The value of rn used in Assumption 3.4 can be made explicit. For the graphs of interest to us,
we can employ straightforward combinatorial arguments to show

rn ∼

{
logn

log(k−1) G is a k-regular tree, k ≥ 3;(
`!
2`
n
)1/`

G is a `-dimensional lattice, ` ≥ 1.
(3.1)

For details, see Corollaries A.2 and A.4 in Appendix A.
As a final remark on the candidate set, we emphasize that Assumption 3.4 is made only for the

purposes of studying the performance of optimal estimators; it need not be satisfied to apply our
estimators to more realistic, finite networks. See the part of Section 4 concerning cascade source
estimation on Erdős-Rényi random graphs for more details on this point.

3.1 Results on Bayesian estimation

For a stopping time T , sequence of estimators v̂ and a candidate set Vn, define the quantities

valB(T, v̂) := Eπ(Vn)[d(v∗, v̂(T )) + T ]

val∗B(Vn) := inf
T,v̂

valB(T, v̂).

Note in particular that val∗B(Vn) is the optimal value of (2.3) when the candidate set is Vn. Our
main result on the Bayesian formulation is the following theorem.

Theorem 3.5. When G is a k-regular tree with k ≥ 3,

val∗B(Vn) ∼ log log n

log(k − 1)
. (3.2)

On the other hand, when G is a `-dimensional lattice, there exist constants a, b depending only on
`,Q0, Q1 such that for n sufficiently large,

a(log n)
1

`+1 ≤ val∗B(Vn) ≤ b(log n)
1

`+1 . (3.3)

In words, (3.2) pins down the exact first-order asymptotic behavior of val∗B(Vn) when n is large
in the case of regular trees. For lattices, (3.3) captures the orderwise behavior of val∗B(Vn) when n is
large. While Theorem 3.5 focuses on how val∗B(Vn) scales with n, we remark that the (appropriately
defined) distance between Q0 and Q1 plays a role in the performance of optimal estimators. In
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the case of k-regular trees, it appears in the second-order expansion of val∗B(Vn). For `-dimensional
lattices, the distance between Q0 and Q1 influences the constants a and b, with both blowing up
to infinity as the distance between Q0 and Q1 becomes small.

Proof summary. For any vertex v ∈ V and integer s ≥ 0, recall that Nv(s) is the set of vertices
within distance s of v. From the cascade dynamics defined in Assumption 3.4, Nv∗(s) is precisely
the set of vertices which have public signals distributed according to Q1, rather than Q0. The
number of total public signals distributed according to Q1 in the first t timesteps is therefore given
by

f(t) :=
t∑

s=0

|Nv∗(s)|. (3.4)

Due to the symmetry of regular trees and lattices, |Nu(s)| = |Nv(s)| for any u, v ∈ V and s ≥ 0.
Hence f(t) does not depend on v∗, which is why we do not include v∗ in the notation. The
interpretation of f(t) as the number of public signals distributed according to Q1 implies that,
in an abstract sense, f(t) is a measure of the amount of information an observer has about the
spread of the cascade.3 On the other hand, the initial uncertainty around the location of v∗ can be
measured by the entropy of π(Vn), which is log n. One may then expect that when f(t) . log n, the
information about the cascade propagation is not enough to overcome the uncertainty around the
source location. It turns out that this intuition does indeed hold: for any (T, v̂), Eπ(Vn)[d(v∗, v̂(T ))]

is large (order log n in regular trees and n1/` in `-dimensional lattices) when f(T ) . log n. It
follows that accurate source estimation is only possible when f(T ) & log n or equivalently, when
T & f−1(log n). This leads to the lower bound val∗B(Vn) & f−1(log n), which is log log n/ log(k− 1)

in k-regular trees up to first order terms and is of order (log n)
1

`+1 in `-dimensional lattices.
An upper bound on val∗B(Vn) is then derived by characterizing the performance of a given source

estimator. Consider (Tth, v̂B), given formally by

v̂B(t) ∈ arg min
v∈Vn

Eπ(t)[d(v∗, v)] (3.5)

Tth := min
{
t ≥ 0 : Eπ(t)[d(v∗, v̂B(t))] ≤ 1

}
. (3.6)

Above, the measure π(t) is the posterior distribution of the source v∗ after observing the sequence
of public signals y(0), . . . ,y(t), hence Eπ(t)[d(v∗, v)] can be viewed as a conditional expectation.
The interpretations of Tth and v̂B are quite intuitive. In words, v̂B(t) is a vertex which achieves the
minimum estimation error, conditioned on the observed information until time t. The estimator v̂B
can therefore be thought of as the Bayes-optimal source estimator, as it minimizes the conditional
estimation error.4 The stopping time Tth will keep sampling until the conditional estimation error
of the optimal estimator falls below the threshold 1 (the subscript th references the fact that
we stop once the estimation error is below a threshold). In characterizing the performance of
the estimator (Tth, v̂B), we show that valB(Tth, v̂B) ∼ log logn/ log(k − 1) in k-regular trees and

valB(Tth, v̂B) � (log n)
1

`+1 in `-dimensional lattices. Remarkably, these match the the lower bounds
previously established for val∗B(Vn), leading to (3.2) and (3.3). Moreover, our analysis shows that
the estimator (Tth, v̂B) enjoys near-optimal performance when n is large.

As a final remark, we note that our proof methods are quite general and can also handle the
case where T is replaced with h(T ) in (2.3) for any h that increases slower than an exponential

3We later make this more formal by showing that the Kullback-Liebler (KL) divergence between the measures Pu

and Pv pertaining to the variables y(0), . . . , y(t) is proportional to f(t) for most pairs u, v ∈ V .
4We formalize this idea in Lemma 5.1, where we show that if the stopping time T is fixed, v̂B achieves

inf v̂ valB(T, v̂).
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function. Moreover, the same estimator (v̂B, Tth) also enjoys near-optimal performance in this
case. For details, see Remark 5.4.

3.2 Results on minimax estimation

We begin by defining some notation. Let α > 0 be fixed, and suppose Vn is the candidate set.
Define the class of estimators

∆(Vn, α) :=

{
(T, v̂) : max

v∈Vn
Ev[d(v, v̂(T ))] ≤ α

}
.

In words, ∆(Vn, α) is the class of source estimators which have a worst-case estimation error of at
most α. In particular, ∆(Vn, α) is the set of feasible estimators in the minimax formulation (2.4).
The optimal value of the minimax formulation is denoted by

val∗M (Vn, α) := inf
(T,v̂)∈∆(Vn,α)

max
v∈Vn

Ev[T ].

The results we obtain for val∗M (Vn, α) are essentially the same as in the Bayesian formulation.
Specifically, we prove the following theorem.

Theorem 3.6. Let α be fixed. When G is a k-regular tree,

val∗M (Vn, α) ∼ log logn

log(k − 1)
. (3.7)

On the other hand, when G is a `-dimensional lattice, there exist constants a′, b′ depending only on
`,Q0, Q1 such that for n sufficiently large,

a′(log n)
1

`+1 ≤ val∗M (Vn, α) ≤ b′(log n)
1

`+1 . (3.8)

As in Theorem 3.5, (3.7) provides an exact first-order characterization of val∗M (Vn, α) when n is
large, and (3.8) describes the orderwise behavior of val∗M (Vn, α). We remark that the constants a′

and b′ used in (3.8) are potentially distinct from the constants a, b used in the Bayesian analogue
(3.3). However, we make no attempt to optimize the constants, instead focusing on the orderwise
behavior as n grows large. As in Theorem 3.5, the (appropriately defined) distance between Q0 and
Q1 plays a role in the second order terms of val∗M (Vn, α) in regular trees. In lattices, the constants
a′ and b′ blow up to infinity when the distance between Q0 and Q1 is small.

Proof summary. As in the Bayesian case, we focus on establishing lower bounds for val∗M (Vn, α)
and derive matching upper bounds by studying the performance of a carefully designed estimator
which lies within the feasible set ∆(Vn, α).

To derive lower bounds for val∗M (Vn, α), we observe that the Bayesian objective value – which
measures average-case behaviors of source estimators – is less strict than the minimax objective,
which measures worst-case behaviors of source estimators. Hence the lower bound for val∗B(Vn) also
holds for val∗M (Vn, α), provided α is constant with respect to n.

Next, we establish an upper bound for val∗M (Vn, α) by characterizing the performance of a
specific stopping time and estimator. Unfortunately, we cannot use (Tth, v̂B) (used in the Bayesian
setting) for this task since it is unclear whether it is an element of the class ∆(Vn, α). We therefore
take a different approach in designing an appropriate estimator within ∆(Vn, α) which matches the
lower bounds for val∗M (Vn, α).

11



dPv
dPu1
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dPu2

dPv
dPun−1

t

τ(v, u1)

τ(v, u2)

τ(v, un−1)

t

t
T (v)

Figure 3: Schematic representation of the MSPRT we design to achieve near-optimal source esti-
mation. Left: Plots of the likelihood ratios with respect to vertex v, where we have enumerated
Vn \ {v} as u1, . . . , un−1. We halt when dPv/dPui crosses the threshold τ(v, ui) (shown in orange)
for all 1 ≤ i ≤ n − 1. This stopping time, labeled T (v), is shown in red. The source estimator
is the vertex v which achieves the smallest value of T (v). Right: Design of the thresholds τ(v, u),
visualized here for the 2-dimensional lattice. For vertices u, v ∈ Vn that are far (blue region), we
set τ(v, u) = τ1 and for vertices u, v ∈ Vn that are close (green region), we set τ(v, u) = τ2.

To this end, recall that the problem of source estimation can be viewed as a sequential multi-
hypothesis testing problem, where each hypothesis corresponds to the possibility of a particular
vertex being the source. Motivated by the optimality of SPRTs for the two-hypothesis setting,
we consider a natural extension to the multiple hypothesis setting known as the multi-hypothesis
sequential probability ratio test (MSPRT), described below:

• For each pair of distinct u, v ∈ Vn, specify a threshold τ(v, u), which is a positive real number.

• Let T (v) be the stopping time that halts as soon as

dPv
dPu

(y(0), . . . , y(t)) ≥ τ(v, u), ∀u ∈ Vn \ {v}.

Here, we recall that Pv is the probability measure conditioned on v∗ = v.

• The final source estimator is arg minv∈Vn T (v); that is, the vertex whose stopping time halts
first.

For general multi-hypothesis testing problems, it is known that MSPRTs enjoy near-optimal
performance when the number of hypotheses is fixed and the bound on the estimation error, α, is

12



small [4, 42, 11, 24, 12, 10]. Although our setting is different, since α is fixed and the number of
hypotheses are large, it is natural to expect that MSPRTs still have good performance. Indeed,
we provide a novel way to design MSPRTs with worst-case expected runtime that match the lower
bounds for val∗M (Vn, α): for u, v ∈ Vn that are “far”, we set τ(v, u) = τ1 and for u, v ∈ Vn that
are “close” we set τ(v, u) = τ2 where τ1, τ2 are pre-determined parameters depending on the graph
structure and n. This design can be interpreted as a multi-scale search strategy: an analysis of
the likelihood ratios dPv/dPu for u, v far apart determine the general location of the source, and
an analysis of the likelihood ratios dPv/dPu for u, v close give us a more fine-grained estimate.
We show that with the right definition of “closeness” as well as an appropriate choice of τ1, τ2, an
MSPRT designed in this way achieves the upper bounds for val∗M (Vn, α) described in Theorem 3.6.
A diagram illustrating the key ideas of the MSPRT we have described can be found in Figure 3.

3.3 Conjectures on optimal estimators in general graphs

In this work, we primarily focus on regular trees and lattices for a few key reasons. For one, they
enjoy strong symmetry properties. In particular, the local structure of all vertex neighborhoods
are isomorphic, leading to conceptually simpler proofs and near-exact computations of val∗B(Vn)
as well as val∗M (Vn, α). Second, regular trees and lattices have drastically different topological
structure, yet most of our proofs work equally well for both topologies, with just minor differences.
This suggests that our methods can also be used to describe optimal source estimators for general
topologies. Below, we discuss how Theorems 3.5 and 3.6 may change for general topologies.

We start by defining relevant notation. Let G be a graph with (countably) infinite vertices that
is locally finite (i.e., all vertex degrees are finite). As discussed earlier, we study infinite graphs since
it allows us to consider scenarios where the cascade is small relative to the network size without
complicating our analysis. Define the vertex-dependent neighborhood growth function

fv(t) :=
t∑

s=0

|Nv(s)|.

We then have the following conjecture concerning optimal source estimation in general topologies.

Conjecture 3.7. Suppose that G is a graph with countably infinite vertices that is locally finite.
Let the sequence of candidate sets {Vn}n≥1 satisfy Assumption 3.4. Then

val∗B(Vn) � 1

n

∑
v∈Vn

f−1
v (log n).

Additionally, for any α > 0 that is constant with respect to n,

val∗M (Vn, α) � max
v∈Vn

f−1
v (log n).

We expect that Conjecture 3.7 can be proved by a straightforward generalization of our tech-
niques. Following analogous arguments as the proof summary for Theorem 3.5, if v∗ = v then fv(t)
is the total number of public signals distributed according to Q1 until timestep t. We therefore
expect that the uncertainty in the source location is too large to reasonably estimate the source
in the regime fv(t) . log n (equivalently, t . f−1

v (log n)), since the entropy of the prior π(Vn) is
log n. Hence any algorithm must observe for at least f−1

v (log n) timesteps to reliably estimate the
source. Averaging over v ∈ Vn leads to the lower bound val∗B(Vn) & 1

n

∑
v∈Vn f

−1
v (log n). On the

other hand, the minimax setting captures the worst-case expected number of samples as opposed
to the average-case number of samples, hence val∗M (Vn, α) & maxv∈Vn f

−1
v (log n).
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(a) (b)

Figure 4: Plots of the expected stopping time (a) and the expected number of infections (b) as a
function of n, the size of the candidate set. Pictured here are the performances of the Bayes and
minimax-optimal source estimators in 2-dimensional lattices.

Establishing upper bounds for val∗B(Vn) and val∗M (Vn, α) that are orderwise tight requires an
analysis of specific source estimators. Since our analysis of (Tth, v̂B) is quite similar for both
regular trees and lattices (with only minor differences), we expect that it should achieve optimal
performance in general as well. We also believe that a properly designed MSPRT can achieve
optimal performance in the minimax setting as well; we provide further details on this point in
Section 6.2 (see Remark 6.8).

4 Simulations

In this section, we complement our theoretical results through simulations which reveal the non-
asymptotic performance of our source estimators. Specifically, we study the performance of two
estimators: the Bayes estimator described in (3.5) and (3.6), and the MSPRT used to prove the
achievability results in Theorem 3.6. At a high level, our simulations show that even in non-
asymptotic regimes, our estimators are able to locate the source while ensuring that only a small
number of individuals are infected, thus validating our theoretical results on trees and lattices.
We further apply our estimators to cascades spreading on natural models of random graphs (the
Erdős-Rényi model), showing that our estimators can be successfully applied to broader scenarios.

Signal distributions. We consider the case of noisy and incomplete testing, described in Remark
2.1; we briefly recap the model here. Interpret the network cascade as an infection, and assume
that at every timestep, each individual tests for infection with probability p. The test outputs the
correct result (i.e., positive or negative) with probability 1 − ε. In our simulations, we let p = 0.5
and ε ∈ {0.1, 0.2}. The distributions Q0, Q1 derived from this scenario are formally described in
Remark 2.1.

Lattices. To make our simulations as close to our theoretical setup as possible, our base graph
G was taken to be a 2-dimensional 100 x 100 lattice (10,000 vertices). If the size of the candidate
set is n, in accordance with Assumption 3.4, we chose the candidate set to be the n closest vertices
to the center of the lattice. We emphasize that choosing the candidate set in this way captures
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(a) (b)

Figure 5: Plots of the expected stopping time (a) and the expected number of infections (b) as a
function of n, the size of the candidate set. Pictured here are the performances of the Bayes and
minimax-optimal source estimators in 3-regular trees.

the notion of a worst-case candidate set (see the discussion surrounding Assumption 3.4), and
we choose vertices close to the lattice center only to avoid boundary effects (i.e., to ensure that
the cascade will evolve similarly from all potential source vertices, given that G is finite). In our
simulations, the cascade begins at the lattice center and spreads via the deterministic dynamics
described in Assumption 3.1, producing random observed vertex-level signals according to (2.1).
Although we could, in principle, choose any source vertex in the candidate set, we consistently
choose the lattice center in order to reduce the variance of the estimators’ performance across
independent simulations. For each choice of n (from 100 to 2000, collected at regular intervals of
100) and ε{0.1, 0.2}, we carried out 100 independent simulations of the cascade. We averaged over
the stopping time and the number of total infections until the stopping time to generate the plots
in Figure 4. The design of the MSPRT weights for the minimax estimator follows Figure 3; for the
specific threshold values, see Theorem 6.7 in Section 6.2.

Figure 4 highlights important finite-size behaviors of the Bayes and minimax estimators. Notice
that each curve is quite flat: the expected stopping time as well as the number of infections changes
little with respect to n. This weak dependence extends to the asymptotic regime n → ∞ as well;
Theorems 3.5 and 3.6 show that the expected stopping time scales as (log n)1/3. Moreover, the
Bayes estimator has strictly better performance than the minimax estimator in all cases – notably,
nearly 100 infections are prevented in the case ε = 0.2 for large n when comparing the Bayes and
minimax estimators.

Trees. Our base graph G was taken to be a 3-regular balanced tree with 16,383 vertices. If the
size of the candidate set is n, we choose the candidate set to be the n closest vertices to the root
of balanced tree G for similar reasons as in the case of lattices. In our simulations, the cascade
begins at the root of G and spreads via the deterministic dynamics described in Assumption 3.1,
producing random observed vertex-level signals according to (2.1). For each choice of n and ε, we
carried out 100 independent simulations of the cascade and average over the stopping time as well
as the number of total infections to generate the plots in Figure 5. For the minimax estimator, we
use an MSPRT with constant weights, which is proved to be asymptotically optimal; see Theorem
6.5 in Section 6.2 for details.
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(a) (b)

Figure 6: Plots of the expected stopping time (a) and the expected number of infections (b) as a
function of n, the size of the candidate set. Pictured here are the performances of the Bayes and
minimax-optimal source estimators in the Erdős-Rényi graph G(n, 5/n).

Similar conclusions as in the case of lattices can be drawn for trees based on Figure 5. Interest-
ingly, although the Bayes and minimax estimators take log log n samples in light of Theorems 3.5
and 3.6, Figure 5 shows that the Bayes-optimal estimator stops earlier in finite regimes; we believe
this is due to the provable optimality of the estimator (see Lemma 5.1). Furthermore, although we
have proved that the distance between Q0 and Q1 does not affect the first-order asymptotics of the
expected stopping time in both Bayes and minimax settings, it appears to play a significant role
in finite regimes. Notably, the time it takes the minimax-optimal estimator to stop is more than
doubled when ε = 0.2 compared to ε = 0.1 for many values of n.

Erdős-Rényi random graphs. Recall that for a positive integer n and q ∈ [0, 1], an Erdős-
Rényi random graph G(n, q) is generated as follows. Let the vertex set V be a set of n labeled
vertices, and for each pair of distinct vertices an edge is added between them with probability q,
independently across all vertex pairs. Since our work is primarily concerned with sparse graphs (i.e.,
vertex degrees are not too large), we chose q = 5/n to ensure that the average degree of the graph
is 5. This choice of q ensures that the largest connected component of G(n, q) (also known as the
giant component) is most of the graph, while also keeping the average degree relatively small. For a
given realization of G(n, q), our candidate set was taken to be the vertices in the giant component.5

Figure 6 shows the performance of the Bayes and minimax estimators on Erdős-Rényi graphs,
both of which exhibit similar performance to that noted for trees and lattices. For the minimax
estimator, since sparse Erdős-Rényi graphs are known to be locally tree-like [1], we use the MSPRT
with uniform weights (see Section 6.2) which is optimal in regular trees. To summarize, Figure 6
shows that the estimators we develop are robust and apply to a broader class of graphs than the
ones we analyze theoretically.

To generate the numerical results in Figure 6, as before we ran 100 independent simulations for
each n and ε considered. For each simulation, an independent Erdős-Rényi graph was generated.
The data in Figure 6 were computed by averaging the stopping times and number of infected

5It is known that with high probability, components other than the giant component are of order logn [1, Chapter
11.9]. As a result, the infection will never reach most of the graph even after a long time passes. Our assumption
that the candidate set is the vertex set of the giant component avoids such simple edge cases.
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vertices, conditioned on the event that the cascade did not spread to all vertices by the time the
algorithm stopped. The reason for this is that if the cascade affects all vertices, there is effectively
no new information to be learned, and the stopping time would be extremely large with high
probability. In almost all cases, however, at most one out of the 100 trials would fall into this
category. The only exception was the case of n = 100 and ε = 0.2 for the minimax estimator, which
had 12 trials fall into this category. We expect that this is because the cascade spreads too quickly
to detect it on a graph of this small size. Finally, we remark that some of the curves in Figure 6
may appear noisier than the ones in Figures 5 and 4; this is likely due to the randomness of the
base graph in the Erdős-Rényi case, compared to the deterministic nature of the other topologies
considered.

5 Analysis of the Bayesian setting

5.1 Behavior of the Bayes-optimal estimator

We begin with a discussion of the estimator v̂B = {v̂B(t)}t≥0, which is defined formally by

v̂B(t) ∈ arg min
v∈Vn

Eπ(t)[d(v∗, v)],

where Vn is the candidate set under consideration. It is straightforward to show that v̂B is optimal,
in the sense that it minimizes the error of the final source estimator for any choice of stopping time.
This is explained more formally in the following result.

Lemma 5.1. Let the candidate set be Vn. Fix any stopping time T and let û = {u(t)}t≥0 be any
source estimator so that u(t) is measurable with respect to y(0), . . . , y(t). Then

Eπ(Vn)[d(v∗, v̂B(T ))] ≤ Eπ(Vn)[d(v∗, û(T ))].

In particular,
inf

(T,v̂)
valB(T, v̂) = inf

T
valB(T, v̂B).

Proof. For any given time index t ≥ 0, it follows from the definition of v̂B(t) that

Eπ(t)[d(v∗, v̂B(t))] ≤ Eπ(t)[d(v∗, û(t))]. (5.1)

We can then write

Eπ(Vn)[d(v∗, v̂B(T ))]
(a)
= Eπ(Vn)

[
Eπ(T )[d(v∗, v̂B(T ))]

]
= Eπ(Vn)

[ ∞∑
t=0

Eπ(t)[d(v∗, v̂B(t))]1(T = t)

]
(b)

≤ Eπ(Vn)

[ ∞∑
t=0

Eπ(t)[d(v∗, û(t))]1(T = t)

]
= Eπ(Vn)[d(v∗, û(T ))].

Above, (a) is due to the tower rule and (b) is a consequence of (5.1). Taking an infimum over all
source estimators (T, û) on both sides yields the second statement of the lemma.
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With the optimal estimator explicitly derived, we focus on characterizing the estimation error
of v̂B, which will in turn aid us in characterizing optimal stopping times. Indeed, the proof of
Theorem 3.5 depends on the following two lemmas which characterize the estimation error of v̂B.
Before stating them, we review some basic properties of the neighborhood growth function f(t)
(defined in (3.4)). First, it can be shown through straightforward combinatorial arguments that

f(t) ∼

{
k(k−1)
(k−2)2

(k − 1)t G is a k-regular tree, k ≥ 3;
2`

(`+1)! t
`+1 G is a `-dimensional lattice, ` ≥ 1.

(5.2)

A proof of (5.2) can be found in Appendix A – see in particular Lemmas A.1 and A.3. Importantly,
(5.2) can be used to study the asymptotics of the inverse function F = f−1. Indeed, it follows that

F (z) ∼


log z

log(k−1) G is a k-regular tree, k ≥ 3;(
(`+1)!

2`
z
) 1

`+1
G is a `-dimensional lattice, ` ≥ 1.

(5.3)

We are now ready to state our results on the estimation error. The first establishes a lower bound
for the estimation error when t is not too large.

Lemma 5.2. Suppose G is a k-regular tree with k ≥ 3 and that the sequence of candidate sets
{Vn}n≥1 satisfies Assumption 3.4. There are constants a1 = a1(k,Q0, Q1) and b1 = b1(k) such that

lim
n→∞

max
v∈Vn

Pv
(

min
0≤t≤F (a1 logn)

Eπ(t)[d(v∗, v̂B(t))] ≤ b1 log n

)
= 0.

Next suppose that G is a `-dimensional lattice and {Vn}n≥1 satisfies Assumption 3.4. There are
constants a′1 = a′1(Q0, Q1) and b′1 = b′1(`) such that

lim
n→∞

max
v∈Vn

Pv
(

min
0≤t≤F (a′1 logn)

Eπ(t)[d(v∗, v̂B(t))] ≤ b′1n1/`

)
= 0.

It can be shown through straightforward combinatorial arguments (see Lemmas B.3 and B.5 in
Appendix B) that the initial estimation error satisfies

Eπ(0)[d(v∗, v̂B(0))] �

{
log n G is a k-regular tree;

n1/` G is a `-dimensional lattice.
(5.4)

In light of (5.4), Lemma 5.2 states that with high probability, the estimation error does not sig-
nificantly decrease for t . F (log n). At a high level, this is because the information from the
public signals corresponding to the true spread of the cascade is not enough to offset the uncer-
tainty in the source location. These ideas are formalized by computing the mean and variance of
Eπ(t)[d(v∗, v̂(t))] and applying Chebyshev’s inequality. We also remark that as a consequence of
our proofs, the constant a1 in Lemma 5.2 depends on the average degree for regular trees, while
the constant a′1 does not depend on the average degree in lattices. For details, see Section 7.2.

The next result establishes an upper bound on the estimation error once t is sufficiently large.

Lemma 5.3. Suppose that G is a k-regular tree or a `-dimensional lattice and that the sequence
of candidate sets {Vn}n≥1 satisfies Assumption 3.4. There are constants a2 = a2(Q0, Q1) and
b2 = b2(Q0, Q1) such that if t ≥ F (a2 log n),

max
v∈Vn

Pv
(
Eπ(t)[d(v∗, v̂B(t))] ≥ e−b2t

)
≤ e−b2t. (5.5)

The proof relies on large-deviations bounds which show that πu(t)/πv∗(t) tends to 0 at an expo-
nential rate for any u 6= v∗. For details, see Section 7.3.
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5.2 Putting everything together: Proof of Theorem 3.5

Combined, Lemmas 5.2 and 5.3 show that the estimation error exhibits a sharp transition: it is
large for t . F (log n) and it is exponentially decaying to zero for t & F (log n). The optimality and
performance of the estimator (Tth, v̂B) is essentially obtained from this observation.

Proof of Theorem 3.5. Define the pair of constants a,A so that (a,A) = (a1, b1 log n) if G is a k-
regular tree and (a,A) = (a′1, b

′
1n

1/`) if G is a `-dimensional lattice (see Lemma 5.2 for definitions
of these constants). For every t ≥ 0, we also define the event

E :=

{
min

0≤t≤F (a logn)
Eπ(t)[d(v∗, v̂B(t))] ≥ A

}
.

For any stopping time T , we have, for any v ∈ Vn,

Ev
[
Eπ(T )[d(v∗, v̂B(T ))] + T

]
= Ev

[ ∞∑
t=0

Eπ(t)[d(v∗, v̂B(t))]1(T = t) + T

]

≥ Ev

F (a logn)∑
t=0

Eπ(t)[d(v∗, v̂B(t))]1({T = t} ∩ E) + T1(T > F (a log n))


(a)

≥ A

F (a logn)∑
t=0

Pv({T = t} ∩ E) + F (a log n) · Pv(T > F (a log n))

≥ A · Pv({T ≤ F (a log n)} ∩ E) + F (a log n) · Pv({T > F (a log n)} ∩ E)

≥ min{A,F (a log n)} · Pv(E)

(b)
= F (a log n) · Pv(E). (5.6)

Above, (a) follows from the definition of E and by lower bounding T by F (a log n) on the event
{T > F (a log n)}, and (b) uses F (a log n) ≤ A for n sufficiently large, which follows from the
asymptotic behavior of F (see (5.3)). An important consequence of (5.6) is that the value associated
with the pair (T, v̂) can be lower bounded as

valB(T, v̂B) = Eπ(Vn)[d(v∗, v̂B(T )) + T ]

(c)
= Eπ(Vn)

[
Eπ(T )[d(v∗, v̂B(T ))] + T

]
(d)
=

1

n

∑
v∈Vn

Ev
[
Eπ(T )[d(v∗, v̂B(T ))] + T

]
(e)

≥ F (a log n)

(
1

n

∑
v∈Vn

Pv(E)

)
. (5.7)

Above, (c) is due to the tower rule, (d) follows since π(Vn) is a uniform distribution over elements
of Vn, and (e) is a consequence of (5.6). Moreover, since (5.7) holds for any stopping time T , we
have

val∗B(Vn) = inf
T,v̂

valB(T, v̂)

= inf
T

valB(T, v̂B)

≥ F (a log n)

(
1

n

∑
v∈Vn

Pv(E)

)
,
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where the second equality follows from the optimality of the estimator v̂B, proved in Lemma 5.1.
Rearranging terms and sending n→∞, we arrive at

lim inf
n→∞

val∗B(Vn)

F (a log n)
≥ lim inf

n→∞

(
1

n

∑
v∈Vn

Pv(E)

)
≥ lim inf

n→∞
min
v∈Vn

Pv(E) = 1, (5.8)

where the final equality above is a direct consequence of Lemma 5.2.
Next, to establish an asymptotic upper bound for the optimal value, we consider the stopping

time
Tth := min{t ≥ 0 : Eπ(t)[d(v∗, v̂B(t))] ≤ 1},

which stops once the estimation error falls below a threshold. We can then bound

valB(Tth, v̂B)
(f)

≤ Eπ(Vn)[1 + Tth] = 1 +

∞∑
t=0

Pπ(Vn)(Tth > t)

≤ 1 + F (a2 log n) +
∞∑

t=F (a2 logn)+1

Pπ(Vn)(Tth > t)

(g)

≤ 1 + F (a2 log n) +

∞∑
t=F (a2 logn)+1

max
v∈Vn

Pv(Tth > t)

(h)

≤ 1 + F (a2 log n) +

∞∑
t=F (a2 logn)+1

e−b2t

≤ 1 + F (a2 log n) +
1

b2
e−b2F (a2 logn).

Above, the inequality (f) is due to the definition of Tth, (g) follows since Pπ(Vn)(·) := 1
n

∑
v∈Vn Pv(·) ≤

maxv∈Vn Pv(·), and (h) follows from noting that Tth > t implies that Eπ(t)[d(v∗, v̂B(t))] > 1 ≥ e−b2t
and applying Lemma 5.3 to bound the latter event. Dividing both sides of the final inequality by
F (a2 log n) and letting n→∞ shows that

lim sup
n→∞

valB(Tth, v̂B)

F (a2 log n)
≤ 1. (5.9)

The desired result follows from (5.8) and (5.9) by considering the asymptotic behavior of F in trees
and lattices (see (5.3)).

Remark 5.4 (General temporal cost functions). It is also interesting to consider the case where
the cost of the stopping time in the Bayesian objective (2.3) is given by h(T ) instead of T , where
h is some increasing function. It turns out that a slight modification of the proof of Theorem 3.5
shows that the estimator (Tth, v̂B) is still asymptotically near-optimal as long as h grows slower
than any exponential function. Indeed, if we follow the derivation of the bound in (5.6) and (5.7),
we obtain that

Eπ(Vn)[d(v∗, v̂B(T ) + h(T )] ≥ min{A, h(F (a log n))}

(
1

n

∑
v∈Vn

Pv(E)

)
,
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where A, a, E are the same as in the proof of Theorem 3.5. Following (5.8), we obtain that

lim inf
n→∞

infT Eπ(Vn)[d(v∗, v̂B(T )) + h(T )]

min{A, h(F (a log n))}
≥ 1.

In particular, if h increases slower than any exponential function, it can be seen that, for the choices
of A and F used for regular trees and lattices, h(F (a log n)) is an asymptotic lower bound on the
performance of any estimator.

The proof of the upper bound on the performance of the optimal estimator can be similarly
derived. For the same estimator (v̂B, Tth), we may follow the proof of Theorem 3.5 to show that

inf
(v̂,Tth)

Eπ(Vn)[d(v̂(T ), v∗) + h(T )] ≤ Eπ(Vn)[1 + h(Tth)]

= 1 +
∞∑
t=0

Pπ(Vn)(h(Tth) > t)

= 1 +

∞∑
t=0

Pπ(Vn)(Tth > h−1(t))

≤ 1 + h(F (a2 log n)) +
∞∑

t=h(F (a2 logn))+1

e−b2h
−1(t).

We can reach the same conclusion as in Theorem 3.5; that is, that

lim sup
n→∞

inf(v̂,T ) Eπ(Vn)[d(v̂(t), v∗) + h(T )]

h(F (a2 log n))
≤ 1,

provided
∑

t≥0 e
−b2h−1(t) < ∞. This is the case provided h−1(t) increases faster than log t or

equivalently, if h(t) increases slower than any exponential function. Together, this shows that

h(F (a1 log n)) . inf
(v̂,T )

Eπ(Vn)[d(v̂(t), v∗) + h(T )] . h(F (a2 log n)),

provided h increases slower than any exponential function.

6 Analysis of the minimax setting

In this section we prove Theorem 3.6. To do so, we prove lower and upper bounds for val∗M (Vn, α)
in separate theorems. In Section 6.1, we prove Theorem 6.1, which establishes a lower bound for
val∗M (Vn, α). The upper bounds for val∗M (Vn, α) are achieved by MSPRTs of a particular design:
this is proved in Theorem 6.5 (regular trees) and in Theorem 6.7, which can be found in Section
6.2. Remarkably, a simple design in which we set all the thresholds in the MSPRT to be the
same value achieves the lower bound for regular trees. However, the same estimator adapted to
lattices fails to achieve the lower bound due to key differences in the topology of lattices. To fix
this issue, we consider a novel MSPRT design we term K-level thresholds, where we assign different
thresholds to pairs of vertices u, v satisfying d(u, v) ≤ K and those satisfying d(u, v) > K. The
performance of the resulting estimator does indeed achieve (up to a constant factor) the lower
bound for val∗M (Vn, α).
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6.1 Lower bounding the optimal value

Theorem 6.1 (Lower bound part of Theorem 3.6). Suppose that the sequence of candidate sets
{Vn}n≥1 satisfies Assumption 3.4. If G is a k-regular tree,

lim inf
n→∞

val∗M (Vn, α)
log logn
log(k−1)

≥ 1. (6.1)

On the other hand, if G is a `-dimensional lattice then there is a constant a4 depending on `,Q0, Q1

such that

lim inf
n→∞

val∗M (Vn, α)

(log n)
1

`+1

≥ a4. (6.2)

Proof. Let (T, v̂) be an estimator in ∆(Vn, α). Given the prior π(Vn), recall from Lemma 5.1 that
the estimator

v̂B(t) ∈ arg min
v∈Vn

Eπ(t)[d(v∗, v)]

minimizes Eπ(Vn)[d(v∗, v̂(T ))] over all estimators v̂, for any stopping time T .
For given constants a,A, define the events

E1 := {T ≤ F (a log n)}

E2 :=

{
min

0≤t≤F (a logn)
Eπ(t)[d(v∗, v̂B(t))] ≥ A

}
.

We can then lower bound the worst-case estimation error as

max
v∈Vn

Ev[d(v, v̂(T ))]
(a)

≥ Eπ(Vn)[d(v∗, v̂(T )]

(b)

≥ Eπ(Vn) [d(v∗, v̂B(T ))]

(c)

≥ Eπ(Vn)

[
Eπ(T )[d(v∗, v̂B(T ))]1(E1 ∩ E2)

]
(d)

≥ A · Pπ(Vn)(E1 ∩ E2). (6.3)

Above, (a) follows since Eπ(Vn) is an average over the collection of operators {Ev}v∈Vn and the
maximum is greater than the average; (b) is due to the optimality of v̂B, proved in Lemma 5.1;
inequality (c) is due to the tower rule and inequality (d) follows since Eπ(T )[d(v∗, v̂B(T ))] ≥ A on
the event E1 ∩ E2.

Noting that maxv∈Vn Eπ(Vn)[d(v∗, v̂(T ))] ≤ α for (T, v̂) ∈ ∆(Vn, α), (6.3) implies

Pπ(Vn)(E1 ∩ E2) ≤ α

A
,

which in turn implies that

Pπ(Vn)(Ec1) ≥ Pπ(Vn)(Ec1 ∪ Ec2)− Pπ(Vn)(Ec2)

≥ 1− α

A
− Pπ(Vn)(Ec2). (6.4)
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By Lemma 5.2, if we set (a,A) = (a1, b1 log n) if G is a k-regular tree and (a,A) = (a′1, b
′
1n

1/`) if
G is a `-dimensional lattice (see Lemma 5.2 for definitions of these constants) then the right hand
side of (6.4) tends to 1 as n→∞. We can then lower bound the worst-case expected runtime as

max
v∈Vn

Ev[T ] ≥ Eπ(Vn)[T ] ≥ Eπ(Vn)[T1(Ec1)]

≥ F (a log n)Pπ(Vn)(Ec1). (6.5)

Since (6.5) holds for any element of ∆(Vn, α), we have

val∗M (Vn, α) ≥ F (a log n)Pπ(Vn)(Ec1).

Dividing by F (a log n) and sending n→∞, we arrive at

lim inf
n→∞

val∗M (Vn, α)

F (a log n)
≥ 1.

The desired result follows from the asymptotic behavior of F (see (5.3)).

6.2 Achieving the lower bound with MSPRTs

An important question is whether the lower bound in Theorem 6.1 is achievable. To answer this
question, we focus on a class of sequential estimation procedures called multi-hypothesis sequential
probability ratio tests (MSPRTs). For convenience, we define them formally below.

Given vertices u, v ∈ V , define the log-likelihood ratio

Zvu(t) := log
dPv
dPu

(y(0), . . . , y(t)).

In our model, the likelihood of observing the sequence of public signals y(0), . . . ,y(t) under the
measure Pv has the form

dPv(y(0), . . . , y(t)) =
t∏

s=0

 ∏
w∈Nv(s)

dQ1(yw(s))

 ∏
w/∈Nv(s)

dQ0(yw(s))

 . (6.6)

Above, the product containing terms of the form dQ1(yw(s)) computes the likelihood of nodes that
have been affected by the cascade, and the product containing the terms of the form dQ0(yw(s))
computes the likelihood of nodes that have not yet been affected by the cascade. In light of (6.6),
Zvu(t) can be written as

Zvu(t) =

t∑
s=0

log

( ∏
w∈Nv(s)

dQ1(yw(s))

)( ∏
w/∈Nv(s)

dQ0(yw(s))

)
( ∏
w∈Nu(s)

dQ1(yw(s))

)( ∏
w/∈Nu(s)

dQ0(yw(s))

)

=

t∑
s=0

 ∑
w∈Nv(s)\Nu(s)

log
dQ1

dQ0
(yw(s))−

∑
w∈Nu(s)\Nv(s)

log
dQ1

dQ0
(yw(s))

 .

In words, the log-likelihood ratio log dQ1/dQ0 measures how likely it is that a certain public
signal came from the distribution Q1 as opposed to the distribution Q0. It follows that summations
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of the form
∑

w∈S log dQ1

dQ0
(yw(s)) measures the net likelihood that the public signals in S are caused

by the cascade. Hence if it is more likely that the public signals in Nv(s) \ Nu(s) are caused by
the cascade rather than the public signals in Nu(s) \Nv(s), the log-likelihood ratio Zvu(t) positive;
else it is negative.

We are now ready to define the MSPRT.

Definition 6.2 (Multi-hypothesis sequential probability ratio test). Fix a positive integer n and
specify a threshold function τ : Vn × Vn → (0,∞). Consider the stopping time

T (v) := min{t ≥ 0 : Zvu(t) ≥ log τ(v, u), ∀u ∈ Vn \ {v}}.

The corresponding MSPRT (T, v̂) is defined via

T := min
v∈Vn

T (v) and v̂(T ) := arg min
v∈Vn

T (v).

In words, the output of the MSPRT is the first vertex v for which all log-likelihood ratios Zvu(t)
pass the thresholds log τ(v, u) for all u ∈ Vn \ {v}. If (T, v̂) is a MSPRT with threshold function τ ,
we have the following useful relation, which is due to Tartakovsky [42, Theorem 3.1].

Lemma 6.3. For any distinct u, v ∈ Vn,

Pv(v̂(T ) = u) ≤ 1

τ(u, v)

Since the proof is short, we provide it here for completeness.

Proof of Lemma 6.3.

Pv(v̂(T ) = u) = Ev [1(v̂(T ) = u)]

= Eu
[
1(v̂(T ) = u)e−Zuv(T )

]
≤ e− log τ(u,v)Eu [1(v̂(T ) = u)]

≤ 1

τ(u, v)
.

Above, the equality in the second line follows from e−Zuv(T ) = dPv
dPu

(y(0), . . . , y(T )). The inequality
in the third line follows since Zuv(T ) ≥ τ(u, v) on the event {v̂(T ) = u} by the definition of a
MSPRT.

Using Lemma 6.3, we can bound the worst-case estimation error of the MSPRT (T, v̂) as

max
v∈Vn

Ev[d(v, v̂(T ))] = max
v∈Vn

∑
v∈Vn

d(u, v)Pv(v̂(T ) = u)

≤ max
v∈Vn

∑
v∈Vn

d(u, v)

τ(u, v)
.

To ensure that (T, v̂) ∈ ∆(Vn, α), it suffices to check that

max
v∈Vn

∑
u∈Vn

d(u, v)

τ(u, v)
≤ α. (6.7)

Perhaps the simplest weight design which satisfies (6.7) is a uniform weights design, in which the
τ(v, u)’s all take on the same value.
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Definition 6.4 (Uniform weights design). The MSPRT (Tn,α, v̂n,α) is designed with uniform
weights if

τ(v, u) :=
n2

α
, ∀u, v ∈ Vn : u 6= v. (6.8)

With the uniform weights design, we have

max
v∈Vn

∑
u∈Vn

d(u, v)
α

n2
≤ max

v∈Vn

∑
u∈Vn

α

n
= α.

Hence (Tn,α, v̂n,α) ∈ ∆(Vn, α). Note that in the first equality above, we have used the (loose) bound
maxu,v∈Vn d(v, u) ≤ n.

When G is a regular tree, the following result shows that the performance of the MSPRT with
uniform weights matches the lower bound in Theorem 6.1.

Theorem 6.5. Let G be a k-regular tree with k ≥ 3 and fix α > 0. If (Tn,α, v̂n,α) is the MSPRT
with uniform weights,

lim sup
n→∞

maxv∈Vn Ev[Tn,α]
log logn
log(k−1)

≤ 1.

Combined with Theorem 6.1, Theorem 3.6 for regular trees follows as an immediate consequence.

Proof of Theorem 3.6 for regular trees. We have the series of inequalities

1
(a)

≤ lim inf
n→∞

val∗M (Vn, α)
log logn
log(k−1)

≤ lim sup
n→∞

val∗M (Vn, α)
log logn
log(k−1)

(b)

≤ lim sup
n→∞

maxv∈Vn Ev[Tn,α]
log logn
log(k−1)

(c)

≤ 1.

Above, (a) is due to Theorem 6.1, (b) follows since (Tn,α, v̂n,α) ∈ ∆(Vn, α) and (c) is due to Theorem
6.5. Since both the start and the end of the chain of inequalities is 1, the inequalities are all equality.
Hence the following limit is well-defined:

lim
n→∞

val∗M (Vn, α)
log logn
log(k−1)

= 1,

which proves the desired result.

We provide a brief sketch of the proof of Theorem 6.5, and defer the details to Section 8.2.
Suppose that v ∈ Vn is the true source. When t is sufficiently large, we show that it holds for all
u ∈ Vn \ {v} that

Zvu(t) ∼ Ev[Zvu(t)] �
t∑

s=0

|Nv(s) \ Nu(s)| � (k − 1)t.

This in particular implies that once t & log log(n2/α)
log(k−1) , all the log-likelihood ratios {Zvu(t)}u∈Vn\{u}

will cross the threshold log n2/α. Since log log(n2/α) ∼ log logn when n is large, Theorem 6.5
follows. The key technical ingredient of this proof is a large-deviations-type inequality for Zvu(t).

25



Unfortunately, the MSPRT with a uniform weights design is not optimal in lattices. Suppose
that the dimension of the lattice is `. For u, v ∈ Vn which are far apart, we have Zvu(t) � t`+1,
but for u, v which are relatively close together, Zvu(t) � t`. As the log-likelihood Zvu(t) grows at
a slower rate in this latter case, this ends up being the primary contributor to the behavior of the
stopping time. As a result, we obtain an upper bound for T ∗(Vn, α) of order (log n)1/`, whereas
the lower bound established in Theorem 6.1 is of order (log n)1/(`+1). To close this gap, we shall
consider a design for the MSPRT weights which places different thresholds for pairs of vertices that
are close and pairs that are far.

Definition 6.6 (K-level weights). Let K be a non-negative integer. The MSPRT (TKn,α, v̂
K
n,α) is

designed with K-level weights if

τ(v, u) :=

{
2K|N (K)|

α 0 < d(u, v) ≤ K
2n2

α else.

It is straightforward to show that the K-level weights satisfy (6.7):

max
v∈Vn

∑
u∈Vn

d(u, v)

τ(u, v)
= max

v∈Vn

 ∑
u∈Vn∩Nv(K)

d(u, v)

τ(u, v)
+

∑
u∈Vn\Nv(K)

d(u, v)

τ(u, v)


≤ max

v∈Vn

 ∑
u∈Vn∩Nv(K)

α

2|N (K)|
+

∑
u∈Vn\Nv(K)

α

2n


≤ α,

where to derive the inequality on the second line, we used d(u, v) ≤ K for u ∈ Nv(K) and d(u, v) ≤ n
for u ∈ Vn. Putting everything together, we have shown that (TKn,α, v̂

K
n,α) ∈ ∆(Vn, α).

At a high level, the MSPRT designed with K-level weights can be thought of as a multi-scale
source estimation algorithm. When the Zvu(t)’s are large for many vertices u far from v (specifically,
d(u, v) > K), this indicates that v must be relatively close to the source. Assuming K is not too
large, there are roughly n vertices far from v, which means that the threshold for the log-likelihood
ratios must be on the order of log n in order to reliably narrow down the general location of the
source. Simultaneously, the Zvu(t)’s for u close to v (specifically, d(u, v) ≤ K) provide fine-grained
information about the location of the source within the localized region Nv(K). To compensate for
the slower growth of Zvu(t) in this case, we require that they pass the much smaller threshold of
log(2K|N (K)|/α), hence removing the bottleneck found in the uniform weights design.

In the following result, we show that for the right value of K, the MSPRT designed with K-level
weights is orderwise optimal in lattices.

Theorem 6.7. Let G be an `-dimensional lattice and set K = (log n)1/`. Then there is a constant
b4 depending only on `,Q0, Q1 such that

lim sup
n→∞

maxv∈Vn Ev[TKn,α]

(log n)
1

`+1

≤ b4,

where a4 is the constant used in (6.2).

Combined with Theorem 6.1, Theorem 3.6 for lattices immediately follows.
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Proof of Theorem 3.6 for lattices. Let G be the `-dimensional lattice. We have the series of in-
equalities

a4

(a)

≤ lim inf
n→∞

val∗M (Vn, α)

(log n)
1

`+1

≤ lim sup
n→∞

val∗M (Vn, α)

(log n)
1

`+1

(b)

≤ lim sup
n→∞

maxv∈Vn Ev[TKn,α]

(log n)
1

`+1

(c)

≤ b4.

Above, (a) is due to Theorem 6.1, (b) follows since (TKn,α, v̂
K
n,α) ∈ ∆(Vn, α), and (c) is due to

Theorem 6.7. In particular, the chain of inequalities implies that for n sufficiently large,

a4

2
(log n)

1
`+1 ≤ val∗M (Vn, α)

≤ max
v∈Vn

Ev[TKn,α]

≤ 2b4(log n)
1

`+1 .

The theorem follows from setting a′ := a4/2 and b′ := 2b4.

The proof of Theorem 6.7 follows similar reasoning as the proof of Theorem 6.5. In the case that
v is the true source of the cascade, we separately consider the performance of Zvu(t) for u ∈ Nv(K)
and u ∈ Vn \ Nv(K) and use large-deviations-type results to characterize when the log-likelihood
ratios cross the thresholds specified by the K-level weights design. For full details, see Section 8.3.

Remark 6.8 (MSPRTs for general topologies). The K-level weights introduced in Definition 6.6
can be generalized to arbitrary topologies if we set

τ(v, u) :=

{
2K|Nv(K)|

α 0 < d(v, u) ≤ K;
2n2

α else.

Above, we write |Nv(K)| instead of |N (K)| since the size of the K-hop neighborhood of a vertex
v can depend strongly on v in general topologies. Since the proof of Theorem 6.7 is quite generic
for the most part, we expect that a MSPRT with K-level weights can achieve the lower bound for
val∗M (Vn, α) in general. The choice of K, however, will depend on the topology of interest.

7 Analysis of the Bayesian estimation error: Proof of Lemmas 5.2
and 5.3

7.1 Preliminary results: Properties of the posterior distribution

Before proving Lemmas 5.2 and 5.3, we introduce some simple supporting results. Recall that the
posterior distribution is given by π(t) = {πv(t)}v∈Vn , where

πv(t) := Pπ(Vn) (v∗ = v | y(0), . . . , y(t)) .
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From Bayes’ formula, it holds for any distinct u, v ∈ Vn that

πv(t)

πu(t)
=
πv(t− 1)

πu(t− 1)
· dPv(y(t))

dPu(y(t))
. (7.1)

Recall that under Pv, yw(t) ∼ Q1 if w ∈ Nv(t), else yw(t) ∼ Q0. Since the public signals
y(0), . . . , y(t) are independent conditioned on the source, the likelihood ratio dPv(y(t))/dPu(y(t))
can be written as

dPv(y(t))

dPu(y(t))
=

( ∏
w∈Nv(t)

dQ1(yw(t))

)( ∏
w/∈Nv(t)

dQ0(yw(t))

)
( ∏
w∈Nu(t)

dQ1(yw(t))

)( ∏
w/∈Nu(t)

dQ0(yw(t))

)

=

∏
w∈Nv(t)\Nu(t)

dQ1

dQ0
(yw(t))∏

w∈Nu(t)\Nv(t)
dQ1

dQ0
(yw(t))

(7.2)

Combining (7.1) and (7.2), we have

πv(t)

πu(t)
=

∏t
s=0

∏
w∈Nv(s)\Nu(s)

dQ1

dQ0
(yw(s))∏t

s=0

∏
w∈Nu(s)\Nv(s)

dQ1

dQ0
(yw(s))

(7.3)

=

∏t
s=0

∏
w∈Nv(s)

dQ1

dQ0
(yw(s))∏t

s=0

∏
w∈Nu(s)

dQ1

dQ0
(yw(s))

. (7.4)

Equation (7.3) follows directly from (7.1) and (7.2). The difference between (7.3) and (7.4) is that
we take a product over w ∈ Nu(s) \ Nv(s) and w ∈ Nv(s) \ Nu(s) in the former, and w ∈ Nu(s)
and w ∈ Nv(s) in the latter. The expressions are equivalent since the vertices in Nu(s)∩Nv(s) are
cancelled out. We display both equations, as each will be useful in different contexts.

Equation (7.4) implies that the posterior probabilities can be written as

πv(t) =
1

Y (t)

t∏
s=0

∏
w∈Nv(s)

dQ1

dQ0
(yw(s)),

where the normalizing constant, Y (t), is given by

Y (t) :=
∑
v∈Vn

t∏
s=0

∏
w∈Nv(s)

dQ1

dQ0
(yw(s)).

It will be convenient to use the notation πv(t) = Xv(t)/Y (t), where Xv(t) is explicitly given by

Xv(t) :=

t∏
s=0

∏
w∈Nv(s)

dQ1

dQ0
(yw(s)).

With this notation, Y (t) =
∑

u∈Vn Xu(t). The following lemma establishes some basic properties
of the collection {Xu(t)}u∈Vn .
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Lemma 7.1. Denote

β := EA∼Q1

[
dQ1

dQ0
(A)

]
.

Then β > 1 and for any u, v ∈ Vn and t ≥ 0,

Ev[Xu(t)] = β
∑t

s=0 |Nv(s)∩Nu(s)|.

Proof. We start by proving β > 1. We can write

EA∼Q1

[
dQ1

dQ0
(A)

]
= EB∼Q0

[(
dQ1

dQ0
(B)

)2
]

≥ EB∼Q0

[
dQ1

dQ0
(B)

]2

= 1.

Above, the first equality is due to a change of measure (a valid operation since Q0, Q1 are mutually
absolutely continuous), and the inequality is due to Jensen’s inequality. Above, the inequality is
strict since the equality case only occurs if dQ1

dQ0
(B) is a constant (equivalently, Q0 = Q1).

Since {yw(s)}w∈V,0≤s≤t is a collection of independent random variables conditioned on v∗ = v,
we have

Ev[Xu(t)] = Ev

 t∏
s=0

∏
w∈Nu(s)

dQ1

dQ0
(yw(s))

 (7.5)

=
t∏

s=0

∏
w∈Nu(s)

Ev
[
dQ1

dQ0
(yw(s))

]
. (7.6)

For each term in the product, we have

Ev
[
dQ1

dQ0
(yw(s))

]
=

{
β d(v, w) ≤ s
1 else,

(7.7)

where we have used the fact that yw(s) ∼ Q1 in the first case, and yw(s) ∼ Q0 in the second. The
desired statement follows from substituting (7.7) into (7.5).

The following lemma bounds the covariance between Xu(t) and Xv(t). As a matter of notation,
we recall that the neighborhood growth function (defined in (3.4)) is given by f(t) :=

∑t
s=0 |N (s)|.

Lemma 7.2. For any u, v, w ∈ Vn and t ≥ 0, there is a constant λ = λ(Q0, Q1) such that
Covv(Xu(t), Xw(t)) = 0 if d(u,w) > 2t and Covv(Xu(t), Xw(t)) ≤ λf(t) if d(u,w) ≤ 2t.

Proof. Since Xu(t) depends only on the signals in Nu(t), it is clear that Xu(t) and Xw(t) are
independent under Pv if d(u,w) > 2t. Hence Covv(Xu(t), Xw(t)) = 0 in this case. To handle the
case where d(u,w) ≤ 2t, we first define

λ1 := E
A∼Q1

[(
dQ1

dQ0
(A)

)2
]
, λ0 := E

B∼Q0

[(
dQ1

dQ0
(B)

)2
]
.

We have the following bound on the covariance due to the Cauchy-Schwartz inequality.

Covv(Xu(t), Xw(t)) ≤ Ev[Xu(t)Xw(t)]

≤ Ev[Xu(t)2]1/2Ev[Xw(t)2]1/2.
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To bound Ev[Xu(t)2], we can write

Ev[Xu(t)2] =
t∏

s=0

∏
a∈Nu(s)

Ev

[(
dQ1

dQ0
(ya(s))

)2
]

= λ
∑t

s=0 |Nu(s)∩Nv(s)|
1 λ

∑t
s=0 |Nu(s)\Nv(s)|

0

≤ (max{λ0, λ1})
∑t

s=0 |Nu(s)|

= (max{λ0, λ1})f(t).

Since the bound we have derived holds for any u ∈ Vn, it follows that Covv(Xu(t), Xw(t)) ≤
(max{λ0, λ1})f(t), which proves the desired claim with λ := max{λ0, λ1}.

The results we have established allow us to prove the following concentration result for Y (t)
when t is not too large.

Lemma 7.3. Recall the constants β = β(Q0, Q1) (defined in Lemma 7.1) and λ = λ(Q0, Q1)
(defined in 7.2). Furthermore let F := f−1 be the inverse of the neighborhood growth function. If

t ≤ F
(

log n

4 log(max{β, λ})

)
,

then for any ε > 0,

max
v∈Vn

Pv(|Y (t)− n| ≥ εn) ≤ 4

ε2
√
n
. (7.8)

Proof. Let β = β(Q0, Q1) be the constant defined in Lemma 7.1. We begin by computing the
expectation of Y (t) with respect to Pv.

Ev[Y (t)] =
∑
u∈Vn

Ev[Xu(t)]

=
∑
u∈Vn

β
∑t

s=0 |Nv(s)∩Nu(s)|

=
∑

u∈Nv(2t)

β
∑t

s=0 |Nv(s)∩Nu(s)| + |Vn \ Nv(2t)|.

Since β > 1 and
∑t

s=0 |Nv(s) ∩Nu(s)| ≤ f(t), we have the bounds

n ≤ Ev[Y (t)] ≤ n+ |N (2t)|βf(t).

From Lemmas A.1 and A.3, we have the asymptotics

|N (2t)| �

{
(k − 1)2t G is a k-regular tree;

t` G is a `-dimensional lattice

f(t) �

{
(k − 1)t G is a k-regular tree;

t`+1 G is a `-dimensional lattice.

Hence we have, for t sufficiently large, the simpler upper bound of n + β2f(t) for Ev[Y (t)]. Next,
suppose that t satisfies f(t) ≤ logn

4 log β so that β2f(t) ≤
√
n. Then

Pv (|Y (t)− n| ≥ εn) ≤ Pv
(
|Y (t)− Ev[Y (t)]| ≥ ε

2
n
)

≤ 4 ·Varv(Y (t))

ε2n2
, (7.9)
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where the first inequality holds if ε ≥ 2√
n

and the second inequality is due to Chebyshev’s inequality.

Using Lemma 7.2, we can bound the variance of Y (t) as

Varv(Y (t)) =
∑

u,w∈Vn

Covv(Xu(t), Xw(t))

≤
∑
u∈Vn

|N (2t)|λf(t)

≤ 2nf(t)2λf(t)

≤ nλ2f(t),

where we have used |N (2t)| ≤ f(2t) ≤ 2f(t)2 and λ = λ(Q0, Q1) is defined in Lemma 7.2. Moreover,
if f(t) ≤ logn

4 log λ , then λ2f(t) ≤
√
n and Varv(Y (t)) ≤ n3/2. The desired result follows.

Our final result establishes exponential lower tail bounds for the ratio πv(t)/πu(t) using Chernoff
bounds. Before stating the result, we define some notation. Let

D(Q0, Q1) := EA∼Q1

[
log

dQ1

dQ0
(A)

]
+ EB∼Q0

[
log

dQ0

dQ1
(B)

]
(7.10)

denote the symmetrized Kullblack-Liebler divergence, and define the rate function

I(x) := sup
λ≥0

{
−λ(D(Q0, Q1)− x)− logE

[(
dQ0

dQ1
(A)

)λ(dQ1

dQ0
(B)

)λ]}
, (7.11)

where A ∼ Q1 and B ∼ Q0 are independent. Finally, for u, v ∈ V , define the neighborhood difference
function

fvu(t) :=
t∑

s=0

|Nv(s) \ Nu(s)|.

Lemma 7.4. Let u, v ∈ V be any two vertices. If x > 0, then I(x) > 0 and

Pv
(
πv(t)

πu(t)
≤ e(D(Q0,Q1)−x)fvu(t)

)
≤ e−I(x)fvu(t), x > 0. (7.12)

Proof. Conditioned on A,B, define the function

g(λ) :=

(
dQ0

dQ1
(A)

dQ1

dQ0
(B)

)λ
.

Note that g(λ) is differentiable, and by the mean-value theorem, we have for any λ1 ∈ [0, 1] that
there exists η ∈ [0, λ1] so that

|g(λ1)− 1|
λ1

= |g′(η)| = η

∣∣∣∣dQ0

dQ1
(A)

dQ1

dQ0
(B)

∣∣∣∣η−1

≤ 1 +

∣∣∣∣dQ0

dQ1
(A)

dQ1

dQ0
(B)

∣∣∣∣ . (7.13)

In the final inequality, we have used η ≤ 1 as well as the fact that aη−1 ≤ a if a ≥ 1 else aη−1 ≤ 1
if 0 ≤ a ≤ 1. Furthermore, note that due to the independence of A and B,

EA∼Q1,B∼Q0

[
dQ0

dQ1
(A)

dQ1

dQ0
(B)

]
= EA∼Q1

[
dQ0

dQ1
(A)

]
EB∼Q0

[
dQ1

dQ0
(B)

]
= 1.
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It then follows from the definition of the Lebesgue integral that

E
[∣∣∣∣dQ0

dQ1
(A)

dQ1

dQ0
(B)

∣∣∣∣] <∞. (7.14)

In particular, the dominating function for |g(λ1)−1|/λ1 in (7.13) is integrable. Together, (7.13) and
(7.14) along with the Lebesgue Dominated Convergence Theorem imply that E[g(λ)] is differentiable
at λ = 0. Moreover, the derivative of logE[g(λ)] at λ = 0 is equal to −D(Q0, Q1). Next, if we
define the function

h(λ) := −λ(D(Q0, Q1)− x)− logE[g(λ)],

then the results we have established thus far imply h′(0) = x > 0. Since h(0) = 0, it follows that
h(λ)/λ > 0 for sufficiently small λ, and in particular h(λ) > 0. Since I(x) = supλ≥0 h(λ), the claim
I(x) > 0 follows.

We now show how one can use the rate function I(x) to obtain the inequality (7.12). Recall
that under the measure Pv, the variables {yw(s)}w∈V,0≤s≤t are independent, with

yw(s) ∼

{
Q1 w ∈ Nv(s)
Q0 else.

Using the representation (7.3), the following distributional identity holds under the measure Pv:

πv(t)

πu(t)

d
=

fvu(t)∏
i=1

Wi, (7.15)

where the Wi’s are i.i.d. with distribution given by

Wi
d
=
dQ1

dQ0
(A)

(
dQ1

dQ0
(B)

)−1

, (7.16)

for independent A ∼ Q1 and B ∼ Q0. A Chernoff-type bound implies that

Pv
(
πv(t)

πu(t)
≤ e(D(Q0,Q1)−x)fvu(t)

)
= inf

λ≥0
Pv

((
πv(t)

πu(t)

)−λ
≥ e−λ(D(Q0,Q1)−x)fvu(t)

)

≤ inf
λ≥0

exp

(
λ(D̃(Q0, Q1)− x)fvu(t) + logE

[(
πv(t)

πu(t)

)−λ])
= exp (−I(x)fvu(t)) ,

where the final expression follows from the distributional representation for πv(t)/πu(t) in (7.15)
and (7.16).

7.2 Lower bounding the estimation error: Proof of Lemma 5.2

At a high level, the proof strategy is to first establish a probabilistic lower bound for Eπ(t)[d(v∗, u)]
where u ∈ Vn is fixed. Through union bounds, this will lead to a probabilistic lower bound for
minu∈Vn Eπ(t)[d(v∗, u)]. We remark that the proof of Lemma 5.2 makes use of some combinatorial
properties of trees and lattices, the proofs of which may be found in Appendix B.
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For a fixed vertex u ∈ Vn, we can write

Eπ(t)[d(v∗, u)] =
∑
w∈Vn

d(w, u)πw(t)

=
1

Y (t)

∑
w∈Vn

d(w, u)Xw(t).

Lemma 7.3 has already established a concentration inequality for Y (t), so we will proceed by
establishing a probabilistic lower bound for

∑
w∈Vn d(u,w)Xw(t). For any v ∈ Vn, we have

Ev

[∑
w∈Vn

d(u,w)Xw(t)

]
=
∑
w∈Vn

d(u,w)Ev[Xw(t)]

≥
∑
w∈Vn

d(u,w), (7.17)

where the inequality is due to Ev[Xw(t)] ≥ 1, which was proved in Lemma 7.1. We can also upper
bound the variance as

Varv

(∑
w∈Vn

d(u,w)Xw(t)

)
=
∑
w1∈Vn

∑
w2∈Vn

d(u,w1)d(u,w2)Covv (Xw1(t), Xw2(t))

(a)

≤ λf(t)
∑
w1∈Vn

∑
w2∈Vn:d(w1,w2)≤2t

d(u,w1)d(u,w2)

(b)

≤ λf(t)|N (2t)|
∑
w1∈Vn

d(u,w1)(d(u,w1) + 2t)

= λf(t)|N (2t)|

(∑
w∈Vn

d(u,w)2 + 2t
∑
w∈Vn

d(u,w)

)
(c)

≤ λf(t)|N (2t)|(1 + 2t)
∑
w∈Vn

d(u,w)2, (7.18)

where (a) follows from Lemma 7.2, (b) is due to the inequality d(u,w2) ≤ d(u,w1) + d(w1, w2) ≤
d(u,w1) + 2t, and (c) follows from bounding d(u,w) ≤ d(u,w)2.

Next, an application of inequality (7.17) and Chebyshev’s inequality yields

Pv

(∑
v∈Vn

d(u,w)Xw(t) ≤ 1

2

∑
w∈Vn

d(u,w)

)
≤ 4λf(t)|N (2t)|(1 + 2t) ·

∑
w∈Vn d(u,w)2(∑
w∈Vn d(u,w)

)2 , (7.19)

where the right hand side uses the variance upper bound (7.18). To proceed, we bound the right
hand side of (7.19) when G is a regular tree or a lattice. Although we treat these cases separately
for convenience, the methodology is the same.

Case 1: G is a k-regular tree.
In this case, Lemma B.3 shows that ∑

w∈Vn

d(u,w) ≥ n log n

k log(k − 1)∑
w∈Vn

d(u,w)2 ≤ 4n log2 n

log2(k − 1)
.
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Substituting the above bounds into (7.19) shows that

Pv

(∑
w∈Vn

d(u,w)Xw(t) ≤ n log n

2k log(k − 1)

)
≤ λf(t)|N (2t)|(1 + 2t)

16k2

n

≤ 50tλf(t)|N (2t)|k2

n
. (7.20)

A näıve method for deriving a probabilistic bound for minu∈Vn
∑

w∈Vn d(u,w)Xw(t) is to take a
union bound over the events pertaining to

∑
w∈Vn d(u,w)Xw(t) for all u ∈ Vn. However, the prob-

ability bound in (7.20) is not small enough for a union bound to work, since |Vn| = n. Fortunately,
as we shall see, it suffices to take a union bound over a much smaller set of vertices. To this end,
define

m :=

⌈
rn + 1− log n

6k log(k − 1)

⌉
.

Since rn ∼ log(n)/ log(k − 1) (see (3.1)), m ∼
(
1− 1

6k

)
rn. In addition, it holds for n sufficiently

large that

|Nv0(m)| (d)
= 1 +

k

k − 2
((k − 1)m − 1)

(e)

≤ 1 +
k

k − 2
(k − 1)(

1− 1
12k ) logn

log(k−1)

(f)

≤ 2kn1− 1
12k ,

where (d) follows from Lemma A.1, (e) holds since m ≤
(
1− 1

12k

) logn
log(k−1) for n sufficiently large

due to the asymptotics of rn, and (f) follows from upper bounding the coefficient on the first-order
term in the second line. Combining (7.20) with a union bound over elements of Nv0(m) implies

Pv

(
min

u∈Nv0 (m)

∑
w∈Vn

d(u,w)Xw(t) ≤ n log n

2k log(k − 1)

)
≤ 100tλf(t)|N (2t)|k3n−

1
12k . (7.21)

Next, define the event

E :=

{
n

2
≤ Y (t) ≤ 3n

2

}
.

If the event E holds, we have the series of implications

min
u∈Nv0 (m)

∑
w∈Vn

d(u,w)πw(t) ≤ log n

3k log(k − 1)
⇒ min

u∈Nv0 (m)

1

3n/2

∑
w∈Vn

d(u,w)Xw(t) ≤ log n

3k log(k − 1)

⇒ min
u∈Nv0 (m)

∑
w∈Vn

d(u,w)Xw(t) ≤ n log n

2k log(k − 1)
.

Above, the first implication uses πw(t) = Xw(t)/Y (t) and the fact that Y (t) ≤ 3n/2 on E . We then

have, for t ≤ F
(

logn
4 log max{β,λ}

)
,

Pv

(
min

u∈Nv0 (m)

∑
w∈Vn

d(u,w)πw(t) ≤ log n

3k log(k − 1)

)
≤ Pv

(
min

u∈Nv0 (m)

∑
w∈Vn

d(u,w)Xw(t) ≤ n log n

2k log(k − 1)

)
+ Pv(Ec)

≤ 100tλf(t)|N (2t)|k3n−
1

12k +
16√
n
. (7.22)
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The final inequality above follows from Lemma 7.3 as well as the bound in (7.21). If we additionally

have t ≤ F
(

logn
24k log λ

)
, we have the bounds

t ≤ (1 + on(1))
log log n

log(k − 1)

λf(t) ≤ n
1

24k ,

|N (2t)| ≤ log2+on(1) n,

where on(1) → 0 as n → ∞. This shows in particular that the final expression in (7.22) can be
bounded for n sufficiently large by

16√
n

+
200k3(log log n)(log3 n)

log(k − 1)
n−

1
24k ≤ n−

1
30k .

To put everything together, the way we have defined m implies that for every u ∈ Vn there is
u′ ∈ Nv0(m) such that d(u, u′) ≤ logn

6k log(k−1) . Moreover,∑
w∈Vn

d(u,w)πw(t) ≥
∑
w∈Vn

(d(u′, w)− d(u, u′))πw(t)

≥
∑
w∈Vn

d(u′, w)πw(t)− log n

6k log(k − 1)
.

We therefore have

min
u′∈Nv0 (m)

∑
w∈Vn

d(u′, w)πw(t) >
log n

3k log(k − 1)
⇒ min

u∈Vn

∑
w∈Vn

d(u,w)πw(t) >
log n

6k log(k − 1)
.

To summarize, we have shown that if we set

a1 := (max{4 log β, 24k log λ})−1 ,

then for t ≤ F (a1 log n),

Pv

(
min
u∈Vn

∑
w∈Vn

d(u,w)πw(t) ≤ log n

6k log(k − 1)

)
≤ n−

1
30k .

Taking a union bound over 0 ≤ t ≤ F (a1 log n), and recalling that Eπ(t)[d(v∗, u)] =
∑

w∈Vn d(u,w)πw(t),
we arrive at

Pv
(

max
0≤t≤F (a1 logn)

Eπ(t)[d(v∗, v̂B(t))] ≤ log n

6k log(k − 1)

)
≤ F (a1 log n)n−

1
30k .

Since F (a1 log n) ∼ log logn
log(k−1) , the right hand side tends to 0 uniformly over v ∈ Vn as n → ∞, and

the result of Lemma 5.2 for trees follows.

Case 2: G is a `-dimensional lattice.
By Lemma B.5, there exist constants c3, c4 > 0 depending only on ` such that∑

w∈Vn

d(u,w) ≥ c3n
1+ 1

`

∑
w∈Vn

d(u,w)2 ≤ c4n
1+ 2

` .
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Substituting the above bounds into (7.19) shows that

Pv

(∑
w∈Vn

d(u,w)Xw(t) ≤ c3

2
n1+ 1

`

)
≤ 4λf(t)|N (2t)|(1 + 2t)

c4n
1+2/`

c2
3n

2+2/`

≤
(

12c4

c3

)
tλf(t)|N (2t)|

n
.

As in the case of regular trees, we need to take a union bound over a small set of vertices. The
following combinatorial lemma guarantees the existence of such a set.

Lemma 7.5. For every n, there exists a set Sn whose size can be bounded as a function of ` only,
such that for every u ∈ Vn, there exists u′ ∈ Sn such that d(u, u′) ≤ c3

6 n
1/`.

Before proving the lemma, we shall show how we can use it to prove Lemma 5.2 for lattices.

Mirroring the steps of (7.22) in the case of lattices, if t ≤ F
(

logn
4 log max{β,λ}

)
we arrive at the

probability bound

Pv

(
min
u∈Sn

∑
w∈Vn

d(u,w)πw(t) ≤ c3

3
n1/`

)
≤ 16√

n
+

12c4

c2
3

|Sn| ·
tλf(t)|N (2t)|

n
. (7.23)

If we additionally have t ≤ F
(

logn
3 log λ

)
, we have the bounds

t ≤ O
(

(log n)
1

`+1

)
λf(t) ≤ n1/3

|N (2t)| ≤ O
(

(log n)
`

`+1

)
.

The big-O bounds follow from the asymptotic behavior of F (see (5.3)) as well as the asymptotic
behavior of |N (t)| (see (A.8)). For n sufficiently large, we can therefore bound the right hand side
in (7.23) by

16√
n

+O((log n)n−2/3) ≤ 20√
n
, (7.24)

where the final inequality holds for n sufficiently large. Putting everything together, since for every
u ∈ Vn we can find u′ ∈ Sn such that d(u, u′) ≥ c3

6 n
1/`, we have

min
u′∈Sn

∑
w∈Vn

d(u′, w)πw(t) >
c3

3
n1/` ⇒ min

u∈Vn

∑
w∈Vn

d(u,w)πw(t) >
c3

6
n1/`.

Hence, if we set
a′1 := (max{4 log β, 4 log λ})−1 ,

then (7.23) and (7.24) imply that for t ≤ F (a′1 log n),

Pv

(
min
u∈Vn

∑
w∈Vn

d(u,w)πw(t) ≤ c3

6
n1/`

)
≤ 20√

n
.

Taking a union bound over 0 ≤ t ≤ F (a′1 log n) and recalling the definition of Eπ(t)[d(v∗, u)], we
arrive at

Pv
(

max
0≤t≤F (a′1 logn)

Eπ(t)[d(v∗, v̂B(t))] ≤ c3

6
n1/`

)
≤ 20F (a′1 log n)√

n
.
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Due to the asymptotic behavior of F (see (5.3)), the right hand side tends to 0 uniformly over
v ∈ Vn as n→∞, and the result of Lemma 5.2 for lattices follows.

We now turn to the proof of Lemma 7.5.

Proof of Lemma 7.5. Let m be a positive integer. We define an m-covering of Vn to be S ⊆ Vn
such that for any u ∈ Vn, there exists v ∈ S such that d(u, v) ≤ m. We also define an m-packing of
Vn to be S ⊆ Vn such that for any u, v ∈ S, d(u, v) > m. We say a S is a maximal m-packing of Vn
if it has the maximum possible cardinality. A fundamental result on coverings and packings is that
a maximal m-packing is also a valid covering [43, Lemma 5.12], so the proof focuses on bounding
the size of a maximal packing. Our proof is based on [43, Lemma 5.13].

Set m := b c38 n
1/`c and let S ⊂ Vn be a 2m-packing. This in particular implies that {Nu(m)}u∈S

is a collection of disjoint sets satisfying⋃
u∈S
Nu(m) ⊆

⋃
u∈Vn

Nu(m) ⊆ Nv0(rn + 1 +m).

This in turn implies ∑
u∈S
|Nu(m)| = |S| · |N (m)| ≤ |N (rn + 1 +m)|. (7.25)

Since rn � n1/` (see (3.1)) and m � n1/`, we can find constants C1, C2 > 0 depending only on `
such that

C1n
1/` ≤ m ≤ rn + 1 +m ≤ C2n

1/`.

Next, recall that |N (t)| ∼ c`t`, where c` is a constant depending only on ` (see (A.8)). Hence

|S| ≤ |N (rn + 1 +m)|
|N (m)|

∼ (rn + 1 +m)`

m`
≤
(
C2

C1

)`
.

Note that the right hand side is of constant order even as n→∞. Moreover, the bound holds for
all 2m-packings, including maximal packings that are also coverings. This guarantees the existence
of a 2m-covering of size bounded by a constant depending on ` even as n → ∞. We conclude by
noting that 2m ≤ c3

4 n
1/`.

7.3 Upper bounding the estimation error: Proof of Lemma 5.3

For any vertex v ∈ Vn, we can write

Eπ(t)[d(v∗, v̂B(t))]
(a)

≤ Eπ(t)[d(v∗, v)] =
∑
w∈Vn

d(w, v)πw(t)

(b)

≤
∑
w∈Vn

d(w, v)
Xw(t)

Xv(t)
,

where (a) follows since Eπ(t)[d(v∗, v̂B(t))] = minu∈Vn Eπ(t)[d(v∗, u)] and (b) follows since πw(t) =
Xw(t)/Y (t) and Y (t) ≥ Xv(t). For distinct vertices w, v ∈ V , recall the notation fvw(t) :=∑t

s=0 |Nv(s) \Nw(s)| and further recall that D(Q0, Q1) is the symmetrized Kullback-Liebler diver-
gence between Q0 and Q1 (see (7.10)). As a shorthand, denote θ := D(Q0, Q1)/2. Next, define the
event

Evw :=

{
Xv(t)

Xw(t)
≥ eθfvw(t)

}
.
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By Lemma 7.4, Pv(Ecvw) ≤ e−I(θ)fvw(t), where I(·) is the large-deviations rate function defined in
Lemma 7.4. On the event Ev :=

⋃
w∈Vn\{v} Evw, we have the bound

Eπ(t)[d(v∗, v̂B(t))] ≤
∑
w∈Vn

d(w, v)
Xw(t)

Xv(t)

≤
∑
w∈Vn

d(w, v)e−θfvw(t). (7.26)

To bound the final summation in (7.26), we split the summation into two parts: w such that
d(v, w) ≤ 2t and w such that d(v, w) > 2t. To handle the first part, it is useful to define the
function

f1(t) :=
t∑

s=0

|Na(s) \ Nb(s)|

where a, b are any two neighboring vertices (since the graph is vertex-transitive, we obtain the
same formula for any two neighboring a, b). We may now bound the summation over w such that
d(v, w) ≤ 2t as ∑

w∈Vn:d(w,v)≤2t

d(w, v)e−θfvw(t) ≤ 2t|N (2t)|e−θf1(t). (7.27)

To handle the summation over w such that d(v, w) > 2t, first note that

fvw(t) =
t∑

s=0

|Nv(s) \ Nw(s)| (c)
=

t∑
s=0

|Nv(s)| = f(t), (7.28)

where the equality (c) follows since Nv(s) ∩ Nw(s) = ∅ for 0 ≤ s ≤ t because d(v, w) > 2t. Hence
we can bound the second part of the summation by∑

w∈Vn:d(w,v)>2t

d(w, v)e−θf(t) ≤
∑

w∈Vn:d(w,v)>2t

ne−θf(t)

≤ n2e−θf(t), (7.29)

where we have used the coarse bound d(w, v) ≤ n above. Putting everything together, the total
bound on the estimation error on the event Ev is

2t|N (2t)|e−θf1(t) + n2e−θf(t).

The remaining element of the proof is to bound Pv(Ecv). We can write

Pv(Ecv)
(d)

≤
∑

w∈Vn\{v}

Pv(Ecvw)

(e)

≤
∑

w∈Vn\{v}

e−I(θ)fvw(t)

(f)

≤
∑

w∈Vn:d(w,v)≤2t

e−I(θ)f1(t) +
∑

w∈Vn:d(w,v)>2t

e−I(θ)f(t)

≤ |N (2t)|e−I(θ)f1(t) + ne−I(θ)f(t). (7.30)
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Above, (d) is due to a union bound, (e) follows from Lemma 7.4, and (f) uses f1(t) ≤ fvw(t) as
well as fvw(t) = f(t) if d(v, w) > 2t (see (7.28)). Putting everything together, we have shown that
for any v ∈ Vn,

Pv
(
Eπ(t)[d(v∗, v̂B(t))] > 2t|N (2t)|e−θf1(t) + n2e−θf(t)

)
≤ |N (2t)|e−I(θ)f1(t) + ne−I(θ)f(t).

Note in particular that the probability bound above holds uniformly over all v ∈ Vn. Focusing on
the special cases of regular trees and lattices, we will simplify the bound on the estimation error as
well as the probability bound.

Case 1: G is a k-regular tree. Lemma A.1 provides the asymptotics of various combinato-
rial quantities related to neighborhood sizes, summarized below:

|N (2t)| ∼ k

k − 2
(k − 1)2t

f1(t) ∼ (k − 1)t+1

k − 2

f(t) ∼ k

(k − 2)2
(k − 1)t+1

F (z) ∼ log z

log(k − 1)
.

The terms 2t|N (2t)|e−θf1(t) and |N (2t)|e−I(θ)f1(t) can therefore be bounded by e−O((k−1)t) for t

sufficiently large. If t ≥ F
(

4 logn
θ

)
, then n2e−θf(t) ≤ e−

1
2
θf(t) = e−O((k−1)t), where the hidden

factors in the big O do not depend on n. Similarly, if t ≥ F
(

2 logn
I(θ)

)
, then ne−I(θ)f(t) ≤ e−O((k−1)t),

where again, the hidden factors do not depend on n.

Putting everything together, we have shown that for t ≥ F
(

4 logn
min{θ,I(θ)}

)
,

Pv
(
Eπ(t)[d(v∗, v̂B(t))] > e−O((k−1)t)

)
≤ e−O((k−1)t),

which implies the desired result for k-regular trees.

Case 2: G is a `-dimensional lattice. Lemma A.3 proves the following asymptotic behav-
ior of neighborhood sizes in `-dimensional lattices:

|N (2t)| � t`, f(t) � t`+1, F (z) � z
1

`+1 .

Additionally, we can lower bound f1(t) as follows: if u, v are adjacent, then

f1(t) =
t∑

s=0

|Nv(s) \ Nu(s)| ≥ t+ 1, (7.31)

where the inequality above uses the fact that Nv(s) \ Nu(s) 6= ∅ for all s ≥ 0. We can therefore
bound the terms

2t|N (2t)|e−θf1(t) ≤ O
(
t`+1e−θt

)
|N (2t)|e−I(θ)f1(t) ≤ O

(
t`e−I(θ)t

)
.
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Additionally, as in the previous case, if t ≥ F
(

4 logn
min{θ,I(θ)}

)
then n2e−θf(t) and ne−I(θ)f(t) are

bounded by e−O(t`+1), where the hidden factors in the big O do not depend on n. Putting everything

together, we have shown that for t ≥ F
(

4 logn
min{θ,I(θ)}

)
,

Pπ(Vn)

(
Eπ(t)[d(v∗, v̂B(t))] > O

(
t`+1e−θt

))
≤ O

(
t`e−I(θ)t

)
,

which implies the desired result for n sufficiently large if we set b2 = 0.5 ·min{θ, I(θ)}.

8 Proof of the MSPRT upper bounds

8.1 Useful preliminary results

We start by stating and recalling some useful combinatorial results concerning the sizes of neigh-
borhoods in regular trees and lattices. To begin, for vertices u, v recall that

fvu(t) :=

t∑
s=0

|Nv(s) \ Nu(s)|.

Moreover, recall that the neighborhood growth function (originally defined in (3.4)) is

f(t) :=
t∑

s=0

|N (s)|.

We also define, for any pair of adjacent vertices u, v, the function

f1(t) :=
t∑

s=0

|Nv(s) \ Nu(s)|.

We also define the inverse functions Fvu = f−1
vu , F = f−1, F1 = f−1

1 . These inverse functions
are well-defined since fvu, f, f1 are strictly increasing functions. In k-regular trees, we have the
asymptotics

F1(z) ∼ log z

log(k − 1)
. (8.1)

For a proof, see Lemma A.1. In `-dimensional lattices, we have the orderwise asymptotics

|N (t)| � t`, f(t) � t`+1, F (z) � z
1

`+1 . (8.2)

For a more precise statement, see Lemma A.3. Next, we prove a few simple, generic results regarding
these functions. The following result provides a simple but useful bounds for f1 that hold in regular
trees and lattices.

Lemma 8.1. Suppose that G is an infinite regular tree or lattice and u, v ∈ V are two distinct
vertices. If t2 ≥ t1 ≥ 0, fvu(t2)− fvu(t1) ≥ t2 − t1.

Proof. For any two distinct vertices u, v and any non-negative integer s, |Nv(s)\Nu(s)| ≥ 1. Hence

fvu(t2)− fvu(t1) =

t2∑
s=t1+1

|Nv(s) \ Nu(s)| ≥ t2 − t1.
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Next, we prove a simple linear upper bound for F1, since its exact expression is challenging to
compute in lattices.

Lemma 8.2. Let G be an infinite regular tree or lattice. Then F1(z) ≤ z.

Proof. Lemma 8.1 implies the lower bound

f1(t) = f1(0) + f1(t)− f1(0) ≥ t+ 1 ≥ t.

Setting z = f1(t), we have F1(z) = t which implies the desired result.

The following lemma derives conditions under which Fvu = F .

Lemma 8.3. If z < f(d(u, v)/2) then F (z) = Fvu(z).

Proof. For s < d(u, v)/2, Nv(s) and Nu(s) are disjoint so Nv(s) \ Nu(s) = Nv(s). Hence for
t < d(u, v)/2,

fvu(t) =
t∑

s=0

|Nv(s) \ Nu(s)| =
t∑

s=0

|Nv(s)| = f(t).

It follows that Fvu(z) = F (z) if F (z) < d(u, v)/2. Equivalently, z < f(d(u, v)/2) which proves the
lemma.

Finally, at the core of the analysis is the following large-deviations-type result. It essentially
follows as a corollary from the large-deviations result Lemma 7.4 which was used in the analysis of
the Bayesian setting.

Lemma 8.4. Let u, v ∈ V be any two vertices. For any x > 0,

Pv (Zvu(t) ≤ (D(Q0, Q1)− x)fvu(t)) ≤ e−I(x)fvu(t).

Above, D(Q0, Q1) is the symmetrized Kulback-Liebler divergence between Q0 and Q1, and I(·) is
the rate function defined in (7.11). Moreover, I(x) > 0 for x > 0.

Proof. Recall from the analysis of the Bayesian setting that for any vertex v ∈ Vn,

πv(t) := P(v∗ = v | y(0), . . . , y(t)).

Hence, by Bayes’ rule,
πv(t)

πu(t)
=
dPv
dPu

(y(0), . . . , y(t)) = eZvu(t).

The desired result now follows from a direct application of Lemma 7.4.

8.2 Performance of the MSPRT in trees: Proof of Theorem 6.5

Our first goal is to establish a probabilistic bound for Tn(v) under the measure Pv. We can write

Pv(Tn(v) > t) ≤ Pv
(
∃u ∈ Vn \ {v} s.t. Zvu(t) < log n2/α

)
≤

∑
u∈Vn\{v}

Pv
(
Zvu(t) < log n2/α

)
. (8.3)
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Next, define θ := D(Q0, Q1)/2 and suppose that t is sufficiently large so that

log
n2

α
≤ θf1(t). (8.4)

Letting I(·) be the large-deviations rate function in Lemma 8.4, we can upper bound the final
summation in (8.3) by

∑
u∈Vn\{v}

Pv (Zvu(t) < θf1(t))
(a)

≤
∑

u∈Vn\{v}

Pv (Zvu(t) < θfvu(t))

(b)

≤
∑

u∈Vn\{v}

exp (−I(θ)fvu(t))

(c)

≤ exp (log n− I(θ)f1(t)) . (8.5)

Above, (a) is due to f1(t) ≤ fvu(t), (b) follows from Lemma 8.4 and (c) is again due to f1(t) ≤ fvu(t)
and the observation that the summation is over at most n terms. We now define the quantities

C(Q0, Q1) := min{θ, I(θ)} and tn := F1

(
log n2/α

C(Q0, Q1)

)
.

In particular, if t ≥ tn then (8.4) holds and log n ≤ I(θ)f1(t). The expectation of Tn(v) can then
be bounded as

Ev[Tn(v)] =

∞∑
t=0

Pv(Tn(v) > t)

(d)

≤ tn +
∞∑
t=tn

exp (log n− I(θ)f1(t))

(e)

≤ tn + exp (log n− I(θ)f1(tn))

∞∑
s=0

e−I(θ)s

(f)

≤ tn +
1

1− e−I(θ)
. (8.6)

Above, (d) is due to the upper bound (8.5) on the probabilities in the summation which holds
for t ≥ tn, (e) uses f1(t) − f1(tn) ≥ t − tn which was proved in Lemma 8.1 and (f) follows from
noting I(d̃)f1(tn) ≥ log n and using the geometric sum formula on the summation. Noting that
Tn ≤ Tn(v), (8.6) implies

lim sup
n→∞

maxv∈Vn Ev[Tn]

tn
≤ lim sup

n→∞

maxv∈Vn Ev[Tn(v)]

tn
≤ 1.

From the asymptotic behavior of F1 (see (8.1)), it follows that

tn ∼
log logn

log(k − 1)
,

which proves the desired result.
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8.3 Performance of the MSPRT in lattices: Proof of Theorem 6.7

As in the proof of Theorem 6.5, we begin by bounding Pv(Tn(v) > t). A union bound yields

Pv(Tn(v) > t) ≤
∑
u∈Vn:

0<d(v,u)≤K

Pv
(
Zvu(t) < log

2K|N (K)|
α

)

+
∑
u∈Vn:

d(v,u)>K

Pv
(
Zvu(t) < log

2n2

α

)
. (8.7)

To bound the summations above, we first recall a few quantities. Define θ := D̃(Q0, Q1)/2 and
C(Q0, Q1) := min{θ, I(θ)}, where I(·) is the large-deviations rate function used in Lemma 8.4.
Also define

tn,1 := F1

(
log 2K|N (K)|/α

C(Q0, Q1)

)
tn,2 := max

u∈Vn:d(u,v)>K
Fvu

(
log 2n2/α

C(Q0, Q1)

)
.

For t ≥ tn,1, we will make use of the following inequalities to bound the first summation in (8.7):

log
2K|N (K)|

α
≤ θf1(t) and log |N (K)| ≤ I(θ)f1(t). (8.8)

Using the first inequality in (8.8), we can bound the first summation in (8.7) by

∑
u∈Vn:

0<d(v,u)≤K

Pv (Zvu(t) ≤ θf1(t))
(a)

≤
∑
u∈Vn:

0<d(v,u)≤K

Pv (Zvu(t) ≤ θfvu(t))

(b)

≤
∑
u∈Vn:

0<d(v,u)≤K

e−I(θ)fvu(t)

(c)

≤ exp (log |N (K)| − I(θ)f1(t)) . (8.9)

Above, (a) and (c) are due to f1(t) ≤ fvu(t), and (b) follows from Lemma 8.4. Similarly, for t ≥ tn,2
we have, for all u ∈ Vn satisfying d(u, v) > K,

log
2n2

α
≤ θfvu(t) and log n ≤ I(θ)fvu(t). (8.10)

Using the same reasoning as in (8.9), we have the following bound on the second summation in
(8.7) for t ≥ tn,2:

exp

(
log n− I(θ) min

u∈Vn:d(u,v)>K
fvu(t)

)
. (8.11)

Plugging in the bounds (8.9) and (8.11) into (8.7) shows that, for t ≥ max{tn,1, tn,2} =: tn,

Pv(Tn(v) > t) ≤ exp (log |N (K)| − I(θ)f1(t)) + exp

(
log n− I(θ) min

u∈Vn:d(v,u)>K
fvu(t)

)
. (8.12)
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Next, define the quantities

An := log |N (K)| − I(θ)f1(tn)

Bn := log n− I(θ) min
u∈Vn:d(u,v)>K

fvu(tn),

and notice that An, Bn ≤ 0 in light of the second inequalities in (8.8) and (8.10). Using the relation
Ev[Tn(v)] =

∑∞
t=0 Pv(Tn(v) > t) ≤ tn +

∑∞
t=tn

Pv(Tn(v) > t), we have

Ev[Tn(v)]
(d)

≤ tn +
∞∑
t=tn

elog |N (K)|−I(θ)f1(t) +
∞∑
t=tn

elogn−I(θ) minu∈Vn:d(u,v)>K fvu(t)

(e)

≤ tn +
(
eAn + eBn

) ∞∑
s=0

e−I(θ)s

(f)

≤ tn +
1

1− e−I(θ)
. (8.13)

Above, (d) is a consequence of (8.12), (e) is due to the inequality fvu(t′)−fvu(t) ≥ t′− t which was
proved in Lemma 8.1, and (f) holds since An.Bn ≤ 0 and by applying the geometric sum formula.
Next, using the inequality Tn ≤ Tn(v), (8.13) implies

lim sup
n→∞

maxv∈Vn Ev[Tn]

tn
≤ lim sup

n→∞

maxv∈Vn Ev[Tn(v)]

tn
≤ 1.

It remains to study the asymptotics of tn as n grows large. From the asymptotic behavior of |N (t)|
(8.2), we have |N (K)| � K` = log n. Hence

tn,1 � F1

(
log logn

C(Q0, Q1)

)
= O(log log n), (8.14)

where the final big-O bound is due to the inequality F1(z) ≤ z, proved in Lemma 8.2. Next, we
establish the asymptotic behavior of tn,2. We have, for n sufficiently large,

f

(
K

2

)
� (log n)1+ 1

` ≥ log 2n2/α

C(Q0, Q1)
, (8.15)

where the asymptotic behavior of f(K/2) follows from (8.2) and the second inequality holds for n
sufficiently large. Equation 8.15 satisfies the condition of Lemma 8.3, so we have

tn,2 = F

(
log 2n2/α

C(Q0, Q1)

)
� (log n)

1
`+1 . (8.16)

Above, the asymptotic behavior of F follows from (8.2). Hence tn � (log n)
1

`+1 , which proves the
theorem.

9 Conclusion and future directions

In this paper, we considered the problem of quickest estimation of a cascade source from noisy
information. We studied a Bayesian and minimax formulation of this problem and derived optimal
estimators in the regime of large networks under simple cascade dynamics and network topologies.
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Furthermore, our results exposed the interplay between the network topology and the performance
of optimal estimators.

There remain several avenues for future work. Although we examined simple networks and
cascade dynamics for mathematical tractability, in important next step is to study source estimation
for more realistic networks and cascade dynamics [20, 27, 30, 3, 25, 3, 7]. We remark that in many
cascade models, the cascade evolution is non-deterministic, hence it will be difficult to compute the
the estimators proposed in this paper. We expect that tractable relaxations of the estimators we
consider may be more amenable to the analysis of more complex scenarios.

Another exciting future direction is sampling with incomplete information. In this work we
assumed that all public signals at a given point in time are observable, but when the network
is large this may be infeasible. A natural question of interest is to characterize optimal source
estimators given that only a budget of B public signals can be observed at any timestep. There are
many possibilities for choosing the B signals to observe: one may target potential super-spreaders
(i.e., high-degree vertices) or choose vertices adaptively.

A Bounds on the size of neighborhoods

We begin by defining and recalling some notation. Given a graph G, a vertex v, and a non-negative
integer t, we define

∂Nv(t) := {u ∈ V : d(u, v) = t}
Nv(t) := {u ∈ V : d(u, v) ≤ t}.

Since G is vertex-transitive, |∂Nv(t)| does not depend on v ∈ V ; for brevity of notation, we will
therefore write |∂N (t)|. The same holds for |Nv(t)|, which we will often write as |N (t)|. Additionally
recall the neighborhood growth function

f(t) :=
t∑

s=0

|N (s)|

as well as

f1(t) :=

t∑
s=0

|Nu(s) \ Nv(s)|,

where u, v are adjacent vertices. As explained earlier, due to the vertex-transitivity of the underlying
graph, the formula for f1(t) is the same for any pair of adjacent vertices. We also define F1 = f−1

1 .
The following result provides exact formulas for |∂N (t)|, |N (t)| as well as asymptotic behavior

for f(t), f1(t), F (z) and F1(z) in regular trees.
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Lemma A.1. Let G be a k-regular tree with k ≥ 3. Then

|∂N (t)| =

{
1 t = 0

k(k − 1)t−1 t ≥ 1;
(A.1)

|N (t)| = 1 +
k

k − 2

(
(k − 1)t − 1

)
; (A.2)

f1(t) ∼ (k − 1)t+1

k − 2
; (A.3)

f(t) ∼ k

(k − 2)2
(k − 1)t+1; (A.4)

F1(z) ∼ log n

log(k − 1)
(A.5)

F (z) ∼ log z

log(k − 1)
. (A.6)

Proof. Fix an arbitrary vertex v, and suppose we root G at v so that |∂N (t)| is the number of
children at height t from the root. Since ∂Nv(0) = {v} and the root node v is the only vertex with
k children while all others have k−1 children, we have the formula |∂N (t)| = k(k−1)t−1 for t ≥ 1.

Next, to compute |N (t)|, we use the formula for |∂N (t)| and the geometric sum formula:

|N (t)| =
t∑

s=0

|∂N (s)| = 1 + k
t−1∑
s=0

(k − 1)s

= 1 +
k

k − 2

(
(k − 1)t − 1

)
.

The same techniques can be used to derive f(t):

f(t) =

t∑
s=0

|N (s)|

=
t∑

s=0

(
1 +

k

k − 2
((k − 1)s − 1)

)

= −2(t+ 1)

k − 2
+

k

k − 2

t∑
s=0

(k − 1)s

= −2(t+ 1)

k − 2
+

k

(k − 2)2

(
(k − 1)t+1 − 1

)
.

To compute f1(t), we start by computing |Nv(s) \ Nu(s)|. Let u1, . . . , uk be the neighbors of u in
G and let S1, . . . , Sk be a partition of the vertices exactly distance s from u, such that the path
connecting u and a vertex in Si must cross ui. Simple counting arguments show that |Si| = (k−1)s−1

for each i, and that if we assume without loss of generality that u1 = v,

|Nu(s) \ Nv(s)| = |S2 ∪ S3 ∪ . . . ∪ Sk| = (k − 1)s.

Hence we have

f1(t) =
t∑

s=0

(k − 1)s =
(k − 1)t+1 − 1

k − 2
.
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The first-order behavior of F1 = f−1
1 is a direct consequence.

We now study F (z), the inverse function of f . Substituting t = log z
log(k−1) in the formula for f(t),

we have

f

(
log z

log(k − 1)

)
=

k

(k − 2)2

(
(k − 1)

log z
log(k−1)

+1 − 1

)
− 2

k − 2

(
log z

log(k − 1)
+ 1

)
=
k(k − 1)

(k − 2)2
z − k

(k − 2)2
− 2

k − 2

(
log z

log(k − 1)
+ 1

)
Since k(k−1)

(k−2)2
> 1, we have for z sufficiently large (in particular, z is larger than some function of k

alone) that f
(

log z
log(k−1)

)
≥ z, which is equivalent to F (z) ≤ log z

log(k−1) . On the other hand,

f

(
log z

log(k − 1)
− 3

)
=

k

(k − 1)2(k − 2)2
z − k

(k − 2)2
− 2

k − 2

(
log z

log(k − 1)
− 3

)
≤ k

(k − 1)2(k − 2)2
z

≤ k

(k − 1)2
z.

Since k < (k − 1)2 for k ≥ 3, we have f
(

log z
log(k−1) − 3

)
≤ z, which in turn implies that F (z) ≥

log z
log(k−1) − 3.

A useful corollary of (A.2) is a characterization of rn in k-regular trees.

Corollary A.2. Let G be a k-regular tree and let {Vn}n≥1 be a sequence of candidate sets satisfying
Assumption 3.4. Then

rn =

⌊
log
(
k−2
k (n− 1) + 1

)
log(k − 1)

⌋
∼ log n

log(k − 1)
.

The following lemma computes the asymptotic behavior for |∂N (t)|, |N (t)|, f(t) and F (z) in
lattices.

Lemma A.3. Let G be a `-dimensional lattice. Then

|∂N (t)| ∼ 2`

(`− 1)!
t`−1; (A.7)

|N (t)| ∼ 2`

`!
t`; (A.8)

f(t) ∼ 2`

(`+ 1)!
t`+1; (A.9)

F (z) ∼
(

(`+ 1)!

2`
z

) 1
`+1

. (A.10)

Proof. Recall that Z is the set of integers. For a vector x ∈ Z, let ‖x‖0 denote the number of
nonzero entries of x and let ‖x‖1 denote the `1 norm of x. For every integer 1 ≤ k ≤ ` and an
integer t ≥ 0, define the set

Sk(t) :=
{
x ∈ Zd : ‖x‖0 = k and ‖x‖1 = t

}
.
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Since the Sk(t)’s partition ∂N0(t), we have |∂N (t)| =
∑`

k=1 |Sk(t)|. We proceed by computing the
size of |Sk(t)| via combinatorial arguments. First, we choose the k nonzero coordinates of a vector
in Sk(t); this can be done in

(
`
k

)
ways. Next, note that the number of positive integer solutions to

y1 + . . . + yk = t is exactly
(
t−1
k−1

)
if t ≥ k else it is 0; this can be seen through standard counting

arguments. Now, since the number of vectors in Sk(t) for which the absolute value of the entries are
given by y1, . . . , yk (in that order) is 2k (since each nonzero entry of x can be positive or negative),
we may put everything together to obtain

|Sk(t)| = 2k
(
`

k

)(
t− 1

k − 1

)
if t ≥ k, else 0.

When t is large, the first-order term of |Sk(t)| is 2k

(k−1)!

(
`
k

)
tk−1. It follows that

|∂N (t)| ∼ |S`(t)| ∼
2`

(`− 1)!
t`−1. (A.11)

Next, we use (A.11) to obtain the first-order behavior of |N (t)|. To this end, we first note that for
any p ≥ 0, approximating a summation by an integral gives

1

p+ 1

(
kp+1

1 − (k0 − 1)p+1
)

=

∫ k1

k0−1
spds ≤

k1∑
k=k0

kp

≤
∫ k1+1

k0

spds =
1

p+ 1

(
(k1 + 1)p+1 − kp+1

0

)
.

In particular, when k1 is much larger than k0,

k1∑
k=k0

kp ∼ 1

p+ 1
kp+1

1 .

The first-order term of |N (t)| is therefore

|N (t)| =
t∑

s=0

|∂N (t)| ∼
t∑
s=`

2`

(`− 1)!
s`−1 ∼ 2`

`!
t`.

Through analogous arguments, f(t) ∼ 2`

(`+1)! t
`+1. The first order behavior of F is an immediate

consequence.

A useful corollary of (A.8) is a characterization of rn in `-dimensional lattices.

Corollary A.4. Let G be a `-dimensional lattice {Vn}n≥1 be a sequence of candidate sets satisfying
Assumption 3.4. Then

rn ∼
(
`!

2`
n

)1/`

.

B Summations of geodesics

The goal of this section is to bound summations of the form
∑

w∈Vn d(w, v) and
∑

w∈Vn d(w, v)2,
which are useful in studying the Bayesian formulation of the quickest source estimation problem.
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B.1 Regular trees

We begin by proving a few intermediate results. The following lemma will provide a useful lower
bound for

∑
w∈Vn d(w, v).

Lemma B.1. Let G be a regular tree, let v0 ∈ V and let r be a positive integer. Then for all
v ∈ Nv0(r), ∑

w∈Nv0 (r)

d(w, v) ≥
∑

w∈Nv0 (r)

d(w, v0).

To prove the lemma, we will make use a notion of centrality in trees. Let Gr be the finite
k-regular tree restricted to the vertex set Nv0(r). For a given vertex v of Gr, label the neighbors
of v by v1, . . . , vk. Let Si(v) be the set of vertices in Nv0(r) such that the path connecting w and v
includes vi. Notice that if we root Gr at v, the sets {Si(v)}ki=1 correspond to subtrees of the rooted
tree and we have the partition

Nv0(r) \ {v} =

k⋃
i=1

Si(v). (B.1)

We say that v is a centroid of Gr if

max
1≤i≤k

|Si(v)| ≤ |Nv0(r)|
2

. (B.2)

A consequence of (B.2) is that if v is not a centroid and |S1(v)| = max1≤i≤k |Si(v)|, we must

have |S1(v)| ≥ |Nv0(r)|/2 + 1. Since
∑k

i=1 |Si(v)| = |Nv0(r)| − 1, it follows that
∑k

i=2 |Si(v)| ≤
|Nv0(r)|/2− 2 which in turn implies

|S1(v)| ≥
k∑
i=2

|Si(v)|+ 3. (B.3)

In general, a tree may have at most two centroids, in which case the centroids are neighbors [21,
Lemma 2.1]. This leads us to the following result.

Proposition B.2. The unique centroid of Gr is v0.

Proof. We first show that v0 is indeed a centroid of Gr. Notice that if we root Gr at v0, the rooted
tree is balanced and in particular, |Si(v0)| = (|Nv0(r)| − 1)/k for all i ∈ {1, . . . , k}. Since k ≥ 2,
(B.2) is satisfied.

Next, suppose by contradiction that v0 is not the unique centroid. Without loss of generality,
assume that v1

0 is also a centroid. However, since Gr rooted at v0 is balanced, all neighbors of v0

are isomorphic6 so all vertices in the collection {vi0}ki=1 must also be centroids. But since k ≥ 2,
this implies that there are at least 3 centroids, which is a contradiction.

We are now ready to prove Lemma B.1.

6More precisely, for each pair of neighbors of v0, we can find a graph homomorphism mapping one neighbor to
the other.
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Proof of Lemma B.1. Without loss of generality, we shall assume that |S1(v)| = max1≤i≤k |Si(v)|.
We can then write

∑
w∈N (v0,r)

d(w, v)
(a)
=

∑
w∈S1(v)

d(w, v) +

k∑
i=2

∑
w∈Si(v)

d(w, v)

(b)
=

∑
w∈S1(v)

(d(w, v1) + 1) +
k∑
i=2

∑
w∈Si(v)

(d(w, v1)− 1)

=

k∑
i=1

∑
w∈Si(v)

d(w, v1) + |S1(v)| −
k∑
i=2

|Si(v)|

(c)
=

∑
w∈N (v0,r)

d(w, v1)− 1 + |S1(v)| −
k∑
i=2

|Si(v)|, (B.4)

where (a) and (c) are due to (B.1), and (b) follows since v1, v are neighbors and v1 is closer to S1(v)
than v, and v is closer to Si(v) than v1 for 1 ≤ i ≤ k. If v is not a centroid, we can apply (B.3) to
(B.4) to obtain ∑

w∈N (v0,r)

d(w, v) ≥
∑

w∈N (v0,r)

d(w, v1) + 2.

In light of Proposition B.2, this shows that if v 6= v0,∑
w∈N (v0,r)

d(w, v) > min
u∈Nv0 (r)

∑
w∈Nv0 (r)

d(w, u).

The only remaining vertex, v0, must therefore be the minimizer.

The main result for regular trees follows readily from the intermediate results we have estab-
lished.

Lemma B.3. Let G be a k-regular tree and let v ∈ Vn. Then for n sufficiently large,∑
w∈Vn

d(w, v) ≥ n log n

k log(k − 1)
(B.5)

and ∑
w∈Vn

d(w, v)2 ≤ 4n log2 n

log2(k − 1)
. (B.6)

Proof. Noting that Nv0(rn) ⊆ Vn, we have∑
w∈Vn

d(w, v0) ≥ rn|∂N (rn)|

(a)
= rnk(k − 1)rn−1

(b)

≥ rnk

(k − 2)2

(
k − 2

k
(n− 1) + 1

)
(c)

≥ n log n

k log(k − 1)
.
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Above, (a) is due to (A.1), (b) uses the formula for rn in Corollary A.2 and (c) holds for n sufficiently
large, as it lower bounds the first-order term in the previous expression. Equation (B.5) now follows
from an application of Lemma B.1.

Next, , we upper bound the squared sum of the distances. Since Vn ⊂ Nv0(rn+1), the diameter
of Vn is at most 2rn + 2. It follows that, for n sufficiently large,

∑
w∈Vn

d(w, v)2 ≤ n(2rn + 2)2 ∼ 4n log2 n

log2(k − 1)
,

where we have used the asymptotic behavior of rn derived in Corollary A.2.

B.2 Lattices

We first prove an intermediate results. The following lemma is an analogue of Lemma B.1 for the
case of lattices.

Lemma B.4. Let G be a `-dimensional lattice, let v0 ∈ V and let r be a positive integer. Then for
all v ∈ V , ∑

w∈Nv0 (r)

d(w, v) ≥
∑

w∈Nv0 (r)

d(w, v0). (B.7)

Proof. Assume that vertices are labelled by their coordinates in Rd. It follows that for u, v ∈ V ,
d(u, v) = ‖u− v‖1. We can then write, for any v ∈ V ,

∑
w∈Nv0 (r)

d(w, v) =
∑

w∈Nv0 (r)

‖w − v‖1 =
d∑
i=1

∑
w∈Nv0 (r)

|vi − wi|.

The value of vi that minimizes
∑

w∈Nv0 (r) |vi − wi| is the median of the collection {wi}w∈Nv0 (r),

which is (v0)i (the ith component of the vector v0) due to the symmetry of the set Nv0(r). As this
argument holds for each i, (B.7) follows.

The following result contains the desired bounds for
∑

w∈Vn d(w, v) and
∑

w∈Vn d(w, v)2.

Lemma B.5. Let G be a `-dimensional lattice. There exist constants c3, c4 > 0 depending only on
d such that for all v ∈ Vn, ∑

w∈Vn

d(w, v) ≥ c3n
1+ 1

` ; (B.8)

∑
w∈Vn

d(w, v)2 ≤ c4n
1+ 2

` . (B.9)

51



Proof. ∑
w∈Vn

d(w, v0) ≥
∑

w∈Nv0 (rn)

d(w, v0)

=

rn∑
k=1

k|∂N (k)|

(a)∼ 2`

(`− 1)!

rn∑
k=1

k`

∼ `2`

(`+ 1)!
r`+1
n

(b)∼ `2`

(`+ 1)!

(
`!

2`
n

)1+ 1
`

.

Above, (a) follows from the formula for |∂N (k)| in (A.7) and (b) is due to the asymptotics of rn
given in Corollary A.4. Equation (B.8) follows.

Next, we upper bound the sum of the squared distances. Noting that the diameter of Vn is at
most 2(rn + 1), we have

∑
w∈Vn

d(w, v)2 ≤ 4(rn + 1)2n ∼ 4

(
`!

2`

) 2
`

n1+ 2
` ,

where the asymptotics of the final expression are obtained from the asymptotics of rn found in
Corollary A.4. Equation (B.9) follows.
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