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On the Niho type locally-APN power functions and their

boomerang spectrum

Xi Xie, Sihem Mesnager, Nian Li, Debiao He, Xiangyong Zeng ∗

Abstract:

In this article, we focus on the concept of locally-APN-ness (“APN” is the abbrevia-

tion of the well-known notion of Almost Perfect Nonlinear) introduced by Blondeau,

Canteaut, and Charpin, which makes the corpus of S-boxes somehow larger regard-

ing their differential uniformity and, therefore, possibly, more suitable candidates

against the differential attack (or their variants). Specifically, given two coprime

positive integers m and k such that gcd(2m + 1, 2k + 1) = 1, we investigate the

locally-APN-ness property of an infinite family of Niho type power functions in the

form F (x) = xs(2
m−1)+1 over the finite field F22m for s = (2k+1)−1, where (2k+1)−1

denotes the multiplicative inverse modulo 2m + 1.

By employing finer studies of the number of solutions of certain equations over finite

fields (with even characteristic) as well as some subtle manipulations of solving some

equations, we prove that F (x) is locally APN and determine its differential spectrum.

It is worth noting that computer experiments show that this class of locally-APN

power functions covers all Niho type locally-APN power functions for 2 ≤ m ≤ 10. In

addition, we also determine the boomerang spectrum of F (x) by using its differential

spectrum, which particularly generalizes a recent result by Yan, Zhang, and Li.
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1 Introduction

A substitution box (S-box) in a block cipher is a mapping that takes n binary inputs and

whose image is a binary m-tuple for some positive integers n and m, which is usually the only

nonlinear element of the most modern block ciphers. Therefore, it is significant to employ

S-boxes with good cryptographic properties to resist various attacks.

Differential attack, introduced by Biham and Shamir [1], is one of the most efficient attacks

on a block cipher. For an n-bit S-box F (x), i.e., a mapping from the finite field F2n to F2n , the

properties for differential propagations of F are captured in the DDT (Difference Distribution

Table) of F which are given by

DDTF (a, b) = |{x ∈ F2n : F (x) + F (x+ a) = b}|

for any a, b ∈ F2n . The differential uniformity of F is defined as

δ(F ) = max
a,b∈F2n , a6=0

DDTF (a, b).

Differential uniformity is an important concept in cryptography introduced by Nyberg [21,22] as

it quantifies the degree of security of the cipher concerning the differential attack if F is involved

as an S-box in such cipher. It is easy to see that δ(F ) is always even and δ(F ) ≥ 2. The function

F with δ(F ) = 2 is called Almost Perfect Nonlinear (APN) and offers maximal resistance to

differential attacks. The differential spectrum of F , defined as the multi-set {DDTF (a, b) : a ∈

F
∗
2n , b ∈ F2n}, may influence its security regarding some variants of differential cryptanalysis

[3]. Those functions are very important in symmetric cryptography since they contribute to an

optimal resistance against differential cryptanalysis, a powerful attack employed against block

ciphers. A lot of attention and efforts have been made, as can be seen notably in the nice and

complete Chapter 11 in the recent book [7].

Another important cryptanalysis technique on block ciphers is the boomerang attack, in-

troduced by Wagner in [26], which can be considered an extension of the classical differential

attack [1]. Analogous to the DDT concerning the differential attack, Cid et al. [9] introduced

a tool called Boomerang Connectivity Table (BCT) to analyze the boomerang attack of block

ciphers. Let F : F2n → F2n be a permutation. The entries of the BCT of F are given by

BCTF (a, b) =
∣

∣

{

x ∈ F2n : F−1(F (x) + b) + F−1(F (x+ a) + b) = a
}
∣

∣

for any a, b ∈ F2n . Then the boomerang uniformity of F defined as

β(F ) = max
a,b∈F∗

2n

BCTF (a, b),
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was introduced by Boura and Canteaut [5] to quantify the resistance of F against the boomerang

attack. It was known in [9] that β(F ) ≥ δ(F ), and if δ(F ) = 2, then β(F ) = 2, hence APN

permutations offer maximal resistance to both differential and boomerang attacks. Similarly, the

boomerang spectrum of F , defined as the multi-set {BCTF (a, b) : a, b ∈ F
∗
2n}, was introduced

to estimate the resistance of a block cipher against some variants of boomerang cryptanalysis

[14]. The reader can refer to the following non-exhaustive list of references [2–5,11,12,15,20] for

some results on the permutations with low differential and boomerang uniformities. A recent

survey on some generalizations of the differential and boomerang uniformities is presented in

[19]. APN permutations offer maximal resistance to differential and boomerang attacks, but

there are extremely difficult to construct despite many efforts and recent advances. The high

importance of such families of permutations for real applications comes from the difficulty of

finding APN permutations in even dimension (known as the Big APN Problem [6]), making this

topic still exciting nowadays.

Power functions are preferred candidates for S-boxes since they have simple algebraic forms

and usually have a lower implementation cost in hardware. Their particular algebraic structure

makes the determination of their differential properties easier to handle. For a power function

F (x) = xd over F2n , where 1 ≤ d ≤ 2n − 2 is a positive integer. One can see that DDTF (a, b) =

DDTF (1, b/a
d) for all a ∈ F

∗
2n , b ∈ F2n and BCTF (a, b) = BCTF (1, b/a

d) for all a, b ∈ F
∗
2n .

That is to say, the differential (resp. boomerang) spectrum of F (x) is completely determined by

the values of DDTF (1, b) (resp. BCTF (1, b)) as b runs through F2n (resp. F∗
2n). Therefore, the

differential spectrum of a power function F (x) with differential uniformity δ(F ) is defined as

DSF = {ωi > 0 : 0 ≤ i ≤ δ(F )},

where ωi denotes the number of output differences b ∈ F2n that occur i times, that is, ωi =

|{b ∈ F2n : DDTF (1, b) = i}| for 0 ≤ i ≤ δ(F ). Similarly, the boomerang spectrum of a power

function F (x) with boomerang uniformity β(F ) is simply defined as

BSF = {νi > 0 : 0 ≤ i ≤ β(F )},

where νi = |{b ∈ F
∗
2n : BCTF (1, b) = i}| for 0 ≤ i ≤ β(F ). As a generalization of the APN-ness

property, Blondeau, Canteaut, and Charpin [2] introduced the notion of locally APN power

functions. A power function F (x) over F2n is said to be locally-APN if max{DDTF (1, b) :

b ∈ F2n\F2} = 2. To our knowledge, very few locally APN power functions are known in the

literature. Typically, it is also hard to determine the differential and boomerang spectrum for a

given function. The infinite families of power functions with known differential and boomerang

spectrums are listed in Table 1 and Table 2, respectively.

In this paper, we study the locally-APN-ness property of the Niho type power functions over

F2n , namely, the power functions of the form F (x) = xs(2
m−1)+1, where n = 2m and 1 ≤ s ≤ 2m.

3



Table 1: The power function F (x) = xd over F2n for which its differential spectrum is known
No. d Condition δ(F ) Refs.

1 2t + 1 gcd(t, n) = s 2s [3, 11]

2 22t − 2t + 1 gcd(t, n) = s, n/s odd 2s [3]
3 2n − 2 n ≥ 2 2 or 4 (locally-APN) [3,11]

4 22k + 2k + 1 n = 4k 4 [3,28]
5 2t − 1 t = 3, n− 2 6 or 8 [2]

6 2t − 1 t = n/2, n/2 + 1, n even 2n/2
− 2 or 2n/2 (locally-APN) [3]

7 2t − 1 t = (n− 1)/2, (n+ 3)/2, n odd 6 or 8 [4]

8 23k + 22k + 2k − 1 n = 4k 22k [17]

9 2m + 2(m+1)/2 + 1 n = 2m, m ≥ 5 odd 8 [29]

10 2m+1 + 3 n = 2m, m ≥ 5 odd 8 [29]
11 k(2m − 1) n = 2m, gcd(k, 2m + 1) = 1 2m − 2 (locally-APN) [13]

12 (2m − 1)/(2k + 1) + 1 n = 2m, gcd(k,m) = 1 2m (locally-APN) This paper

Table 2: Power functions F (x) = xd over F2n with known boomerang spectrum
No. d Condition β(F ) Refs.

1 2n − 2 n ≥ 2 4 or 6 [5,11,14]
2 2t + 1 s = gcd(t, n) 2s or 2s(2s − 1) [5,11,12]
3 2m+1

− 1 n = 2m, m > 1 2m + 2 [30]
4 k(2m − 1) n = 2m, gcd(k, 2m + 1) = 1 2 or 4 [13]

5 (2m − 1)/(2k + 1) + 1 n = 2m, gcd(k,m) = 1 2m + 2 This paper

Concretely, for a positive integer k satisfying gcd(k, m) = 1 and gcd(2k + 1, 2m + 1) = 1,

we prove that F (x) = xs(2
m−1)+1 with s = (2k + 1)−1 is a locally-APN function over F22m ,

where (2k + 1)−1 denotes the multiplicative inverse modulo 2m + 1. Our computer experiments

show that this class of locally-APN power functions covers all Niho type locally-APN power

functions for 2 ≤ m ≤ 10. Moreover, by carrying out some finer manipulations of solving certain

equations over finite fields, we completely determine both the differential spectrum of F (x) and

the boomerang spectrum of F (x), which generalizes the results in [3] and [30] respectively.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries. Section

3 ultimately determines the differential spectrum of F (x) = xs(2
m−1)+1 with s = (2k + 1)−1,

leading to the fact that F is actually locally-APN. Section 4 determines the boomerang spectrum

of F (x) based on its differential spectrum. Section 5 concludes this study.

2 Preliminaries

Throughout this paper, |E| denotes the cardinality of a finite set E. In addition, let n be

a positive integer and F2n be the finite field (of characteristic 2) of order 2n. We denote by

F
∗
2n the multiplicative cyclic group of non-zero elements of F2n . The (absolute) trace function

4



Trn1 : F2n −→ F2 is defined by Trn1 (x) =
∑n−1

i=0 x2
i
for all x ∈ F2n . A positive integer d is called

a Niho exponent with respect to the finite field F22m if d ≡ 2i (mod 2m − 1) for some i < 2m.

When i = 0, the integer d is then called a normalized Niho exponent. For simplicity, denote the

conjugate of x ∈ F22m over F2m by x, i.e., x = x2
m
. The unit circle of F22m is defined as follows:

µ2m+1 := {v ∈ F22m : vv = 1}.

Note that µ2m+1 ∩ F2m = {1}. It is well-known that each x ∈ F
∗
22m can be uniquely written as

x = uv for some u ∈ F
∗
2m and v ∈ µ2m+1.

The following lemmas are helpful for the subsequent sections.

Lemma 1. ([23]) For a positive integer m and any element θ ∈ F22m\F2m , the mapping ϕ : x →

(x+ θ)/(x+ θ) from F2m to µ2m+1\{1} is a bijection.

Lemma 2. ([25]) Let n = 2m be an even positive integer and a, b ∈ F
∗
2n . Then x2 + ax+ b = 0

has two solutions in µ2m+1 if and only if b = a1−2m and Trm1 (b/a2) = 1.

Lemma 3. ([18]) Let n, r be positive integers such that gcd(n, r) = 1. For any a ∈ F2n , the

equation x2
r
+x = a has either 0 or 2 solutions in F2n. Moreover, it is solvable with two solutions

in F2n if and only if Trn1 (a) = 0.

Lemma 4. ([27]) Let n, k be positive integers and x, y be two elements of F2n . Then

x2
k+1 + y2

k+1 = (x+ y)2
k+1 +

k−1
∑

i=0

(xy)2
i
(x+ y)2

k−2i+1+1.

According to Lemma 22 and the proof of Theorem 23 in [10], we can obtain the following

result, which will play a significant role in proving our main result.

Lemma 5. ([10]) Let n and r be positive integers with r0 = gcd(r, n). Then

Q(x) = x2
r+1 + ax2

r
+ bx+ c, a, b, c ∈ F2n

has either 0, 1, 2 or 2r0 + 1 roots in F2n. Specially, if n = 2m and x0, x1, x2 ∈ µ2m+1 are three

distinct roots of Q, then Q has 2r1 + 1 distinct roots in µ2m+1, where r1 = gcd(r0, m). Further,

x0 + Ax1 + (1 + A)x2 6= 0 for any A ∈ F2r1 and each root of Q in µ2m+1\{x0, x1, x2} can be

parameterized as

xA =
x1x2 +Ax0x2 + (1 +A)x0x1

x0 +Ax1 + (1 +A)x2

for some A ∈ F2r1\F2.
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3 The differential spectrum of the Niho power function F (x) =

x
s(2m−1)+1

In this section, we determine the differential spectrum of F (x) = xs(2
m−1)+1 with s =

(2k +1)−1 over F22m , where m and k are positive integers such that gcd(2k +1, 2m+1) = 1 and

gcd(k, m) = 1.

To determine the differential spectrum of F (x), we first transfer the problem of determining

the number of solutions of F (x+ 1) + F (x) = b for any b ∈ F22m to that of finding the number

of solutions to a system of equations by using the polar representations of x + 1 and x. This

enables us to reduce the problem to investigate the number of solutions to a system of quadratic

equations because F (x) is of Niho type and s = (2k+1)−1. Our first main result is then obtained

via a thorough discussion on whether the solutions of a four-term quadratic equation are in the

unit cycle of F22m or not.

Theorem 1. Let m and k be positive integers with gcd(2k + 1, 2m + 1) = 1 and s = (2k + 1)−1

denotes the multiplicative inverse modulo 2m + 1. If gcd(k, m) = 1, then the power function

F (x) = xs(2
m−1)+1 over F22m is locally-APN and its differential spectrum is given by

DSF = {ω0 = 22m−1 + 2m−1 − 1, ω2 = 22m−1 − 2m−1, ω2m = 1}.

Proof. It suffices to calculate the number of solutions in F22m of

(x+ 1)s(2
m−1)+1 + xs(2

m−1)+1 = b (1)

for any b ∈ F22m . We shall distinguish the cases b = 1 and b 6= 1 as follows.

Case 1: b = 1. If (1) holds, i.e., we have

(x+ 1)s(2
m−1)+1 = xs(2

m−1)+1 + 1. (2)

Taking 2m-th power on both sides of (2) gives

(x+ 1)−s(2m−1)+2m = x−s(2m−1)+2m + 1. (3)

Multiplying (2) and (3) yields

(x+ 1)2
m+1 = x2

m+1 + xs(2
m−1)+1 + x−s(2m−1)+2m + 1,

which can be simplified as

(x−s(2m−1) + 1)(xs(2
m−1)+1 + x2

m
) = 0.
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Then we have either x−s(2m−1) = 1 or x2
m
(x(s−1)(2m−1) + 1) = 0, which implies that x ∈ F2m

since gcd(s, 2m+1) = 1 and gcd(s−1, 2m+1) = 1 due to gcd(2k+1, 2m+1) = 1, s = (2k+1)−1

and s−1 = −2k(2k+1)−1. On the other hand, it can be readily verified that F (x+1)+F (x) = 1

if x ∈ F2m. This proves that F (x+1)+F (x) = 1 if and only if x ∈ F2m , i.e., DDTF (1, 1) = 2m.

Case 2: b 6= 1. Clearly, we have x ∈ F22m\F2m in this case. Let x = u1v1 and x+ 1 = u2v2,

where u1, u2 ∈ F
∗
2m and v1, v2 ∈ µ2m+1\{1}. Then (1) is equivalent to the system of equations

u1v
1−2s
1 + u2v

1−2s
2 = b,

u1v1 + u2v2 = 1.
(4)

Eliminating the term u2 from (4) results in (1 + v−2s
1 v2s2 )u1v1 = 1 + bv2s2 , i.e.,

(v2s1 + v2s2 )u1v1 = (1 + bv2s2 )v2s1 . (5)

Similarly, by eliminating the term u1 from (4), we can obtain

(v2s1 + v2s2 )u2v2 = (1 + bv2s1 )v2s2 . (6)

We claim that v2s1 6= v2s2 . Suppose that v2s1 = v2s2 . Then we have v1 = v2 due to gcd(2s, 2m+1) =

1. Since u1v1+u2v2 = 1 and F
∗
2m

⋂

µ2m+1 = {1}, we have u1 +u2 = v−1
1 = 1, which contradicts

to v1 6= 1. Hence v2s1 + v2s2 6= 0, i.e., v1 6= v2. Then by (5) and (6), one gets

u1 =
(1 + bv2s2 )v2s1
(v2s1 + v2s2 )v1

, u2 =
(1 + bv2s1 )v2s2
(v2s1 + v2s2 )v2

, (7)

and

u2
m

1 =
(1 + bv−2s

2 )v−2s
1

(v−2s
1 + v−2s

2 )v−1
1

=
(v2s2 + b)v1
v2s1 + v2s2

,

u2
m

2 =
(1 + bv−2s

1 )v−2s
2

(v−2s
1 + v−2s

2 )v−1
2

=
(v2s1 + b)v2
v2s1 + v2s2

since v2
m

i = v−1
i for i = 1, 2, where b = b2

m
. Due to the fact u1, u2 ∈ F

∗
2m , we then have

bv2s1 v2s2 + v2s1 + v21v
2s
2 + bv21 = 0,

bv2s1 v2s2 + v2s1 v22 + v2s2 + bv22 = 0.
(8)

From (7) one can see that u1 and u2 can be determined by v1 and v2. Therefore we only need

to determine the pairs (v1, v2) with distinct v1, v2 ∈ µ2m+1\{1} such that (8) holds.

Again by gcd(2s, 2m + 1) = 1, one can conclude that there exist unique y ∈ µ2m+1\{1} and

z ∈ µ2m+1\{1} such that v2s1 = y and v2s2 = z respectively. Clearly, we have y 6= z since v1 6= v2.

Then (8) can be rewritten as

(z + b)y2
k+1 + (bz + 1)y = 0,

(y + b)z2
k+1 + (by + 1)z = 0.

(9)
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Note that yz 6= 0. Then (9) is equivalent to

(y2
k
+ b)z + by2

k
+ 1 = 0, (10)

(y + b)z2
k
+ by + 1 = 0. (11)

We claim that y2
k
+ b 6= 0. Otherwise, substituting b = y2

k
into (11) yields

(y + y−2k)z2
k
= y2

k+1 + 1. (12)

Since gcd(2k +1, 2m +1) = 1 and y ∈ µ2m+1\{1}, we have y2
k+1 6= 1, which implies y+ y−2k =

y−2k(y2
k+1 + 1) 6= 0. Dividing both sides of (12) by y + y−2k gives z2

k
= y2

k
, a contradiction

with y 6= z. Hence y2
k
+ b 6= 0. Then (10) indicates z = (by2

k
+ 1)/(y2

k
+ b). Substituting it

into (11), we can obtain

(y + b)(by2
k
+ 1)2

k
+ (by + 1)(y2

k
+ b)2

k
= 0, (13)

that is,

(b+ b
2k
)y2

2k+1 + (b
2k+1

+ 1)y2
2k

+ (b2
k+1 + 1)y + b2

k
+ b = 0. (14)

Recall that x = u1v1, u1 = [(1 + bv2s2 )v2s1 ]/[(v2s1 + v2s2 )v1], v
2s
1 = y, v2s2 = z and z = (by2

k
+

1)/(y2
k
+ b). This indicates that x is uniquely determined by y. Therefore, if we define

Φ = {y ∈ µ2m+1 : y 6= 1, y2
k
+ b 6= 0, y 6=

by2
k
+ 1

y2k + b
and (14) holds}, (15)

we then immediately have DDTF (1, b) ≤ |Φ| when b 6= 1.

To determine the cardinality of Φ, we first show that z = (by2
k
+ 1)/(y2

k
+ b) is also in Φ if

y ∈ Φ. Note that y + b 6= 0. Otherwise, we have b ∈ µ2m+1\{1} and z = b(y2
k
+ b)/(y2

k
+ b) =

b = y, a contradiction. Then, by (13), one gets z2
k
= (by + 1)/(y + b). Thus, z satisfies

z =
by2

k
+ 1

y2k + b
, z2

k
=

by + 1

y + b
. (16)

By (15), to prove z ∈ Φ, it suffices to prove 1) z ∈ µ2m+1\{1}; 2) z2
k
+ b 6= 0; 3) z 6=

(bz2
k
+ 1)/(z2

k
+ b); and 4) z satisfies (14). A simple calculation gives z ∈ µ2m+1 due to

y ∈ µ2m+1. If z = 1, then by (16) and the fact b 6= 1, one gets y2
k
= (b + 1)/(b + 1) and

y = (b + 1)/(b + 1). This leads y2
k+1 = 1 and then y = 1 since gcd(2k + 1, 2m + 1) = 1 and

y ∈ µ2m+1, a contradiction with y 6= 1. Thus z 6= 1. This proves 1); If z2
k
+ b = 0, then

b ∈ µ2m+1 and further (16) gives z = b and z2
k
= b, which implies z2

k+1 = 1, i.e., z = 1 due

to gcd(2k + 1, 2m + 1) = 1 and z ∈ µ2m+1, a contradiction with z 6= 1. Thus z2
k
+ b 6= 0. This

proves 2) and we can obtain z + b 6= 0 in the same manner; Observe that (16) also gives

y2
k
=

bz + 1

z + b
, y =

bz2
k
+ 1

z2k + b

8



due to z+ b 6= 0 and z2
k
+ b 6= 0. This together with (16) indicates that z 6= (bz2

k
+1)/(z2

k
+ b)

since y 6= (by2
k
+1)/(y2

k
+ b). Moreover, one obtains [(bz2

k
+1)/(z2

k
+ b)]2

k
= (bz+1)/(z + b),

which implies that z satisfies (14). This proves 3) and 4). Hence, z = (by2
k
+ 1)/(y2

k
+ b) ∈ Φ

if y ∈ Φ. This shows that |Φ| is even since y 6= (by2
k
+ 1)/(y2

k
+ b).

Next, we consider the value of |Φ| as follows:

Case 2.1: b = 0. If b = 0, then (14) is reduced to y2
2k
+y = 0, i.e., y2

2k−1 = 1. Consequently,

one gets ygcd(2
2k−1, 2m+1) = ygcd(2

k−1, 2m+1) = 1 due to y ∈ µ2m+1 and gcd(2k + 1, 2m + 1) =

1. Note that gcd(2k − 1, 2m + 1) = 1 if k is odd and gcd(2k − 1, 2m + 1) = 3 if k is even

since gcd(k, m) = 1. Hence, (14) has 0 or 2 roots in µ2m+1\{1}, which implies |Φ| ≤ 2 and

DDTF (1, 0) ≤ |Φ| ≤ 2.

Case 2.2: b 6= 0. Note that gcd(2k + 1, 2m + 1) = 1 if and only if one of m/ gcd(k, m) and

k/ gcd(k, m) is even. This together with gcd(k, m) = 1, one has that m and k have different

parity. Further, one can obtain gcd(2m+k − 1, 22m − 1) = 1 due to gcd(m + k, 2m) = 1. This

leads to b+ b
2k

6= 0 if b 6= 0, 1. Then by Lemma 5, (14) has either 0, 1, 2 or 5 solutions in F22m

since gcd(2k, 2m) = 2.

In what follows, we prove that |Φ| ≤ 2 for all b ∈ F22m\F2.

Clearly, we have |Φ| ≤ 2 if (14) has at most two distinct solutions in µ2m+1. Now suppose

that y0, y1, y2 are three distinct solutions of (14) in µ2m+1. Again by Lemma 5, we have that

(14) has 2r1 + 1 solutions in µ2m+1, where r1 = gcd(gcd(2k, 2m), m) = gcd(2, m). If m is odd,

then (14) has 3 solutions in µ2m+1, which implies |Φ| ≤ 2 since |Φ| is even. If m is even, then

(14) has 5 solutions in µ2m+1 and consequently |Φ| ∈ {0, 2, 4}. Thus, we only need to prove

|Φ| 6= 4 when m is even.

Suppose that |Φ| = 4. Then by the fact that (by2
k
+1)/(y2

k
+b) ∈ Φ if y ∈ Φ, we can assume

Φ = {y1, y2 =
by2

k

1 + 1

y2
k

1 + b
, y3, y4 =

by2
k

3 + 1

y2
k

3 + b
}. (17)

Let y0 ∈ µ2m+1\Φ be the fifth solution of (14). Then, according to (15), y0 must satisfy at

least one of the following cases: 1) y0 = 1; 2) y2
k

0 = b; 3) y0 = (by2
k

0 + 1)/(y2
k

0 + b). We first

show that case 2) cannot occur. If y2
k

0 = b, then b ∈ µ2m+1, which implies b2
k+1 + 1 6= 0 due to

gcd(2k + 1, 2m + 1) = 1 and b 6= 1. Further, (14) turns into

(b+ b−2k)y2
2k+1 + (b−(2k+1) + 1)y2

2k
+ (b2

k+1 + 1)y + b2
k
+ b−1 = 0,

which can be factored into

b−(2k+1)(b2
k+1 + 1)(by + 1)(y2

k
+ b)2

k
= 0.
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This leads to by + 1 = 0 or y2
k
+ b = 0, which indicates that (14) has at most two solutions, a

contradiction with the fact that (14) has 5 solutions in µ2m+1. Next we demonstrate that case

1) is covered by case 3). If y0 = 1, then by (14) one gets (b + 1)2
k+1 + (b + 1)2

k+1 = 0 which

implies (b + 1)/(b + 1) = 1 since b 6= 1, (b + 1)/(b + 1) ∈ µ2m+1 and gcd(2k + 1, 2m + 1) = 1,

i.e., b = b. Consequently, 1 = y0 = (by2
k

0 + 1)/(y2
k

0 + b). Therefore, if y0 ∈ µ2m+1\Φ is the fifth

solution of (14), then we have y0 = (by2
k

0 +1)/(y2
k

0 + b). Under this condition, we can show that

|Φ| = 4 cannot occur by proving y3 = y4 in (17).

If y0, y1 and y2 are three distinct solutions of (14) in µ2m+1, then by Lemma 5 one has that

y3 =
y1y2 + ξy0y2 + ξ2y0y1

y0 + ξy1 + ξ2y2
(18)

for some ξ ∈ F22\F2. Substituting y2 = (by2
k

1 + 1)/(y2
k

1 + b) into (18) gives

y3 =
β1y

2k+1
1 + β2y

2k
1 + β3y1 + β4

α1y
2k+1
1 + α2y

2k
1 + α3y1 + α4

, (19)

where

α1 = ξ, α2 = y0 + bξ2, α3 = bξ, α4 = by0 + ξ2,

β1 = ξ2y0 + b, β2 = bξy0, β3 = bξ2y0 + 1, β4 = ξy0. (20)

A direct calculation by using (19) gives

by3 + 1

y3 + b
=

(α1 + bβ1)y
2k+1
1 + (α2 + bβ2)y

2k
1 + (α3 + bβ3)y1 + α4 + bβ4

(bα1 + β1)y
2k+1
1 + (bα2 + β2)y2

k

1 + (bα3 + β3)y1 + bα4 + β4
, (21)

y2
k

3 =
β2k
1 y2

2k+2k

1 + β2k
2 y2

2k

1 + β2k
3 y2

k

1 + β2k
4

α2k
1 y2

2k+2k
1 + α2k

2 y2
k

1 + α2k
3 y2

k

1 + α2k
4

. (22)

Since y1 is a solution of (14), we have [(b+ b
2k
)y1 + b

2k+1
+1]y2

2k

1 = (b2
k+1 +1)y1 + b2

k
+ b. We

then claim that (b
2k

+ b)y1 + b
2k+1

+1 6= 0. Otherwise, we have y1 = (b
2k+1

+1)/(b
2k

+ b) since

b
2k

+ b 6= 0 due to gcd(m+ k, 2m) = 1 and b 6= 1. Using the fact y1 ∈ µ2m+1 gives

(b
2k+1

+ 1)2
m+1 + (b

2k
+ b)2

m+1 = (bb)2
k+1 + (bb)2

k
+ bb+ 1 = (bb+ 1)2

k+1 = 0,

i.e., bb = 1, which leads to y1 = b(b
2k

+ b)/(b
2k

+ b) = b, a contradiction with y1 + b 6= 0. Thus

we have (b
2k

+ b)y1 + b
2k+1

+ 1 6= 0 and then by (14) we obtain

y2
2k

1 =
(b2

k+1 + 1)y1 + b2
k
+ b

(b+ b
2k
)y1 + b

2k+1
+ 1

.
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Plugging it into (22) leads to

y2
k

3 =
γ1y

2k+1
1 + γ2y

2k
1 + γ3y1 + γ4

δ1y
2k+1
1 + δ2y2

k

1 + δ3y1 + δ4
, (23)

where

γ1 = f1(β1, β3), γ2 = f2(β1, β3), γ3 = f1(β2, β4), γ4 = f2(β2, β4), (24)

δ1 = f1(α1, α3), δ2 = f2(α1, α3), δ3 = f1(α2, α4), δ4 = f2(α2, α4).

Here f1(x, y) := (b2
k+1+1)x2

k
+(b+b

2k
)y2

k
and f2(x, y) := (b2

k
+b)x2

k
+(b

2k+1
+1)y2

k
. Using

the values of β1, β3 given by (20) and γ1 given by (24), a direct calculation gives

γ1 = (b2
k+1 + 1)(ξ2y0 + b)2

k
+ (b+ b

2k
)(bξ2y0 + 1)2

k
= ((bb)2

k
+ 1)(ξy2

k

0 + b). (25)

The last equality follows from the fact ξ2
k
= ξ2 due to k odd since m is even and gcd(k, m) = 1.

Recall that y2
k

0 = (by0 + 1)/(y0 + b). This together with (25) yields

γ1 =
(bb)2

k
+ 1

y0 + b
(bξ2y0 + bb+ ξ) =

(bb)2
k
+ 1

y0 + b
(α1 + bβ1).

Straightforward calculations give γi = ((bb)2
k
+ 1)(αi + bβi)/(y0 + b) for i = 2, 3, 4 and δi =

((bb)2
k
+ 1)(bαi + βi)/(y0 + b) for i = 1, 2, 3, 4. Then by (21) and (23), we can deduce y2

k

3 =

(by3 + 1)/(y3 + b) which implies that y3 = y4, a contradiction with (17). Therefore |Φ| ≤ 2,

which shows DDTF (1, b) ≤ 2 for b ∈ F22m\F2. That is to say, F (x) is locally-APN.

Combining Case 1 and Case 2, we conclude that DDTF (1, b) = 2m if b = 1 and DDTF (1, b) ≤

2 if b ∈ F22m\{1}. Consequently, ω2m = 1. Then the differential spectrum of F (x) follows from

the well-known identities

ω0 + ω2 + ω2m = 22m, 2ω2 + 2mω2m = 22m,

which completes the proof.

Remark 1. Note that the conjugate of d and the inverse of d (when it exists) are again nor-

malized Niho exponents if d is a normalized Niho exponent. Concretely, let d = s(2m − 1) + 1

with 2 ≤ s ≤ 2m, then the power function xs(2
m−1)+1 over F22m for each s in {s, 1 − s, s/(2s −

1), (s− 1)/(2s− 1)}(mod 2m + 1) has the same differential spectrum since differential spectrum

is invariant under the above two operations. Computer experiments indicate that locally-APN

power functions in Theorem 1 cover all Niho type locally-APN power functions for 2 ≤ m ≤ 10.

Remark 2. The power function F (x) = xs(2
m−1)+1 over F22m studied in this paper is a permu-

tation if and only if gcd(2s− 1, 2m + 1) = 1, i.e., gcd(2k − 1, 2m + 1) = 1, which indicates that

Theorem 1 produces locally-APN permutations over F22m when m is even and gcd(m,k) = 1.

This may be of independent interest regarding to the big APN problem [6].
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4 The boomerang spectrum of the Niho power function F (x) =

x
s(2m−1)+1

In this section, we discuss the boomerang spectrum of the locally-APN function obtained in

the previous section, namely, F (x) = xs(2
m−1)+1 with s = (2k + 1)−1 over F22m , where m and k

are positive integers such that gcd(2k + 1, 2m + 1) = 1 and gcd(k, m) = 1.

An equivalent definition of the BCT of F (x) was given in [16], which not only allows us to

compute the BCT conveniently without using the compositional inverse F (x)−1 but also works

for non-permutations.

Lemma 6. ([16]) For a function F (x) over F2n, the BCT entry of F (x) at point (a, b) ∈ F
2
2n ,

denoted by BCTF (a, b), is the number of solutions (x, y) ∈ F
2
2n of the system of equations

F (x+ a) + F (y + a) = b,

F (x) + F (y) = b.

The boomerang spectrum of F (x) can be determined as below.

Theorem 2. Let F (x) = xs(2
m−1)+1 be a power function over F22m , where m and k are positive

integers with gcd(2k + 1, 2m + 1) = 1 and s = (2k + 1)−1 denotes the multiplicative inverse

modulo 2m + 1. If gcd(k, m) = 1, then the boomerang spectrum of F (x) is given by

BSF =
{

ν0 = 22m−1, ν2 = 22m−1 − 2m, ν2m = 2m−1, ν2m+2 = 2m−1 − 1
}

if m is odd; and otherwise

BSF =
{

ν0 = 22m−1, ν2 = 22m−1 − 2m, ν2m = 2m−1 − 1, ν2m+2 = 2m−1
}

.

Proof. According to Lemma 6, the value of BCTF (1, b) is the number of solutions (x, y) ∈ F
2
22m

of the following system of equations

(x+ 1)d + (y + 1)d = b,

xd + yd = b

as b runs through F
∗
22m . Note that it is equivalent to

(x+ 1)d + (y + 1)d = b, (26)

∆(x) + ∆(y) = 0, (27)

where ∆(x) = (x+ 1)d + xd.

12



Let ∆(x) = ∆(y) = c for some c ∈ F22m . From Theorem 1, ∆(x) = c (resp. ∆(y) = c) has

either 0, 2 or 2m solutions. Define

Ωi := {c ∈ F22m : |{x ∈ F22m : ∆(x) = c}| = i}

for i = 0, 2, 2m. Notice that |Ωi| = ωi, where ωi is given by Theorem 1. Then, for c ∈ F22m , we

consider the following three cases:

Case 1: c ∈ Ω0. That is, ∆(x) = c has no solution in F22m . Hence the system of equations

(26)-(27) has no solution for any b ∈ F
∗
22m .

Case 2: c ∈ Ω2. Assume that ∆(x) = c has exactly two solutions x0 and x0 + 1 in F22m

for a fixed c ∈ Ω2. Then in this case (27) has four solutions (x, y) = (x0, x0), (x0, x0 + 1),

(x0+1, x0) and (x0+1, x0+1). Then, we can conclude that the system of (26)-(27) has exactly

two solutions (x0, x0 + 1) and (x0 + 1, x0) if b = c ∈ Ω2 and has no solution otherwise.

Case 3: c ∈ Ω2m . This case happens if c = 1. According to Case 1 of the proof of Theorem

1, ∆(x) = 1 has 2m solutions with the solution set F2m . Then ∆(x) = ∆(y) = c = 1 has 22m

solutions (x, y) ∈ F2m×F2m . Note that x
d = x if x ∈ F2m since d is a normalized Niho exponent.

This together with (26) implies that b = (x+1)d+(y+1)d = x+y ∈ F2m which has 2m solutions

(x, y) ∈ {(x, x + b) : x ∈ F2m} for each b ∈ F2m . Thus, the system of (26)-(27) has exactly 2m

solutions if b ∈ F2m and has no solution otherwise.

Combining Cases 1-3, when b runs through F
∗
22m , we conclude that 1) BCTF (1, b) = 2m + 2

if b ∈ F
∗
2m and b ∈ Ω2; 2) BCTF (1, b) = 2m if b ∈ F

∗
2m and b /∈ Ω2; 3) BCTF (1, b) = 2 if

b /∈ F
∗
2m and b ∈ Ω2; 4) BCTF (1, b) = 0 if b /∈ F

∗
2m and b /∈ Ω2. Thus ν2m+2 = |F∗

2m ∩ Ω2|,

ν2m = 2m − 1− |F∗
2m ∩Ω2|, ν2 = |Ω2| − |F∗

2m ∩Ω2| and ν0 = 22m − 1− (ν2m+2 + ν2m + ν2). Note

that |Ω2| = ω2 = 22m−1 − 2m−1. Therefore, to complete the proof, it suffices to calculate the

value of |F∗
2m ∩ Ω2|.

According to the definitions of DDTF (1, b) and Ω2 and the fact that 1 /∈ Ω2, we have

|F∗
2m ∩Ω2| = |{b ∈ F2m\F2 : DDTF (1, b) = 2}|.

Recall from Case 2 of the proof of Theorem 1 that DDTF (1, b) ≤ |Φ| ≤ 2 when b ∈ F22m\{1},

where Φ is defined by (15). Next we claim that DDTF (1, b) = 2 if and only if |Φ| = 2 when

b ∈ F2m\F2. Obviously, we have |Φ| = 2 if DDTF (1, b) = 2. Now suppose that |Φ| = 2. As we

proved before, z = (by2
k
+ 1)/(y2

k
+ b) ∈ µ2m+1 is also in Φ if y ∈ Φ. Thus, when b ∈ F2m\F2,

we can assume that

Φ = {y, z =
by2

k
+ 1

y2k + b
}.

Again by the fact (by2
k
+1)/(y2

k
+b) is also in Φ if y ∈ Φ, for z ∈ Φ, we have (bz2

k
+1)/(z2

k
+b) ∈

13



Φ which implies that y = (bz2
k
+ 1)/(z2

k
+ b) due to b 6= 1 and |Φ| = 2. That is, we have

y =
bz2

k
+ 1

z2k + b
, z =

by2
k
+ 1

y2k + b
, y2

k
=

bz + 1

z + b
, z2

k
=

by + 1

y + b
.

Let x = (bz + 1)y/(y + z). Note that b ∈ F2m and y, z ∈ µ2m+1. Then we have

x2
m−1 =

( (bz + 1)y

y + z

)2m−1
=

z + b

(bz + 1)y
=

1

y2k+1
= y−s−1

,

(x+ 1)2
m−1 =

((by + 1)z

y + z

)2m−1
=

y + b

(by + 1)z
=

1

z2k+1
= z−s−1

.

This leads to

(x+ 1)s(2
m−1)+1 + xs(2

m−1)+1 =
x+ 1

z
+

x

y
=

by + 1

y + z
+

bz + 1

y + z
= b,

i.e., x = (bz + 1)y/(y + z) is a solution of (1), which implies that DDTF (1, b) > 0. Then,

by DDTF (1, b) is even and DDTF (1, b) ≤ 2, we have DDTF (1, b) = 2. This shows that

DDTF (1, b) = 2 if and only if |Φ| = 2 when b ∈ F2m\F2. Hence, we obtain

|F∗
2m ∩ Ω2| = |{b ∈ F2m\F2 : DDTF (1, b) = 2}| = |{b ∈ F2m\F2 : |Φ| = 2}|.

Observe that y2
k
+ b 6= 0 for y ∈ µ2m+1\{1} and b ∈ F2m\F2. Then from (15), one knows

that |Φ| = 2 if and only if there are two y ∈ µ2m+1\{1} such that

(b2
k
+ b)y2

2k+1 + (b2
k+1 + 1)y2

2k
+ (b2

k+1 + 1)y + b2
k
+ b = 0,

y2
k+1 + by2

k
+ by + 1 6= 0.

(28)

Let y = (τ + θ)/(τ + θ) for a fixed θ ∈ F22m\F2m and τ ∈ F2m . By Lemma 1, (28) becomes

(b+ 1)2
k+1(θ + θ)τ2

2k
+ (b+ 1)2

k+1(θ + θ)2
2k
τ + ε1 = 0, (29)

(b+ 1)(θ + θ)τ2
k
+ (b+ 1)(θ + θ)2

k
τ + ε2 6= 0, (30)

where

ε1 = (b2
k
+ b)(θ + θ)2

2k+1 + (b+ 1)2
k+1(θ2

2k
θ + θθ

22k
),

ε2 = (θ + θ)2
k+1 + (b+ 1)(θ2

k
θ + θθ

2k
).

Substituting τ with (θ+ θ)τ and dividing both sides of (29) and (30) by (b+1)2
k+1(θ+ θ)2

2k+1

and (b+ 1)(θ + θ)2
k+1 respectively give

τ2
2k

+ τ + λ1 = 0, (31)

τ2
k
+ τ + λ2 6= 0, (32)
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where

λ1 =
b2

k
+ b

(b+ 1)2
k+1

+
θ2

2k
θ + θθ

22k

(θ + θ)22k+1
, λ2 =

1

b+ 1
+

θ2
k
θ + θθ

2k

(θ + θ)2k+1
. (33)

Let T = τ2
k
+ τ + λ2, then T ∈ F2m since λ2 ∈ F2m . Using λ1 = λ2k

2 + λ2, (31) becomes

T 2k + T = 0, which leads to T = 1 due to gcd(k, m) = 1 and (32). That is, we have

τ2
k
+ τ + λ2 + 1 = 0. (34)

Lemma 3 states that (34) has two solutions in F2m if and only if Trm1 (λ2 + 1) = 0, i.e.,

Trm1

( 1

b+ 1

)

= Trm1

(

θ2
k+1 + θ

2k+1

(θ + θ)2k+1

)

(35)

by using λ2 in (33). Next we claim that Trm1 ((θ2
k+1 + θ

2k+1
)/(θ + θ)2

k+1) = 1. By Lemma 4,

one gets

θ2
k+1 + θ

2k+1
= (θ + θ)2

k+1 +

k−1
∑

i=0

(θθ)2
i
(θ + θ)2

k−2i+1+1.

Then we have

Trm1

(

θ2
k+1 + θ

2k+1

(θ + θ)2k+1

)

= Trm1 (1) + Trm1

( k−1
∑

i=0

( θθ

(θ + θ)2

)2i
)

= m+ kTrm1

(

θθ

(θ + θ)2

)

= m+ k = 1,

where the third equality holds due to

Trm1

(

θθ

(θ + θ)2

)

= Trm1

(

1

θ/θ + θ/θ

)

= 1

by using Lemma 2 with the fact that θ/θ and θ/θ are two solutions of x2 +(θ/θ+ θ/θ)x+1 = 0

in µ2m+1\{1}. Moreover, the last equality follows from m and k have different parity. Therefore,

when b ∈ F
∗
2m ∩ Ω2, we have |Φ| = 2 if and only if Trm1 (1/(b + 1)) = 1 by (35). Consequently,

|F∗
2m ∩ Ω2| = 2m−1 if m is even and otherwise |F∗

2m ∩ Ω2| = 2m−1 − 1. This completes the

proof.

Remark 3. Note that s = 2 if one takes k = m − 1 in Theorems 1 and 2. The differential

spectrum and boomerang spectrum of the Niho type power function for s = 2 have been determined

by Blondeau et al. [2] and Yan et al. [30], respectively.

Remark 4. Experimental results indicate that the power function F (x) = xs(2
m−1)+1 is not

locally-APN when gcd(2k + 1, 2m + 1) = 1 and gcd(k, m) > 1. In this case, the differential

spectrum and boomerang spectrum of F (x) can be studied in a similar way with more efforts in

discussing the involved equations over finite fields.
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5 Conclusion

Twelve years ago, Blondeau, Canteaut, and Charpin introduced locally-APN functions in the

context of the block cipher in symmetric cryptography. Only a few studies on these functions

have been developed, and few infinite families of such functions have been exhibited. In this

paper, we have explored the corpus of locally-APN functions over the finite field F22m by studying

specifically the locally-APN-ness property of the Niho type power function F (x) = xs(2
m−1)+1

with s = (2k+1)−1 over F22m and completely determined its differential spectrum, where m and

k are positive integers such that gcd(k, m) = 1, gcd(2k + 1, 2m + 1) = 1 and (2k + 1)−1 denotes

the multiplicative inverse modulo 2m + 1. Further, we completely determined the boomerang

spectrum of F (x) based on its differential spectrum, which generalizes a recent result presented

by Yan et al. [30]. Our experimental results for 2 ≤ m ≤ 10 indicate that all Niho type locally-

APN power functions over F22m are covered by Theorem 1, which accentuates the relevance of

this result. It is, therefore, interesting to confirm whether this is true for a general m. Moreover,

since the notion of locally-APN-ness can be viewed as a relaxation of the one of APN-ness, it

offers the possibility to discover new avenues in designing S-boxes for cryptographic uses in

cryptosystems involving block ciphers.
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