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Abstract

We consider an ensemble of constant composition codes that are subsets of linear
codes: while the encoder uses only the constant-composition subcode, the decoder oper-
ates as if the full linear code was used, with the motivation of simultaneously benefiting
both from the probabilistic shaping of the channel input and from the linear struc-
ture of the code. We prove that the codebook mismatch can be fully compensated by
using a mismatched additive decoding metric that achieves the random coding error
exponent of (non-linear) constant composition codes. As the coding rate tends to the
mutual information, the optimal mismatched metric approaches the maximum a pos-
teriori probability (MAP) metric, showing that codebook mismatch with mismatched
MAP metric is capacity-achieving for the optimal input assignment.
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1 Introduction

As is very well known, linear codes have always been of central interest in channel coding

theory, thanks to their convenient practical implementation, both at the encoder and the

decoder side (see, e.g., [14, Chap. 6], [17, Part II], [22, Sections 2.9, 2.10] for major ele-

mentary textbooks, as well as a vast amount of other books and articles). The structure

of linear codes, together with the additivity of the optimal channel decoding metric of cer-

tain memoryless channels, can offer reduced decoding complexity in many ways, such as in

syndrome decoding (for relatively high coding rates), bounded distance decoding [16, Sect.

6.2], Chase decoding [10], and many other decoding schemes that are based on temporary

hard decision, followed by a process of correction using soft information. In many cases,

the resulting decoding is equivalent (or at least asymptotically so) to the optimal maximum

likelihood (ML) decoding. Also, for convolutional codes, which form a special subclass of

linear codes, the Viterbi decoder offers dramatic reduction in computational complexity

[22] without sacrificing decoder optimality. Last but not least, polar codes, invented by

Stolte [21] and Arıkan [3] and proven to be capacity-achieving by Arıkan [3], form another

subclass of linear codes. Polar codes are perhaps the most attractive codes in the front line

of research in coding theory today, with decoding complexity that is proportional to n log n,

where n is the block length.1 In general, it would be safe to say that most of the modern

practical codes are linear. For channels with a sufficient degree of symmetry, like binary-

input, output-symmetric (BIOS) channels, whose capacity-achieving input distribution is

uniform, it is well known that linear codes can achieve capacity, as linear codes inherently

induce the uniform input distribution. Moreover, the ensemble of linear codes achieves the

well known random coding error exponent at all coding rates up to channel capacity [14,

Theorem 6.2.1].

An inherent limitation of linear codes, however, is that they cannot achieve capacity

(and hence neither can they achieve the channel’s reliability function) when the capacity-

achieving input distribution is non-uniform. One way to compensate for this drawback, and

to achieve capacity with linear codes nonetheless, is to extend the channel input alphabet

using a many-to-one mapping that induces the desired input distribution (which is an

1There are, of course, additional classes of modern codes with efficient decoding schemes, like Turbo
codes and low-density parity check codes, but their decodings are iterative and so, in general they are not
guaranteed to be equivalent to ML decoding.
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operation also known as “probabilistic shaping”), and use the linear code on symbols of

the extended alphabet – see, e.g., Gallager [14, p. 208] for the details. This approach is

conceptually simple, however, not very attractive from the practical point of view, because

the required extended alphabet is often much larger, and so, many more coded bits need to

be processed, and the inevitable consequence is increased complexity and increased power

consumption.

During the years, researchers in coding theory have been pondering about the question

whether it is possible to enjoy the best of both words, namely, to achieve capacity (as well

as good error-rate performance at lower rates) without giving up on the above-mentioned

benefits of the linear code structure and the additive metric decoding, and without paying

the price of increased complexity of Gallager’s alphabet extension needed for probabilistic

shaping.

In this context, the idea of probabilistic amplitude shaping (PAS) [9] was proposed to

have exactly the above-mentioned features: it enables the use of linear codes with non-

uniform distribution without the need of alphabet extension. The basic idea is as follows:

at the transmitter, the uniformly distributed message bits are transformed into “probabilis-

tically shaped” codewords with the desired distribution. This can be achieved efficiently

using distribution matching (DM) algorithms [20]. The shaped sequences are then encoded

systematically with a linear code. The systematic encoding preserves the imposed distribu-

tion of the message part, and generates in addition uniformly distributed parity bits. For

input distributions that have a uniform distribution as a factor, the parity bits can be used

to generate the uniform factor, and the shaped bits can be used for the non-uniform factor.

For the additive white Gaussian noise (AWGN) channel with M -ary amplitude shift keying

(ASK) input alphabet {±1,±3, . . . ,±(M − 1)}, the uniform factor is the distribution of

the symbol signs, and the non-uniform factor is the distribution of the symbol amplitudes,

hence the name probabilistic amplitude shaping. In [7], the PAS encoding was extended to

linear layered probabilistic shaping (LLPS), which also allows for shaped parity bits. The

decoding rule for PAS [7] and LLPS [9] is essentially the maximum a posteriori (MAP)

decoding rule, which takes into account the input shaping. The schemes proposed in [7],

[9] suggest that in principle, linear codes can be used for channels with non-uniform input

distribution, by encoding into those codewords that have the required distribution.

For instance, suppose that for a channel with input distribution PX , only codewords of
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type PX are used. Thus, the set of codewords that are actually transmitted forms a constant

composition code [11, Chapter 10], yet the decoder decodes as it would even if the entire

(linear) codebook was used. Therefore, one can think of this structure as a linear extension

of the constant composition code. This introduces a codebook mismatch between the set

of transmitted codewords (e.g., a constant composition code) and the set of hypotheses for

decoding (e.g., the linear code).

Several previous works have discussed codebook mismatch, linear codes, and additive

metrics for analyzing probabilistic shaping schemes. In [1, Section I], codebook mismatch

was discussed and judged to be suboptimal. The works [4], [5, Chapter 7], [7], and [8], model

codebook mismatch by considering a random code generated according to a uniform distri-

bution as the extended codebook used for decoding. In [4], a discrete memoryless channel

(DMC) is considered and a typicality decoder is used. Discrete-input, continuous-output

channels and additive decoding metrics are considered in [5], [7], [8], and achievable rates

for successful encoding and successful decoding are analyzed separately. The encoding error

analysis by typicality in [5, Section 7.3] is simplified in [7, Appendix A] by using a simple

counting argument. In [8], encoding and decoding rates are combined to an achievable

rate without further proof. The work [5, Chapter 10] derives an error exponent for PAS

and shows that PAS using constant composition DM (CCDM) [18] and MAP decoding on a

random linear extension code achieves the mutual information of discrete-input, continuous-

output memoryless channels. This result implies that PAS achieves capacity for a number

of practically relevant channels, including the AWGN channel with ASK input. Note that

the related works [2] and [15] do not model the codebook mismatch in their analysis. In [2],

a joint source channel coding scenario is considered, while in [15], decoding is performed on

the set of shaped sequences and no extension code is considered for decoding.

It is this background that motivates the study of codebook mismatch with linear exten-

sion codes and additive decoding metrics that we conduct in this work. Instead of consid-

ering the PAS configuration, we examine the following, simpler, and more general setup,

whose focus is on harnessing linear codes for constant-composition coding: Consider the

ensemble of linear codes, where the encoder uses only a subset of the codebook that forms

a constant-composition code (corresponding to a certain type class), whereas the decoder

uses an arbitrary additive decoding metric (e.g., the ML or MAP decoding metric) and

decodes the same way as if the full linear code was used, ignoring the fact that non-typical
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codewords are actually never used by the encoder. The motivation for the decoder not to

discard the non-typical codewords is in order to maintain the linear structure of the code,

along with its benefits, as described earlier. The main questions that we concern ourselves

with are the following:

1. For a given discrete memoryless channel (DMC) and a given decoding metric, what

is the random coding error exponent associated with this setting?

2. Considering the fact that, due to the codebook mismatch, the decoder is sub-optimal,

can we choose an alternative additive decoding metric that would compensate for the

codebook mismatch?

In response to these two questions, we first derive the exact error exponent for linear codes

under code mismatch for a given, additive decoding metric, and then show that by opti-

mizing this decoding metric, we can improve the random coding exponent so as to coincide

with that of general (non-linear) constant composition codes [11, Theorem 10.2], which

means, among other things, that capacity is achieved. More specifically, regarding item no.

1 above, we show that the error exponent of any given additive metric cannot be larger than

the random coding exponent of the ensemble of fixed composition codes, but on the other

hand, with regard to item no. 2, we fully characterize the optimal metric that achieves this

upper bound. We further show that as rate approaches mutual information, the optimal

metric becomes the MAP metric, implying that MAP decoding on the linear extension

code achieves capacity, given that the constant composition is the capacity-achieving input

distribution.

The remainder of this work is organized as follows. In Section 2, we establish the notation

conventions. In Section 3, we formalize the problem setting and spell out the objectives of

this work. In Section 4, we present the main theorems and discuss them. Finally, in Section

5, we prove the theorems.

2 Notation

Throughout the paper, random variables will be denoted by capital letters, specific values

they may take will be denoted by the corresponding lower case letters, and their alphabets

will be denoted by calligraphic letters. Random vectors and their realizations will be de-

noted, respectively, by capital letters and the corresponding lower case letters, both in the
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bold face font. Their alphabets will be superscripted by their dimensions. For example, the

random vector X = (X1, . . . , Xn), (n – positive integer) may take a specific vector value

x = (x1, . . . , xn) in X n, the n–th order Cartesian power of X , which is the alphabet of each

component of this vector. Sources and channels will be denoted by the letter P , Q, and

W , sometimes subscripted by the names of the relevant random variables/vectors and their

conditionings, if applicable, following the standard notation conventions, e.g., PX , QY |X ,

and so on. When there is no room for ambiguity, these subscripts will be omitted. The

probability of an event E will be denoted by Pr{E}, and the expectation operator will be

denoted by E{·}. For two positive sequences an and bn, the notation an
·

= bn will stand for

equality in the exponential scale, that is, limn→∞
1
n log an

bn
= 0. Similarly, an

·
≤ bn means

that lim supn→∞
1
n log an

bn
≤ 0, and so on. The indicator function of an event E will be

denoted by I{E}. The notation [x]+ will stand for max{0, x}. Logarithms will be defined

to the base 2, unless specified otherwise.

The empirical distribution of a sequence x ∈ X n, which will be denoted by P̂x, is the

vector of relative frequencies P̂x(x) of each symbol x ∈ X in x. The type class of x ∈ X n,

denoted T (x), is the set of all vectors x′ with P̂x′ = P̂x. When we wish to emphasize the

dependence of the type class on the empirical distribution, say P , we will denote it by T (P ).

Information measures associated with empirical distributions will be denoted with ‘hats’

and will be subscripted by the sequences from which they are induced. For example, the

entropy associated with P̂x, which is the empirical entropy of x, will be denoted by Ĥx(X).

An alternative notation, following the conventions described in the previous paragraph, is

H(P̂x). Similar conventions will apply to the joint empirical distribution, the joint type

class, the conditional empirical distributions and the conditional type classes associated

with pairs (and multiples) of sequences of length n. Accordingly, P̂xy would be the joint

empirical distribution of (x,y) = {(xi, yi)}ni=1, T (x,y) or T (P̂xy) will denote the joint type

class of (x,y), T (x|y) will stand for the conditional type class of x given y, Ĥxy(X,Y )

will designate the empirical joint entropy of x and y, Ĥxy(X|Y ) will be the empirical

conditional entropy, Îxy(X;Y ) will denote empirical mutual information, and so on.

Given a fixed probability assignment, PX , of a random variable X, and given a generic

conditional distribution QY |X , we denote the induced information measures using the con-

ventional notation rules of the information theory literature, but with the subscript Q. For

example, IQ(X;Y ), HQ(Y ), HQ(Y |X), and HQ(X|Y ) will denote, respectively, the mutual
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information between X and Y , the marginal entropy of Y , the conditional entropy of Y

given X and the conditional entropy of X given Y , all induced by PX × QY |X . Likewise,

given PX and QY |X , the induced conditional distribution of X given Y will be denoted by

QX|Y . The same notation conventions will apply whenever other auxiliary random variables

will be involved, such as X ′ ∼ PX . The weighted Kullback-Leibler divergence between two

conditional distributions, say, QY |X and W = {W (y|x), x ∈ X , y ∈ Y}, is defined as

D(QY |X‖W |PX) =
∑
x∈X

PX(x)
∑
y∈Y

QY |X(y|x) log
QY |X(y|x)

W (y|x)
. (1)

3 Problem Setting

We consider coded communication via a discrete memoryless channel (DMC) with a finite

input alphabet X , a finite output alphabet Y, and a single–letter transition probability

matrix, W = {W (y|x), x ∈ X , y ∈ Y}. When the channel is fed by an input vector

X = x = (x1, . . . , xn) ∈ X n, it outputs a random vector Y = (Y1, . . . , Yn) ∈ Yn, according

to the conditional probability distribution,

Pr{Y = y|X = x} = W (y|x) =
n∏
i=1

W (yi|xi). (2)

Without essential loss of generality, we assume the cardinality of X to be a power of two,

i.e., |X | = 2m for some positive integer m. In the absence of this property, one can always

formally extend X to be of the size of exp2 (dlog2 |X |e), by adding to X some dummy input

symbols that are never actually used. We adopt this assumption in order to allow the

restriction to binary linear codes, and thereby simplify the notation and the derivations.

The transmitter is assumed to employ a binary linear code of block length nm and code

dimension k = nmrfec, where 0 < rfec ≤ 1.

Remark 1. For rfec, the subscript FEC stands for forward error correction and emphasizes

following [7] that rfec is the code rate of the employed binary linear FEC code. As we will

see below, the effective rate R at which information is transmitted over the channel also

depends on the type PX of the constant composition, i.e., it is not determined by the FEC

code rate rfec alone.

The encoding mechanism is as follows. An information message, w ∈ {0, 1, 2, . . . , 2k−1},

with a binary representation denoted by b(w) ∈ {0, 1}k, is mapped into a codeword c(w)
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according to

c(w) = b(w) ·G+ v, (3)

where G ∈ {0, 1}k×nm, v ∈ {0, 1}nm, and where the entries of G and v are selected

independently at random according to the uniform distribution over {0, 1}. The binary

codeword c(w) is mapped into a channel input vector x(w) ∈ X n via a labeling function

φ : {0, 1}m → X that indexes the symbols in the channel alphabet X by m bits, i.e.,

c(w)→ x(w) = φ(c1(w) . . . cm(w))φ(cm+1(w) . . . c2m(w)) . . . φ(c(n−1)m+1(w) . . . cnm(w)),

(4)

ci(w), i = 0, . . . , nm− 1, being the components of c(w). We denote the codebook

C = {x(w), w ∈ {0, 1, . . . , 2k − 1}}. (5)

In contrast to the traditional setting, where all codewords of the linear code are used,

in this work, we consider the case where only a subset of the codebook is used, namely,

codewords, {x(w)}, which belong to a given type class, T (PX), where PX is a certain

empirical distribution over X . Since |T (PX)| ·= 2nH(PX), and since the code partitions the

Hamming space, {0, 1}nm, into 2nm(1−rfec) disjoint cosets, each of size 2nmrfec , then there

must be at least one coset that includes at least

|T (PX)|
2nm(1−rfec)

·
=

2nH(PX)

2nm(1−rfec)
= 2n[H(PX)−m(1−rfec)]

codewords in T (Px). Our encoder will use (a subset of) such a coset, henceforth denoted

C′, to encode information at the rate,

R = H(PX)−m(1− rfec), (6)

where we keep in mind the well known fact that the probability of error does not depend

on the coset representative. Thus, the effective coding rate, R, associated with C′, is always

less than or equal to mrfec, with equality iff PX is the uniform distribution over X .

At the receiver side, a metric decoder is used. The decoding metric is a function U :

X × Y → IR+, which induces the following decoding rule:

ŵ(y) = arg maxw∈{0,1,...,2k−1}U(x(w),y), (7)
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where

U(x(w),y) =
n∏
i=1

U(xi(w), yi), (8)

xi(w), i = 1, . . . , n, being the components of x(w). Note that for practical reasons (discussed

in the Introduction), the decoder examines all codewords of the original linear code, C, not

only those of the subcode, C′, of PX -typical codewords. In other words, x(ŵ(y)) can be

any codeword in C, not necessarily in C′.

The probability of error for a given w (with x(w) ∈ C′) and a given code C, is defined

as

Pe|w(C) = Pr{ŵ(Y ) 6= w}, (9)

where the randomness of Y is due to the channel only. The average error probability is

defined as

P̄e = E

 1

2nR

∑
{w: x(w)∈C′}

P̄e|w(C)

 , (10)

where the expectation is with respect to the randomness of (G,v). The random coding

error exponent is defined as

Er(R) = lim
n→∞

{
− log P̄e

n

}
, (11)

provided that the limit exists. In the sequel, whenever we need to emphasize the dependence

of the random coding error exponent upon the decoding metric, U , we will denote it by

Er(R,U).

Observe that our setting exhibits a situation of codebook mismatch: While the encoder

uses only the subcode, C′, the decoder acts as if the entire larger code, C, was fully used,

without taking advantage of the knowledge that x(w) must be in C′. This is done in order

to avoid ruining the linear structure of the code, which is useful for fast decoding. Conse-

quently, the decoder is suboptimal even if its decoding metric is the maximum likelihood

metric, U(x, y) = UML(x, y)
4
= W (y|x). The question that we study, in this work, is whether

UML(x, y) can be replaced by another decoding metric, U(x, y), that would compensate for

the codebook mismatch.

Our main result in this work is in answering this question affirmatively. To this end,

we first derive a single–letter formula for Er(R,U), for a given, arbitrary decoding metric,

U , and then we demonstrate that by maximizing Er(R,U) w.r.t. U , we can significantly
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improve over Er(R,UML) as well as over Er(R,UMAP), where UMAP(x, y)
4
= PX(x)W (y|x).

The comparison to UMAP is relevant because, in spite of the mismatch, it still achieves

coding rates arbitrarily close to the ‘capacity’ associated with PX , namely, the mutual

information induced by PX ×W . Moreover, our main result is in proving that, on the one

hand, Er(R,U) cannot exceed the random coding exponent of (non-linear) fixed composition

codes [11, Theorem 10.2]:

Ecc
r (R) = min

QY |X

{
D(QY |X‖W |PX) + [IQ(X;Y )−R]+

}
. (12)

but on the other hand, we characterize the optimal decoding metric, U∗, and show that it

achieves Ecc
r (R).

4 Main Results

Our main result is in the following theorem, whose proof can be found in Appendix A.

Theorem 1. Consider the setting formulated in Section 3.

1. For a given decoding metric U ,

Er(R,U) = max
0≤ρ≤1

sup
θ≥0

−∑
x∈X

PX(x) log

∑
y∈Y

W (y|x)

[Uθ(x|y)]ρ

+ ρ[H(PX)−R]

 , (13)

where

Uθ(x|y)
4
=

[U(x, y)]θ∑
x′∈X [U(x′, y)]θ

. (14)

2. For every metric U , Er(R,U) ≤ Ecc
r (R).

3. For every given ρ ∈ [0, 1], assume that there exists a vector Z = Zρ
4
= {Zρ(x), x ∈ X},

with strictly positive components, that satisfies the system of simultaneous equations,

Zρ(x) =
∑
y

[W (y|x)]1/(1+ρ)

[∑
x′

PX(x′)[W (y|x′)]1/(1+ρ)

Z(x′)

]ρ
, ∀ x ∈ X , (15)

and define

U(x|y, ρ) =
PX(x)[W (y|x]1/(1+ρ)/Zρ(x)∑
x′ PX(x′)[W (y|x′)]1/(1+ρ)/Zρ(x′)

, (16)

and

Uθ(x|y, ρ) =
[U(x|y, ρ)]θ∑
x′ [U(x′|y, ρ)]θ

. (17)
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Finally, let

ρ? = arg maxρ∈[0,1] sup
θ≥0

−∑
x∈X

PX(x) log

∑
y∈Y

W (y|x)

[Uθ(x|y, ρ)]ρ

+ ρ[H(PX)−R]

 .

(18)

Then, the metric U?
4
= {U(x|y, ρ?), x ∈ X , y ∈ Y} achieves Ecc

r (R).

Remark 2. The expression of Er(R,U) does not seem to lend itself to closed form derivation

of U∗ using traditional optimization techniques, and therefore, the proof of the third part

of the theorem will be based on a chain of inequalities relating Er(R,U) and Ecc
r (R) and

examining the conditions under which the inequalities become equalities. As can be seen,

the optimal metric, U?, that maximizes Er(R,U), depends, in quite a complicated manner,

not only on the input assignment, PX , and the channel, W , but also on the coding rate, R,

via ρ∗.

The remaining part of this section is devoted to a discussion on Theorem 1.

4.1 Numerical Example of Error Exponents

In Figure 1, we compare the error exponent for constant composition codes, achieved by

U?, to those associated with UMAP and UML. The example considered refers to a quantized

Gaussian channel with input distribution

PX(−3) = PX(3) = 0.05, PX(−1) = PX(1) = 0.45. (19)

The channel output is quantized to 4 levels and the noise variance is chosen such that the

mutual information between input X and the quantized output is 0.5 bits. The equivalent

channel matrix is

W =


0.8036 0.1964 0.0052 0.0000
0.1912 0.6072 0.1912 0.0052
0.0052 0.1912 0.6072 0.1912
0.0000 0.0052 0.1964 0.8036

 (20)

where the ith column is a distribution on the output alphabet, given that the ith input

symbol was transmitted.

We note that the gaps are considerable.
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Figure 1: Comparison of the random coding exponents associated with the ML metric,
UML, the MAP metric, UMAP, and the random coding exponent of the ensemble of non-
linear constant composition codes (12), which is achieved by U?.

4.2 The MAP Metric Achieves I(X;Y )

We argue that a necessary and sufficient condition for a metric {U(x|y), x ∈ X , y ∈ Y}

to achieve the mutual information rate, I(X;Y ) (induced by PX and W ), is U(x|y) =

PX|Y (x|y) (or an equivalent metric), where PX|Y is the posterior distribution induced by

PX ×W . Indeed, let R = I(X;Y )− ε be given, where ε > 0 is arbitrarily small. Then, for

Er(I(X;Y )− ε, U) to be strictly positive, there must exist ρ ∈ [0, 1] and θ ≥ 0 such that

−
∑
x

PX(x) log

(∑
y

W (y|x)

[Uθ(x|y)]ρ

)
+ ρ[H(X|Y ) + ε] > 0. (21)

Let θ > 0 be such that there exists ρ ∈ [0, 1] for which this condition holds true. Now, for

this given θ, consider the function,

F (ρ)
4
= −

∑
x

PX(x) log

(∑
y

W (y|x)

[Uθ(x|y)]ρ

)
+ ρ[H(X|Y ) + ε]. (22)

It is easy to see that F (0) = 0 and that F (ρ) is concave, which means that the derivative,

F ′(ρ), is monotonically non-increasing. Therefore a necessary and sufficient condition for

the existence of ρ ∈ [0, 1] such that F (ρ) > 0 (i.e., maxρ∈[0,1] F (ρ) > 0) is that F ′(0) > 0.
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Now,

F ′(0) = −
∑
x

PX(x) ·
∑

yW (y|x)[Uθ(x|y)]−0 log[1/Uθ(x|y)]∑
yW (y|x)[Uθ(x|y)]−0

+H(X|Y ) + ε (23)

=
∑
x

PX(x)
∑
y

W (y|x) logUθ(x|y) +H(X|Y ) + ε (24)

= −D(PX|Y ‖Uθ|PY ) + ε. (25)

By the arbitrariness of ε > 0, it follows that in order that F ′(0) > 0 for all ε > 0, the

divergence term must vanish, and so, we must have that Uθ(x|y) = PX|Y (x|y) for all x ∈ X

and for all y such that PY (y) > 0.

Note that the optimal metric U∗ agrees with the MAP metric when R = I(X;Y ), which

corresponds to ρ → 0, because in this case, the power 1/(1 + ρ) tends to unity and Zρ(x)

tends to 1 for all x.

5 Proof of Theorem 1

Beginning from the first part of the theorem, let x and y be the transmitted codeword and

the received channel output vector, respectively. Let Pe(x,y) denote the expected error

probability given that x was transmitted and y was received, where the expectation is with

respect to the randomness of all other codewords in C. Then,

P̄e(x,y) = Pr

 ⋃
x′∈C\{x}

{
U(x′,y) ≥ U(x,y)

}
≤ min

1, 2k−1
∑

{x′: U(x′,y)≥U(x,y)}

2−nm


≤ min

{
1, |M(x,y)|2k−nm

}
, (26)

where

M(x,y) = {x′ : U(x′,y) ≥ U(x,y)}, (27)

and where we have used the (truncated) union bound, the union being taken over all 2k−1

pairwise error events, where an incorrect codeword x′, randomly drawn under the uniform

distribution over {0, 1}nm, happens to have a metric score, U(x′,y), that exceeds the one

of the transmitted codeword, U(x,y). In Appendix A, we show that this truncated union

bound is exponentially tight in spite of the fact that the codewords of a random linear

13



code are not mutually independent. This is done by deriving a lower bound of the same

exponential order.

Since U(x′,y) depends on (x′,y) only via their joint type, we can assess the cardinality

of M(x,y) by the method of types [11] as

|M(x,y)| =
∑

{T (x′|y): U(x′,y)≥U(x,y)}

|T (x′|y)|

·
=

∑
{T (x′|y): logU(x′,y)≥logU(x,y)}

exp2

{
nĤx′y(X ′|Y )

}

= exp2

{
n max
QX′|Y ∈E(QXY )

HQ(X ′|Y )

}
. (28)

where

E(QXY ) =

{
QX′|Y :

∑
x,y

QX′Y (x, y) logU(x, y) ≥
∑
x,y

QXY (x, y) logU(x, y)

}
. (29)

It follows that

P̄e(x,y)
·

= min

{
1, exp2

[
k − nm+ n · max

QX′|Y ∈E(QXY )
HQ(X ′|Y )

]}

= exp2

{
−n

[
m(1− rfec)− max

QX′|Y ∈E(QXY )
HQ(X ′|Y )

]
+

}

= exp2

{
−n

[
H(PX)−R− max

QX′|Y ∈E(QXY )
HQ(X ′|Y )

]
+

}
, (30)

where in the last equality we have used the relation (6). Averaging over the randomness of

Y , we get

P̄e(x) =
∑
y∈Yn

W (y|x)Pe(x,y)

·
=

∑
T (y|x)

|T (y|x)| · exp2

{
−n

[
H(PX)−R− max

QX′|Y ∈E(QXY )
HQ(X ′|Y )

]
+

}
·

= exp2

{
− n min

QY |X

(
D(QY |X‖W |PX) +[

H(PX)−R− max
QX′|Y ∈E(QXY )

HQ(X ′|Y )

]
+

)}
, (31)

and since this expression depends on x only via its type class P̂x = PX , then the same

formula holds also for the average error probability, which includes also the expectation

w.r.t. the randomness of the transmitted codeword, x, i.e.,

P̄e

·
= exp2

{
− n min

QY |X

(
D(QY |X‖W |PX) +
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[
H(PX)−R− max

QX′|Y ∈E(QXY )
HQ(X ′|Y )

]
+

)}
. (32)

It should be pointed out that this expression of the average error probability is very similar

to the one obtained for the ensemble of non-linear constant composition codes for a given

decoding metric, U . There is one important difference, however: In the case of non-linear

fixed composition codes, the definition of the set E(QXY ) should include the additional con-

straint that
∑

y∈Y QY (y)QX′|Y (x|y) = PX(x) for every x ∈ X , whereas here, this constraint

is absent.

We next derive the Lagrange-dual to this expression. Beginning from the inner maxi-

mization, we have

max
QX′|Y ∈E(QXY )

HQ(X ′|Y )

= max
QX′|Y

inf
θ≥0

{
HQ(X ′|Y ) + θ

∑
y

QY (y)

[∑
x

QX′|Y (x|y) logU(x, y)−

∑
x

QX|Y (x|y) logU(x, y)

]}
. (33)

Moving on to the outer minimization, we obtain

Er(R,U) = min
QY |X

(
D(QY |X‖W |PX) +

[
H(PX)−R− max

QX′|Y ∈E(QXY )
HQ(X ′|Y )

]
+

)

= min
QY |X

max
0≤ρ≤1

(
D(QY |X‖W |PX) + ρ

[
H(PX)−R− max

QX′|Y ∈E(QXY )
HQ(X ′|Y )

])

= min
QY |X

max
0≤ρ≤1

(
D(QY |X‖W |PX) + ρ

[
H(PX)−R− max

QX′|Y
inf
θ≥0

{
HQ(X ′|Y ) +

θ
∑
y

QY (y)

[∑
x

QX′|Y (x|y) logU(x, y)−
∑
x

QX|Y (x|y) logU(x, y)

]}])
= min

QY |X
max
0≤ρ≤1

min
QX′|Y

sup
θ≥0

(
D(QY |X‖W |PX) + ρ[H(PX)−R]− ρHQ(X ′|Y )−

ρθ
∑
y

QY (y)

[∑
x

QX′|Y (x|y) logU(x, y)−
∑
x

QX|Y (x|y) logU(x, y)

])
(a)
= min

QY |X
max
0≤ρ≤1

min
QX′|Y

sup
θ≥0

(
D(QY |X‖W |PX) + ρ[H(PX)−R]− ρHQ(X ′|Y )−

θ̂
∑
y

QY (y)

[∑
x

QX′|Y (x|y) logU(x, y)−
∑
x

QX|Y (x|y) logU(x, y)

])
(b)
= min

QY |X
max
0≤ρ≤1

sup
θ̂≥0

min
QX′|Y

(
D(QY |X‖W |PX) + ρ[H(PX)−R]− ρHQ(X ′|Y )−

θ̂
∑
y

QY (y)

[∑
x

QX′|Y (x|y) logU(x, y)−
∑
x

QX|Y (x|y) logU(x, y)

])
, (34)

15



where in (a) we have defined θ̂ = ρθ and in (b) we have used the fact that the objective

is convex in QX′|Y and affine in θ. Since the objective function is affine in (ρ, θ̂), then

after inner-most minimization over QX′|Y it becomes concave in (ρ, θ̂). The inner most

minimization amounts to the maximization

max
QX′|Y

{
ρHQ(X ′|Y ) + θ̂

∑
y

QY (y)
∑
x

QX′|Y (x|y) logU(x, y)

}

= ρ max
QX′|Y

∑
y

QY (y)
∑
x

QX′|Y (x|y) log
[U(x, y)]θ̂/ρ

QX′|Y (x|y)

= ρ ·
∑
y

QY (y) log

(∑
x

[U(x, y)]θ̂/ρ

)
4
= ρ ·

∑
y

QY (y) logZ(y, θ̂/ρ). (35)

On substituting this back into the expression of Er(R,U), we have

Er(R,U) = min
QY |X

max
0≤ρ≤1

sup
θ̂≥0

(
D(QY |X‖W |PX) + ρ[H(PX)−R]−

ρ ·
∑
x,y

PX(x)QY |X(y|x) logZ(y, θ̂/ρ) + θ̂
∑
x

PX(x)QY |X(y|x) logU(x, y)

)
(a)
= max

0≤ρ≤1
sup
θ̂≥0

min
QY |X

(∑
x,y

PX(x)QY |X(y|x) log
QY |X(y|x)

W (y|x)
+ ρ[H(PX)−R]−

ρ ·
∑
x,y

PX(x)QY |X(y|x) logZ(y, θ̂/ρ) + θ̂
∑
x

PX(x)QY |X(y|x) logU(x, y)

)

= max
0≤ρ≤1

sup
θ̂≥0

min
QY |X

(∑
x,y

PX(x)QY |X(y|x) log
QY |X(y|x)[U(x, y)]θ̂

W (y|x)[Z(y, θ̂/ρ)]ρ
+ ρ[H(PX)−R]

)

= max
0≤ρ≤1

sup
θ̂≥0

(
−
∑
x

PX(x) log

(∑
y

W (y|x)Z(y, θ̂/ρ)]ρ

[U(x, y)]θ̂

)
+ ρ[H(PX)−R]

)
(b)
= max

0≤ρ≤1
sup
θ≥0

[
−
∑
x

PX(x) log

(∑
y

W (y|x)

[Uθ(x|y)]ρ

)
+ ρ[H(PX)−R]

]
, (36)

where in (a) we have used the fact that the objective is convex in QX′|Y and concave in (ρ, θ̂),

and in (b) we returned to the original optimization parameter, θ = θ̂/ρ. This completes the

proof of part 1 of the theorem.

Moving on to part 2 of the theorem, in Appendix B, we prove that the following

(Lagrange-dual) expression may serve as an alternative representation of Ecc
r (R):

Ecc
r (R) = min

V
max
0≤ρ≤1

{
− (1 + ρ)

∑
x

PX(x) log

[∑
y

(W (y|x)[V (y)]ρ)1/(1+ρ)
]
− ρR

}
, (37)
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where the minimization is over all probability assignments, V = {V (y)} over Y.

Next, consider the following chain of equalities and inequalities:

∑
x

PX(x) log

(∑
y

W (y|x)

[Uθ(x|y)]ρ

)

=
∑
x

PX(x) log

(∑
y

W̃ (y|x)
W (y|x)

[Uθ(x|y)]ρW̃ (y|x)

)
(a)

≥ max
W̃

∑
x

PX(x)
∑
y

W̃ (y|x) log

(
W (y|x)

[Uθ(x|y)]ρW̃ (y|x)

)

= max
W̃

{∑
x

PX(x)
∑
y

W̃ (y|x) log

(
W (y|x)

W̃ (y|x)

)
− ρ

∑
x,y

PX(x)W̃ (y|x) logUθ(x|y)

}
(b)

≥ max
W̃

{∑
x

PX(x)
∑
y

W̃ (y|x) log

(
W (y|x)

W̃ (y|x)

)
+ ρH̃(X|Y )

}

= max
W̃

{∑
x

PX(x)
∑
y

W̃ (y|x) log

(
W (y|x)

W̃ (y|x)

)
+ ρ[H(X) + H̃(Y |X)− H̃(Y )]

}
(c)
= max

W̃
max
V

∑
x

PX(x)
∑
y

W̃ (y|x)

[
log

(
W (y|x)

W̃ (y|x)

)
+

ρH(X)− ρ log W̃ (y|x) + ρ log V (y)

]
= max

V
max
W̃

∑
x

PX(x)
∑
y

W̃ (y|x)

[
log

(
W (y|x)[V (y)]ρ

[W̃ (y|x)]1+ρ

)
+ ρH(X)

]

= max
V

max
W̃

∑
x

PX(x)
∑
y

W̃ (y|x)

[
(1 + ρ) log

(
(W (y|x)[V (y)]ρ)1/(1+ρ)

W̃ (y|x)

)
+ ρH(X)

]

= max
V

{
(1 + ρ)

∑
x

PX(x) log

(∑
y

(W (y|x)[V (y)]ρ)1/(1+ρ)

)
+ ρH(X)

}
(38)

where in (a) we have used Jensen’s inequality, in (b) and onward, H̃(Y |X) and H̃(Y )

refer to entropies induced by PX × W̃ , and in (c), V is a probability distribution on Y.

Consequently,

−
∑
x

PX(x) log

(∑
y

W (y|x)

[Uθ(x|y)]ρ

)
+ ρ[H(X)−R]

≤ min
V

{
−(1 + ρ)

∑
x

PX(x) log

(∑
y

(W (y|x)[V (y)]ρ)1/(1+ρ)

)
− ρH(X) + ρ[H(X)−R)

}

= min
V

{
−(1 + ρ)

∑
x

PX(x) log

(∑
y

(W (y|x)[V (y)]ρ)1/(1+ρ)

)
− ρR

}
(39)

and after maximizing both sides over ρ ∈ [0, 1] and θ ≥ 0, we get Er(R,U) ≤ Ecc
r (R), in
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view of eq. (37). This completes the proof of part 2 of the theorem.

To prove part 3 of the theorem, let us examine the conditions under which the inequal-

ities in (38) become equalities: The first inequality, which is an application of Jensen’s

inequality, is met with equality if the expression,

W (y|x)

[Uθ(x|y)]ρW̃ (y|x)

is independent of y, though it is still allowed to depend on x. In other words, Uθ(x|y) must

satisfy
W (y|x)

W̃ (y|x)Uθ(x|y)ρ
= K(x), (40)

for some function K(x). The second inequality becomes equality if

Uθ(x|y) =
PX(x)W̃ (y|x)∑
x′ P (x′)W̃ (y|x′)

. (41)

Now, the optimal W̃ , that achieves the last line of (38), is given by

W̃ (y|x) =
[W (y|x)]1/(1+ρ)[V (y)]ρ/(1+ρ)∑
y′ [W (y′|x)]1/(1+ρ)[V (y′)]ρ/(1+ρ)

4
=

[W (y|x)]1/(1+ρ)[V (y)]ρ/(1+ρ)

Z(x)
. (42)

We argue that the following metric satisfies both requirements.

Uθ(x|y) =
PX(x)[W (y|x)]1/(1+ρ)/Z(x)∑
x′ PX(x′)[W (y|x′)]1/(1+ρ)/Z(x′)

4
=
PX(x)[W (y|x)]1/(1+ρ)/Z(x)

ζ(y)
. (43)

Indeed,

W (y|x)

W̃ (y|x)[Uθ(x|y)]ρ

=
W (y|x)Z(x)ζρ(y)Zρ(x)

[W (y|x)]1/(1+ρ)[V (y)]ρ/(1+ρ)P ρX(x)[W (y|x)]ρ/(1+ρ)
(44)

=
[Z(x)]1+ρζρ(y)

[V (y)]ρ/(1+ρ)P ρX(x)
(45)

Now, observe that the maximizing V in (38) is given by

V (y) =
∑
x

PX(x)W̃ (y|x) =
∑
x

PX(x) · [W (y|x)]1/(1+ρ)[V (y)]ρ/(1+ρ)

Z(x)
(46)

or, equivalently, by dividing both sides by [V (y)]ρ/(1+ρ),

[V (y)]1/(1+ρ) =
∑
x

PX(x) · [W (y|x)]1/(1+ρ)

Z(x)
, (47)

and so, raising both sides to the power of ρ, we get

[V (y)]ρ/(1+ρ) =

(∑
x

PX(x) · [W (y|x)]1/(1+ρ)

Z(x)

)ρ
= ζρ(y), (48)
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so the ratio ζρ(y)/[V (y)]ρ/(1+ρ) = 1, which, together with (44), implies that

W (y|x)

W̃ (y|x)[Uθ(x|y)]ρ
=

[Z(x)]1+ρ

P ρX(x)
, (49)

which is independent of y, as required.

As for the second requirement,

Uθ(x|y) =
PX(x)W̃ (y|x)∑
x′ PX(x′)W̃ (y|x′)

=
PX(x)[W (y|x)]1/(1+ρ)[V (y)]ρ/(1+ρ)/Z(x)∑
x′ PX(x′)[W (y|x′)]1/(1+ρ)[V (y)]ρ/(1+ρ)/Z(x′)

=
PX(x)[W (y|x)]1/(1+ρ)/Z(x)∑
x′ PX(x′)[W (y|x′)]1/(1+ρ)/Z(x′)

. (50)

Finally, the relationship between Z(x) and V (y) is as follows: on the one hand, by definition,

Z(x) =
∑
y

[W (y|x)]1/(1+ρ)[V (y)]ρ/(1+ρ), (51)

and on the other hand, we saw that

V (y) =

[∑
x

PX(x)[W (y|x)]1/(1+ρ)

Z(x)

]1+ρ
. (52)

On substituting the second relation into the first one, we end up with following system of

equations in the vector Z = {Z(x), x ∈ X}:

Z(x) =
∑
y

[W (y|x)]1/(1+ρ)

[∑
x′

PX(x′)[W (y|x′)]1/(1+ρ)

Z(x′)

]ρ
, ∀ x ∈ X (53)

In summary, assuming that there exists a solution to this set of equations, the metric

U?(x|y, ρ) =
P (x)[W (y|x]1/(1+ρ)/Z(x)∑
x′ P (x′)[W (y|x′)]1/(1+ρ)/Z(x′)

. (54)

saturates all inequalities in (38) at the same time, and hence, after optimization over ρ,

achieves Ecc
r (R).

6 Conclusions

In this work, we have shown that the code mismatch of using for a constant composition

code a linear extension code for decoding can be fully compensated by using a mismatched

additive decoding metric. That is, the error exponent [11, Theorem 10.2] is achieved and

in particular, the capacity of any DMC can be achieved by decoding a linear code with an

additive MAP decoding metric.

Interesting direction for future research are:
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1. In this work, we have considered DMCs and we used the method of types in our

theoretical derivations. Can the presented results be generalized to continuous output

channels?

2. For finite length, constant composition codes may not be optimal and minimum cost

DM [19] may be preferable. A theoretic analysis may find a replacement of constant

composition codes that is optimal in the finite length regime.

3. In this work, decoding was our main focus. Future work may include practical en-

coding aspects, for instance, by assuming the PAS [9] architecture or the LLPS [6]

generalization.

Appendix A

In this appendix, we show that the first inequality in eq. (26) is exponentially tight. This

is done by deriving a matching lower bound of the same exponential order as the upper

bound.

Owing to the results of Domb, Zamir and Feder [13], we begin with the following obser-

vation. Consider three distinct messages w, w′, and w̃. First, if their binary representations,

b(w), b(w′), and b(w̃) are linearly independent, the three corresponding codewords are sta-

tistically mutually independent by the independently sampled rows of G. If the binary

representations are linearly dependent, i.e., b(w̃) = b(w)⊕ b(w′), then let us define

a(w) = b(w) ·G, a(w′) = b(w′) ·G, (A.1)

and observe that a(w), a(w′), and v are statistically mutually independent. The corre-

sponding codewords are given by

c(w) = a(w)⊕ v (A.2)

c(w′) = a(w′)⊕ v (A.3)

c(w̃) = a(w)⊕ a(w′)⊕ v, (A.4)

and therefore, the inverse transformation is given by

a(w) = c(w′)⊕ c(w̃) (A.5)

a(w′) = c(w)⊕ c(w̃) (A.6)
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v = c(w)⊕ c(w′)⊕ c(w̃). (A.7)

Since the transformation between these two triples of vectors is one-to-one, and every triple

(a(w),a(w′),v) has probability 2−3nm, then the same is true for every triple (c(w), c(w′), c(w̃)),

which means that the three codewords are mutually independent and each one of them is

uniformly distributed across {0, 1}nm.

Consider the pairwise error events,

Aw′ =
{
U(x(w′),y) ≥ U(x(w),y)

}
. (A.8)

Since the codewords are pairwise independent, message w′ is assigned to any particular

codeword with probability 2−nm and the probability of event Aw′ is

Pr(Aw′) = |M(x(w),y)| · 2−nm 4= α. (A.9)

Since the codewords are triple-wise independent, we can use de Caen’s lower bound [12] to

the probability of a union, and obtain

P̄e(x(w),y) = Pr
( ⋃
w′ 6=w

Aw′

)
(A.10)

≥
∑
w′ 6=w

[Pr(Aw′)]2∑
w̃ 6=w Pr(Aw′ ∩Aw̃)

(A.11)

=
∑
w′ 6=w

[Pr(Aw′)]2

Pr(Aw′) +
∑

w̃ 6=w,w′ Pr(Aw′ ∩Aw̃)
(A.12)

=
∑
w′ 6=w

α2

α+
∑

w̃ 6=w,w′ Pr(Aw′ ∩Aw̃)
. (A.13)

Next, we consider the term Pr(Aw′ ∩Aw̃). Here, the three channel codewords x(w), x(w′),

and x(w̃) are involved, with the three messages being pairwise distinct. By the triple-wise

independence, x(w′) and x(w̃) are conditionally independent given x(w), and so,

Pr(Aw′ ∩Aw̃) = Pr(Aw′) · Pr(Aw̃) = α2. (A.14)

Continuing with (A.13), we have

P̄e(x(w),y) ≥
∑
w′ 6=w

α2

α+ (2k − 2)α2
(A.15)

=
(2k − 1)α

1 + (2k − 2)α
(A.16)
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≥ (2k − 1)α

2 ·max {(2k − 2)α, 1}
(A.17)

≥ (2k − 2)α

2 ·max {(2k − 2)α, 1}
(A.18)

= min

{
1

2
,
(2k − 2)α

2

}
(A.19)

.
= min

{
1, |M(x(w),y)|2k2−nm

}
, (A.20)

which is of the same exponential order as the truncated union bound in (26).

Appendix B

In this appendix, we prove the alternative form of the random coding error exponent for

constant composition codes.

min
QY |X

{
D(QY |X‖W |PX) + [IQ(X;Y )−R]+

}
= min

QY |X
max
0≤ρ≤1

{
D(QY |X‖W |PX) + ρ[HQ(Y )−HQ(Y |X)−R]

}
= min

QY |X
max
0≤ρ≤1

{∑
x,y

PX(x)QY |X(y|x)

[
log

QY |X(y|x)

W (y|x)
+ ρ log

1

QY (y)
+

ρ logQY |X(y|x)

]
− ρR

}
(a)
= min

QY |X
max
0≤ρ≤1

min
V

{∑
x,y

PX(x)QY |X(y|x)

[
log

QY |X(y|x)

W (y|x)
+ ρ log

1

V (y)
+

ρ logQY |X(y|x)

]
− ρR

}
(b)
= min

QY |X
min
V

max
0≤ρ≤1

{∑
x,y

PX(x)QY |X(y|x)

[
log

QY |X(y|x)

W (y|x)
+ ρ log

1

V (y)
+

ρ logQY |X(y|x))− ρR
}

= min
V

min
QY |X

max
0≤ρ≤1

{∑
x,y

PX(x)QY |X(y|x)

[
log

QY |X(y|x)

W (y|x)
+ ρ log

1

V (y)
+

ρ logQY |X(y|x)

]
− ρR

}
(c)
= min

V
max
0≤ρ≤1

min
QY |X

{∑
x,y

PX(x)QY |X(y|x) log
[QY |X(y|x)]1+ρ

W (y|x)[V (y)]ρ
− ρR

}

= min
V

max
0≤ρ≤1

min
QY |X

{
(1 + ρ)

∑
x,y

PX(x)QY |X(y|x) log
QY |X(y|x)

(W (y|x)[V (y)]ρ)1/(1+ρ)
− ρR

}
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= min
V

max
0≤ρ≤1

{
−(1 + ρ)

∑
x

PX(x) log

[∑
y

(W (y|x)[V (y)]ρ)1/(1+ρ)

]
− ρR

}

= min
V

max
0≤ρ≤1

{
−
∑
x

PX(x) log

[∑
y

(
W (y|x)[V (y)]ρ

[PX(x)]ρ

)1/(1+ρ)
]1+ρ

+

ρ[H(PX)−R]

}
, (B.1)

where the inner-most minimization in (a) is over all probability distributions {V (y)} on Y,

(b) holds because the objective is convex in V and concave in ρ, and similarly, (c) is because

the objective is convex in QY |X and concave in ρ.
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