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Statistics
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Abstract—This paper revisits the problem of sampling and
transmitting status updates through a channel with random
delay under a sampling frequency constraint [2]. We use the
Age of Information (AoI) to characterize the status information
freshness at the receiver. The goal is to design a sampling policy
that can minimize the average AoI when the statistics of delay is
unknown. We reformulate the problem as the optimization of a
renewal-reward process, and propose an online sampling strategy
based on the Robbins-Monro algorithm. We prove that the
proposed algorithm satisfies the sampling frequency constraint.
Moreover, when the transmission delay is bounded and its
distribution is absolutely continuous, the average AoI obtained
by the proposed algorithm converges to the minimum AoI when
the number of samples K goes to infinity with probability 1.
We show that the optimality gap decays with rate O (lnK/K),
and the proposed algorithm is minimax rate optimal. Simulation
results validate the performance of our proposed algorithm.

Index Terms—Age of Information, Minimax Optimality, Online
Learning, Renewal-Reward Process

I. INTRODUCTION

With the proliferation of autonomous vehicles and intel-
ligent manufacturing, status updates are becoming a larger
part of communications [3]. Status updates are crucial to
the efficient control and monitoring in such applications, and
therefore should be delivered to the destination as timely as
possible. To measure the timeliness of status update informa-
tion at the receiver, the Age of Information (AoI), or simply
Age is proposed [4]. Since then, the design of Age optimal
transmission and sampling strategies under communication
constraints has received wide attention.

When the transmission statistics (e.g., delay distribution,
packet-loss probabilities) are known in advance, designing
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AoI minimum transmission strategies can be formulated into
a Markov decision process (MDP) [2], [5]–[15]. When the
generation of status updates are controlled by external sources,
AoI minimum cross-layer scheduling and transmission have
been studied in [5]–[7]; When the generation process can
be controlled at will, the joint sampling and transmission
of status update packets have been studied in [8]–[11]. In
continuous time scenarios, by modeling the external status
update generation as a random process, the expected AoI
performance under different service disciplines are analyzed
in [12], [13].

Designing AoI minimum sampling strategies in an un-
known environment can be formulated as a sequential decision
making problem, where online and reinforcement learning
algorithms can be employed [16]–[20]. When the generation
of status update packets is controlled by external sources, AoI
minimum adaptive packet scheduling and link selection algo-
rithms have been proposed [16]–[18]. Tripathi et al. model
the timeliness of status updates to be a time-varying function
of the AoI [19], and a robust online learning algorithm is
proposed. When the status update packets can be generated
at will, [20] models the data freshness requirement as a
minimum AoI constraint, and proposes scheduling algorithms
that can achieve a sub-linear utility regret while satisfying
the AoI constraint. However, the ultimate goal in [20] is
to optimize the total utility over the entire network, rather
than the AoI performance. Designing Age optimal sampling
and transmission strategies have been studied in [10], [21]–
[24], where various deep reinforcement learning algorithms
(e.g., SARSA, Actor-Critic, Q-Learning) have been employed.
However, the convergence rate of those algorithms are not well
understood. Although the online sampling strategies proposed
in [25], [26] is shown to converge to the optimum strategy
almost surely, the optimality of the algorithm is not known.

In general, although there is a growing number of literature
on Age optimal transmission in unknown environment, how
to design effective generate-at-will sampling strategies with
theoretical guarantees is not well understood. To answer this
question, we revisited the point-to-point status update system
(Fig. 1) in [2], [27], where a sensor samples and transmits
update packets to the destination through a channel with
a random delay. The goal is to design an online sampling
strategy that minimizes the average AoI at the destination
when the delay statistics is unknown. The contributions of
the paper are as follows:
• Our work is the first to design a Robbins-Monro based

online policy to minimize the average AoI when the delay
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statistics is unknown. Moreover, by using the Lyapunov-
Drift-Plus-Penalty approach, our algorithm can satisfy the
sampling frequency constraint concurrently (Theorem 5).

• When there is no sampling constraint, we show that the
time-averaged AoI of the proposed algorithm converges
to the limit point of an ordinary differential equation
(ODE) almost surely. By showing that the limit point of
the ODE is unique and stationary, we prove that the time-
averaged AoI obtained by the proposed algorithm con-
verges to the minimum AoI with probability 1 (Theorem
2). The optimality gap of the proposed online learning
algorithm decays with rate O(lnK/K), where K is the
total number of samples (Theorem 3).

• By using the Le Cam’s two point from non-paramatric
statistics, we show that under the worst case delay dis-
tribution, the gap between the average AoI of any online
learning algorithm and the minimum AoI with known
delay statistics decays with rate larger than Ω(lnK/K),
where K is the total number of samples (Theorem 4).
Both the mathematics tool and the converse result is novel
in the field of stochastic approximation, and show that the
convergence rate of the proposed algorithm (Theorem 3)
is minimax order optimum.

Independent of this work, [26] proposes a similar Robbins-
Monro algorithm to minimize the average AoI penalty for a
two-way delay communication system. It is worth noting that,
by using the sampling frequency debt as a dual optimizer,
our modified Robbins-Monro algorithm satisfies the sampling
frequency constraint at the transmitter side. Our algorithm
can be extended to the problem of minimizing the average
AoI penalty with a sampling frequency constraint, because
computing the optimal updating threshold is equivalent to
solving an equation. Moreover, the proof techniques for almost
sure convergence are different, with ours using the ODE
method. We further establish the minimax lower bound of the
average AoI gap of any online algorithm.

II. PROBLEM FORMULATION

A. System Model

Similar to [2], [27], we consider a status update system
depicted in Fig. 1, where a sensor observes a time sensitive
process, samples status updates and sends them to the destina-
tion through a channel. The channel transmits update packets
based on a First-Come-First-Serve (FCFS) principle, and each
update packet experiences a random transmission delay. Due to
the transmission delay, update packets may have to wait in the
queue before the last transmission finishes. Once the packet is
received by the destination, an acknowledgement (ACK) will
be received by the sensor immediately.

Similar to [15], suppose the sensor can sample update
packets at any time t ∈ R+ at his own will. The sampling
time-stamp and channel transmission delay of the k-th sampled
packet are denoted by Sk and Dk, respectively. We assume
each transmission delay Dk, k ∈ {1, 2, · · · } is identically
and independently distributed (i.i.d.) following the probability
measure PD.

Fig. 1. A point-to-point status update system.

Assumption 1: The probability measure PD is absolutely
continuous on [0,∞). Its expectation and second order mo-
ment is bounded, i.e.,

0 < Dlb ≤ D , EPD [D] ≤ Dub <∞, (1a)

0 < Mlb ≤ EPD [D2] ≤Mub <∞. (1b)

Let Rk be the reception time-stamp of the k-th update
packet. Notice that the service of the k-th packets starts at
max{Rk−1, Sk}, therefore, Rk can be computed recursively
through equation Rk = max{Rk−1, Sk} + Dk. If the trans-
mission of the (k−1)-th update packet has not finished before
the k-th update packet has been sampled, i.e., Rk−1 > Sk, the
k-th packet has to wait in the queue and then becomes stale.
Therefore, to keep information at the destination fresh, it is
better to wait for the ACK of the (k − 1)-th update packet
before sampling the k-th packet, i.e., Sk ≥ Rk−1. By using
such a waiting policy, the reception time-stamp of the k-th
update packet can be simplified to Rk = Sk +Dk. We denote
Wk := Sk+1 − Rk to be the waiting time after receiving the
k-th sample.

B. Age of Information

AoI measures the time elapsed since the freshest informa-
tion stored at the destination is generated [4]. Let i(t) :=
arg max{k ∈ N+|Rk ≤ t} be the index of the latest sample
received by the destination before time t. The AoI at time t,
denoted by A(t) is:

A(t) := t− Si(t). (2)

A sample path of AoI evolution is depicted in Fig. 2.

Fig. 2. Illustration of AoI evolution.
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C. Optimization Problem Formulation

We aim at minimizing the average AoI by designing a
sampling strategy π , {W1,W2, · · · }. Specifically, we only
focus on the class of “causal” policies Π, where the waiting
time Wk is selected based on the past delay and sampling
time-stamps denoted by Hk−1 := {(Si, Di)}k−1

i=1 . No future
information {Di}i>k can be used for decision making. To
facilitate further analysis, assume that each waiting time is
upper bounded by Wub, and denote Π as the class of causal
policies whose waiting time Wk ∈ [0,Wub].1 Let K be the
total number of sampling times. The expected time average
AoI using policy π is defined by2:

Aπ , lim sup
K→∞

E
[∫ SK+1

t=0
A(t)dt

]
E[SK+1]

, (3)

where the AoI A(t) is determined by both the transmission
delay {Dk} and sampling strategy π.

To facilitate further computation and analysis, we define
“cycle” k to be the time interval between the k-th and
the (k + 1)-th sampling time-stamps. Since the transmission
delay Dk in each cycle k is i.i.d., we have E[SK+1] =

E
[∑K

k=1(Dk +Wk)
]
. Similarly, let Xk :=

∫ Sk+1

t=Sk
A(t)dt be

the cumulative AoI in cycle k, which is the sum of the area
of a parallelogram and a triangle, i.e.,

Xk = (Dk−1 +Wk−1)Dk +
1

2
(Dk +Wk)2.

Then the cumulative AoI over interval [0, SK+1) can be
rewritten as a sum of Xk, i.e.,

E

[∫ SK+1

t=0

A(t)dt

]
= E

[
K∑
k=1

Xk

]

=E

[
K∑
k=1

q(Dk−1,Wk−1, Dk,Wk)

]
, (4)

where function q is defined as follows:

q(d′, w′, d, w) := (d′ + w′)d+
1

2
(d+ w)2.

Designing the optimum strategy π that minimizes the
expected average AoI can be formulated as the following
optimization problem:

Problem 1:

AoIopt , inf
π∈Π

lim sup
K→∞

E
[∑K

k=1 q(Dk−1,Wk−1, Dk,Wk)
]

E
[∑K

k=1(Dk +Wk)
] ,

(5a)

s.t. lim inf
K→∞

1

K
E

[
K∑
k=1

(Dk +Wk)

]
≥ 1

fmax
, (5b)

1The assumption is reasonable and will not hurt the optimality in policy
design when the upper bound Wub is selected to be large. This is because
waiting for an infinitely long time is not beneficial to AoI minimization.

2Another definition of the time average AoI can be the limits of expected
total AoI over an observation window [0, T ) divide the length of the
window T , i.e., lim supT→∞

1
T
E
[∫ T

0 A(t)dt
]

. The two definitions are both
reasonable. Specifically, when π is a stationary randomized policy such that
the Markov chain {(Dk,Wk)} has only one ergodic class, the two definitions
are equal [28].

where fmax is the maximum time average sampling frequency
the status update system can afford due to various resource
constraints (i.e., energy or system operation frequency).

Let π? be the optimum policy that achieves AoIopt. Ac-
cording to [2], policy π? has a threshold structure. When the
delay distribution PD is known, Sun et al. [2] proposed to
compute the optimum threshold through a bi-section search.
In this paper, we assume only the lower and upper bounds
of the average delay and second order moment Dlb, Dub,Mlb

and Mub can be used at the transmitter3. The closed form ex-
pression of distribution PD is not accessible to the transmitter
and hence cannot be used for decision making.

III. PROBLEM RESOLUTION

In this section, we will first reformulate Problem 1 into
a renewal-reward process. In Section III-B, we then propose
an adaptive sampling strategy that can learn the optimum
policy π? when the number of samples goes to infinity.
The theoretical performance of the algorithm is analyzed in
Section III-C.

A. A Renewal-Reward Process Reformulation

A policy π ∈ Π is stationary deterministic if the waiting
time Wk is a stationary mapping from the transmission delay
Dk, i.e., Wk = w(Dk) and function w : [0,∞) 7→ [0,Wub]
is a deterministic function that specifies the waiting time. Let
ΠSD ⊆ Π be the set of stationary deterministic policy such
that:

ΠSD , {π ∈ Π : Wk = w(Dk),∀k}.

When PD is known, we then have the following theorem
according to [2]:

Theorem 1: [2, Theorem 2 Restated] There is a stationary
deterministic policy π? ∈ ΠSD that is optimal to Problem 1.

With slight abuse of notations, we denote π(d) to be the
waiting time selection function of a stationary deterministic
policy by observing transmission delay d. With Theorem 1,
denote L2 to be the Lebesgue space. Searching for the opti-
mum stationary deterministic policy π? that achieves AoIopt
in Problem 1 can be reformulated into Problem 2 as follows:

Problem 2 (Renewal-Reward Process Optimization Refor-
mulation):

AoIopt = inf
π∈L2

(
E[ 1

2 (D + π(D))
2
]

E[D + π(D)]
+D

)
, (6a)

s.t. E [D + π(D)] ≥ 1

fmax
. (6b)

The detailed derivation is the same as [2] and is hence
omitted. Problem 2 can be viewed as the optimization of a
renewal-reward process in the sense that:
• The delay Dk observed in each cycle k is i.i.d. following

distribution PD.

3This assumption is reasonable since Dlb and Mlb can be computed using
the header time, and Dub, Mub can be computed using the maximum Round
Trip Time (RTT).
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• Let Lk := Dk + π(Dk) be the length of the k-th cycle.
Since Dk is i.i.d. and π(·) is a deterministic function, Lk
is an i.i.d. random variable.

• Denote Qk := 1
2 (Dk + π(Dk))

2, which can be viewed
as the reward received in cycle k. Due to the i.i.d.
assumption of Dk, the reward Qk is also an i.i.d. random
variable.

As a result, the length and reward (Lk, Qk) in frame k is
independent of (Lk′ , Qk′) in other frames k′ 6= k. Moreover,
the expectation E[Lk] ≤ E[D + Wub] < ∞ and E[Qk] ≤
E[ 1

2 (D+Wub)
2] <∞ are both bounded. Problem 2 cast into

the renewal-reward process optimization framework.

B. Proposed Online Algorithm

We will first review the computation of π? when the delay
statistics PD is known, and then propose an online algorithm
that learns policy π? adaptively. For simplicity, let Πcons be
the set of stationary deterministic policies whose sampling
frequency is below fmax, i.e.,

Πcons , {π ∈ ΠSD|E [D + π(D)] ≥ 1

fmax
}.

1) Design π? with known PD: Recall that Aπ? is the
minimum time average AoI any policy π ∈ Πcons can achieve,
i.e.,

Aπ =
E
[

1
2 (D + π(D))2

]
E[D + π(D)]

+D ≥ Aπ? . (7)

Deducting D on both sides of inequality (7), we have:

E
[

1
2 (D + π(D))2

]
E[D + π(D)]

≥ Aπ? −D.∀π ∈ Πcons. (8)

For simplicity, denote γ? = Aπ? − D and then then
multiplying E[D + π(D)] on both sides of inequality (8), we
then have the following inequality:

1

2
E[(D + π(D))2]− γ?E[D + π(D)] ≥ 0,∀π ∈ Πcons. (9)

Notice that (9) takes equality if and only if policy π is AoI
minimum. Therefore, when γ? is known, π? can be obtained
by solving the following functional optimization problem:

Problem 3 (Functional Optimization Problem):

θopt , min
π∈ΠSD

E
[

1

2
(D + π(D))2 − γ?(D + π(D))

]
, (10a)

s.t. E[D + π(D)] ≥ 1

fmax
. (10b)

Inequality (9) shows θopt = 0. To find the optimum policy
that achieves θopt, we place the sampling frequency constraint
(10b) into the objective function (10a) using a dual optimizer
ν ≥ 0, we can formulate the Lagrange function as follows:

L(γ, ν, π) :=E
[

1

2
(D + π(D))2 − (γ + ν)(D + π(D))

]
+ ν

1

fmax
. (11)

As is shown in [2, Theorem 4], for fixed γ and ν, the
optimum policy π?γ,ν that minimizes the Lagrange function
(11) specifies the waiting time through:

π?γ,ν(d) = (γ + ν − d)+. (12)

Plugging the optimum policy into the Lagrange function
(11), we have:

inf
π
L(γ, ν, π)

=E
[

1

2
max{(γ + ν), D}2 − γmax{γ + ν,D}

]
+ ν

(
1

fmax
− E [max{(γ + ν), D}]

)
. (13)

Let ν? := arg sup
ν≥0

infπ∈ΠSD
L(γ?, ν, π) be the dual opti-

mizer that resolves the Lagrange function when γ = γ?.
Notice that when π? = π?γ?,ν? is used,

θopt

=E
[

1

2
max{(γ? + ν?), D}2 − γ? max{(γ? + ν?), D}

]
=0. (14)

We then have the necessary condition on γ?:

E
[

1

2
max{(γ? + ν?), D}2 − γ? max{(γ? + ν?), D}

]
=0. (15)

The following lemma characterizes the upper and lower
bound of γ?, the proof will be provided in Appendix A:

Lemma 1: The optimum ratio γ? can be upper and lower
bounded by:

γlb ≤ γ? ≤ γub,

where

γlb :=
1

2
Dlb,

γub :=

1
2Mub +Dub

1
fmax

+ 1
2

1
f2
max

Dlb + 1
fmax

.

2) An online learning algorithm πonline through the
Robbins-Monro algorithm: When the delay statistics PD is
known, (γ? + ν?) can be computed directly using a bi-
section method [2]. When PD is unknown, such computation
is impossible because equation (15) is unknown. As an al-
ternative, we approximate γ? and ν? respectively. To meet
the frequency constraint, we use sequence {Uk} to track the
sampling frequency constraint violation up to time Sk. Notice
that the use of dual optimizer ν is to guarantee the sampling
frequency constraint is satisfied, we use νk = 1

V Uk as the dual
optimizer in cycle k, where V > 0 is fixed as a constant. Then
to find the root γ? of equation (15) assuming that ν? = νk is
the dual optimizer, we use a sequence {γk} to approximate γ?

in cycle k using the Robbins-Monro algorithm [29]. We start
by initializing γ1 ∈ Uni ([γlb, γub]). The algorithm operates in
cycle k as follows:



5

• After the transmission delay Dk of the k-th update packet
is observed, we choose a waiting time Wk based on the
current estimation γk and violation Uk:

Wk =

(
γk +

1

V
Uk −Dk

)+

, (16a)

where V > 0 is fixed as a constant. We then wait for Wk

to take the next sample and then compute the cycle length
Lk = Dk +Wk as well as reward Qk = 1

2 (Dk +Wk)2.
• We then update γk via the Robbins-Monro algorithm [29]

as follows:

γk+1 = [γk + ηk (Qk − γkLk)]
γub
γlb
, (16b)

where [γ]ba = min{b,max{γ, a}} and {ηk} is a set of
diminishing step sizes that is selected to be:

ηk =

{
1

2Dlb
, k = 1;

1
(k+2)Dlb

, k ≥ 2.
(16c)

• To guarantee that the sampling frequency constraint is
not violated, we update the violation Uk up to the end of
cycle k using:

Uk+1 =

(
Uk +

(
1

fmax
− Lk

))+

. (16d)

C. Theoretic Analysis

The evolution of the time average AoI optimality gap as
a function of time t is hard to analyze in general. As an
alternative, define ratio

ÃK :=
E
[∫ SK+1

t=0
A(t)dt

]
E[SK+1]

. (17)

This metric is reasonable in the sense that ÃK is the ratio
between the expected cumulative AoI up to the K-th cycle
and the running length up to cycle K. Let πK be the waiting
time specification rule in cycle K. According to equation
(16a), function πK(d) = (γK + 1

V UK − d)+. We measure the
performance of the proposed algorithm via the convergence
rate of difference ÃK − Aπ? and the expected average AoI
difference between using policy πK and π?, i.e., AπK −Aπ? .
The main results are as follows:

Theorem 2: When there is no transmission constraint, i.e.,
fmax = ∞ and the transmission delay D < B < ∞ is
upper bounded by B, by using the proposed online sampling
algorithm πonline, the threshold {γk} converges to the optimum
threshold γ? with probability 1, i.e.,

lim
K→∞

γK
a.s.
= γ?. (18a)

As a result, the average AoI of the proposed policy con-
verges to the minimum Aπ? with probability 1, i.e.,

lim
K→∞

∫ SK+1

0
A(t)dt

SK+1

a.s.
= Aπ? , (18b)

Proof for Theorem 2 is provided in Appendix C.
The next theorem characterizes the convergence rate of the

proposed algorithm, whose proof is provided in Appendix B:

Theorem 3: 4 Up to frame K, the difference E[(γK − γ?)2]
can be bounded by:

E[(γK − γ?)2] ≤ 1

K

L4
ub

D
2

lb

. (19a)

The difference between the expected time-averaged AoI by
using policy πK and π? can be upper bounded by:

AπK −Aπ? ≤
L4
ub

DD
2

lb

1

K
= O

(
1

K

)
. (19b)

and the difference ÃK −Aπ? can be upper bounded by:

ÃK −Aπ? ≤
L4
ub

DD
2

lb

× 1 + lnK

K
= O

(
lnK

K

)
, (19c)

where Lub = B + γub.
Remark 1: When there is no sampling constraint, the pro-

posed online algorithm learns the optimum policy adaptively,
since both AπK −Aπ? and ÃπK −Aπ? goes to 0 as K goes
to infinity.

Remark 2: As is shown in equation (19a)-(19c), if the
estimated average transmission lower bound Dlb is closer to
D and the upper bound Lub is closer to L

?
, the upper bound

of both the estimation error E[(γK − γ?)2] and the average
AoI difference AK −Aπ? are be smaller. This implies a good
estimation on the upper and lower bound of D help minimize
the average AoI.

Theorem 4: Let π?P denote the AoI minimum sampling pol-
icy when the delay distribution is P and let γ?P be the optimum
updating threshold. At the end of cycle k, let γ̂ : Rk 7→ R+ be
an estimator of ratio γ?P using historical transmission delays
Hk. The minimax estimation error of γ?P satisfies:

min
γ̂

max
P

E
[
(γ̂(Hk)− γ?P)2

]
≥ Ω(1/k). (20)

For any δ satisfies 0 < δ <

(
3

√
1
2 +

√
5
4 + 3

√
1
2 −

√
5
4

)
/2,

let Pw(δ) be the set of delay distributions that: (i) is absolutely
continuous and upper bounded by B; (ii) when delay D ∼
P, by using the AoI optimum policy π?P, the probability of
waiting to take the next sample is larger than δ, i.e., pw(P) :=
ED∼P [Pr(D ≥ γ?P)] ≥ δ. Then the time average AoI using any
causal sampling algorithm π has the following lower bound:

inf
π∈Π

sup
P∈Pw(δ)

E
[∫ SK+1

0
A(t)dt

]
E[SK+1]

−Aπ?P

 ≥ δ · Ω( lnK

K

)
.

(21)
The proof is provided in Appendix F.
Remark 3: The order of the convergence rate of the E[(γk−

γ?)2] and E[Ãk − Aπ? ] (Theorem 3) match the converse
bounds in Theorem 4. Therefore, the proposed algorithm is
minimax order optimal.

4By selecting proper stepsizes, the results still holds if the upper and lower
bound on γ? is unknown [30]
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Next, we analyze the sampling frequency violation be-
haviour of the proposed online policy. We have the following
assumptions:

Assumption 2: Problem 1 can be strictly feasible. There
exists ε > 0 and a πε ∈ ΠSD so that, by using policy πε,
we have the following inequality,

E [D + π(D)] ≥ 1

fmax
+ ε. (22)

Under Assumption 2, we have the following result:
Theorem 5: The sampling constraint can be satisfied in the

sense that:

lim inf
K→∞

E

[
1

K

K∑
k=1

(Wk +Dk)

]
≥ 1

fmax
. (23)

The proof is provided in Appendix I.

IV. SIMULATION RESULTS

We validate the performance of the proposed algorithms via
numerical simulations. We consider two sets of heavy tailed
distribution that characterize the heavy traffic characteristics:

(a) lognormal(µ, σ): log-normal distribution parameterized
by µ and σ, i.e., the density function of the transmission
delay distribution is p(x) = 1

σ
√

2π
exp

(
− (ln x−µ)2

2σ2

)
.

(b) Weilbur(a, b): Weilbur distribution parameterized by
scale parameter a and shape parameter b, i.e., the density
function p(x) = b

a

(
x
a

)b−1
exp

(
−
(
x
a

)b)
.

A. Updating without a Sampling Frequency Constraint

We first verify the asymptotic performance of πonline when
there is no sampling frequency constraint, i.e., fmax =∞. We
study and compare the following three strategies: (1) zero-wait
policy that specifies πzw(d) = 0,∀d; (2) the optimum policy
π? computed by [2]; (3) the iterative threshold computation
method πitr proposed by [25]. We compute the empirical mean
and second-order moment of the first 100 transmission delays,
i.e., D̂ = 1

100

∑100
k=1Dk, M̂ = 1

100

∑100
k=1D

2
k. We then set

Dlb = D̂/10, Dub = 10D̂ Mlb = M̂/10,Mub = 10M̂ .
Simulations are carried out when the transmission delay
follows the log-normal distribution with parameters µ = 1
and σ = 1.3. We plotted the AoI ratio up to cycle k, i.e.,

Ãk =
E
[∫ Sk+1

0 A(t)dt
]

E[SK+1] in Fig. 3. The mean of the time average

AoI Aπ,t = 1
t

∫ t
t′=0

A(t′)dt′ as well as its confidence interval
are illustrated in Fig. 4. All the expectations are computed
by taking the average of 100 runs. According to Fig. 3, the
AoI ratio Ãk converges to the optimum AoI obtained by the
optimum policy π?, which has been proved theoretically in
Theorem 3. Moreover, when the proposed online learning
policy πonline is used, the optimality gap between Aπ,t AoI
and the minimum AoI Aπ? diminishes when time t goes
to infinity. Compared with policy πitr, the average AoI ratio
of our proposed algorithm converges faster to Aπ? and the
variance is smaller.
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Fig. 3. The average AoI ratio evolution as a function of cycle k. Left
lognormal(1, 1.3); Right Weibul(1, 0.3)

B. Updating under a Sampling Frequency Constraint

Next we study the performance of the proposed algorithm
when the sampling constraint exists. Since the zero-wait sam-
pling policy and the iterative threshold computing policy [25]
may not satisfy the sampling frequency constraint, we compare
the proposed algorithm with (1) a constant wait policy πconst
that specifies waiting time by πconst(d) = 1

fmax
− D,∀d; (2)

the optimum policy π? computed by [2]. Simulations are
carried out when the transmission delay follows the log-normal
distribution with parameter µ = 1, σ = 1.5, and the sampling
frequency constraint is selected to be fmax = 1

10D
. We plot

the average AoI performance of a single sample path in Fig. 5
and the corresponding average sampling interval Iπ,K , SK+1

K
in Fig. 6. From Fig. 5, it can be observed that the constant
wait policy incurs a larger AoI, which is harmful to the data
freshness performance. As expected, the average AoI of the
proposed online algorithm converges to the average AoI of
the optimum policy π? when time t goes to infinity. Moreover,
when time t increases, the average sampling interval converges
to 1

fmax
, which means the sampling frequency is not violated.

Similar to the queueing length-utility trade-off in network
utility maximization [31], we found that choosing a smaller V
(i.e., V = 1 in Fig. 6) guarantees that the sampling frequency
constraint can be satisfied at a earlier stage, while choosing a
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Fig. 4. The average time AoI evolution. Left lognormal(1, 1.3); Right
Weibul(1, 0.3)

larger V (i.e., V = 100 or V = 10 in Fig. 5 shows that the
average AoI converges to the minimum AoI faster.

C. Addressing Practical Issues in Communication Networks–
Timeout

Preemption, i.e., stop the previous transmission and restart a
new on when the transmission delay is larger than a threshold
can effectively minimize the average AoI. As is revealed by
[27, Lemma 1], for pre-emption strategies with threshold τ ,
i.e., take a new sample and transmit it when the previous delay
is larger than τ , the optimum sampling strategy πτ,?pre still has
a threshold structure. Let nk be the number of retransmissions
before the ACK of the (k− 1)-th received sample and let Dk

be the transmission delay of the (k − 1)-th received sample,
after the ACK of the (k−1)-th sample is received, policy πτ,?pre

selects waiting time Wk as follows:

Wk = (γ?pre + ν?pre − D̃k)+, (24)

where D̃k := nkτ + Dk and the coefficient γ?pre = Aπτ,?pre
−

E[D|D ≤ τ ] is defined similar to γ?, ν?pre is the dual optimizer
for satisfying the sampling frequency constraint. For threshold
policies with transmission preemption, the length of frame
k now becomes Lk and the reward becomes Qk = 1

2L
2
k.

Plugging the computation of Lk and Qk back into algorithm

(16a)-(16d) yields the online algorithm with transmission
preemption.

In Fig. 7, we plotted the average AoI of different algorithms
when a timeout threshold of τ = 10 is used. The transmission
delay follows lognormal(1, 1.3). From Fig. 7, the average AoI
of our proposed online learning algorithm achieves a smaller
AoI compared with the zero-wait policy, and approaches the
optimum when the number of samples approaches infinity.

V. CONCLUSIONS

In this paper, we considered a sensor sampling and transmit-
ting status updates to the receiver over a channel with random
delay. We addressed the problem of minimizing the expected
time average AoI under a sampling frequency constraint
when the delay distribution is unknown. We reformulated
the AoI minimization problem into a renewal-reward process
optimization, and we propose an online sampling strategy
based on the Robbins-Monro algorithm. We proved that the
proposed algorithm can learn the optimum sampling policy
almost surely when the number of samples K goes to infinity,
and the average sampling frequency constraint can be satisfied.
We prove that the convergence rate of the proposed algorithm
is minimax optimum under certain conditions. Simulation
results validate the adaptive performance of the proposed
algorithm. Interesting extensions with piece-wise stationary
delay distribution will be our future work.
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APPENDIX A
PROOF OF LEMMA 1

Proof: The lower bound of γ? can be computed as
follows:

γ? =
E
[

1
2 (D + π?(D))2

]
E[D + π?(D)]

(a)

≥ 1

2

E[D + π?(D)]2

E[D + π?(D)]

=
1

2
E[D + π?(D)]

(b)

≥ 1

2
E[D]

(c)

≥ 1

2
Dlb, (25)

where inequality (a) is obtained by Jensen’s inequality
E
[
(D + π?(D))2

]
≥ E[(D + π?(D))]2; inequality (b) is

because 0 ≤ π(D) ≤ Wub and the non-negativity of D;
inequality (c) obtained due to Assumption 1.

To establish the upper bound of γ?, we consider the constant
wait policy πconst, namely the waiting interval is fixed as a
constant Wk ≡ 1

fmax
for any cycle k. According to (6a), the

expected average AoI of policy πconst can be computed by:

Aπconst =
E
[

1
2 (D + πconst(D))2

]
E [D + πconst(D)]

+D
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Fig. 5. The average AoI ratio evolution of a single sample path under sampling constraint.
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Fig. 6. The average sampling interval of a single sample path using different V .

≤
1
2Mub +D 1

fmax
+ 1

2
1
f2
max

Dlb + 1
fmax

+D. (26)

Notice that policy πconst may not be the AoI optimum
strategy, i.e., Aπ? ≤ Aπconst . Recall that the optimum ratio
is computed by γ? = Aπ? −D, we have:

γ? ≤ Aπconst −D ≤
1
2Mub +Dub

1
fmax

+ 1
2

1
f2
max

Dlb + 1
fmax

=: γub. (27)

APPENDIX B
PROOF OF THEOREM 3

Proof: First, recall that the ratio γk in any cycle k is
upper bounded by γub, since the transmission delay is bounded
D ≤ B, the length Lk and reward Qk in cycle k can be upper
bounded by:

L ≤ D + (γ −D)+ ≤ B + γub =: Lub,

Q =
1

2
L2 ≤ L2

ub. (28)

Let L
?

:= E[D+π?(D)] and Q
?

:= E[ 1
2 (D+π?(D))2] be

the expected average cycle length and the expected average
reward if the optimum policy π? is used. We will first provide
the following lemmas:

Lemma 2: The expected cycle length E[Lk|γk] and the
expected reward E[Qk|γk] received in cycle k satisfies:

E [Qk − γkLk|γk] ≤ (γ? − γk)L
?
, (29a)

E [Qk − γ?Lk|γk] ≤ −(γ? − γk)
(
E[Lk|γk]− L?

)
. (29b)

Lemma 3: Recall from equation (4), the cumulative AoI in
cycle k is Xk = Qk + Lk−1Dk. The cumulative AoI up to
the end of cycle K, i.e., E

[∫ SK+1

0
A(t)dt

]
= E

[∑K
k=1Xk

]
,

satisfies the following inequality:

E

[
K∑
k=1

(Xk − (γ? +D)Lk)

]
≤ E

[
K∑
k=1

(γ? − γk)2

]
. (30)
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Fig. 7. The average AoI performance with time-out.

Proofs for Lemma 2 and 3 are provided in Appendix D
and E. Through (30), the average cost deviation can be upper
bounded by:

ÃK −Aπ?

=
E
[∑K

k=1Xk

]
E
[∑K

k=1 Lk

] − (γ? +D)

=
E
[∑K

k=1(Xk − (γ? +D)Lk)
]

E
[∑K

k=1 Lk

]
≤
E
[∑K

k=1(γ? − γk)2
]

E
[∑K

k=1 Lk

] . (31)

We then prove inequalities in Theorem 3 as follows:

A. Proof of (19a)

For simplicity, denote

zk+1 := γk + ηk(Qk − γkLk). (32)

Since γk+1 = [zk+1]γubγlb and γ? ∈ [γlb, γub], we can bound
the stepsize deviation (γk+1 − γ?)2 using (zk+1 − γ?)2:

(γk+1 − γ?)2 = ([zk+1]γubγlb − [γ?]γubγlb ) ≤ (zk+1 − γ?)2. (33)

We proceed to upper bound (zk+1 − γ?)2 as follows:

1

2
(zk+1 − γ?)2

(a)
=

1

2
(γk − γ? + ηk (Qk − γkLk))

2

=
1

2
(γk − γ?)2 +

1

2
η2
k (Qk − γkLk)

2

+ ηk(γk − γ?) (Qk − γkLk)

(b)

≤ 1

2
(γk − γ?)2 +

1

2
η2
kL

4
ub + ηk(γk − γ?) (Qk − γkLk) ,

(34)

where equality (a) is obtained from the definition of zk in
(32); inequality (b) is obtained because Qk = 1

2L
2
k ≤ L2

ub and

γkLk ≤ L2
ub. Then, taking the conditional expectation on both

sides of (34), we have:
1

2
E
[
(zk+1 − γ?)2|γk

]
≤1

2
(γk − γ?)2 +

1

2
η2
kL

4
ub

+ ηk(γk − γ?)E [Qk − γkLk|γk] . (35)

We then proceed to bound the last term in (35), i.e.,

(γk − γ?)E [Qk − γkLk|γk] (36)

• If the current γk − γ? ≥ 0, by plugging (29a) into (36),
we have:

(γk − γ?)E[Qk − γkLk|γk]

≤− (γk − γ?)2L
? ≤ −(γk − γ?)2D, (37)

where the last inequality is obtained because L
? ≥ D.

• If the current γk− γ? ≤ 0, we can upper the last term in
inequality (35) as follows:

(γk − γ?)E[Qk − γkLk|γk]

=(γk − γ?)E[Qk − γ?Lk|γk]

− (γk − γ?)2E[Lk|γk]

(c)

≤(γk − γ?)(Q
? − γ?L?)− (γk − γ?)2E[Lk|γk]

=− (γk − γ?)2E[Lk|γk]

(d)

≤ − (γk − γ?)2D, (38)

where inequality (c) is because E[Qk−γ?Lk|γk] ≥ Q?−
γ?L

?
= 0 and inequality (d) is because E[Lk|γk] ≥ D.

Plugging (37) and (38) into (35), then taking the expectation
with respect to γk yields:

1

2
E
[
(zk+1 − γ?)2|γk

]
=

(
1

2
− ηkD

)
E
[
(γk − γ?)2

]
+

1

2
η2
kL

4
ub

≤
(

1

2
− ηkDlb

)
E
[
(γk − γ?)2

]
+

1

2
η2
kL

4
ub. (39)

By taking the expectation of inequality (39) with respect
to ratio γk and plugging in it into (33), we can upper bound
E[(γk+1 − γ?)2] by:

1

2
E
[
(γk+1 − γ?)2

]
≤1

2

(
1− 2ηkDlb

)
E
[
(γk − γ?)2

]
+

1

2
η2
kL

4
ub. (40)

Next, by choosing stepsizes η1 = 1
2Dlb

and ηk =
1

(k+2)Dlb
,∀k > 1, we can then show by induction that

1

2
E[(γk − γ?)2] ≤ 1

2k

L4
ub

D
2

lb

. (41)

The proof is as follows:
• When k = 2, plugging the stepsize η1 = 1

2Dlb
into (40)

yields:

1

2
E[(γ2 − γ?)2] ≤ 1

8

L4
ub

D
2

lb

≤ 1

4

L4
ub

D
2

lb

.
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• When k > 2, assuming that 1
2E[(γk − γ?)2] ≤ 1

2k
L4

ub

D
2
lb

,

recall that the stepsize ηk = 1
(k+2)Dlb

, we have

1

2
E
[
(γk+1 − γ?)2

]
≤
(

1

2
− ηkDlb

)
E
[
(γk − γ?)2

]
+

1

2
η2
kL

4
ub

≤
(

1− 2

k + 2

)
1

2k

L4
ub

D
2

lb

+
1

2

1

(k + 2)2

L4
ub

D
2

lb

=
1

2

(
1

k + 2
+

1

(k + 2)2

)
L4
ub

D
2

lb

=
1

2

k + 3

(k + 2)2

L4
ub

D
2

lb

(f)

≤ 1

2

1

(k + 1)

L4
ub

D
2

lb

, (42)

where inequality (f) is obtained because (k+1)(k+3) ≤
(k + 2)2.

B. Proof of (19c)
Summing up the inequality (19a) from cycle k = 1 to K

we have:

E

[
K∑
k=1

(γ? − γk)2

]

≤L
4
ub

D
2

lb

(
K∑
k=1

1

k

)
(a)

≤ L
4
ub

D
2

lb

(
1 +

∫ K

k=1

1

k
dk

)
(b)
=
L4
ub

D
2

lb

(1 + lnK) , (43)

where inequality (a) is obtained because 1
k ≤∫ k

k′=k−1
1
k′ dk

′,∀k > 1 and equality (b) is obtained because∫ b
a

1
xdx = ln b − ln a. Plugging inequality (43) into (31) we

have:

ÃK −Aπ? =
E
[∑K

k=1(γ? − γk)2
]

E
[∑K

k=1 Lk

]
≤L

4
ub

D
2

lb

(1 + lnK)
1

E
[∑K

k=1 Lk

]
(c)

≤ L4
ub

DD
2

lb

× 1 + lnK

K
, (44)

where inequality (c) is because E
[∑K

k=1 Lk

]
≥

E
[∑K

k=1Dk

]
= KD. This finishes the proof of (19c).

C. Proof of (19b)
Recall that the expected time average AoI using stationary

policy πK with ratio γK can be computed by

AπK =
E[ 1

2 ((γK −D)+ +D)2]

E[(γK −D)+ +D]
+D.

Since π? is the optimum stationary policy that achieves the
smallest AoI, therefore for any stationary policy πK , we have
AπK ≥ Aπ? and the optimality gap can be upper bounded by:

AπK −Aπ?

=
E
[

1
2 ((γK −D)+ +D)2

]
E [(γK −D)+ +D]

− γ?

=
E
[

1
2 ((γK −D)+ +D)2 − γK((γK −D)+ +D)

]
E[(γK −D)+ +D]

+ (γK − γ?)
(d)
=

E [QK − γKLK ]

E[LK ]
+ (γK − γ?)

(e)

≤ (γ? − γK)L
?

E[(γK −D)+ +D]
+ (γK − γ?)

=(γK − γ?)

×
(
E [(γK −D)+ +D]− E [(γ? −D)+ +D]

E [(γK −D)+ +D]

)
=

(γK − γ?)
E[(γK −D)+ +D]

E[(γK −D)+ − (γ? −D)+]

≤ 1

D
(γK − γ?)2, (45)

where equality (d) is by definition that QK = 1
2 ((γK −

DK)++DK)2, LK = (γK−DK)++DK and the transmission
delay DK is i.i.d.; inequality (e) is obtained by taking the ex-
pectation with respect to γk of inequality E[QK−γKLK |γk] ≤
(γ? − γK)L

?
from Lemma 2.

Plugging (34) into inequality (45), we can then complete
the proof of Theorem 3:

E
[
Aπk −Aπ?

]
≤ L4

ub

DD
2

lb

1

k
.

APPENDIX C
PROOF OF THEOREM 2

A. Proof of (18a)

The proof is divided into two steps, first we will show that
{γk} converges to the limit points of an Ordinary Differential
Equation (ODE) with probability 1, and then we will show
that the γ? is the unique stationary point of the ODE.

Notice that when there is no sampling frequency constraint,
νk ≡ 0. For each D ∼ PD, define function

g(γ;D) :=
1

2
((γ −D)+ +D)2 − γ((γ −D)+ +D), (46)

and the expectation over PD is denoted by:

g(γ) := E [g(γ;D)] . (47)

With function g, the update rule in equation (16b) can be
rewritten as follows:

γk+1 = [γk + ηkYk]
γub
γlb
, (48)

where Yk := g(γk;Dk).
Next, we will show that the update step-size {ηk} and Yk

satisfy the following properties:
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(1.1) Since γk is bounded, the second order moment of Yk is
bounded, i.e.,

E
[
|Yk|2

]
=E

[
(Qk − γkLk)

2
]

≤E

[(
1

2
((γk −Dk)+ +Dk)2

)2
]

+ E
[
γ2
k

(
(γk −Dk)+ +Dk

)2]
<∞.

(49)

(1.2) Since Dk appears i.i.d. and γk is determined by historical
{Yi}i≤k−1, we have

E [Yk] = E[Yk|γ1, {Yi}i≤k−1]

=E [g(γk, Dk)|γk] = g(γk). (50)

(1.3) Function g(·) is continuous.
Notice that the step-sizes {ηk} are chosen such that∑∞
k=1 ηk = ∞ and

∑∞
k=1 η

2
k < ∞. The ratio in the k-th

cycle on sample path ω is denoted by γk(ω), according to
[32, p.126, Theorem 2.1], with probability 1, the limits γk(ω)
are trajectories of the following ordinary differential equation:

γ̇ = g(γ). (51)

We will then show that γ? is the unique stationary point of
ODE (51). The derivative g(γ) can be computed by:

g′(γ) = −γ · Pr (D ≤ γ) , (52)

Therefore, function g(γ) is monotonically non-increasing
over R+, and is monotonically decreasing for γ that satisfies
Pr(γ > D) > 0. Therefore, if zero-wait policy is not optimum,
i.e., Pr(γ? > 0) > 0, then g(γ?) = 0 and γ? is the unique
solution to the following equation

g(γ) = 0. (53)

We will then show γ? is the unique stationary point of
ODE (51) through Lyapunov stability analysis, where the
Lyapunov function is denoted by V (γ) := 1

2 (γ − γ?). Then
we have:

V̇ (γ) = (γ − γ?)g(γ). (54)

According to the monotonic characteristic from (52), we
have V̇ (γ) < 0,∀γ 6= γ? and the global stability of γ? is
verified from Lyapunov theorem. Since {γk} almost surely to
the limit point of the ODE (51) and γ? is the unique stationary
point of (51), we conclude that γk converges to γ? almost
surely.

B. Proof of (18b)

Let ak be the average AoI up to frame k, which can be
computed by:

ak :=

∫ Sk+1

t=0
A(t)dt

Sk+1
=

1
k

∫ Sk+1

t=0
A(t)dt

1
kSk+1

. (55)

To show that sequence {ak} converges to Aπ? almost
surely, we will first show that the denominator in (55) is

strictly positive with probability 1. Notice that 1
kSk+1 can be

computed by:

1

k
Sk+1 =

1

k

k∑
k′=1

(Dk′ +Wk′) ≥
1

k

k∑
k′=1

Dk′ . (56)

Since the transmission delays {Dk′} are i.i.d., taking the
limit on both sides inequality (56), the law of large number
shows:

lim inf
k→∞

1

k
Sk+1 ≥ lim inf

1

k

k∑
k′=1

Dk′
a.s.
= D > 0. (57)

Inequality (57) implies, sequence 1
kSk+1 is strictly larger

than a positive constant with probability 1. To prove sequence

{ak} =
∫ Sk+1
t=0 A(t)dt
Sk+1

converges to Aπ? , it is equivalent to show
that

lim
k→∞

θk
a.s.
= 0, (58)

where θk :=
1

k

∫ Sk+1

t=0

A(t)dt−Aπ? ·
(

1

k
Sk+1

)
.

The proof will proceed in two steps: (i) we will show that
with probability 1, {θk} converges to the limit points of an
ODE; (ii) we will show that 0 is the unique stationary point
of the ODE. The first step is to rewrite the evolution of {θk}
into a recursive form. Recall that the cumulative AoI in frame
k is

∫ Sk+1

Sk
A(t)dt = Qk + Lk−1Dk and the optimum AoI

Aπ? = γ? +D, θk can be rewritten as follows:

θk =
1

k

k∑
k′=1

(Qk′ + Lk′−1Dk′)

−
(
γ? +D

)
·

(
1

k

k∑
k′=1

Lk′

)
=

1

k

(
(k − 1)θk−1 +Qk + Lk−1Dk − (γ? +D)Lk

)
=θk−1 +

1

k

(
Qk − (γ? +D)Lk − θk−1 + Lk−1Dk

)︸ ︷︷ ︸
=:Yk

=θk−1 +
1

k
(E[Yk|Hk−1] + (Yk − E[Yk|Hk−1])) (59)

To further simply the evolution of θk, we make the following
definitions on function f(θ, γ; d):

f(θ, γ; d) :=
1

2

(
(γ − d)+ + d

)2 − γ · ((γ − d)+ + d
)
− θ.

(60)
Let f(θ, γ) := ED[f(θ, γ;D)] be the expectation over D.

Specifically, denote function f(θ) as the value of f(θ, γ) when
(γ = γ?). By definition f(θ) can be simplified as follows:

f(θ) :=f(θ, γ?)

=ED
[1

2

(
(γ? −D)+ +D

)2
− γ? ·

(
(γ? −D)

+
+D

) ]
− θ

(a)
= − θ, (61)
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where equality (a) is because E
[

1
2 ((γ? −D+ +D))

2
]
−

γ?E [(γ? −D)+ +D] = 0.
Then given historical transmission Hk−1, the conditional

expectation of Yk can be computed by:

E [Yk|Hk−1]

=E[f(θk−1, γk;D)]−DE[Lk|γk] + Lk−1D

=f(θk−1, γk)

−D ·
(
E
[
(γk −D)+ +D

]
− E

[
(γ? −D)+ +D

])︸ ︷︷ ︸
=:βk,1

+D ·
(
(γk−1−Dk−1)++Dk−1)−E

[
(γk−1−D)++D

])︸ ︷︷ ︸
=:βk,2

(62)

Finally, denote δMk := Yk − E[Yk|Hk−1] and plugging
equality (62) into equation (59), we have:

θk = θk−1 +
1

k
· (f(θk−1, γk) + δMk − βk,1 + βk,2)) , (63)

Denote εk := 1
k , which can be viewed as the step-size for

updating θk. Term βk,1 and βk,2 can be viewed as two bias
terms. Define t0 = 0 and the cumulative step-sizes up to cycle
k is denoted by tk =

∑k−1
i=0 εi. Therefore, ln k ≤ tk ≤ 1 +

ln(k − 1). For t ≥ 0, let m(t) be the unique value such that
tm(t) ≤ t < tm(t)+1. We have

m(t) = bexp(t)c. (64)

We then present the following properties about the recursive
equation (63):

(2.1) Notice that in each frame k, Qk, Lk are bounded. There-
fore, θk is bounded and hence supk E[|Yk|] is bounded.

(2.2) Function f(θ, γ) is continuous in θ by definition.
(2.3) For each θ < ∞, function |f(θ, γ)| ≤

E
[

1
2 ((γ −D)+ +D)2

]
+ γE [(γ −D)+ +D] < ∞ is

bounded. The difference between f(θ, γ) and f(θ) can
be computed by∣∣f(θ, γ)− f(θ)

∣∣ =
∣∣E [(γ −D)+ − (γ? −D)+

]∣∣
≤|γ − γ?|. (65)

Therefore, for each k we have:

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εi(f(θ, γi)− f(θ))

∣∣∣∣∣ ≥ µ
)

≤
E
[
supj≥k

∣∣∣∑j
i=k εi(f(θ, γk)− f(θ))

∣∣∣]
µ

≤ 1

µ
E

[ ∞∑
i=k

εi ·
∣∣f(θ, γi)− f(θ)

∣∣]
(a)

≤ 1

µ
E

[ ∞∑
i=k

1

i3/4
·
(

1

i1/4
· |γi − γ?|

)]
(b)

≤ 1

µ

√√√√( ∞∑
i=k

(
i−3/4

)2) · E[ ∞∑
i=k

(
i−1/2 · (γi − γ?)2

)]

(c)

≤ 1

µ

√√√√( ∞∑
i=k

i−3/2

)
·

( ∞∑
i=k

i−1/2 ·
L4
ub

D
2

lb

i−1

)

≤ 2

µ
· 1√

k − 1

L4
ub

D
2

lb

. (66)

where inequality (a) is because (65); inequality (b) is
from Cauchy-Schwarz; inequality (c) is because (19a)
from Theorem 3. Taking the limit on both sides of
inequality (66), and recall m(k) = bexp(k)c from equa-
tion (64), we have:

lim
k→∞

Pr

 sup
j≥m(k)

∣∣∣∣∣∣
j∑

i=m(k)

εi · (g(θ, γi)− g(θ))

∣∣∣∣∣∣ ≥ µ


≤ lim
k→∞

2

µ
· 1√

exp(k)− 1
= 0. (67)

(2.4) Given historical transmission Hk−1, the difference δMk

only depends on Dk and has mean zero. Since γk is
upper bounded in each frame and the delay Dk is second
order bounded, the expectation Qk, Lk are both upper
bounded and the difference sequence δMk is second order
bounded. Therefore sequence Mk :=

∑k
k′=1 εk′δMk′ is

also a martingale sequence. According to [32, Chapter 5,
Eq. (2.6)], for each µ > 0, we have

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiδMi

∣∣∣∣∣ ≥ µ
)

= lim
k→∞

Pr

(
sup
j≥k
|Mj −Mk| ≥ µ

)
= 0. (68)

(2.5) βk,1 and βk,2 can be viewed as two bias terms in the
recursive form. Next we will show:

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εi(βi,1 + βi,2)

∣∣∣∣∣ ≥ µ
)

= 0. (69)

The proof is as follows: through the union bound we have

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εi(βi,1 + βi,2)

∣∣∣∣∣ ≥ µ
)

≤ lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiβi,1

∣∣∣∣∣ ≥ µ/2
)

+ lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiβi,2

∣∣∣∣∣ ≥ µ/2
)
. (70)

For given k, we can upper bound the first term in
inequality (70) as follows:

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiβi,1

∣∣∣∣∣ ≥ µ/2
)

(d)

≤
E
[
supj≥k

∣∣∣∑j
i=k εiβi,1

∣∣∣]
µ/2

≤ 2

µ
E

[ ∞∑
i=k

1

i
|βi,1|

]
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(e)

≤ 2

µ

√√√√( ∞∑
i=k

(
1

i3/4

)2
)
· E

[ ∞∑
i=k

(
1

i1/4
βi,1

)2
]

(f)

≤ 2

µ

√√√√( ∞∑
i=k

i−3/2

)
· E

[ ∞∑
i=k

i−1/2(γi − γ?)2

]

≤ 2

µ

√√√√( ∞∑
i=k

i−3/2

)
·

(∑
i=k

i−3/2

)
L4
ub

D
2

lb

≤4L2
ub

Dlb

1√
k
. (71)

where inequality (d) is from Markov inequality; inequal-
ity (e) is from Cauchy-Schwarz; inequality (f) comes
from (19a) in Theorem 3. Taking the limit with respect
to k on both sides of inequality (71), we have:

lim
k→∞

Pr

sup
j≥k

∣∣∣∣∣∣
j∑

i=m(k)

εiβi,1

∣∣∣∣∣∣ ≥ µ/2
 = 0. (72)

Notice that the second part βk,2 is predicable given
historical transmission Hk−1. It is also a martingale
sequence given Hk−2. Therefore, bk :=

∑k
k′=1 εkβk,2

is also a martingale sequence. Through [32, Chapter 5,
Eq. (2.6)] we can obtain:

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiβi,2

∣∣∣∣∣ ≥ µ/2
)

= lim
k→∞

Pr

(
sup
j≥k
|bj − bk| ≥ µ/2

)
= 0. (73)

Plugging (71) and (73) into (70) verifies (69).
(2.6) Function f is uniformly bounded for θ ∈

[
0, 2L2

ub

]
, γ ∈

[γlb, γub].
(2.7) For each γ we have:

|f(θ1, γ)− f(θ2, γ)| = |θ1 − θ2|, (74)

and limθ→∞ |θ| = 0.
(2.8) Sequence 1

k satisfies
∑∞
k′=1

1
k′ =∞.

Therefore, according to [32, p.166, Theorem 1.1]5, with
probability 1, sequence θk converges to the limit point of the
following ODE:

θ̇ = f(θ) = −θ. (75)

Notice that θ = 0 is the unique stationary point of the ODE
(75). Therefore,

lim
k→∞

θk= lim
k→∞

1

k

(∫ Sk+1

t=0

A(t)dt−(γ?+D)Sk+1

)
= 0,

w.p.1. (76)

Finally, plugging (76) into (58) implies:

lim
k→∞

∫ Sk+1

t=0
A(t)dt

Sk+1

a.s.
= γ? +D = Aπ? . (77)

5As mentioned on [32, p. 166, Eq. (1.10)], assumption (A1.6) in [32, p.
165] becomes: function g is uniformly bounded, [32, p. 166, Theorem 1.1]
is still true.

APPENDIX D
PROOF OF LEMMA 2

Proof: Notice that in each cycle k, the waiting time Wk

is chosen to minimize the objective function (10a), therefore
we have:

E [Qk − γkLk|γk]
(a)

≤ (Q
? − γkL

?
)

=(Q
? − γ?L?) + (γ? − γk)L

? (b)
= (γ? − γk)L

?
, (78)

where equality (a) is because policy πk used in cycle k
minimizes the Lagrange function. Equality (b) is obtained
because on the stationary point γ? we have Q

?
= γ?L

?
. This

verifies the first inequality in Lemma 2.
Then, adding (γk−γ?)E[Lk|γk] to both sides of (78) leads

to:

E [Qk − γ?Lk|γk] ≤ (γk − γ?)E
[
Lk − L

?|γk
]
. (79)

which verifies the second inequality.

APPENDIX E
PROOF OF LEMMA 3

Proof: To find the upper bound of
E
[∑k

k′=1((Qk′ + Lk′−1Dk′)− (γ? +D)Lk′)
]
, first we

add E[Lk−1Dk|γk] on both sides on (29b) and obtain:

E[(Qk + Lk−1Dk)− γ?Lk|γk]

≤− (γ? − γk)
(
E[Lk|γk]− L?

)
+ E[Lk−1Dk|γk]. (80)

Next, we can proceed to simplify (80) by:

E[(Qk + Lk−1Dk)− γ?Lk|γk]

(a)

≤ − (γ? − γk)
(
E[Lk|γk]− L?

)
+ Lk−1D

(b)

≤(γ? − γk)2 + Lk−1D, (81)

where inequality (a) is because Dk is independent of Lk−1 and
thus E[Lk−1Dk|γk] = E[Lk−1]D; inequality (b) is because

E[Lk − L
?|γk] = E

[
(γk −D)+ − (γ? −D)+

]
≤ |γk − γ?|. (82)

Summing up inequality (81) from cycle k = 1 to K and
take the expectation with respect to γk, we have:

E

[
K∑
k=1

((Qk + Lk−1Dk)− γ?Lk)

]

≤E

[
K∑
k=1

(γ? − γk)2

]
− E

[
K∑
k=1

Lk

]
D. (83)

Deducting E
[∑K

k=1 Lk

]
D + E[LK ]γ? on both sides of

inequality (83) yields:

E

[
K∑
k=1

((Qk + Lk−1Dk)− (γ? +D)Lk)

]

≤E

[
K∑
k=1

(γ? − γk)2

]
− E[LK ]D ≤ E

[
K∑
k=1

(γ? − γk)2

]
.

(84)

This completes the proof of Lemma 3.
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APPENDIX F
PROOF OF THEOREM 4

A. Proof of inequality (20)

Proof: For each distribution P, the optimum ratio γ?P
satisfies the following equation:

1

2
E
[
((γ?P −D)+ +D)2

]
−γ?PE

[
(γ?P −D)+ +D

]
= 0. (85)

The minimax estimation error bound on γ̂ is established
through the Le Cam’s two point method [33], [34]. Let P1

and P2 be two probability distributions and denote γ1 := γ?P1
,

γ2 := γ?P2
for simplicity. Through Le Cam’s inequality, we

have:

inf
γ̂

sup
P

E[(γ̂(Hk)− γ?P)2] ≥ (γ1 − γ2)2 · P⊗k1 ∧ P⊗k2 , (86)

where P ∧Q =
∫

min{dP, dQ}.
To use the Le Cam’s method, the first step is to find

two distribution P1,P2 such that the difference (γ1 − γ2)2

is large but P⊗k1 ∧ P⊗k2 can be lower bounded. We consider
P1 = Uni([0, 1]) be the uniform distribution. When D ∼ P1,
equation (85) can be simplified into:

−1

6
γ3

1 −
1

2
γ1 +

1

6
= 0. (87)

Since γ is a real number, according to the solution of cubic
equation, we have:

γ1 =

 3

√
1

2
+

√
5

4
+

3

√
1

2
−
√

5

4

 . (88)

Recall that P1 is a uniform distribution, therefore the
probability of waiting by using the optimum policy π?P1

is:

pw, uni := Pr (D ≤ γ1|D ∼ P1) = γ1. (89)

Distribution P2 is defined through the density function
p2(x) = P2(dx)

dx :

p2(x) =


1− c

√
1/k, 0 ≤ x ≤ δ/2;

1, δ/2 < x < 1− δ/2;

1 + c
√

1/k, 1− δ/2 ≤ x ≤ 1;

0, otherwise.

(90)

where δ = min{1/3, pw, uni/2} and c < 1/2 is fixed as a
constant.

Lower bounding (γ2 − γ1)2 is divided into two steps: first
we will prove γ2 ≥ γ1; then we will obtain the lower bound
of γ2 through Taylor expansion. For simplicity, let function
h1(·) and h2(·) be:

h1(γ) :=

ED∼P1

[
1

2
((γ −D)+ +D)2 − γ

(
(γ −D)+ +D

)]
, (91a)

h2(γ) :=

ED∼P2

[
1

2
((γ −D)+ +D)2 − γ

(
(γ −D)+ +D

)]
. (91b)

Then γ1 and γ2 satisfy h1(γ1) = 0 and h2(γ2) = 0.

Step 1: Showing γ2 > γ1. The derivative of function h2(γ)
can be computed by:

h2(γ)′ = −ED∼P2

[
(γ −D)+ +D

]
< 0. (92)

Therefore, function h2(γ) is monotonically decreasing.
We will then show h2(γ1) > 0. Since h1(γ1) = 0, it

is sufficient to show that h2(γ1) > h1(γ1). The difference
h2(γ)− h1(γ) can be computed as follows:

h2(γ)− h1(γ)

=EP2

[
1

2

(
(γ −D)+ +D

)2 − γ ((γ −D)+ +D
)]

− EP1

[
1

2

(
(γ −D)+ +D

)2 − γ ((γ −D)+ +D
)]

(a)
=

∫ 1

1−δ/2

c√
k

(
1

2
max{γ, x}2 − γmax{γ, x}

)
dx

−
∫ δ/2

0

c√
k

(
1

2
max{γ, x}2 − γmax{γ, x}

)
dx

=

∫ δ/2

0

c√
k

(1

2

(
max{γ, x+ (1− δ)}2 −max{γ, x}2

)
− γ (max{γ, x+ (1− δ)} −max{γ, x})

)
dx

=

∫ δ/2

0

c√
k

(
1

2
(max{γ, x+(1−δ)}+ max{γ, x})−γ

)
× (max{γ, x+ (1− δ)} −max{γ, x}) dx

(b)

≥0, (93)

where equality (a) is because (γ −D)+ +D = max{γ,D};
inequality (b) is because max{γ, x+(1−δ)}−max{γ, x} ≥ 0
for δ < 1, and max{γ, x + (1 − δ)} + max{γ, x} ≥ 2γ.
Therefore, h2(γ1) ≥ h1(γ1) = 0. Since h2(γ2) = 0 and
function h2(·) is monotonically decreasing, we have γ2 ≥ γ1.

Step 2: Taylor expansion to lower bound h2(γ1). Through
Taylor expansion, we have:

(γ2 − γ1) =
h2(γ2)− h2(γ1)

h′2(γ)
=
h2(γ1)− h2(γ2)

−h′2(γ)
, (94)

where γ ∈ [γ1, γ2]. To lower bound (γ2 − γ1), it is suffice
to lower bound h2(γ1)− h2(γ2) and upper bound h′2(γ). By
Corollary 1, since c ≤ 1/2 and δ < 1, we can upper bound
γ2 by:

γ2 ≤
1
2EP2 [D2]

D
≤

1
2

(
1
3 + δ

2 ×
c√
k

)
1/2

≤ 1. (95)

Therefore, according to (92), for any γ ∈ [γ1, γ2], the
derivative h′2(γ) can be upper bounded by:

|h′2(γ)| = EP2 [(γ2 −D)+ +D] ≤ γ2 + EP2 [D] ≤ 3

2
. (96)

Notice that h2(γ2) = 0 and h1(γ1) = 0, lower bounding
h2(γ1) − h2(γ2) is equivalent to lower bounding h2(γ1) −
h1(γ1), which is as follows:

h2(γ1)− h1(γ1)

=EP2

[
1

2

(
(γ1 −D)+ +D

)2−γ1

(
(γ1 −D)+ +D

)]
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−EP1

[
1

2

(
(γ1 −D)+ +D

)2−γ1

(
(γ1 −D)+ +D

)]
=

c√
k
×
∫ δ/2

0

(1

2

(
max{γ1, x+(1−δ)}2−max{γ1, x}2

)
− γ1 (max{γ1, x+(1−δ)} −max{γ1, x})

)
dx

=:
c√
k
N1. (97)

Plugging (97) and (96) into (94), the lower bound on (γ2−
γ1) can be obtained by:

(γ2 − γ1) ≥ 2N1c

3

1√
k
. (98)

Next, we proceed to lower bound P⊗k1 ∧ P⊗k2 . Notice that:

P⊗k1 ∧ P⊗k2 = 1− 1

2
|P⊗k1 − P⊗k2 |1, (99)

where |P − Q|1 =
∫
|dP − dQ|1 is the `1 distance between

probability distribution P and Q. To lower bound P⊗k1 ∧P
⊗k
2 ,

it is sufficient to upper bound |P⊗k1 − P⊗k2 |1 as follows:

1

2

∣∣P⊗k1 − P⊗k2

∣∣
1

(c)

≤
√

1

2
DKL(P⊗k2 ||P

⊗k
1 )

=

√
1

2
kDKL(P2||P1)

(d)

≤

√
1

2
k

∫ 1

0

(
p2(x)−1+

1

min{p2(x), 1}
(p2(x)−1)2

)
dx

(e)

≤

√
1

2
k

1

inf0≤d≤1 p2(d)

∫ 1

0

(p2(x)− 1)2dx

≤
√

1

2
k

1

1− c
√

1/k
δ
c2

k
≤
√
δc2, (100)

where inequality (c) is from Pinsker’s inequality; where
inequality (d) is because the density function p1(x) =
1 for uniform distribution, therefore DKL(P2||P1) =∫ 1

0
p2(x) ln p2(x)dx, where p2(x) is the density function de-

fined in (90); inequality (e) is because function g(t) := (t ln t)
is convex, its derivative g(t)′′ = 1/t, therefore, through Taylor
expansion we have g(t) ≤ g(1)+(t−1)+ 1

2
1

min{t,1} (t−1)2 =

(t− 1) + 1
2

1
min{t,1} (t− 1)2. By choosing c = 1/2 and recall

that δ < 1, inequality (100) can be upper bounded by:

1

2
|P⊗k1 − P⊗k2 |1 ≤

1

2
, (101)

Plugging (101) into (99), we have:

P⊗k1 ∧ P⊗k2 ≥ 1/2. (102)

Finally, plugging (102) and (98) into the Le Cam’s inequal-
ity (86) yields:

inf
γ̂

sup
P

E
[
(γ̂(Hk)− γ?P)2

]
≥ 2N2

1 c
2

9
· 1

k
, (103)

which verifies (20).

B. Proof of inequality (21)
We begin the proof of Theorem 2 by introducing the

following Lemma:
Lemma 4: Suppose γ? is the optimum threshold policy π?

selects and let pw := Pr(D ≤ γ?) be the probability of waiting
to before taking the next sample. For any stationary policy π,
denote qπ := E

[
1
2 (D + π(D))2

]
and lπ := E[D + π(D)] be

the expected average reward and length of each cycle, which
satisfy the following inequality:

qπ ≥ γ?lπ +
1

2
pw

(
lπ − L

?
)2

. (104)

Inequality (104) implies, for any causal policy π, the
expected reward and frame length satisfy:

E [Qk|Hk−1] ≥γ?E [Lk|Hk−1]

+
1

2
pw

(
E[Lk|Hk−1]− L?

)2

. (105)

Notice that the delay Dk is independent of Hk−1 and
Lk−1. Therefore, E[DkLk−1|Hk−1] = Lk−1D. Adding
E[DkLk−1|Hk−1] on both sides of inequality (105) yields:

E [Qk +DkLk−1|Hk−1]

≥γ?E[Lk|Hk−1] +DLk−1

+
1

2
pw

(
E[Lk|Hk−1]− L?

)2

. (106)

For any policy π, denote zk(hk) := E[Lk|Hk−1 = hk−1]
to be the expected frame-length obtained by π when the his-
torical transmission delay Hk−1 = hk−1 = {d1, · · · , dk−1}.
Summing up (106) from cycle 1 to K and take the expectation
with respect to HK , we have:

E

[
K∑
k=1

(Qk +DkLk−1)

]

≥(γ? +D)E

[
K∑
k=1

Lk

]
−D(B +Wub)

+
1

2
pwE

[
K∑
k=1

(zk(Hk−1)− L?)2

]
. (107)

Dividing E
[∑K

k=1 Lk

]
on both sides of inequality (107)

and recall that Aπ? = γ? + D, for any causal policy π, we
have:

E
[∑K

k=1(Qk +DkLk−1)
]

E
[∑K

k=1 Lk

] −Aπ?

≥− B +Wub

K

+
1

KLub
× 1

2
pwE

[
K∑
k=1

(zk(Hk−1)− L?)2

]
. (108)

For any delay distribution P ∈ Pw(δ), the waiting prob-
ability satisfies pw ≥ δ by definition. Then to establish the

lower bound of
E[

∑K
k=1(Qk+DkLk−1)]
E[

∑K
k=1 Lk]

− Aπ? , it remains to

lower bound E
[
(zk(Hk−1)− γ?)2

]
, which is provided in the

following lemma:
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Lemma 5: For any mapping rule zk : Rk 7→ R, we have the
following minimax bound:

inf
zk+1

sup
Pw(δ)

E
[
(zk+1(hk)− L?(P))2

]
≥ Ω

(
1

k

)
,

∀0 < δ ≤

 3

√
1

2
+

√
5

4
+

3

√
1

2
−
√

5

4

 /2. (109)

Proof for Lemma 5 is provided in Appendix H.
Therefore, taking the minimax on both sides of inequal-

ity (108) and then plugging (109) from Theorem 5 in to the
inequality, for any causal policy π, we have:

inf
π∈Π

sup
P∈Pw(δ)

E
[∫ SK+1

0
A(t)dt

]
E[SK+1]

−Aπ?(P)


≥B +Wub

K
+

1

KLub
×

K∑
k=1

inf
zk+1

sup
P∈Pw(δ)

1

2
pw(P)

× E
[
(zk(Hk−1)− L?)2

]
≥δ · Ω

(∑K
k=2

1
k−1

K

)
= δ · Ω

(
lnK

K

)
. (110)

APPENDIX G
PROOF OF LEMMA 4

Proof: Denote Πl , {π|E[D + π(D)] = l,∀π ∈ Π} to
be the set of stationary policies whose expected cycle length
equals l. If l satisfies D ≤ l ≤ D +Wub, set Πl 6= ∅ because
choosing a constant waiting time π(d) ≡ l − D will lead
to an average cycle length of l directly. Next, we establish
the lower bound of the expected average reward qπ for any
policy π ∈ Πl, which can be formulated into an optimization
problem:

Problem 4:

ql,opt , inf
π

E
[

1

2
(D + π(D))2

]
, (111)

s.t. E [D + π(D)] = l. (112)

This optimization problem can be solved through a La-
grange multiplier approach. The Lagrange function is as
follows:

L1(π, λ, µ) ,
1

2
E
[
(D + π(D))2

]
+ λ(E[D + π(D)]− l)

+ E[π(D)µ(D)], (113)

where λ and µ(d) ≥ 0,∀d are dual variables. For function
ω(·) ∈ L2, the Gâteaux derivative of the Lagrange function
L1 is denoted by δL1(π;λ, µ, ω):

δL1(π, λ, µ;ω) := lim
ε→0

L1(π + εω, λ, µ)− L(π, λ, µ)

ε
=E [(D + π(D) + λ+ µ(D))ω(D)] . (114)

The primal feasibility of the KKT conditions require:

δL1(π, λ, µ;ω) = 0,∀ω ∈ L2, (115a)

and the Complete Slackness conditions require:

λ (E[D + π(D)]− l) = 0, (115b)
π(d)µ(d) = 0,∀d. (115c)

Plugging the expression of the Gâteaux derivative (114) into
the KKT condition (115a) and considering the CS conditions
in (115b) and (115c), the optimum policy π?l to Problem 4 is
as follows:

π?l (d) = (γl − d)+, (116)

where the selection of γl satisfies:

E[(γl −D)+] = l −D. (117)

Before we proceed to lower bound Eπ?l
[

1
2 (D + π(D))2

]
,

we provide the following statement: recall that γ? is the opti-
mum updating threshold and leads to an average framelength
of L

?
= E[D+ (γ?−D)+], the difference between γl and γ?

can be upper bounded by

|γl − γ?| ≥ |l − L
?|. (118)

This is because for any threshold γ1 ≥ γ2, (γ1 − d)+ ≥
(γ2 − d)+ and therefore

0 ≤E
[
(γ1 −D)+ +D

]
− E

[
(γ2 −D)+ +D

]
=E [(γ1 − γ2)I(D ≤ γ1)]

+ E [(γ1 −D)I(γ2 ≤ D ≤ γ1)]

≤γ1 − γ2. (119)

We then lower bound E
[

1
2 ((γl −D)+ +D)2

]
by dividing

into the following two cases:
• Case 1: l ≥ L

?
, it can be easily verify that γl ≥ γ?.

Therefore, we have:

1

2
E
[
((γl −D)+ +D)2

]
=

1

2
E
[
γ2
l I(D ≤ γl)

]
+

1

2
E
[
D2I(D > γl)

]
=

1

2
E
[
(γ?)2I(D ≤ γ?)

]
+

1

2
E
[
D2I(D > γ?)

]
+

1

2
E
[
(γ2
l − (γ?)2)I(D ≤ γ?)

]
+

1

2
E
[
(γ2
l −D2)I(γ? ≤ D ≤ γl)

]
(a)

≥Q? +
1

2
E
[
(γl − γ?)2I(D ≤ γ?)

]
+ E [γ?(γl − γ?)I(D ≤ γ?)]
+ E [γ?(γl −D)I(γ? ≤ D ≤ γl)]

(b)

≥γ?L? +
1

2
pw(γl − γ?)2 + γ?(l − L?)

(c)

≥γ?l +
1

2
pw(l − L?)2, (120)

where inequality (a) is obtained because γ2
l − (γ?)2 ≥

(γl − γ?)2 + 2γ?(γl − γ?) and for delay d that satisfies
γ? ≤ d ≤ γ?l , (γ?l )2 − d2 = d(γ?l − d) ≥ γ?(γ?l − d); in-
equality (b) is because l−L? = E [(γl − γ?)I(D ≤ γ?)]+
E [(γl −D)I(γ? ≤ D ≤ γl)] and inequality (c) is ob-
tained because of (119).
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• Case 2: l ≤ L?, similarly, it can be verified that γl ≤ γ?.
As a result:

1

2
E
[
((γl −D)+ +D)2

]
=

1

2
E
[
γ2
l I(D ≤ γl)

]
+

1

2
E
[
D2I(D > γl)

]
=

1

2
E
[
(γ?)2I(D ≤ γ?)

]
+

1

2
E
[
D2I(D > γ?)

]
− 1

2
E
[
((γ?)2 − γ2

l )I(D ≤ γ?)
]

− 1

2
E
[
(D2 − γ2

l )I(γl ≤ D ≤ γ?)
]

=Q
?

+
1

2
E
[
(γl − γ?)2I(D ≤ γ?)

]
+ E [γ?(γl − γ?)I(D ≤ γ?)]
− E [γ?(γ? −D)I(γl ≤ D ≤ γ?)]

(d)

≥γ?L? +
1

2
pw(l − L?)2 − γ?(L? − l)

=γ?l +
1

2
pw(l − L?)2, (121)

where inequality (d) is obtained similarly as inequality
(a)-(c).

APPENDIX H
PROOF OF LEMMA 5

Proof: The minimax risk bound on l̂− L? is established
similarly using the Le Cam’s two point method. Let P1 and
P2 be two delay distribution from Pw(δ) and denote l1 :=
EP1 [(γ1−D)++D], l2 := EP2 [(γ2−D)++D] be the optimum
frame length by using AoI minimum policies π?P1

and π?P2
. By

Le Cam’s inequality, we have:

inf
l̂

sup
P∈Pw(δ)

E[(l̂(Hk)− L?(P))2] ≥ (l1 − l2)2 · P⊗k1 ∧ P⊗k2 .

(122)
Similar to the proof of (108) in Appendix F-A, we choose

P1 to be the uniform distribution and P2 is defined through
(90). Since δ is selected to be δ ≤ pw, uni/2, it is easy to show
that pw(P2) ≥ δ as follows:

pw(P2) = EP2 [I(D≤γ2)]

=

∫ 1

0

I(x≤γ2)dx−
∫ δ/2

0

c√
k
I(x≤γ2)dx

+

∫ 1

1−δ/2

c√
k
I(x≤γ2)dx

(a)

≥
∫ 1

0

I(x≤γ1)dx−
c√
k
δ

(b)

≥ pw, uni/2. (123)

where inequality (a) holds because γ1 ≤ γ2 and inequality
(b) holds because δ < pw, uni/2 by definition.

To use the Le Cam’s two point method, we then need to
lower bound l2 − l1 and P⊗k1 ∧ P⊗k2 , respectively. The lower
bound on P⊗k1 ∧P

⊗k
2 can be obtained in (102) and lower bound

on l2 − l1 can be obtained as follows:

l2 − l1
=EP2

[
(γ2 −D)+ +D

]
− EP2

[
(γ1 −D)+ +D

]

=

∫ 1

0

max{γ2, x}dx+

∫ 1

1−δ/2

c√
k

max{γ2, x}dx

−
∫ δ/2

0

c√
k

max{γ2, x}dx−
∫ 1

0

max{γ1, x}dx

(a)

≥
∫ 1

0

max{γ2, x}dx−
∫ 1

0

max{γ1, x}dx

≥γ1(γ2 − γ1)

(b)

≥ 2N1cγ1

3

1√
k
, (124)

where inequality (a) is because for x ∈ [0, δ/2], we have
max{γ2, x + (1 − δ)} − max{γ2, x} ≥ 0 and therefore∫ 1

1−δ/2
c√
k

max{γ2, x}dx −
∫ δ/2

0
c√
k

max{γ2, x}dx ≥ 0; in-
equality (b) is from (98).

Plugging (124) and (102) into the Le Cam’s inequality
(122), we have:

inf
l̂

sup
Pw(δ)

E[(l̂(Hk)− L?(P))2] ≥ 2N2
1 c

2γ2
1

9
· 1

k
. (125)

APPENDIX I
PROOF OF THEOREM 5

Proof: Recall from equation (16d), the sampling debt
evolves like a queueing system:

Uk+1 =

(
Uk +

(
1

fmax
− Lk

))+

.

To show that the proposed policy satisfies the sampling
constraint, i.e., the sampling debt queue is stable, it is sufficient
to prove that [35, Theorem 2.8]

lim sup
K→∞

1

K

K∑
k=1

E [Uk] <∞. (126)

This motivates us to adopt the Lyapunov-Drift-Plus-Penalty
approach to prove the virtual queue of the unused sampling
frequency is stable. Define the Lyapunov function to be:

J(Uk) :=
1

2
U2
k , (127)

and the Lyapunov Drift is defined by

∆(Uk) := E [J(Uk+1)− J(Uk)|Hk−1] . (128)

To upper bound the Lyapunov drift, notice that U2
k can be

upper bounded by:

U2
k+1 =

[
max{Uk − Lk +

1

fmax
, 0}
]2

≤
[
Uk − Lk +

1

fmax

]2

. (129)

Then, considering the fact that both the waiting time and
delay is upper bounded, i.e., Wk ≤ Wub and Dk ≤ B, the
cycle length satisfies Lk ≤Wub +B, J(Uk+1)− J(Uk)) can
be upper bounded as follows:

J(Uk+1)− J(Uk) =
1

2

(
U2
k+1 − U2

k

)
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(a)

≤ 1

2

([
Uk − Lk +

1

fmax

]2

− U2
k

)

≤− Uk
(
Lk −

1

fmax

)
+

1

2

(
(B +Wub)

2 +
1

f2
max

)
. (130)

where inequality (a) is due to (129).
Taking the conditional expectation of (130) with respect

to the transmission delay Dk, the Lyapunov drift ∆(Uk) =
E [J(Uk+1)− J(Uk)|Hk−1] can be upper bounded by:

∆(Uk) ≤ −UkE
[
Lk −

1

fmax
|Hk−1

]
+

1

2

(
(B +Wub)

2 +
1

f2
max

)
. (131)

The following Lemma establishes an upper bound on
E
[
Lk − 1

fmax
|Hk−1

]
, the proof will be given in Appendix J:

Lemma 6: Assumption 2 enables us to upper bound term
−UkE

[
Lk − 1

fmax
|Hk−1

]
via the following inequality:

− UkE
[
Lk −

1

fmax
|Hk−1

]
≤− εUk + V

(
1

2
(B +Wub)

2 + γub(B +Wub)

)
. (132)

Plugging inequality (132) into (131), the Lyapunov drift can
be upper bounded by:

∆(Uk) ≤− εUk +
1

2

(
(B +Wub)

2 +
1

f2
max

)
+ V

(
1

2
(B +Wub)

2 + γub(B +Wub)

)
. (133)

For simplicity, denote by

C :=
1

2

(
(B +Wub)

2 +
1

f2
max

)
+

V

(
1

2
(B +Wub)

2 + γub(B +Wub)

)
<∞. (134)

Summing up inequality (133) from cycle k = 1 to K and
taking the expectation with respect to historical information
HK , we have:

E
[

1

2
U2
K+1 −

1

2
U2

1

]
≤ −εE

[
K∑
k=1

Uk

]
+KC. (135)

Finally, recall that U1 = 0 and UK+1 ≥ 0, adding∑K
k=1 E[Uk] on both sides of inequality (135) yields:

ε

K∑
k=1

E [Uk] ≤ KC. (136)

Taking the limit K →∞ yields:

lim sup
K→∞

1

K
E

[
K∑
k=1

Uk

]
<
C

ε
<∞, (137)

which verifies condition (126) and shows that the proposed
method satisfies the sampling constraint.

APPENDIX J
PROOF OF LEMMA 6

Proof: Denote function

f(u,w, d) := −u(w + d) + V

(
1

2
(d+ w)2 − γ(d+ w)

)
.

The partial derivative with respect to w can be computed
by:

∂f(u,w, d)

∂w
= V

(
w + d−

(
γ +

1

V
u

))
.

Therefore, for given u and d, the optimum w ≥ 0 that
minimizes f(u,w, d) is:

arg minw≥0f(u,w, d) =

(
γ +

1

V
u− d

)+

. (138)

Recall from equation (16a), the selection rule of the waiting
time is:

Wk =

(
γk +

1

V
Uk −Dk

)+

.

Therefore, according to (138), the selection rule Wk of the
proposed algorithm minimizes function f(u,w, d) when the
sampling frequency violation u = Uk and the transmission
delay d = Dk. As a result, for any other waiting time specified
by policy W = π(D), we have

− Uk(Wk +Dk)

+ V

(
1

2
(Dk +Wk)2 − γk(Dk +Wk)

)
≤− Uk(π(Dk) +Dk)

+ V

(
1

2
(Dk + π(Dk))2 − γk(Dk + π(Dk))

)
. (139)

Adding Uk 1
fmax

on both sides of inequality (139), then taking
the conditional expectation with respect to delay Dk given
historical information Hk−1, we have:

− UkE
[
Dk +Wk −

1

fmax
|Hk−1

]
+ V E

[
1

2
(Dk +Wk)2 − γk(Dk +Wk)|Hk−1

]
≤− UkE

[
π(Dk) +Dk −

1

fmax
|Hk−1

]
+ V E

[
1

2
(Dk + π(Dk))2 − γk(Dk + π(Dk))|Hk−1

]
.

(140)

According to Assumption 2, the sampling frequency con-
straint (5b) can be strictly satisfied by using policy πε, i.e.,

E[D + πε(D)] ≥ 1

fmax
+ ε. (141)

Considering that the transmission delay Dk is i.i.d., plug-
ging (141) into (140) yields

− UkE
[
Lk −

1

fmax
|Hk−1

]
+ V E

[
1

2
(Dk +Wk)2 − γk(Dk +Wk)|Hk−1

]
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≤− UkE
[
Dk + πε(Dk)− 1

fmax

]
+ V E

[
1

2
(Dk+πε(Dk))2−γk(Dk+πε(Dk))|Hk−1

]
≤− εUk

+ V E
[

1

2
(Dk+πε(Dk))2−γk(Dk+πε(Dk))|Hk−1

]
.

(142)

Notice that γk ≤ γub and Dk ≤ B, πε(d) ≤Wub, inequality
(142) can be simplified to:

− UkE
[
Lk −

1

fmax
|Hk−1

]
≤− εUk + V

(
1

2
(B +Wub)

2 + γub(B +Wub)

)
. (143)

REFERENCES

[1] H. Tang, Y. Chen, J. Wang, J. Sun, and J. Song, “Sending timely status
updates through channel with random delay via online learning,” in IEEE
INFOCOM 2022 - IEEE Conference on Computer Communications
(INFOCOM 2022), London, United Kingdom (Great Britain), May 2022.

[2] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Transactions on
Information Theory, vol. 63, no. 11, pp. 7492–7508, 2017.

[3] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Guest editorial age of information,” IEEE Journal on
Selected Areas in Communications, vol. 39, no. 5, pp. 1179–1182, 2021.

[4] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in 2012 Proceedings IEEE INFOCOM, 2012, pp. 2731–
2735.

[5] Y. Wang and W. Chen, “Adaptive power and rate control for real-time
status updating over fading channels,” IEEE Transactions on Wireless
Communications, vol. 20, no. 5, pp. 3095–3106, 2021.

[6] B. Wang, S. Feng, and J. Yang, “When to preempt? age of information
minimization under link capacity constraint,” Journal of Communica-
tions and Networks, vol. 21, no. 3, pp. 220–232, 2019.

[7] B. Zhou and W. Saad, “Joint status sampling and updating for minimiz-
ing age of information in the internet of things,” IEEE Transactions on
Communications, vol. 67, no. 11, pp. 7468–7482, 2019.

[8] H. Tang, J. Wang, L. Song, and J. Song, “Minimizing age of infor-
mation with power constraints: Multi-user opportunistic scheduling in
multi-state time-varying channels,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 5, pp. 854–868, 2020.
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