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SOME NOTES ON VARIATIONAL PRINCIPLE FOR

METRIC MEAN DIMENSION

RUI YANG1, ERCAI CHEN1 AND XIAOYAO ZHOU*1

Abstract. Firstly, we answer the problem 1 asked by Gutman

and Śpiewak in [GS20], then we establish a double variational
principle for mean dimension in terms of Rēnyi information di-
mension and show the order of sup and lim sup (or lim inf) of the
variational principle for the metric mean dimension in terms of
Rēnyi information dimension obtained by Gutman and Śpiewak
can be changed under the marker property. Finally, we attempt
to introduce the notion of maximal metric mean dimension mea-
sure, which is an analogue of the concept called classical maximal
entropy measure related to the topological entropy.

1. Introduction

By a pair (X , T ) we mean a topological dynamical system (TDS for
short), where X is a compact metrizable topological space and T : X →
X is a continuous self-map. The set of metrics on X compatible with
the topology is denoted by D(X ). By M(X ),M(X , T ), E(X , T ) we
denote the sets of all Borel probability measures on X , all T -invariant
Borel probability measures on X , all ergodic measures on X , respec-
tively.

Mean topological dimension introduced by Gromov [Gro99] is a new
topological invariant in topological dynamical systems, which was sys-
tematically studied by Lindenstrauss and Weiss [LW00]. They also
introduced a notion called metric mean dimension to capture the topo-
logical complexity of infinite topological entropy systems and revealed
a well-known result that metric mean dimension is an upper bound of
mean topological dimension.

One says that a compact metric space (X , d) admits tame growth of
covering numbers if for each θ > 0,

lim
ǫ→0

ǫθ log r1(T, d, ǫ,X ) = 0,

where r1(T, d, ǫ,X ) denotes the minimal cardinality of X covered by
the balls B(x, ǫ) := {y ∈ X : d(x, y) < ǫ}.
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In 2018, to inject ergodic theoretic ideas into mean dimension theory,
Lindenstrauss and Tsukamoto [LT18] established a variational princi-
ple for metric mean dimension in terms of rate distortion dimensions.
Namely,

Theorem A. Let (X , T ) be a TDS with a metric d. Then

mdimM(T,X , d) = lim sup
ǫ→0

supµ∈M(X ,T ) Rµ,L∞(ǫ)

log 1
ǫ

.

Additionally, if (X , d) has tame growth of covering numbers, then for
p ∈ [1,∞),

mdimM(T,X , d) = lim sup
ǫ→0

supµ∈M(X ,T )Rµ,p(ǫ)

log 1
ǫ

,

where mdimM(T,X , d) denotes upper metric mean dimension of X ,
Rµ,p(ǫ), Rµ,L∞(ǫ) are called the Lp and L∞ rate distortion function,
respectively. Moreover, the above two results are valid for lower metric
mean dimension mdimM(T,X , d) by changing lim sup into lim inf.

The amenable version of Theorem A was proved by Chen et al.
[CDZ22] by using abundant non-trivial quasi-tiling methods. Besides,

Gutman and Śpiewak [GS20] showed that the second variational prin-
ciple in Theorem A can only range over all ergodic measures and posed
a problem [GS20, Problem 1] if the first variational principle in Theo-
rem A can only range over all ergodic measures. In this paper, we give
a positive answer to this problem.

Theorem 1.1. Let (X , T ) be a TDS with a metric d.Then

mdimM(T,X , d) = lim sup
ǫ→0

supµ∈E(X ,T )Rµ,L∞(ǫ)

log 1
ǫ

,

mdimM(T,X , d) = lim inf
ǫ→0

supµ∈E(X ,T )Rµ,L∞(ǫ)

log 1
ǫ

.

Given µ ∈ M(X , T ), recall that lower and upper Rēnyi information
dimensions of µ are respectively given by

MRID(X , T, µ, d) = lim inf
ǫ→0

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P ),

MRID(X , T, µ, d) = lim sup
ǫ→0

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P ),

where the infimums range over all finite partitions of X with diameter
at most ǫ, and hµ(T, P ) denotes the measure-theoretic entropy of µ
with respect to T and P , its precise definition is given in section 2.
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One says that a topological dynamical system (X , T ) admits marker
property if for any N > 0 there exists an open set U ⊂ X with property
that

U ∩ T nU = ∅, 1 ≤ n ≤ N, and X = ∪n∈ZT
nU.

After establishing variational principle for metric mean dimension,
Lindenstrauss and Tsukamoto [LT19] further established a double vari-
ational principle for mean dimension in terms of L1-rate distortion
dimension under marker property, which can be considered an impor-
tant link between mean dimension theory and ergodic theory. Later,
Tsukamoto [T20] extended this result to mean dimension with poten-
tial. In this paper, replacing L1-rate distortion dimension by Rēnyi
information dimension, we also establish a double variational principle
for mean dimension in terms of Rēnyi information dimension and show
the order of sup and lim sup (or lim inf) of the variational principle
for the metric mean dimension in terms of Rēnyi information dimen-
sion obtained by Gutman and Śpiewak can be changed under marker
property.

Theorem 1.2. Let (X , T ) be a TDS admitting marker property. Then

mdim(X , T ) = min
d∈D(X )

sup
µ∈M(X ,T )

MRID(X , T, µ, d),

= min
d∈D(X )

sup
µ∈M(X ,T )

MRID(X , T, µ, d),

and for any d ∈ D
′

(X ),

mdimM(T,X , d) = mdimM(T,X , d)

= sup
µ∈M(X ,T )

lim inf
ǫ→0

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P )

= sup
µ∈M(X ,T )

lim sup
ǫ→0

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P )

= lim inf
ǫ→0

sup
µ∈M(X ,T )

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P )

= lim sup
ǫ→0

sup
µ∈M(X ,T )

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P ),

mdim(X , T ) denotes the mean dimension, see [T20, Subsection 1.2]
for its explicit definition, and D

′

(X ) = {d ∈ D(X ) : mdim(X , T ) =
mdimM(T,X , d)}.

We would like to remark that if a TDS admits marker property,
Tsukamoto [T20, Theorem 1.8] showed there exists d ∈ D(X ) such
that mdim(X , T ) = mdimM(T,X , d), this implies D

′

(X ) is not empty.
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2. Preliminary

In this section, we recall the definition of metric mean dimension
and collect several types of measure-theoretic entropies for forthcoming
proofs.

2.1. Metric mean dimension. Let n ∈ N, for x, y ∈ X , we define
the n-th Bowen metric dn on X as

dn(x, y) := max
0≤j≤n−1

d(T j(x), T j(y)).

For a non-empty subset Z ⊂ X . A set E ⊂ X is an (n, ǫ)-spanning
set of Z if for any x ∈ Z, there exists y ∈ E such that dn(x, y) <

ǫ. The smallest cardinality of (n, ǫ)-spanning set of Z is denoted by
rn(T, d, ǫ, Z). A set F ⊂ Z is an (n, ǫ)-separated set of Z if dn(x, y) ≥ ǫ

for any x, y ∈ F with x 6= y. The largest cardinality of (n, ǫ)-separated
set of Z is denoted by sn(T, d, ǫ, Z).

Put

r(T,X , d, ǫ) = lim sup
n→∞

1

n
log rn(T, d, ǫ,X )

and

s(T,X , d, ǫ) = lim sup
n→∞

1

n
log sn(T, d, ǫ,X ).

By a standard method used in [W82], we have r(T,X , d, ǫ) ≤ s(T,X , d, ǫ) ≤
r(T,X , d, ǫ

2
).

Let (X , T ) be a TDS, we define the upper metric mean dimension of
T on X as

mdimM(T,X , d) := lim sup
ǫ→0

r(T,X , d, ǫ)

log 1
ǫ

= lim sup
ǫ→0

s(T,X , d, ǫ)

log 1
ǫ

.

Similarly, one can define the lower metric mean dimension mdimM(T,X , d)
by replacing lim sup with lim inf. If mdimM(T,X , d) = mdimM(T,X , d),
we call the common value denoted by mdimM(T,X , d) metric mean di-
mension.

2.2. Measure-theoretical entropy. Let P be a partition of X and
µ ∈ M(X , T ), then the partition entropy of P is given by

Hµ(P ) =
∑

A∈P

−µ(A) logµ(A),

here we use the convention that log = loge and 0 · ∞ = 0.
Let P,Q be two finite partitions of X , the join of P and Q is defined

by P ∨ Q := {A ∩ B : A ∈ P,B ∈ Q}. Set P n := ∨n−1
j=0T

−jP , and we
define the the measure-theoretic entropy of µ with respect to T and P

as

hµ(T, P ) = lim
n→∞

1

n
Hµ(P

n).
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The measure-theoretic entropy of µ is defined by

hµ(T ) = sup
P

hµ(T, P ),

where P ranges over all finite partitions of X .

2.3. Rate distortion theory. Let (Ω,P) be a probability space and
X and Y be measurable spaces, and let ξ : Ω → X and η : Ω → Y
be measurable maps. We define the mutual information I(ξ; η) as the
supremum of

∑

1≤m≤M,

1≤n≤N

P(ξ ∈ Pm, η ∈ Qn) log
P(ξ ∈ Pm, η ∈ Qn)

P(ξ ∈ Pm)P(η ∈ Qn)
,

where {P1, ..., PM} and {Q1, ..., QN} are partitions of X and Y respec-
tively, here we use the convention that 0 log 0

a
= 0 for all a ≥ 0.

A measurable map ξ : Ω → X with finite image naturally associates
a finite partition on Ω, the preimage partition of Ω. In this case we
denote the entropy of ξ by H(ξ).

If X and Y are finite sets, then I(ξ; η) is given by

∑

x∈X ,y∈Y

P(ξ = x, η = y) log
P(ξ = x, η = y)

P(ξ = x)P(η = y)
,

= H(ξ)−H(ξ|η) = H(ξ) +H(η)−H(ξ ∨ η),

where H(ξ|η) is the conditional entropy of ξ given η, the value shows
the amount of information which the random variables ξ and η share.

Let (X , T ) be a TDS with a metric d and µ ∈ M(X , T ). Given
1 ≤ p < ∞ and ǫ > 0, we define the Lp-rate distortion function Rµ,p(ǫ)
as the infimum of

I(ξ; η)

n
,

where n runs over all natural numbers, and ξ and η = (η0, ..., ηn−1) are
random variables defined on some probability space (Ω,P) such that

(1) ξ takes values in X , and its law is given by µ.
(2) Each ηk takes values in X , and

E

(

1

n

n−1
∑

k=0

d(T kξ, ηk)
p

)

< ǫp,

where E(·) is the expectation with respect to the probability measure
P.

Let s > 0, we define the L∞-rate distortion function Rµ,L∞(ǫ, s) as
the infimum of

I(ξ; η)

n
,

where n runs over all natural numbers, and ξ and η = (η0, ..., ηn−1) are
random variables defined on some probability space (Ω,P) such that
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(1) ξ takes values in X , and its law is given by µ.
(2) Each ηk takes values in X , and

E
(

the number of 0 ≤ k ≤ n− 1 with d(T kξ, ηk) ≥ ǫ
)

< sn,

and we set Rµ,L∞(ǫ) = lim
s→0

Rµ,L∞(ǫ, s).

In above two definitions, Lindenstrauss and Tsukamoto [LT18, Sec-
tion IV, reamrk 14] showed that the infimums can only consider random
variable η taking finitely many values, and they also showed [LT18,
III,B] that for 1 ≤ p < ∞, Rµ,p(ǫ) ≤ Rµ,L∞(ǫ

′

) holds for 0 < ǫ
′

≤ ǫ.
We define the lower and upper LP rate distortion dimensions as

rdimLp(X , T, d, µ) = lim inf
ǫ→0

Rµ,p(ǫ)

log 1
ǫ

rdimLp(X , T, d, µ) = lim sup
ǫ→0

Rµ,p(ǫ)

log 1
ǫ

.

Replacing Rµ,p(ǫ) with Rµ,L∞(ǫ), one can similarly define lower and
upper L∞ rate distortion dimensions.

2.4. Brin-Katok local entropy. Measure-theoretic entropy is given
from the viewpoint of the local perspective. Let µ ∈ M(X). Define

h
BK

µ (T, ǫ) : =

∫

h
BK

µ (T, x, ǫ)dµ

hBK
µ (T, ǫ) : =

∫

hBK
µ (T, x, ǫ)dµ,

where

h
BK

µ (T, x, ǫ) = lim sup
n→∞

−
log µ(Bn(x, ǫ))

n

hBK
µ (T, x, ǫ) = lim inf

n→∞
−
log µ(Bn(x, ǫ))

n
.

If µ ∈ M(X , T ), Brin and Katok [K80] showed

lim
ǫ→0

hBK
µ (T, ǫ) = lim

ǫ→0
h
BK

µ (T, ǫ) = hµ(T ).

2.5. Katok’s entropy. Measure-theoretic entropy defined by span-
ning set.

Let µ ∈ M(X ), ǫ > 0 and n ∈ N. Given δ ∈ (0, 1) and put

Rδ
µ(T, n, ǫ) := min{#E : µ(∪x∈EBn(x, ǫ)) > 1− δ}.

Define

h
K

µ (T, ǫ, δ) = lim sup
n→∞

1

n
logRδ

µ(T, n, ǫ)

hK
µ (T, ǫ, δ) = lim inf

n→∞

1

n
logRδ

µ(T, n, ǫ).
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If µ ∈ E(X , T ), Katok [K80] showed

lim
ǫ→0

h
K

µ (T, ǫ, δ) = lim
ǫ→0

hK
µ (T, ǫ, δ) = hµ(T ).

We can define two quantities related to Katok’s entropy by an alter-
native way.

Let µ ∈ M(X ). Note that the quantities h
K

µ (T, ǫ, δ), h
K
µ (T, ǫ, δ) are

non-decreasing when δ decreases. Therefore, we define

h
K

µ (T, ǫ) := lim
δ→0

h
K

µ (T, ǫ, δ), hK
µ (T, ǫ) := lim

δ→0
hK
µ (T, ǫ, δ).

2.6. Pfister and Sullivan’s entropy. Measure-theoretic entropy de-
fined by separated set. Let µ ∈ E(X , T ) and ǫ > 0. Define

PSµ(T, d, ǫ) := inf
F∋µ

lim sup
n→∞

1

n
log sn(T, d, ǫ,Xn,F ),

where the infimum ranges over all neighborhoods of µ in M(X ) and
Xn,F := {x ∈ X : En(x) = 1

n

∑n−1
j=1 δT j(x) ∈ F}. In fact, the infimum

can only range over any base of open neighborhoods of µ.
Pfister and Sullivan [PS07] proved that hµ(T ) = lim

ǫ→0
PSµ(T, d, ǫ).

2.7. Generic points. Let µ ∈ M(X , T ), by

Gµ := {x ∈ X :
1

n

n−1
∑

j=0

δT j(x) → µ, n → ∞}

we denote the set of generic points of µ. Note that if µ ∈ E(X , T ),
then we know µ(Gµ) = 1 by Birkhoff’s ergodic theorem.

3. Proofs of main results

In this section, we prove Theorem 1.1 and Theorem 1.2.
Firstly, we give the proof of Theorem 1.1.
The following lemma slightly modifies the statement in [W21, Lemma

4.1,(2)], which plays a key role in the proof of Theorem 1.1.

Lemma 3.1. Let (X , T ) be a TDS with a metric d and {En}n≥1 be a
sequence non-empty subsets of X . Let ǫ > 0, and let Fn be an (n, 6ǫ)-
separated set of En with maximal cardinality sn(T, d, 6ǫ, En). Set

µn =
1

n#Fn

∑

x∈Fn

n−1
∑

j=0

δT j(x).

Choose a subsequence nj such that µnj
convergences to µ ∈ M(X , T )

in the weak* topology, then

lim sup
j→∞

1

nj

log snj
(T, d, 6ǫ, Enj

) ≤ Rµ,L∞(ǫ).
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Proof. This lemma can be proved by repeating the proof of [LT18,
Proposition 35]. �

For sake of readers, we slightly modify the statement in [W21, Propo-
sition 4.3] and repeat the proof.

Lemma 3.2. Let (X , T ) be a TDS with a metric d. Then for any ǫ > 0
and µ ∈ E(X , T ), we have

h
K

µ (T, ǫ) ≤ PSµ(T, d, ǫ) ≤ Rµ,L∞(
1

6
ǫ).

Proof. Given ǫ > 0 and let µ ∈ E(X , T ). Fix a base of open neighbor-
hoods Fµ of µ, if F ∈ Fµ, then Gµ ⊂ ∪N≥1 ∩n≥N Xn,F . Let δ ∈ (0, 1)
and note that µ(Gµ) = 1, we can find N0 such that for any n ≥ N0,
µ(Xn,F ) > 1− δ. Hence, Rδ

µ(T, n, ǫ) ≤ sn(T, d, ǫ,Xn,F ) for any n ≥ N0.

This implies that h
K

µ (T, ǫ, δ) ≤ lim supn→∞
1
n
log sn(T, d, ǫ,Xn,F ) holds

for any δ ∈ (0, 1). Letting δ → 0 and by the arbitrariness of F , we get

h
K

µ (T, ǫ) ≤ PSµ(T, d, ǫ).
Next, given ǫ > 0 and let µ ∈ E(X , T ) again, we show PSµ(T, d, 6ǫ) ≤

Rµ,L∞(ǫ). Without loss of generality, we may assume that Rµ,L∞(ǫ) <
∞. If

PSµ(T, d, 6ǫ) = inf
F∋µ

lim sup
n→∞

1

n
log sn(T, d, 6ǫ,Xn,F ) > Rµ,L∞(ǫ),

then we can choose γ0 > 0 and a decreasing sequence of closed convex
neighborhood {Cn} of µ such that

lim sup
n→∞

1

n
log sn(T, d, 6ǫ,Xn,Cn

) > Rµ,L∞(ǫ) + γ0(3·1)

and ∩n≥1Cn = {µ}.
Let Fn ⊂ Xn,Cn

be an (n, 6ǫ)-separated set of Xn,Cn
with the maximal

cardinality sn(T, d, 6ǫ,Xn,Cn
). Set

µn =
1

n#Fn

∑

x∈Fn

n−1
∑

j=0

δT j(x).

Then µn ∈ Cn and lim
n→∞

µn = µ.

By Lemma 3.1, we know that lim supn→∞
1
n
log sn(T, d, 6ǫ,Xn,Cn

) ≤
Rµ,L∞(ǫ), which contradicts with the inequality (3·1).

�

Theorem 3.3. Let (X , T ) be a TDS with a metric d. Then

mdimM(T,X , d) = lim sup
ǫ→0

supµ∈E(X ,T ) h
K
µ (T, ǫ)

log 1
ǫ

= lim sup
ǫ→0

supµ∈E(X ,T ) h
K

µ (T, ǫ)

log 1
ǫ

.
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The two variational principles are valid for mdimM(T,X , d) by chang-
ing lim sup into lim inf and the supremum can range over all invariant
measures.

Proof. Fix δ0 ∈ (0, 1), then we have

mdimM(T,X , d) = lim sup
ǫ→0

supµ∈E(X ,T ) h
K
µ (T, ǫ, δ0)

log 1
ǫ

, by [S21, Proposition 7.3]

≤ lim sup
ǫ→0

supµ∈E(X ,T ) h
K
µ (T, ǫ)

log 1
ǫ

≤ lim sup
ǫ→0

supµ∈E(X ,T ) h
K

µ (T, ǫ)

log 1
ǫ

.

On the other hand, fix ǫ > 0 and µ ∈ M(X ). Let δ ∈ (0, 1), then

Rδ
µ(T, n, ǫ) ≤ rn(T, d, ǫ,X ) for every n ∈ N, which yields that h

K

µ (T, ǫ, δ) ≤

r(T,X , d, ǫ) holds for every δ ∈ (0, 1). Letting δ → 0 gives h
K

µ (T, ǫ) ≤
r(T,X , d, ǫ). Hence, we finally obtain that

lim sup
ǫ→0

supµ∈E(X ,T ) h
K

µ (T, ǫ)

log 1
ǫ

≤ mdimM(T,X , d).

This completes the proof. �

Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. It suffices to show show the first equality, and
the second one can be obtained in a similar manner. By Theorem A,
it is clear that

mdimM(T,X , d) ≥ lim sup
ǫ→0

supµ∈E(X ,T )Rµ,L∞(ǫ)

log 1
ǫ

.

On the other hand, by Lemma 3.2 and Theorem 3.3, we get the converse
inequality. �

Next, we proceed to give the proof of Theorem 1.2.

Proposition 3.4. Let (X , T ) be a TDS and µ ∈ M(X , T ). Then for
every ǫ > 0 and µ ∈ M(X , T ), we have

Rµ,L∞(2ǫ) ≤ inf
diamP≤ǫ

hµ(T, P ),

where the infimum ranges over all finite partitions of X .

Proof. Fix ǫ > 0 and µ ∈ M(X , T ), we can choose a finite partition
Q of X so that inf

diamP≤ǫ
hµ(T, P ) ≤ log#Q < ∞. Let P be a finite

partition of X with diameter at most ǫ, and let ξ be a random variable
taking values in X and obeying µ. For every n ∈ N and every A ∈ P n,
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we choose xA ∈ A and define a map f : X → X by setting f(x) = xA

if x ∈ A. Put η = (f(ξ), T f(ξ), ..., T n−1f(ξ)), then

E
(

the number of k ∈ [0, n− 1] with d(T kξ, T kf(ξ)) ≥ 2ǫ
)

= 0 < sn,

for any s > 0. Hence, Rµ,L∞(2ǫ, s) ≤ I(ξ;η)
n

≤ H(η)
n

= Hµ(Pn)
n

, this
implies that Rµ,L∞(2ǫ, s) ≤ hµ(T, P ). Letting s → 0 gives the desired
result.

�

Proof of Theorem 1.2. By [GS20, Theorem 3.1], we have

mdimM(T,X , d) = lim sup
ǫ→0

sup
µ∈M(X ,T )

inf
diamP≤ǫ

hµ(T, P )

log 1
ǫ

(3·2)

≥ sup
µ∈M(X ,T )

lim sup
ǫ→0

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P )

By the fact obtained in [LT18, III,B] that for 1 ≤ p < ∞, Rµ,p(ǫ) ≤
Rµ,L∞(ǫ

′

) holds for 0 < ǫ
′

≤ ǫ, we have Rµ,1(3ǫ) ≤ Rµ,L∞(2ǫ). Together
with the Proposition 3.4, we obtain that for any µ ∈ M(X , T ),

rdimL1(X , T, d, µ) ≤ lim inf
ǫ→0

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P ).

Therefore, for any d ∈ D(X ),

mdim(X , T ) ≤ sup
µ∈M(X ,T )

rdimL1(X , T, d, µ) by Corollary [T20, Corollary 1.7]

≤ sup
µ∈M(X ,T )

lim inf
ǫ→0

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P )

≤ sup
µ∈M(X ,T )

lim sup
ǫ→0

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P )

≤ mdimM(T,X , d) by (3·2).

Using the fact obtained in [T20, Theorem 1.8], if (X , T ) admits marker
property, then there exists d ∈ D(X ) such thatmdim(X , T ) = mdimM(T,X , d).
This implies that

mdim(X , T ) = min
d∈D(X )

sup
µ∈M(X ,T )

lim inf
ǫ→0

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P ),

= min
d∈D(X )

sup
µ∈M(X ,T )

lim sup
ǫ→0

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P ).

By the Lindenstrauss andWeiss’s classical inequality [LW00], mdim(X , T ) ≤
mdimM(T,X , d) ≤ mdimM(T,X , d) for any d ∈ D(X ), then for any d ∈
D

′

(X ), we have mdim(X , T ) = mdimM(T,X , d) = mdimM(T,X , d).
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We finally deduce that for any d ∈ D
′

(X ),

mdimM(T,X , d) = mdimM(T,X , d)

= sup
µ∈M(X ,T )

lim inf
ǫ→0

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P )

= sup
µ∈M(X ,T )

lim sup
ǫ→0

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P )

= lim inf
ǫ→0

sup
µ∈M(X ,T )

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P )

= lim sup
ǫ→0

sup
µ∈M(X ,T )

1

log 1
ǫ

inf
diamP≤ǫ

hµ(T, P ),

where the last two equalities hold by [GS20, Theorem 3.1]. �

For a TDS admits marker property, Theorem 1.2 shows that for some
“nice” metrics, the variational principles are still valid if we change the
order of sup and lim sup (or lim inf). It is not clear that whether we
can drop the marker property imposed on the topological dynamical
system or not, and removing the condition requires us to answer a
central problem that if for every topological dynamical system, there
exists a metric d such that mdim(X , T ) = mdimM(T,X , d). This open
problem was also mentioned in [GLT16, LT19, T20].

Finally, we attempt to introduce the notion of maximal metric mean
dimension measure analogous to the classical notion of maximal en-
tropy measure related to topological entropy. We begin this new con-
cept with the following example.

Example 3.5. Let σ : [0, 1]Z → [0, 1]Z be the (left) shift on alphabet
[0, 1], where [0, 1] is the unit interval with the standard metric. Equipped
[0, 1]Z with a metric given by

d(x, y) =
∑

n∈Z

2−|n||xn − yn|.

Let µ = L⊗Z, where L is the Lebesgue measure on [0, 1].
Let X = [0, 1]Z and T = σ. It is well-known that mdimM(T,X , d) =

1, see [LT18, Section II, E. Example] for more details. Shi [S21,

Exmaple 6.1] showed that lim
ǫ→0

h
BK

µ (T,ǫ)

log 1

ǫ

= lim
ǫ→0

hBK
µ (T,ǫ)

log 1

ǫ

= 1. By [YCZ22,

Proposition 3.1], we know lim
ǫ→0

inf
diamP≤ǫ

hµ(T,P )

log 1

ǫ

= lim
ǫ→0

h
BK

µ (T,ǫ)

log 1

ǫ

= lim
ǫ→0

h
BK

µ (T,ǫ)

log 1

ǫ

=
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1. This shows that

mdimM(T,X , d) = lim
ǫ→0

inf
diamP≤ǫ

hµ(T, P )

log 1
ǫ

= lim
ǫ→0

h
BK

µ (T, ǫ)

log 1
ǫ

= lim
ǫ→0

hBK
µ (T, ǫ)

log 1
ǫ

= 1.

Unlike the measure-theoretical entropy used to establish variational
principle for topological entropy, there are abundant choices that can
be considered as a object to establish a variational principle for metric
mean dimension [S21], for example Brin-Katok local entropy, Katok
entropy,... Therefore, to inject ergodic theoretic ideas into mean di-
mension theory, a reasonable quantity related to measure-theoretical
entropy is crucial. This leads to the following

Defintion 3.6. A non-negative real-valued function F (µ, ǫ) defined on
M(X , T ) × R+ (or E(X , T ) × R+) is said to be a candidate if for
any fixed µ, F (µ, ǫ) is non-decreasing as ǫ decreases and hµ(T ) =
lim
ǫ→0

F (µ, ǫ), and we define upper measure-theoretical metric mean di-

mension of µ as

mdimM(T,X , µ) = lim sup
ǫ→0

F (µ, ǫ)

log 1
ǫ

.

Similarly, one can define lower measure-theoretical metric mean di-
mensionmdimM(T,X , µ) by replacing lim sup

ǫ→0
by lim inf

ǫ→0
. IfmdimM(T,X , µ)

= mdimM(T,X , µ), we call the common value measure-theoretical
metric mean dimension of µ. Given µ ∈ E(X , T ), such candidates

can be h
K

µ (T, ǫ, δ), h
K
µ (T, ǫ, δ), h

BK

µ (T, ǫ), hBK
µ (T, ǫ) Rµ,L∞(ǫ), readers

can turn to [YCZ22, Subsection 2.2] for more candidates.
The quantity (or we refer to “speed”) mdim(T,X , µ) can be inter-

preted as how fast the candidate F (µ, ǫ) approximate the (infinite)
measure-theoretical entropy hµ(T ) as ǫ → 0. Namely, when ǫ > 0 is
sufficiently small, we may approximate F (µ, ǫ) as

F (µ, ǫ) ≈ mdimM(T,X , µ) log
1

ǫ
.

Defintion 3.7. Let (X , T ) be a TDS and d ∈ D(X ). Given a candidate
F (µ, ǫ) satisfying

mdimM(T,X , d) = sup
µ∈M(X ,T )

mdimM(T,X , µ),

and we call µ a maximal upper (resp. lower) metric mean dimension
measure if mdimM(T,X , d) = mdimM(T,X , µ) (resp. mdimM(T,X , d) =
mdimM(T, µ,X , µ)). The set of all maximal upper (resp. lower) metric
mean dimension measures is denoted byMmax(T,X , d) (resp. Mmax(T,X , d)).
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Obviously, Mmax(T,X , d) and Mmax(T,X , d) depend on the metric
and the candidate that we choose.

Proposition 3.8. Let (X , T ) be a TDS and d ∈ D(X ). Given a
candidate F (µ, ǫ) satisfying

mdimM(T,X , d) = sup
µ∈M(X ,T )

lim sup
ǫ→0

F (µ, ǫ)

log 1
ǫ

and

mdimM(T,X , d) = sup
µ∈M(X ,T )

lim inf
ǫ→0

F (µ, ǫ)

log 1
ǫ

.

Then the following statements hold

(1) If mdimM(T,X , d) = mdimM(T,X , d), then Mmax(T,X , d) ⊂
Mmax(T,X , d).

(2) If for any µ ∈ Mmax(T,X , d) satisfies lim sup
ǫ→0

F (µ,ǫ)

log 1

ǫ

= lim inf
ǫ→0

F (µ,ǫ)

log 1

ǫ

,

then Mmax(T,X , d) ⊃ Mmax(T,X , d).
(3) If for every fixed ǫ > 0, F (µ, ǫ) is a concave function onM(X , T )

and Mmax(T,X , d) 6= ∅, then the set Mmax(T,X , d) is a convex
subset of M(X , T ). Additionally, if mdimM(T,X , d) = ∞, then
Mmax(T,X , d) 6= ∅.

Proof. (1) Without loss of generality, we assume that Mmax(T,X , d) 6=
∅. Let µ ∈ Mmax(T,X , d), then

mdimM(T,X , d) = lim inf
ǫ→0

F (µ, ǫ)

log 1
ǫ

≤ lim sup
ǫ→0

F (µ, ǫ)

log 1
ǫ

≤ mdimM(T,X , d).

This implies that Mmax(T,X , d) ⊂ Mmax(T,X , d).

(2)Let µ ∈ Mmax(T,X , d) with lim sup
ǫ→0

F (µ,ǫ)

log 1

ǫ

= lim inf
ǫ→0

F (µ,ǫ)

log 1

ǫ

, then

mdimM(T,X , d) = lim sup
ǫ→0

F (µ, ǫ)

log 1
ǫ

= lim inf
ǫ→0

F (µ, ǫ)

log 1
ǫ

≤ mdimM(T,X , d) ≤ mdimM(T,X , d),

which yields that Mmax(T,X , d) ⊃ Mmax(T,X , d).

(3) Let mdimM(T,X , µ) = lim inf
ǫ→0

F (µ,ǫ)

log 1

ǫ

. Since F (µ, ǫ) is a concave

function on M(X , T ) for any fixed ǫ > 0, then mdimM(T,X , µ) is also
concave. Let µ1, µ2 ∈ Mmax(T,X , d) and p ∈ [0, 1], this yields that

mdimM(T,X , d) = pmdimM(T,X , µ1) + (1− p)mdimM(T,X , µ2)

≤ mdimM(T,X , pµ1 + (1− p)µ2) ≤ mdimM(T,X , d).

It follows that pµ1+(1−p)µ2 ∈ Mmax(T,X , d), which showsMmax(T,X , d)
is convex.
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If mdimM(T,X , d) = ∞, then for each n ∈ N, we can choose

µn ∈ M(X , T ) such that mdimM(T,X , µn) > 2n. Set µ =
∞
∑

n=1

1
2n
µn =

N
∑

n=1

1
2n
µn + 1

2N
νN for every N ∈ N, where νN ∈ M(X , T ). Using the

concavity of mdimM(T,X , µ) with respect to µ, we have

mdimM(T,X , µ) ≥
N
∑

n=1

1

2n
mdimM(T,X , µn) > N.

LettingN → ∞ givesmdimM(T,X , µ) = ∞, which shows thatMmax(T,X , d)
6= ∅.

�

We finally end up this paper with a question as follows.
Question 1 For every topological dynamical system (X , T ), can we

choose proper metric d and proper candidate F (µ, ǫ) such that there
exists µ ∈ M(X , T )(or E(X , T )) satisfying

mdimM(T,X , d) = lim sup
ǫ→0

F (µ, ǫ)

log 1
ǫ

mdimM(T,X , d) = lim inf
ǫ→0

F (µ, ǫ)

log 1
ǫ

?

In other words, such a metric d and µ have the same speed that re-
spectively approximate infinite topological entropy and infinite measure-
theoretical entropy.
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