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Abstract

The rapid development of DNA storage has brought the deletion and insertion channel
to the front line of research. When the number of deletions is equal to the number of
insertions, the Fixed Length Levenshtein (FLL) metric is the right measure for the distance
between two words of the same length. Similar to any other metric, the size of a ball is one
of the most fundamental parameters. In this work, we consider the minimum, maximum,
and average size of a ball with radius one, in the FLL metric. The related minimum and
the maximum size of a maximal anticode with diameter one are also considered.
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1 Introduction

Coding for DNA storage has attracted significant attention in the previous decade due to recent
experiments and demonstrations of the viability of storing information in macromolecules [2,
4, 9, 12, 14, 15, 27, 34, 37]. Given the trends in cost decreases of DNA synthesis and sequencing,
it is estimated that already within this decade DNA storage may become a highly competitive
archiving technology. However, DNA molecules induce error patterns that are fundamentally
different from their digital counterparts [17,18,21,29]; This distinction results from the specific
error behavior in DNA and it is well-known that errors in DNA are typically in the form of
substitutions, insertions, and deletions, where most published studies report that deletions are
the most prominent ones, depending upon the specific technology for synthesis and sequencing.
Hence, due to its high relevance to the error model in DNA storage coding for insertion and
deletion errors has received renewed interest recently; see e.g. [5–8,10,13,16,25,26,28,32,33,35].
This paper takes one more step in advancing this study and its goal is to study the size of balls
and anticodes when the number of insertions equals to the number of deletions.

If a word x ∈ Z
n
q can be transferred to a word y ∈ Z

n
q using t deletions and t insertions (and

cannot be transferred using a smaller number of deletions and insertions), then their Fixed

Length Levenshtein (FLL) distance is t, which is denoted by dℓ(x,y) = t. It is relatively
easy to verify that the FLL distance defines a metric. Let G = (V,E) be a graph whose set
of vertices V = Z

n
q and two vertices x,y ∈ V are connected by an edge if dℓ(x,y) = 1. This

graph represents the FLL distance. Moreover, the FLL distance defines a graphic metric,
i.e., it is a metric and for each x,y ∈ Z

n
q , dℓ(x,y) = t if and only if the length of the shortest

path between x and y in G is t.
One of the most fundamental parameters in any metric is the size of a ball with a given

radius t centered at a word x. There are many metrics, e.g. the Hamming metric, the Johnson
metric, or the Lee metric, where the size of a ball does not depend on the word x. This is not
the case in the FLL metric. Moreover, the graph G has a complex structure and it makes it
much more difficult to find the exact size of any ball and in particular the size of a ball with
minimum size and the size of a ball with maximum size. In [30], a formula for the size of the
ball with radius one, centered at a word x, in the FLL metric was given. This formula depends
on the number of runs in the word and the lengths of its alternating segments (where in an
alternating segment no run is larger than one). Nevertheless, while it is easy to compute the
minimum size of a ball, it is still difficult to determine from this formula what the maximum
size of a ball is. In this paper, we find explicit expressions for the minimum and maximum
sizes of a ball when the ball is of radius one. We also find the average size of a ball when the
radius of the ball is one. Finally, we consider the related basic concept of anticode in the FLL
metric, where an anticode with diameter D is the a code where the distance between any two
elements of the code is at most D. Note, that a ball with radius R has diameter at most 2R.
We find the maximum size and the minimum size of maximal anticodes with diameter one,
where an anticode with diameter one is maximal if any addition of a word to it will increase
its diameter.

This paper is the first one which considers a comprehensive discussion and exact computa-
tion on the balls with radius one and the anticodes with diameter one in the FLL metric. The
rest of this paper is organized as follows. Section 2 introduces some basic concepts, presents
some of the known results on the sizes of balls, presents some results on equivalence of codes
correcting deletions and insertions, and finally introduce some observations required for our
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exposition. The minimum size of a ball of any given radius in the FLL metric over Zq is dis-
cussed in Section 3. Section 4 is devoted for the discussion on the maximum size of a ball with
radius one in the FLL metric over Zq. The analysis of non-binary sequences is discussed in
Section 4.1. It appears that contrary to many other coding problems the binary case is much
more difficult to analyze and it is discussed in Section 4.2. For the binary case, the sequence
for which the maximum size is obtained is presented in Theorem 8 and the maximum size is
given in Corollary 6. The average size of the FLL ball with radius one over Zq is computed
in Section 5 and proved in Theorem 13. In Section 6, we consider binary maximal anticodes
with diameter one. The maximum size of such an anticode is discussed in Section 6.1 and
Section 6.2 is devoted to the minimum size of such anticodes. The results can be generalized
for the non-binary case, but since they are more complicated and especially messy, they are
omitted.

2 Definitions and Previous Results

In this section, we present the definitions and notations as well as several results that will be
used throughout the paper.

For an integer q ≥ 2, let Zq denote the set of integers {0, 1, . . . , q − 1} and for an integer
n ≥ 0, let Zn

q be the set of all sequences (words) of length n over the alphabet Zq and let Z∗
q =⋃∞

n=0 Z
n
q , and let [n] denote the set of integers {1, 2, . . . , n}. For two sequences x,y ∈ Z

n
q , the

distance between x and y, d(x,y), can be measured in various ways. When the type of errors is
substitution, the Hamming distance is the most natural to be considered. The Hamming weight
of a sequence x ∈ Z

∗
q, denoted by wt(x), is equal to the number of nonzero coordinates in x.

The Hamming distance between two sequences x,y ∈ Z
n
q , denoted by dH(x,y), is the number

of coordinates in which x and y differ. In other words, dH(x,y) is the number of symbol-
substitution operations required to transform x into y. The Hamming distance is well known
to be a metric on Z

n
q (also referred as the Hamming space), as it satisfies the three conditions

of a metric (i.e., coincidence, symmetry and the triangle inequality). Given a distance d on a
space V , the t-ball centered at x ∈ V is the set {y : d(x,y) ≤ t}. The t-sphere centered at
x ∈ V is the set {y : d(x,y) = t}. A code C ⊆ V is a subset of words from V . The last
related concept is an anticode with diameter D which is a code in V for which the distance
between any two elements is at most D. Clearly, a t-ball is an anticode whose diameter is at
most 2t. The Hamming t-ball centered at x ∈ Z

n
q will be denoted by Ht(x). For x ∈ Z

n
q , the

number of words in the Hamming t-ball is a function of n, q and t. The number of such words
is

|Ht(x)| =
t∑

i=0

(
n

i

)
(q − 1)i. (1)

For an integer t, 0 ≤ t ≤ n, a sequence y ∈ Z
n−t
q is a t-subsequence of x ∈ Z

n
q if y can

be obtained from x by deleting t symbols from x. In other words, there exist n − t indices
1 ≤ i1 < i2 < · · · < in−t ≤ n such that yj = xij , for all 1 ≤ j ≤ n − t. We say that y is a
subsequence of x if y is a t-subsequence of x for some t. Similarly, a sequence y ∈ Z

n+t
q is a

t-supersequence of x ∈ Z
n
m if x is a t-subsequence of y and y is a supersequence of x if y is a

t-supersequence of x for some t.
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Definition 1. The deletion t-sphere centered at x ∈ Z
n
q , Dt(x) ⊆ Z

n−t
q , is the set of all t-

subsequences of x. The size of the largest deletion t-sphere in Z
n
q is denoted by Dq(n, t). The

insertion t-sphere centered at x ∈ Z
n
q , It(x) ⊆ Z

n+t
q , is the set of all t-supersequences of x.

Let x ∈ Z
n
q be a sequence. The size of the insertion t-sphere |It(x)| does not depend on x

for any 0 ≤ t ≤ n. To be exact, it was shown by Levenshtein [22] that

|It(x)| =
t∑

i=0

(
n + t

i

)
(q − 1)i. (2)

On the other hand, calculating the exact size of the deletion sphere is one of the more intriguing
problems when studying codes for deletions. Deletion spheres, unlike substitutions balls and
insertions spheres, are not regular. That is, the size of the deletion sphere, |Dt(x)|, depends
on the choice of the sequence x. Let {σ1, . . . , σq} be the symbols of Zq in some order and let
c(n) = (c1, c2, . . . , cn) be a sequence in Z

n
q such that ci = σi for 1 ≤ i ≤ q and ci = ci−q for

i > q. It was shown in Hirschberg and Regnier [19] that c(n) has the largest deletion t-sphere
and its size is given by

Dq(n, t) = |Dt(c(n))| =
t∑

i=0

(
n− t

i

)
Dq−1(t, t− i)

In particular, D2(n, t) =
∑t

i=0

(
n−t

i

)
and D3(n, t) =

∑t

i=0

(
n−t

i

)∑t−i

j=0

(
i

j

)
. The value D2(n, t)

also satisfies the following recursion

D2(n, t) = D2(n− 1, t) +D2(n− 2, t− 1),

where the values for the basic cases can be evaluated by D2(n, t) =
∑t

i=0

(
n−t

i

)
.

Definition 2. A run is a maximal subsequence composed of consecutive identical symbols.
For a sequence x ∈ Z

n
q , the number of runs in x is denoted by ρ(x).

Example 1. If x = 0000000 then ρ(x) = 1 since x has a single run of length 7 and for
y = 1120212 we have that ρ(y) = 6 since y has six runs, the first is on length two and the
others are of length one.

There are upper and lower bounds on the size of the deletion ball which depend on the
number of runs in the sequence. Namely, it was shown by Levenshtein [22] that

(
ρ(x)− t + 1

t

)
≤ |Dt(x)| ≤

(
ρ(x) + t− 1

t

)
.

Later, the lower bound was improved in [19]:

t∑

i=0

(
ρ(x)− t

i

)
≤ |Dt(x)| ≤

(
ρ(x) + t− 1

t

)
. (3)

Several more results on this value which take into account the number of runs appear in [24].
The Levenshtein distance between two words x,y ∈ Z

∗
q , denoted by dL(x,y), is the min-

imum number of insertions and deletions required to transform x into y. Similarly, for two
sequences x,y ∈ Z

∗
q , dE(x,y) denotes the edit distance between x and y, which is the minimum

number of insertions, deletions, and substitutions required to transform x into y.
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Definition 3. Let t, n be integers such that 0 ≤ t ≤ n. For a sequence x ∈ Z
n
q , the Levenshtein

t-ball centered at x ∈ Z
n
q , L̂t(x), is defined by

L̂t(x) , {y ∈ Z
∗
q : dL(x,y) ≤ t}.

In case x,y ∈ Z
n
q , for some integer n, the Fixed Length Levenshtein (FLL) distance between

x and y, dℓ(x,y), is the smallest t for which there exists a t-subsequence z ∈ Z
n−t
q of both x

and y, i.e.

dℓ(x,y) = min{t′ : Dt′(x) ∩ Dt′(y) 6= ∅} =
dL(x,y)

2
. (4)

In other words, t is the smallest integer for which there exists z ∈ Z
n−t
q such that z ∈ Dt(x) and

y ∈ It(z). Note that if x,y ∈ Z
n
q and x is obtained from y by t1 deletions and t2 insertions,

then t1 = t2.

Definition 4. Let n, t be integers such that 0 ≤ t ≤ n. For a sequence x ∈ Z
n
q , the FLL t-ball

centered at x ∈ Z
n
q , Lt(x) ⊆ Z

n
q , is defined by

Lt(x) , {y ∈ Z
n
q : dℓ(x,y) ≤ t}.

We say that a subsequence x[i,j] , xixi+1 · · ·xj is an alternating segment if x[i,j] is a sequence
of alternating distinct symbols σ, σ′ ∈ Zm. Note that x[i,j] is a maximal alternating segment if
x[i,j] is an alternating segment and x[i−1,j],x[i,j+1] are not. The number of maximal alternating
segments of a sequence x will be denoted by A(x).

Example 2. If x = 0000000 then A(x) = 7 since x has seven maximal alternating segments,
each of length one, and for x = 1120212 we have that A(x) = 4 and the maximal alternating
segments are 1, 12, 202, 212.

The following formula to compute |L1(x)| as a function of ρ(x) and A(x) was given in [30]

|L1(x)| = ρ(x) · (n(q − 1)− 1) + 2−
A(x)∑

i=1

(si − 1)(si − 2)

2
, (5)

where si for 1 ≤ i ≤ A(x) denotes the length of the i-th maximal alternating segment of x.

Note that |L̂1(x)|, |L̂2(x)| can be deduced from (2), (3), (4), and |L1(x)|, since

L̂1(x) = D1(x) ∪ I1(x) ∪ {x},
L̂2(x) = L1(x) ∪ D2(x) ∪ I2(x) ∪ D1(x) ∪ I1(x),

and the length of the sequences in each ball is different which implies that the sets in these
unions are disjoint. However, not much is known about the size of the Levenshtein ball and
the FLL ball for arbitrary n, t and x ∈ Z

n
q .

For x ∈ Z
∗
q , let |x| denote the length of x and for a set of indices I ⊆ [|x|], and let xI denote

the projection of x on the ordered indices of I, which is the subsequence of x received by the
symbols in the entries of I. For a symbol σ ∈ Zm, σ

n denotes the sequence with n consecutive
σ’s.
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A word x is called a common supersequence (subsequence) of some sequences y1, . . . ,yt if x
is a supersequence (subsequence) of each one of these t words. The set of all shortest common
supersequences of y1, . . . ,yt ∈ Z

∗
q is denoted by SCS(y1, . . . ,yt) and SCS(y1, . . . ,yt) is the

length of the shortest common supersequence (SCS) of y1, . . . ,yt, that is,

SCS(y1, . . . ,yt) = min
x∈SCS(y1,...,yt)

{|x|}.

Similarly, LCS(y1, . . . ,yt) is the set of all longest common subsequences of y1, . . . ,yt and
LCS(y1, . . . ,yt) is the length of the longest common subsequence (LCS) of y1, . . . ,yt, that is,

LCS(y1, . . . ,yt) , max
x∈LCS(y1,...,yt)

{|x|}.

This definition implies the following well known property.

Claim 5. For x1,x2 ∈ Z
n
q , Dt(x1) ∩ Dt(x2) = ∅ if and only if LCS(x1,x2) < n− t.

Combining (4) and Claim 5 implies that

Corollary 1. If x1,x2 ∈ Z
n
q then

LCS(x1,x2) = n− dℓ(x1,x2).

For two sequences x ∈ Z
n
q and y ∈ Z

m
q , the value of LCS(x,y) is given by the following

recursive formula [20]

LCS(x,y) =





0 n = 0 or m = 0

1 + LCS(x[1:n−1],y[1:m−1]) xn = ym

max
{
LCS(x[1:n−1],y), LCS(x,y[1:m−1])

}
otherwise

. (6)

A subset C ⊆ Z
n
q is a t-deletion-correcting code (t-insertion-correcting code, respectively) if

for any two distinct codewords c, c′ ∈ C we have that Dt(c) ∩ Dt(c
′) = ∅ (It(c) ∩ It(c

′) = ∅,
respectively). Similarly, C is called a (t1, t2)-deletion-insertion-correcting code if for any two
distinct codewords c, c′ ∈ C we have that DIt1,t2(c) ∩ DIt1,t2(c

′) = ∅, where DIt1,t2(x) is the
set of all words that can be obtained from x by t1 deletions and t2 insertions. Levenshtein [22]
proved that C is a t-deletion-correcting code if and only if C is a t-insertion-correcting code and
if and only if C is a (t1, t2)-deletion-insertion-correcting code for every t1, t2 such that t1+t2 ≤ t.
A straightforward generalization is the following result [11].

Lemma 1. For all t1, t2 ∈ Z, if C ⊆ Z
n
q is a (t1, t2)-deletion-insertion-correcting code, then C

is also a (t1 + t2)-deletion-correcting code.

Corollary 2. For C ⊆ Z
n
q , the following statements are equivalent.

1. C is a (t1, t2)-deletion-insertion-correcting code.

2. C is a (t1 + t2)-deletion-correcting code.

3. C is a (t1 + t2)-insertion-correcting code.
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4. C is a (t′1, t
′
2)-deletion-insertion-correcting code for any t′1, t

′
2 such that t′1 + t′2 = t1 + t2.

We further extend this result in the next lemma.

Lemma 2. A code C ∈ Z
n
q is a (2t+1)-deletion-correcting code if and only if the following two

conditions are satisfied
• C is a (t, t)-deletion-insertion-correcting code

and also
• if exactly t + 1 FLL errors (i.e., t + 1 insertions and t+ 1 deletions) occurred, then C can

detect these t+ 1 FLL errors.

Proof. If C is a (2t+ 1)-deletion-correcting code, then by definition for any c1, c2 ∈ C we have
that

D2t+1(c1) ∩ D2t+1(c2) = ∅.

Therefore, by Claim 5 for any two distinct codewords c1, c2 ∈ C we have that

LCS(c1, c2) ≤ n− (2t + 1).

Hence, by Corollary 1, dℓ(c1, c2) ≥ 2(t+ 1). Since the FLL metric is graphic, it follows that C
can correct up to t FLL errors and if exactly t+ 1 FLL errors occurred it can detect them.

For the other direction, assume that C is a (t, t)-deletion-insertion-correcting code and if
exactly t + 1 FLL errors occurred, then C can detect them. By Lemma 1, C is a (2t)-deletion-
correcting code which implies that D2t(c1) ∩ D2t(c2) = ∅ for all c1, c2 ∈ C, and hence by (4)
we have that

∀c1, c2 ∈ C : dℓ(c1, c2) > 2t.

Let us assume to the contrary that there exist two codewords c1, c2 ∈ C such that dℓ(c1, c2) =
2t+1. Since the FLL metric is a graphic metric, it follows that there exists a word y ∈ Z

n
q such

that dℓ(c1,y) = t and dℓ(y, c2) = t + 1. Hence, if the received word is y, then the submitted
codeword can be either c1 (t errors) or c1 (t+1 errors) which contradicts the fact that in C up
to t FLL errors can be corrected and exactly t+ 1 FLL errors can be detected. Hence,

∀c1, c2 ∈ C : dℓ(c1, c2) > 2t+ 1,

and by definition, C can correct 2t+ 1 deletions.

3 The Minimum Size of an FLL Ball

In this section, the explicit expression for the minimum size of an FLL t-ball of any radius t
is derived. Although this result is rather simple and straightforward, it is presented here for
the completeness of the problems studied in the paper. Since changing the symbol in the i-th
position from σ to σ′ in any sequence x can be done by first deleting σ in the i-th position of
x and then inserting σ′ in the same position of x, it follows that

∀x,y ∈ Z
n
q : dH(x,y) ≥ dℓ(x,y).

Since y ∈ Ht(x) if and only if dH(x,y) ≤ t and y ∈ Lt(x) if and only if dℓ(x,y) ≤ t, the
following results are immediatey implied.
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Lemma 3. If n ≥ t ≥ 0 are integers and x ∈ Z
n
q , then Ht(x) ⊆ Lt(x).

Corollary 3. For any two integers n ≥ t ≥ 0 and any sequence x ∈ Z
n
q , |Ht(x)| ≤ |Lt(x)|.

Lemma 4. If n > t ≥ 0 are integers, then Ht(x) = Lt(x) if and only if x = σn for σ ∈ Zq.

Proof. Assume first w.l.o.g. that x = 0n and let y ∈ Lt(x) be a sequence obtained from x

by at most t insertions and t deletions. Hence, wt(y) ≤ t and y ∈ Ht(x), which implies that
Lt(x) ⊆ Ht(x). Therefore, Lemma 3 implies that Ht(x) = Lt(x).

For the other direction, assume that Ht(x) = Lt(x) and let x ∈ Z
n
q were x 6= σn for

all σ ∈ Zq. Since by Lemma 3, Ht(x) ⊆ Lt(x), to complete the proof, it is sufficient to show
that there exists a sequence y ∈ Lt(x)\Ht(x). Denote x = (x1, x2, . . . , xn) and let i be the
smallest index for which xi 6= xi+1. Let y be the sequence defined by

y , (y1, y2, . . . , yi−1, xi+1, xi, yi+2, . . . , yn) ,

where yj 6= xj for the first t−1 indices (for which j /∈ {i, i+ 1}) and yj = xj otherwise. Clearly,
y differs from x in t+1 indices and therefore y /∈ Ht(x). On the other hand, y can be obtained
from x by first deleting xi and inserting it to the right of xi+1 and then applying t−1 deletions
and t − 1 insertions whenever yj 6= xj (where j /∈ {i, i + 1}). Thus, y ∈ Lt(x)\Ht(x) which
completes the proof.

The following simple corollary is a direct result of Corollary 3, Lemma 4 and (1).

Corollary 4. If n > t ≥ 0 and m > 1 are integers, then the size of the minimum FLL t-ball is

min
x∈Zn

q

|Lt(x)| =
t∑

i=0

(
n

i

)
(q − 1)i,

and the minimum is obtained only by the balls centered at x = σn for any σ ∈ Zq.

4 The Maximum FLL Balls with Radius One

The goal of this section is to compute the size of a ball with maximum size and its centre.
For this purpose it is required first to compute the size of a ball. The size of the FLL 1-ball
centered at x ∈ Z

n
q was proved in [30] and given in (5). In the analysis of the maximum ball we

distinguish between the binary case and the non-binary case. Surprisingly, the computation of
the non-binary case is not a generalization of the binary case. That is, the binary case is not a
special case of the non-binary case. Even more surprising is that the analysis of the non-binary
case is much simpler than the analysis of the binary case. Hence, we start with the analysis of
the non-binary case which is relatively simple.

4.1 The Non-Binary Case

By (5), the size of a ball with radius one centered at x depends on ρ(x), the number of runs
in x. For a given number of runs 1 ≤ r ≤ n, the size of a ball depends on the lengths of the
maximal alternating segments in x. The following lemma is an immediate consequence of (5).
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Lemma 5. If n > 0 and 1 ≤ r ≤ n, then

argmax
x∈Zn

q

ρ(x)=r

|L1(x)| = argmin
x∈Zn

q

ρ(x)=r





A(x)∑

i=1

(si − 1)(si − 2)

2



 .

Proof. Let x ∈ Z
n
q be a sequence with exactly r runs. Since r(n(q − 1)− 1) + 2 is a constant

and
A(x)∑

i=1

(si − 1)(si − 2)

2
≥ 0,

the claim follows immediately from (5).

Corollary 5. If n > 0 and 1 ≤ r ≤ n, then

max
x∈Zn

q

ρ(x)=r

|L1(x)| = r(n(q − 1)− 1) + 2− min
x∈Zn

q

ρ(x)=r





A(x)∑

i=1

(si − 1)(si − 2)

2



 .

Note that

A(x)∑

i=1

(si − 1)(si − 2)

2
= 0 ⇐⇒ for each 1 ≤ i ≤ A(x) : si ∈ {1, 2}. (7)

The following claim is a straightforward result from the definitions of a run and an alternating
segment.

Lemma 6. Let n > 0 and let x ∈ Z
n
q be a sequence. For 1 ≤ i ≤ ρ(x), denote by ri

the length of the i-th run and by σi ∈ Zq the symbol of the i-th run. Then all the maximal
alternating segments of x have lengths at most two (si ≤ 2 for each i) if and only if for each
1 ≤ i ≤ ρ(x)− 2, σi 6= σi+2 or ri+1 > 1.

The maximum value of |L1(x)| for non-binary alphabet was given in [31] without a proof.
For q = 2 the value of |L1(x)| given in [31] without a proof is not accurate and we will give the
exact value with a complete proof.

Theorem 6. The maximum FLL 1-balls are the balls centered at x ∈ Z
n
q , such that the number

of runs in x is n (i.e., any two consecutive symbols are different) and xi 6= xi+2 for all 1 ≤ i ≤
n− 2. In addition, the maximum size of an FLL 1-ball is,

max
x∈Zn

q

|L1(x)| = n2(q − 1)− n + 2.

Proof. Corollary 5 implies that

max
x∈Zn

q

|L1(x)| = max
r∈{1,...,n}





max
x∈Z

n

q

ρ(x)=r

|L1(x)|





= max
r∈{1,...,n}




r(n(q − 1)− 1) + 2− min

x∈Z
n

q

ρ(x)=r





A(x)∑

i=1

(si − 1)(si − 2)

2









.

Clearly, r(n(q − 1)− 1) + 2 is maximized for r = n and therefore, using (7), we conclude that
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maxx∈Zn
q
|L1(x)| can be obtained for each x ∈ Z

n
q such that ρ(x) = n and si ≤ 2 for each i.

Note that σi = xi since r = n. By Lemma 6, it implies that xi 6= xi+2 or ri+1 > 1 for each
1 ≤ i ≤ n − 2. Since q > 2, it follows that there exists such an assignment for the symbols of
each run such that xi 6= xi+2 for each 1 ≤ i ≤ r − 2. It follows that

max
x∈Zn

q

|L1(x)| = n2(q − 1)− n + 2.

4.2 The Binary Case

The analysis to find the maximum ball for binary sequences is more difficult, since by definition
of a run, there is no sequence x with n runs such that xi 6= xi+2 (see Theorem 6) for some i.
Note also that since in the binary case two maximal alternating segments can not overlap it
holds that

∑A(x)
i=1 si = n for any binary sequence x.

For a sequence x ∈ Z
n
2 , the alternating segments profile of x is (s1, s2, . . . , sA(x)). Note that

each alternating segments profile defines exactly two binary sequences.

Lemma 7. If x ∈ Z
n
2 then ρ(x) = n+ 1−A(x).

Proof. Let x ∈ Z
n
2 be a sequence and let x[i,j] and x[i′,j′] be two consecutive maximal alternating

segments such that i < i′. Since x is a binary sequence, it follows that two maximal alternating
segments cannot overlap, and hence i′ = j + 1. Now, let α = A(x) and we continue to prove
the claim of the lemma by induction on α for any given n ≥ 1. For α = 1, there is one maximal
alternating segment whose length is clearly n which consists of alternating symbols, i.e., there
are ρ(x) = n runs as required. Assume the claim holds for any α′ such that 1 ≤ α′ < α and let
x ∈ Z

n
2 be a sequence with exactly α maximal alternating segments. Denote by x′ the sequence

that is obtained from x by deleting its last maximal alternating segment x′′. By the induction
hypothesis

ρ(x′) = (n− sα) + 1− (α− 1) = n+ 2− sα − t,

where sα is the length of x′′. Clearly, the first symbol of x′′ is equal to the last symbol in x′.
Thus,

ρ(x) = ρ(x′x′′) = ρ(x′) + sα − 1 = n+ 2− sα − α + sα − 1 = n+ 1− α.

Notice that Lemma 7 does not hold for alphabet size q > 2. To clarify, consider the
sequences x1 = 0120, x2 = 0101 and x3 = 0102, each of the sequences has four runs even
though they differ in the number of maximal alternating segments; A(x1) = 3, A(x2) = 1 and
A(x3) = 2.

Definition 7. For a positive integer α, x(α) ∈ Z
n
2 is an α-balanced sequence if A(x) = α

and si ∈ {⌈n
α
⌉, ⌈n

α
⌉ − 1} for all i ∈ {1, . . . , α}.

Lemma 8. If n is a positive integer and α ∈ {1, . . . , n} then

argmax
x∈Zn

2

A(x)=α

|L1(x)| = {x ∈ Z
n
2 : x is an α-balanced sequence} .

10



Proof. For a sequence x ∈ Z
n
2 such that A(x) = α, Lemma 7 implies that ρ(x) = n + 1 − α.

Hence, by Lemma 5,

argmax
x∈Zn

2

A(x)=α

|L1(x)| = argmin
x∈Zn

2

A(x)=α

α∑

i=1

(si − 1)(si − 2)

2

= argmin
x∈Zn

2

A(x)=α

α∑

i=1

(s2i − 3si + 2)

= argmin
x∈Zn

2

A(x)=α

(
α∑

i=1

s2i − 3

α∑

i=1

si + 2α

)

(a)
= argmin

x∈Zn
2

α(x)=t

(
t∑

i=1

s2i − 3n+ 2α

)

= argmin
x∈Zn

2

A(x)=α

α∑

i=1

s2i ,

where (a) holds since alternating segments cannot overlap for binary sequences and therefore∑α

i=1 si = n.
Assume x ∈ Z

n
2 is a sequence such that A(x) = α, (s1, . . . , sα) is the alternating segments

profile of x and
∑α

i=1 s
2
i is minimal among all sequences in Z

n
2 . Assume to the contrary that

x is not an α-balanced sequence. Then there exist indices i 6= j such that si ≤
⌈
n
α

⌉
− 1 and

sj >
⌈
n
α

⌉
or there exist indices i 6= j such that si <

⌈
n
α

⌉
−1 and sj ≥

⌈
n
α

⌉
. Consider a sequence

x′ with the alternating segments profile (ν1, . . . , να) where

νk =





si + 1 if k = i

sj − 1 if k = j

sk otherwise.

Therefore,

α∑

k=1

ν2
k −

α∑

k=1

s2k =
α∑

k=1

(
ν2
k − s2k

)
= (ν2

i − s2i ) + (ν2
j − s2j )

=
(
(si + 1)2 − s2i

)
+
(
(sj − 1)2 − s2j

)

=
(
s2i + 2si + 1− s2i

)
+
(
s2j − 2sj + 1− s2j

)

= 2(si − sj + 1)

< 2
(⌈n

α

⌉
− 1−

⌈n
α

⌉
+ 1
)
= 0,

and hence
∑α

k=1 ν
2
k <

∑α
k=1 s

2
k. This implies that if x is not an α-balanced sequence, then∑α

k=1 s
2
k is not minimal, a contradiction. Thus,

argmax
x∈Zn

2

A(x)=α

|L1(x)| = argmin
x∈Zn

2

A(x)=α

α∑

i=1

s2i = {x ∈ Z
n
2 : x is an α-balanced sequence} .
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Lemma 9. Let x(α) be an α-balanced sequence of length n. Then,

∣∣∣L1

(
x(α)

)∣∣∣ = (n + 1− α)(n − 1) + 2− k

2

(⌈n
α

⌉
− 1
)(⌈n

α

⌉
− 2
)
− α− k

2

(⌈n
α

⌉
− 2
)(⌈n

α

⌉
− 3
)
,

where k ≡ n (mod α) and 1 ≤ k ≤ α.

Proof. By (5) we have that

∣∣L1

(
x(α)

)∣∣ = ρ
(
x(α)

)
· (n− 1) + 2−

α∑

i=1

(si − 1)(si − 2)

2
, (8)

and Lemma 7 implies that ρ
(
x(α)

)
= n + 1 − α. Let k be the number of entries in the

alternating segments profile of x(α) such that si = ⌈n
α
⌉. Note forther that

∑α
i=1 si = n and

si ∈ {⌈n
α
⌉, ⌈n

α
⌉ − 1} for 1 ≤ i ≤ α. Hence,

k
⌈n
α

⌉
+ (α− k)

(⌈n
α

⌉
− 1
)
= n,

which is equivalent to

k = n− α
(⌈n

α

⌉
− 1
)
.

Therefore, k is the value between 1 to α such that k ≡ n (mod α). Thus, by (8) we have that

∣∣∣L1

(
x(α)

)∣∣∣ = (n + 1− α)(n − 1) + 2− k

2

(⌈n
α

⌉
− 1
)(⌈n

α

⌉
− 2
)
− α− k

2

(⌈n
α

⌉
− 2
)(⌈n

α

⌉
− 3
)
.

By Lemma 8 we have that

max
x∈Zn

2

|L1(x)| = max
1≤α≤n



 max

x∈Zn
2

A(x)=α

|L1(x)|



 = max

1≤α≤n

{∣∣L1

(
x(α)

)∣∣} ,

and the size
∣∣L1

(
x(α)

)∣∣ for 1 ≤ α ≤ n is given in Lemma 9. Hence, our goal is to find the set

A , argmax
1≤α≤n

{∣∣L1

(
x(α)

)∣∣} ,

i.e., for which values of α the maximum of |L1

(
x(α)

)
| is obtained. The answer for this question

is given in the following lemma whose proof can be found in the Appendix.

Lemma 10. Let x(α) be an α-balanced sequence of length n > 1. Then,

∣∣L1

(
x(α)

)∣∣ >
∣∣L1

(
x(α−1)

)∣∣

if and only if n > 2(α− 1)α.
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Theorem 8. If n is an integer, then

A = argmin
α∈N

{∣∣∣∣α− 1

2

√
1 + 2n

∣∣∣∣
}
,

and the maximum FLL 1-balls are the balls centered at the α-balanced sequences of length n,
for α ∈ A. In addition, the size of the maximum FLL 1-balls is given by

max
x∈Zn

2

{|L1(x)|} = n2 − nα+ α+ 1− k

2

(⌈n
α

⌉
− 1
)(⌈n

α

⌉
− 2
)
− α− k

2

(⌈n
α

⌉
− 2
)(⌈n

α

⌉
− 3
)
,

where k ≡ n (mod α) and 1 ≤ k ≤ α.

Proof. Let n be a positive integer. By Lemma 8 we have that

max
x∈Zn

2

|L1(x)| = max
1≤α≤n



 max

x∈Zn
2

A(x)=α

|L1(x)|



 = max

1≤α≤n

{∣∣L1

(
x(α)

)∣∣} .

If there exists an integer α, 1 ≤ α ≤ n such that n = 2(α−1)α, then by Lemma 9,
∣∣L1

(
x(α)

)∣∣ =∣∣L1

(
x(α−1)

)∣∣. Additionally, by Lemma 10 we have that
∣∣L1

(
x(α)

)∣∣ >
∣∣L1

(
x(α−1)

)∣∣ for n >

2(α− 1)α which implies that
∣∣L1

(
x(α)

)∣∣ is maximized for α ∈ {1, . . . , n} such that

2α (α + 1) ≥ n ≥ 2 (α− 1)α. (9)

To find α we have to solve the two quadratic equations from (9). The solution for α must

satisfies both equations and hence −1
2
+

√
1+2n
2

≤ α ≤ 1
2
+

√
1+2n
2

. Namely, for α ∈ A,

max
x∈Zn

2

{|L1(x)|} =
∣∣L1

(
x(α)

)∣∣

The size of L1

(
x(α)

)
was derived in Lemma 9, which completes the proof.

Corollary 6. Let n be an integer. Assuming n is sufficiently large, we have that

max
x∈Zn

2

{|L1(x)|} = n2 −
√
2n

3

2 +O(n).

Proof. By Theorem 8 we have that maxx∈Zn
2
{|L1(x)|} =

∣∣L1

(
x(α)

)∣∣ for α =
[
1
2

√
1 + 2n

]
. By

Lemma 9 we have that
∣∣∣L1

(
x(α)

)∣∣∣ = (n + 1− α)(n − 1) + 2− k

2

(⌈n
α

⌉
− 1
)(⌈n

α

⌉
− 2
)
− α− k

2

(⌈n
α

⌉
− 2
)(⌈n

α

⌉
− 3
)
.

Notice that
1

2

(√
1 + 2n− 2

)
≤ α ≤ 1

2

(√
1 + 2n+ 2

)

and hence, α =
√
1+2n
2

+ ǫ1, where |ǫ1| ≤ 1. Similarly,

2n√
1 + 2n+ 2

≤
⌈

2n√
1 + 2n+ 2

⌉
≤
⌈n
α

⌉
≤
⌈

2n√
1 + 2n− 2

⌉
≤ 2n√

1 + 2n− 2
+ 1.
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which implies that ⌈n
α

⌉
=

2n√
1 + 2n

+ ǫ2,

where by simple calculation we can find that |ǫ2| ≤ 3. Thus,

max
x∈Zn

2

|L1(x)| = (n+ 1− α)(n− 1) + 2− k

2

(⌈n
α

⌉
− 1
)(⌈n

α

⌉
− 2
)
− α− k

2

(⌈n
α

⌉
− 2
)(⌈n

α

⌉
− 3
)

= (n+ 1− α)(n− 1) + 2− k

2

(⌈n
α

⌉
− 2
)(⌈n

α

⌉
− 1−

⌈n
α

⌉
+ 3
)
− α

2

(⌈n
α

⌉
− 2
)(⌈n

α

⌉
− 3
)

= (n+ 1− α)(n− 1) + 2− k
(⌈n

α

⌉
− 2
)
− α

2

(⌈n
α

⌉
− 2
)(⌈n

α

⌉
− 3
)

= (n+ 1−
√
1 + 2n

2
− ǫ1)(n− 1) + 2− k

(
2n√
1 + 2n

+ ǫ2 − 2

)

−
√
1 + 2n+ 2ǫ1

4

(
2n√
1 + 2n

+ ǫ2 − 2

)(
2n√
1 + 2n

+ ǫ2 − 3

)

= n2 + 1−
(√

1 + 2n

2
+ ǫ1

)
(n− 1)

−
(

2n√
1 + 2n

+ ǫ2 − 2

)(
k +

√
1 + 2n+ 2ǫ1

4

(
2n√
1 + 2n

+ ǫ2 − 3

))
.

Note that 1 ≤ k ≤ α ≤ 1
2

(√
1 + 2n+ 2

)
, which implies that

max
x∈Zn

2

|L1(x)| = n2 − n
√
1 + 2n

2
− n2

√
1 + 2n

+O(n)

= n2 −
√
2n

3

2 +O(n).

5 The Expected Size of an FLL 1-Ball

Let n and q > 1 be integers and let x ∈ Z
n
q be a sequence. By (5), for every x ∈ Z

n
q , we have

|L1(x)| = ρ(x)(n(q − 1)− 1) + 2−
A(x)∑

i=1

(si − 1)(si − 2)

2

= ρ(x)(nq − n− 1) + 2− 1

2

A(x)∑

i=1

s2i +
3

2

A(x)∑

i=1

si −A(x).

Thus, the average size of an FLL 1-ball is

E
x∈Zn

q

[|L1(x)|] = E
x∈Zn

q


ρ(x)(n(q − 1)− 1) + 2− 1

2

A(x)∑

i=1

s2i +
3

2

A(x)∑

i=1

si − A(x)


 . (10)
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Lemma 11. For any two integers n, q > 1,

E
x∈Zn

q



A(x)∑

i=1

si


 = n+ (n− 2) · (q − 1)(q − 2)

q2
.

Proof. If x ∈ Z
n
q , then by the definition of an alternating segment, we have that for each

1 ≤ i ≤ n, xi is contained in at least one maximal alternating segment and not more than two
maximal alternating segments. Hence,

A(x)∑

i=1

si = n + ζ(x), (11)

where ζ(x) denotes the number of entries in x which are contained in exactly two alternating
segments. Define, for each 1 ≤ i ≤ n

ζi(x) ,

{
1 xi is contained in two maximal alternating segments

0 otherwise
(12)

Thus,

E
x∈Zn

q



A(x)∑

i=1

si


 = n+ E

x∈Zn
q

[ζ(x)] = n+
1

qn

∑

x∈Zn
q

ζ(x) = n+
1

qn

∑

x∈Zn
q

n∑

i=1

ζi(x) = n+
1

qn

n∑

i=1

∑

x∈Zn
q

ζi(x).

Clearly, if i ∈ {1, n} then ζi(x) = 0 for all x ∈ Z
n
q . Otherwise, ζi(x) = 1 if and only if xi−1, xi

and xi+1 are all different. Therefore, for 2 ≤ i ≤ n− 1, there are
(
q

3

)
· 3! distinct ways to select

values for xi−1, xi, and xi+1 and qn−3 distinct ways to select values for the other entries of x.
That is,

E
x∈Zn

q



A(x)∑

i=1

si


 = n+

1

qn

n∑

i=1

∑

x∈Zn
q

ζi(x) = n+
1

qn

n−1∑

i=2

(
q

3

)
3!qn−3 = n + (n− 2) · (q − 1)(q − 2)

q2
.

Corollary 7. For q = 2, we have that

E
x∈Zn

2




A(x)∑

i=1

si


 = n.

Definition 9. For a sequence x = (x1, . . . , xn) ∈ Z
n
q , denote by x′ ∈ Z

n−1
q the difference vector

of x, which is defined by

x′ , (x2 − x1, x3 − x2, . . . , xn − xn−1).

Claim 10. For integers n and q > 1 and a sequence x ∈ Z
n
q ,

A(x)∑

i=1

si = n + A(x)− 1− Zeros(x′),

where Zeros(y) denotes the number of zeros in y.
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Proof. By (11) we have that
A(x)∑

i=1

si = n + ζ(x).

Since there are A(x) alternating segments, it follows that there are A(x) entries that start with
a maximal alternating segment. Denote this set of entries by Ind(x) and let Ind1(x) ⊆ Ind(x)
be the set of entries i ∈ Ind(x) that are contained in exactly one maximal alternating segment.
This implies that

A(x)∑

i=1

si = n + |Ind(x)| − |Ind1(x)|.

Clearly, 1 ∈ Ind1(x). For any other index i ∈ Ind(x), xi is contained in exactly one maximal
alternating segment if and only if xi = xi−1, i.e., x

′
i−1 = 0. Thus,

A(x)∑

i=1

si = n + A(x)− 1− Zeros(x′).

Claim 11. Given two integers n and q > 1, we have that

E
x∈Zn

q

[Zeros(x′)] =
n− 1

q
.

Proof. By the definition of the difference vector, given y ∈ Z
n−1
q , the sequence x ∈ Σn

q such
that x′ = y is defined uniquely by the selection of the first entry of x from Zq. Hence, we have
that for each y ∈ Z

n−1
q there are exactly q sequences x ∈ Z

n
q such that x′ = y. In other words,

the function f(x) = x′ is a q to 1 function. Define,

zeroi(y) ,

{
1 yi = 0

0 otherwise.

It follows that,

E
x∈Zn

q

[Zeros(x′)] = E
y∈Zn−1

q

[Zeros(y)] =
1

qn−1

∑

y∈Zn−1
q

Zeros(y) =
1

qn−1

∑

y∈Zn−1
q

n−1∑

i=1

zeroi(y)

=
1

qn−1

n−1∑

i=1

∑

y∈Zn−1
q

zeroi(y).

For each i, the set {y ∈ Z
n−1
q : yi = 0} is of size qn−1

q
= qn−2. Thus,

E
x∈Zn

q

[Zeros(x′)] =
1

qn−1

n−1∑

i=1

∑

y∈Zn−1
q

zeroi(y) =
1

qn−1
·
n−1∑

i=1

qn−2 =
n− 1

q
.
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By combining the results from Lemma 11 and Claims 10 and 11 we infer the following
result.

Corollary 8. For two integers n and q > 1, the average number of alternating segments of a
sequence x ∈ Z

n
q is

E
x∈Zn

q

[A(x)] = 1 +
(n− 2)(q − 1)(q − 2)

q2
+

n− 1

q
,

and in particular for q = 2

E
x∈Zn

2

[A(x)] =
n + 1

2
.

Proof. For each q > 1 we have that

E
x∈Zn

q

[A(x)] = E
x∈Zn

q




A(x)∑

i=1

si


+ E

x∈Zn
q

[Zeros(x′)]− n+ 1 by Claim 10

= n +
(n− 2)(q − 1)(q − 2)

q2
+

n− 1

q
− n+ 1 by Lemma 11 and Claim 11

= 1 +
(n− 2)(q − 1)(q − 2)

q2
+

n− 1

q
.

When q = 2 the latter implies that

E
x∈Zn

2

[A(x)] =
n + 1

2
.

Lemma 12. For any two integers n and q > 1, the average number of runs in a sequence
x ∈ Z

n
q is

E
x∈Zn

q

[ρ(x)] = n− n− 1

q
.

Proof. For a sequence x ∈ Z
n
q , the number of runs in x is equal to the number of entries which

begin a run in x. Clearly, x1 is the beginning of the first run and by the definition of the
difference vector, we have that for each i, 2 ≤ i ≤ n, xi starts a run if and only if x′

i−1 6= 0.
Thus,

ρ(x) = n− Zeros(x′),

and, by Claim 11,

E
x∈Zn

q

[ρ(x)] = n− E
x∈Zn

q

[Zeros(x′)] = n− n− 1

q
.

Our current goal is to evaluate Ex∈Zn
q

[∑A(x)
i=1 s2i

]
. Denote by χ(s) the number of maximal

alternating segments of length s over all the sequences x ∈ Z
n
q , i.e.,

χ(s) =
∑

x∈Zn
q

|{1 ≤ i ≤ A(x) : si = s}| .
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It holds that

E
x∈Zn

q



A(x)∑

i=1

s2i


 =

1

qn

∑

x∈Zn
2

A(x)∑

i=1

s2i =
1

qn

n∑

s=1

s2χ(s),

and the values of χ(s) for 1 ≤ s ≤ n are given in the following lemmas.

Lemma 13. If n and q > 1 are two positive integers then

χ(1) = 2qn−1 + (n− 2)qn−2.

Proof. Let us count the number of maximal alternating segments of length one over all the
sequences x ∈ Z

n
q . Consider the following two cases:

Case 1 - If the alternating segment is at x1, we can choose the symbols of x1 in q different
ways. Since the alternating segment’s length is one, i.e., x1 = x2, it follows that the value of
x2 is determined. The symbols at x3, . . . , xn can be selected in qn−2 different ways. Therefore,
there are qn−1 distinct sequences with such an alternating segment. The same arguments hold
for an alternating segment at xn.
Case 2 - If the alternating segment is at index i, 2 ≤ i ≤ n−1, it must be that xi−1 = xi = xi+1.
The symbol at xi can be selected in q different ways and the symbols of xi−1, xi+1 are fixed.
In addition. we can set the symbols of x at indices j /∈ {i− 1, i, i+ 1} in qn−3 different ways.
Therefore, there are qn−2 distinct sequences with such an alternating segment.

Thus,
χ(1) = 2qn−1 + (n− 2)qn−2.

Lemma 14. For any two integers n and q > 1,

χ(n) = q(q − 1).

Proof. Any alternating segment of length n is defined by the first two symbols which must be
distinct (the rest of the symbols are determined by the first two symbols). There are q(q − 1)
different ways to select the first two symbols and hence the claim follows.

For 2 ≤ s ≤ n − 1 we need to consider whether the alternating segment overlaps with the
preceding or the succeeding segment, or not. To this end, we distinguish between the maximal
alternating segments of length s as follows

χ1(s) - The number of alternating segments that do not overlap with the preceding
segment and the succeeding segments.

χ2(s) - The number of alternating segments that overlap with the preceding segment and
the succeeding segments.

χ3(s) - The number of alternating segments that overlap only with the succeeding seg-
ment.

χ4(s) - The number of alternating segments that overlap only with the preceding segment.

Claim 12. If n, q > 1 are integers and 2 ≤ s ≤ n− 1 then,

18



1. χ1(s) = 2(q − 1)qn−s + (n− s− 1)(q − 1)qn−s−1.

2. χ2(s) = (n− s− 1)(q − 1)(q − 2)2qn−s−1.

3. χ3(s) = (q − 1)(q − 2)qn−s + (q − 1)(q − 2)(n− s− 1)qn−s−1.

4. χ4(s) = (q − 1)(q − 2)qn−s + (q − 1)(q − 2)(n− s− 1)qn−s−1.

Proof. 1. To count the number of maximal alternating segments of length s that do not
overlap with the preceding segment and the succeeding segment we distinguish two dis-
tinct cases.
Case 1 - If the alternating segment is at the beginning of the sequence, then there are
q(q−1) distinct ways to select the symbols of the segment. The symbol after the segment
is determined (and is equal to the last symbol of the discussed alternating segment) in
order to prevent an overlap and the other symbols can be chosen in qn−s−1 different ways.
Hence, the number of different sequences with such segments is (q − 1)qn−s. The same
arguments hold for an alternating segment at the end of the sequence.
Case 2 - If the alternating segment is not at the edges of the sequence, then there
are n − s − 1 possible positions to start the alternating segment, and q(q − 1) ways
to choose the two symbols of the alternating segment. The symbol preceding and the
symbol succeeding the alternating segment are determined. The other symbols can be
chosen in qn−s−2 distinct ways and hence the number of different alternating segments is
(n− s− 1)(q − 1)qn−s−1.

Thus,
χ1(s) = 2(q − 1)qn−s + (n− s− 1)(q − 1)qn−s−1.

2. A maximal alternating segment that overlaps with the preceding segment and the suc-
ceeding segment can not be at the sequence edges. Hence, there are n − s − 1 possible
positions to start the alternating segment and the symbols of the segment can be chosen
in q(q−1) different ways. In order to overlap with the preceding (succeeding, respectively)
segment, the symbol before (after, respectively) the segment must be different from the
two symbols of the segment. Therefore, there are (q − 2)2 options to choose the symbol
before and the symbol after the segment. In addition, the rest of the sequence can be
chosen in qn−s−2 different ways and hence

χ2(s) = (n− s− 1)(q − 1)(q − 2)2qn−s−1.

3. Since the alternating segment must intersect with the succeeding segment, it can not
be the last alternating segment, that is, the segment ends at index j < n. To count the
number of maximal alternating segments of length s that overlap only with the succeeding
segment we consider two distinct cases.
Case 1 - If the alternating segment is at the beginning of the sequence then there are
q(q − 1) different ways to choose the symbols for it and the symbol after the segment
must be different from the two symbols of the alternating segment so there are (q − 2)
options to select it. The other symbols can be chosen in qn−s−1 different ways. Hence,
the number of different segments is (q − 1)(q − 2)qn−s.
Case 2 - If the alternating segment does not start at the beginning of the sequence,
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since the segment ends at index j < n, it follows that there are (n − s − 1) possible
locations to start the segment. There are q(q − 1) different ways to select the symbols
for the alternating segment. The symbol before the alternating segment is determined in
order to prevent an overlap with the previous segment and the symbol after the segment
must be different from the two symbols of the alternating segment and hence there are
(q − 2) ways to choose it. The other symbols can be chosen in qn−s−2 different ways and
hence the number of different segments is qn−s−1(q − 1)(q − 2)(n− s− 1).
Thus,

χ3(s) = (q − 1)(q − 2)qn−s + (q − 1)(q − 2)(n− s− 1)qn−s−1.

4. Clearly, the number of maximal alternating segments of length s that overlap only with
the succeeding segment is equal to the number alternating segments of length s that
overlap only with the preceding segment.

Lemma 15. In n, q > 1 are integers and 2 ≤ s ≤ n− 1 then

χ(s) = 2(q − 1)2qn−s + (n− s− 1)(q − 1)3qn−s−1.

Proof. By Claim 12,

χ(s) = χ1(s) + χ2(s) + χ3(s) + χ4(s)

= 2(q − 1)qn−s + (n− s− 1)(q − 1)qn−s−1 + (n− s− 1)(q − 1)(q − 2)2qn−s−1

+ 2(q − 1)(q − 2)qn−s + 2(n− s− 1)(q − 1)(q − 2)qn−s−1

= 2(q − 1)2qn−s + (n− s− 1)(q − 1)qn−s−1
(
1 + (q − 2)2 + 2(q − 2)

)

= 2(q − 1)2qn−s + (n− s− 1)(q − 1)qn−s−1
(
q2 − 2q + 1)

)

= 2(q − 1)2qn−s + (n− s− 1)(q − 1)3qn−s−1.

Lemma 16. If n, q > 1 are integers then,

E
x∈Zn

q




A(x)∑

i=1

s2i


 =

n(4q2 − 3q + 2)

q2
+

6q − 4

q2
− 4− 2

q − 1

(
1− 1

qn

)
.

Proof. We have that

E
x∈Zn

q




A(x)∑

i=1

s2i


 =

1

qn

∑

x∈Zn
q

A(x)∑

i=1

s2i =
1

qn

n∑

s=1

s2χ(s) =
χ(1)

qn
+

n2χ(n)

qn
+

1

qn

n−1∑

s=2

s2χ(s).

Let us first calculate
∑n−1

s=2 s
2χ(s). By Lemma 15,

n−1∑

s=2

s2χ(s) =

n−1∑

s=2

s2
(
2(q − 1)2qn−s + (n− s− 1)(q − 1)3qn−s−1

)

= 2(q − 1)2
n−1∑

s=2

s2qn−s + (q − 1)3
n−1∑

s=2

(n− s− 1)s2qn−s−1.
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It can be verified that
n−1∑

s=2

s2χ(s) =
2q3 − q3n2(q − 1)2 + qn(2− 2q(3 + q(2q − 3)) + n(q − 1)(1 + q(4q − 3)))

(q − 1)q2

and after rearranging the latter, we obtain that

n−1∑

s=2

s2χ(s) = nqn−2(4q2 − 3q + 1)− n2q(q − 1)− 2qn−2 · (2q − 1)(q2 − q + 1)

(q − 1)
+

2

q − 1
.

Hence,

E
x∈Zn

q



A(x)∑

i=1

s2i


 =

χ(1)

qn
+

n2χ(n)

qn
+

1

qn

n−1∑

s=2

s2χ(s)

=
2qn−1 + (n− 2)qn−2

qn
+

n2q(q − 1)

qn
+

nqn−2(4q2 − 3q + 1)

qn

− n2q(q − 1)

qn
− 2qn−2 · (2q − 1)(q2 − q + 1)

qn(q − 1)
+

2

qn(q − 1)

=
n(4q2 − 3q + 2)

q2
+

2

q
− 2

q2

− 2(2q − 1)(q2 − q + 1)

q2(q − 1)
+

2

qn(q − 1)

=
n(4q2 − 3q + 2)

q2
+

6q − 4

q2
− 4− 2

q − 1

(
1− 1

qn

)
.

Theorem 13. If n, q > 1 are integers, then

E
x∈Zn

q

[|L1(x)|] = n2

(
q +

1

q
− 2

)
− n

q
− (q − 1)(q − 2)

q2
+ 3− 3

q
+

2

q2
+

qn − 1

qn(q − 1)
.

Proof. By (10) we have that

E
x∈Zn

q

[|L1(x)|] = (nq − n− 1) E
x∈Zn

q

[ρ(x)] + 2− 1

2
E

x∈Zn
q



A(x)∑

i=1

s2i


+

3

2
E

x∈Zn
q



A(x)∑

i=1

si


− E

x∈Zn
q

[A(x)] .

Using Corollary 8 and Lemmas 11, 12, and 16 we infer that

E
x∈Zn

q

[|L1(x)|] = (nq − n− 1)

(
n− n− 1

q

)
+ 2

− 1

2

(
n(4q2 − 3q + 2)

q2
+

6q − 4

q2
− 4− 2

q − 1

(
1− 1

qn

))

+
3

2

(
n + (n− 2) · (q − 1)(q − 2)

q2

)
− 1− (n− 2)(q − 1)(q − 2)

q2
− n− 1

q

= n2

(
q +

1

q
− 2

)
− n

q
− (q − 1)(q − 2)

q2
+ 3− 3

q
+

2

q2
+

qn − 1

qn(q − 1)
.
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6 Binary Anticodes with Diameter one

Before presenting the analysis of the anticodes under the FLL metric, we state the following
lemma, which was proven in [23] and will be used in some of the proofs in this section.

Lemma 17. If x,y ∈ Z
n
2 are distinct words, then

|D1(x) ∩ D1(y)| ≤ 2 and |I1(x) ∩ I1(y)| ≤ 2.

Definition 14. An anticode of diameter t in Z
n
q is a subset A ⊆ Z

n
q such that for any x,x′ ∈ A,

dℓ(x,x
′) ≤ t. We say that A is a maximal anticode if there is no other anticode of diameter t

in Z
n
q which contains A.

Next, we present tight lower and upper bounds on the size of maximal binary anticodes
of diameter one in the FLL metric. To prove these bounds we need some useful properties of
anticodes with diameter one in the FLL metric.

Lemma 18. If an anticode A of diameter one contains three distinct words with the suffix 00
then there is at most one word in A with the suffix 01.

Proof. Let a,a′,a′′ ∈ A be three words with the suffix 00 and assume to the contrary that
there exist two distinct words b, b′ ∈ A with the suffix 01. Let y ∈ LCS(a, b); by Corollary 1
the length of y is n − 1 and since a ends with 00, y must end with 0 which implies that
y = b[1,n−1]. By the same arguments y ∈ LCS(b,a′) and y ∈ LCS(b,a′′). Similarly,

y′ = b′[1,n−1] ∈ LCS(b′,a,a′,a′′).

Hence, a,a′,a′′ ∈ I1(y) ∩ I1(y
′) which is a contradiction to Lemma 17. Thus, A contains at

most one word with the suffix 01.

Lemma 19. If an anticode A of diameter one contains three distinct words with the suffix
01, then there is at most one word in A with the suffix 00.

Proof. Let a,a′,a′′ ∈ A be three words with the suffix 01 and assume to the contrary that
there exist two distinct words b, b′ ∈ A with the suffix 00. For y ∈ LCS(a, b), by Corollary 1
the length of y is n − 1 and since b ends with 00, y must end with 0 which implies that
y = a[1,n−1]. By the same arguments y ∈ LCS(a, b′). Similarly,

y′ = a′
[1,n−1] ∈ LCS(a′, b, b′)

y′′ = a′′
[1,n−1] ∈ LCS(a′′, b, b′).

Hence, y,y′,y′′ ∈ D1(b) ∩ D1(b
′) which is a contradiction to Lemma 17. Thus, A contains at

most one word with the suffix 00.

Lemma 20. Let A be an anticode of diameter one. If a,a′ ∈ A are two distinct words that
end with 00 and b, b′ ∈ A are two distinct words that end with 01, then a[1,n−1] 6= b[1,n−1] or
a′
[1,n−1] 6= b′[1,n−1].
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Proof. Assume to the contrary that there exist a,a′, b, b′ ∈ A such that a[1,n−1] = b[1,n−1] = y0
and a′

[1,n−1] = b′[1,n−1] = y′0, a,a′ end with 00 and b, b′ end with 01. Let,

a = a1 a2 . . . an−2 0 0 = y 0 0

a′ = a′1 a′2 . . . a
′
n−2 0 0 = y′ 0 0

b = a1 a2 . . . an−2 0 1 = y 0 1

b′ = a′1 a′2 . . . a
′
n−2 0 1 = y′ 0 1.

Notice that since the FLL distance between any two words in A is one, it follows that the
Hamming weight of any two words can differ by at most one, which implies that wt(y) = wt(y′)
(by considering the pairs a, b′ and a′, b). Clearly, y0 ∈ LCS(a′, b) which implies that a′ can
be obtained from b by deleting the last 1 of b and then inserting 0 into the LCS. Hence, there
exists an index 0 ≤ j ≤ n− 2 such that

a1a2 . . . aj0aj+1 . . . an−20 = a′1a
′
2 . . . a

′
ja

′
j+1 . . . a

′
n−200. (13)

Similarly, a can be obtained from b′, i.e., there exists an index 0 ≤ i ≤ n− 2 such that

a′1a
′
2 . . . a

′
i0a

′
i+1 . . . a

′
n−20 = a1a2 . . . aiai+1 . . . an−200. (14)

Assume w.l.o.g. that i ≤ j. (13) implies that ar = ar′ for 1 ≤ r ≤ j. In addition, an−2 = 0
by (13) and a′n−2 = 0 by (14). By assigning an−2 = a′n−2 = 0 into (13) and (14) we obtain that
an−3 = a′n−3 = 0. Repeating this process implies that ar = ar′ = 0 for j+1 ≤ r ≤ n− 2. Thus,
we have that y = y′ which is a contradiction.

Definition 15. For an anticode A ⊆ Z
n
2 , the puncturing of A in the n-th coordinate, A′, is

defined by
A′ ,

{
a[1:n−1] : a ∈ A

}
.

Lemma 21. Let A ⊆ Z
n
2 be an anticode of diameter one. If the last symbol in all the words

in A is the same symbol σ ∈ Z
n
2 , then A′ is an anticode of diameter one and |A′| = |A|.

Proof. Let a, b ∈ A be two different words and let y ∈ LCS(a[1:n−1], b[1:n−1]). By (6), LCS(a, b) ≤
|y|+ 1 and since dℓ(a, b) = 1, Corollary 1 implies that |y| ≥ n− 2 and that

dℓ(a[1:n−1], b[1:n−1]) ≤ 1.

Hence, A is an anticode of diameter one. Since any two distinct words a, b ∈ A end with the
symbol σ, it follows that a[1:n−1] 6= b[1:n−1] and thus |A| = |A′|.
Lemma 22. Let A be an anticode of diameter one. If the suffix of each word in A is either
01 or 10, then A′ is an anticode of diameter one and |A′| = |A|.
Proof. Let a, b ∈ A be two different words and let y ∈ LCS(a[1:n−1], b[1:n−1]). By (6),
LCS(a, b) ≤ |y|+ 1 and since dℓ(a, b) = 1, it follows that |y| ≥ n− 2 and that

dℓ(a[1:n−1], b[1:n−1]) ≤ 1.

Hence, A′ is an anticode of diameter one. If a and b end with the same symbol σ ∈ {0, 1},
then a[1:n−1] 6= b[1:n−1]. Otherwise, one of the words has the suffix 01 and the other has the
suffix 10. That is, an−1 6= bn−1 and therefore a[1:n−1] 6= b[1:n−1] and thus, |A′| = |A|.

23



6.1 Upper Bound

Theorem 16. Let n > 1 be an integer and let A ⊆ Z
n
2 be a maximal anticode of diameter one.

Then, |A| ≤ n+ 1, and there exists a maximal anticode with exactly n+ 1 codewords.

Proof. Since two words x,y such that x ends with 00 and y ends with 11 are at FLL distance
at least 2, w.l.o.g. assume that A does not contain codewords that end with 11. It is easy
to verify that the theorem holds for n ∈ {2, 3, 4}. Assume that the theorem does not hold
and let n∗ > 4 be the smallest integer such that there exists an anticode A ⊆ Z

n∗

2 such that
|A| = n∗ +2. Since there are only three possible options for the last two symbols of codewords
in A (00, 01, or 10) and |A| ≥ 7, it follows that there exist three different codewords in A with
the same suffix of two symbols.
Case 1 - Assume x,y, z ∈ A are three different words with the suffix 00. By Lemma 18, there
exists at most one codeword in A with the suffix 01 and since A does not contain codewords
with the suffix 11, there exists at most one codeword in A that ends with the symbol 1. That
is, there exist at least n∗ + 1 codewords with 0 as the last symbol. Denote such a set with
n∗ + 1 codewords by A1. As a subset of the anticode A, A1 is also an anticode and hence by
Lemma 21, A′

1 is an anticode of length n∗ − 1 and size n∗ + 1 which is a contradiction to the
minimality of n∗.
Case 2 - Assume x,y, z ∈ A are three different words with the suffix 01. By Lemma 19, there
exists at most one codeword in A with the suffix 00 and since A does not contain codewords
with the suffix 11 there exist n∗ + 1 codewords that end with either 01 or 10. Denote this set
of n∗ +1 codewords as A1. As a subset of the anticode A, A1 is also an anticode and hence by
Lemma 22, A′

1 is an anticode of length n∗ − 1 and size n∗ + 1 which is a contradiction to the
minimality of n∗.
Case 3 - Assume x,y, z ∈ A are three different words with the suffix 10. By the previous two
cases, there exist at most two codewords in A with the suffix 00 and at most two codewords
with the suffix 01. Since there are no codewords with the suffix 11, it follows that the number
of words that end with 1 is at most two. If there exist at most one codeword in A that ends
with 1, then there are n∗+1 codewords in A that end with 0 and as in the first case, this leads
to a contradiction. Otherwise there are exactly two codewords in A with the suffix 01. If there
are less than two codewords with the suffix 00, then, the number of codewords with suffixes 01
and 10 is at least n∗ + 1 and similarly to Case 2, this is a contradiction to the minimality of
n∗. Hence, there exist exactly two codewords in A with the suffix 00. There are exactly n∗ − 2
codewords in A with the suffix 10 and two more codewords with the suffix 01. By Lemma 22
the words in A′ that were obtained from these n∗ codewords are all different and have FLL
distance one from each other. In addition, by Lemma 20, the prefix of length n∗ − 1 of at least
one of the codewords that end with 00 is different from the prefixes of length n∗ − 1 of the
codewords that end with 01. This prefix also differ from the prefixes of the codewords that end
with 10. Therefore, A′ is an anticode with n∗ + 1 different codewords which is a contradiction
to the minimality of n∗.

Note that the set A = {a ∈ Z
n
2 : wt(a) ≤ 1} is an anticode of diameter one with exactly

n+ 1 codewords. Thus, the maximum size of an anticode of diameter one is n + 1.
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6.2 Lower Bound

Theorem 17. Let n > 2 be a positive integer and let A ⊆ Z
n
2 be a maximal anticode of diameter

one, then |A| ≥ 4 and there exists a maximal anticode with exactly 4 codewords.

Proof. For n = 3 the maximal anticodes are

A1 = {000, 001, 010, 100} A2 = {001, 010, 100, 101} A3 = {001, 010, 011, 101}
A4 = {010, 011, 101, 110} A5 = {011, 101, 110, 111} A6 = {010, 100, 101, 110}

and all of them have size 4 = n + 1. Assume that the theorem does not hold and let n∗ > 3
be the smallest integer such that there exists a maximal anticode A ⊆ Z

n∗

2 with less than
four codewords. For each x ∈ Z

n∗

2 there exists a sequence y ∈ Z
n∗

2 such that dℓ(x,y) = 1
and hence |A| > 1. If A = {x,y} ⊆ Z

n∗

2 by the definition of an anticode dℓ(x,y) = 1 and
LCS(x,y) = n − 1. For z ∈ LCS(x,y), by (2), the insertion ball of radius one centered at z
contains n∗ − 1 > 2 codewords in addition to x and y and each of them can be added into A.
Hence, A is an anticode of diameter one with three codewords. We will prove that there exists
a word that can be added into A which is a contradiction to the maximality of A. Consider
the following cases:
Case 1 - If all the codewords in A have the same last symbol σ ∈ Z2, then by Lemma 21,
A′ ⊆ Z

n∗−1
2 , is an anticode of diameter one that contains three codewords. Since n∗ is the

smallest integer for which there exists a maximal anticode with less than four codewords, A′

is not maximal. That is, there exists a word x′ ∈ Z
n∗−1
2 such that A′ ∪ {x′} is an anticode of

diameter one. It can be readily verified that x′σ /∈ A and that A ∪ {x′σ} is an anticode of
diameter one which is a contradiction to the maximality of A.
Case 2 - If all the codewords in A have the same first symbol σ ∈ Z2 then a contradiction is
obtained by symmetrical arguments to those presented in Case 1.
Case 3 - Assume all the words in A neither have the same first symbol nor the same last
symbol. Let |A| = {x,y, z} and assume w.l.o.g. that x and y are codewords that end with 0
and that z ends with 1. If |A′| = 3, then z[1,n∗−1] 6= x[1,n∗−1] and z[1,n∗−1] 6= y[1,n∗−1]. Hence the
word z[1,n∗−1]0 is not in A and it is easy to verify that it has distance one from each codeword
in A, which is a contradiction. Otherwise, since x[1,n∗−1] 6= y[1,n∗−1], it must hold that z[1,n∗−1]

is equal either to x[1,n∗−1] or to y[1,n∗−1]. Assume w.l.o.g. that z[1,n∗−1] = x[1,n∗−1], then x and
z have the same first symbol σ and hence y must begin with σ = 1− σ. The three codewords
can be described as follows:

x = σx2x3 . . . xn∗−10

y = σy2y3 . . . yn∗−10

z = σx2x3 . . . xn∗−11.

Since y and z have different first and last symbols, their LCS must be equal to the suffix of
length n∗ − 1 of one word and to the prefix of length n∗ − 1 of the other word. If

z[1,n∗−1] = σa2a3 . . . an∗−1 ∈ LCS(y, z),

then z[1,n∗−1] is a common LCS of the three codewords x,y, and z and hence any word from
I1(z[1,n∗−1]) has distance one from all the words in A. Since, by (2),

|I1(z[1,n∗−1])| = n∗ + 1 ≥ 4,
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there is a word different from x,y and z that can be added into A. In the other case,

σy2y3 . . . yn∗−1 = y[1,n−1] = z[2,n] = x2x3 . . . xn∗−11 ∈ LCS(y, z)

and hence the codewords x and z can be written as

x = σσy2y3 . . . yn∗−20

z = σσy2y3 . . . yn∗−2yn∗−1

and the word
w = σσy2y3 . . . yn∗−10

is a common SCS of x,y, and z. If ρ(w) > 3 then there is a word in D1(w) that is different
from x,y, and z that can be added into A, which is again a contradiction. Otherwise, since
the first two symbols of w are different and the last two symbols are also different, it holds
that ρ(w) = 3. It is easy to verify that

A = {0 11 . . . 1︸ ︷︷ ︸
n∗−2 times

0, 0 11 . . . 1︸ ︷︷ ︸
n∗−1 times

, 11 . . . 1︸ ︷︷ ︸
n∗−1 times

0}

and that 11 . . . 1︸ ︷︷ ︸
n∗−2 times

01 can be added into A, which is a contradiction to the minimality of A. To

see that the given bound is tight, one can simply consider the set of codewords that consist
from the binary representation of length n∗ of the numbers 2, 3, 5, 6 that is, the set

A = {0 . . . 0︸ ︷︷ ︸
n∗−3

010, 0 . . . 0︸ ︷︷ ︸
n∗−3

011, 0 . . . 0︸ ︷︷ ︸
n∗−3

101, 0 . . . 0︸ ︷︷ ︸
n∗−3

110}

and verify that it is indeed a maximal anticode of diameter one.

7 Conclusion

In this paper we studied the size of balls with radius one and the anticodes of diameter one
under the FLL metric. In particular we give explicit expressions for the maximum size of a
ball with radius one and the minimum size of a ball of any given radius in the FLL metric over
Zq. We also found the average size of a 1-ball in the FLL metric. Finally, we considered the
related concept of anticode in the FLL distance and we found that the maximum and minimum
size of a binary maximal anticode of diameter one are n + 1 and 4, respectively. The latter
can be extended to a non-binary alphabet and while the minimum size of a maximal anticode
with diameter one is 4 for any alphabet size q, the maximum size of a maximal anticode with
diameter one is n(q − 1) + 1. The results in this paper were presented in part at the IEEE
International Symposium on Information Theory (ISIT), 2021 [3]. Recently, based on these
results, G. Wang and Q. Wang [36] extended the analysis of 1-FLL balls by proving that the
size of the 1-FLL balls is highly concentrated around its mean using Azuma’s inequality [1].
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Appendix

Proof of Lemma 10

Let α > 1 be some integer and define diff ,
∣∣L1

(
x(α)

)∣∣ −
∣∣L1

(
x(α−1)

)∣∣. We will prove that
diff > 0 if and only if n > 2α(α− 1) by proving that diff > 0 for any n > 2α(α− 1) and that
diff < 0 for any α < n < 2α(α−1). Before we analyze each case we present different expression
for
∣∣L1

(
x(α)

)∣∣ that will be in use within the proof. By Lemma 9, if n is divisible by α, then

∣∣L1

(
x(α)

)∣∣ = (n + 1− α)(n− 1) + 2− α

2

(n
α
− 1
)(n

α
− 2
)

= (n + 1− α)(n− 1) + 2− n2

2α
+

3n

2
− α.

Otherwise when n is not divisible by α, we have that
⌈
n
α

⌉
= n−kα

α
+ 1 and hence, by Lemma 9,
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∣∣∣L1

(
x(α)

)∣∣∣ = (n+ 1− α)(n − 1) + 2− kα

2

(⌈n
α

⌉
− 1
)(⌈n

α

⌉
− 2
)
− α− kα

2

(⌈n
α

⌉
− 2
)(⌈n

α

⌉
− 3
)

= (n+ 1− α)(n − 1) + 2− kα

2

(
n− kα

α

)(
n− kα

α
− 1

)
− α− kα

2

(
n− kα

α
− 1

)(
n− kα

α
− 2

)

= (n+ 1− α)(n − 1) + 2− kα

2

(
n− kα

α
− 1

)(
n− kα

α
− n− kα

α
+ 2

)
− α

2

(
n− kα

α
− 1

)(
n− kα

α
− 2

)

= (n+ 1− α)(n − 1) + 2− kα

(
n− kα

α
− 1

)
− α

2

(
n− kα

α
− 1

)(
n− kα

α
− 2

)

= (n+ 1− α)(n − 1) + 2−
(
n− kα

α
− 1

)(
kα +

n− kα

2
− α

)

= (n+ 1− α)(n − 1) + 2− (n− kα − α)(n + kα − 2α)

2α

= (n+ 1− α)(n − 1) + 2− n2

2α
+

3n

2
+

k2α
2α

− kα

2
− α.

Hence, by abuse of notation, if we let 0 ≤ kα ≤ α− 1 we have that

∣∣L1

(
x(α)

)∣∣ = (n+ 1− α)(n− 1) + 2− n2

2α
+

3n

2
+

k2
α

2α
− kα

2
− α,

which implies that

diff = (n + 1− α)(n− 1) + 2− n2

2α
+

3n

2
+

k2
α

2α
− kα

2
− α

− (n + 1− (α− 1))(n− 1)− 2 +
n2

2(α− 1)
− 3n

2
− k2

α−1

2(α− 1)
+

kα−1

2
+ α− 1

= −n + n2

(
1

2(α− 1)
− 1

2α

)
+

(
k2
α

2α
− kα

2

)
+

(
kα−1

2
− k2

α−1

2(α− 1)

)

=
n2

2α(α− 1)
− n+

(
k2
α

2α
− kα

2

)
+

(
kα−1

2
− k2

α−1

2(α− 1)

)
.

Let us consider the following distinct cases for the value of n.
Case 1 - If n = 2α(α− 1) then kα = kα−1 = 0 and

diff =
(2α(α− 1))2

2(α− 1)α
− 2α(α− 1) = 0.
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Case 2 - If n = 2α(α−1)+k for some integer 1 ≤ k ≤ α−2 then we have that kα = kα−1 = k
and

diff =
n2

2α(α− 1)
− n+

(
k2

2α
− k

2

)
+

(
k

2
− k2

2(α− 1)

)

=
n2

2α(α− 1)
− n+

k2

2α
− k2

2(α− 1)

=
n2

2α(α− 1)
− n− k2

2α(α− 1)

=
(2α(α− 1) + k)2

2α(α− 1)
− 2α(α− 1)− k − k2

2α(α− 1)

= 2α(α− 1) + 2k +
k2

2α(α− 1)
− 2α(α− 1)− k − k2

2α(α− 1)

= k > 0.

Case 3 - If n ≥ 2α(α− 1) + α− 1, then we first note that for any 0 ≤ kα−1 ≤ α− 2 we have

that
(

kα−1

2
− k2α−1

2(α−1)

)
≥ 0 and hence

diff =
n2

2α(α− 1)
− n+

(
k2
α

2α
− kα

2

)
+

(
kα−1

2
− k2

α−1

2(α− 1)

)

≥ n2

2α(α− 1)
− n +

(
k2
α

2α
− kα

2

)
.

Define f : [0, α − 1] → R by f(x) , x2

2α
− x

2
. It is easy to verify that f has a single minimum

point at x = α
2
. Hence,

k2
α

2α
− kα

2
= f(kα) ≥ f

(α
2

)
=

α2

4 · 2α − α

2
= −α

8

and

diff ≥ n2

2α(α− 1)
− n− α

8
.

It holds that
n2

2α(α− 1)
− n− α

8
≥ 0

if and only if

n ≥ α(α− 1) +
1

2

√
4α4 − 7α3 + 3α2 = α(α− 1) +

√
α4 − 7

4
α3 +

3

4
α2

= α(α− 1) + α

√
α2 − 7

4
α +

3

4
= α(α− 1) + α

√(
α− 3

4

)
(α− 1).

Note that

α

√(
α− 3

4

)
(α− 1) < α

(
α− 3

4

)
,
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and additionally, it can be verified that for any α > 1,

2α(α− 1) + (α− 1) ≥ α(α− 1) + α

(
α− 3

4

)
,

and thus,

n ≥ 2α(α− 1) + (α− 1) > α(α− 1) + α

√(
α− 3

4

)
(α− 1),

which implies that diff > 0.
Case 4 - If n = 2α(α − 1) − k for some integer 1 ≤ k ≤ α − 2 then we have that kα =
α− k, kα−1 = α− 1− k, and thus

diff =
n2

2α(α− 1)
− n+

(
(α− k)2

2α
− α− k

2

)
+

(
α− 1− k

2
− (α− 1− k)2

2(α− 1)

)

=
n2

2α(α− 1)
− n+

α2

2α
− 2αk

2α
+

k2

2α
+

α− 1− k − α+ k

2
− (α− 1)2

2(α− 1)
+

2(α− 1)k

2(α− 1)
− k2

2(α− 1)

=
n2

2α(α− 1)
− n+

α

2
− k +

k2

2α
− 1

2
− α− 1

2
+ k − k2

2(α− 1)

=
n2

2α(α− 1)
− n+

k2

2α
− k2

2(α− 1)

=
(2α(α− 1)− k)2

2α(α− 1)
− 2α(α− 1) + k +

k2

2α
− k2

2(α− 1)

= 2α(α− 1)− 2k +
k2

2α(α− 1)
− 2α(α− 1) + k − k2

2α(α− 1)

= −k < 0.

Case 5 - If α ≤ n ≤ 2α(α− 1)− (α − 1) then we first note that for any 0 ≤ kα ≤ α− 1 we

have that
(

k2α
2α

− kα
2

)
≤ 0 and hence

diff =
n2

2α(α− 1)
− n+

(
k2
α

2α
− kα

2

)
+

(
kα−1

2
− k2

α−1

2(α− 1)

)

≤ n2

2α(α− 1)
− n +

(
kα−1

2
− k2

α−1

2(α− 1)

)
.

Define f : [0, α− 2] → R by f(x) , x
2
− x2

2(α−1)
. It can be verified that f has a single maximum

point at x = α−1
2

and hence

kα−1

2
− k2

α−1

2(α− 1)
= f(kα−1) ≤ f

(
α− 1

2

)
=

α− 1

4
− (α− 1)2

8(α− 1)
=

α− 1

8

and

diff ≤ n2

2α(α− 1)
− n+

α− 1

8
.
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It holds that n2

2α(α−1)
− n+ α−1

8
≤ 0 if and only if

α(α− 1)−
√

(α− 1)2α(4α− 1)

4
≤ n ≤ α(α− 1) +

√
(α− 1)2α(4α− 1)

4
.

Note that

α(α− 1)−
√

(α− 1)2α(4α− 1)

4
= (α− 1)

(
α−

√
α (4α− 1)

4

)

= (α− 1)

(
α−

√
α

(
α− 1

4

))

≤ (α− 1)

(
α−

(
α− 1

4

))

≤ α− 1

4
,

and

α(α− 1) +

√
(α− 1)2α(4α− 1)

4
= (α− 1)

(
α +

√
α (4α− 1)

4

)

= (α− 1)

(
α +

√
α

(
α− 1

4

))

≥ (α− 1)

(
α +

(
α− 1

4

))

= 2α(α− 1)− α− 1

4
,

and since α ≤ n ≤ 2α(α− 1)− (α− 1), we have that diff < 0 as required.

Since α is the number of alternating segments in a sequence of length n, it holds that
n ≥ α. In addition, Case 1 states that for n = 2α(α− 1) we have that diff = 0. Furthermore,
by combining the results from Case 2 and Case 3 we have that for any n > 2α(α− 1) the value
of diff is a positive number. Similarly Case 4 and Case 5 prove that for any α ≤ n < 2α(α− 1)
the value of diff is negative. Thus,

diff = 0 ⇐⇒ n ≥ 2α(α− 1).

33


	1 Introduction
	2 Definitions and Previous Results
	3 The Minimum Size of an FLL Ball
	4 The Maximum FLL Balls with Radius One
	4.1 The Non-Binary Case
	4.2 The Binary Case

	5 The Expected Size of an FLL 1-Ball
	6 Binary Anticodes with Diameter one
	6.1 Upper Bound
	6.2 Lower Bound

	7 Conclusion

