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Adjacent-Bits-Swapped Polar codes: A new
code construction to speed up polarization

Guodong Li Min Ye Sihuang Hu

Abstract

The construction of polar codes with code length n = 2m involves m layers of polar transforms. In
this paper, we observe that after each layer of polar transforms, one can swap certain pairs of adjacent
bits to accelerate the polarization process. More precisely, if the previous bit is more reliable than its
next bit under the successive decoder, then switching the decoding order of these two adjacent bits will
make the reliable bit even more reliable and the noisy bit even noisier.

Based on this observation, we propose a new family of codes called the Adjacent-Bits-Swapped
(ABS) polar codes. We add a permutation layer after each polar transform layer in the construction
of the ABS polar codes. In order to choose which pairs of adjacent bits to swap in the permutation
layers, we rely on a new polar transform that combines two independent channels with 4-ary inputs.
This new polar transform allows us to track the evolution of every pair of adjacent bits through dif-
ferent layers of polar transforms, and it also plays an essential role in the successive cancellation
list (SCL) decoder for the ABS polar codes. Extensive simulation results show that ABS polar codes
consistently outperform standard polar codes by 0.15 dB—0.3 dB when we use CRC-aided SCL decoder
with list size 32 for both codes. The implementations of all the algorithms in this paper are available at
https://github.com/PlumJelly/ABS-Polar

I. INTRODUCTION

Polar codes and Reed-Muller (RM) codes are two closely related code families in the sense that
their generator matrices are formed of rows from the same square matrix. Although RM codes were
discovered several decades earlier than polar codes, the capacity-achieving property of RM codes was
established very recently. Specifically, polar codes were proposed by Arıkan in [2] and were shown to
achieve capacity on all binary memoryless symmetric (BMS) channels in the same paper. In contrast, RM
codes were proposed back in the 1950s [3], [4], but the question of whether RM codes achieve capacity
remained open for more than 60 years until the recent breakthroughs. It was shown in [5] that RM codes
achieve capacity on binary erasure channels (BEC) under the block-MAP decoder. More recently, Reeves
and Pfister proved that RM codes achieve capacity on all BMS channels under the bit-MAP decoder [6].

While both code families achieve capacity of BMS channels, simulation results [7], [8] and theoretical
analysis [9], [10] suggest that RM codes have better finite-length performance than polar codes. It was
conjectured in [11] that this is because RM codes polarize even faster than polar codes. More precisely,
in polar coding framework, we multiply a message vector consisting of n = 2m message bits with the
matrix Gpolar

n = (Gpolar
2 )⊗m and transmit the resulting codeword vector through a BMS channel. Here
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Gpolar
2 =

[
1 0
1 1

]
, and ⊗ is the Kronecker product. The message bits are divided into information bits and

frozen bits according to their reliability under the successive decoder. This polar coding framework can
also be used to analyze RM codes. To that end, we replace the recursive relation Gpolar

n = Gpolar
n/2 ⊗G

polar
2

in the standard polar code construction with GRM
n = PRM

n (GRM
n/2 ⊗ Gpolar

2 ). Here PRM
n is an n × n

permutation matrix which reorders the rows of GRM
n/2 ⊗Gpolar

2 according to their Hamming weights. It
was conjectured in [11] that for the matrix GRM

n , the reliability of each message bit under the successive
decoder becomes completely ordered, i.e., each message bit is always more reliable than its previous bit.
If this conjecture were true, then one could show that RM codes polarize faster than polar codes, which
leads to a better finite-length performance.

Inspired by the recursive relation GRM
n = PRM

n (GRM
n/2 ⊗ Gpolar

2 ) of RM codes, we propose a new
family of codes called the Adjacent-Bits-Swapped (ABS) polar codes. In the construction of ABS polar
codes, we use a similar recursive relation GABS

n = PABS
n (GABS

n/2 ⊗ Gpolar
2 ). The matrix PABS

n is an
n × n permutation matrix which swaps two adjacent rows if the two corresponding message bits are
“unordered”, i.e., if the previous bit is more reliable than its next bit under the successive decoder.
Swapping such two adjacent rows always accelerates polarization because it makes the reliable bit even
more reliable and the noisy bit even noisier. While the permutation matrix PRM

n for RM codes involves
a large number of swaps of adjacent rows, we limit the number of swaps in PABS

n so that the overall
structure of ABS polar codes is still close to standard polar codes. In this way, we are able to devise a
modified successive cancellation list (SCL) decoder to efficiently decode ABS polar codes.

Recall that both the code construction and the decoding algorithm of standard polar codes rely on a
recursive relation between the bit-channels, which are the channels mapping from a message bit to the
previous message bits and all the channel outputs. Since we swap certain pairs of adjacent bits in the
ABS polar code construction, there is no explicit recursive relation between bit-channels. Instead, we
introduce the notion of adjacent-bits-channels, which are 4-ary-input channels mapping from two adjacent
message bits to the previous message bits and all the channel outputs. As the main technical contribution
of this paper, we derive a recursive relation between the adjacent-bits-channels. This recursive relation
serves as the foundation of efficient code construction and decoding algorithms for ABS polar codes.

We provide two sets of simulation results to compare the performance of ABS polar codes and standard
polar codes. First, we empirically calculate the scaling exponents of ABS polar codes and standard
polar codes over a binary erasure channel with erasure probability 0.5. Our calculations show that the
scaling exponent of ABS polar codes is 3.37 while the scaling exponent of standard polar codes is 3.65,
confirming that the polarization of ABS polar codes is indeed faster than standard polar codes. Second, we
conduct extensive simulations over the binary-input AWGN channels for various choices of parameters.
In particular, we have tested the performance for code length 256, 512, 1024, 2048. For each choice of
code length, we test 3 code rates 0.3, 0.5 and 0.7. When we set the list size to be 32 for the CRC-aided
SCL decoders of both code families, ABS polar codes consistently outperform standard polar codes by
0.15 dB—0.3 dB, but the decoding time of ABS polar decoder is longer than that of standard polar codes
by roughly 60%. If we use list size 20 for ABS polar codes and keep the list size to be 32 for standard
polar codes, then the decoding time is more or less the same for these two codes, and ABS polar codes
still outperform standard polar codes for most choices of parameters. In this case, the improvement over
standard polar codes is up to 0.15 dB.

The organization of this paper is as follows: In Section II, we describe the main idea behind the ABS
polar code construction and explain why ABS polar codes polarize faster than standard polar codes. In
Section III, we derive the new recursive relation between the adjacent-bits-channels and use this recursive
relation to construct ABS polar codes. In Section IV, we present an efficient encoding algorithm for ABS
polar codes. In Section V, we present the new SCL decoder for ABS polar codes. Finally, in Section VI,
we provide the simulation results.
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II. MAIN IDEA OF THE NEW CODE CONSTRUCTION

A. The polarization framework
Let U1, U2, . . . , Un be n i.i.d. Bernoulli-1/2 random variables. Let Gn be an n×n invertible matrix over

the binary field. Define (X1, X2, . . . , Xn) = (U1, U2, . . . , Un)Gn. We transmit each Xi through a BMS
channel W and denote the channel output vector as (Y1, Y2, . . . , Yn). In this framework, (U1, U2, . . . , Un)
is the message vector, Gn is the encoding matrix, and (X1, X2, . . . , Xn) is the codeword vector. We use
a successive decoder to recover the message vector from the channel output vector. More precisely,
we decode the coordinates in the message vector one by one from U1 to Un. When decoding Ui, the
successive decoder knows the values of all the previous message bits U1, . . . , Ui−1 and all the channel
outputs Y1, . . . , Yn. Note that the codeword vector (X1, X2, . . . , Xn) depends on the matrix Gn, and
the channel output vector (Y1, Y2, . . . , Yn) depends on both the matrix Gn and the BMS channel W ,
although we omit the dependence from their notation. Next we define

Hi(Gn,W ) := H(Ui|U1, . . . , Ui−1, Y1, . . . , Yn) for 1 ≤ i ≤ n, (1)

where H(·|·) is the conditional entropy. Hi(Gn,W ) measures the reliability of the ith message bit under
the successive decoder when we use the encoding matrix Gn and transmit the codeword vector through
the BMS channel W . Since Gn is an invertible matrix, we have

H1(Gn,W ) +H2(Gn,W ) + · · ·+Hn(Gn,W ) = n(1− I(W )), (2)

where I(W ) is the channel capacity of W . We say that a family of matrices {Gn} is polarizing over
a BMS channel W if Hi(Gn,W ) is close to either 0 or 1 for almost all i ∈ {1, 2, . . . , n} as n → ∞.
In order to quantify the polarization level of a given encoding matrix Gn over a BMS channel W , we
define

Γ(Gn,W ) =
1

n

n∑

i=1

Hi(Gn,W )(1−Hi(Gn,W )).

According to the definition above, a family of matrices {Gn} is polarizing over W if and only if
Γ(Gn,W ) → 0 as n → ∞. A family of polarizing matrix {Gn} over a BMS channel W allows us to
construct capacity-achieving codes as follows: We include the ith row of Gn in the generator matrix if
and only if Hi(Gn,W ) is very close to 0. The condition Hi(Gn,W ) ≈ 0 guarantees that the decoding
error of the constructed codes approaches 0 under the successive decoder. We can further use (2) to show
that the code rate of the constructed codes approaches I(W ). To see this, we first assume the extreme
case where Γ(Gn,W ) = 0, i.e., Hi(Gn,W ) is either 0 or 1 for all 1 ≤ i ≤ n. Then by (2) we know
that the dimension of the constructed polar code is precisely nI(W ), i.e., the code rate is R = I(W ).
For the realistic case of Γ(Gn,W ) → 0 as n → ∞, one can show that the gap to capacity I(W ) − R
also decreases to 0 as n→∞. Moreover, the smaller Γ(Gn,W ) is, the smaller gap to capacity we have.

In the standard polar code construction [2], we construct the family of matrices {Gpolar
2m }∞m=1 recursively

using the following relation:

Gpolar
2 :=

[
1 0
1 1

]
and Gpolar

n = Gpolar
n/2 ⊗Gpolar

2 for n = 2m ≥ 4,

where ⊗ is the Kronecker product and m > 1 is a positive integer. It was shown in [2] that {Gpolar
2m }∞m=1

is polarizing over every BMS channel W , and the codes constructed from these matrices can be efficiently
decoded. In this paper, our objective is to construct another family of polarizing matrices {GABS

2m }∞m=1

satisfying the following two conditions: (1) Γ(GABS
2m ,W ) < Γ(Gpolar

2m ,W ), i.e., the matrices GABS
2m

polarize even faster than Gpolar
2m ; (2) the codes constructed from {GABS

2m }∞m=1 can also be efficiently
decoded. The first condition allows us to construct a new family of codes with smaller gap to capacity
and better finite-length performance than standard polar codes.
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B. Swapping unordered adjacent bits accelerates polarization
The key observation in the standard polar code construction is that Γ(Gn,W ) decreases as we perform

the Kronecker product G2n = Gn ⊗Gpolar
2 . More precisely, we always have

Γ(Gn ⊗Gpolar
2 ,W ) < Γ(Gn,W )

for every invertible matrix Gn as long as I(W ) is not equal to 0 or 1. Therefore, the Kronecker product
G2n = Gn ⊗Gpolar

2 deepens the polarization at the cost of increasing the code length by a factor of 2.
In this paper, we observe that there is another method to deepen the polarization without increasing

the code length, and this simple observation forms the foundation of our new code construction. Given
a matrix Gn and a BMS channel W , we say that two adjacent message bits Ui and Ui+1 are unordered
if Hi(Gn,W ) ≤ Hi+1(Gn,W ). This inequality means that Ui is more reliable than Ui+1 under the
successive decoder although Ui is decoded before Ui+1. Our key observation is that in this case, switching
the decoding order of Ui and Ui+1 deepens the polarization. Intuitively, this is because switching the
decoding order of these two bits makes the reliable bit even more reliable and the noisy bit even noisier.

Note that switching the decoding order of Ui and Ui+1 is equivalent to swapping the ith row and
the (i+ 1)th row of Gn. More specifically, let us define a new matrix Gn as the matrix obtained from
swapping the ith row and the (i + 1)th row of Gn and keeping all the other rows the same as Gn.
Following the framework in Section II-A, let (U1, U2, . . . , Un) be the message vector associated with
the new matrix Gn, where U1, . . . , Un are n i.i.d. Bernoulli-1/2 random variables. Let (X1, . . . , Xn) =
(U1, . . . , Un)Gn be the codeword vector transmitted through the BMS channel W and let (Y 1, . . . , Y n)
be the corresponding channel output vector. By definition (1), we have

Hj(Gn,W ) = H(U j |U1, . . . , U j−1, Y 1, . . . , Y n) for 1 ≤ j ≤ n.

By the relation between the matrices Gn and Gn, we have

Hj(Gn,W ) = Hj(Gn,W ) for all j ∈ {1, 2, . . . , n} \ {i, i+ 1}, (3)

Hi(Gn,W ) = H(U i+1|U1, . . . , U i−1, Y 1, . . . , Y n)

≥H(U i+1|U1, . . . , U i−1, U i, Y 1, . . . , Y n) = Hi+1(Gn,W ), (4)

Hi+1(Gn,W ) = H(U i|U1, . . . , U i−1, U i+1, Y 1, . . . , Y n)

≤H(U i|U1, . . . , U i−1, Y 1, . . . , Y n) = Hi(Gn,W ). (5)

Now suppose that Ui and Ui+1 are unordered, i.e., Hi(Gn,W ) ≤ Hi+1(Gn,W ). Combining this
inequality with (4)–(5), we obtain

Hi+1(Gn,W ) ≤ Hi(Gn,W ) ≤ Hi+1(Gn,W ) ≤ Hi(Gn,W ). (6)

Moreover,

Hi(Gn,W ) +Hi+1(Gn,W ) = Hi(Gn,W ) +Hi+1(Gn,W ) = H(U i, U i+1|U1, . . . , U i−1, Y 1, . . . , Y n).

This equality together with (6) implies that

(Hi(Gn,W ))2 + (Hi+1(Gn,W ))2

=
1

2

((
Hi(Gn,W ) +Hi+1(Gn,W )

)2
+
(
Hi(Gn,W )−Hi+1(Gn,W )

)2)

≤1

2

((
Hi(Gn,W ) +Hi+1(Gn,W )

)2
+
(
Hi(Gn,W )−Hi+1(Gn,W )

)2)

=(Hi(Gn,W ))2 + (Hi+1(Gn,W ))2.

Therefore,

Hi(Gn,W )
(
1−Hi(Gn,W )

)
+Hi+1(Gn,W )

(
1−Hi+1(Gn,W )

)
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≤Hi(Gn,W )
(
1−Hi(Gn,W )

)
+Hi+1(Gn,W )

(
1−Hi+1(Gn,W )

)
.

Combining this with (3), we conclude that Γ(Gn,W ) ≤ Γ(Gn,W ). This formally justifies that switching
the decoding order of two unordered adjacent bits deepens polarization.

C. Our new code construction and its connection to RM codes
We view the operation of taking the Kronecker product Gpolar

n = Gpolar
n/2 ⊗ Gpolar

2 in the standard
polar code construction as one layer of polar transform. Then the construction of a standard polar code
with code length n = 2m consists of m consecutive layers of polar transforms. In light of the discussion
in Section II-B, we add a permutation layer after each polar transform layer in our ABS polar code
construction. More precisely, we replace the recursive relation Gpolar

n = Gpolar
n/2 ⊗Gpolar

2 in the standard
polar code construction with

GABS
n = PABS

n (GABS
n/2 ⊗Gpolar

2 ), (7)

where the matrix PABS
n is an n× n permutation matrix. In this case, GABS

n is a row permutation of the
Kronecker product GABS

n/2 ⊗Gpolar
2 . The permutation associated with PABS

n is a composition of multiple
swaps of unordered adjacent bits. The starting point of the recursive relation (7) is GABS

1 = [1], the
identity matrix of size 1× 1.

Before we present how to choose PABS
n in (7), let us point out an interesting connection between our

new code and RM codes. In fact, RM codes can also be constructed using a similar recursive relation:

GRM
n = PRM

n (GRM
n/2 ⊗Gpolar

2 ). (8)

Here PRM
n is an n × n permutation matrix which reorders the rows of GRM

n/2 ⊗ Gpolar
2 according to

their Hamming weights. In other words, GRM
n is a row permutation of GRM

n/2⊗Gpolar
2 , and the Hamming

weights of the rows of GRM
n are monotonically increasing from the first row to the last row. It was shown

in [11] that the family of matrices {GRM
n } is polarizing over every BMS channel W , i.e., Hi(G

RM
n ,W )

is close to either 0 or 1 for almost all i ∈ {1, 2, . . . , n} as n → ∞. It was further conjectured1 in [11]
that {Hi(G

RM
n ,W )}ni=1 is decreasing for every BMS channel W , i.e.,

H1(GRM
n ,W ) ≥ H2(GRM

n ,W ) ≥ · · · ≥ Hn(GRM
n ,W ). (9)

If this conjecture were true, then we can immediately conclude that RM codes achieve capacity of BMS
channels. Indeed, RM codes choose rows with heaviest Hamming weight in GRM

n to form the generator
matrices. Since the rows of GRM

n are sorted according to their Hamming weights, RM codes simply
pick the rows with large row indices. By (9), these rows correspond to the most reliable bits under the
successive decoder. Moreover, since almost all the conditional entropy in (9) are close to either 0 or 1,
the conditional entropy of the most reliable bits must be close to 0, and the number of such bits is close
to nI(W ) as n→∞.

Moreover, the conjecture (9) indicates that RM codes do not have any unordered adjacent bits.
According to the discussion in Section II-B, this suggests that RM codes have fast polarization. In
fact, it is widely believed that RM codes have a smaller gap to capacity than polar codes with the same
parameters, which was suggested to be the case by both theoretical analysis [9], [10] and simulation
results [7], [8].

Although RM codes are believed to have better performance than polar codes under the Maximum
Likelihood (ML) decoder, the problem of designing an efficient decoder whose performance is almost
the same as the ML decoder still remains open for RM codes, except for a certain range of parameters.
In particular, the performance of currently known decoding algorithms for RM codes [8], [12]–[14] is
close to the ML decoder only in the short code length or the low code rate regimes. In contrast, the

1The authors of [11] provided some theoretical analysis and simulation results to support this conjecture.
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performance of the successive cancellation list (SCL) decoder with list size 32 is almost the same as the
ML decoder for polar codes.

Our new code construction is an intermediate point between RM codes and polar codes. On the one
hand, the recursive relation (7) of our new code is similar to the recursion (8) of RM codes in the sense
that both codes add a permutation layer after each polar transform layer to accelerate polarization. On
the other hand, we only use a relatively small number of swaps in the permutation matrix PABS

n while
the permutation matrix PRM

n for RM codes involves a large number of swaps. As a consequence, the
overall structure of our new code is still close to the standard polar codes, and it allows a modified SCL
decoder to efficiently decode.

In order to explain how to choose PABS
n in (7), we introduce a sequence of permutation matrices. For

1 ≤ i ≤ n− 1, we use S
(i)
n to denote the n×n permutation matrix that swaps i and i+ 1 while mapping

all the other elements to themselves. More precisely, only 4 entries of S(i)
n are different from the identity

matrix. These 4 entries are S
(i)
n (i, i) = S

(i)
n (i+ 1, i+ 1) = 0 and S

(i)
n (i, i+ 1) = S

(i)
n (i+ 1, i) = 1, where

S
(i)
n (a, b) is the entry of S

(i)
n located at the cross of the ath row and the bth column. The permutation

matrix PABS
n can be written as

PABS
n =

∏

i∈I(n)

S(i)
n , (10)

where I(n) is a subset of {1, 2, . . . , n − 1}. Let us write I(n) = {i1, i2, . . . , is}, where s is the size of
I(n). In the ABS polar code construction, we require that

i2 ≥ i1 + 4, i3 ≥ i2 + 4, i4 ≥ i3 + 4, . . . , is ≥ is−1 + 4. (11)

This condition guarantees that the swapped elements are fully separated, and it is the foundation of
efficient code construction and efficient decoding for ABS polar codes. More specifically, the condition
(11) allows us to efficiently track the evolution of every pair of adjacent bits through different layers
of polar transforms in a recursive way. We will explain the details about this in Section III. As a final
remark, we note that one needs to choose m permutation matrices PABS

2 ,PABS
4 ,PABS

8 , . . . ,PABS
n in the

construction of an ABS polar code with code length n = 2m.

D. Comparison with the large kernel method
The finite-length scaling of polar codes is an important research topic in the polar coding literature [9],

[15]–[17]. The ABS polar code construction proposed in this paper is one way to improve the scaling
exponent of polar codes. Another extensively-studied method is to use large kernels instead of the Arıkan
kernel Gpolar

2 in the polar code construction [18]–[23]. In particular, it was shown in [21]–[23] that when
the kernel size goes to infinity, the scaling exponent of polar codes approaches the optimal value 2.

Compared to the ABS polar code construction, the large kernel method has the following three
disadvantages: (i) The choice of code length is more restrictive. The code length of ABS polar codes can
be any power of 2, but the code length of polar codes with large kernels must be a power of the kernel size
`, where ` is larger than 2. Some typical choices of ` are 4, 8, 16. (ii) The code construction is also more
restrictive. In the original large kernel method, the same kernel is used repetitively throughout the whole
code construction. In contrast, we use different permutation matrices PABS

2 ,PABS
4 ,PABS

8 , . . . ,PABS
n in

different layers. (iii) The decoding complexity is much larger. For ` × ` kernels, the decoding time
increases by a factor of 2` compared to standard polar codes. In contrast, the decoding time of ABS
polar codes only increases by 60% compared to standard polar codes, as indicated by the simulation
results in Section VI.

Among the research on polar codes with large kernels, the permuted kernels and the permuted suc-
cessive cancellation (PSC) decoder proposed in [18], [19] are particularly relevant to our paper. More
specifically, [18], [19] proposed to use permuted kernels, whose size ` is a power of 2. As suggested by
its name, the permuted kernel is a row permutation of Gpolar

` . This is similar in nature to the ABS polar
code construction because the encoding matrix GABS

n of ABS polar codes is also a row permutation of
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Gpolar
n . Moreover, [18], [19] further proposed the PSC decoder to efficiently decode polar codes with

permuted kernels. The PSC decoder together with the permuted kernels significantly reduces the decoding
time compared to the standard SC decoder for polar codes with large kernels. In other words, the PSC
decoder and permuted kernels mitigate the third disadvantage above. However, the first two disadvantages
still remain, i.e., the choice of code length and the code construction are still more restrictive than ABS
polar codes.

III. CODE CONSTRUCTION OF ABS POLAR CODES

The construction of ABS polar codes with code length n = 2m consists of two main steps. The
first step is to pick the permutation matrices PABS

2 ,PABS
4 ,PABS

8 , . . . ,PABS
n in the recursive relation (7),

as mentioned at the end of the previous section. After picking these permutation matrices, the second
step is to find which bits are information bits and which bits are frozen bits. Although the second step
is also needed in the construction of standard polar codes [2], [24], the techniques used in this paper
are quite different. In the standard polar code construction, we can directly track the evolution of bit-
channels in a recursive way. However, in the ABS polar code construction, it is not possible to identify a
recursive relation between bit-channels directly because we swap certain pairs of adjacent bits in the code
construction. Instead, we find a recursive relation between pairs of adjacent bits from different layers
of polar transforms. After obtaining the joint distribution of every pair of adjacent bits, we are able to
calculate the transition probability of the bit-channels and locate the information bits and the frozen bits.

The organization of this section is as follows: In Section III-A, we first recall how to track the evolution
of bit-channels in standard polar codes using the basic 2 × 2 transform. In Section III-B, we introduce
a new transform and use it to establish a recursive relation between pairs of adjacent bits for standard
polar codes. The purpose of Section III-B is to illustrate the application of the new transform in a
familiar setting. In Section III-C, we use the new transform to track the evolution of adjacent bits in
the ABS polar codes. The result in Section III-C accomplishes the second step of the ABS polar code
construction, i.e., it allows us to locate the information bits and the frozen bits when the permutation
matrices PABS

2 ,PABS
4 ,PABS

8 , . . . ,PABS
n in the recursive relation (7) are known. Next, in Section III-D,

we explain how to pick these permutation matrices in the ABS polar code construction. Recall that the
quantization operation is needed in the standard polar code construction [24] because the output alphabet
size of the bit-channels grows exponentially with n. The same issue also arises in the ABS polar code
construction, and we will discuss this in Section III-E. Finally, we put everything together and summarize
the code construction algorithm for ABS polar codes in Section III-F.

A. Tracking the evolution of bit-channels in standard polar codes using the 2× 2 transform
Let us first recall the 2× 2 transform in the standard polar code construction.

U1

U2

X1

X2

W

W

Y1

Y2

(a) Multiply i.i.d. Bernoulli-1/2 random variables
(U1, U2) with the matrix Gpolar

2 , and then transmit
the results through two copies of W . Under the
successive decoder, this transforms two copies of W
into W− : U1 → Y1, Y2 and W+ : U2 → U1, Y1, Y2.

W

W

W−

W+

2 × 2
Transform

“−”

“+”

(b) We take two independent copies of W as inputs.
After the transform, we obtain a “worse” channel
W− : U1 → Y1, Y2 and a “better” channel W+ :
U2 → U1, Y1, Y2.

Fig. 1: The 2× 2 basic polar transform
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Given a BMS channel W : {0, 1} → Y , the transition probabilities of W− : {0, 1} → Y2 and
W+ : {0, 1} → {0, 1} × Y2 in Fig. 1 are given by

W−(y1, y2|u1) =
1

2

∑

u2∈{0,1}

W (y1|u1 + u2)W (y2|u2) for u1 ∈ {0, 1} and y1, y2 ∈ Y,

W+(u1, y1, y2|u2) =
1

2
W (y1|u1 + u2)W (y2|u2) for u1, u2 ∈ {0, 1} and y1, y2 ∈ Y.

(12)

The basic 2 × 2 transform plays a fundamental role in the standard polar code construction because it
allows us to efficiently track the evolution of bit-channels in a recursive way. More specifically, the bit-
channels induced by the matrix Gpolar

n are defined in Fig. 2 below. It is well known that the bit-channels
associated with Gpolar

n and the bit-channels associated with Gpolar
n/2 satisfy the following recursive relation:

W
(n)
2i−1 = (W

(n/2)
i )− and W

(n)
2i = (W

(n/2)
i )+ for 1 ≤ i ≤ n/2. (13)

Both the code construction and the decoding algorithm of standard polar codes rely on this recursive
relation.

U1

U2

...

Un

Gpolar
n

X1

X2

...

Xn

W

W

...
W

Y1

Y2

...
Yn

(X1, . . . , Xn) = (U1, . . . , Un)Gpolar
n

W
(n)
1 : U1 → Y1, . . . , Yn

W
(n)
2 : U2 → U1, Y1, . . . , Yn

W
(n)
3 : U3 → U1, U2, Y1, . . . , Yn

...
W

(n)
n : Un → U1, . . . , Un−1, Y1, . . . , Yn

n bit-channels induced by Gpolar
n

Fig. 2: U1, . . . , Un are n = 2m i.i.d. Bernoulli-1/2 random variables. (X1, . . . , Xn) = (U1, . . . , Un)Gpolar
n

is the codeword vector, and (Y1, . . . , Yn) is the channel output vector. The n bit-channels induced
by Gpolar

n are listed on the right side of the figure. W (n)
i is the bit-channel mapping from Ui to

U1, . . . , Ui−1, Y1, . . . , Yn.

B. Tracking the evolution of adjacent bits in standard polar codes using a new transform
In the construction of ABS polar codes, we need to track the joint distribution of every pair of adjacent

bits, not just the distribution of every single bit given the previous bits and channel outputs. To that end,
we introduce a new transform, named as the Double-Bits (DB) polar transform. All the channels involved
in the DB polar transform have 4-ary inputs. To distinguish between binary-input channels and 4-ary-input
channels, we use W to denote the former channels and use V to denote latter channels2. The details of the
DB polar transform are illustrated in Fig. 3. Given a 4-ary-input channel V : {0, 1}2 → Y , the transition

2More precisely, W and its variations such as W+,W−,W
(n)
i are used for binary-input channels; V and its variations such

as V O, V ♦, V M, V
(n)
i are used for channels with 4-ary inputs.
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probabilities of V O : {0, 1}2 → Y2, V ♦ : {0, 1}2 → {0, 1} × Y2, and V M : {0, 1}2 → {0, 1}2 × Y2 in
Fig. 3 are given by

V O(y1, y2|u1, u2) =
1

4

∑

u3,u4∈{0,1}

V (y1|u1 + u2, u3 + u4)V (y2|u2, u4)

for u1, u2 ∈ {0, 1} and y1, y2 ∈ Y,

V ♦(u1, y1, y2|u2, u3) =
1

4

∑

u4∈{0,1}

V (y1|u1 + u2, u3 + u4)V (y2|u2, u4)

for u1, u2, u3 ∈ {0, 1} and y1, y2 ∈ Y,

V M(u1, u2, y1, y2|u3, u4) =
1

4
V (y1|u1 + u2, u3 + u4)V (y2|u2, u4)

for u1, u2, u3, u4 ∈ {0, 1} and y1, y2 ∈ Y.

(14)

U1

U2

V Y1

U3

U4

V Y2

(a) U1, U2, U3, U4 are i.i.d. Bernoulli-1/2 random variables.
The channel V : {0, 1}2 → Y takes two bits as its inputs, i.e.,
V has 4-ary inputs. Under the successive decoder, we have
the following three channels: (1) V O : U1, U2 → Y1, Y2; (2)
V ♦ : U2, U3 → U1, Y1, Y2; (3) V M : U3, U4 → U1, U2, Y1, Y2.

V

V

V O

V ♦

V M

DB polar
Transform

“O”

“♦”

“M”

(b) Two independent copies of V are transformed
into three channels V O, V ♦, V M. These three
channels also have 4-ary inputs. Note that the
inputs of V O and V ♦ have one-bit overlap, and the
inputs of V ♦ and V M also have one-bit overlap.

Fig. 3: The Double-Bits (DB) polar transform

The role of the DB polar transform in the construction of ABS polar codes is the same as the role
of the 2 × 2 basic polar transform in the standard polar code construction. Instead of jumping directly
into the ABS polar code construction, let us first use standard polar codes to illustrate how to track
the evolution of adjacent bits recursively using the DB polar transform. In order to calculate the joint
distribution of adjacent bits, we introduce the notion of adjacent-bits-channels, which is the counterpart
of the bit-channels used for tracking the distribution of every single bit. We still use the setting in Fig. 2,
where we defined the bit-channels. For the matrix Gpolar

n and a BMS channel W , we define n − 1
adjacent-bits-channels V (n)

1 , V
(n)

2 , . . . , V
(n)
n−1 as follows:

V
(n)
i : Ui, Ui+1 → U1, . . . , Ui−1, Y1, . . . , Yn for 1 ≤ i ≤ n− 1, (15)

where U1, . . . , Un, Y1, . . . , Yn are defined in Fig. 2. By definition, V (n)
1 , V

(n)
2 , . . . , V

(n)
n−1 take two bits as

their inputs, i.e., all of them have 4-ary inputs. Moreover, these adjacent-bits-channels depend on the
BMS channel W , although we omit this dependence in the notation.

The following lemma allows us to calculate V (n)
1 , V

(n)
2 , . . . , V

(n)
n−1 recursively from V

(n/2)
1 , V

(n/2)
2 , . . . ,

V
(n/2)
n/2−1.

Lemma 1. Let n ≥ 4. We have

V
(n)

2i−1 = (V
(n/2)
i )O, V

(n)
2i = (V

(n/2)
i )♦, V

(n)
2i+1 = (V

(n/2)
i )M for 1 ≤ i ≤ n/2− 1. (16)
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The proof of Lemma 1 is given in Appendix A. The relation (16) is similar in nature to the re-
lation (13), and the proof of (16) also uses the same method as the proof of (13). There is, how-
ever, one difference between these two recursive relations: The “+” and “−” transforms of different
bit-channels are distinct while the “O”, “♦” and “M” transforms of different adjacent-bits-channels
may overlap. More precisely, the n/2 sets {(W (n/2)

i )−, (W
(n/2)
i )+}n/2i=1 are disjoint while the two sets

{(V (n/2)
i )O, (V

(n/2)
i )♦, (V

(n/2)
i )M} and {(V (n/2)

i+1 )O, (V
(n/2)
i+1 )♦, (V

(n/2)
i+1 )M} have the following element in

their intersection for every 1 ≤ i ≤ n/2− 2:

V
(n)

2i+1 = (V
(n/2)
i )M = (V

(n/2)
i+1 )O. (17)

This gives us two methods of calculating V (n)
2i+1 recursively for 1 ≤ i ≤ n/2− 2.

Lemma 1 tells us how to calculate {V (n)
i }

n−1
i=1 from {V (n/2)

i }n/2−1
i=1 recursively for n ≥ 4. The last

question we need to answer is how to calculate the adjacent-bits-channel V (2)
1 from the BMS channel

W , because V (2)
1 is the starting point of the recursive relation in Lemma 1. Fortunately, this is an easy

task. Let us go back to the setting in Fig. 1. Given a BMS channel W , the adjacent-bits-channel V (2)
1 is

simply the channel mapping from U1, U2 to Y1, Y2. More precisely, we have

V
(2)

1 (y1, y2|u1, u2) = W (y1|u1 + u2)W (y2|u2). (18)

After obtaining the transition probabilities of the adjacent-bits-channels {V (n)
i }

n−1
i=1 , it is straightforward

to calculate the transition probabilities of the bit-channels {W (n)
i }ni=1. More precisely, we have

W
(n)
i (y1, y2, . . . , yn, u1, u2, . . . , ui−1|ui) =

1

2

∑

ui+1∈{0,1}

V
(n)
i (y1, y2, . . . , yn, u1, u2, . . . , ui−1|ui, ui+1),

W
(n)
i+1(y1, y2, . . . , yn, u1, u2, . . . , ui|ui+1) =

1

2
V

(n)
i (y1, y2, . . . , yn, u1, u2, . . . , ui−1|ui, ui+1)

(19)
for 1 ≤ i ≤ n− 1.

As a final remark, we note that the output alphabet size of the adjacent-bits-channels {V (n)
i }

n−1
i=1

grows exponentially with n. Therefore, accurate calculations of {V (n)
i }

n−1
i=1 are intractable. We need to

quantize the output alphabets by merging output symbols with similar posterior distributions. Recall that
in the standard polar code construction [24], we also need the quantization operation to calculate an
approximation of the bit-channels {W (n)

i }ni=1. Our quantization method is different from the one used in
[24] because the adjacent-bits-channels have 4-ary inputs while the bit-channels have binary inputs. We
will present our quantization method later in Section III-E.

C. Tracking the evolution of adjacent bits in ABS polar codes
As discussed at the beginning of this section, the construction of ABS polar codes consists of two main

steps. The first step is to pick the permutation matrices PABS
2 ,PABS

4 ,PABS
8 , . . . ,PABS

n in the recursive
relation (7), and the second step is to find which bits are information bits and which bits are frozen bits
after picking these permutation matrices. In this subsection, we explain how to accomplish the second step.
More precisely, we define the bit-channels and the adjacent-bits-channels for ABS polar codes in Fig. 4.
The task of this subsection is to show how to calculate the capacity of the bit-channels {W (n),ABS

i }ni=1
when the permutation matrices PABS

2 ,PABS
4 ,PABS

8 , . . . ,PABS
n in (7) are known. Then the information

bits are simply the Ui’s satisfying that I(W
(n),ABS
i ) ≈ 1, where I(·) is the channel capacity. Unlike the

standard polar codes, there does not exist a recursive relation between the bit-channels {W (n),ABS
i }ni=1 and

{W (n/2),ABS
i }n/2i=1 for ABS polar codes. Instead, we derive a recursive relation between the adjacent-bits-

channels {V (n),ABS
i }n−1

i=1 and {V (n/2),ABS
i }n/2−1

i=1 . After that, the transition probabilities of {W (n),ABS
i }ni=1

can be calculated from the transition probabilities of {V (n),ABS
i }n−1

i=1 .
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U1

U2

...

Un

PABS
n

Û1

Û2

...

Ûn

GABS
n/2 ⊗Gpolar

2

X1

X2

...

Xn

W

W

...
W

Y1

Y2

...
Yn

(Û1, . . . , Ûn) = (U1, . . . , Un)PABS
n , (X1, . . . , Xn) = (Û1, . . . , Ûn)(GABS

n/2 ⊗Gpolar
2 )

(X1, . . . , Xn) = (U1, . . . , Un)PABS
n (GABS

n/2 ⊗Gpolar
2 ) = (U1, . . . , Un)GABS

n

Two sets of bit-channels
{W (n),ABS

i : Ui → U1, . . . , Ui−1, Y1, . . . , Yn}ni=1

{Ŵ (n),ABS
i : Ûi → Û1, . . . , Ûi−1, Y1, . . . , Yn}ni=1

Two sets of adjacent-bits-channels
{V (n),ABS

i : Ui, Ui+1 → U1, . . . , Ui−1, Y1, . . . , Yn}n−1
i=1

{V̂ (n),ABS
i : Ûi, Ûi+1 → Û1, . . . , Ûi−1, Y1, . . . , Yn}n−1

i=1

Fig. 4: U1, . . . , Un are n = 2m i.i.d. Bernoulli-1/2 random variables. (X1, . . . , Xn) = (U1, . . . , Un)GABS
n

is the codeword vector, and (Y1, . . . , Yn) is the channel output vector. We view each Kronecker product
with Gpolar

2 as one layer of polar transform and view each multiplication with a permutation matrix as
one layer of permutation. Then GABS

n is obtained from m layers of polar transforms and m layers of
permutations while GABS

n/2 ⊗ Gpolar
2 is obtained from m layers of polar transforms and m − 1 layers

of permutations. Therefore, {W (n),ABS
i }ni=1 and {V (n),ABS

i }n−1
i=1 are the bit-channels and adjacent-bits-

channels seen by the successive decoder after m layers of polar transforms and m layers of permutations.
Similarly, {Ŵ (n),ABS

i }ni=1 and {V̂ (n),ABS
i }n−1

i=1 are the bit-channels and adjacent-bits-channels seen by the
successive decoder after m layers of polar transforms and m− 1 layers of permutations.

In order to derive the recursive relation between the adjacent-bits-channels for ABS polar codes, we
need another new transform named as the Swapped-Double-Bits (SDB) polar transform in addition to
the DB polar transform defined in (14). The details of the SDB polar transform are illustrated in Fig. 5.
In fact, the SDB polar transform is very similar to the DB polar transform. By comparing Fig. 3a and
Fig. 5a, we can see that the only difference between these two transforms is the order of U2 and U3.
Given a 4-ary-input channel V : {0, 1}2 → Y , the transition probabilities of V H : {0, 1}2 → Y2, V � :
{0, 1}2 → {0, 1} × Y2, and V N : {0, 1}2 → {0, 1}2 × Y2 in Fig. 5 are given by

V H(y1, y2|u1, u2) =
1

4

∑

u3,u4∈{0,1}

V (y1|u1 + u3, u2 + u4)V (y2|u3, u4)

for u1, u2 ∈ {0, 1} and y1, y2 ∈ Y,

V �(u1, y1, y2|u2, u3) =
1

4

∑

u4∈{0,1}

V (y1|u1 + u3, u2 + u4)V (y2|u3, u4)

for u1, u2, u3 ∈ {0, 1} and y1, y2 ∈ Y,

V N(u1, u2, y1, y2|u3, u4) =
1

4
V (y1|u1 + u3, u2 + u4)V (y2|u3, u4)

for u1, u2, u3, u4 ∈ {0, 1} and y1, y2 ∈ Y.

(20)

Recall that we use the set I(n) = {i1, i2, . . . , is} to represent the permutation matrix PABS
n in

(10). Moreover, we require that i1, i2, . . . , is in the set I(n) satisfy the condition (11) because oth-
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U1

U2

V Y1

U3

U4

V Y2

(a) U1, U2, U3, U4 are i.i.d. Bernoulli-1/2 random variables.
The channel V : {0, 1}2 → Y takes two bits as its inputs, i.e.,
V has 4-ary inputs. Under the successive decoder, we have
the following three channels: (1) V H : U1, U2 → Y1, Y2; (2)
V � : U2, U3 → U1, Y1, Y2; (3) V N : U3, U4 → U1, U2, Y1, Y2.

V

V

V H

V �

V N

SDB polar
Transform

“H”

“�”

“N”

(b) Two independent copies of V are transformed
into three channels V H, V �, V N. These three
channels also have 4-ary inputs. Note that the
inputs of V H and V � have one-bit overlap, and the
inputs of V � and V N also have one-bit overlap.

Fig. 5: The Swapped-Double-Bits (SDB) polar transform

erwise there does not exist a recursive relation between the adjacent-bits-channels {V (n),ABS
i }n−1

i=1 and
{V (n/2),ABS

i }n/2−1
i=1 . We will give a detailed explanation about this later in Section III-G. Here we point out

another property of the elements i1, i2, . . . , is in I(n): they must all be even numbers. To see this, let us go
back to the setting in Fig. 4. The role of I(n) is to decide which pairs of adjacent bits to swap in the vector
(Û1, Û2, . . . , Ûn) defined in Fig. 4. According to the discussion in Section II-B, we swap the adjacent
bits Ûi and Ûi+1 only if they are unordered, i.e., if Ûi is more reliable than Ûi+1 under the successive
decoder. In other words, we swap the adjacent bits Ûi and Ûi+1 only if I(Ŵ

(n),ABS
i ) ≥ I(Ŵ

(n),ABS
i+1 ),

where the bit-channels Ŵ (n),ABS
i and Ŵ

(n),ABS
i+1 are also defined in Fig. 4. Since {Ŵ (n),ABS

i }ni=1 are
obtained from the 2× 2 basic polar transform of {W (n/2),ABS

i }n/2i=1, they satisfy the following relation:

Ŵ
(n),ABS
2i−1 = (W

(n/2),ABS
i )− and Ŵ

(n),ABS
2i = (W

(n/2),ABS
i )+ for 1 ≤ i ≤ n/2.

Therefore,
I(Ŵ

(n),ABS
2i−1 ) ≤ I(W

(n/2),ABS
i ) ≤ I(Ŵ

(n),ABS
2i ),

so we should not swap Û2i−1 and Û2i for any 1 ≤ i ≤ n/2. Thus we conclude that the set I(n) in (10)
only contains even numbers. Therefore, the elements of I(n) can be written as I(n) = {2j1, 2j2, . . . , 2js},
and the condition (11) becomes

j2 ≥ j1 + 2, j3 ≥ j2 + 2, j4 ≥ j3 + 2, . . . , js ≥ js−1 + 2. (21)

Now we are ready to state the recursive relation between {V (n),ABS
i }n−1

i=1 and {V (n/2),ABS
i }n/2−1

i=1 .

Lemma 2. Let n ≥ 4. We write PABS
n in the form of (10) and require that I(n) = {2j1, 2j2, . . . , 2js}

satisfies (21). For 1 ≤ i ≤ n/2− 1, we have the following results:
Case i) If 2i ∈ I(n), then

V
(n),ABS

2i−1 = (V
(n/2),ABS
i )H, V

(n),ABS
2i = (V

(n/2),ABS
i )�, V

(n),ABS
2i+1 = (V

(n/2),ABS
i )N.

Case ii) If 2(i− 1) ∈ I(n) and 2(i+ 1) ∈ I(n), then

V
(n),ABS

2i = (V
(n/2),ABS
i )♦.

Case iii) If 2(i− 1) ∈ I(n) and 2(i+ 1) /∈ I(n), then

V
(n),ABS

2i = (V
(n/2),ABS
i )♦, V

(n),ABS
2i+1 = (V

(n/2),ABS
i )M.
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Case iv) If 2(i− 1) /∈ I(n) and 2(i+ 1) ∈ I(n), then

V
(n),ABS

2i−1 = (V
(n/2),ABS
i )O, V

(n),ABS
2i = (V

(n/2),ABS
i )♦.

Case v) If 2(i− 1) /∈ I(n), 2i /∈ I(n) and 2(i+ 1) /∈ I(n), then

V
(n),ABS

2i−1 = (V
(n/2),ABS
i )O, V

(n),ABS
2i = (V

(n/2),ABS
i )♦, V

(n),ABS
2i+1 = (V

(n/2),ABS
i )M.

Note that in a previous arXiv version and the ISIT version [1] of this paper, the statement of this
lemma was not complete. In the previous versions, Case ii) was missing, and the conditions in Case iii)
and Case iv) were incomplete.

The proof of Lemma 2 is omitted because it is essentially the same as the proof of Lemma 1. Here we
point out one difference between Lemma 1 and Lemma 2. Lemma 1 tells us that V (n)

2i+1 can be recursively
calculated in two different ways for every 1 ≤ i ≤ n/2 − 2; see (17). However, for i ∈ {j1 − 1, j2 −
1, . . . , js− 1}∪ {j1, j2, . . . , js}, there is only one way to calculate V (n),ABS

2i+1 recursively. More precisely,
if i ∈ {j1− 1, j2− 1, . . . , js− 1}, then V (n),ABS

2i+1 can only be calculated from V
(n),ABS

2i+1 = (V
(n/2),ABS
i+1 )H,

and the relation V (n),ABS
2i+1 = (V

(n/2),ABS
i )M does not hold. Similarly, if i ∈ {j1, j2, . . . , js}, then V (n),ABS

2i+1

can only be calculated from V
(n),ABS

2i+1 = (V
(n/2),ABS
i )N, and the relation V (n),ABS

2i+1 = (V
(n/2),ABS
i+1 )O does

not hold.
Since we require n ≥ 4 in Lemma 2, the starting point of the recursive relation in Lemma 2 is V (2),ABS

1 .
It is easy to see that the permutation matrix PABS

2 is the identity matrix. Therefore, given a BMS channel
W , the transition probability of V (2),ABS

1 is given by

V
(2),ABS

1 (y1, y2|u1, u2) = W (y1|u1 + u2)W (y2|u2). (22)

Note that this is the same as (18) for standard polar codes.
After obtaining the transition probabilities of the adjacent-bits-channels {V (n),ABS

i }n−1
i=1 , we can use

(19) to calculate the transition probabilities of the bit-channels {W (n),ABS
i }ni=1. We only need to re-

place W (n)
i ,W

(n)
i+1, V

(n)
i in (19) with W (n),ABS

i ,W
(n),ABS
i+1 , V

(n),ABS
i . Once the transition probabilities of

{W (n),ABS
i }ni=1 are known, we are able to determine which bits are information bits and which bits are

frozen bits.

D. Constructing the permutation matrices PABS
2 ,PABS

4 ,PABS
8 , . . . ,PABS

n in (7)
We construct the permutation matrices in (7) one by one, starting from PABS

2 . Therefore, the ma-
trices PABS

2 ,PABS
4 ,PABS

8 , . . . ,PABS
n/2 are already known when we construct PABS

n . The method de-
scribed in Section III-C allows us to calculate the transition probabilities of the adjacent-bits-channels
{V (n/2),ABS

i }n/2−1
i=1 from PABS

2 ,PABS
4 ,PABS

8 , . . . ,PABS
n/2 . As a consequence, we know the transition prob-

abilities of {V (n/2),ABS
i }n/2−1

i=1 when constructing PABS
n . Since the set I(n) = {2j1, 2j2, . . . , 2js} in

(10) uniquely determines PABS
n , constructing PABS

n is further equivalent to constructing the set S∗ =
{j1, j2, . . . , js}, where the elements j1, j2, . . . , js satisfy the condition (21).

Before presenting how to construct the set S∗, let us introduce some notation. Suppose that V :
{0, 1}2 → Y is an adjacent-bits-channel with 4-ary inputs. Define two bit-channels Vfirst : {0, 1} → Y
and Vsecond : {0, 1} → {0, 1} × Y as

Vfirst(y|u1) =
1

2

∑

u2∈{0,1}

V (y|u1, u2) and Vsecond(y, u1|u2) =
1

2
V (y|u1, u2).

Comparing this with (19), we can see that if V is V (n)
i , then Vfirst is simply W (n)

i , and Vsecond is W (n)
i+1.

Similarly, if V is V (n),ABS
i , then Vfirst is simply W (n),ABS

i , and Vsecond is W (n),ABS
i+1 . Next we define

Ifirst(V ) := I(Vfirst) and Isecond(V ) := I(Vsecond),
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g(V ) := Ifirst(V )(1− Ifirst(V )) + Isecond(V )(1− Isecond(V )).

The function g(V ) measures the polarization level of the two bit-channels induced by V . In particular,
g(V ) ≈ 0 means that the capacity of both bit-channels is very close to either 0 or 1. Finally, for
1 ≤ i ≤ n/2− 1, we define

Score(i) := g
(
(V

(n/2),ABS
i )♦

)
− g
(
(V

(n/2),ABS
i )�

)
.

The interpretation of Score(i) is as follows: According to Lemma 2, if i ∈ S∗, then V
(n),ABS

2i =

(V
(n/2),ABS
i )�; if i /∈ S∗, then V

(n),ABS
2i = (V

(n/2),ABS
i )♦. Therefore, g

(
(V

(n/2),ABS
i )�

)
measures

the polarization level of the two bit-channels W (n),ABS
2i and W

(n),ABS
2i+1 when we include i in the set

S∗. Similarly, g
(
(V

(n/2),ABS
i )♦

)
measures the polarization level of the two bit-channels W (n),ABS

2i and
W

(n),ABS
2i+1 when we do not include i in the set S∗. If Score(i) > 0, then including i in the set S∗

accelerates polarization. If Score(i) < 0, then including i in the set S∗ slows down polarization, and
in this case we should not include i in S∗.

If we ignore the condition (21), then we can simply choose the set S∗ to be S∗ = {i : Score(i) > 0}.
However, as we will see in Section III-G, the condition (21) is crucial for us to calculate the transition
probabilities of the adjacent-bits-channels, so it must be satisfied. As a consequence, we need to find a set
S∗ ⊆ {1, 2, . . . , n/2 − 1} to maximize

∑
i∈S∗ Score(i) under the constraint that the distance between

any two distinct elements of S∗ must be at least 2. In other words, we need to solve the following
optimization problem:

S∗ = argmaxS⊆{1,2,...,n/2−1}
∑

i∈S
Score(i)

subject to: |i1 − i2| ≥ 2 for all i1, i2 ∈ S such that i1 6= i2.

(23)

This problem can be solved using a dynamic programming method. For 1 ≤ j ≤ n/2− 1, define

S∗j = argmaxS⊆{1,2,...,j}
∑

i∈S
Score(i)

subject to: |i1 − i2| ≥ 2 for all i1, i2 ∈ S such that i1 6= i2,

Mj = max
S⊆{1,2,...,j}

∑

i∈S
Score(i)

subject to: |i1 − i2| ≥ 2 for all i1, i2 ∈ S such that i1 6= i2.

By definition, we can see that M1 ≤ M2 ≤ M3 ≤ · · · ≤ Mn/2−1. The sets S∗1 ,S∗2 and the maximum
values M1,M2 can be calculated as follows: If Score(1) > 0, then S∗1 = {1} and M1 = Score(1). If
Score(1) ≤ 0, then S∗1 = ∅ and M1 = 0. If Score(2) > M1, then S∗2 = {2} and M2 = Score(2).
If Score(2) ≤ M1, then S∗2 = S∗1 and M2 = M1. For j ≥ 3, the set S∗j and the maximum value
Mj can be calculated recursively as follows: If Score(j) + Mj−2 > Mj−1, then S∗j = S∗j−2 ∪ {j}
and Mj = Score(j) + Mj−2. If Score(j) + Mj−2 ≤ Mj−1, then S∗j = S∗j−1 and Mj = Mj−1. This
dynamic programming algorithm allows us to calculate S∗j for every 1 ≤ j ≤ n/2 − 1. In particular,
we are able to calculate S∗n/2−1 = S∗, which is the set we want to construct. Once we know the set
S∗ = {j1, j2, . . . , js}, we can immediately write out the set I(n) = {2j1, 2j2, . . . , 2js} and obtain the
corresponding permutation matrix PABS

n according to (10).
As a final remark, we note that PABS

2 is always the identity matrix. However, for n ≥ 4, the permutation
matrix PABS

n depends on the underlying BMS channel W .
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E. Quantization of the output alphabet

Algorithm 1: QuantizeChannel(µ, V )

Input: an upper bound µ on the output alphabet size after quantization; an adjacent-bits-channel
V with outputs y1, y2, . . . , yM

Output: quantized channel Ṽ with outputs {ỹi1,i2,i3 : 0 ≤ i1, i2, i3 ≤ b}
1 if M ≤ µ then

2 Set Ṽ to be the same as V

3 else
4 b← bµ1/3c − 1

5 Set Ṽ (ỹi1,i2,i3 |(u1, u2)) = 0 for all 0 ≤ i1, i2, i3 ≤ b and all u1, u2 ∈ {0, 1}
6 . Initialize all the transition probabilities of Ṽ as 0
7 for j = 1, 2, . . . ,M do
8 sum← V (yj |(0, 0)) + V (yj |(0, 1)) + V (yj |(1, 0)) + V (yj |(1, 1))

9 p1 ← V (yj |(0,0))
sum , p2 ← V (yj |(0,1))

sum , p3 ← V (yj |(1,0))
sum

10 . Calculate the posterior probability of yj
11 i1 ← bbp1c, i2 ← bbp2c, i3 ← bbp3c
12 Ṽ (ỹi1,i2,i3 |(u1, u2))← Ṽ (ỹi1,i2,i3 |(u1, u2)) + V (yj |(u1, u2)) for all u1, u2 ∈ {0, 1}
13 . Merge yj into ỹi1,i2,i3

14 return Ṽ

An important step in the construction of standard polar codes is to quantize the output alphabets of
the bit-channels {W (n)

i }ni=1 because the output alphabet size grows exponentially with the code length
n. The most widely used quantization method for binary-input standard polar codes was given in [24],
where the main idea is to merge output symbols with similar posterior distributions using a greedy
algorithm. This greedy algorithm was later generalized to construct polar codes with non-binary input
alphabets [25]–[27]. The time complexity of the greedy quantization algorithm is O(µ2 logµ), where µ
is the maximum size of the output alphabet after quantization. Since there are 2n − 1 bit-channels we
need to quantize in the code construction procedure, the overall time complexity of standard polar code
construction is O(nµ2 logµ).

In the ABS polar code construction, the output alphabet size of the adjacent-bits-channels {V (n)
i }

n−1
i=1

also grows exponentially with n, and the quantization operations are also needed. Since the adjacent-bits-
channels have 4-ary inputs, we can simply use the greedy quantization algorithms proposed in [25]–[27]
for polar codes with non-binary inputs. However, in practical implementations, we found that these
greedy algorithms for non-binary inputs usually involve implicit large constants in their time complexity.
Therefore, we propose a new quantization algorithm to merge the output symbols of the adjacent-bits-
channels {V (n)

i }
n−1
i=1 . The time complexity of our new quantization algorithm is O(µ2). Since there are

Θ(n) adjacent-bits-channels we need to quantize in the ABS polar code construction, its overall time
complexity is O(nµ2).

Our new quantization algorithm works as follows. Given an upper bound µ on the output alphabet size
after quantization, we define b = bµ1/3c − 1. For an adjacent-bits-channel V , we write its 4 inputs as
(0, 0), (0, 1), (1, 0), (1, 1), and we write its outputs as y1, y2, . . . , yM , where M is the output alphabet size
of V . We use Ṽ to denote the channel after output quantization. The 4 inputs of Ṽ are the same as the
original channel V , and the outputs of Ṽ are written as {ỹi1,i2,i3 : 0 ≤ i1, i2, i3 ≤ b}. Clearly, the output
alphabet size of Ṽ is no larger than µ. With the above notation in mind, we present our quantization
algorithm in Algorithm 1. In our implementation, we pick µ = 250000.



16

F. Summary of the ABS polar code construction
In Section III-C, we showed how to calculate the transition probabilities of the adjacent-bits-channels

{V (n),ABS
i }n−1

i=1 when the permutation matrices PABS
2 ,PABS

4 ,PABS
8 , . . . ,PABS

n in (7) are known. In
Section III-D, we showed how to construct the permutation matrix PABS

n when the transition probabilities
of {V (n/2),ABS

i }n/2−1
i=1 are available. In Section III-E, we proposed Algorithm 1 to quantize the output

alphabets of the adjacent-bits-channels. Now we are in a position to put everything together and present
the code construction algorithm for ABS polar codes in Algorithm 2.

Algorithm 2: ABSConstruct(n, k,W )

Input: code length n = 2m ≥ 4, code dimension k, and the BMS channel W
Output: the permutation matrices PABS

2 ,PABS
4 ,PABS

8 , . . . ,PABS
n , and the index set A of the

information bits
1 Quantize the output alphabet of W using the method in [24] . This step is needed when the

output alphabet size of W is very large, e.g., when W has a continuous output alphabet.
2 Set PABS

2 to be the identity matrix
3 Calculate the transition probability of V (2),ABS

1 from W using (22)
4 Quantize the output alphabet of V (2),ABS

1 using Algorithm 1
5 for n0 = 4, 8, 16, . . . , n do
6 Construct PABS

n0
from {V (n0/2),ABS

i }n0/2−1
i=1 using the method in Section III-D

7 Calculate the transition probabilities of {V (n0),ABS
i }n0−1

i=1 from PABS
n0

and
{V (n0/2),ABS

i }n0/2−1
i=1 using Lemma 2

8 Quantize the output alphabets of {V (n0),ABS
i }n0−1

i=1 using Algorithm 1

9 Calculate the transition probabilities of {W (n),ABS
i }ni=1 from the transition probabilities of

{V (n),ABS
i }n−1

i=1 .
10 Sort the capacity of the bit-channels {W (n),ABS

i }ni=1 to obtain
I(W

(n),ABS
i1

) ≥ I(W
(n),ABS
i2

) ≥ · · · ≥ I(W
(n),ABS
in

), where {i1, i2, . . . , in} is a permutation of
{1, 2, . . . , n}

11 A ← {i1, i2, . . . , ik}
12 return PABS

2 ,PABS
4 ,PABS

8 , . . . ,PABS
n ,A

G. Necessity of the condition (21)

The condition (21) is necessary for us to derive a recursive relation between {V (n),ABS
i }n−1

i=1 and
{V (n/2),ABS

i }n/2−1
i=1 . In order to prove this claim, we introduce some notation. Instead of (U1, U2, . . . , Un),

now we use (U
(n)
1 , U

(n)
2 , . . . , U

(n)
n ) to denote the message vector. We add the superscript (n) in the

notation to distinguish between random variables in different layers. Define

(Û
(n)
1 , Û

(n)
2 , . . . , Û (n)

n ) = (U
(n)
1 , U

(n)
2 , . . . , U (n)

n )PABS
n .

We further define random vectors (U
(n/2)
1,1 , U

(n/2)
2,1 , . . . , U

(n/2)
n/2,1 ) and (U

(n/2)
1,2 , U

(n/2)
2,2 , . . . , U

(n/2)
n/2,2 ) as fol-

lows:
U

(n/2)
i,1 = Û

(n)
2i−1 + Û

(n)
2i , U

(n/2)
i,2 = Û

(n)
2i ,

i.e., the vectors (U
(n/2)
1,1 , U

(n/2)
2,1 , . . . , U

(n/2)
n/2,1 ) and (U

(n/2)
1,2 , U

(n/2)
2,2 , . . . , U

(n/2)
n/2,2 ) are obtained from applying

one layer of polar transform to (Û
(n)
1 , Û

(n)
2 , . . . , Û

(n)
n ). By definition, V (n),ABS

i gives us the conditional
distribution of (U

(n)
i , U

(n)
i+1) given the channel outputs and the previous message bits; V (n/2),ABS

i gives
us the conditional distribution of (U

(n/2)
i,1 , U

(n/2)
i+1,1 ) and the conditional distribution of (U

(n/2)
i,2 , U

(n/2)
i+1,2 )

given the channel outputs and the previous message bits. Therefore, deriving a recursive relation between
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{V (n),ABS
i }n−1

i=1 and {V (n/2),ABS
i }n/2−1

i=1 is equivalent to the following task: Suppose that we know the
joint distribution3 of (U

(n/2)
i,j , U

(n/2)
i+1,j ) for all 1 ≤ i ≤ n/2− 1 and j ∈ {1, 2}. The task is to calculate the

joint distribution of (U
(n)
i , U

(n)
i+1) for all 1 ≤ i ≤ n−1. We will show that it is not possible to accomplish

this task without the condition (21).
Suppose that the condition (21) does not hold. Then there exists an integer i such that we swap

the adjacent bits Û (n)
2i and Û

(n)
2i+1, and we also swap Û

(n)
2i+2 and Û

(n)
2i+3; see Fig. 6 for an illustration.

According to our assumption, we know the joint distribution of (U
(n/2)
i,1 , U

(n/2)
i+1,1 ) and the joint distribution

of (U
(n/2)
i,2 , U

(n/2)
i+1,2 ). Moreover, (U

(n/2)
i,1 , U

(n/2)
i+1,1 ) and (U

(n/2)
i,2 , U

(n/2)
i+1,2 ) are independent. Therefore, we

know the joint distribution of (U
(n/2)
i,1 , U

(n/2)
i,2 , U

(n/2)
i+1,1 , U

(n/2)
i+1,2 ). Since there is a one-to-one mapping

between (Û
(n)
2i−1, Û

(n)
2i , Û

(n)
2i+1, Û

(n)
2i+2) and (U

(n/2)
i,1 , U

(n/2)
i,2 , U

(n/2)
i+1,1 , U

(n/2)
i+1,2 ), we also know the distribution

of (Û
(n)
2i−1, Û

(n)
2i , Û

(n)
2i+1, Û

(n)
2i+2). Since (U

(n)
2i−1, U

(n)
2i , U

(n)
2i+1) is a function of (Û

(n)
2i−1, Û

(n)
2i , Û

(n)
2i+1), we are

able to calculate the joint distribution of (U
(n)
2i−1, U

(n)
2i ) and the joint distribution of (U

(n)
2i , U

(n)
2i+1). Using

a similar argument, we can show that we are able to calculate the joint distribution of (U
(n)
2i+2, U

(n)
2i+3) and

the joint distribution of (U
(n)
2i+3, U

(n)
2i+4). The only problem is that we are not able to calculate the joint

distribution of (U
(n)
2i+1, U

(n)
2i+2). By definition,

U
(n)
2i+1 = Û

(n)
2i = U

(n/2)
i,2 , U

(n)
2i+2 = Û

(n)
2i+3 = U

(n/2)
i+2,1 + U

(n/2)
i+2,2 .

Therefore, our task is to calculate the joint distribution of (U
(n/2)
i,2 , U

(n/2)
i+2,1 + U

(n/2)
i+2,2 ). Since the two

random vectors (U
(n/2)
1,1 , U

(n/2)
2,1 , . . . , U

(n/2)
n/2,1 ) and (U

(n/2)
1,2 , U

(n/2)
2,2 , . . . , U

(n/2)
n/2,2 ) are independent, this further

requires us to know the joint distribution of (U
(n/2)
i,2 , U

(n/2)
i+2,2 ), which is not available. Therefore, we are

not able to calculate the joint distribution of (U
(n)
2i+1, U

(n)
2i+2). This proves the necessity of (21).

U
(n)
2i−1

U
(n)
2i

U
(n)
2i+1

U
(n)
2i+2

U
(n)
2i+3

U
(n)
2i+4

Û
(n)
2i−1

Û
(n)
2i

Û
(n)
2i+1

Û
(n)
2i+2

Û
(n)
2i+3

Û
(n)
2i+4

U
(n/2)
i,1

U
(n/2)
i,2

U
(n/2)
i+1,1

U
(n/2)
i+1,2

U
(n/2)
i+2,1

U
(n/2)
i+2,2

Fig. 6: Swap the adjacent bits Û2i and Û2i+1. Also swap Û2i+2 and Û2i+3.

IV. THE ENCODING ALGORITHM FOR ABS POLAR CODES

In this section, we present the encoding algorithm of ABS polar codes. Suppose that we have con-
structed an (n, k) ABS polar code with permutation matrices PABS

2 ,PABS
4 ,PABS

8 , . . . ,PABS
n and the

3More precisely, this should be the conditional distribution of (U
(n/2)
i,j , U

(n/2)
i+1,j ) given the channel outputs and the previous

message bits. Similarly, the joint distribution of (U (n)
i , U

(n)
i+1) in the next sentence also refers to the conditional distribution.
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index set A = {i1, i2, . . . , ik} of the information bits. We present the encoding algorithm of this code in
Algorithm 3 below.

Algorithm 3: Encode((m1,m2, . . . ,mk))

Input: the message vector (m1,m2, . . . ,mk) ∈ {0, 1}k
Output: the codeword (c1, c2, . . . , cn) ∈ {0, 1}n, where n = 2m is the code length

1 Initialize (c1, c2, . . . , cn) as the all-zero vector
2 (ci1 , ci2 , . . . , cik)← (m1,m2, . . . ,mk)
3 . Recall that i1, i2, . . . , ik are the indices of the information bits.
4 for i = 0, 1, 2, 3, . . . ,m− 1 do
5 t← 2i

6 n0 ← 2m−i

7 for h = 1, 2, 3, . . . , t do
8 (ch, ch+t, ch+2t, ch+3t, . . . , ch+(n0−1)t)← (ch, ch+t, ch+2t, ch+3t, . . . , ch+(n0−1)t)P

ABS
n0

9 . Line 8 is the only difference between the encoding algorithms for ABS polar codes and
standard polar codes

10 for j = 0, 1, 2, 3, . . . , n0/2− 1 do
11 ch+2jt ← ch+2jt + ch+2jt+t

12 . The addition between ch+2jt and ch+2jt+t is over the binary field

13 return (c1, c2, . . . , cn)

Without Line 8, Algorithm 3 is the same as the encoding algorithm of standard polar codes, whose
time complexity is O(n log(n)). In line 8, we perform a permutation on n0 elements. According to our
code construction, each of these n0 elements is swapped at most once, so the number of operations
involved in this permutation is no more than n0 = 2m−i. From the for loop in Line 7, we can see that
Line 8 is executed t = 2i times for each i ∈ {0, 1, . . . ,m− 1}. In other words, for each fixed value of i,
Line 8 induces at most n0 ∗ t = 2m = n operations. Therefore, the total number of operations induced
by Line 8 is upper bounded by n ∗m = n log(n). Thus we conclude that the encoding complexity of
ABS polar codes is still O(n log(n)).

Proposition 1. The encoding time complexity of ABS polar codes is O(n log(n)).

Note that the set I(n) in (10) uniquely determines the permutation matrix PABS
n . In Fig. 7, we present

the encoding circuit of an (n = 16, k = 8) ABS polar code defined by the following sets:

I(2) = ∅, I(4) = ∅, I(8) = {4}, I(16) = {6, 10},
A = {9, 10, 11, 12, 13, 14, 15, 16}.

(24)

V. THE SCL DECODER FOR ABS POLAR CODES

In this section, we present a new SCL decoder for ABS polar codes. The organization of this section
is as follows: In Section V-A, we recap the classic SCL decoder for standard polar codes based on the
2× 2 polar transform. The purpose of doing so is to get ourselves familiar with the recursive structure,
which is shared by both the classic SCL decoder and our new SCL decoder. The SCL decoder presented
in Section V-A is based on the one proposed in [28]. While the classic SCL decoder is based on the 2×2
polar transform, our new SCL decoder is based on the DB polar transform and the SDB polar transform;
see Fig. 3 and Fig. 5 for the definitions of these two transforms. Instead of jumping directly into the
decoding of ABS polar codes, we first present a new SCL decoder for standard polar codes based on
the DB polar transform in Section V-B. This new SCL decoder for standard polar codes already contains
most of the new ingredients in the SCL decoder for ABS polar codes, and it helps us learn these new
ingredients in a familiar setting. Finally, in Section V-C, we present our new SCL decoder for ABS polar
codes.
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Fig. 7: Encoding circuit of an (n = 16, k = 8) ABS polar code defined by the sets in (24).

A. SCL decoder for standard polar codes based on the 2× 2 polar transform
In this subsection, we recap the classic SCL decoder proposed in [28] for standard polar codes. Suppose

that the code length is n = 2m, and the upper bound of the list size in the SCL decoder is L. We use
Lc ∈ {1, 2, . . . , L} to denote the current list size. A is the index set of the information bits.

Before describing the decoding algorithms, let us introduce some notation and intermediate variables.
Following the notation in Fig. 2, (U1, U2, . . . , Un) is the message vector, and we use (X1, . . . , Xn) and
(Y1, . . . , Yn) to denote the random codeword vector and the random channel output vector, respectively.
We use (y1, . . . , yn) to denote a realization of the random vector (Y1, . . . , Yn). For each 0 ≤ λ ≤ m,
we introduce an intermediate vector (X

(2λ)
1 , X

(2λ)
2 , . . . , X

(2λ)
n ). For λ = m, we define the intermediate

vector as
(X

(n)
1 , X

(n)
2 , . . . , X(n)

n ) = (U1, U2, . . . , Un). (25)

For 0 ≤ λ ≤ m− 1, the intermediate vectors are defined recursively using the following relation:

(X
(2λ)
1 , X

(2λ)
2 , . . . , X(2λ)

n )

=(X
(2λ+1)
1 , X

(2λ+1)
2 , . . . , X(2λ+1)

n )(I2λ ⊗Gpolar
2 ⊗ I2m−λ−1),

(26)

where In is the n × n identity matrix. By definition, (X
(1)
1 , X

(1)
2 , . . . , X

(1)
n ) = (X1, X2, . . . , Xn) is

the codeword vector. Intuitively, the intermediate vector (X
(2λ)
1 , X

(2λ)
2 , . . . , X

(2λ)
n ) is obtained from

performing (m − λ) layers of polar transform on the message vector (U1, U2, . . . , Un). Fig. 7 gives
a concrete example of the intermediate vectors in an ABS polar code, which are similar to the ones in
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standard polar codes. For each 0 ≤ λ ≤ m, 1 ≤ i ≤ 2λ and 1 ≤ β ≤ 2m−λ, we introduce the shorthand
notation

X
(λ)
i,β = X

(2λ)
β+(i−1)2m−λ , Y

(λ)
i,β = Yβ+(i−1)2m−λ ,

O(λ)
i,β = (X

(λ)
1,β , X

(λ)
2,β , . . . , X

(λ)
i−1,β, Y

(λ)
1,β , Y

(λ)
2,β , . . . , Y

(λ)
2λ,β).

(27)

According to the standard polar code construction, the 2m−λ random vectors
{

(X
(λ)
1,β , X

(λ)
2,β , . . . , X

(λ)
2λ,β, Y

(λ)
1,β , Y

(λ)
2,β , . . . , Y

(λ)
2λ,β)

}2m−λ

β=1

are independent and identically distributed. Moreover, the channel mapping from X
(λ)
i,β to O(λ)

i,β is the

bit-channel W (2λ)
i for every 1 ≤ β ≤ 2m−λ, where W (2λ)

i is defined recursively using the relation (13).
Recall that (y1, . . . , yn) is a realization of the random vector (Y1, . . . , Yn). For each 0 ≤ λ ≤ m,

1 ≤ i ≤ 2λ and 1 ≤ β ≤ 2m−λ, we introduce the shorthand notation y
(λ)
i,β = yβ+(i−1)2m−λ , and we use

x̂
(λ)
i,β to denote the decoded value of X(λ)

i,β . Moreover, we define a vector

ô(λ)
i,β = (x̂

(λ)
1,β, x̂

(λ)
2,β, . . . , x̂

(λ)
i−1,β, y

(λ)
1,β , y

(λ)
2,β , . . . , y

(λ)
2λ,β). (28)

By the analysis above, we have

P
(
O(λ)
i,β = ô(λ)

i,β

∣∣X(λ)
i,β = b

)
= W

(2λ)
i

(
ô(λ)
i,β

∣∣b
)

for b ∈ {0, 1}. (29)

Now we are ready to introduce the data structures used in the SCL decoder for standard polar codes.
Most of the data structures below are also used in the SCL decoder for ABS polar codes.

(i) 4-dimensional probability array D. The entries in the array D are indexed as

D[λ, s, β, b], 0 ≤ λ ≤ m, 1 ≤ s ≤ L,
1 ≤ β ≤ 2m−λ, 0 ≤ b ≤ 1.

For each 0 ≤ λ ≤ m, 1 ≤ s ≤ L, we define a subarray of D as

D[λ, s] = (D[λ, s, β, b], 1 ≤ β ≤ 2m−λ, b ∈ {0, 1}),

and we use ~D[λ, s] to denote the pointer to the head address of D[λ, s]. In the algorithms below, we
will write D[λ, s, β, b] and ~D[λ, s][β, b] interchangeably. Each array D[λ, s] is used to store a set of
transition probabilities in (29).

(ii) 1-dimensional integer array ND. The entries of ND are ND[λ], 0 ≤ λ ≤ m. The entry ND[λ] takes value
in the set {0, 1, 2, . . . , L} for every 0 ≤ λ ≤ m. The value of ND[λ] has the following meaning:
The arrays D[λ, 1], D[λ, 2], . . . , D[λ, ND[λ]] are currently occupied in the decoding procedure while
the arrays D[λ, ND[λ] + 1], D[λ, ND[λ] + 2], . . . , D[λ, L] are free to use. See Fig. 8 for an illustration.

(iii) 3-dimensional bit array B. The entries in the array B are indexed as

B[λ, s, β], 0 ≤ λ ≤ m, 1 ≤ s ≤ 2L, 1 ≤ β ≤ 2m−λ.

For each 0 ≤ λ ≤ m, 1 ≤ s ≤ 2L, we define a subarray of B as

B[λ, s] = (B[λ, s, β], 1 ≤ β ≤ 2m−λ),

and we use ~B[λ, s] to denote the pointer to the head address of B[λ, s]. In the algorithms below,
we will write B[λ, s, β] and ~B[λ, s][β] interchangeably. Each array B[λ, s] is used to store a set of
decoding results of the intermediate vectors.

(iv) 1-dimensional integer array NB. The entries of NB are NB[λ], 0 ≤ λ ≤ m. The entry NB[λ] takes value
in the set {0, 1, 2, . . . , 2L} for every 0 ≤ λ ≤ m. The value of NB[λ] has the following meaning:
The arrays B[λ, 1], B[λ, 2], . . . , B[λ, NB[λ]] are currently occupied in the decoding procedure while
the arrays B[λ, NB[λ] + 1], B[λ, NB[λ] + 2], . . . , B[λ, 2L] are free to use.
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ND

ND[0] = 1

ND[1] = 1

ND[2] = 1

ND[3] = 1

ND[4] = 1

ND[5] = 4

ND[6] = 8

D[0, 1]

D[1, 1]

D[2, 1]

D[3, 1]

D[4, 1]

D[5, 1]

D[6, 1]

D[0, 2]

D[1, 2]

D[2, 2]

D[3, 2]

D[4, 2]

D[5, 2]

D[6, 2]

D[0, 3]

D[1, 3]

D[2, 3]

D[3, 3]

D[4, 3]

D[5, 3]

D[6, 3]

D[0, 4]

D[1, 4]

D[2, 4]

D[3, 4]

D[4, 4]

D[5, 4]

D[6, 4]

D

D[0, 5]

D[1, 5]

D[2, 5]

D[3, 5]

D[4, 5]

D[5, 5]

D[6, 5]

D[0, 6]

D[1, 6]

D[2, 6]

D[3, 6]

D[4, 6]

D[5, 6]

D[6, 6]

D[0, 7]

D[1, 7]

D[2, 7]

D[3, 7]

D[4, 7]

D[5, 7]

D[6, 7]

D[0, 8]

D[1, 8]

D[2, 8]

D[3, 8]

D[4, 8]

D[5, 8]

D[6, 8]

Fig. 8: An illustration of D and ND for code length n = 64 and list size L = 8. We put D[λ, s] in a
shaded cell if it is currently occupied; otherwise, we put it in a white cell. For example, ND[5] = 4 means
that D[5, 1], D[5, 2], D[5, 3], D[5, 4] have already been allocated to store some transition probabilities while
D[5, 5], D[5, 6], D[5, 7], D[5, 8] are free to use.

(v) 1-dimensional probability array score. The entries of score are score[`], 1 ≤ ` ≤ Lc, where
Lc ∈ {1, 2, . . . , L} is the current list size. Each score[`] records the current transition probability
of the `th candidate in the decoding list. When the current list size is larger than the prescribed
upper bound L, we prune the list according to the value of score[`].

(vi) 2-dimensional pointer arrays P, P̄. Their entries are

P = (P[`, λ], 1 ≤ ` ≤ L, 0 ≤ λ ≤ m), P̄ = (P̄[`, λ], 1 ≤ ` ≤ L, 0 ≤ λ ≤ m).

We use P[`, λ] to store the pointer ~D[λ, ND[λ] + 1], so that we can store the transition probabilities
in the array D[λ, ND[λ] + 1] and access them in the future. We usually assign values (i.e., pointers)
to P[`, λ] through the function allocate_prob in Algorithm 4. The function allocate_prob
is called in Line 4 of Algorithm 6, Line 3 of Algorithm 9, and Line 3 of Algorithm 10. The array
P̄ is a supplement to P. We use P̄ when the entries in P are occupied.

(vii) 2-dimensional pointer arrays R, R̄. Their entries are

R = (R[`, λ], 1 ≤ ` ≤ L, 0 ≤ λ ≤ m), R̄ = (R̄[`, λ], 1 ≤ ` ≤ L, 0 ≤ λ ≤ m).

We use R[`, λ] to store the pointer ~B[λ, NB[λ] + 1], so that we can store the decoding results of
intermediate vectors in the array B[λ, NB[λ] + 1] and access them in the future. We usually assign
values (i.e., pointers) to R[`, λ] through the function allocate_bit in Algorithm 5. The function
allocate_bit is called in Line 13 of Algorithm 7 and Lines 10,16 of Algorithm 8. The array
R̄ is a supplement to R. We use R̄ when the entries in R are occupied.

(viii) priority queue PriQue. PriQue is a maximum priority queue with size 2L such that the element
with the maximum value is always removed first from the queue. We use PriQue to record and
prune candidate decoding paths. Each element in the queue is a triple (`, b,prob) with the following
meaning: When we decode Ui in the last layer λ = m, the (posterior) probability of Ui = b in
the `th decoding path is prob. The queue PriQue has 4 interfaces: i) PriQue.push(`, b,prob)
pushes the element (`, b,prob) to the queue; ii) PriQue.pop() removes the element (`, b,prob)
with the maximum prob in the queue; iii) PriQue.clear() removes all the remaining elements
in the queue; iv) PriQue.size() returns the current number of elements in the queue.
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We associate each candidate in the decoding list with a list element. There are at most L list elements
in total. For 1 ≤ ` ≤ L, the `th list element has the following fields:

(P[`, 0], P[`, 1], . . . , P[`,m]),

(R[`, 0], R[`, 1], . . . , R[`,m]),

score[`].

(30)

Algorithm 4: allocate_prob(λ)

Input: layer λ ∈ {0, 1, 2, . . . ,m}
Output: a pointer to the allocated memory

1 ND[λ]← ND[λ] + 1
2 return ~D[λ, ND[λ]]

Algorithm 5: allocate_bit(λ)

Input: layer λ ∈ {0, 1, 2, . . . ,m}
Output: a pointer to the allocated memory

1 NB[λ]← NB[λ] + 1
2 return ~B[λ, NB[λ]]

The function allocate_prob in Algorithm 4 and the function allocate_bit in Algorithm 5 are
used to allocate memory spaces throughout the decoding procedure. allocate_prob(λ) returns the
pointer to the next usable array in D[λ, 1], D[λ, 2], . . . , D[λ, L] and updates the value of ND[λ]. Similarly,
allocate_bit(λ) returns the pointer to the next usable array in B[λ, 1], B[λ, 2], . . . , B[λ, 2L] and
updates the value of NB[λ].

We present the main function ST_decode((y1, y2, . . . , yn)) in Algorithm 6. Note that we only update
the value of the current list size in the last layer λ = m, and we have only one list element in the
beginning. The first 3 lines initialize the parameters. In Line 4, we assign the pointer ~D[0, 1] to P[1, 0]
and update the value of ND[0] to be 1. In Lines 5–7, we store the transition probabilities of the whole
channel output vector in the array D[0, 1]. Line 8 executes recursive decoding which we will explain later.
After recursive decoding, we obtain Lc list elements. In the `th list element, score[`] is the transition
probability which measures the likelihood of this list element, and the decoding result is stored in the
array (R[`, 0][1], R[`, 0][2], . . . , R[`, 0][n]). In Lines 9–17, we pick the list element with the maximum
score[`] and return the corresponding decoding result.

Before explaining the recursive decoding function decode_channel in Algorithm 7, let us introduce
some additional notation. Recall that we defined a vector ô(λ)

i,β in (28) which consists of both the decoding
results of intermediate vectors and the channel outputs. This notation is designed for the SC decoder
because we only have a single decoding result in the whole SC decoding procedure. However, we have
multiple decoding results in the SCL decoder, so we need the following modification of the notation ô(λ)

i,β .

For each 1 ≤ ` ≤ Lc, we use x̂(`,λ)
i,β to denote the decoded value of X(λ)

i,β in the `th list element, and we
define a vector

ô(`,λ)
i,β = (x̂

(`,λ)
1,β , x̂

(`,λ)
2,β , . . . , x̂

(`,λ)
i−1,β, y

(λ)
1,β , y

(λ)
2,β , . . . , y

(λ)
2λ,β). (31)

Then (29) becomes

P
(
O(λ)
i,β = ô(`,λ)

i,β

∣∣X(λ)
i,β = b

)
= W

(2λ)
i

(
ô(`,λ)
i,β

∣∣b
)

for b ∈ {0, 1}.

Lemma 3. Suppose that 0 ≤ λ ≤ m and 1 ≤ i ≤ 2λ. Before we call the function decode_channel
in Algorithm 7 with input parameters (λ, i), the pointer P[`, λ] satisfies that

P[`, λ][β, b] = W
(2λ)
i (ô(`,λ)

i,β |b) for all 1 ≤ ` ≤ Lc, 1 ≤ β ≤ 2m−λ and b ∈ {0, 1}. (32)
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Algorithm 6: ST_Decode((y1, y2, . . . , yn))

Input: the received vector (y1, y2, . . . , yn) ∈ Yn
Output: the decoded codeword (x̂1, x̂2, . . . , x̂n) ∈ {0, 1}n

1 for λ ∈ {1, 2, . . . ,m} do
2 ND[λ]← 0, NB[λ]← 0

3 Lc ← 1
4 P[1, 0]← allocate_prob(0)
5 for β ∈ {1, 2, . . . , n} do
6 for b ∈ {0, 1} do
7 P[1, 0][β, b]←W (yβ|b)

8 decode_channel(0, 1) . Algorithm 7, recursive decoding
9 max score← 0

10 max `← 0
11 for ` ∈ {1, 2, . . . , Lc} do
12 if score[`] ≥ max score then
13 max score← score[`]
14 max `← `

15 for β = 1, 2, . . . , n do
16 x̂β ← R[max `, 0][β]

17 return (x̂1, x̂2, . . . , x̂n)

After the function decode_channel(λ, i) in Algorithm 7 returns, the pointer R[`, λ] satisfies that

R[`, λ][β] = x̂
(`,λ)
i,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ. (33)

Proof. We prove (33) first, and we prove it by induction. Lines 1–2 of Algorithm 7 deal with the
base case λ = m, where we decode Ui in the message vector (U1, U2, . . . , Un) by calling the function
decode_boundary_channel(i) in Algorithm 8. By (27), when λ = m, we have X(m)

i,1 = X
(n)
i . By

(25), we further obtain that X(m)
i,1 = Ui. If Ui is a frozen bit, then Line 17 of Algorithm 8 immediately

implies (33). If Ui is an information bit, we first use R̄[`,m][1] to store the decoding result of Ui in the
`th list element4; see Line 11 of Algorithm 8. Next we swap R̄ and R in Line 13, so (33) is satisfied.

For the inductive step, we assume that (33) holds for λ + 1 and prove it for λ. By this induction
hypothesis, after executing Line 6 of Algorithm 7, we have

R[`, λ+ 1][β] = x̂
(`,λ+1)
2i−1,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.

After executing Line 8 and Line 12 of Algorithm 7, we have

temp[β] = x̂
(`,λ+1)
2i−1,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.

Again by the induction hypothesis, after executing Line 10, we have

R[`, λ+ 1][β] = x̂
(`,λ+1)
2i,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.

Since we set nc = 2λ in Line 4, we have n/(2nc) = 2m−λ−1. Therefore, Lines 15–16 become

R[`, λ][β] = x̂
(`,λ+1)
2i−1,β + x̂

(`,λ+1)
2i,β , R[`, λ][β + 2m−λ−1] = x̂

(`,λ+1)
2i,β

for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.
(34)

4The variable b in Line 11 of Algorithm 8 is the decoding result of Ui in the `th list element. We will explain Algorithm 8
later.
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(26)–(27) together imply that

X
(λ)
i,β = X

(λ+1)
2i−1,β +X

(λ+1)
2i,β , X

(λ)
i,β+2m−λ−1 = X

(λ+1)
2i,β for all 1 ≤ β ≤ 2m−λ−1.

This further implies that

x̂
(`,λ)
i,β = x̂

(`,λ+1)
2i−1,β + x̂

(`,λ+1)
2i,β , x̂

(`,λ)
i,β+2m−λ−1 = x̂

(`,λ+1)
2i,β

for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.
(35)

Combining this with (34), we complete the proof of (33).
Next we prove (32) by induction. This time the base case is λ = 0, and this case only occurs once

in Line 8 of Algorithm 6 during the whole decoding procedure. Note that the channel W (1)
1 is W itself.

Therefore, Lines 5–7 of Algorithm 6 immediately imply (32) for λ = 0.
For the inductive step, we assume that (32) holds for λ and prove it for λ + 1. By this induction

hypothesis, (32) holds for λ when we execute Line 5 of Algorithm 7. In other words, the array associated
with the pointer P[`, λ] stores the transition probabilities of W (2λ)

i . By (13), W (2λ+1)
2i−1 is the “−” transform

of W (2λ)
i . The function calculate_−_transform(λ + 1) calculates the “−” transform of W (2λ)

i
and stores the results in the array associated with the pointer P[`, λ + 1], so (32) holds before we call
decode_channel in Line 6 of Algorithm 7. Again by (13), W (2λ+1)

2i is the “+” transform of W (2λ)
i .

The function calculate_+_transform(λ+1) in Line 9 of Algorithm 7 calculates the “+” transform
of W (2λ)

i and stores the results in the array associated with the pointer P[`, λ+ 1], so (32) holds before
we call decode_channel in Line 10 of Algorithm 7.

During the whole decoding procedure, the function decode_channel is only called in Line 8 of
Algorithm 6 and Lines 6,10 of Algorithm 7. We have proved that (32) holds for all three places. This
completes the proof of the lemma.

Now let us explain how Algorithm 8 works when Ui is an information bit. First, we explore both
cases Ui = 0 and Ui = 1 for every list element; see Lines 2–4. The variable b in Lines 3–4 represents
the (possible) value of Ui. Since we explore two possible paths for each existing list element, we have
expanded the list size by a factor of 2 after executing Lines 2–4. If the current list size is larger than
L, then we need to prune the list, and this is done in Lines 5–13. In Line 5, we update the current list
size Lc to be the smaller value among L and the size of PriQue. Then in Lines 6–11, we execute
PriQue.pop() Lc times to obtain Lc elements in the queue with the largest value of score[`]. By
Line 4, score[`] stores the transition probability P[`,m][1, b], which measures the likelihood of the `th
list element. Therefore, we obtain Lc list elements with the largest likelihood after executing Lines 6–11.

The next lemma shows that the data structures D and B are large enough to store the transition
probabilities and the decoding results of the intermediate vectors throughout the decoding procedure.

Lemma 4. Throughout the whole decoding procedure, we have ND[λ] ≤ L and NB[λ] ≤ 2L for all
0 ≤ λ ≤ m. The space complexity of the SCL decoder is O(Ln).

Proof. For every 0 ≤ λ ≤ m and every 1 ≤ i ≤ 2λ, the function decode_channel(λ, i) is called
only once. Moreover, the function decode_channel(λ, i + 1) is always called after the function
decode_channel(λ, i) returns. Each time we call the function decode_channel(λ, i), we only
need to store the transition probabilities for Lc ≤ L different decoding paths, and we always reset ND[λ]
to 0 before the function decode_channel(λ, i) returns, so ND[λ] ≤ L.

We need to store the decoding results of intermediate vectors for Lc ≤ L list elements when we call
the function decode_channel(λ + 1, 2i − 1) in Line 6 of Algorithm 7. Similarly, we need to store
the decoding results of intermediate vectors for another L′c ≤ L list elements5 when we call the function
decode_channel(λ+ 1, 2i) in Line 10 of Algorithm 7. Therefore, before we reset NB[λ+ 1] to 0 in
Line 17, we have NB[λ+1] = Lc+L′c ≤ 2L. This proves that NB[λ] can not exceed 2L for all 0 ≤ λ ≤ m.

5We use L′c here because the current list size may change over the decoding procedure.
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Algorithm 7: decode_channel(λ, i)

Input: layer λ ∈ {0, 1, 2, . . . ,m} and index i ∈ {1, 2, . . . , 2λ}
1 if λ = m then
2 decode_boundary_channel(i) . Algorithm 8
3 else
4 nc ← 2λ . W

(2nc)
2i−1 = (W

(nc)
i )−

5 calculate_−_transform(λ+ 1)
6 decode_channel(λ+ 1, 2i− 1)
7 for ` ∈ {1, 2, . . . , Lc} do
8 R[`, λ]← R[`, λ+ 1]

9 calculate_+_transform(λ+ 1) . W
(2nc)
2i = (W

(nc)
i )+

10 decode_channel(λ+ 1, 2i)
11 for ` ∈ {1, 2, . . . Lc} do
12 temp← R[`, λ]
13 R[`, λ]← allocate_bit(λ)
14 for β ∈ {1, 2, . . . , n/(2nc)} do
15 R[`, λ][β]← temp[β] + R[`, λ+ 1][β]
16 R[`, λ][β + n/(2nc)]← R[`, λ+ 1][β]

17 NB[λ+ 1]← 0

18 ND[λ]← 0
19 return

Next we prove the O(Ln) space complexity of the SCL decoder. The number of entries in the array
D is upper bounded by

2L

m∑

λ=0

2m−λ = 2L(1 + 2 + 4 + · · ·+ 2m) < 2L · 2m+1 = 4Ln.

Similarly, the number of entries in B is upper bounded by

2L

m∑

λ=0

2m−λ < 4Ln.

The number of entries in both ND and NB is O(log(n)). The number of entries in both score and PriQue
is O(L). The number of entries in the pointer arrays P, P̄, R, R̄ is O(L log(n)). Adding these up gives us
the O(Ln) space complexity.

Proposition 2. The decoding time complexity of standard polar codes is O(Ln log(n)).

B. SCL decoder for standard polar codes based on the Double-Bits polar transform
In this subsection, we present a new SCL decoder for standard polar codes based on the Double-Bits

polar transform in Fig. 3. We still use the notation in (25)–(27) and (31). By (15), the channel mapping
from (X

(λ)
i,β , X

(λ)
i+1,β) to O(λ)

i,β is the adjacent-bits-channel V (2λ)
i for every 1 ≤ β ≤ 2m−λ, i.e.,

P
(
O(λ)
i,β = ô(`,λ)

i,β

∣∣X(λ)
i,β = a,X

(λ)
i+1,β = b

)
= V

(2λ)
i

(
ô(`,λ)
i,β

∣∣a, b
)

for a, b ∈ {0, 1}. (36)

Below we list the data structures of the new SCL decoder for standard polar codes based on the DB
polar transform.
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Algorithm 8: decode_boundary_channel(i)

Input: index i in the last layer (λ = m)
1 if i ∈ A then . Ui is an information bit
2 for ` ∈ {1, 2, . . . , Lc} do
3 for b ∈ {0, 1} do
4 PriQue.push(`, b, P[`,m][1, b])

5 Lc ← min{L,PriQue.size()}
6 for ` ∈ {1, 2, . . . , Lc} do
7 (`′, b, score[`])← PriQue.pop()
8 for λ ∈ {0, 1, 2, . . . ,m− 1} do
9 (P̄[`, λ], R̄[`, λ])← (P[`′, λ], R[`′, λ])

10 R̄[`,m]← allocate_bit(m)
11 R̄[`,m][1]← b

12 PriQue.clear() . Remove all the remaining elements
13 swap(P̄, P), swap(R̄, R)
14 else . Ui is a frozen bit
15 for ` ∈ {1, 2, . . . , Lc} do
16 R[`,m]← allocate_bit(m)
17 R[`,m][1]← frozen value of Ui

18 return

Algorithm 9: calculate_−_transform(λ)

Input: layer 1 ≤ λ ≤ m
Output: Update the entries pointed by P[`, λ], 1 ≤ ` ≤ Lc

1 n̄c ← 2m−λ

2 for ` ∈ {1, 2, . . . , Lc} do
3 P[`, λ]← allocate_prob(λ)
4 for β ∈ {1, 2, . . . , n̄c}, a ∈ {0, 1} do
5 β′ ← β + n̄c
6 P[`, λ][β, a]← 1

2

∑
b∈{0,1} P[`, λ− 1][β, a+ b]P[`, λ− 1][β′, b]

7 return

(i) 5-dimensional probability array D. The entries in the array D are indexed as

D[λ, s, β, a, b], 1 ≤ λ ≤ m, 1 ≤ s ≤ L,
1 ≤ β ≤ 2m−λ, 0 ≤ a, b ≤ 1.

For each 1 ≤ λ ≤ m, 1 ≤ s ≤ L, we define a subarray of D as

D[λ, s] = (D[λ, s, β, a, b], 1 ≤ β ≤ 2m−λ, 0 ≤ a, b ≤ 1),

and we use ~D[λ, s] to denote the pointer to the head address of D[λ, s]. In the algorithms below, we
will write D[λ, s, β, a, b] and ~D[λ, s][β, a, b] interchangeably. Each array D[λ, s] is used to store a set
of transition probabilities in (36).

(ii) 1-dimensional integer array ND. The entries of ND are ND[λ], 1 ≤ λ ≤ m. This array is defined in
the same way as the previous subsection.
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Algorithm 10: calculate_+_transform(λ)

Input: layer 1 ≤ λ ≤ m
Output: Update the entries pointed by P[`, λ], 1 ≤ ` ≤ Lc

1 n̄c ← 2m−λ

2 for ` ∈ {1, 2, . . . , Lc} do
3 P[`, λ]← allocate_prob(λ)
4 for β ∈ {1, 2, . . . , n̄c}, b ∈ {0, 1} do
5 a← R[`, λ− 1][β]
6 β′ ← β + n̄c
7 P[`, λ][β, b]← 1

2P[`, λ− 1][β, a+ b]P[`, λ− 1][β′, b]

8 return

(iii) 3-dimensional bit array B. The entries in the array B are indexed as

B[λ, s, β], 1 ≤ λ ≤ m, 1 ≤ s ≤ 4L, 1 ≤ β ≤ 2m−λ. (37)

For each 1 ≤ λ ≤ m, 1 ≤ s ≤ 4L, we define a subarray of B as

B[λ, s] = (B[λ, s, β], 1 ≤ β ≤ 2m−λ),

and we use ~B[λ, s] to denote the pointer to the head address of B[λ, s]. In the algorithms below,
we will write B[λ, s, β] and ~B[λ, s][β] interchangeably. Each array B[λ, s] is used to store a set of
decoding results of the intermediate vectors.

(iv) 1-dimensional integer array NB. The entries of NB are NB[λ], 1 ≤ λ ≤ m. The entry NB[λ] takes value
in the set {0, 1, 2, . . . , 4L} for every 1 ≤ λ ≤ m. The meaning of NB[λ] is the same as the previous
subsection.

(v) 1-dimensional probability array score, defined in the same way as the previous subsection.
(vi) 2-dimensional pointer arrays P, P̄. Their entries are

P = (P[`, λ], 1 ≤ ` ≤ L, 1 ≤ λ ≤ m), P̄ = (P̄[`, λ], 1 ≤ ` ≤ L, 1 ≤ λ ≤ m).

They are used in the same way as the previous subsection.
(vii) 2-dimensional pointer arrays R, R̄. Their entries are

R = (R[`, λ], 1 ≤ ` ≤ L, 1 ≤ λ ≤ m), R̄ = (R̄[`, λ], 1 ≤ ` ≤ L, 1 ≤ λ ≤ m).

They are used in the same way as the previous subsection.
(viii) 2-dimensional pointer arrays H, H̄. Their entries are

H = (H[`, λ], 1 ≤ ` ≤ L, 1 ≤ λ ≤ m), H̄ = (H̄[`, λ], 1 ≤ ` ≤ L, 1 ≤ λ ≤ m).

These two pointer arrays serve as backups of R and R̄. We use H, H̄ when all the entries in R and R̄

are occupied.
(ix) priority queue PriQue. PriQue is defined essentially in the same way as the previous subsection.

The only difference is that each element in the queue changes from a triple (`, b,prob) to a quadruple
(`, a, b, prob). The quadruple (`, a, b, prob) has the following meaning: When we decode Ui and
Ui+1 in the last layer λ = m, the (posterior) probability of (Ui = a, Ui+1 = b) in the `th decoding
path is prob.

Below we list the main differences between the data structures in this subsection and the previous
subsection.
(1) The range of λ in all the data structures changes from 0 ≤ λ ≤ m (previous subsection) to 1 ≤ λ ≤ m

(this subsection).
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(2) The dimension of the probability array D changes from 4 (previous subsection) to 5 (this subsection).
(3) The range of the index s in the array B changes from 1 ≤ s ≤ 2L (previous subsection) to 1 ≤ s ≤ 4L

(this subsection).
(4) We have two more pointer arrays H, H̄ in this subsection.
(5) Each element in the priority queue PriQue changes from a triple (`, b,prob) to a quadruple

(`, a, b, prob).
For the SCL decoder presented in this subsection, the `th list element has the following fields:

(P[`, 1], P[`, 2], . . . , P[`,m]),

(R[`, 1], R[`, 2], . . . , R[`,m]),

(H[`, 1], H[`, 2], . . . , H[`,m]),

score[`].

(38)

We still use the function allocate_prob(λ) in Algorithm 4 although the range of λ is {1, 2, . . . ,m}
in this subsection. However, we will use the function allocate_bit in Algorithm 11 for the new
decoder in this subsection, which is different from the function with the same name in Algorithm 5. The
main difference is that the function allocate_bit in Algorithm 11 has an extra input parameter k,
which takes value in {1, 2}. In this subsection, the decoder makes decisions according to the transition
probabilities of adjacent-bits-channels. Each adjacent-bits-channel has two input bits. In some cases
we only decode one bit while in other cases we need to decode both bits. The input parameter k in
Algorithm 11 corresponds to the number of input bits we need to decode for each adjacent-bits-channel.
We do not have the parameter k in Algorithm 5 because each bit-channel only has one input bit.

Algorithm 11: allocate_bit(λ, k)

Input: layer λ ∈ {1, 2, . . . ,m} and an integer k ∈ {1, 2}
Output: a pointer to the allocated memory

1 s← NB[λ] + 1
2 NB[λ]← NB[λ] + k
3 return ~B[λ, s]

We present the main function decode in Algorithm 12. The first 3 lines initialize the parameters.
In Line 4, we assign the pointer ~D[1, 1] to P[1, 1] and update the value of ND[1] to be 1. In Lines 5–7,
we calculate the transition probabilities V (2)

1 (yβ, yβ+n/2|a, b) for 1 ≤ β ≤ n/2 and a, b ∈ {0, 1} using
(18) and store V (2)

1 (yβ, yβ+n/2|a, b) in P[1, 1][β, a, b]. Line 8 executes recursive decoding which we will
explain later. After recursive decoding, we obtain Lc list elements. In the `th list element, score[`] is
the transition probability which measures the likelihood of this list element. In Lines 9–14, we pick the
list element with the maximum score[`]. Recall that x̂(`,λ)

i,β is the decoded value of X(λ)
i,β in the `th list

element. As we will prove in Lemma 5 below, after recursive decoding, we have

R[`, 1][β] = x̂
(`,1)
1,β , R[`, 1][β + n/2] = x̂

(`,1)
2,β for 1 ≤ ` ≤ Lc and 1 ≤ β ≤ n/2.

Since the codeword vector (X1, . . . , Xn) and the intermediate vectors (X
(1)
1,1 , . . . , X

(1)
1,n/2), (X

(1)
2,1 , . . . , X

(1)
2,n/2)

satisfy
Xβ = X

(1)
1,β +X

(1)
2,β, Xβ+n/2 = X

(1)
2,β for 1 ≤ β ≤ n/2,

we further have

x̂
(`)
β = R[`, 1][β] + R[`, 1][β + n/2], x̂

(`)
β+n/2 = R[`, 1][β + n/2] for 1 ≤ β ≤ n/2,

where (x̂
(`)
1 , x̂

(`)
2 , . . . , x̂

(`)
n ) is the decoding result of the codeword vector in the `th list element. This is

how we calculate the final decoding result in Lines 15–17.
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Algorithm 12: Decode((y1, y2, . . . , yn))

Input: the received vector (y1, y2, . . . , yn) ∈ Yn
Output: the decoded codeword (x̂1, x̂2, . . . , x̂n) ∈ {0, 1}n

1 for λ ∈ {1, 2, . . . ,m} do
2 ND[λ]← NB[λ]← 0

3 Lc ← 1
4 P[1, 1]← allocate_prob(1)
5 for β ∈ {1, 2, . . . , n/2} do
6 for a ∈ {0, 1}, b ∈ {0, 1} do
7 P[1, 1][β, a, b]←W (yβ|a+ b) ·W (yβ+n/2|b)

8 decode_channel(1, 1) . Recursive decoding
9 max score← 0

10 max `← 0
11 for ` ∈ {1, 2, . . . , Lc} do
12 if score[`] ≥ max score then
13 max score← score[`]
14 max `← `

15 for β = 1, 2, . . . , n/2 do
16 x̂β ← R[max `, 1][β] + R[max `, 1][β + n/2]
17 x̂β+n/2 ← R[max `, 1][β + n/2]

18 return (x̂1, x̂2, . . . , x̂n)

The recursive decoding function decode_channel in Algorithm 13 has two branches. If λ = m,
we call the function decode_boundary_channel in Algorithm 17. If λ < m, we call the function
decode_original_channel in Algorithm 18. In Algorithms 17–18, we only decode (X

(λ)
i,β , 1 ≤

β ≤ 2m−λ) if i ≤ 2λ − 2; we decode both (X
(λ)
i,β , 1 ≤ β ≤ 2m−λ) and (X

(λ)
i+1,β, 1 ≤ β ≤ 2m−λ) if

i = 2λ − 1. The following lemma further explains how Algorithms 13,17–18 work.

Lemma 5. Suppose that 1 ≤ λ ≤ m and 1 ≤ i ≤ 2λ−1. Before we call the function decode_channel
in Algorithm 13 with input parameters (λ, i), the pointer P[`, λ] satisfies that

P[`, λ][β, a, b] = V
(2λ)
i (ô(`,λ)

i,β |a, b) for all 1 ≤ ` ≤ Lc, 1 ≤ β ≤ 2m−λ and a, b ∈ {0, 1}. (39)

After the function decode_channel(λ, i) in Algorithm 13 returns, the pointer R[`, λ] satisfies that

R[`, λ][β] = x̂
(`,λ)
i,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ. (40)

Moreover, if i = 2λ − 1, then the pointer R[`, λ] further satisfies that

R[`, λ][β + 2m−λ] = x̂
(`,λ)
i+1,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ. (41)

Proof. We first prove (40)–(41) by induction. Algorithm 17 deals with the base case λ = m. Recall from
(27) that X(m)

i,1 = X
(n)
i and X

(m)
i+1,1 = X

(n)
i+1 when λ = m. By (25), we further obtain X

(m)
i,1 = Ui and

X
(m)
i+1,1 = Ui+1. The discussion below is divided into two cases. Case (1) i ≤ n−2: If Ui is a frozen bit,

then Line 11 of Algorithm 17 immediately implies (40). If Ui is an information bit, then we explore both
decoding paths Ui = 0 and Ui = 1 for every list element, where the variable a in Lines 4–6 represents
the (possible) value of Ui. The question mark “?” in Line 6 means that we do not need to decode Ui+1

when i ≤ n − 2. Since we expand the current list size by a factor of 2 in Lines 4–6, the current list
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size might exceed the prescribed upper bound L. In this case, we prune the list according to score[`] in
Lines 29–44. The variables a and b in Lines 29–44 represent the decoded values of Ui and Ui+1 in each
list element, respectively. In Line 42, we use R̄[`,m][1] to temporarily store the decoding result of Ui in
the `th list element, and we use R̄[`,m][2] to temporarily store the decoding result of Ui+1 in the `th list
element. Next we swap R̄ and R in Line 44, so (40)–(41) are satisfied. Case (2) i = n− 1: This case is
handled in Lines 12–28. Note that Un−1 and Un in Lines 17,21,25 refer to their frozen values (or true
values). The argument for Case (2) is similar to Case (1), and we do not repeat it here.

For the inductive step, we assume that (40)–(41) hold for λ+1 and prove them for λ. By this induction
hypothesis, after executing Lines 1–5 of Algorithm 18, we have

H[`, λ+ 1][β] = x̂
(`,λ+1)
2i−1,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.

In Line 1, we set nc = 2λ. We again divide the discussion into two cases. Case (1) i ≤ nc − 2: In this
case, we only need to prove (40). After executing Lines 7–10 and Line 14, we have

temp[β] = x̂
(`,λ+1)
2i,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.

Since nc = 2λ, we have n/(2nc) = 2m−λ−1. Therefore, Lines 18–19 of Algorithm 18 become (34).
Combining (34) with (35), we finish the proof of (40) for Case (1). Case (2) i = nc − 1: In this case,
we need to prove both (40) and (41). The proof of (40) is exactly the same as Case (1). To prove (41),
we observe that if i = nc − 1, then 2i + 1 = 2nc − 1 = 2λ+1 − 1. Then by the induction hypothesis,
after executing Line 24, we have

R[`, λ+ 1][β] = x̂
(`,λ+1)
2i+1,β , R[`, λ+ 1][β + 2m−λ−1] = x̂

(`,λ+1)
2i+2,β

for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.

Therefore, Lines 32–34 become

R[`, λ][β + 2m−λ] = x̂
(`,λ+1)
2i+1,β + x̂

(`,λ+1)
2i+2,β , R[`, λ][β + 2m−λ−1 + 2m−λ] = x̂

(`,λ+1)
2i+2,β

for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.
(42)

Replacing i with i+ 1 in (35) we obtain

x̂
(`,λ)
i+1,β = x̂

(`,λ+1)
2i+1,β + x̂

(`,λ+1)
2i+2,β , x̂

(`,λ)
i+1,β+2m−λ−1 = x̂

(`,λ+1)
2i+2,β

for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.

Combining this with (42), we complete the proof of (41).
Next we prove (39) by induction. This time the base case is λ = 1, and this case only occurs once in

Line 8 of Algorithm 12 during the whole decoding procedure. By (18), we have V (2)
1 (yβ, yβ+n/2|a, b) =

W (yβ|a+ b) ·W (yβ+n/2|b). Therefore, Lines 5–7 of Algorithm 12 immediately imply (39) for λ = 1.
For the inductive step, we assume that (39) holds for λ and prove it for λ + 1. By this induction

hypothesis, (39) holds for λ when we execute Line 2 of Algorithm 18. In other words, the array associated
with the pointer P[`, λ] stores the transition probabilities of V (2λ)

i . By Lemma 1, V (2λ+1)
2i−1 is the “O”

transform of V (2λ)
i . The function calculate_O_transform(λ+ 1) calculates the “O” transform of

V
(2λ)
i and stores the results in the array associated with the pointer P[`, λ+ 1], so (39) holds before we

call decode_channel in Line 3 of Algorithm 18. Again by Lemma 1, V (2λ+1)
2i is the “♦” transform

of V (2λ)
i . The function calculate_♦_transform(λ + 1) in Line 7 of Algorithm 18 calculates the

“♦” transform of V (2λ)
i and stores the results in the array associated with the pointer P[`, λ+ 1], so (39)

holds before we call decode_channel in Line 8 of Algorithm 18. Using exactly the same method,
we can show that (39) also holds before we call decode_channel in Line 24 of Algorithm 18.
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Algorithm 13: decode_channel(λ, i)

Input: layer λ ∈ {1, 2, . . . ,m} and index i ∈ {1, 2, . . . , 2λ − 1}
1 if λ = m then
2 decode_boundary_channel(i) . Algorithm 17
3 else
4 decode_original_channel(λ, i) . Algorithm 18

5 ND[λ]← 0
6 return

During the whole decoding procedure, the function decode_channel is only called in Line 8 of
Algorithm 12 and Lines 3,8,24 of Algorithm 18. We have proved that (39) holds for all four places. This
completes the proof of the lemma.

Before proceeding further, let us explain the meaning of the boolean variable “flag” in Algorithm 17.
flag takes value 0 if we do not expand the decoding list in the decoding procedure, and it takes value
1 otherwise. In Algorithm 17, we do not expand the decoding list if and only if we only decode frozen
bits. There are two such cases, one in Lines 7–11 and the other in Lines 13–17. We set the variable flag
to be 0 in both cases. In all the other cases, we need to decode at least one information bit, and we need
to expand the list size by a factor of at least 2, so we set the variable flag to be 1 in all the other cases.
If flag= 0, then the list size does not change, and we do not need to prune the list. Therefore, we only
prune the list when flag= 1; see Line 29.

Remark 1. The calculations in Line 6 of Algorithm 14 correspond to the ”O” transform in Fig. 3 and
the first equation in (14). The calculations in Line 7 of Algorithm 15 correspond to the ”♦” transform
in Fig. 3 and the second equation in (14). The calculations in Lines 7-8 of Algorithm 16 correspond to
the ”M” transform in Fig. 3 and the third equation in (14). This is why we say that the SCL decoder
presented in this subsection is based on the DB polar transform.

Algorithm 14: calculate_O_transform(λ)

Input: layer 2 ≤ λ ≤ m
Output: Update the entries pointed by P[`, λ], 1 ≤ ` ≤ Lc

1 n̄c ← 2m−λ

2 for ` ∈ {1, 2, . . . , Lc} do
3 P[`, λ]← allocate_prob(λ)
4 for β ∈ {1, 2, . . . , n̄c}, r1, r2 ∈ {0, 1} do
5 β′ ← β + n̄c
6 P[`, λ][β, r1, r2]← 1

4

∑
r3,r4∈{0,1} P[`, λ− 1][β, r1 + r2, r3 + r4]P[`, λ− 1][β′, r2, r4]

7 return

The next lemma shows that the data structures D and B are large enough to store the transition
probabilities and the decoding results of the intermediate vectors throughout the decoding procedure.

Lemma 6. Throughout the whole decoding procedure, we have ND[λ] ≤ L and NB[λ] ≤ 4L for all
1 ≤ λ ≤ m. The space complexity of the SCL decoder is O(Ln).

Proof. The proof of ND[λ] ≤ L is the same as Lemma 4, and we do not repeat it. Now we prove NB[λ] ≤
4L. As we can see from Algorithms 13,17–18, each time we call the function decode_channel(λ, i),
the value of NB[λ] increases by Lc if i ≤ 2λ − 2, and it increases by 2Lc if i = 2λ − 1. Since the input
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Algorithm 15: calculate_♦_transform(λ)

Input: layer 2 ≤ λ ≤ m
Output: Update the entries pointed by P[`, λ], 1 ≤ ` ≤ Lc

1 n̄c ← 2m−λ

2 for ` ∈ {1, 2, . . . , Lc} do
3 P[`, λ]← allocate_prob(λ)
4 for β ∈ {1, 2, . . . , n̄c}, r2, r3 ∈ {0, 1} do
5 r1 ← H[`, λ][β]
6 β′ ← β + n̄c
7 P[`, λ][β, r2, r3]← 1

4

∑
r4∈{0,1} P[`, λ− 1][β, r1 + r2, r3 + r4]P[`, λ− 1][β′, r2, r4]

8 return

Algorithm 16: calculate_M_transform(λ)

Input: layer 2 ≤ λ ≤ m
Output: Update the entries pointed by P[`, λ], 1 ≤ ` ≤ Lc

1 n̄c ← 2m−λ

2 for ` ∈ {1, 2, . . . , Lc} do
3 P[`, λ]← allocate_prob(λ)
4 for β ∈ {1, 2, . . . , n̄c}, r3, r4 ∈ {0, 1} do
5 r1 ← H[`, λ][β], r2 ← R[`, λ− 1][β]
6 β′ ← β + n̄c
7 P[`, λ][β, r3, r4]←
8 1

4P[`, λ− 1][β, r1 + r2, r3 + r4]P[`, λ− 1][β′, r2, r4]

9 return

i in Algorithm 18 satisfies i ≤ 2λ − 1, we have 2i − 1 < 2i ≤ 2λ+1 − 2. Therefore, after executing
Line 3 of Algorithm 18, the value of NB[λ+ 1] increases by at most L. Similarly, after executing Line 8
of Algorithm 18, the value of NB[λ + 1] also increases by at most L. If i = 2λ − 1, we will execute
Line 24 of Algorithm 18. In this case, 2i+ 1 = 2λ+1− 1, so the value of NB[λ+ 1] increases by at most
2L. Therefore, before we reset NB[λ+ 1] to 0 in Line 35 of Algorithm 18, its value is at most 4L. This
proves NB[λ] ≤ 4L.

The proof of the space complexity is the same as Lemma 4.

In TABLE I, we list the upper bound of NB[λ + 1] at the starting point and the end of the function
decode_channel(λ+ 1, j). The starting point refers to the moment we call decode_channel(λ+
1, j), and the end refers to the moment this function returns. These upper bounds come from the proof
of Lemma 6.

cases start end

1 ≤ i ≤ 2λ − 1
j = 2i− 1 0 L
j = 2i L 2L

i = 2λ − 1 j = 2i+ 1 2L 4L

TABLE I: The upper bound of NB[λ + 1] at the starting point and the end of the function
decode_channel(λ+ 1, j)

Proposition 3. The decoding time complexity of standard polar codes based on the DB polar transform
is O(Ln log(n)).
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Fig. 9: Recursive decoding of the ABS polar code defined in Fig. 7. We put V (2λ),ABS
i in a black

block (e.g., V
(2),ABS

1 ) if 2i /∈ I(2λ+1). In this case, decode_channel(λ, i) in Algorithm 19
calls decode_original_channel(λ, i). We put V

(2λ),ABS
i in a red block (e.g., V (4),ABS

2 ) if
2i ∈ I(2λ+1). In this case, decode_channel(λ, i) calls decode_swapped_channel(λ, i). An
arrow from V

(2λ),ABS
i to V (2λ1 ),ABS

i1
means that decode_channel(λ1, i1) is called in the execution of

decode_channel(λ, i). For example, we call decode_channel with input parameters (2, 1), (2, 2)
and (2, 3) in the execution of decode_channel(1, 1).

C. SCL decoder for ABS polar codes
In this subsection, we present the new SCL decoder for ABS polar codes. This decoder is based on

the DB polar transform in Fig. 3 and the SDB polar transform in Fig. 5. Since we have the permutation
matrices PABS

2 ,PABS
4 , . . . ,PABS

n in the ABS polar code construction, we need to replace the recursive
relation (26) with

(X
(2λ)
1 , X

(2λ)
2 , . . . , X(2λ)

n ) = (X
(2λ+1)
1 , X

(2λ+1)
2 , . . . , X(2λ+1)

n )·
(
(PABS

2λ+1(I2λ ⊗Gpolar
2 ))⊗ I2m−λ−1

)
(43)

in order to define the intermediate vectors in ABS polar codes. We still use the notation in (27) and (31).
The data structures in this subsection are essentially the same as the ones in the previous subsection.

There are only two minor differences:
(i) We change the range of the index s in (37) from 1 ≤ s ≤ 4L to 1 ≤ s ≤ 6L.

(ii) In the integer array NB, each entry NB[λ] takes value in {0, 1, 2, . . . , 6L} instead of {0, 1, 2, . . . , 4L}.
For the SCL decoder presented in this subsection, the fields of the `th list element are the same as the
ones listed in (38).

The following functions are shared by the decoder in this subsection and the decoders in previous
sections:
(1) allocate_prob in Algorithm 4
(2) allocate_bit in Algorithm 11
(3) decode in Algorithm 12. This is the main function of the decoder.
(4) calculate_O_transform in Algorithm 14
(5) calculate_♦_transform in Algorithm 15
(6) calculate_M_transform in Algorithm 16
(7) decode_boundary_channel in Algorithm 17

The following functions are solely used in this subsection. More precisely, either they appeared in
previous subsections with the same name but with different implementations or they did not appear in
previous subsections at all.
(1) decode_channel in Algorithm 19. In Section V-B, we also have the function decode_channel

in Algorithm 13, but the implementations in these two algorithms are different.
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(2) decode_original_channel in Algorithm 20. In Section V-B, we also have the function decode_original_channel
in Algorithm 18, but the implementations in these two algorithms are different.

(3) decode_swapped_channel in Algorithm 21. This function did not appear in previous subsec-
tions.

(4) calculate_H_transform in Algorithm 22. This function did not appear in previous subsections.
(5) calculate_�_transform in Algorithm 23. This function did not appear in previous subsections.
(6) calculate_N_transform in Algorithm 24. This function did not appear in previous subsections.

Although this subsection and the previous subsection share the same main function decode in
Algorithm 12, the function decode_channel in Line 8 of Algorithm 12 has different implementations
in these two subsections. More specifically, the function decode_channel in Algorithm 19 has one
more branch than decode_channel in Algorithm 13. The additional branch decodes swapped adjacent
bits.

Algorithm 20 and Algorithm 18 are the implementations of decode_original_channel for
this subsection and the previous subsection, respectively. The difference between Algorithm 20 and
Algorithm 18 is that we calculate the O transform only when 2(i − 1) /∈ I(2λ+1) in Algorithm 20;
see Lines 2–6. In contrast, we always calculate the O transform in Algorithm 18; see Lines 2–5.
The reason behind this difference is given in Lemma 2: When 2(i − 1) ∈ I(2λ+1), we only have
V

(2λ+1),ABS
2i−1 =

(
V

(2λ),ABS
i−1

)N, but V (2λ+1),ABS
2i−1 =

(
V

(2λ),ABS
i

)O does not hold, so we do not calculate
the O transform in this case.

In Fig. 9, we use the ABS polar code defined in Fig. 7 as a concrete example to illustrate the recursive
structure of the function decode_channel in Algorithm 19.

Lemma 7. Suppose that 1 ≤ λ ≤ m and 1 ≤ i ≤ 2λ−1. Before we call the function decode_channel
in Algorithm 19 with input parameters (λ, i), the pointer P[`, λ] satisfies that

P[`, λ][β, a, b] = V
(2λ)
i (ô(`,λ)

i,β |a, b) for all 1 ≤ ` ≤ Lc, 1 ≤ β ≤ 2m−λ and a, b ∈ {0, 1}. (44)

After the function decode_channel(λ, i) in Algorithm 19 returns, the pointer R[`, λ] satisfies that

R[`, λ][β] = x̂
(`,λ)
i,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ. (45)

Moreover, if i = 2λ − 1, then the pointer R[`, λ] further satisfies that

R[`, λ][β + 2m−λ] = x̂
(`,λ)
i+1,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ. (46)

Proof. The proof of (44) is the same as that of (39). Here we only prove (45)–(46) by induction. The
proof of the base case λ = m relies on the analysis of Algorithm 17, which was already done in the
proof of Lemma 5. For the inductive step, we assume that (45)–(46) hold for λ+ 1 and prove them for
λ. This requires us to analyze Algorithm 20 for 2i /∈ I(2λ+1) and analyze Algorithm 21 for 2i ∈ I(2λ+1).
Algorithm 20 and Algorithm 18 are essentially the same. Since we have already analyzed Algorithm 18
in the proof of Lemma 5, we omit the analysis of Algorithm 20 here. We will focus on the analysis of
Algorithm 21 for the rest of this proof.

By the induction hypothesis, after executing Lines 1–5 of Algorithm 21, we have

H[`, λ+ 1][β] = x̂
(`,λ+1)
2i−1,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.

After executing Lines 7–10 and Lines 17,27, we have

temp[β] = x̂
(`,λ+1)
2i,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.

After executing Lines 12–13, we have

R[`, λ+ 1][β] = x̂
(`,λ+1)
2i+1,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1. (47)
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In Line 1, we set nc = 2λ. We again divide the discussion into two cases. Case (1) i ≤ nc − 2: In this
case, we only need to prove (45). Since nc = 2λ, we have n/(2nc) = 2m−λ−1. Therefore, Lines 21–22
of Algorithm 21 become

R[`, λ][β] = x̂
(`,λ+1)
2i−1,β + x̂

(`,λ+1)
2i+1,β , R[`, λ][β + 2m−λ−1] = x̂

(`,λ+1)
2i+1,β

for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.
(48)

Equations (43) and (27) together imply that if 2i ∈ I(2λ+1), then

X
(λ)
i,β = X

(λ+1)
2i−1,β +X

(λ+1)
2i+1,β, X

(λ)
i,β+2m−λ−1 = X

(λ+1)
2i+1,β for all 1 ≤ β ≤ 2m−λ−1, (49)

X
(λ)
i+1,β = X

(λ+1)
2i,β +X

(λ+1)
2i+2,β, X

(λ)
i+1,β+2m−λ−1 = X

(λ+1)
2i+2,β for all 1 ≤ β ≤ 2m−λ−1. (50)

(49) further implies that

x̂
(`,λ)
i,β = x̂

(`,λ+1)
2i−1,β + x̂

(`,λ+1)
2i+1,β , x̂

(`,λ)
i,β+2m−λ−1 = x̂

(`,λ+1)
2i+1,β

for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.

Combining this with (48), we complete the proof of (45) for Case (1). Case (2) i = nc− 1: In this case,
we need to prove both (45) and (46). The proof of (45) is exactly the same as Case (1). To prove (46),
we observe that if i = nc − 1, then 2i + 1 = 2nc − 1 = 2λ+1 − 1. Then by the induction hypothesis,
after executing Lines 12–13, we have not only (47) but also

R[`, λ+ 1][β + 2m−λ−1] = x̂
(`,λ+1)
2i+2,β for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.

Therefore, Lines 33–35 become

R[`, λ][β + 2m−λ] = x̂
(`,λ+1)
2i,β + x̂

(`,λ+1)
2i+2,β , R[`, λ][β + 2m−λ−1 + 2m−λ] = x̂

(`,λ+1)
2i+2,β

for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.
(51)

Equation (50) implies that

x̂
(`,λ)
i+1,β = x̂

(`,λ+1)
2i,β + x̂

(`,λ+1)
2i+2,β , x̂

(`,λ)
i+1,β+2m−λ−1 = x̂

(`,λ+1)
2i+2,β

for all 1 ≤ ` ≤ Lc and 1 ≤ β ≤ 2m−λ−1.

Combining this with (51), we complete the proof of (46).

The next lemma shows that the data structures D and B are large enough to store the transition
probabilities and the decoding results of the intermediate vectors throughout the decoding procedure.

Lemma 8. Throughout the whole decoding procedure, we have ND[λ] ≤ L and NB[λ] ≤ 6L for all
1 ≤ λ ≤ m. The space complexity of the SCL decoder is O(Ln).

Proof. In TABLE II, we use the method in the proof of Lemma 6 to obtain the upper bound of NB[λ+ 1]
at the starting point and the end of the function decode_channel(λ + 1, j). The upper bounds in
TABLE II immediately imply NB[λ] ≤ 6L. The proof of ND[λ] ≤ L is the same as Lemma 4, and we do
not repeat it.

The proof of the space complexity is the same as Lemma 4.
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cases start end

2i ∈ I(2
λ+1)

1 ≤ i ≤ 2λ − 1
j = 2i− 1 0 L
j = 2i L 2L

1 ≤ i < 2λ − 1
j = 2i+ 1

2L 3L
i = 2λ − 1 2L 4L

2(i− 1) ∈ I(2
λ+1) 1 ≤ i ≤ 2λ − 1 j = 2i 3L 4L

i = 2λ − 1 j = 2i+ 1 4L 6L

2(i− 1) /∈ I(2
λ+1), 2i /∈ I(2

λ+1) 1 ≤ i ≤ 2λ − 1
j = 2i− 1 0 L
j = 2i L 2L

i = 2λ − 1 j = 2i+ 1 2L 4L

TABLE II: The upper bound of NB[λ + 1] at the starting point and the end of the function
decode_channel(λ+ 1, j)

Proposition 4. The decoding time complexity of ABS polar codes is O(Ln log(n)).
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Algorithm 17: decode_boundary_channel(i)

Input: index i in the last layer (λ = m)
1 flag ← 1
2 if i ≤ n− 2 then . Only decode Ui
3 if i ∈ A then . Ui is an information bit
4 for ` ∈ {1, 2, . . . , Lc}, a ∈ {0, 1} do
5 prob← 1

2

∑
b∈{0,1} P[`,m][1, a, b]

6 PriQue.push(`, a, “?”,prob)

7 else . Ui is a frozen bit
8 flag ← 0
9 for ` ∈ {1, 2, . . . , Lc} do

10 R[`,m]← allocate_bit(m, 1)
11 R[`,m][1]← frozen value of Ui

12 else . Decode both Un−1 and Un.
13 if n− 1, n /∈ A then
14 flag ← 0 . Un−1 and Un are both frozen bits
15 for ` ∈ {1, 2, . . . , Lc} do
16 R[`,m]← allocate_bit(m, 2)
17 (R[`,m][1], R[`,m][2])← (Un−1, Un)

18 else if n− 1 ∈ A, n /∈ A then
19 . information bit Un−1, frozen bit Un
20 for ` ∈ {1, 2, . . . , Lc}, a ∈ {0, 1} do
21 PriQue.push(`, a, Un, P[`,m][1, a, Un])

22 else if n− 1 /∈ A, n ∈ A then
23 . frozen bit Un−1, information bit Un
24 for ` ∈ {1, 2, . . . , Lc}, b ∈ {0, 1} do
25 PriQue.push(`, Un−1, b, P[`,m][1, Un−1, b])

26 else . Un−1 and Un are both information bits
27 for ` ∈ {1, 2, . . . , Lc}, a, b ∈ {0, 1} do
28 PriQue.push(`, a, b, P[`,m][1, a, b])

29 if flag = 1 then
30 Lc ← min{L,PriQue.size()}
31 for ` ∈ {1, 2, . . . , Lc} do
32 (`′, a, b, score[`])← PriQue.pop()
33 for λ ∈ {1, 2, . . . ,m− 1} do
34 P̄[`, λ]← P[`′, λ]
35 R̄[`, λ]← R[`′, λ]
36 H̄[`, λ]← H[`′, λ]

37 if i < n− 1 then
38 R̄[`,m]← allocate_bit(m, 1)
39 R̄[`,m][1]← a
40 else
41 R̄[`,m]← allocate_bit(m, 2)
42 (R̄[`,m][1], R̄[`,m][2])← (a, b)

43 PriQue.clear()
44 swap(P̄, P), swap(R̄, R), swap(H̄, H)

45 return
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Algorithm 18: decode_original_channel(λ, i)

Input: λ ∈ {1, 2, . . . ,m} and index i satisfying 1 ≤ i ≤ 2λ − 1

1 nc ← 2λ . V
(2nc)

2i−1 = (V
(nc)
i )O

2 calculate_O_transform(λ+ 1)
3 decode_channel(λ+ 1, 2i− 1)
4 for ` ∈ {1, 2, . . . , Lc} do
5 H[`, λ+ 1]← R[`, λ+ 1]

6 . V
(2nc)

2i = (V
(nc)
i )♦

7 calculate_♦_transform(λ+ 1)
8 decode_channel(λ+ 1, 2i)
9 for ` ∈ {1, 2, . . . , Lc} do

10 R[`, λ]← R[`, λ+ 1]

11 if i ≤ nc − 2 then
12 . Only decode one bit X(λ)

i,β for each β
13 for ` ∈ {1, 2, . . . , Lc} do
14 temp← R[`, λ]
15 R[`, λ]← allocate_bit(λ, 1)
16 for β ∈ {1, 2, . . . , n/(2nc)} do
17 β′ ← β + n/(2nc)
18 R[`, λ][β]← H[`, λ+ 1][β] + temp[β]
19 R[`, λ][β′]← temp[β]

20 else
21 . Decode two bits X(λ)

nc−1,β, X
(λ)
nc,β

for each β

22 . V
(2nc)

2i+1 = (V
(nc)
i )M

23 calculate_M_transform(λ+ 1)
24 decode_channel(λ+ 1, 2i+ 1)
25 for ` ∈ {1, 2, . . . , Lc} do
26 temp← R[`, λ]
27 R[`, λ]← allocate_bit(λ, 2)
28 for β ∈ {1, 2, . . . , n/(2nc)} do
29 β′ ← β + n/(2nc)
30 R[`, λ][β]← H[`, λ+ 1][β] + temp[β]
31 R[`, λ][β′]← temp[β]
32 R[`, λ][β + n/(nc)]←
33 R[`, λ+ 1][β] + R[`, λ+ 1][β′]
34 R[`, λ][β′ + n/(nc)]← R[`, λ+ 1][β′]

35 NB[λ+ 1]← 0
36 return
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Algorithm 19: decode_channel(λ, i)

Input: layer λ ∈ {1, 2, . . . ,m} and index i ∈ {1, 2, . . . , 2λ − 1}
1 if λ = m then
2 decode_boundary_channel(i) . Algorithm 17
3 else if 2i /∈ I(2λ+1) then
4 decode_original_channel(λ, i) . Algorithm 20

5 else if 2i ∈ I(2λ+1) then
6 decode_swapped_channel(λ, i) . Algorithm 21

7 ND[λ]← 0
8 return
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Algorithm 20: decode_original_channel(λ, i)

Input: λ ∈ {1, 2, . . . ,m} and index i satisfying 1 ≤ i ≤ 2λ − 1 and 2i /∈ I(2λ+1)

1 nc ← 2λ

2 if 2(i− 1) /∈ I(2λ+1) then . V
(2nc)

2i−1 = (V
(nc)
i )O

3 calculate_O_transform(λ+ 1)
4 decode_channel(λ+ 1, 2i− 1)
5 for ` ∈ {1, 2, . . . , Lc} do
6 H[`, λ+ 1]← R[`, λ+ 1]

7 . V
(2nc)

2i = (V
(nc)
i )♦

8 calculate_♦_transform(λ+ 1)
9 decode_channel(λ+ 1, 2i)

10 for ` ∈ {1, 2, . . . , Lc} do
11 R[`, λ]← R[`, λ+ 1]

12 if i ≤ nc − 2 then
13 . Only decode one bit X(λ)

i,β for each β
14 for ` ∈ {1, 2, . . . , Lc} do
15 temp← R[`, λ]
16 R[`, λ]← allocate_bit(λ, 1)
17 for β ∈ {1, 2, . . . , n/(2nc)} do
18 β′ ← β + n/(2nc)
19 R[`, λ][β]← H[`, λ+ 1][β] + temp[β]
20 R[`, λ][β′]← temp[β]

21 else
22 . Decode two bits X(λ)

nc−1,β, X
(λ)
nc,β

for each β

23 . V
(2nc)

2i+1 = (V
(nc)
i )M

24 calculate_M_transform(λ+ 1)
25 decode_channel(λ+ 1, 2i+ 1)
26 for ` ∈ {1, 2, . . . , Lc} do
27 temp← R[`, λ]
28 R[`, λ]← allocate_bit(λ, 2)
29 for β ∈ {1, 2, . . . , n/(2nc)} do
30 β′ ← β + n/(2nc)
31 R[`, λ][β]← H[`, λ+ 1][β] + temp[β]
32 R[`, λ][β′]← temp[β]
33 R[`, λ][β + n/(nc)]←
34 R[`, λ+ 1][β] + R[`, λ+ 1][β′]
35 R[`, λ][β′ + n/(nc)]← R[`, λ+ 1][β′]

36 NB[λ+ 1]← 0
37 return
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Algorithm 21: decode_swapped_channel(λ, i)

Input: λ ∈ {1, 2, . . . ,m} and index i satisfying 1 ≤ i ≤ 2m−λ − 1 and 2i ∈ I(2λ+1).
1 nc ← 2λ . V

(2nc)
2i−1 = (V

(nc)
i )H

2 calculate_H_transform(λ+ 1)
3 decode_channel(λ+ 1, 2i− 1)
4 for ` ∈ {1, 2, . . . , Lc} do
5 H[`, λ+ 1]← R[`, λ+ 1]

6 . V
(2nc)

2i = (V
(nc)
i )�

7 calculate_�_transform(λ+ 1)
8 decode_channel(λ+ 1, 2i)
9 for ` ∈ {1, 2, . . . , Lc} do

10 R[`, λ]← R[`, λ+ 1]

11 . V
(2nc)

2i+1 = (V
(nc)
i )N

12 calculate_N_transform(λ+ 1)
13 decode_channel(λ+ 1, 2i+ 1)
14 if i ≤ nc − 2 then
15 . Only decode one bit X(λ)

i,β for each β
16 for ` ∈ {1, 2, . . . , Lc} do
17 temp← R[`, λ]
18 R[`, λ]← allocate_bit(λ, 1)
19 for β ∈ {1, 2, . . . , n/(2nc)} do
20 β′ ← β + n/(2nc)
21 R[`, λ][β]← H[`, λ+ 1][β] + R[`, λ+ 1][β]
22 R[`, λ][β′]← R[`, λ+ 1][β]

23 H[`, λ+ 1]← temp

24 else
25 . Decode two bits X(λ)

nc−1,β, X
(λ)
nc,β

for each β
26 for ` ∈ {1, 2, . . . , Lc} do
27 temp← R[`, λ]
28 R[`, λ]← allocate_bit(λ, 2)
29 for β ∈ {1, 2, . . . , n/(2nc)} do
30 β′ ← β + n/(2nc)
31 R[`, λ][β]← H[`, λ+ 1][β] + R[`, λ+ 1][β]
32 R[`, λ][β′]← R[`, λ+ 1][β]
33 R[`, λ][β + n/(nc)]←
34 temp[β] + R[`, λ+ 1][β′]
35 R[`, λ][β′ + n/(nc)]← R[`, λ+ 1][β′]

36 NB[λ+ 1]← 0

37 return
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Algorithm 22: calculate_H_transform(λ)

Input: layer 2 ≤ λ ≤ m
Output: Update the entries pointed by P[`, λ], 1 ≤ ` ≤ Lc

1 n̄c ← 2m−λ

2 for ` ∈ {1, 2, . . . , Lc} do
3 P[`, λ]← allocate_prob(λ)
4 for β ∈ {1, 2, . . . , n̄c}, r1, r2 ∈ {0, 1} do
5 β′ ← β + n̄c
6 P[`, λ][β, r1, r2]← 1

4

∑
r3,r4∈{0,1} P[`, λ− 1][β, r1 + r3, r2 + r4]P[`, λ− 1][β′, r3, r4]

7 return

Algorithm 23: calculate_�_transform(λ)

Input: layer 2 ≤ λ ≤ m
Output: Update the entries pointed by P[`, λ], 1 ≤ ` ≤ Lc

1 n̄c ← 2m−λ

2 for ` ∈ {1, 2, . . . , Lc} do
3 P[`, λ]← allocate_prob(λ)
4 for β ∈ {1, 2, . . . , n̄c}, r2, r3 ∈ {0, 1} do
5 r1 ← H[`, λ][β]
6 β′ ← β + n̄c
7 P[`, λ][β, r2, r3]← 1

4

∑
r4∈{0,1} P[`, λ− 1][β, r1 + r3, r2 + r4]P[`, λ− 1][β′, r3, r4]

8 return

Algorithm 24: calculate_N_transform(λ)

Input: layer 2 ≤ λ ≤ m
Output: Update the entries pointed by P[`, λ], 1 ≤ ` ≤ Lc

1 n̄c ← 2m−λ

2 for ` ∈ {1, 2, . . . , Lc} do
3 P[`, λ]← allocate_prob(λ)
4 for β ∈ {1, 2, . . . , n̄c}, r3, r4 ∈ {0, 1} do
5 r1 ← H[`, λ][β], r2 ← R[`, λ− 1][β]
6 β′ ← β + n̄c
7 P[`, λ][β, r3, r4]←
8 1

4P[`, λ− 1][β, r1 + r3, r2 + r4]P[`, λ− 1][β′, r3, r4]

9 return
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VI. SIMULATION RESULTS

A. Scaling exponent over binary erasure channels
In this subsection, we empirically calculate the scaling exponents of ABS polar codes and standard

polar codes over a BEC with erasure probability 0.5.
When the original channel W is a general BMS channel, we can only obtain an approximation of the

transition probabilities of the adjacent-bits-channels through quantization, as discussed in Section III-E.
However, when the original channel W is a BEC, we are able to calculate the exact parameters of the
adjacent-bits-channels. To that end, we introduce a class of channels called double-bits-erasure-channels
(DBEC). The input alphabet of a DBEC is {0, 1}2, and the output alphabet is {0, 1, ?}3. For a given
input (u1, u2) ∈ {0, 1}2, the output of the DBEC can only take the following five values
• (u1, u1 + u2, u2) with probability p,
• (u1, ?, ?) with probability q,
• (?, u1 + u2, ?) with probability r,
• (?, ?, u2) with probability s,
• (?, ?, ?) with probability t.

p is the probability of preserving all information in the inputs. q, r, s are the probabilities of preserving
one bit of information in the inputs. t is the probability of erasing all the information. Such a DBEC
is denoted as DBEC(p, q, r, s, t), where the parameters satisfy p + q + r + s + t = 1. Note that DBEC
has been studied in the literature under other names. For example, the authors of [29] call it tetrahedral
erasure channel.

One can show that if the original channel W is a BEC, then all the adjacent-bits-channels in the ABS
polar code construction are DBEC. More precisely, using (22), we can show that if W is a BEC with
erasure probability ε, then

V
(2),ABS

1 = DBEC((1− ε)2, 0, (1− ε)ε, (1− ε)ε, ε2).

Moreover, if an adjacent-bits-channel V = DBEC(p, q, r, s, t), then

V O =DBEC((p+ q)2, 0, (p+ q)(r + s+ t), (r + s+ t)(p+ q), (r + s+ t)2),

V ♦ =DBEC(p2 + 2rp+ 2sp, 2q − q2 + 2pt, 2rs, r2 + s2, 2t(r + s) + t2),

V M =DBEC((p+ r + s)2, 0, (p+ r + s)(q + t), (q + t)(p+ r + s), (q + t)2),

V H =DBEC(p2, q2 + 2pq, r2 + 2pr, s2 + 2ps, 2t− t2 + 2qr + 2qs+ 2rs),

V � =DBEC(p2 + 2pr + 2ps, r2 + s2, 2rs, 2q − q2 + 2pt, t2 + 2rt+ 2rs),

V N =DBEC(2p− p2 + 2qr + 2qs+ 2rs, q2 + 2tq, r2 + 2rt, s2 + 2st, t2).

Combining this with Lemma 2, we can explicitly calculate the parameters of all the adjacent-bits-channels
in the ABS polar code construction when the original channel W is a BEC. After that, we use (19) to
calculate the erasure probabilities of each bit-channel: If V (n),ABS

i = DBEC(p, q, r, s, t), then W (n),ABS
i

is an erasure channel with erasure probability r+ s+ t, and W (n),ABS
i+1 is an erasure channel with erasure

probability q + t.
Let W be a BEC with erasure probability 0.5. For n ∈ {26, 27, . . . , 220}, we define

fpolar(n) :=
1

n
|{i : 1 ≤ i ≤ n, 0.01 ≤ I(W

(n)
i ) ≤ 0.99}|,

fABS(n) :=
1

n
|{i : 1 ≤ i ≤ n, 0.01 ≤ I(W

(n),ABS
i ) ≤ 0.99}|.

By definition, fpolar(n) is the fraction of “unpolarized” bit-channels in the length-n standard polar code
constructed for the BEC W , and fABS(n) is the fraction of “unpolarized” bit-channels in the length-n
ABS polar code constructed for the BEC W . A bit-channel is said to be unpolarized if its capacity is
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n fpolar(n) fABS(n)
64 0.53125000 0.50000000

128 0.43750000 0.42187500
256 0.37500000 0.34375000
512 0.30078125 0.27343750

1024 0.25390625 0.22070312
2048 0.20605469 0.18164062
4096 0.17041016 0.15136719
8192 0.14208984 0.12329102

16384 0.11755371 0.09936523
32768 0.09674072 0.08087158
65536 0.07995605 0.06542969

131072 0.06613159 0.05333710
262144 0.05499268 0.04324722
524288 0.04529572 0.03502846

1048576 0.03742218 0.02853012

TABLE III: The fractions of “unpolarized” bit-channels in standard polar codes and ABS polar codes
constructed for a BEC with erasure probability ε = 0.5.

(n, k) (256, 77) (256, 128) (256, 179) (512, 154) (512, 256) (512, 358)
ST, L = 32 0.963ms 1.41ms 1.73ms 1.94ms 2.80ms 3.54ms

ABS, L = 20 0.816ms 1.24ms 1.47ms 1.86ms 2.66ms 3.10ms
ABS, L = 32 1.29ms 1.99ms 2.37ms 2.93ms 4.36ms 5.13ms

(n, k) (1024, 307) (1024, 512) (1024, 717) (2048, 614) (2048, 1024) (2048, 1434)
ST, L = 32 4.21ms 5.75ms 7.15ms 9.05ms 11.7ms 14.6ms

ABS, L = 20 4.32ms 5.90ms 6.67ms 10.6ms 12.6ms 14.0ms
ABS, L = 32 6.63ms 9.41ms 10.8ms 16.7ms 20.1ms 23.2ms

TABLE IV: Comparison of the decoding time over the binary-input AWGN channel with Eb/N0 = 2 dB.
The row starting with (n, k) lists the code length and code dimension we have tested. The row starting
with “ST, L = 32” lists the decoding time of the CRC-aided SCL decoder for standard polar codes with
list size 32. The row starting with “ABS, L = 20” lists the decoding time of the CRC-aided SCL decoder
for ABS polar codes with list size 20. The row starting with “ABS, L = 32” lists the decoding time of
the CRC-aided SCL decoder for ABS polar codes with list size 32. The time unit “ms” is 10−3s.

between 0.01 and 0.99. The values of fpolar(n) and fABS(n) for n ∈ {26, 27, . . . , 220} are listed in
TABLE III.

In order to estimate the scaling exponents, we approximate fpolar(n) as fpolar(n) ≈ c1n
−γ1 , and we

approximate fABS(n) as fABS(n) ≈ c2n
−γ2 . By taking the logarithm on both sides of the equation and

running linear regression, we obtain that fpolar(n) ≈ 1.67n−0.274 and fABS(n) ≈ 1.76n−0.297. Therefore,
the scaling exponent for standard polar codes is µpolar ≈ 1/0.274 = 3.65, and the scaling exponent for
ABS polar codes is µABS ≈ 1/0.297 = 3.37.

The above empirical calculations of scaling exponents confirm that the polarization of ABS polar
codes is indeed faster than standard polar codes. An interesting problem for future research is to obtain
provable and tight upper bounds on the scaling exponent of ABS polar codes. Another related question
is to analyze the code distance of ABS polar codes and compare it with standard polar codes.

B. Simulation results over binary-input AWGN channels
We conduct extensive simulations to compare the performance of the ABS polar codes and the standard

polar codes over the binary-input AWGN channel with various choices of parameters. We have tested the
performance for 4 different choices of code length 256, 512, 1024, 2048. For each choice of code length,
we test 3 different code rates 0.3, 0.5 and 0.7. The comparison of decoding error probability is given in
Fig. 10 and Fig. 11. Specifically, Fig. 10 contains the plots for code length 256 and 512; Fig. 11 contains
the plots for code length 1024 and 2048. The comparison of decoding time is given in Table IV.
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(a) length 256, dimension 77
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(b) length 256, dimension 128
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(c) length 256, dimension 179
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(d) length 512, dimension 154
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(e) length 512, dimension 256

1.5 2 2.5 3 3.5

Signal-to-noise ratio (E
b

/N
0
) [dB]

10
-4

10
-3

10
-2

10
-1

W
o
rd

  
E

rr
o
r 

 R
a
te

ST,    L=32, CRC-0

ABS, L=20, CRC-0

ABS, L=32, CRC-0

ST,    L=32, CRC-8

ABS, L=20, CRC-8

ABS, L=32, CRC-8

(f) length 512, dimension 358

Fig. 10: Comparison between ABS polar codes and standard polar codes over the binary-input AWGN
channel. The legend “ABS” refers to ABS polar codes, and “ST” refers to standard polar codes. “CRC-0”
means that we do not use CRC. The nonzero CRC length is chosen from the set {4, 8, 12, 16, 20, 24} to
minimize the decoding error probability. The parameter L is the list size. For standard polar codes, we
always choose L = 32. For ABS polar codes, we test two different list sizes L = 20 and L = 32.
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(a) length 1024, dimension 307
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(b) length 1024, dimension 512
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(c) length 1024, dimension 717
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(d) length 2048, dimension 614
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(e) length 2048, dimension 1024
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(f) length 2048, dimension 1434

Fig. 11: Comparison between ABS polar codes and standard polar codes over the binary-input AWGN
channel. The legend “ABS” refers to ABS polar codes, and “ST” refers to standard polar codes. “CRC-0”
means that we do not use CRC. The nonzero CRC length is chosen from the set {4, 8, 12, 16, 20, 24} to
minimize the decoding error probability. The parameter L is the list size. For standard polar codes, we
always choose L = 32. For ABS polar codes, we test two different list sizes L = 20 and L = 32.
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In Fig. 10 and Fig. 11, for each choice of code length and code dimension, we compare the decoding
error probability of the following 6 decoders: (1) SCL decoder for standard polar codes with list size 32
and no CRC; (2) SCL decoder for ABS polar codes with list size 20 and no CRC; (3) SCL decoder for
ABS polar codes with list size 32 and no CRC; (4) SCL decoder for standard polar codes with list size
32 and optimal CRC length; (5) SCL decoder for ABS polar codes with list size 20 and optimal CRC
length; (6) SCL decoder for ABS polar codes with list size 32 and optimal CRC length. The optimal
CRC length is chosen from the set {4, 8, 12, 16, 20, 24} to minimize the decoding error probability. For
standard polar codes, we use the classic SCL decoder presented in Section V-A, not the new SCL decoder
presented in Section V-B. For ABS polar codes, we use the SCL decoder presented in Section V-C.

Note that in a previous arXiv version and the ISIT version [1] of this paper, we used a different choice
of CRC length. More specifically, for cases (4)–(6) in the above paragraph, we used CRC length 8 for all
choices of code length and code dimension in the previous versions. In contrast, we use the optimal CRC
length in this version, and the optimal CRC length varies with the code length and the code dimension.

From Fig. 10 and Fig. 11 we can see that the performance of ABS polar codes is consistently better
than standard polar codes if we set the list size to be 32 for the CRC-aided SCL decoders of both codes.
More specifically, for all 12 choices of (n, k), the improvement of ABS polar codes over standard polar
codes ranges from 0.15 dB to 0.3 dB. Even if we reduce the list size of ABS polar codes to be 20
and maintain the list size of standard polar codes to be 32, ABS polar codes still demonstrate better
performance for most choices of parameters, and the improvement over standard polar codes is up to
0.15 dB in this case. Next let us compare the performance of ABS polar codes and standard polar codes
when neither of them uses CRC. When there is no CRC, the performance of ABS polar codes with list
size 20 is more or less the same as that of ABS polar codes with list size 32. Again, ABS polar codes
consistently outperform standard polar codes for all 12 choices of (n, k). This time the improvement
over standard polar codes is up to 1.1 dB.

In Table IV, we only compare the decoding time of the SCL decoders with CRC length 8. From
Table IV, we can see that the decoding time of the SCL decoder for ABS polar codes with list size 20
is more or less the same as the decoding time of the SCL decoder for standard polar codes with list size
32. More precisely, for 8 out of 12 choices of (n, k), the SCL decoder for ABS polar codes with list
size 20 runs faster. For the other 4 choices of (n, k), the SCL decoder for standard polar codes with list
size 32 runs faster. If we set the list size to be 32 for both the standard polar codes and the ABS polar
codes, then Table IV tells us that the decoding time of ABS polar codes is longer than that of standard
polar codes by roughly 60%.

In conclusion, when we use list size 32 for the CRC-aided SCL decoders of both codes, ABS polar
codes consistently outperform standard polar codes by 0.15 dB—0.3 dB, but the decoding time of ABS
polar decoder is longer than that of standard polar codes by roughly 60%. If we use list size 20 for ABS
polar codes and maintain the list size to be 32 for standard polar codes, then the decoding time is more
or less the same for these two codes, and ABS polar codes still outperform standard polar codes for most
choices of parameters. In this case, the improvement over standard polar codes is up to 0.15 dB.

As a final remark, the implementations of all the algorithms in this paper are available at the website
https://github.com/PlumJelly/ABS-Polar
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APPENDIX A
THE PROOF OF LEMMA 1

Let (U1, . . . , Un), (X1, . . . , Xn) and (Y1, . . . , Yn) be the random vectors defined in Fig. 2. Define a
new vector (Ũ1, . . . , Ũn) as follows:

Ũ2i−1 = U2i−1 + U2i and Ũ2i = U2i for all 1 ≤ i ≤ n/2.

Since Gpolar
n = Gpolar

n/2 ⊗Gpolar
2 , we have

(X1, X3, X5, . . . , Xn−1) = (Ũ1, Ũ3, Ũ5, . . . , Ũn−1)Gpolar
n/2 ,

(X2, X4, X6, . . . , Xn) = (Ũ2, Ũ4, Ũ6, . . . , Ũn)Gpolar
n/2 .

Therefore, the mapping from Ũ2i−1, Ũ2i+1 to Ũ1, Ũ3, . . . , Ũ2i−3, Y1, Y3, . . . , Yn−1 is V
(n/2)
i , and the

channel mapping from Ũ2i, Ũ2i+2 to Ũ2, Ũ4, . . . , Ũ2i−2, Y2, Y4, . . . , Yn is also V (n/2)
i . Moreover, the two

random vectors (Ũ1, Ũ3, . . . , Ũn−1, Y1, Y3, . . . , Yn−1) and (Ũ2, Ũ4, . . . , Ũn, Y2, Y4, . . . , Yn) are indepen-
dent. As a consequence,

V
(n)

2i−1(y1, y2, . . . , yn, u1, u2, . . . , u2i−2|u2i−1, u2i)

=PY1,Y2,...,Yn,U1,U2,...,U2i−2|U2i−1,U2i
(y1, y2, . . . , yn, u1, u2, . . . , u2i−2|u2i−1, u2i)

=
1

4

∑

u2i+1,u2i+2∈{0,1}

PY1,Y2,...,Yn,U1,U2,...,U2i−2|U2i−1,U2i,U2i+1,U2i+2
(y1, y2, . . . , yn,

u1, u2, . . . , u2i−2|u2i−1, u2i, u2i+1, u2i+2)

(a)
=

1

4

∑

u2i+1,u2i+2∈{0,1}

PY1,Y2,...,Yn,Ũ1,Ũ2,...,Ũ2i−2|Ũ2i−1,Ũ2i,Ũ2i+1,Ũ2i+2
(y1, y2, . . . , yn,

ũ1, ũ2, . . . , ũ2i−2|ũ2i−1, ũ2i, ũ2i+1, ũ2i+2)

=
1

4

∑

u2i+1,u2i+2∈{0,1}

(
PY1,Y3,...,Yn−1,Ũ1,Ũ3,...,Ũ2i−3|Ũ2i−1,Ũ2i+1

(y1, y3, . . . , yn−1,

ũ1, ũ3, . . . , ũ2i−3|ũ2i−1, ũ2i+1)

· PY2,Y4,...,Yn,Ũ2,Ũ4,...,Ũ2i−2|Ũ2i,Ũ2i+2
(y2, y4, . . . , yn,

ũ2, ũ4, . . . , ũ2i−2|ũ2i, ũ2i+2)
)

=
1

4

∑

u2i+1,u2i+2∈{0,1}

(
V

(n/2)
i (y1, y3, . . . , yn−1, ũ1, ũ3, . . . , ũ2i−3|ũ2i−1, ũ2i+1)

· V (n/2)
i (y2, y4, . . . , yn, ũ2, ũ4, . . . , ũ2i−2|ũ2i, ũ2i+2)

)

=
1

4

∑

u2i+1,u2i+2∈{0,1}

(
V

(n/2)
i (y1, y3, . . . , yn−1, ũ1, ũ3, . . . , ũ2i−3|u2i−1 + u2i, u2i+1 + u2i+2)

· V (n/2)
i (y2, y4, . . . , yn, ũ2, ũ4, . . . , ũ2i−2|u2i, u2i+2)

)

=(V
(n/2)
i )O(y1, y2, . . . , yn, ũ1, ũ2, . . . , ũ2i−2|u2i−1, u2i),

where ũ1, ũ2, . . . , ũ2i+2 in equality (a) are defined as ũ2j−1 = u2j−1+u2j and ũ2j = u2j for 1 ≤ j ≤ i+1.
Finally, by noting that there is a one-to-one mapping between y1, y2, . . . , yn, u1, u2, . . . , u2i−2 in the first
line and y1, y2, . . . , yn, ũ1, ũ2, . . . , ũ2i−2 in the last line, we conclude that V (n)

2i−1 = (V
(n/2)
i )O. The
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proofs of V (n)
2i = (V

(n/2)
i )♦ and V

(n)
2i+1 = (V

(n/2)
i )M are similar. We include them here for the sake of

completeness.

V
(n)

2i (y1, y2, . . . , yn, u1, u2, . . . , u2i−1|u2i, u2i+1)

=PY1,Y2,...,Yn,U1,U2,...,U2i−1|U2i,U2i+1
(y1, y2, . . . , yn, u1, u2, . . . , u2i−1|u2i, u2i+1)

=
1

4

∑

u2i+2∈{0,1}

PY1,Y2,...,Yn,U1,U2,...,U2i−2|U2i−1,U2i,U2i+1,U2i+2
(y1, y2, . . . , yn,

u1, u2, . . . , u2i−2|u2i−1, u2i, u2i+1, u2i+2)

(a)
=

1

4

∑

u2i+2∈{0,1}

PY1,Y2,...,Yn,Ũ1,Ũ2,...,Ũ2i−2|Ũ2i−1,Ũ2i,Ũ2i+1,Ũ2i+2
(y1, y2, . . . , yn,

ũ1, ũ2, . . . , ũ2i−2|ũ2i−1, ũ2i, ũ2i+1, ũ2i+2)

=
1

4

∑

u2i+2∈{0,1}

(
PY1,Y3,...,Yn−1,Ũ1,Ũ3,...,Ũ2i−3|Ũ2i−1,Ũ2i+1

(y1, y3, . . . , yn−1,

ũ1, ũ3, . . . , ũ2i−3|ũ2i−1, ũ2i+1)

· PY2,Y4,...,Yn,Ũ2,Ũ4,...,Ũ2i−2|Ũ2i,Ũ2i+2
(y2, y4, . . . , yn,

ũ2, ũ4, . . . , ũ2i−2|ũ2i, ũ2i+2)
)

=
1

4

∑

u2i+2∈{0,1}

(
V

(n/2)
i (y1, y3, . . . , yn−1, ũ1, ũ3, . . . , ũ2i−3|ũ2i−1, ũ2i+1)

· V (n/2)
i (y2, y4, . . . , yn, ũ2, ũ4, . . . , ũ2i−2|ũ2i, ũ2i+2)

)

=
1

4

∑

u2i+2∈{0,1}

(
V

(n/2)
i (y1, y3, . . . , yn−1, ũ1, ũ3, . . . , ũ2i−3|u2i−1 + u2i, u2i+1 + u2i+2)

· V (n/2)
i (y2, y4, . . . , yn, ũ2, ũ4, . . . , ũ2i−2|u2i, u2i+2)

)

=(V
(n/2)
i )♦(y1, y2, . . . , yn, ũ1, ũ2, . . . , ũ2i−2, u2i−1|u2i, u2i+1),

where ũ1, ũ2, . . . , ũ2i+2 in equality (a) are defined the same way as above. This proves V (n)
2i = (V

(n/2)
i )♦.

V
(n)

2i+1(y1, y2, . . . , yn, u1, u2, . . . , u2i|u2i+1, u2i+2)

=PY1,Y2,...,Yn,U1,U2,...,U2i|U2i+1,U2i+2
(y1, y2, . . . , yn, u1, u2, . . . , u2i|u2i+1, u2i+2)

=
1

4
PY1,Y2,...,Yn,U1,U2,...,U2i−2|U2i−1,U2i,U2i+1,U2i+2

(y1, y2, . . . , yn,

u1, u2, . . . , u2i−2|u2i−1, u2i, u2i+1, u2i+2)

(a)
=

1

4
PY1,Y2,...,Yn,Ũ1,Ũ2,...,Ũ2i−2|Ũ2i−1,Ũ2i,Ũ2i+1,Ũ2i+2

(y1, y2, . . . , yn,

ũ1, ũ2, . . . , ũ2i−2|ũ2i−1, ũ2i, ũ2i+1, ũ2i+2)

=
1

4
PY1,Y3,...,Yn−1,Ũ1,Ũ3,...,Ũ2i−3|Ũ2i−1,Ũ2i+1

(y1, y3, . . . , yn−1,

ũ1, ũ3, . . . , ũ2i−3|ũ2i−1, ũ2i+1)

· PY2,Y4,...,Yn,Ũ2,Ũ4,...,Ũ2i−2|Ũ2i,Ũ2i+2
(y2, y4, . . . , yn,

ũ2, ũ4, . . . , ũ2i−2|ũ2i, ũ2i+2)

=
1

4
V

(n/2)
i (y1, y3, . . . , yn−1, ũ1, ũ3, . . . , ũ2i−3|ũ2i−1, ũ2i+1)

· V (n/2)
i (y2, y4, . . . , yn, ũ2, ũ4, . . . , ũ2i−2|ũ2i, ũ2i+2)
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=
1

4
V

(n/2)
i (y1, y3, . . . , yn−1, ũ1, ũ3, . . . , ũ2i−3|u2i−1 + u2i, u2i+1 + u2i+2)

· V (n/2)
i (y2, y4, . . . , yn, ũ2, ũ4, . . . , ũ2i−2|u2i, u2i+2)

=(V
(n/2)
i )M(y1, y2, . . . , yn, ũ1, ũ2, . . . , ũ2i−2, u2i−1, u2i|u2i+1, u2i+2),

where ũ1, ũ2, . . . , ũ2i+2 in equality (a) are defined the same way as above. This proves V (n)
2i+1 = (V

(n/2)
i )M

and completes the proof of Lemma 1.
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