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Bounding the forward classical capacity of bipartite
quantum channels

Dawei Ding, Sumeet Khatri, Yihui Quek, Peter W. Shor, Xin Wang, Mark M. Wilde

Abstract—We introduce various measures of forward classical
communication for bipartite quantum channels. Since a point-to-
point channel is a special case of a bipartite channel, the measures
reduce to measures of classical communication for point-to-point
channels. As it turns out, these reduced measures have been
reported in prior work of Wang et al. on bounding the classical
capacity of a quantum channel. As applications, we show that
the measures are upper bounds on the forward classical capacity
of a bipartite channel. The reduced measures are upper bounds
on the classical capacity of a point-to-point quantum channel
assisted by a classical feedback channel. Some of the various
measures can be computed by semi-definite programming.
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I. INTRODUCTION

The goal of quantum Shannon theory [1], [2], [3], [4] is to
characterize the information-processing capabilities of quan-
tum states and channels, for various tasks such as distillation
of randomness, secret key, entanglement or communication of
classical, private, and quantum information. With the goal of
simplifying the theory or relating to practical communication
scenarios, often assisting resources are allowed, such as shared
entanglement [5], [6], [7] or public classical communication
[8], [9], [10].

One of the earliest information-theoretic tasks studied in
quantum Shannon theory is the capacity of a point-to-point
quantum channel for transmitting classical information or
generating shared randomness [11], [12], [13]. It is well known
that the capacity for these two tasks is equal, and so we just
refer to them both as the classical capacity of a quantum
channel. A formal expression for the classical capacity of
a quantum channel is known, given by what is called the
regularized Holevo information of a quantum channel (see,
e.g., [1], [2], [3], [4] for reviews). On the one hand, it is
unclear whether this formal expression is computable for all
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quantum channels [14], and it is also known that the Holevo
information formula is generally non-additive [15]. On the
other hand, for some special classes of channels [16], [17],
[18], the regularized Holevo information simplifies to what is
known as the single-letter Holevo information. Even when this
simplification happens, it is not necessarily guaranteed that the
resulting capacity formula is efficiently computable [19].

This difficulty in calculating the classical capacity of a
quantum channel has spurred the investigation of efficiently
computable upper bounds on it [20], [21], [22]. The main
idea driving these bounds [20] is to imagine a scenario in
which the sender and receiver of a quantum channel could
be supplemented by the help of a coding scheme that is
simultaneously non-signaling and “positive-partial-transpose”
(PPT) assisted [23], [20]. These latter coding scenarios could
be considered fictitious from a physical perspective, but the
perspective is actually extremely powerful when trying to
provide an upper bound on the classical capacity, while being
faced with the aforementioned difficulties. The reason is that
the simultaneous constraints of being non-signaling and PPT-
assisted are semi-definite constraints and ultimately lead to
upper bounds that are efficiently computable by semi-definite
programming.

Another thread that has been pursued on the topic of
classical capacity, after the initial investigations of [11], [12],
[13], is the classical capacity of a quantum channel assisted
by a classical feedback channel. This direction started with
[9], [10] and was ultimately inspired by Shannon’s work on
the feedback-assisted capacity of a classical channel [24], in
which it was shown that feedback does not increase capacity.1

For the quantum case, it is known that a classical feedback
channel does not enhance the classical capacity of

1) an entanglement-breaking channel [10],
2) a pure-loss bosonic channel [25], and
3) a quantum erasure channel [25].

The first aforementioned result has been strengthened to a
strong-converse statement [26]. However, due to the quantum
effect of entanglement, it is also known that feedback can
significantly increase the classical capacity of certain quan-
tum channels [27]. More generally, [28] discussed several
inequalities relating the classical capacity assisted by classical
feedback to other capacities, and [29] established inequalities
relating classical capacities assisted by classical communica-
tion to other notions of feedback-assisted capacities.

In this paper, we generalize these tasks further by con-
sidering the forward classical capacity of a bipartite quan-
tum channel, and we develop various upper bounds on this
operational communication measure for a bipartite channel.
This communication task has previously been studied for the
special case of bipartite unitary channels [30] (see also [31],
[32], [33] for studies of classical communication over bipartite
unitary channels). To be clear, a bipartite channel is a four-
terminal channel involving two parties, who each have access

1Note that the model of classical feedback considered in [9] is more
restrictive than the general model considered in [10]—it is such that the
decoding measurement of the receiver is restricted to one-way local operations
and classical communication. See Section 4.2 of [1] for a review of the
feedback scheme of [9].
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Fig. 1. Depiction of a bipartite channel. A bipartite channel is a four-terminal
channel in which Alice has access to the input system A and the output system
A′, and Bob has access to the input system B and the output system B′.

to one input port and one output port of the channel [34]
(see Figure 1). The forward classical capacity of a bipartite
channel is the optimal rate at which Alice can communicate
classical bits to Bob, with error probability tending to zero as
the number of channel uses becomes large.

A bipartite channel is an interesting communication scenario
on its own, but it is also a generalization of a point-to-point
channel, with the latter being a special case with one input
port trivial and the output port for the other party trivial. In
the same way, it is a generalization of a classical feedback
channel. This relationship allows us to conclude upper bounds
on the classical capacity of a point-to-point channel assisted by
classical feedback. Interestingly, we prove that the most recent
upper bound from [22], on the unassisted classical capacity,
is actually an upper bound on the classical capacity assisted
by classical feedback. As such, we now have an efficiently
computable upper bound on this feedback-assisted capacity.
By combining our results with [21, Section VI], we establish
the strong converse for the classical capacity of the quantum
erasure channel assisted by a classical feedback channel, thus
improving the weak converse result of [25].

The rest of the paper is structured as follows. We begin
in Section II by establishing some notation. In Section III,
we introduce a measure of forward classical communication
for a bipartite channel. Therein, we establish several of its
properties, including the fact that it is equal to zero for a
product of local channels, equal to zero for a classical feedback
channel, and that it is subadditive under serial compositions
of bipartite channels. We then introduce several variants of
the basic measure and show how they reduce to previous
measures from [20], [21], [22] for point-to-point channels. In
Section IV, we detail several of the applications mentioned
above: we establish that our measures of forward classical
communication (in particular the ones based on geometric
Rényi relative entropy) serve as upper bounds on the forward
classical capacity of a bipartite channel and on the classical
capacity of a point-to-point channel assisted by a classical
feedback channel. In Section V, we explore the same applica-
tions but using the sandwiched Rényi relative entropy instead
of the geometric Rényi relative entropy, and in Section VI,
we show how these bounds simplify if the channels possess
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symmetry. In Section VII, we evaluate our bounds for several
examples of bipartite and point-to-point channels. We finally
conclude in Section VIII with a summary and some open
questions for future work.

II. NOTATION

Here we list various notations and concepts that we use
throughout the paper. A quantum channel is a completely pos-
itive and trace-preserving map. We denote the unnormalized
maximally entangled operator by

ΓRA := |Γ〉〈Γ|RA, (1)

|Γ〉RA :=

d−1∑
i=0

|i〉R|i〉A, (2)

where R ' A with dimension d and {|i〉R}d−1
i=0 and {|i〉A}d−1

i=0

are orthonormal bases. The notation R ' A means that the
systems R and A are isomorphic. The maximally entangled
state is denoted by

ΦRA :=
1

d
ΓRA, (3)

and the maximally mixed state by

πA :=
1

d
IA. (4)

The Choi operator of a quantum channel NA→B (and more
generally a linear map) is denoted by

ΓNRB := NA→B(ΓRA). (5)

A linear map MA→B is completely positive if and only if
its Choi operator ΓMRB is positive semi-definite, and MA→B
is trace preserving if and only if its Choi operator satisfies
TrB [ΓMRB ] = IR.

We denote the transpose map acting on the quantum sys-
tem A by

TA(·) :=

d−1∑
i,j=0

|i〉〈j|A(·)|i〉〈j|A. (6)

A state ρAB is a positive partial transpose (PPT) state if
TB(ρAB) is positive semi-definite. The partial transpose is its
own adjoint, in the sense that

Tr[YABTA(XAB)] = Tr[TA(YAB)XAB ] (7)

for all linear operators XAB and YAB .
The following post-selected teleportation identity [35] plays

a role in our analysis:

NA→B(ρSA) = 〈Γ|ARρSA ⊗ ΓNRB |Γ〉AR, (8)

as it has in previous works on feedback-assisted capacities
[36], [37], [38], [39], [40], [22]. We also make frequent use
of the identities

TrA[XAB ] = 〈Γ|RA(IR ⊗XAB)|Γ〉RA, (9)
XAB |Γ〉AR = TR(XRB)|Γ〉AR. (10)

Given channels NA→B andMB→C , the Choi operator ΓM◦NRC

of the serial composition MB→C ◦ NA→B is given by

ΓM◦NRC = 〈Γ|BSΓNRB ⊗ ΓMSC |Γ〉BS (11)

= TrB [ΓNRBTB(ΓMBC)], (12)

where B ' S, the operator ΓNRB is the Choi operator of
NA→B , and ΓMSC is the Choi operator of MB→C .

III. MEASURES OF FORWARD CLASSICAL
COMMUNICATION FOR A BIPARTITE CHANNEL

A. Basic measure

Before defining the basic measure of forward classical
communication for a bipartite channel, let us recall some
established concepts from quantum information theory.

A bipartite channel MAB→A′B′ is a completely positive-
partial-transpose preserving (C-PPT-P) channel if the output
state ωRAA′B′RB

:= MAB→A′B′(ρRAABRB
) is a PPT state

for every PPT input state ρRAABRB
[41], [42], [23], [43]. To

be clear, the channel MAB→A′B′ is defined to be C-PPT-P if
TB′RB

(ωRAA′B′RB
) ≥ 0 for every input state ρRAABRB

that
satisfies TBRB

(ρRAABRB
) ≥ 0. Let ΓMAA′BB′ denote the Choi

operator of MAB→A′B′ :

ΓMAA′BB′ :=MÂB̂→A′B′(ΓAÂ ⊗ ΓBB̂), (13)

where Â ' A and B̂ ' B. It is known thatMAB→A′B′ is C-
PPT-P if and only if its Choi operator ΓMAA′BB′ is PPT (i.e.,
TBB′(Γ

M
AA′BB′) ≥ 0) [23], [43]. Equivalently, it is known

that MAB→A′B′ is C-PPT-P if and only if the map TB′ ◦
MAB→A′B′ ◦ TB is completely positive.

A C-PPT-P channel is not capable of generating entangle-
ment shared between Alice and Bob at a non-trivial rate when
used many times [37], [40]. As such, Alice cannot reliably
communicate quantum information to Bob at a non-zero rate
when using a C-PPT-P channel. This feature is helpful for
us in devising a measure that serves as an upper bound on
the forward classical capacity of a bipartite channel or on
the classical capacity of a point-to-point channel assisted by
classical feedback.

A bipartite channelMAB→A′B′ is non-signaling from Alice
to Bob [44], [45] if the following condition holds [46]

TrA′ ◦MAB→A′B′ = TrA′ ◦MAB→A′B′ ◦ RπA, (14)

where RπA is a replacer channel, defined as RπA(·) :=
TrA[·]πA, with πA := IA/dA the maximally mixed state on
system A. To interpret this condition, consider the following.
For Bob, the reduced state of his output system B′ is obtained
by tracing out Alice’s output system A′. Note that the reduced
state on B′ is all that Bob can access at the output in this
scenario. If the condition in (14) holds, then the reduced state
on Bob’s output system B′ has no dependence on Alice’s input
system. Thus, if (14) holds, then Alice cannot useMAB→A′B′

to send a signal to Bob.
One of our main interests in this paper is to bound the

classical capacity of a quantum channel assisted by a classical
feedback channel from Bob to Alice. In such a protocol, local
channels are allowed for free, as well as the use of a classical
feedback channel. Both of these actions can be considered as
particular kinds of bipartite channels and both of them fall
into the class of bipartite channels that are non-signaling from
Alice to Bob and C-PPT-P (call this class NSA6→B ∩ PPT).



4

As such, if we employ a measure of bipartite channels that
involves a comparison between a bipartite channel of interest
to all bipartite channels in NSA 6→B ∩ PPT, then the two kinds
of free channels would have zero value and the measure would
indicate how different the channel of interest is from this set
(i.e., how different it is from a channel that has no ability
to send quantum information and no ability to signal from
Alice to Bob). This is the main idea behind the measure that
we propose below in Definition 1, but one should keep in
mind that the measure below does not follow this reasoning
precisely.

In Definition 1, although we motivated the measure for
bipartite channels, we define it more generally for completely
positive bipartite maps, as it turns out to be useful to do so
when we later define other measures.

Definition 1: Let MAB→A′B′ be a completely positive
bipartite map. Then we define

Cβ(MAB→A′B′) := log2 β(MAB→A′B′), (15)

β(MAB→A′B′) :=

inf
SAA′BB′ ,

VAA′BB′∈Herm


‖TrA′B′ [SAA′BB′ ]‖∞ :

TBB′(VAA′BB′ ± ΓMAA′BB′) ≥ 0,
SAA′BB′ ± VAA′BB′ ≥ 0,

TrA′ [SAA′BB′ ] =
πA ⊗ TrAA′ [SAA′BB′ ]

 ,

(16)

where Herm denotes the set of Hermitian operators and
ΓMAA′BB′ is the Choi operator of MAB→A′B′ :

ΓMAA′BB′ :=MÂB̂→A′B′(ΓAÂ ⊗ ΓBB̂). (17)

In the above, Â ' A, B̂ ' B,

ΓAÂ :=

dA−1∑
i,j=0

|i〉〈j|A⊗|i〉〈j|Â, ΓBB̂ :=

dB−1∑
i,j=0

|i〉〈j|B⊗|i〉〈j|B̂ ,

(18)
and πA := IA/dA.

Just before Definition 1, we discussed how the β mea-
sure incorporates PPT constraints, as well as non-signaling
constraints. The constraint TBB′(VAA′BB′ ± ΓMAA′BB′) ≥ 0
involves a PPT condition, and the constraint TrA′ [SAA′BB′ ] =
πA ⊗ TrAA′ [SAA′BB′ ] involves a non-signaling condition.
Since SAA′BB′ ± VAA′BB′ ≥ 0, it follows that SAA′BB′ ≥ 0,
implying that the operator SAA′BB′ corresponds to a com-
pletely positive map. The definition above becomes more
transparent, but however does not decrease, if we simply set
VAA′BB′ = SAA′BB′ . Then it is clear that there is just a
PPT constraint and non-signaling constraint corresponding to
a single completely positive map. Furthermore, as we discuss
below, the objective function ‖TrA′B′ [SAA′BB′ ]‖∞ measures
how close SAA′BB′ is to being a trace preserving map, and
Proposition 2 states that the minimum value of the objective
function is one, in which case SAA′BB′ corresponds to a
quantum channel.

In Appendix A, we prove that β(MAB→A′B′) can alterna-
tively be expressed as follows:

β(MAB→A′B′) = inf
SAB→A′B′ ,

VAB→A′B′∈HermP

‖SAB→A′B′‖1 (19)

subject to

TB′ ◦ (VAB→A′B′ ±MAB→A′B′) ◦ TB ≥ 0,
SAB→A′B′ ± VAB→A′B′ ≥ 0,

TrA′ ◦SAB→A′B′ = TrA′ ◦SAB→A′B′ ◦ RπA
, (20)

where HermP is the set of Hermiticity preserving maps,
‖SAB→A′B′‖1 is the trace norm of the bipartite map
SAB→A′B′ , and the notation LAB→A′B′ ≥ 0 means that
the Hermiticity preserving map LAB→A′B′ is completely
positive. Related to how SAA′BB′ ≥ 0 as discussed above,
the constraint SAB→A′B′ ± VAB→A′B′ ≥ 0 implies that
SAB→A′B′ ≥ 0, which is the same as SAB→A′B′ being
a completely positive map. Thus, the trace norm objective
function ‖SAB→A′B′‖1 measures how close SAB→A′B′ can
be to a trace preserving map, i.e., a quantum channel, while
satisfying the constraints given. With the expression in (20),
it might become more clear that β(MAB→A′B′) involves a
comparison of MAB→A′B′ to other Hermiticity-preserving
bipartite maps, which involves the C-PPT-P condition and the
non-signaling constraint. In Appendix A, not only do we prove
the equality above, but we also explain these concepts in more
detail.

We can also express β(MAB→A′B′) as follows:

inf
λ≥0,SAA′BB′ ,
VAA′BB′∈Herm



λ :
TrA′B′ [SAA′BB′ ] ≤ λIAB

TBB′(VAA′BB′ ± ΓMAA′BB′) ≥ 0,
SAA′BB′ ± VAA′BB′ ≥ 0,

TrA′ [SAA′BB′ ] =
πA ⊗ TrAA′ [SAA′BB′ ]


.

(21)
By exploiting the equality constraint TrA′ [SAA′BB′ ] =

πA ⊗ TrAA′ [SAA′BB′ ], we find that

‖TrA′B′ [SAA′BB′ ]‖∞
= ‖TrB′ [TrA′ [SAA′BB′ ]]‖∞ (22)
= ‖TrB′ [πA ⊗ TrAA′ [SAA′BB′ ]]‖∞ (23)
= ‖πA ⊗ TrAA′B′ [SAA′BB′ ]‖∞ (24)

=
1

dA
‖TrAA′B′ [SAA′BB′ ]‖∞ . (25)

Then we find that

β(MAB→A′B′) =

inf
SAA′BB′ ,

VAA′BB′∈Herm



1
dA
‖TrAA′B′ [SAA′BB′ ]‖∞ :

TBB′(VAA′BB′ ± ΓMAA′BB′) ≥ 0,
SAA′BB′ ± VAA′BB′ ≥ 0,

TrA′ [SAA′BB′ ] =
πA ⊗ TrAA′ [SAA′BB′ ]

 .

(26)

Since SAA′BB′ ± VAA′BB′ ≥ 0 implies that SAA′BB′ ≥ 0,
we can also rewrite β(MAB→A′B′) as

β(MAB→A′B′) =



5

inf
λ,SAA′BB′≥0,
VAA′BB′∈Herm



λ :
1
dA

TrAA′B′ [SAA′BB′ ] ≤ λIB ,
TBB′(VAA′BB′ ± ΓMAA′BB′) ≥ 0,

SAA′BB′ ± VAA′BB′ ≥ 0,
TrA′ [SAA′BB′ ] =

πA ⊗ TrAA′ [SAA′BB′ ]


.

(27)

B. Properties of the basic measure

We now establish several properties of Cβ(NAB→A′B′),
which are basic properties that we might expect of a measure
of forward classical communication for a bipartite channel.
These include the following:

1) non-negativity (Proposition 2),
2) stability under tensoring with identity channels (Propo-

sition 3),
3) zero value for classical feedback channels (Proposi-

tion 4),
4) zero value for a tensor product of local channels (Propo-

sition 5),
5) subadditivity under serial composition (Proposition 6),
6) data processing under pre- and post-processing by local

channels (Corollary 7),
7) invariance under local unitary channels (Corollary 8),
8) convexity of β (Proposition 9).
All of the properties above hold for bipartite channels, while

the second and fifth through eighth hold more generally for
completely positive bipartite maps.

Proposition 2 (Non-negativity): Let NAB→A′B′ be a bipar-
tite channel. Then

Cβ(NAB→A′B′) ≥ 0. (28)

Proof: We prove the equivalent statement
β(NAB→A′B′) ≥ 1. Let λ, SAA′BB′ , and VAA′BB′ be
arbitrary Hermitian operators satisfying the constraints in
(27). Then consider that

λdB = λTrB [IB ] (29)

≥ 1

dA
TrAA′BB′ [SAA′BB′ ] (30)

≥ 1

dA
TrAA′BB′ [VAA′BB′ ] (31)

=
1

dA
TrAA′BB′ [TBB′(VAA′BB′)] (32)

≥ 1

dA
TrAA′BB′ [TBB′(Γ

N
AA′BB′)] (33)

=
1

dA
TrAA′BB′ [Γ

N
AA′BB′ ] (34)

=
1

dA
TrAB [IAB ] (35)

= dB . (36)

This implies that λ ≥ 1. Since the inequality holds for all λ,
SAA′BB′ , and VAA′BB′ satisfying the constraints in (27), we
conclude the statement above.

Proposition 3 (Stability): Let MAB→A′B′ be a completely
positive bipartite map. Then

Cβ(idĀ→Ã⊗MAB→A′B′ ⊗ idB̄→B̃) = Cβ(MAB→A′B′).
(37)

Proof: Let SAA′BB′ and VAA′BB′ be arbitrary Hermitian
operators satisfying the constraints in (16) for MAB→A′B′ .
The Choi operator of idĀ→Ã⊗MAB→A′B′⊗ idB̄→B̃ is given
by

ΓĀÃ ⊗ ΓMAA′BB′ ⊗ ΓB̄B̃ . (38)

Let us show that ΓĀÃ⊗SAA′BB′⊗ΓB̄B̃ and ΓĀÃ⊗VAA′BB′⊗
ΓB̄B̃ satisfy the constraints in (16) for idĀ→Ã⊗MAB→A′B′⊗
idB̄→B̃ . Consider that

TBB′(VAA′BB′ ± ΓMAA′BB′) ≥ 0 (39)

⇔ TBB′(ΓĀÃ ⊗ VAA′BB′ ⊗ ΓB̄B̃) ≥
± TBB′(ΓĀÃ ⊗ ΓMAA′BB′ ⊗ ΓB̄B̃) (40)

⇔ TBB′B̄B̃(ΓĀÃ ⊗ VAA′BB′ ⊗ ΓB̄B̃) ≥
± TBB′B̄B̃(ΓĀÃ ⊗ ΓMAA′BB′ ⊗ ΓB̄B̃) (41)

and
SAA′BB′ ± VAA′BB′ ≥ 0 (42)

⇔ ΓĀÃ ⊗ SAA′BB′ ⊗ ΓB̄B̃ ≥
± ΓĀÃ ⊗ VAA′BB′ ⊗ ΓB̄B̃ (43)

and
TrA′ [SAA′BB′ ] = πA ⊗ TrAA′ [SAA′BB′ ] (44)

⇔ TrA′Ã[ΓĀÃ ⊗ SAA′BB′ ⊗ ΓB̄B̃ ]

= IĀ ⊗ πA ⊗ TrAA′ [SAA′BB′ ⊗ ΓB̄B̃ ] (45)
= πĀ ⊗ πA ⊗ TrAA′ĀÃ[ΓĀÃ ⊗ SAA′BB′ ⊗ ΓB̄B̃ ]. (46)

Also, consider that

1

dAdĀ
‖TrAA′ĀÃB′B̃ [ΓĀÃ ⊗ SAA′BB′ ⊗ ΓB̄B̃ ]‖∞

=
1

dAdĀ
‖dĀ TrAA′B′ [SAA′BB′ ⊗ IB̄ ]‖∞ (47)

=
1

dA
‖TrAA′B′ [SAA′BB′ ]⊗ IB̄‖∞ (48)

=
1

dA
‖TrAA′B′ [SAA′BB′ ]‖∞ . (49)

Thus, it follows that

β(MAB→A′B′) ≥ β(idĀ→Ã⊗MAB→A′B′ ⊗ idB̄→B̃). (50)

Now let us show the opposite inequality. Let SĀÃAA′BB′B̄B̃
and VĀÃAA′BB′B̄B̃ be arbitrary Hermitian operators satisfying
the constraints in (16) for idĀ→Ã⊗MAB→A′B′⊗ idB̄→B̃ . Set

S′AA′BB′ :=
1

dĀdB̄
TrĀÃB̄B̃ [SĀÃAA′BB′B̄B̃ ], (51)

V ′AA′BB′ :=
1

dĀdB̄
TrĀÃB̄B̃ [VĀÃAA′BB′B̄B̃ ]. (52)
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We show that S′AA′BB′ and V ′AA′BB′ satisfy the constraints
in (16) for MAB→A′B′ . Consider that

Γid⊗N⊗id

ĀÃAA′BB′B̄B̃
= ΓĀÃ ⊗ ΓMAA′BB′ ⊗ ΓB̄B̃ . (53)

Then

TBB′B̄B̃(VĀÃAA′BB′B̄B̃±ΓĀÃ⊗ΓMAA′BB′⊗ΓB̄B̃) ≥ 0 (54)

⇒ TrĀÃB̄B̃ [TBB′B̄B̃(VĀÃAA′BB′B̄B̃
± ΓĀÃ ⊗ ΓMAA′BB′ ⊗ ΓB̄B̃)] ≥ 0 (55)

⇔ TBB′(VAA′BB′ ± dĀdB̄ΓMAA′BB′) ≥ 0 (56)

⇔ TBB′(V
′
AA′BB′ ± ΓMAA′BB′) ≥ 0. (57)

Also

SĀÃAA′BB′B̄B̃ ± VĀÃAA′BB′B̄B̃ ≥ 0 (58)
⇒ TrĀÃB̄B̃ [SĀÃAA′BB′B̄B̃ ± VĀÃAA′BB′B̄B̃ ] ≥ 0 (59)

⇔ S′AA′BB′ ± V ′AA′BB′ ≥ 0, (60)

and

TrÃA′ [SĀÃAA′BB′B̄B̃ ] = πĀA ⊗ TrĀÃAA′ [SĀÃAA′BB′B̄B̃ ]
(61)

⇒ TrĀÃA′B̄B̃ [SĀÃAA′BB′B̄B̃ ]

= TrĀB̄B̃ [πĀA ⊗ TrĀÃAA′ [SĀÃAA′BB′B̄B̃ ]] (62)
= πA ⊗ TrĀÃAA′B̄B̃ [SĀÃAA′BB′B̄B̃ ] (63)

⇔ TrA′ [S
′
AA′BB′ ] = πA ⊗ TrAA′ [S

′
AA′BB′ ]. (64)

Finally, let λ be such that

1

dAdĀ
TrĀÃAA′B′B̃ [SĀÃAA′BB′B̄B̃ ] ≤ λIBB̄ . (65)

Then it follows that

TrB̄

[
1

dAdĀ
TrĀÃAA′B′B̃ [SĀÃAA′BB′B̄B̃ ]

]
≤ TrB̄ [λIBB̄ ]

(66)

⇔ 1

dAdĀ
TrĀÃAA′B′B̄B̃ [SĀÃAA′BB′B̄B̃ ] ≤ dB̄λIB (67)

⇔ 1

dA
TrAA′B′ [S

′
AA′BB′ ] ≤ λIB . (68)

Thus, we conclude that

β(MAB→A′B′) ≤ β(idĀ→Ã⊗MAB→A′B′ ⊗ idB̄→B̃). (69)

This concludes the proof.

Proposition 4 (Zero on classical feedback channels): Let
∆B→A′ be a classical feedback channel:

∆B→A′(·) :=

d−1∑
i=0

|i〉A′〈i|B(·)|i〉B〈i|A′ , (70)

where A′ ' B and d = dA′ = dB . Then

Cβ(∆B→A′) = 0. (71)

Proof: We prove the equivalent statement that
β(∆B→A′) = 1. In this case, the A and B′ systems

are trivial, so that dA = 1, and the Choi operator of ∆B→A′

is given by
Γ∆
BA′ = ΓBA′ , (72)

where

ΓBA′ :=

dB−1∑
i=0

|i〉〈i|B ⊗ |i〉〈i|A′ . (73)

Pick SBA′ = VBA′ = ΓBA′ . Then we need to check that the
constraints in (16) are satisfied for these choices. Consider that

TB(VBA′ ± Γ∆
BA′) ≥ 0 (74)

⇔ TB(ΓBA′ ± ΓBA′) ≥ 0 (75)

⇔ ΓBA′ ± ΓBA′ ≥ 0, (76)

and the last inequality is trivially satisfied. Also,

SBA′ ± VBA′ ≥ 0 (77)

⇔ ΓBA′ ± ΓBA′ ≥ 0, (78)

and the no-signaling condition TrA′ [SAA′BB′ ] = πA ⊗
TrAA′ [SAA′BB′ ] is trivially satisfied because the A system is
trivial, having dimension equal to one. Finally, let us evaluate
the objective function for these choices:

1

dA
‖TrAA′B′ [SAA′BB′ ]‖∞ = ‖TrA′ [SA′B ]‖∞ (79)

=
∥∥TrA′ [ΓBA′ ]

∥∥
∞ (80)

= ‖IB‖∞ (81)
= 1. (82)

Combined with the general lower bound from Proposition 2,
we conclude (71).

Proposition 5 (Zero on tensor product of local channels):
Let EA→A′ and FB→B′ be quantum channels. Then

Cβ(EA→A′ ⊗FB→B′) = 0. (83)

Proof: We prove the equivalent statement that β(EA→A′⊗
FB→B′) = 1. Set SAA′BB′ = VAA′BB′ = ΓEAA′ ⊗ ΓFBB′ ,
where ΓEAA′ and ΓFBB′ are the Choi operators of EA→A′ and
FB→B′ , respectively. We need to check that the constraints in
(16) are satisfied for these choices. Consider that

TBB′(VAA′BB′ ± ΓEAA′ ⊗ ΓFBB′) ≥ 0 (84)

⇔ TBB′(Γ
E
AA′ ⊗ ΓFBB′ ± ΓEAA′ ⊗ ΓFBB′) ≥ 0 (85)

⇔ ΓEAA′ ⊗ TBB′(ΓFBB′)± ΓEAA′ ⊗ TBB′(ΓFBB′) ≥ 0, (86)

and the last inequality trivially holds because TBB′ acts as a
positive map on ΓFBB′ . Also,

SAA′BB′ ± VAA′BB′ ≥ 0 (87)

⇔ ΓEAA′ ⊗ ΓFBB′ ± ΓEAA′ ⊗ ΓFBB′ ≥ 0, (88)

and

TrA′ [SAA′BB′ ] = TrA′ [Γ
E
AA′ ⊗ ΓFBB′ ] (89)

= IA ⊗ ΓFBB′ (90)

= πA ⊗ TrAA′ [Γ
E
AA′ ⊗ ΓFBB′ ] (91)

= πA ⊗ TrAA′ [SAA′BB′ ]. (92)
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Finally, consider that the objective function evaluates to

‖TrA′B′ [SAA′BB′ ]‖∞ =
∥∥TrA′B′ [Γ

E
AA′ ⊗ ΓFBB′ ]

∥∥
∞ (93)

= ‖IAB‖∞ (94)
= 1. (95)

Combined with the general lower bound from Proposition 2,
we conclude (83).

Proposition 6 (Subadditivity under composition): Let
M1

AB→A′B′ and M2
A′B′→A′′B′′ be bipartite completely pos-

itive maps, and define

M3
AB→A′′B′′ :=M2

A′B′→A′′B′′ ◦M1
AB→A′B′ . (96)

Then

Cβ(M3
AB→A′′B′′) ≤ Cβ(M2

A′B′→A′′B′′)+Cβ(M1
AB→A′B′).

(97)
Proof: We prove the equivalent statement that

β(M3
AB→A′′B′′) ≤ β(M2

A′B′→A′′B′′) · β(M1
AB→A′B′).

(98)
Let S1

AA′BB′ and V 1
AA′BB′ satisfy

TBB′(V
1
AA′BB′ ± ΓM

1

AA′BB′) ≥ 0, (99)

S1
AA′BB′ ± V 1

AA′BB′ ≥ 0, (100)

TrA′ [S
1
AA′BB′ ] = πA ⊗ TrAA′ [S

1
AA′BB′ ], (101)

and let S2
A′A′′B′B′′ and V 2

A′A′′B′B′′ satisfy

TB′B′′(V
2
A′A′′B′B′′ ± ΓM

2

A′A′′B′B′′) ≥ 0, (102)

S2
A′A′′B′B′′ ± V 2

A′A′′B′B′′ ≥ 0, (103)

TrA′′ [S
2
A′A′′B′B′′ ] = πA′ ⊗ TrA′A′′ [S

2
A′A′′B′B′′ ]. (104)

Then it follows that

TBB′B′B′′(V
1
AA′BB′ ⊗ V 2

A′A′′B′B′′

± ΓM
1

AA′BB′ ⊗ ΓM
2

A′A′′B′B′′) ≥ 0, (105)

S1
AA′BB′ ⊗S2

A′A′′B′B′′ ±V 1
AA′BB′ ⊗V 2

A′A′′B′B′′ ≥ 0. (106)

This latter statement is a consequence of the general fact that if
A, B, C, and D are Hermitian operators satisfying A±B ≥ 0
and C ± D ≥ 0, then A ⊗ C ± B ⊗ D ≥ 0. To see this,
consider that the original four operator inequalities imply the
four operator inequalities (A±B) ⊗ (C ±D) ≥ 0, and then
summing these four different operator inequalities in various
ways leads to A⊗C±B⊗D ≥ 0. See (377)–(385) for further
clarification of this point.

Now apply the following positive map to (105)–(106):

(·)→ (〈Γ|A′A′ ⊗ 〈Γ|B′B′)(·)(|Γ〉A′A′ ⊗ |Γ〉B′B′), (107)

where

|Γ〉A′A′ :=
∑
i

|i〉A′ |i〉A′ , (108)

|Γ〉B′B′ :=
∑
i

|i〉B′ |i〉B′ . (109)

This gives

TBB′′(V
3
AA′′BB′′ ± ΓM

2◦M1

AA′′BB′′) ≥ 0, (110)

S3
AA′′BB′′ ± V 3

AA′′BB′′ ≥ 0, (111)

where

V 3
AA′′BB′′ := (〈Γ|A′A′ ⊗ 〈Γ|B′B′)

(V 1
AA′BB′ ⊗ V 2

A′A′′B′B′′)(|Γ〉A′A′ ⊗ |Γ〉B′B′),
(112)

ΓM
2◦M1

AA′′BB′′ := (〈Γ|A′A′ ⊗ 〈Γ|B′B′)
(ΓM

1

AA′BB′ ⊗ ΓM
2

A′A′′B′B′′)(|Γ〉A′A′ ⊗ |Γ〉B′B′),
(113)

S3
AA′′BB′′ := (〈Γ|A′A′ ⊗ 〈Γ|B′B′)

(S1
AA′BB′ ⊗ S2

A′A′′B′B′′)(|Γ〉A′A′ ⊗ |Γ〉B′B′),
(114)

and we applied (11) to conclude that

(〈Γ|A′A′ ⊗ 〈Γ|B′B′)(ΓM
1

AA′BB′ ⊗ ΓM
2

A′A′′B′B′′)

(|Γ〉A′A′ ⊗ |Γ〉B′B′) = ΓM
2◦M1

AA′′BB′′ . (115)

Also, consider that

TrA′′ [S
3
AA′′BB′′ ]

= TrA′′ [(〈Γ|A′A′ ⊗ 〈Γ|B′B′)(S1
AA′BB′ ⊗ S2

A′A′′B′B′′)

(|Γ〉A′A′ ⊗ |Γ〉B′B′)] (116)

= (〈Γ|A′A′ ⊗ 〈Γ|B′B′)(S1
AA′BB′ ⊗ TrA′′ [S

2
A′A′′B′B′′ ])

(|Γ〉A′A′ ⊗ |Γ〉B′B′) (117)
= (〈Γ|A′A′ ⊗ 〈Γ|B′B′)

(S1
AA′BB′ ⊗ πA′ ⊗ TrA′A′′ [S

2
A′A′′B′B′′ ])

(|Γ〉A′A′ ⊗ |Γ〉B′B′) (118)

=
1

dA′
(〈Γ|A′A′ ⊗ 〈Γ|B′B′)

(S1
AA′BB′ ⊗ IA′ ⊗ TrA′A′′ [S

2
A′A′′B′B′′ ])

(|Γ〉A′A′ ⊗ |Γ〉B′B′) (119)

=
1

dA′
〈Γ|B′B′(TrA′ [S

1
AA′BB′ ]

⊗ TrA′A′′ [S
2
A′A′′B′B′′ ])|Γ〉B′B′ (120)

=
1

dA′
〈Γ|B′B′(πA ⊗ TrAA′ [S

1
AA′BB′ ]

⊗ TrA′A′′ [S
2
A′A′′B′B′′ ])|Γ〉B′B′ (121)

= πA ⊗
1

dA′
〈Γ|B′B′(TrAA′ [S

1
AA′BB′ ]

⊗ TrA′A′′ [S
2
A′A′′B′B′′ ])|Γ〉B′B′ . (122)

Now consider that

TrAA′′ [S
3
AA′′BB′′ ] =

1

dA′
〈Γ|B′B′(TrAA′ [S

1
AA′BB′ ]⊗TrA′A′′ [S

2
A′A′′B′B′′ ])|Γ〉B′B′ .

(123)

So we conclude that

TrA′′ [S
3
AA′′BB′′ ] = πA ⊗ TrAA′′ [S

3
AA′′BB′′ ]. (124)
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Finally, consider that∥∥TrA′′B′′ [S
3
AA′′BB′′ ]

∥∥
∞

=

∥∥∥∥∥∥
TrA′′B′′ [(〈Γ|A′A′ ⊗ 〈Γ|B′B′)(
S1
AA′BB′ ⊗ S2

A′A′′B′B′′

)
(|Γ〉A′A′ ⊗ |Γ〉B′B′)]

∥∥∥∥∥∥
∞

(125)

=

∥∥∥∥∥∥
(〈Γ|A′A′ ⊗ 〈Γ|B′B′)(

S1
AA′BB′ ⊗ TrA′′B′′ [S

2
A′A′′B′B′′ ]

)
(|Γ〉A′A′ ⊗ |Γ〉B′B′)

∥∥∥∥∥∥
∞

(126)

≤
∥∥TrA′′B′′ [S

2
A′A′′B′B′′ ]

∥∥
∞ ·∥∥∥∥ (〈Γ|A′A′ ⊗ 〈Γ|B′B′)
(
S1
AA′BB′ ⊗ IA′B′

)
(|Γ〉A′A′ ⊗ |Γ〉B′B′)

∥∥∥∥
∞

(127)

=
∥∥TrA′′B′′ [S

2
A′A′′B′B′′ ]

∥∥
∞

∥∥TrA′B′ [S
1
AA′BB′ ]

∥∥
∞ . (128)

Since S3
AA′′BB′′ and V 3

AA′′BB′′ are particular choices that
satisfy the constraints in (110), (111), and (124), we conclude
that

β(M3
AB→A′′B′′) ≤∥∥TrA′′B′′ [S

2
A′A′′B′B′′ ]

∥∥
∞

∥∥TrA′B′ [S
1
AA′BB′ ]

∥∥
∞ . (129)

Since S1
AA′BB′ and V 1

AA′BB′ are arbitrary Hermitian operators
satisfying the constraints in (99)–(101) and S2

A′A′′B′B′′ and
V 2
A′A′′B′B′′ are arbitrary Hermitian operators satisfying the

constraints in (102)–(104), we conclude (97).

Corollary 7 (Data processing under local channels): Let
MAB→A′B′ be a completely positive bipartite map. Let
KÂ→A, LB̂→B , NA′→A′′ , and PB′→B′′ be local quantum
channels, and define the bipartite completely positive map
FÂB̂→A′′B′′ as follows:

FÂB̂→A′′B′′ :=

(NA′→A′′ ⊗ PB′→B′′)MAB→A′B′(KÂ→A ⊗ LB̂→B).
(130)

Then
Cβ(FÂB̂→A′′B′′) ≤ Cβ(MAB→A′B′). (131)

Proof: Apply Propositions 5 and 6 to find that

Cβ(FÂB̂→A′′B′′)
≤ Cβ(NA′→A′′ ⊗ PB′→B′′)

+ Cβ(MAB→A′B′) + Cβ(KÂ→A ⊗ LB̂→B) (132)
= Cβ(MAB→A′B′). (133)

This concludes the proof.

Corollary 8 (Invariance under local unitary channels): Let
MAB→A′B′ be a completely positive bipartite map. Let UA,
VB , WA′ , and YB′ be local unitary channels, and define the
bipartite completely positive map FÂB̂→A′′B′′ as follows:

FAB→A′B′ := (WA′ ⊗ YB′)MAB→A′B′(UA ⊗ VB). (134)

Then
Cβ(FAB→A′B′) = Cβ(MAB→A′B′). (135)

Proof: Apply Corollary 7 twice to conclude that
Cβ(MAB→A′B′) ≥ Cβ(FAB→A′B′) and Cβ(FAB→A′B′) ≥
Cβ(MAB→A′B′).

Proposition 9 (Convexity): The measure β is convex, in the
following sense:

β(Mλ
AB→A′B′) ≤
λβ(M1

AB→A′B′) + (1− λ)β(M0
AB→A′B′), (136)

where M0
AB→A′B′ and M1

AB→A′B′ are completely positive
bipartite maps, λ ∈ [0, 1], and

Mλ
AB→A′B′ := λM1

AB→A′B′ + (1− λ)M0
AB→A′B′ . (137)

Proof: Let SxAA′BB′ and V xAA′BB′ satisfy the constraints
in (16) for Mx

AB→A′B′ for x ∈ {0, 1}. Then

SλAA′BB′ := λS1
AA′BB′ + (1− λ)S0

AA′BB′ , (138)

V λAA′BB′ := λV 1
AA′BB′ + (1− λ)V 0

AA′BB′ , (139)

satisfy the constraints in (16) forMλ
AB→A′B′ . Then it follows

that

β(Mλ
AB→A′B′) ≤

∥∥TrA′B′ [S
λ
AA′BB′ ]

∥∥
∞ (140)

≤ λ
∥∥TrA′B′ [S

1
AA′BB′ ]

∥∥
∞

+ (1− λ)
∥∥TrA′B′ [S

0
AA′BB′ ]

∥∥
∞ ,

(141)

where the second inequality follows from convexity of the
∞-norm. Since the inequality holds for all SxAA′BB′ and
V xAA′BB′ satisfying the constraints in (16) for Mx

AB→A′B′
for x ∈ {0, 1}, we conclude (136).

C. Related measures

We now define variations of the bipartite channel measure
from (16). We employ generalized divergences to do so, and
in doing so, we arrive at a large number of variations of the
basic bipartite channel measure.

Let D denote a generalized divergence [47], [48], which is
a function that satisfies the following data-processing inequal-
ity, for every state ρ, positive semi-definite operator σ, and
quantum channel N :

D(ρ‖σ) ≥D(N (ρ)‖N (σ)). (142)

In this paper, we make two additional minimal assumptions
about a generalized divergence:

1) First, we assume that

D(1‖c) ≥ 0 (143)

for c ∈ (0, 1]. That is, if we plug in a trivial one-
dimensional density operator ρ (i.e., the number 1) and a
trivial positive semi-definite operator with trace less than
or equal to one (i.e., c ∈ (0, 1]), then the generalized
divergence evaluates to a non-negative real.

2) Next, we assume that

D(ρ‖ρ) = 0 (144)

for every state ρ. We should clarify that this assumption
is quite minimal. The reason is that it is essentially a
direct consequence of (142) up to an inessential additive
factor. That is, (142) implies that there exists a constant c
such that

D(ρ‖ρ) = c (145)
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for every state ρ. To see this, consider that one can get
from the state ρ to another state ω by means of a trace
and replace channel Tr[·]ω, so that (142) implies that

D(ρ‖ρ) ≥D(ω‖ω). (146)

However, by the same argument, D(ω‖ω) ≥ D(ρ‖ρ),
so that the claim holds. So the assumption in (144)
amounts to a redefinition of the generalized divergence
as

D′(ρ‖σ) := D(ρ‖σ)− c. (147)

Let us list particular choices of interest for a generalized
divergence. The quantum relative entropy [49] is defined as

D(ρ‖σ) := Tr[ρ(log2 ρ− log2 σ)] (148)

if supp(ρ) ⊆ supp(σ) and it is equal to +∞ otherwise.
The sandwiched Rényi relative entropy is defined for all
α ∈ (0, 1) ∪ (1,∞) as [50], [51]

D̃α(ρ‖σ) :=

lim
ε→0+

1

α− 1
log2 Tr[(σ−(1−α)/2α

ε ρσ−(1−α)/2α
ε )α], (149)

where σε := σ + εI . In the case that supp(ρ) ⊆ supp(σ), we
have the following simplification:

D̃α(ρ‖σ) =
1

α− 1
log2 Tr[(σ−(1−α)/2αρσ−(1−α)/2α)α].

(150)
Note that D̃α(ρ‖σ) = +∞ if α > 1 and supp(ρ) 6⊆
supp(σ). The sandwiched Rényi relative entropy obeys the
data-processing inequality in (142) for α ∈ [1/2, 1) ∪ (1,∞)
[52], [53]. Some basic properties of the sandwiched Rényi
relative entropy are as follows [50], [51]: for all α > β > 0

D̃α(ρ‖σ) ≥ D̃β(ρ‖σ), (151)

and
lim
α→1

D̃α(ρ‖σ) = D(ρ‖σ). (152)

The Belavkin–Staszewski relative entropy [54] is defined as

D̂(ρ‖σ) := Tr[ρ log2(ρ1/2σ−1ρ1/2)] (153)

if supp(ρ) ⊆ supp(σ) and it is equal to +∞ otherwise. The
geometric Rényi relative entropy is defined for all α ∈ (0, 1)∪
(1,∞) as [55], [56], [57], [58]

D̂α(ρ‖σ) := lim
ε→0+

1

α− 1
log2 Tr[σε(σ

−1/2
ε ρσ−1/2

ε )α],

(154)
where σε := σ + εI . In the case that supp(ρ) ⊆ supp(σ), we
have the following simplification:

D̂α(ρ‖σ) =
1

α− 1
log2 Tr[σ(σ−1/2ρσ−1/2)α]. (155)

The geometric Rényi relative entropy obeys the data-
processing inequality in (142) for α ∈ (0, 1) ∪ (1, 2]. Some
basic properties of the geometric Rényi relative entropy are as
follows [58]: for all α > β > 0

D̂α(ρ‖σ) ≥ D̂β(ρ‖σ), (156)

and
lim
α→1

D̂α(ρ‖σ) = D̂(ρ‖σ). (157)

We are also interested in the hypothesis testing relative entropy
[59], [60], [61], defined for ε ∈ [0, 1] as

Dε
H(ρ‖σ) := − log2 inf

Λ≥0
{Tr[Λσ] : Tr[Λρ] ≥ 1− ε, Λ ≤ I} .

(158)
The property in (143) holds for all of the relative entropies that
we have listed above, while the property in (144) holds for all
of them except for the hypothesis testing relative entropy. For
the hypothesis testing relative entropy, the constant c in (145)
is equal to − log2(1−ε), and the alternative definition in (147)
is sometimes used [62].

A generalized channel divergence between a quantum chan-
nel NA→B and a completely positive map MA→B is defined
from a generalized divergence as follows [63]:

D(N‖M) := sup
ρRA

D(NA→B(ρRA)‖MA→B(ρRA)), (159)

where the optimization is with respect to every bipartite state
ρRA, with the system R arbitrarily large. By a standard
argument (detailed in [63]), the following simplification occurs

D(N‖M) := sup
ψRA

D(NA→B(ψRA)‖MA→B(ψRA)), (160)

where the optimization is with respect to all pure bipartite
states with R ' A. Using this, we define the following:

Definition 10: For a bipartite channel NAB→A′B′ , we define
the following measure of forward classical communication:

Υ(NAB→A′B′) :=

inf
MAB→A′B′ :β(MAB→A′B′ )≤1

D(NAB→A′B′‖MAB→A′B′),

(161)

where the optimization is with respect to every completely
positive bipartite map MAB→A′B′ .

Using the quantum relative entropy, the sandwiched Rényi
relative entropy, the Belavkin–Staszewski relative entropy, and
the geometric Rényi relative entropy, we then obtain the
following respective channel measures:

Υ(NAB→A′B′), (162)

Υ̃α(NAB→A′B′), (163)

Υ̂(NAB→A′B′), (164)

Υ̂α(NAB→A′B′), (165)

defined by substituting D with D, D̃α, D̂, and D̂α in (161).
We now establish some properties of Υ(NAB→A′B′), anal-

ogous to those established earlier for Cβ(NAB→A′B′) in
Section III-B.

Proposition 11 (Non-negativity): Let NAB→A′B′ be a bi-
partite channel. Then

Υ(NAB→A′B′) ≥ 0. (166)

Proof: Let MAB→A′B′ be an arbitrary completely pos-
itive bipartite map satisfying β(MAB→A′B′) ≤ 1. Then
consider that

D(NAB→A′B′‖MAB→A′B′)
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≥D(NAB→A′B′(ΦRA ⊗ ΦBS)‖MAB→A′B′(ΦRA ⊗ ΦBS))

≥D(Tr[NAB→A′B′(ΦRA ⊗ ΦBS)]‖
Tr[MAB→A′B′(ΦRA ⊗ ΦBS)]) (167)

= D(1‖Tr[MAB→A′B′(ΦRA ⊗ ΦBS)]). (168)

The first inequality follows because the quantity
D(NAB→A′B′‖MAB→A′B′) involves an optimization
over all possible input states, and we have chosen the product
of maximally entangled states. The second inequality follows
from the data-processing inequality for the generalized
divergence. It then follows from Definition 10 that

Υ(NAB→A′B′) ≥
inf

MAB→A′B′ :
β(MAB→A′B′ )≤1

D(1‖Tr[MAB→A′B′(ΦRA ⊗ ΦBS)]).

(169)

Thus, the inequality follows if we can show that

Tr[MAB→A′B′(ΦRA ⊗ ΦBS)] ≤ 1. (170)

Let λ, SAA′BB′ , and VAA′BB′ be arbitrary Hermitian opera-
tors satisfying the constraints in (27) for MAB→A′B′ . Then,
we find that

λdAdB = λTrAB [IAB ] (171)
≥ TrAA′BB′ [SAA′BB′ ] (172)
≥ TrAA′BB′ [VAA′BB′ ] (173)
= TrAA′BB′ [TBB′(VAA′BB′)] (174)

≥ TrAA′BB′ [TBB′(Γ
M
AA′BB′)] (175)

= TrAA′BB′ [Γ
M
AA′BB′ ] (176)

= Tr[ΓMAA′BB′ ], (177)

which is equivalent to

λ ≥ Tr[MAB→A′B′(ΦRA ⊗ ΦBS)]. (178)

Taking an infimum over λ, SAA′BB′ , and VAA′BB′ satisfying
the constraints in (27) for MAB→A′B′ and applying the
assumption β(MAB→A′B′) ≤ 1, we conclude (170).

Proposition 12 (Stability): Let NAB→A′B′ be a bipartite
channel. Then

Υ(NAB→A′B′) = Υ(idĀ→Ã⊗NAB→A′B′⊗idB̄→B̃). (179)

Proof: The definition of the generalized channel diver-
gence in (159) implies that it is stable, in the sense that

D(NAB→A′B′‖MAB→A′B′) =

D(idĀ→Ã⊗NAB→A′B′ ⊗ idB̄→B̃ ‖
idĀ→Ã⊗MAB→A′B′ ⊗ idB̄→B̃), (180)

for every channel NAB→A′B′ and completely positive map
MAB→A′B′ . Combining with Proposition 3 and the definition
in (161), we conclude (179).

Proposition 13 (Zero on classical feedback channels): Let
∆B→A′ be a classical feedback channel:

∆B→A′(·) :=

d−1∑
i=0

|i〉A′〈i|B(·)|i〉B〈i|A′ , (181)

where A′ ' B and d = dA′ = dB . Then

Υ(∆B→A′) = 0. (182)

Proof: This follows from Proposition 4. Since
β(∆B→A′) = 1, we can pick MB→A′ = ∆B→A′ , and
then

D(∆B→A′‖MB→A′) = D(∆B→A′‖∆B→A′) = 0. (183)

So this establishes that Υ(∆B→A′) ≤ 0, and the other
inequality Υ(∆B→A′) ≥ 0 follows from Proposition 11.

Proposition 14 (Zero on tensor product of local channels):
Let EA→A′ and FB→B′ be quantum channels. Then

Υ(EA→A′ ⊗FB→B′) = 0. (184)

Proof: Same argument as given for Proposition 13, but
use Proposition 5 instead.

We now establish some properties that are more specific
to the Belavkin–Staszewski and geometric Rényi relative en-
tropies (however the first actually holds for quantum relative
entropy and other quantum Rényi relative entropies).

Proposition 15: Let NAB→A′B′ be a bipartite channel. Then
for all α ∈ (1, 2],

Υ̂(NAB→A′B′) ≤ Υ̂α(NAB→A′B′) ≤ Cβ(NAB→A′B′).
(185)

Proof: Pick MAB→A′B′ = 1
β(NAB→A′B′ )

NAB→A′B′ in
the definition of Υ̂(NAB→A′B′) and Υ̂α(NAB→A′B′) and use
the fact that, for c > 0, D̂(ρ‖cσ) = D̂(ρ‖σ) − log2 c and
D̂α(ρ‖cσ) = D̂α(ρ‖σ) − log2 c for all α ∈ (1, 2]. We also
require (156).

Proposition 16 (Subadditivity): For bipartite channels
N 1
AB→A′B′ and N 2

A′B′→A′′B′′ , the following inequality holds
for all α ∈ (0, 1) ∪ (1, 2]:

Υ̂α(N 2
A′B′→A′′B′′ ◦ N 1

AB→A′B′) ≤
Υ̂α(N 2

A′B′→A′′B′′) + Υ̂α(N 1
AB→A′B′). (186)

Proof: This inequality is a direct consequence of the
subadditivity inequality in Eq. (18) of [22], Proposition 47
of [58], and the fact that if M1 and M2 are completely
positive bipartite maps satisfying β(M1), β(M2) ≤ 1, then
β(M2 ◦M1) ≤ 1 (see Proposition 6).

D. Measure of classical communication for a point-to-point
channel

Let MA→B′ be a point-to-point completely positive map,
which is a special case of a completely positive bipartite map
with the Bob input B trivial and the Alice output A′ trivial.
We first show that β in (16) reduces to the measure from [20].

Proposition 17: LetMA→B′ be a point-to-point completely
positive map. Then

β(MA→B′) =
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inf
SB′ ,VAB′∈Herm

 Tr[SB′ ] :
TB′(VAB′ ± ΓMAB′) ≥ 0,
IA ⊗ SB′ ± VAB′ ≥ 0

 . (187)

Proof: In this case, the systems A′ and B are trivial. So
then the definition in (16) reduces to

β(MA→B′) =

inf
SAB′ ,VAB′∈Herm


‖TrB′ [SAB′ ]‖∞ :

TB′(VAB′ ± ΓMAB′) ≥ 0,
SAB′ ± VAB′ ≥ 0,

SAB′ = πA ⊗ TrA[SAB′ ]

 . (188)

The last constraint implies that the optimization simplifies to

β(MA→B′)

= inf
SAB′ ,VAB′∈Herm

 ‖TrB′ [πA ⊗ TrA[SAB′ ]]‖∞ :
TB′(VAB′ ± ΓMAB′) ≥ 0,

πA ⊗ TrA[SAB′ ]± VAB′ ≥ 0


(189)

= inf
S′
B′ ,VAB′∈Herm

 ‖TrB′ [πA ⊗ S′B′ ]‖∞ :
TB′(VAB′ ± ΓMAB′) ≥ 0,
πA ⊗ S′B′ ± VAB′ ≥ 0

 (190)

= inf
S′
B′ ,VAB′∈Herm

 Tr[S′B′ ] ‖πA‖∞ :
TB′(VAB′ ± ΓMAB′) ≥ 0,
πA ⊗ S′B′ ± VAB′ ≥ 0

 (191)

= inf
S′
B′ ,VAB′∈Herm


1
dA

Tr[S′B′ ] :

TB′(VAB′ ± ΓMAB′) ≥ 0,
πA ⊗ S′B′ ± VAB′ ≥ 0

 (192)

= inf
SB′ ,VAB′∈Herm

 Tr[SB′ ] :
TB′(VAB′ ± ΓMAB′) ≥ 0,
IA ⊗ SB′ ± VAB′ ≥ 0

 . (193)

This concludes the proof.

More generally, consider that the definition in (161) be-
comes as follows for a point-to-point channel NA→B′ :

Υ(NA→B′) := inf
MA→B′ :β(MA→B′ )≤1

D(NA→B′‖MA→B′),

(194)
which leads to the quantities Υ̂(NA→B′) and Υ̂α(NA→B′),
for which we have the following bounds for α ∈ (1, 2]:

Υ̂(NA→B′) ≤ Υ̂α(NA→B′) ≤ Cβ(NA→B′). (195)

Note that the quantities given just above were defined in [21],
[22], and our observation here is that the definition in (161)
reduces to them.

The next proposition is critical for establishing our upper
bound proofs in Section IV. It states that if one share of
a maximally classically correlated state passes through a
completely positive mapMA→B′ for which β(MA→B′) ≤ 1,
then the resulting operator has a very small chance of passing
the comparator test, as defined in (198).

Proposition 18 (Bound for comparator test success proba-
bility): Let

ΦÂA :=
1

d

d−1∑
i=0

|i〉〈i|Â ⊗ |i〉〈i|A (196)

denote the maximally classically correlated state, and
let MA→B′ be a completely positive map for which
β(MA→B′) ≤ 1. Then

Tr[ΠÂB′MA→B′(ΦÂA)] ≤ 1

d
, (197)

where ΠÂB′ is the comparator test:

ΠÂB′
:=

d−1∑
i=0

|i〉〈i|Â ⊗ |i〉〈i|B′ , (198)

and Â ' A ' B′.
Proof: Recall the expression for β(MA→B′) in (187).

Let SB′ and VAB′ be arbitrary Hermitian operators satisfying
the constraints for β(MA→B′). An application of (8) implies
that

MA→B′(ΦÂA) = 〈Γ|AÃΦÂA ⊗ ΓM
ÃB′
|Γ〉AÃ, (199)

where Ã ' A. This means that

Tr[ΠÂB′MA→B′(ΦÂA)]

= Tr[ΠÂB′〈Γ|AÃΦÂA ⊗ ΓM
ÃB′
|Γ〉AÃ] (200)

= Tr[TB′(ΠÂB′)〈Γ|AÃΦÂA ⊗ ΓM
ÃB′
|Γ〉AÃ] (201)

= Tr[ΠÂB′〈Γ|AÃΦÂA ⊗ TB′(ΓMÃB′)|Γ〉AÃ] (202)

≤ Tr[ΠÂB′〈Γ|AÃΦÂA ⊗ TB′(VÃB′)|Γ〉AÃ] (203)

= Tr[TB′(ΠÂB′)〈Γ|AÃΦÂA ⊗ VÃB′ |Γ〉AÃ] (204)

= Tr[ΠÂB′〈Γ|AÃΦÂA ⊗ VÃB′ |Γ〉AÃ] (205)

≤ Tr[ΠÂB′〈Γ|AÃΦÂA ⊗ IÃ ⊗ SB′ |Γ〉AÃ] (206)

= Tr[ΠÂB′〈Γ|AÃΦÂA ⊗ IÃ|Γ〉AÃ ⊗ SB′ ] (207)

= Tr[ΠÂB′ TrA[ΦÂA]⊗ SB′ ] (208)

=
1

d
Tr[ΠÂB′IÂ ⊗ SB′ ] (209)

=
1

d
Tr[SB′ ]. (210)

Since this holds for all SB′ and VAB′ satisfying the constraints
for β(MA→B′), we conclude that

Tr[ΠÂB′MA→B′(ΦÂA)] ≤ 1

d
. (211)

This concludes the proof.

We finally state another proposition that plays an essential
role in our upper bound proofs in Section IV.

Proposition 19: Suppose that NA→B is a channel with A '
B that satisfies

1

2

∥∥NA→B(ΦRA)− ΦRB
∥∥

1
≤ ε, (212)

for ε ∈ [0, 1) and where ΦRB := 1
d

∑
i |i〉〈i|R ⊗ |i〉〈i|B and

d = dR = dA = dB . Then

log2 d ≤
inf

MA→B :β(MA→B)≤1
Dε
H(NA→B(ΦRA)‖MA→B(ΦRA)),

(213)

and for all α ∈ (1, 2],
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log2 d ≤
inf

MA→B :β(MA→B)≤1
D̂α(NA→B(ΦRA)‖MA→B(ΦRA))

+
α

α− 1
log2

(
1

1− ε

)
. (214)

Proof: We begin by proving (213). The condition
1

2

∥∥NA→B(ΦRA)− ΦRB
∥∥

1
≤ ε (215)

implies that

Tr[ΠRBNA→B(ΦRA)] ≥ 1− ε, (216)

where ΠRB :=
∑
i |i〉〈i|R ⊗ |i〉〈i|B is the comparator test.

Indeed, applying a completely dephasing channel ∆B(·) :=∑
i |i〉〈i|(·)|i〉〈i| to the output of the channel NA→B and

applying the data-processing inequality for trace distance, we
conclude that

ε ≥ 1

2

∥∥NA→B(ΦRA)− ΦRB
∥∥

1
(217)

≥ 1

2

∥∥(∆B ◦ NA→B)(ΦRA)−∆B(ΦRB)
∥∥

1
(218)

=
1

2

∥∥(∆B ◦ NA→B)(ΦRA)− ΦRB
∥∥

1
. (219)

Let ωRB := (∆B ◦ NA→B)(ΦRA) and observe that it can be
written as

ωRB =
1

d

∑
i,j

p(j|i)|i〉〈i|R ⊗ |j〉〈j|B (220)

for some conditional probability distribution p(j|i). Then

1

2

∥∥(∆B ◦ NA→B)(ΦRA)− ΦRB
∥∥

1

=
1

2

∥∥∥∥ 1
d

∑
i,j p(j|i)|i〉〈i|R ⊗ |j〉〈j|B

− 1
d

∑
i,j δi,j |i〉〈i|R ⊗ |j〉〈j|B

∥∥∥∥
1

(221)

=
1

2d

∑
i

∥∥∥∥∥∥
∑
j

(p(j|i)− δi,j)|j〉〈j|B

∥∥∥∥∥∥
1

(222)

=
1

2d

∑
i

(1− p(i|i)) +
∑
j 6=i

p(j|i)

 (223)

=
1

d

∑
i

(1− p(i|i)) (224)

= 1−
∑
i

1

d
p(i|i). (225)

This implies that ∑
i

1

d
p(i|i) ≥ 1− ε. (226)

Now consider that

Tr[ΠRBNA→B(ΦRA)]

= Tr[∆B(ΠRB)NA→B(ΦRA)] (227)

= Tr[ΠRB(∆B ◦ NA→B)(ΦRA)] (228)
= Tr[ΠRBωRB ] (229)

=
∑
i

1

d
p(i|i). (230)

So we conclude that

Tr[ΠRBNA→B(ΦRA)] ≥ 1− ε. (231)

Applying the definition of the hypothesis testing relative
entropy from (158), we conclude that

inf
MA→B :β(MA→B)≤1

Dε
H(NA→B(ΦRA)‖MA→B(ΦRA)) =

− log2 sup
MA→B :

β(MA→B)≤1

inf
ΛRB≥0


Tr[ΛRBMA→B(ΦRA)] :
Tr[ΛRBNA→B(ΦRA)]

≥ 1− ε,
ΛRB ≤ IRB

 .

Now consider that

sup
MA→B :

β(MA→B)≤1

inf
ΛRB≥0

 Tr[ΛRBMA→B(ΦRA)] :
Tr[ΛRBNA→B(ΦRA)] ≥ 1− ε,

ΛRB ≤ IRB


≤ sup
MA→B :β(MA→B)≤1

Tr[ΠRBMA→B(ΦRA)] (232)

≤ 1

d
, (233)

where the first inequality follows from (231) and the definition
in (158) and the last inequality follows from Proposition 18.
Then applying a negative logarithm gives (213).

The inequality in (214) follows as a direct application of the
following relationship between the hypothesis testing relative
entropy and the geometric Rényi relative entropy:

Dε
H(ρ‖σ) ≤ D̂α(ρ‖σ) +

α

α− 1
log2

(
1

1− ε

)
, (234)

as well as the previous proposition. The proof of (234) follows
the same proof given for [64, Lemma 5].

IV. APPLICATIONS

A. Bounding the forward classical capacity of a bipartite
channel

We now apply the bipartite channel measure in (161) to
obtain an upper bound on the forward classical capacity
of a bipartite channel NAB→A′B′ . We begin by describing
a forward classical communication protocol for a bipartite
channel and then define the associated capacities.

Fix n,M ∈ N and ε ∈ [0, 1]. An (n,M, ε) protocol for
forward classical communication using a bipartite channel
NAB→A′B′ begins with a reference party preparing the state
Φ
p

RÂ and sending the Â system to Alice, where Φ
p

RÂ is the
following classically correlated state:

Φ
p

RÂ
:=

M∑
m=1

p(m)|m〉〈m|R ⊗ |m〉〈m|Â, (235)

and p(m) is a probability distribution over the messages. Alice
acts on the system Â with a local encoding channel E(0)

Â→A′′1A1
,

resulting in the following state:

σRA′′1A1
:= E(0)

Â→A′′1A1
(Φ

p

RÂ). (236)

Bob prepares the local state τB′′1 B1
, so that the initial global

state of the reference, Alice, and Bob is

σRA′′1A1
⊗ τB′′1 B1

. (237)
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The systems A1B1 are then fed into the first use of the channel,
producing the output state

ρ
(1)
RA′′1A

′
1B
′′
1 B
′
1

:= NA1B1→A′1B′1(σ
(1)
RA′′1A1B′′1 B1

), (238)

σ
(1)
RA′′1A1B′′1 B1

:= σA′′1A1
⊗ τB′′1 B1

. (239)

Then Alice applies the local channel E(1)
A′′1A

′
1→A′′2A2

to her

systems, and Bob applies the local channel F (1)
B′′1 B

′
1→B′′2 B2

to
his systems. The systems A2B2 are fed into the next channel
use, leading to the state

ρ
(2)
RA′′2A

′
2B
′′
2 B
′
2

:= NA2B2→A′2B′2(σ
(2)
RA′′2A2B′′2 B2

), (240)

σ
(2)
RA′′2A2B′′2 B2

:=

(E(1)
A′′1A

′
1→A′′2A2

⊗F (1)
B′′1 B

′
1→B′′2 B2

)(ρ
(1)
RA′′1A

′
1B
′′
1 B
′
1
). (241)

This process iterates n− 2 more times, and we define

ρ
(i)
RA′′i A

′
iB
′′
i B
′
i

:= NAiBi→A′iB′i(σ
(i)
RA′′i AiB′′i Bi

), (242)

σ
(i)
RA′′i AiB′′i Bi

:=

(E(i−1)
A′′i−1A

′
i−1→A′′i Ai

⊗F (i−1)
B′′i−1B

′
i−1→B′′i Bi

)(ρ
(i−1)
RA′′i−1A

′
i−1B

′′
i−1B

′
i−1

),

(243)

for i ∈ {3, . . . , n}. The final channel output state
ρ

(n)
RA′′nA

′
nB
′′
nB
′
n

is processed a final time with the local channels

E(n)
A′′nA

′
n→∅

:= TrA′′nA′n and F (n)

B′′nB
′
n→B̂

, where ∅ indicates a
trivial system, to produce the final protocol state

ωp
RB̂

:= (E(n)
A′′nA

′
n→∅
⊗F (n)

B′′nB
′
n→B̂

)(ρ
(n)
RA′′nA

′
nB
′′
nB
′
n
). (244)

For an (n,M, ε) protocol, the final state ωp
RB̂

satisfies the
following condition

max
p

1

2

∥∥∥ωp
RB̂
− Φ

p

RB̂

∥∥∥
1
≤ ε, (245)

where the maximization is over all probability distributions
p(m) and

Φ
p

RB̂
:=

M∑
m=1

p(m)|m〉〈m|Â ⊗ |m〉〈m|B̂ . (246)

Note that the condition in (245) is equivalent to the tradi-
tional condition on the decoding error probability (see [65,
Lemma 6.2]). Figure 2 depicts such a protocol with n = 4.

Let us denote the set consisting of the initially prepared
state and the sequence of local channels as the protocol P(n):

P(n) :=

{
E(0)

Â→A′′1A1
⊗ τB′′1 B1

,{
E(i−1)
A′′i−1A

′
i−1→A′′i Ai

⊗F (i−1)
B′′i−1B

′
i−1→B′′i Bi

}n
i=2

,

E(n)
A′′nA

′
n→∅
⊗F (n)

B′′nB
′
n→B̂

}
. (247)

Then we can write the final state ωRB̂ as

ωp
RB̂

= CÂ→B̂(Φ
p

RÂ), (248)

where

CÂ→B̂ := L(n) ◦ N ◦ L(n−1) · · · ◦ L(2) ◦ N ◦ L(1) ◦ N ◦ L(0),
(249)

L(0) acts on system Â of ΦRÂ to prepare the state
σ

(1)
RA′′1A1B′′1 B1

,

L(i−1) ≡ E(i−1)
A′′i−1A

′
i−1→A′′i Ai

⊗F (i−1)
B′′i−1B

′
i−1→B′′i Bi

, (250)

for i ∈ {2, . . . , n}, and

L(n) ≡ E(n)
A′′nA

′
n→∅
⊗F (n)

B′′nB
′
n→B̂

. (251)

The n-shot forward classical capacity of a bipartite channel
NAB→A′B′ is then defined as follows:

Cn,ε(NAB→A′B′) :=

sup
M∈N, P(n)

{
1

n
log2M : ∃(n,M, ε) protocol P(n)

}
. (252)

The forward classical capacity and strong converse forward
classical capacity of the bipartite channel NAB→A′B′ are
defined as

C(NAB→A′B′) := inf
ε∈(0,1)

lim inf
n→∞

Cn,ε(NAB→A′B′), (253)

C̃(NAB→A′B′) := sup
ε∈(0,1)

lim sup
n→∞

Cn,ε(NAB→A′B′). (254)

From the definitions, it is clear that

C(NAB→A′B′) ≤ C̃(NAB→A′B′). (255)

An (n,M, ε) randomness transmission protocol is exactly
as specified above, but with p(m) = 1/M (i.e., the uniform
distribution) in (235). Let us define

ΦRÂ :=
1

M

M∑
m=1

|m〉〈m|R ⊗ |m〉〈m|Â. (256)

Then the error criterion for such a protocol is

1

2

∥∥ωRB̂ − ΦRB̂
∥∥

1
≤ ε, (257)

where ωRB̂ is defined as in (248) but with Φ
p

RÂ replaced by
ΦRÂ. Also,

ΦRB̂ :=
1

M

M∑
m=1

|m〉〈m|Â ⊗ |m〉〈m|B̂ . (258)

Note that the condition in (257) is equivalent to the traditional
condition on the average decoding error probability (see [65,
Lemma 6.2]).

We define the following quantities for the randomness
transmission capacity of NAB→A′B′ :

Rn,ε(NAB→A′B′) =

sup
M∈N, P(n)

{
1

n
log2M : ∃(n,M, ε) RT protocol P(n)

}
,

(259)

where RT is an abbreviation for “randomness transmission.”
The randomness transmission capacity and strong converse
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Fig. 2. Depiction of a protocol for forward classical communication over a bipartite channel, by making n = 4 uses of the bipartite channel NAB→A′B′ .

randomness transmission capacity of the bipartite channel
NAB→A′B′ are defined as

R(NAB→A′B′) := inf
ε∈(0,1)

lim inf
n→∞

Rn,ε(NAB→A′B′), (260)

R̃(NAB→A′B′) := sup
ε∈(0,1)

lim sup
n→∞

Rn,ε(NAB→A′B′). (261)

From the definitions, it is clear that

R(NAB→A′B′) ≤ R̃(NAB→A′B′). (262)

Since every (n,M, ε) forward classical communication pro-
tocol is an (n,M, ε) randomness transmission protocol, the
following inequality holds

Cn,ε(NAB→A′B′) ≤ Rn,ε(NAB→A′B′). (263)

By the standard expurgation argument (throwing away the
worst half of the codewords to give maximal error probability
≤ 2ε; see, e.g., [4, Exercise 2.2.1]), the following inequality
holds

Rn,ε(NAB→A′B′)−
1

n
≤ Cn,2ε(NAB→A′B′). (264)

By employing definitions, we conclude that

C(NAB→A′B′) = R(NAB→A′B′) (265)

≤ C̃(NAB→A′B′) (266)

≤ R̃(NAB→A′B′). (267)

In what follows, we establish an upper bound on the strong
converse randomness transmission capacity of NAB→A′B′ ,
and by the inequalities above, this gives an upper bound on
the forward classical capacity and strong converse forward
classical capacity of NAB→A′B′ .

Theorem 20: The following upper bound holds for the n-
shot randomness transmission capacity of a bipartite channel
NAB→A′B′ :

Rn,ε(NAB→A′B′) ≤

Υ̂α(NAB→A′B′) +
α

n (α− 1)
log2

(
1

1− ε

)
, (268)

for all α ∈ (1, 2] and ε ∈ [0, 1).

Proof: Consider an arbitrary n-shot randomness trans-
mission protocol of the form described above. Focusing in
particular on (245) and (248), we apply (214) of Proposition 19
to conclude that

log2M

≤ inf
MÂ→B̂ :β(MÂ→B̂)≤1

D̂α(CÂ→B̂(ΦRÂ)‖MÂ→B̂(ΦRÂ))

+
α

α− 1
log2

(
1

1− ε

)
(269)

≤ Υ̂α(CÂ→B̂) +
α

α− 1
log2

(
1

1− ε

)
, (270)

where the inequality follows from the definition in (194) with
D set to D̂α. Eq. (248) indicates that the whole protocol is a
serial composition of bipartite channels. Then we find that

Υ̂α(CÂ→B̂)

= Υ̂α(L(n) ◦ N ◦ L(n−1) · · · ◦ L(2) ◦ N ◦ L(1) ◦ N ◦ L(0))
(271)

≤ nΥ̂α(N ) +

n∑
i=0

Υ̂α(L(i)) (272)

= nΥ̂α(N ). (273)

The inequality follows from Proposition 6 and the last equality
from Proposition 14. We also implicitly used the stability
property in Proposition 12. Then we find that

1

n
log2M ≤ Υ̂α(N ) +

α

n(α− 1)
log2

(
1

1− ε

)
. (274)

Since the upper bound holds for an arbitrary protocol, this
concludes the proof.

Theorem 21: The following upper bound holds for the strong
converse randomness transmission capacity of a bipartite chan-
nel NAB→A′B′ :

R̃(NAB→A′B′) ≤ Υ̂(NAB→A′B′), (275)

where Υ̂(NAB→A′B′) is defined from (161) using the
Belavkin–Staszewski relative entropy.
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Proof: Applying the bound in (268) and taking the n→
∞ limit, we find that the following holds for all α ∈ (1, 2]
and ε ∈ [0, 1):

lim sup
n→∞

Rn,ε(NAB→A′B′)

≤ lim sup
n→∞

[
Υ̂α(NAB→A′B′) +

α

n (α− 1)
log2

(
1

1− ε

)]
(276)

= Υ̂α(NAB→A′B′). (277)

Since the upper bound holds for all α ∈ (1, 2], we can take
the infimum over all these values, and we conclude that the
following holds for all ε ∈ [0, 1):

lim sup
n→∞

Rn,ε(NAB→A′B′) ≤ Υ̂(NAB→A′B′). (278)

Here we applied the definitions of Υ̂(NAB→A′B′) and
Υ̂α(NAB→A′B′) and Proposition 36 in Appendix B. The
upper bound holds for all ε ∈ (0, 1) and so we conclude the
statement of the theorem.

B. Bounding the classical capacity of a point-to-point quan-
tum channel assisted by a classical feedback channel

One of the main applications in our paper is an upper bound
on the classical capacity of a point-to-point quantum channel
assisted by classical feedback. For a point-to-point channel
NA→B′ , this capacity is denoted by C←(NA→B′).

In what follows, we briefly define the classical capacity of a
point-to-point quantum channel NA→B′ assisted by classical
feedback. Before doing so, let us first expand the notion of an
n-shot protocol for forward classical communication from the
previous section, such that each use of the bipartite channel is
no longer constrained to be identical. The final state of such
a protocol is then a generalization of that in (248):

ωp
RB̂

= (L(n) ◦ N (n) ◦ L(n−1) ◦ · · ·
◦ L(2) ◦ N (2) ◦ L(1) ◦ N (1) ◦ L(0))(Φ

p

RÂ), (279)

and the protocol is an (n,M, ε) protocol if the inequality

max
p

1

2

∥∥∥ωp
RB̂
− Φ

p

RB̂

∥∥∥
1
≤ ε (280)

holds with Φ
p

RB̂ the classically correlated state as defined in
(246). Note that the following bound holds for all (n,M, ε)
forward classical communication protocols, with n,M ∈ N
and ε ∈ (0, 1], and α ∈ (1, 2]:

log2M ≤
n∑
i=1

Υ̂α(N (i)
AB→A′B′) +

α

α− 1
log2

(
1

1− ε

)
,

(281)
by following the same steps given in the proof of Theorem 20.

With the more general definition in hand, we define an
(n,M, ε) protocol for classical communication over a point-to-
point channel NA→B′ assisted by a classical feedback channel
as a special case of a (2n,M, ε) protocol of the form above,
in which every N (i) with i odd is replaced by a classical
feedback channel ∆Bi→A′i (with di := dBi = dA′i and trivial
input system Ai and trivial output system B′i) and every N (i)

with i even is replaced by the forward point-to-point channel
NA→B′ (such that the input system Bi and the output system
A′i are trivial). The final state of the protocol is given by

ωRB̂ :=

(L(2n) ◦ NA2n→B′2n ◦ L
(2n−1) ◦∆B2n−1→A′2n−1

◦ L(2n−2)◦
· · · ◦ L(2) ◦ NA2→B′2 ◦ L

(1) ◦∆B1→A′1 ◦ L
(1))(ΦRÂ).

(282)

Let P(2n) denote the protocol, which consists of L(0), L(1),
. . . , L(2n). This protocol is depicted in Figure 3.

The n-shot classical capacity of the point-to-point channel
NA→B′ assisted by classical feedback is defined as

Cn,ε← (NA→B′) =

sup
M∈N, P(2n)

{
1

n
log2M : ∃(n,M, ε) protocol P(2n)

}
.

(283)

That is, it is the largest rate at which messages can be
transmitted up to an ε error probability. The classical capacity
of the point-to-point channel NA→B′ assisted by classical
feedback is defined as the following limit:

C←(NA→B′) := inf
ε∈(0,1)

lim inf
n→∞

Cn,ε← (NA→B′), (284)

and the strong converse classical capacity as

C̃←(NA→B′) := sup
ε∈(0,1)

lim sup
n→∞

Cn,ε← (NA→B′). (285)

The following inequality is an immediate consequence of
definitions:

C←(NA→B′) ≤ C̃←(NA→B′). (286)

Theorem 22: Fix n ∈ N and ε ∈ [0, 1). The n-shot
classical capacity Cn,ε← (NA→B′) of the point-to-point channel
NA→B′ assisted by classical feedback is bounded from above
as follows:

Cn,ε← (NA→B′) ≤ Υ̂α(NA→B′) +
α

n (α− 1)
log2

(
1

1− ε

)
,

(287)
for all α ∈ (1, 2].

Proof: Applying the bound in (281) with the choices in
(282), we conclude that the following bound holds for all α ∈
(1, 2] and for an arbitrary (n,M, ε) classical communication
protocol assisted by a classical feedback channel:

log2M

≤ nΥ̂α(NA→B′) +

n∑
i=1

Υ̂α(∆B2i−1→A′2i−1
)

+
α

α− 1
log2

(
1

1− ε

)
(288)

= nΥ̂α(NA→B′) +
α

α− 1
log2

(
1

1− ε

)
. (289)

The equality follows from Proposition 13. This then implies
the following bound

1

n
log2M ≤ Υ̂α(NA→B′) +

α

n(α− 1)
log2

(
1

1− ε

)
. (290)



16

B1 ∆

A’
Alice

Bob

E (0)

A2

N
B’ B3

A’

F (1)

R

Â
1

2

3

A’’1

B’’1

A’’2

B’’2

A’’3

B’’3
ÂB

A4

N
B’4

A’’4

B’’4

E (1) E (2) E (3) E (4)

F (2) F (3) F (4)

∆

Reference

Fig. 3. Depiction of a protocol for classical communication over a point-to-point channel with classical feedback, by making n = 2 uses of the point-to-point
channel NA→B′ . This protocol is related to the one in Figure 2, by replacing every odd use of NAB→A′B′ with the classical feedback channel ∆B→A′

and every even use of NAB→A′B′ with the point-to-point channel NA→B′ .

Since the bound in (290) holds for an arbitrary protocol,
we conclude the statement of the theorem after applying the
definition in (283).

Theorem 23: The strong converse classical capacity of a
point-to-point quantum channel NA→B′ assisted by a classical
feedback channel is bounded from above as follows:

C̃←(NA→B′) ≤ Υ̂(NA→B′). (291)

Proof: The reasoning here is the same as that given in
the proof of Theorem 21.

Before proceeding to the next section, let us finally note
that our bounds above apply in a more general setting
in which the classical feedback channel is replaced by an
entanglement-breaking channel [66]. This follows because
every entanglement-breaking channel can be written as a
composition of a general pre-processing quantum channel,
followed by a classical channel, which is in turn followed
by a general post-processing quantum channel [66]. It is then
clear that the pre-processing channel can be absorbed into a
local operation of the receiver Bob, while the post-processing
channel can be absorbed into a local operation of Alice, so
that this is essentially just assistance by a classical feedback
channel again, and our result thus applies.

V. EMPLOYING THE SANDWICHED RÉNYI RELATIVE
ENTROPY

In this section, we explore what kinds of bounds we can
obtain on the previously defined capacities, by making use of
the sandwiched Rényi relative entropy.

Let us define the amortized sandwiched Rényi divergence of
the completely positive maps NA→B and MA→B as follows
[67]:

D̃Aα (NA→B‖MA→B) :=

sup
ρRA,σRA

D̃α(NA→B(ρRA)‖MA→B(σRA))−D̃α(ρRA‖σRA),

(292)

for α ∈ (0, 1) ∪ (1,∞), where the optimization is over all
density operators ρRA and σRA. By exploiting the definition
of the sandwiched Rényi relative entropy, it follows that
the quantity above does not change if we optimize more
generally over positive semi-definite operators ρRA and σRA
with strictly positive trace.

The amortized sandwiched Rényi divergence is subadditive
in the following sense:

Proposition 24 (Subadditivity): Let N 1
A→B , N 2

B→C ,
M1

A→B , and M2
B→C be completely positive maps. Then

D̃Aα (N 2 ◦ N 1‖M2 ◦M1) ≤
D̃Aα (N 1‖M1) + D̃Aα (N 2‖M2), (293)

for all α ∈ (0, 1) ∪ (1,∞).
Proof: Let ρRA and σRA be arbitrary positive semi-

definite operators. Then

D̃α(N 2
B→C(N 1

A→B(ρRA))‖M2
B→C(M1

A→B(σRA)))

− D̃α(ρRA‖σRA) (294)

= D̃α(N 2
B→C(N 1

A→B(ρRA))‖M2
B→C(M1

A→B(σRA)))

− D̃α(N 1
A→B(ρRA)‖M1

A→B(σRA))

+ D̃α(N 1
A→B(ρRA)‖M1

A→B(σRA))− D̃α(ρRA‖σRA)
(295)

≤ D̃Aα (N 1‖M1) + D̃Aα (N 2‖M2). (296)

The desired inequality follows because ρRA and σRA are
arbitrary.

The regularized sandwiched Rényi divergence of the com-
pletely positive maps NA→B and MA→B is defined for
α ∈ (0, 1) ∪ (1,∞) as follows:

D̃reg
α (NA→B‖MA→B) := lim

n→∞

1

n
D̃α(N⊗nA→B‖M⊗nA→B),

(297)
and the limit exists, as argued in [68, Theorem 5.4].

The following equality holds for all α > 1 [68, Theo-
rem 5.4]:

D̃Aα (NA→B‖MA→B) = D̃reg
α (NA→B‖MA→B). (298)
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As such, by applying (298) and Proposition 24, it follows that

D̃reg
α (N 2 ◦N 1‖M2 ◦M1) ≤ D̃reg

α (N 1‖M1)+D̃reg
α (N 2‖M2)

(299)
for all α > 1.

We can then replace the use of the geometric Rényi rel-
ative entropy in Theorems 20 and 22 with the regularized
sandwiched Rényi relative entropy and arrive at the following
statements:

Corollary 25: The following upper bound holds for the n-
shot randomness transmission capacity of a bipartite channel
NAB→A′B′ :

Rn,ε(NAB→A′B′) ≤

Υ̃reg
α (NAB→A′B′) +

α

n (α− 1)
log2

(
1

1− ε

)
, (300)

for all α > 1 and ε ∈ [0, 1), where

Υ̃reg
α (NAB→A′B′) :=

inf
MAB→A′B′ :

β(MAB→A′B′ )≤1

D̃reg
α (NAB→A′B′‖MAB→A′B′). (301)

Corollary 26: The following upper bound holds for the
n-shot randomness transmission capacity of a point-to-point
channel NA→B′ assisted by a classical feedback channel:

Cn,ε(NA→B′) ≤ Υ̃reg
α (NA→B′) +

α

n (α− 1)
log2

(
1

1− ε

)
,

(302)
for all α > 1 and ε ∈ [0, 1), where

Υ̃reg
α (NA→B′) :=

inf
MA→B′ :

β(MA→B′ )≤1

D̃reg
α (NA→B′‖MA→B′). (303)

These bounds are not particularly useful, because the quan-
tities Υ̃reg

α (NAB→A′B′) and Υ̃reg
α (NA→B′) may be difficult

to compute in practice. However, see the discussions in
[68, Section 5.1] for progress on algorithms for computing
D̃reg
α (N‖M). In the next section, we show how these bounds

simplify when the channels of interest possess symmetry.

VI. EXPLOITING SYMMETRIES

In this section, we discuss how to improve the upper bounds
in Corollaries 25 and 26 when a bipartite channel and point-
to-point channel possess symmetries, respectively.

We begin by recalling the definition of a bicovariant bi-
partite channel [40]. Let G and H be finite groups, and for
g ∈ G and h ∈ H , let g → UA(g) and h → VB(h)
be unitary representations. Also, let (g, h) → WA′(g, h)
and (g, h) → YB′(g, h) be unitary representations. A bipar-
tite channel NAB→A′B′ is bicovariant with respect to these
representations if the following equality holds for all group
elements g ∈ G and h ∈ H:

NAB→A′B′ ◦ (UA(g)⊗ VB(h)) =

(WA′(g, h)⊗ YB′(g, h)) ◦ NAB→A′B′ , (304)

where UA(g)(·) := UA(g)(·)UA(g)†, with similar definitions
for VB(h), WA′(g, h), and YB′(g, h). A bipartite channel is
bicovariant if it is bicovariant with respect to groups that have
representations as unitary one-designs, i.e.,

1

|G|
∑
g∈G
UA(g)(X) = Tr[X]πA, (305)

1

|H|
∑
h∈H

VB(h)(Y ) = Tr[Y ]πB . (306)

Two bipartite maps NAB→A′B′ and MAB→A′B′ are jointly
bicovariant if they are bicovariant with respect to the same
representations, i.e., if (304) holds for both NAB→A′B′ and
MAB→A′B′ .

Proposition 27: Let NAB→A′B′ be a bipartite channel that
is bicovariant with respect to unitary representations as defined
above. Then

Υ(NAB→A′B′) =

inf
M∈C:
β(M)≤1

sup
ψ∈S

D(NAB→A′B′(ψRAB)‖MAB→A′B′(ψRAB)),

(307)

where S is the set consisting of every pure state ψRAB such
that the reduced state ψAB satisfies

ψAB =
1

|G| |H|
∑

g∈G,h∈H

(UA(g)⊗ VB(h))(ψAB), (308)

and C is the set of all completely positive bipartite maps
that are bicovariant with respect to the unitary representations
defined above. In the case that NAB→A′B′ is bicovariant, then

Υ(NAB→A′B′) =

inf
M∈C1:
β(M)≤1

D(N (ΦÂA ⊗ ΦBB̂)‖M(ΦÂA ⊗ ΦBB̂)), (309)

where ΦÂA⊗ΦBB̂ is a tensor product of maximally entangled
states and C1 is the set of all completely positive bicovariant
mapsMAB→A′B′ (i.e., covariant with respect to one-designs).

Proof: Let ψRAB be an arbitrary pure state. Define

ρAB :=
1

|G| |H|
∑

g∈G,h∈H

(UA(g)⊗ VB(h))(ψAB). (310)

Let φρSAB ∈ S be a purification of ρAB . Another purification
of ρAB is given by

ψρGHRAB := |ψρ〉〈ψρ|GHRAB , (311)

where

|ψρ〉GHRAB :=

1√
|G| |H|

∑
g∈G,h∈H

|g〉G|h〉H(UA(g)⊗ VB(h))|ψ〉RAB .

(312)

Let MAB→A′B′ be an arbitrary completely positive map
satisfying β(MAB→A′B′) ≤ 1. Define

MAB→A′B′ :=
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1

|G| |H|
∑

g∈G,h∈H

(WA′(g, h)⊗ YB′(g, h))†

◦MAB→A′B′ ◦ (UA(g)⊗ VB(h)), (313)

and observe that MAB→A′B′ ∈ C. Consider the development
in (314)–(318). The first equality in (314) holds because all
purifications are related by an isometric channel acting on the
purifying system, the channel NAB→A′B′ commutes with the
action of this isometric channel because they act on different
systems, and the generalized divergence is invariant under
the action of isometric channels. The first inequality in (315)
follows by acting with a completely dephasing channel on the
systems GH and then applying the data-processing inequality.
The second equality in (316) follows from the bicovariance of
NAB→A′B′ with respect to the given representations. The third
equality in (317) follows by applying the unitary∑

g∈G,h∈H

|g, h〉〈g, h|GH ⊗W †A′(g, h)⊗ Y †B′(g, h), (319)

and from the unitary invariance of the generalized divergence.
We have also defined

Mg,h
AB→A′B′ :=

(WA′(g, h)⊗YB′(g, h))† ◦MAB→A′B′ ◦ (UA(g)⊗VB(h)).
(320)

The last inequality in (318) follows from tracing over the
registers GH and from the data-processing inequality. Since
the inequality holds for all pure states, we conclude that

sup
φSAB∈S

D(NAB→A′B′(φSAB)‖MAB→A′B′(φSAB))

≥D(NAB→A′B′‖MAB→A′B′) (321)
≥ Υ(NAB→A′B′). (322)

The second inequality follows because MAB→A′B′ satisfies
β(MAB→A′B′) ≤ 1 if MAB→A′B′ does. This in turn is
a consequence of the convexity of β (Proposition 9) and
its invariance under local unitary channels (Corollary 8).
Since the inequality holds for all MAB→A′B′ satisfying
β(MAB→A′B′) ≤ 1, we conclude that

inf
M:

β(M)≤1

sup
φ∈S

D(NAB→A′B′(φSAB)‖MAB→A′B′(φSAB))

≥ Υ(NAB→A′B′). (323)

However, the definition of Υ(NAB→A′B′) implies that

Υ(NAB→A′B′) ≥
inf
M:

β(M)≤1

sup
φ∈S

D(NAB→A′B′(φSAB)‖MAB→A′B′(φSAB)).

(324)

So we conclude the equality

Υ(NAB→A′B′) =

inf
M:

β(M)≤1

sup
φ∈S

D(NAB→A′B′(φSAB)‖MAB→A′B′(φSAB)).

(325)

Now suppose thatMAB→A′B′ is an arbitrary completely pos-
itive map satisfying β(MAB→A′B′) ≤ 1, and let φSAB ∈ S .
Then by (321), we conclude that

sup
φSAB∈S

D(NAB→A′B′(φSAB)‖MAB→A′B′(φSAB))

≥ inf
M∈C:
β(M)≤1

sup
φ∈S

D(NAB→A′B′(φSAB)‖MAB→A′B′(φSAB)).

(326)

Since this holds for every completely positive map
MAB→A′B′ satisfying β(MAB→A′B′) ≤ 1, we conclude that

Υ(NAB→A′B′) ≥
inf
M∈C:
β(M)≤1

sup
φ∈S

D(NAB→A′B′(φSAB)‖MAB→A′B′(φSAB)).

(327)

However, from the definition of Υ(NAB→A′B′), we have the
inequality

Υ(NAB→A′B′) ≤
inf
M∈C:
β(M)≤1

sup
φ∈S

D(NAB→A′B′(φSAB)‖MAB→A′B′(φSAB)).

(328)

Thus, the equality in (307) follows. The equality in (309)
follows because the only state satisfying (308) for one-designs
is the tensor product of maximally mixed states, and the tensor
product of maximally entangled states purifies this state.

Recall from Section V that the bounds in Corollaries 25
and 26 are not particularly useful on their own because
Υ̃reg
α (NAB→A′B′) may be difficult to compute in practice.

However, if the bipartite channel is bicovariant, then (309)
implies that the regularized quantity is bounded from above
by a single-letter quantity:

Υ̃reg
α (NAB→A′B′) ≤ Υ̃α(NAB→A′B′). (329)

We then obtain the following:
Corollary 28: The following upper bound holds for the

n-shot randomness transmission capacity of a bicovariant
bipartite channel NAB→A′B′ :

Rn,ε(NAB→A′B′) ≤

Υ̃α(NAB→A′B′) +
α

n (α− 1)
log2

(
1

1− ε

)
, (330)

for all α > 1 and ε ∈ [0, 1).
By applying the same reasoning in the proof of Theorem 21,

we conclude the following:
Corollary 29: The following upper bound holds for the

strong converse randomness transmission capacity of a bico-
variant bipartite channel NAB→A′B′ :

R̃(NAB→A′B′) ≤ Υ(NAB→A′B′). (331)

Let G be a group and let UA(g) and VB′(g) be unitary
representations of g. A point-to-point channel NA→B′ is
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D(NAB→A′B′(φρSAB)‖MAB→A′B′(φ
ρ
SAB))

= D(NAB→A′B′(ψρGHRAB)‖MAB→A′B′(ψ
ρ
GHRAB)) (314)

≥D

(
1

|G| |H|
∑

g∈G,h∈H

|g, h〉〈g, h|GH ⊗ (NAB→A′B′ ◦ (UA(g)⊗ VB(h)))(ψRAB)

∥∥∥∥∥
1

|G| |H|
∑

g∈G,h∈H

|g, h〉〈g, h|GH ⊗ (MAB→A′B′ ◦ (UA(g)⊗ VB(h)))(ψRAB)

)
(315)

= D

(
1

|G| |H|
∑

g∈G,h∈H

|g, h〉〈g, h|GH ⊗ ((WA′(g, h)⊗ YB′(g, h)) ◦ NAB→A′B′)(ψRAB)

∥∥∥∥∥
1

|G| |H|
∑

g∈G,h∈H

|g, h〉〈g, h|GH ⊗ (MAB→A′B′ ◦ (UA(g)⊗ VB(h)))(ψRAB)

)
(316)

= D

(
1

|G| |H|
∑

g∈G,h∈H

|g, h〉〈g, h|GH ⊗NAB→A′B′(ψRAB)

∥∥∥∥∥
1

|G| |H|
∑

g∈G,h∈H

|g, h〉〈g, h|GH ⊗Mg,h
AB→A′B′(ψRAB)

)
(317)

≥D(NAB→A′B′(ψRAB)‖MAB→A′B′(ψRAB)). (318)

covariant with respect to these representations if the following
equality holds for all g ∈ G [69]:

NA→B′ ◦ UA(g) = VB′(g) ◦ NA→B′ . (332)

A point-to-point channel is covariant if it is covariant with
respect to a one-design.

By applying the same reasoning as given above, we have
the following results:

Corollary 30: The following upper bound holds for the n-
shot classical capacity of a covariant point-to-point channel
NA→B′ assisted by a classical feedback channel:

Cn,ε← (NA→B′) ≤ Υ̃α(NA→B′) +
α

n (α− 1)
log2

(
1

1− ε

)
,

(333)
for all α > 1 and ε ∈ [0, 1).

Corollary 31: The following upper bound holds for the
strong converse classical capacity of a covariant point-to-point
channel NA→B′ :

C̃←(NA→B′) ≤ Υ(NA→B′). (334)

VII. EXAMPLES

In this section, we apply the bounds to some key examples
of bipartite and point-to-point channels. The Matlab code used
to generate the plots below is available with the arXiv posting
of our paper.

A. Partial swap bipartite channel

The partial swap unitary is defined for p ∈ [0, 1] as [70],
[71]

SpAB :=
√

1− pIAB + i
√
pSAB , (335)

SAB :=

d−1∑
i,j=0

|i〉〈j|A ⊗ |j〉〈i|B , (336)

where A ' B and d = dA = dB . The following identity holds

SpAB = eitSAB = cos(t)IAB + i sin(t)SAB , (337)

where
√

1− p = cos t. Thus, we can understand the unitary
operator SpAB as arising from time evolution according to the
Hamiltonian SAB . We then define the bipartite partial swap
channel as

SpAB(·) := SpAB(·)(SpAB)†. (338)

Suppose that p = 1. Then the channel SpAB is equivalent
to a swap channel. In this case, the forward classical capacity
is equal to 2 log2 d. This follows by an argument given in
[30]. To see that the rate 2 log2 d is achievable, consider the
following strategy. On the first use of the channel, Alice inputs
one classical dit to her input and Bob inputs one share of
a maximally entangled state. Bob can decode the classical
dit, and after the first channel use, they share a maximally
entangled state Φd. Before the second channel use, Alice
can employ a super-dense coding strategy [5]. She applies
one of the d2 Heisenberg–Weyl unitaries to her share of Φd

and transmits it through her input to the channel. Bob again
prepares Φd and sends one share through his channel input.
Bob can then decode the message Alice sent, by performing a
Bell measurement, and they again share Φd. They then repeat
this procedure many times. Even though the first channel
use allows for only log2 d bits to be transmitted, all of the
other channel uses allow for 2 log2 d bits to be transmitted.
So in the limit of many channel uses, the rate 2 log2 d is
achievable. An upper bound of 2 log2 d is argued in [30]
by employing a simulation argument. Alternatively, it can
be seen from our approach by employing Theorem 21 and
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Fig. 4. Upper bound on the forward classical capacity of the partial swap
bipartite channel in (338), with d = 2.

Proposition 15, and picking SAA′BB′ = VAA′BB′ = IAA′BB′

in the definition of Cβ . These choices satisfy the constraints
and log2 ‖TrA′B′ [SAA′BB′ ]‖∞ = 2 log2 d.

At the other extreme, when p = 0, the channel SpAB reduces
to the tensor product of identity channels. Since this channel
is a product of local channels, Theorem 21 and Proposition 14
imply that C(SpAB) = 0. Thus, the partial swap unitary
interpolates between these two extremes.

Interestingly, the partial swap unitary is not bicovariant for
p ∈ (0, 1) because the general definition involves both the
identity and the swap. As such, our bound from Theorem 21 is
useful in such a case. By employing a semi-definite program to
calculate Υ̂α(SpAB) for d = 2 and α = 1+2−`, with ` = 4, we
arrive at the plot given in Figure 4. The semi-definite program
is included in the arXiv posting of this paper and is based on
the methods mentioned in [22, Remark 4].

We remark that the partial swap channel is bicovariant
with respect to all unitaries of the form U ⊗ U . As such,
by applying Proposition 27, we conclude that it suffices to
maximize Υ̂α(SpAB) over input states ψRAB possessing the
following symmetry:

ψAB =

∫
dU (UA ⊗ UB)ψAB(UA ⊗ UB)†, (339)

where dU denotes the Haar measure. States possessing this
symmetry are known as Werner states [72] and can be written
in terms of a single parameter q ∈ [0, 1] as follows:

W
(q,d)
AB := (1− q) 2

d (d+ 1)
Π+
AB + q

2

d (d− 1)
Π−AB , (340)

where Π±AB := (IAB ± SAB) /2 are the projections onto the
symmetric and antisymmetric subspaces of A and B, with
SAB defined in (336). Additionally, by exploiting the same
symmetry, it suffices to minimize over completely positive
bipartite maps MAB→A′B′ such that

MAB→A′B′ =

∫
dU (UA′⊗UB′)†◦MAB→A′B′ ◦(UA⊗UB).

(341)
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Fig. 5. Upper bound on the forward classical capacity of the noisy CNOT
bipartite channel in (343), with d = 2.

This is equivalent to their Choi operators satisfying

ΓMAA′BB′ =

∫
dU (UA′⊗UB′⊗UA⊗UB)(ΓMAA′BB′), (342)

where U denotes the complex conjugate. This further re-
duces the number of parameters needed in the optimization
task, which is useful for computing Υ̂α(SpAB) for higher-
dimensional partial swap bipartite channels. We note that Haar
integrals of the form in (342) can be computed by generalizing
the methods of [73], [74] (see also [75, Section VII]).

B. Noisy CNOT gate

Another example of a bipartite channel of interest is a noisy
CNOT gate, defined as follows:

DpAB(·) := (1− p) CNOTAB(·)CNOTAB + pRπAB(·), (343)

where

CNOTAB :=

d−1∑
i=0

|i〉〈i|A ⊗X(i)B , (344)

X(i)B :=

d−1∑
j=0

|i⊕ j〉〈j|, (345)

RπAB(·) := TrAB [·]πAB , (346)

πAB :=
IAB
dAdB

. (347)

When p = 0, the channel is a perfect CNOT gate, and when
p = 1, it is a replacer channel. Thus, when p = 0, the result
from [30] applies, implying that C(Dp=0

AB ) = log2 d, and when
p = 1, the forward classical capacity C(Dp=0

AB ) = 0.
This channel is bicovariant, as argued in [40], and so

Corollary 29 applies. Evaluating the Υ-information of DpAB ,
we obtain the plot in Figure 5.



21

0 0.2 0.4 0.6 0.8 1

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

a
te

Holevo information

Upsilon Information

Entanglement-breaking

Fig. 6. Lower and upper bounds on the classical-feedback-assisted classical
capacity of the qubit depolarizing channel in (348), with d = 2. The dashed
vertical line indicates that the qubit depolarizing channel is entanglement
breaking for p ≥ 2/3, so that the Holevo information is equal to the feedback-
assisted capacity for these values [10], [26].

C. Point-to-point depolarizing channel

Here we consider the point-to-point depolarizing channel,
defined as

Dp(X) := (1− p)X + pTr[X]π, (348)
π := I/d. (349)

It was already established in [22] that Υ(Dp) is an upper
bound on its (unassisted) classical capacity, and the Holevo
information is equal to its classical capacity [17]. Our contri-
bution here is that Υ(Dp) is an upper bound on its classical
capacity assisted by a classical feedback channel. Figure 6
plots this upper bound and also plots the Holevo information
lower bound when d = 2. The latter is given by 1− h2(p/2),
where h2 is the binary entropy function. Note that the depo-
larizing channel is entanglement breaking for p ≥ d

d+1 . As
such, the bounds from [10], [26] apply, so that, for p ≥ d

d+1 ,
the Holevo information 1 − h2(p/2) is equal to the classical
capacity assisted by classical feedback.

D. Point-to-point erasure channel

The point-to-point quantum erasure channel is defined for
p ∈ [0, 1] and integer d ≥ 2 as [76]

Ep,d(ρ) := (1− p)ρ+ p|e〉〈e|, (350)

where |e〉〈e| is a quantum erasure symbol, orthogonal to every
d-dimensional input state ρ, so that the channel output has
dimension d+1. This channel is covariant, as defined just after
(332). Thus, by combining [21, Lemma 12] with Corollary 31,
we conclude that the strong converse holds for the classical
capacity of the erasure channel Ep,d assisted by classical
feedback; i.e.,

C←(Ep,d(ρ)) = C̃←(Ep,d(ρ)) = (1− p) log2 d. (351)

E. Other point-to-point channels

We note here that the reader can consult [22, Section 6.4] to
find other examples of channels for which the Υ-information
has been calculated, including dephrasure and generalized am-
plitude damping channels. In all cases, our results strengthen
those findings, because our results imply that these quantities
are upper bounds on the classical-feedback-assisted classical
capacity, rather than just the unassisted classical capacity.

VIII. CONCLUSION

In this paper, we established several measures of classical
communication and proved that they are useful as upper
bounds on the classical capacity of bipartite quantum channels.
We did so by establishing several key properties of these
measures, which played essential roles in the upper bound
proofs. One of the most critical properties is that the measures
are subadditive under serial composition of bipartite channels,
which is a property that is useful in the analysis of feedback-
assisted protocols. One important application of our results is
improved upper bounds on the classical capacity of a quantum
channel assisted by classical feedback, which is a problem that
has been analyzed in the literature for some time now [10],
[28], [26], [29], [25].

Going forward from here, an open question is whether our
bounds could be improved in any way. The recent techniques
of [68] might be helpful in obtaining refined non-asymptotic
bounds, but the main result of [77] implies that the sharp
Rényi divergence of [68] will not be helpful in the asymptotic
case. As a key example, we wonder whether classical feedback
could increase the classical capacity of the depolarizing chan-
nel. We also wonder whether our new bounds on the classical
capacity assisted by classical feedback generally improve upon
the entropy bound from [25].
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APPENDIX A
ALTERNATIVE FORMULATION OF MEASURE OF FORWARD
CLASSICAL COMMUNICATION FOR A BIPARTITE CHANNEL

In this appendix, we prove the equality in (20), and we
also provide the background needed to understand it. We
also provide an alternate proof of Proposition 6, in order to
showcase the utility of the expression in (20).

By definition, PA→B is Hermiticity preserving if
PA→B(XA) is Hermitian for every Hermitian XA.

A linear map PA→B is Hermiticity preserving if and only if
its Choi operator is Hermitian. Suppose that the Choi operator
ΓPRB is Hermitian. Then by the standard construction,

PA→B(XA) = 〈Γ|ARXA ⊗ ΓPRB |Γ〉AR. (352)

Since ΓPRB is Hermitian and XA is also, it follows that
PA→B(XA) is Hermitian. Now suppose that PA→B is Her-
miticity preserving. Then

(ΓPRB)† = (PA→B(ΓRA))† = PA→B(Γ†RA)

= PA→B(ΓRA) = ΓPRB . (353)

To every Hermitian operator RAA′BB′ , there is an associ-
ated Hermiticity-preserving map, defined as

RAB→A′B′(XAB) =

(〈Γ|AÂ ⊗ 〈Γ|BB̂)(XAB ⊗RÂA′B̂B′)(|Γ〉AÂ ⊗ |Γ〉BB̂).
(354)
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Consider that

RAB→A′B′(XAB)

= (〈Γ|AÂ ⊗ 〈Γ|BB̂)(XAB ⊗RÂA′B̂B′)(|Γ〉AÂ ⊗ |Γ〉BB̂)
(355)

= (〈Γ|AÂ ⊗ 〈Γ|BB̂)(TÂB̂(XÂB̂)RÂA′B̂B′)(|Γ〉AÂ ⊗ |Γ〉BB̂)
(356)

= TrÂB̂ [TÂB̂(XÂB̂)RÂA′B̂B′ ]. (357)

Also, if RAA′BB′ ≥ 0, thenRAB→A′B′ is completely positive.
We also make the abbreviation

RAB→A′B′ ≥ 0 ⇔ RAB→A′B′ ∈ CP. (358)

Then consider that, for positive semi-definite RAA′BB′ ,

‖TrA′B′ [RAA′BB′ ]‖∞
= sup
ρAB≥0,Tr[ρAB ]=1

Tr[ρAB TrA′B′ [RAA′BB′ ]] (359)

= sup
ρAB≥0,Tr[ρAB ]=1

Tr[(ρAB ⊗ IA′B′)RAA′BB′ ] (360)

= sup
ρAB≥0,Tr[ρAB ]=1

Tr[RAB→A′B′(ρAB)] (361)

=: ‖RAB→A′B′‖1 . (362)

Thus, the function β(MAB→A′B′) for a completely positive
map MAB→A′B′ can be written as

β(MAB→A′B′) = inf
SAB→A′B′ ,

VAB→A′B′∈HermP

‖SAB→A′B′‖1 (363)

subject to

TB′ ◦ (VAB→A′B′ ±MAB→A′B′) ◦ TB ≥ 0,
SAB→A′B′ ± VAB→A′B′ ≥ 0,

TrA′ ◦SAB→A′B′ = TrA′ ◦SAB→A′B′ ◦ RπA

, (364)

where RπA(·) := TrA[·]πA and πA := IA/dA is the maximally
mixed state. Note that SAB→A′B′ ≥ 0 follows because
SAB→A′B′ ± VAB→A′B′ ≥ 0 and adding these allows us to
conclude that SAB→A′B′ ≥ 0.

For a point-to-point channel NA→B′ , this translates to

β(NA→B′)

:= inf
SA→B′ ,

VA→B′∈HermP


‖SA→B′‖1 :

TB′ ◦ (VA→B′ ±MA→B′) ≥ 0,
SA→B′ ± VA→B′ ≥ 0,
SA→B′ = SA→B′ ◦ RπA


(365)

= inf
SB′∈PSD,

VA→B′∈HermP


∥∥RSA→B′∥∥1

:
TB′ ◦ (VA→B′ ±MA→B′) ≥ 0,
RSA→B′ ± VA→B′ ≥ 0


(366)

= inf
SB′∈PSD,

VA→B′∈HermP

 Tr[SB′ ] :
TB′ ◦ (VA→B′ ±MA→B′) ≥ 0,
RSA→B′ ± VA→B′ ≥ 0

 ,

(367)

where RSA→B′(·) = TrA[·]SB′ is a replacer map. Thus,

β(NA→B′) =

inf
SB′∈PSD,

VA→B′∈HermP

 Tr[SB′ ] :
TB′ ◦ (VA→B′ ±MA→B′) ≥ 0,
RSA→B′ ± VA→B′ ≥ 0

 . (368)

This kind of formulation is general. For example, consider
the following SDP for the diamond norm:

1

2
‖N −M‖� =

inf
ZRB≥0

{
‖TrB [ZRB ]‖∞ : ZRB ≥ ΓNRB − ΓMRB

}
. (369)

Using the above rephrasing, we can rewrite this optimization
as

1

2
‖N −M‖� =

inf
ZA→B∈CP

{‖ZA→B‖1 : ZA→B ≥ NA→B −MA→B} .
(370)

We can use the expression in (363) to provide an alternate
proof of Proposition 6:

Proposition 32: Let M1
AB→A′B′ and M2

A′B′→A′′B′′ be
completely positive maps. Then

β(M2
A′B′→A′′B′′ ◦M1

AB→A′B′) ≤
β(M2

A′B′→A′′B′′) · β(M1
AB→A′B′). (371)

Proof: Let S1
AB→A′B′ and V1

AB→A′B′ be Hermitic-
ity preserving maps satisfying the constraints in (363) for
M1

AB→A′B′ , and let S2
A′B′→A′′B′′ and V2

A′B′→A′′B′′ be Her-
miticity preserving maps satisfying the constraints in (363) for
M2

A′B′→A′′B′′ . Then pick

S3
AB→A′′B′′ = S2

A′B′→A′′B′′ ◦ S1
AB→A′B′ , (372)

V3
AB→A′′B′′ = V2

A′B′→A′′B′′ ◦ V1
AB→A′B′ . (373)

Also, set

M3
AB→A′′B′′ =M2

A′B′→A′′B′′ ◦M1
AB→A′B′ (374)

Then it follows that

TB′′ ◦ (V3
AB→A′′B′′ ±M3

AB→A′′B′′) ◦ TB ≥ 0, (375)

S3
AB→A′′B′′ ± V3

AB→A′′B′′ ≥ 0. (376)

This follows from the general observation that if A± B ≥ 0
and C ±D ≥ 0, then A ◦ C ±B ◦ D ≥ 0. This in turn follows
because

A+B ≥ 0, A−B ≥ 0, C+D ≥ 0, C −D ≥ 0, (377)

implies that

0 ≤ (A+ B) ◦ (C +D) (378)
= A ◦ C +A ◦ D + B ◦ C + B ◦ D, (379)

0 ≤ (A+ B) ◦ (C − D) (380)
= A ◦ C −A ◦ D + B ◦ C − B ◦ D, (381)

0 ≤ (A− B) ◦ (C +D) (382)
= A ◦ C +A ◦ D − B ◦ C − B ◦ D, (383)

0 ≤ (A− B) ◦ (C − D) (384)
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= A ◦ C −A ◦ D − B ◦ C + B ◦ D. (385)

Now add the first and last to get A ◦ C + B ◦ D ≥ 0 and the
second and third to get A ◦ C − B ◦ D ≥ 0.

Now consider that

TrA′′ ◦S3
AB→A′′B′′

= TrA′′ ◦S2
A′B′→A′′B′′ ◦ S1

AB→A′B′ (386)

= TrA′′ ◦S2
A′B′→A′′B′′ ◦ RπA′ ◦ S1

AB→A′B′ (387)

= TrA′′ ◦S2
A′B′→A′′B′′ ◦ PπA′ ◦ TrA′ ◦S1

AB→A′B′ (388)

= TrA′′ ◦S2
A′B′→A′′B′′ ◦ PπA′ ◦ TrA′ ◦S1

AB→A′B′ ◦ RπA
(389)

= TrA′′ ◦S2
A′B′→A′′B′′ ◦ RπA′ ◦ S1

AB→A′B′ ◦ RπA. (390)

Since the first two lines show that TrA′′ ◦S3
AB→A′′B′′ =

TrA′′ ◦S2
A′B′→A′′B′′ ◦ RπA′ ◦ S1

AB→A′B′ , we conclude that

TrA′′ ◦S3
AB→A′′B′′ = TrA′′ ◦S3

AB→A′′B′′ ◦ RπA. (391)

Finally, consider that∥∥S3
AB→A′′B′′

∥∥
1

=
∥∥S2

A′B′→A′′B′′ ◦ S1
AB→A′B′

∥∥
1

(392)

≤
∥∥S2

A′B′→A′′B′′
∥∥

1
·
∥∥S1

AB→A′B′
∥∥

1
. (393)

The inequality follows because the trace norm on superop-
erators is submultiplicative. So S3

AB→A′′B′′ and V3
AB→A′′B′′

satisfy the constraints in (363) for M3
AB→A′′B′′ , so we

conclude that

β(M3
AB→A′′B′′) ≤

∥∥S2
A′B′→A′′B′′

∥∥
1
·
∥∥S1

AB→A′B′
∥∥

1
. (394)

Since the argument holds for all S1
AB→A′B′ and V1

AB→A′B′
satisfying the constraints in (363) for M1

AB→A′B′ , and for
all S2

A′B′→A′′B′′ and V2
A′B′→A′′B′′ satisfying the constraints

in (363) for M2
A′B′→A′′B′′ , we conclude the statement of the

proposition.

APPENDIX B
THE α→ 1 LIMIT OF RÉNYI CHANNEL DIVERGENCES

The following lemma was claimed in [64], but the proof
there is not correct. Here, for completeness, we provide a
proof, and we note that a different proof has been derived
as well [79].

Lemma 33: Let NA→B be a quantum channel, and let
MA→B be a completely positive map. The following limits
hold

lim
α→1

D̃α(N‖M) = D(N‖M), (395)

lim
α→1

Dα(N‖M) = D(N‖M), (396)

where D̃α(N‖M) is the sandwiched Rényi channel diver-
gence, Dα(N‖M) is the Petz–Rényi channel divergence, and
D(N‖M) is the channel relative entropy. Specifically,

D̃α(N‖M) := sup
ρRA

D̃α(NA→B(ρRA)‖MA→B(ρRA)),

Dα(N‖M) := sup
ρRA

D̃α(NA→B(ρRA)‖MA→B(ρRA)),

D(N‖M) := sup
ρRA

D(NA→B(ρRA)‖MA→B(ρRA)), (397)

where the optimizations are over every state ρRA, with the
reference system R arbitrarily large. The sandwiched Rényi
relative entropy D̃α(ρ‖σ) is defined in (149) and the quantum
relative entropy D(ρ‖σ) in (148). The Petz–Rényi relative
entropy is defined for all α ∈ (0, 1) ∪ (1,∞) as [80], [81]

Dα(ρ‖σ) :=
1

α− 1
log2 Tr[ρασ1−α] (398)

if α ∈ (0, 1) or, α ∈ (1,∞) and supp(ρ) ⊆ supp(σ).
Otherwise, we define Dα(ρ‖σ) = +∞.

Proof: We first prove (395) and then argue that similar
reasoning establishes (396).

If there exists a state ρRA such that supp(NA→B(ρRA)) 6⊆
supp(MA→B(ρRA)), then it follows that the limit on the left-
hand side of (395) and the quantity on the right are both equal
to +∞. The same is true for (396).

So let us instead consider the case when
supp(NA→B(ρRA)) ⊆ supp(MA→B(ρRA)) for every
state ρRA, which is equivalent to the single condition
supp(ΓNRB) ⊆ supp(ΓMRB), where ΓNRB and ΓMRB are the
Choi operators of NA→B and MA→B , respectively. If this is
the case, then it follows that

Dmax(N‖M) <∞, (399)

where

Dmax(N‖M)

:= sup
ρRA

Dmax(NA→B(ρRA)‖MA→B(ρRA)) (400)

= Dmax(ΓN ‖ΓM), (401)

with the latter equality established in [67].
First, we show the following equality, by a straightforward

argument:

lim
α→1−

D̃α(N‖M) = D(N‖M). (402)

Indeed, consider that

lim
α→1−

D̃α(N‖M)

= sup
α∈(0,1)

D̃α(N‖M) (403)

= sup
α∈(0,1)

sup
ρRA

D̃α(NA→B(ρRA)‖MA→B(ρRA)) (404)

= sup
ρRA

sup
α∈(0,1)

D̃α(NA→B(ρRA)‖MA→B(ρRA)) (405)

= sup
ρRA

D(NA→B(ρRA)‖MA→B(ρRA)) (406)

= D(N‖M). (407)

The first equality is a consequence of the α-monotonicity
of D̃α. The fourth equality is a consequence of (152) and
the α-monotonicity of D̃α.

The following inequality

lim
α→1+

D̃α(N‖M) ≥ D(N‖M) (408)

is straightforward, being a consequence of monotonicity in α
of the sandwiched Rényi relative entropies [50], as well as
the α→ 1 limit [50], [51]. To see it, let ρRA be an arbitrary
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state. Then it follows from α-monotonicity that the following
inequality holds for all α > 1:

D̃α(NA→B(ρRA)‖MA→B(ρRA)) ≥
D(NA→B(ρRA)‖MA→B(ρRA)). (409)

Then

lim
α→1+

D̃α(N‖M)

= inf
α>1

D̃α(N‖M) (410)

= inf
α>1

sup
ρRA

D̃α(NA→B(ρRA)‖MA→B(ρRA)) (411)

≥ sup
ρRA

inf
α>1

D̃α(NA→B(ρRA)‖MA→B(ρRA)) (412)

≥ sup
ρRA

D(NA→B(ρRA)‖MA→B(ρRA)) (413)

= D(N‖M). (414)

The first equality is a consequence of α-monotonicity.
Let us then establish the opposite inequality. Let ρ be a state

and σ a positive semi-definite operator. Recall the following
bound from Lemma 8 of [78] (see also Lemma 6.3 of [82]):

D1+δ(ρ‖σ) ≤ D(ρ‖σ) + 4δ [log2 ν(ρ, σ)]
2
, (415)

which holds when supp(ρ) ⊆ supp(σ) and for δ ∈(
0, ln 3

4 ln ν(ρ,σ)

)
, where

ν(ρ, σ) := Tr[ρ
3
2σ−

1
2 ] + Tr[ρ

1
2σ

1
2 ] + 1 (416)

= 2
1
2D 3

2
(ρ‖σ)

+ 2
− 1

2D 1
2

(ρ‖σ)
+ 1. (417)

Note that ν(ρ, σ) ≥ 3 (as argued just after [78, Eq. (22)]), as
well as

ν(ρ, σ) ≤ 2
1
2Dmax(ρ‖σ) +

√
Tr[σ] + 1, (418)

which follows because D 3
2
(ρ‖σ) ≤ D2(ρ‖σ) ≤ Dmax(ρ‖σ),

which in turn follows from the α-monotonicity of the Petz–
Rényi relative entropy and the latter inequality was proven
in [59, Lemma 7]. Also, we applied the Cauchy–Schwarz
inequality to conclude that Tr[ρ

1
2σ

1
2 ] ≤

√
Tr[σ]. From the

fact that D̃1+δ(ρ‖σ) ≤ D1+δ(ρ‖σ) for all δ > 0 [51], we
conclude that

D̃1+δ(ρ‖σ) ≤ D(ρ‖σ) + 4δ [log2(ν(ρ, σ))]
2
. (419)

By picking δ ∈ (0, c), where

c :=
ln 3

4 ln ν(N ,M)
, (420)

and

ν(N ,M) := sup
ρRA

ν(NA→B(ρRA),MA→B(ρRA)), (421)

with the optimization over every state ρRA, we find that the
following inequality holds for every input state ρRA:

D̃1+δ(NA→B(ρRA)‖MA→B(ρRA)) ≤
D(NA→B(ρRA)‖MA→B(ρRA))

+ 4δ [log2 ν(NA→B(ρRA),MA→B(ρRA))]
2
. (422)

Note that ν(N ,M) < ∞ because Dmax(N‖M) < ∞.
Indeed, from (418), we conclude that

ν(N ,M) ≤ 2
1
2Dmax(N‖M) +

√
‖M‖� + 1, (423)

where the diamond norm of M is defined as [83]

‖M‖� := sup
ρRA≥0,Tr[ρRA]=1

‖MA→B(ρRA)‖1 . (424)

(We could also set

c :=
ln 3

4 ln(2
1
2Dmax(N‖M) +

√
‖M‖� + 1)

(425)

if desired, and we note here that an advantage of doing so is
that both Dmax(N‖M) and ‖M‖� are efficiently computable
by semi-definite programming.) Now taking a supremum over
every input state ρRA, we conclude that

D̃1+δ(N‖M) ≤ D(N‖M) + 4δ [log2 ν(N ,M)]
2
. (426)

Thus, by taking the limit of (426) as δ → 0, we conclude that

lim
α→1+

D̃α(N‖M) ≤ D(N‖M). (427)

Putting together (408) and (427), we conclude (395).
A proof of (396) follows exactly the same approach, but

we finally use (415) directly instead and similar reasoning as
above to establish that limα→1+ Dα(N‖M) ≤ D(N‖M).

Now we discuss how to generalize this development to the
geometric Rényi and Belavkin–Staszewski relative entropies.
We first begin with the following simple extension of Lemma 8
of [78]:

Lemma 34: Let ρ be a quantum state and σ a positive semi-
definite operator. Then

D̂1+δ(ρ‖σ) ≤ D̂(ρ‖σ) + 4δ [log2 υ̂(ρ, σ)]
2
, (428)

holds for δ ∈
(

0, ln 3
4 ln υ̂(ρ,σ)

)
, where

υ̂(ρ, σ) := 2
1
2 D̂3/2(ρ‖σ) + 2−

1
2 D̂1/2(ρ‖σ) + 1 ≥ 3. (429)

Proof: The proof below follows the proof of Lemma 8 of
[78] quite closely, with some slight differences to account for
the different entropies involved. We provide a detailed proof
for completeness. First, suppose that supp(ρ) 6⊆ supp(σ).
Then both the left-hand side and right-hand side of (428) are
equal to +∞, so that there is nothing to prove in this case.

Now suppose that supp(ρ) ⊆ supp(σ), which implies that
we can restrict the development to the support of σ, and on
this space, σ is invertible. Let us suppose furthermore for now
that supp(ρ) = supp(σ), and then we apply a limit at the
end of the proof. As observed in [58, Proposition 72], we can
write

D̂1+δ(ρ‖σ) =
1

δ
log2〈ϕρ|Xδ|ϕρ〉, (430)

where

X := ρ
1
2σ−1ρ

1
2 ⊗ I, (431)

|ϕρ〉 := (ρ
1
2 ⊗ I)|Γ〉, (432)
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and |Γ〉 is defined in (2). Then consider that

1

δ
log2〈ϕρ|Xδ|ϕρ〉 ≤ 1

δ ln 2

(
〈ϕρ|Xδ|ϕρ〉 − 1

)
, (433)

where we have applied the inequality lnx ≤ x − 1, which
holds for all x > 0. Now expand Xδ as

Xδ = I + δ lnX + rδ(X), (434)

where rδ(X) := Xδ − δ lnX − I . Then it follows that

D̂1+δ(ρ‖σ)

≤ 1

δ ln 2
(δ〈ϕρ| lnX|ϕρ〉+ 〈ϕρ|rδ(X)|ϕρ〉) (435)

= D̂(ρ‖σ) +
1

δ ln 2
〈ϕρ|rδ(X)|ϕρ〉. (436)

Now, again applying the inequality lnx ≤ x − 1 for x > 0,
consider that

rδ(x) = eδ ln x − δ lnx− 1 (437)

= eδ ln x + ln

(
1

xδ

)
− 1 (438)

≤ eδ ln x +
1

xδ
− 2 (439)

= eδ ln x + e−δ ln x − 2 (440)
= 2 (cosh(δ lnx)− 1) (441)
=: sδ(x). (442)

Since ∂
∂xsδ(x) = 2δ sinh(δ lnx)/x and thus ∂

∂xsδ(x) ≥ 0
for x ≥ 1, it follows that sδ(x) is monotonically increasing
in x for x ≥ 1. Also, since ∂2

∂x2 sδ(x) = 2δ(δ cosh(δ lnx) −
sinh(δ lnx))/x2 and thus ∂2

∂x2 sδ(x) ≤ 0 for all δ ≤ 1/2 and
x ≥ 3, it follows that sδ(x) is concave in x for all δ ≤ 1/2
and x ≥ 3. Furthermore, we have that

sδ(x) = sδ(1/x), (443)

sδ(x
2) = s2δ(x). (444)

Then we find, for all x > 0, that

sδ(x) ≤ sδ
(
x+

1

x
+ 2

)
(445)

= sδ

((√
x+

1√
x

)2
)

(446)

= s2δ

(√
x+

1√
x

)
(447)

≤ s2δ

(√
x+

1√
x

+ 1

)
. (448)

The first inequality follows from monotonicity of sδ(x) in x
for x ≥ 1, as well as sδ(x) = sδ(1/x). Indeed, for x ≥ 1, we
apply monotonicity to conclude that sδ(x) ≤ sδ

(
x+ 1

x + 2
)
.

For x ∈ (0, 1), it follows that 1/x > 1, and so (443) and
monotonicity imply that sδ(x) = sδ(1/x) ≤ sδ

(
x+ 1

x + 2
)
.

The second equality follows from applying (444). The last
inequality again follows from the facts that

√
x + 1√

x
≥ 1

for x > 0 and from applying monotonicity of sδ(x) in x for
x ≥ 1. Now consider that

〈ϕρ|rδ(X)|ϕρ〉

≤ 〈ϕρ|sδ(X)|ϕρ〉 (449)

≤ 〈ϕρ|s2δ

(√
X +

1√
X

+ I

)
|ϕρ〉 (450)

≤ s2δ(υ̂(ρ, σ)). (451)

The first inequality follows because the scalar inequality
rδ(x) ≤ sδ(x) extends to the operator inequality rδ(X) ≤
sδ(X), holding for all positive definite X . The second in-
equality follows for a similar reason, but using the scalar
inequality sδ(x) ≤ s2δ

(√
x+ 1√

x
+ 1
)

. The final inequality
follows from Jensen’s inequality (see [78, Lemma 11]) and
the fact that [58, Eq. (H.172)]

υ̂(ρ, σ) = 〈ϕρ|(
√
X + 1/

√
X + I)|ϕρ〉, (452)

and also because
√
X+ 1√

X
+ I has its eigenvalues in [3,∞).

Note that this latter statement justifies the inequality υ̂(ρ, σ) ≥
3, which implies that 2δ < ln 3

2 ln υ̂(ρ,σ) ≤ 1
2 . Letting f(y) :=

2 (cosh(y)− 1), Taylor’s theorem implies that there exists a
constant c ∈ [0, y] such that

f(y) = f(0) + f ′(0)y +
f ′′(c)

2
y2 (453)

=
f ′′(c)

2
y2 (454)

= cosh(c)y2 (455)

≤ cosh(y)y2. (456)

Using this and the fact that s2δ(x) = f(2δ lnx), we find that

1

δ ln 2
s2δ(υ̂(ρ, σ))

≤ 1

δ ln 2
cosh(2δ ln υ̂(ρ, σ)) (2δ ln υ̂(ρ, σ))

2 (457)

= 4δ (log2 υ̂(ρ, σ))
2

ln 2 cosh(2δ ln υ̂(ρ, σ)) (458)

≤ 4δ (log2 υ̂(ρ, σ))
2
. (459)

The last inequality follows from the assumption that δ ≤
ln 3

4 ln υ̂(ρ,σ) , so that

ln 2 cosh(2δ ln υ̂(ρ, σ)) ≤ ln 2 cosh

(
ln 3

2

)
≤ 1. (460)

In the case that supp(ρ) ⊆ supp(σ), we define ρλ =
(1− λ) ρ + λπσ , where λ ∈ [0, 1] and πσ := Πσ/Tr[Πσ].
Then applying the above development we find that

D̂1+δ(ρλ‖σ) ≤ D̂(ρλ‖σ) + 4δ [log2 υ̂(ρλ, σ)]
2
. (461)

The inequality in (428) then follows by taking the limit λ→ 0.

Now by applying Lemma 34, and an argument similar to
that given for Lemma 33, so that

D̂1+δ(N‖M) ≤ D̂(N‖M) + 4δ [log2 ν̂(N ,M)]
2
, (462)

where

ν̂(N ,M) := sup
ρRA

ν̂(NA→B(ρRA),MA→B(ρRA)), (463)

we conclude the following:
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Lemma 35: Let NA→B be a quantum channel, and let
MA→B be a completely positive map. The following limit
holds

lim
α→1

D̂α(N‖M) = D̂(N‖M), (464)

where D̂α(N‖M) is the geometric Rényi channel divergence
and D̂(N‖M) is the Belavkin–Staszewski channel relative
entropy, both defined from (159).

Finally, we have the following:
Proposition 36: Let NA→B be a quantum channel, and let

C be a compact set of completely positive maps. Then

lim
α→1

inf
M∈C

Dα(N‖M) = inf
M∈C

D(N‖M), (465)

lim
α→1

inf
M∈C

D̃α(N‖M) = inf
M∈C

D̃(N‖M), (466)

lim
α→1

inf
M∈C

D̂α(N‖M) = inf
M∈C

D̂(N‖M). (467)

Proof: First, if there does not exist M ∈ C such that
Dmax(N‖M) < ∞, then all quantities are equal to +∞.
This is because the condition Dmax(N‖M) < ∞ holds if
and only if supp(ΓNRB) ⊆ supp(ΓMRB), where ΓNRB and ΓMRB
are the Choi operators of NA→B and MA→B , respectively,
and all of the underlying quantities are equal to +∞ if this
condition does not hold (this is the case for Dα, D̃α, and D̂α

for α > 1 and it is also the case for these quantities in the
limit α→ 1−).

So let us suppose that there is such anM∈ C. We conclude
that

lim
α→1−

inf
M∈C

Dα(N‖M) = inf
M∈C

D(N‖M), (468)

lim
α→1−

inf
M∈C

D̃α(N‖M) = inf
M∈C

D̃(N‖M), (469)

lim
α→1−

inf
M∈C

D̂α(N‖M) = inf
M∈C

D̂(N‖M), (470)

by applying Lemmas 33 and 35, the α-monotonicity of the
underlying Rényi divergences, as well as [84, Corollary A2],
along with the facts that Dα(N‖M), D̃α(N‖M), and
D̂α(N‖M) are lower semi-continuous in M (see Lemma 37
below).

By employing the fact that the channel relative entropies are
ordered with respect to α, so that the limit as α→ 1+ is the
same as the infimum over α > 1, and applying Lemmas 33
and 35, we conclude that

lim
α→1+

inf
M∈C

Dα(N‖M) = inf
M∈C

D(N‖M), (471)

lim
α→1+

inf
M∈C

D̃α(N‖M) = inf
M∈C

D̃(N‖M), (472)

lim
α→1+

inf
M∈C

D̂α(N‖M) = inf
M∈C

D̂(N‖M). (473)

This concludes the proof.
Lemma 37: Let N be a quantum channel and M a com-

pletely positive map. The channel divergences Dα(N‖M),
D̃α(N‖M), and D̂α(N‖M) are lower semi-continuous in
N and M for the values of α for which the data-processing
inequality holds.

Proof: For a state ρ and a positive semi-definite opera-
tor σ, it is known that the underlying divergences Dα(ρ‖σ),
D̃α(ρ‖σ), and D̂α(ρ‖σ) are lower semi-continuous in ρ and

σ for the values of α for which the data-processing inequality
holds. This follows from the reasoning in [68, Lemma A.3].
We can then use this prove the desired statement for the
channel divergences, and we show the proof explicitly for
Dα(N‖M), with the proofs for the other quantities following
the same line of reasoning. Let Nn be a sequence of channels
that converge to N , and let Mn be a sequence of completely
positive maps that converge to M (we can take the conver-
gence to be in the diamond norm, but it is not so relevant
since we are in the finite-dimensional case). Then the desired
statement is equivalent to proving that

lim inf
n→∞

Dα(Nn‖Mn) ≥ Dα(N‖M). (474)

To this end, let ρRA be an arbitrary state. It then
follows that (idR⊗Nn)(ρRA) → (idR⊗N )(ρRA) and
(idR⊗Mn)(ρRA)→ (idR⊗M)(ρRA). From the lower semi-
continuity of Dα, we conclude that

lim inf
n→∞

Dα((idR⊗Nn)(ρRA)‖(idR⊗Mn)(ρRA))

≥ Dα((idR⊗N )(ρRA)‖(idR⊗M)(ρRA)). (475)

Since this holds for every state ρRA, we conclude that

Dα(N‖M)

= sup
ρRA

Dα((idR⊗N )(ρRA)‖(idR⊗M)(ρRA)) (476)

≤ sup
ρRA

lim inf
n→∞

Dα((idR⊗Nn)(ρRA)‖(idR⊗Mn)(ρRA))

(477)
≤ lim inf

n→∞
sup
ρRA

Dα((idR⊗Nn)(ρRA)‖(idR⊗Mn)(ρRA))

(478)
= lim inf

n→∞
Dα(Nn‖Mn). (479)

The second inequality follows because the quantity can only
increase with the supremum on the inside.

Remark 38: One can extend the statement of Lemma 37 to
values of α beyond those for which data processing holds, by
the following argument. For all α ∈ (0,∞) and ε > 0, the
relative entropies Dα(ρ‖σ + εI) and D̃α(ρ‖σ + εI) are con-
tinuous in (ρ, σ) and monotone decreasing in ε. Furthermore,

Dα(ρ‖σ) = sup
ε>0

Dα(ρ‖σ + εI), (480)

D̃α(ρ‖σ) = sup
ε>0

D̃α(ρ‖σ + εI). (481)

Since the supremum of a set of lower semi-continuous func-
tions is lower semi-continuous, it follows that Dα(ρ‖σ) and
D̃α(ρ‖σ) are lower semi-continuous in (ρ, σ). Since this is
all that Lemma 37 relies upon, the desired statement follows
for Dα and D̃α. A similar conclusion can be made for D̂α

by invoking Theorem 5.5 of [85], where it was shown that
the maximal f -divergence is lower semi-continuous for an
arbitrary operator convex function f , and also noting that D̂α

is an example of a maximal f -divergence.
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