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Strict Half-Singleton Bound, Strict Direct Upper Bound for Linear

Insertion-Deletion Codes and Optimal Codes

Qinqin Ji, Dabin Zheng, Hao Chen and Xiaoqiang Wang ∗

Abstract

Insertion-deletion codes (insdel codes for short) are used for correcting synchronization errors

in communications, and in other many interesting fields such as DNA storage, date analysis, race-

track memory error correction and language processing, and have recently gained a lot of attention.

To determine the insdel distances of linear codes is a very challenging problem. The half-Singleton

bound on the insdel distances of linear codes due to Cheng-Guruswami-Haeupler-Li is a basic

upper bound on the insertion-deletion error-correcting capabilities of linear codes. On the other

hand the natural direct upper bound dI(C) ≤ 2dH(C) is valid for any insdel code. In this paper,

for a linear insdel code C we propose a strict half-Singleton upper bound dI(C) ≤ 2(n−2k+1) if C

does not contain the codeword with all 1s, and a stronger direct upper bound dI(C) ≤ 2(dH(C)−t)

under a weak condition, where t ≥ 1 is a positive integer determined by the generator matrix. We

also give optimal linear insdel codes attaining our strict half-Singleton bound and direct upper

bound, and show that the code length of optimal binary linear insdel codes with respect to the

(strict) half-Singleton bound is about twice the dimension. Interestingly explicit optimal linear

insdel codes attaining the (strict) half-Singleton bound, with the code length being independent

of the finite field size, are given.

Keywords: Linear insdel code; strict half-Singleton bound, strict direct upper bound,

optimal linear insdel code

1 Introduction

In most communication and storage channels, the most common type of errors are substitution errors,

in which a transmitted symbol is replaced with another symbol. However, channels may also suffer

from synchronization errors due to slips in synchronization causing the deletion of a symbol from a

message or the insertion of an extra symbol into a message [12, 24]. Insdel codes were introduced

in [18] for correcting synchronization errors. Insdel errors model also has been widely applied in

many interesting fields such as DNA storage, date analysis, race-track memory error correction
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and language processing, we refer to [2, 3, 6, 8, 11, 13–15, 17, 19, 21–23, 27] for the construction and

application of insdel codes.

For a vector a ∈ F
n
q , the support of a is supp(a) = {i : ai 6= 0}. The Hamming weight wH(a)

of a is the number of coordinate positions in its support. The Hamming distance dH(a,b) between

two vectors a and b is defined to be the Hamming weight wH(a − b). For a linear code C ⊂ F
n
q of

dimension k, its Hamming distance (or weight) dH is the minimum of Hamming distances dH(a,b)

between any two different codewords a and b in C. It is well-known that the Hamming distance

(or weight) of a linear code C is the minimum Hamming weight of non-zero codewords. The famous

Singleton bound dH ≤ n − k + 1 is the basic upper bound for linear error-correcting codes. For

two codewords a 6= b in a code C ⊂ F
n
q , the insdel distance dI(a,b) between them is defined as

the smallest number of insertions and deletions needed to transform one codeword into the other.

Similarly to the minimum Hamming distance, the minimum insdel distance of a code is defined as

the minimum insdel distance among all its distinct codewords. It is easy to verify that the insdel

distance is a metric, and a code or a linear code is called a insdel code or a linear insdel code if we

consider insdel metric. The minimal insdel distance of an insdel code is an important parameter,

which determines its insertion-deletion error-correcting capability.

The study of insdel codes dates back to the pioneering work of Levenshtein [18]. From then

on, the problem to correct the synchronization errors has attracted lots of continuous efforts. For

the recent progress in insdel codes, the reader can refer to the nice survey [16] and references therein.

Since linear codes have a compact representation, and are efficiently encodable (decodable), we recall

the main research progress in linear insdel codes below. In 2010, Abdel-Ghaffar et al. [1] showed

that an [n, k] linear code C over Fq with n < 2k had the minimum insdel distance dI(C) = 2, and

gave a sufficient and necessary condition for dI(C) = 2. Actually it was shown in [13] that

dI(a,b) = 2(n− ℓ),

where ℓ is the length of a longest common subsequence of a and b. It is clear dI(a,b) ≤ 2dH(a,b)

since ℓ ≥ n− dH(a,b) is valid for arbitrary two different vectors a and b in F
n
q . We call the natural

upper bound dI(C) ≤ 2dH(C) the direct upper bound for insdel codes. It is true for any insdel

code, not only linear insdel codes. Hence it was shown in Haeupler et al. [13] that the minimum

insdel distance dI(C) ≤ 2(n − k + 1) for any [n, k] linear code C over Fq from the Singleton bound

on the Hamming distances, which is called the direct Singleton bound for linear insdel codes. For

insertion-deletion codes the ordering of coordinate positions strongly affects the insdel distances. In

this paper we give some upper bounds for insdel distances of linear codes which are valid for any fixed

ordering of coordinate positions. There have been many constructions of insdel codes in previous

works [1, 4, 7, 9–11,20,23,25,26].

In [10], Do Duc et al. showed that the minimum insdel distance of any [n, k] Reed-Solomon

(RS) code over Fq is no more than 2n − 2k if q is large enough compared to the code length n.

Then, Chen et al. [4] generalized this result and showed that for any [n, k] linear code over Fq with

n > k ≥ 2, the minimum insdel distance is at most 2n − 2k, and an infinite family of optimal

two-dimensional RS codes meeting the bound was constructed. Very recently, Cheng, Gruswami,

Haeupler and Li [7] proved the existence of binary linear codes of length n and rate just below
1
2 capable of correcting Ω(n) insertions and deletions, and proposed the asymptotic half-Singleton

bound for the insdel distances of an [n, k] linear code over Fq, then their results were improved
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significantly in [9]. Their half-Singleton bound for an [n, k] linear code C over Fq can be reformulated

as dI(C) ≤ max{2(n − 2k + 2), 2}. For a simpler proof we refer to [5]. A new coordinate-ordering

free upper bound was also given in [5]. It is well-known that the half-Singleton bound is only true

for linear insdel codes.

When the dimension k = 2, RS codes attaining the bound 2n− 4 were constructed in [4,7,9].

When the dimension k ≥ 3, the half-Singleton bound is tighter than 2n − 2k. Con et al. [9] proved

that there were [n, k] RS codes achieving the half-Singleton bound if the field size was large enough

and gave a deterministic construction of such codes over much larger fields (of size nkO(k)
). The code

length is small when compared to the field size. As far as we known, up to now there is no explicit

construction of optimal [n, k] linear insdel codes attaining the half-Singleton bound for k ≥ 3.

The direct upper bound dI(C) ≤ 2dH(C) is fundamental for insdel codes and the half-Singleton

upper bound is fundamental for linear insdel codes. When dH ≤ n−2k+1, the direct upper bound has

to be used to upper bound the insdel distances of codes. In this paper, we show both upper bounds

for linear codes can be improved under a weak condition. We first propose a strict half-Singleton

upper bound

dI(C) ≤ 2(n − 2k + 1)

on the insdel distance for linear insdel codes without the codeword with all 1s by investigating the

linear equations associated with the generator matrices. Then, we provide a sufficient condition for

a linear insdel code attaining the strict half-Singleton bound, and by this sufficient condition some

optimal linear insdel codes with dimension k ≥ 3 are constructed. Finally, we study the optimal

binary linear insdel codes with respect to the (strict) half-Singleton bound and prove that the code

length of optimal binary linear insdel codes is about twice the dimension, and conjecture that optimal

binary linear insdel codes have parameters [2k, k, 4] or [2k+1, k, 4] with respect to the half-Singleton

bound or the strict half-Singleton bound, respectively. Interestingly explicit optimal linear insdel

codes attaining the (strict) half-Singleton bound, with the code length being independent of the finite

field size, are obtained. On the other hand we prove that the direct upper bound dI(C) ≤ 2dH(C) for

arbitrary insdel codes can be improved to dI(C) ≤ 2(dH (C) − t) for linear insdel codes, where t ≥ 1

is a positive integer determined by the generator matrix. Some examples attaining our strict direct

upper bound are given.

The rest of this paper is organized as follows. In section 2, we introduce some definitions

of insdel codes and preliminary results on linear insdel codes. Section 3 proposes the strict half-

Singleton bound for linear insdel codes and gives another proof of the known half-Singleton bound.

In section 4, we give a sufficient condition for constructing optimal linear insdel codes with respect

to our strict half-Singleton bound and provide some examples of optimal linear insdel codes. In

section 5, we study optimal binary linear insdel codes and show that the code length of optimal

binary linear insdel codes is about twice the dimension. In Section 6, we prove the strict direct

upper bound and discuss the optimal linear insdel codes attaining this bound. Finally, Section 7

concludes this paper.

2 Preliminaries

Let Fq be a finite field of q elements and F
n
q be a vector space over Fq with dimension n. A

subspace C of Fn
q over Fq is called a linear code of length n over Fq. Its dual C⊥ is a linear code
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C⊥ = {(x1, x2 · · · , xn) ∈ F
n
q :

∑

i xiyi = 0,∀(y1, . . . , yn) ∈ C}. As mentioned above, the Hamming

distance of a linear code equals the minimum Hamming weight of its non-zero codewords. A linear

code C is called projective if dH(C⊥) ≥ 3. That is, any two columns of the generator matrix of C

are linear independent over Fq. The following result shows the property of columns of the generator

matrix of a linear code.

Lemma 2.1 Let C be an [n, k] linear code over Fq and denote dH(C) the minimal Hamming distance

of C. Let G denote the generator matrix of C. Then there are k of any n− dH(C) + 1 columns of G

are linearly independent over Fq.

Proof. Let s = n − dH(C) + 1 and G = (G1, G2, · · · , Gn), where Gi = (g1i, g2i, · · · , gki)
T .

Assume that there exist s columns Gj1 , Gj2 , · · · , Gjs of G such that any k vectors of them are

linearly dependent over Fq, that is the rank of the matrix Ḡ = (Gj1 , Gj2 , · · · , Gjs) is less than k. So,

the linear system

(x1, x2, · · · , xk)Ḡ = 0, (1)

has nonzero solutions. Let y = (y1, y2, · · · , yk) ∈ F
k
q be a nonzero solution of (1) and c = yG. Then

wH(c) ≤ n− s = dH(C)− 1. This is a contradiction. �

In this paper, we mainly consider the insdel distance of linear codes used in high insertions

and deletions noise regime. We give the definition of the insdel distance of two vectors as follows.

Definition 2.2 For two vectors a,b ∈ F
n
q , the insdel distance dI(a,b) between a and b is the

minimal number of insertions and deletions which are needed to transform a into b. It can be

verified that dI(a,b) is indeed a metric on F
n
q .

Let a = (a1, a2, · · · , an),b = (b1, b2, · · · , bn) ∈ F
n
q be two sequences (or vectors). A common

subsequence of a and b is a sequence (c1, c2, · · · , cm) such that cs = ais = bjs for 1 ≤ s ≤ m,

1 ≤ i1 < i2 < · · · < im ≤ n and 1 ≤ j1 < j2 < · · · < jm ≤ n. It has been proved that the insdel

distance between any two vectors can be characterized by their longest common subsequences.

Lemma 2.3 [10, Lemma 1] Let a,b ∈ F
n
q . Then we have

dI(a,b) = 2n − 2ℓ(a,b),

where ℓ(a,b) denotes the length of a longest common subsequence of a and b.

For any two distinct codewords a,b ∈ C, by Lemma 2.3 we know that dI(a,b) is even and

dI(a,b) ≥ 2. Like the Hamming distance, the insdel distance of a linear insdel code C over Fq is

defined as

dI(C) = min
a,b∈C,a 6=b

{ dI(a,b) } .

A linear code C over Fq of length n, dimension k and minimum insdel distance dI(C) is called

an [n, k, dI(C)] linear insdel code over Fq. Like the Hamming metric, an [n, k, dI ] linear insdel code

C has insdel error-correcting capability up to ⌊dI−1
2 ⌋ [10]. So, an [n, k, dI ] linear code C can correct

insdel errors if and only if dI > 2. As mentioned in the first section, Chen et al. generalized the

Singleton type bound of linear insdel codes [13] to the following case.
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Lemma 2.4 [4, Theorem A] Let C be an [n, k] linear code over Fq with n > k > 2. Then the

minimum insdel distance of C is at most 2n− 2k, i.e., dI(C) ≤ 2n− 2k.

Cheng, Gruswami, Haeupler and Li proposed the half-Singleton bound for linear insdel codes

in [7]. The non-asymptotic version of half-Singleton bound and a simple proof was given in [5].

Lemma 2.5 (Half-Singleton bound [7]) Let C be a non-degenerate linear [n, k] code over Fq. Its

insdel distance satisfies

dI(C) ≤ max {2(n− 2k + 2), 2} .

The following lemma shows that a linear insdel code must contain two special codewords if its

minimal insdel distance is equal to 2.

Lemma 2.6 [1, Lemma 1] Let C be an [n, k] linear code over Fq. Then, dI(C) = 2 if and only

if C contains a codeword c = (c1, c2, · · · , cn) such that, for some 1 ≤ u ≤ v ≤ n and α ∈ Fq,

x = (x1, x2, · · · , xn) defined by

xi =







0, for 1 ≤ i < u or v < i ≤ n

ci+1 − ci, for u ≤ i < v

α, for i = v

is a nonzero codeword.

3 Strict half-Singleton bound

In this section, we show that the half-Singleton bound on the insdel distance of a linear code C can

be improved if 1 /∈ C. Based on this improved upper bound, we give another proof of the half-

Singleton bound on the minimal insdel distance of linear insdel codes and some useful corollaries.

To this end, we first introduce some notation. For positive integers n and s with s ≤ n, we denote

[n] = {1, 2, · · · , n} and [n]s the set of all vectors of length s whose coordinates are from [n]. We

say a vector I = (I1, I2, · · · , Is) ∈ [n]s is an increasing vector if its coordinates are monotonically

increasing, i.e., for any u < v we have Iu < Iv, where Iu is the uth coordinate of I.

Theorem 3.1 (Strict half-Singleton bound) Let C be an [n, k] linear code over Fq. If 1 =

(1, 1, · · · , 1) /∈ C, then the insdel distance of C satisfies

dI(C) ≤ max { 2(n− 2k + 1), 2 } .

Proof: Let G denote a generator matrix of C and d denote the minimum Hamming distance

of C. Then there exists a codeword c ∈ C satisfying wH(c) = d. Thus, ℓ(0, c) = n− d.

Next, we discuss the insdel distance of C in two cases.

(1) n− d ≥ 2k − 1. Then, ℓ(0, c) = n− d and

dI(C) ≤ dI(0, c) = 2(n − ℓ(0, c)) ≤ 2(n − 2k + 1).
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(2) n− d < 2k− 1. In the following we show that there exist two different codewords a,b ∈ C

such that ℓ(a,b) = n− 1 or ℓ(a,b) ≥ 2k − 1. This implies that

dI(C) ≤ dI(a,b) = 2(n − ℓ(a,b)) ≤ max{2(n − 2k + 1), 2}.

Let G = (G1, G2, · · · , Gn) be a generator matrix of C, where Gi denote the ith column of G.

Let I = (I1, I2, · · · , Is) and J = (J1, J2, · · · , Js) be two increasing vectors of [n]s. Define an 2k × s

matrix as follows:

MIJ =

(

GI1 GI2 · · · GIs

GJ1 GJ2 · · · GJs

)

. (2)

Consider the linear equations

(x,−y)MIJ = 0, (3)

where x = (x1, x2, · · · , xk) and y = (y1, y2, · · · , yk). If the system (3) has a nonzero solution

(x,−y) ∈ F
2k
q with x 6= y, then there exist two codewords a = (f1(x), f2(x), · · · , fn(x)) and b =

(f1(y), f2(y), · · · , fn(y)) in C, where fi(x) = xGi, fi(y) = yGi for i = 1, 2, · · · , n such that

(fI1(x), fI2(x), · · · , fIs(x)) = (fJ1(y), fJ2(y), · · · , fJs(y)).

This implies that ℓ(a,b) ≥ s.

Next, we discuss the solutions to the linear system (3).

Case 1: n ≤ 2k. We show that there exist two distinct codewords a,b ∈ C such that

ℓ(a,b) = n − 1. Let I, J be any two increasing vectors of [n]n−1, that is, s = n − 1 in the matrix

given in (2). The rank of matrix MIJ defined in (2) is less than 2k. So, the corresponding linear

system (3) has nonzero solutions. Moreover, there exist two increasing vectors I, J ∈ [n]n−1 such

that the solution (x,−y) of the corresponding linear system (3) satisfies x 6= y. In this case, there

exist two distinct codewords a = xG and b = yG satisfying ℓ(a,b) = n− 1 since a 6= b. Otherwise,

we choose I = (1, 2, · · · , n− 1) and J = (2, 3, · · · , n), and let (x,−y) ∈ F
2k
q be a nonzero solution of

the linear system (3) with x = y. This gives

(f1(x), f2(x), · · · , fn−1(x)) = (f2(y), f3(y), · · · , fn(y)) = (f2(x), f3(x), · · · , fn(x)).

So, f1(x) = f2(x) = · · · = fn(x), i.e., (1, 1, · · · , 1) ∈ C. This is a contradiction.

Case 2: n > 2k. We show that there exist two distinct codewords a,b ∈ C such that

ℓ(a,b) ≥ 2k − 1. Let I, J be any two increasing vectors of [n]2k−1, that is, s = 2k − 1 in the matrix

given in (2). The rank of MIJ given in (2) is less than 2k, and so the corresponding linear system

(3) has nonzero solutions. Moreover, there exist two increasing vectors I, J ∈ [n]2k−1 such that

the corresponding linear system (3) has a nonzero solution (x,−y) ∈ F
2k
q satisfying x 6= y. In this

case, the code C has two distinct codewords a = xG and b = yG in C satisfying ℓ(a,b) ≥ 2k − 1.

Otherwise, assume that for any two increasing vectors I, J ∈ [n]2k−1, the corresponding linear system

(3) has only solutions with the form (x,−x) ∈ F
2k
q . Then we will derive a contradiction.

Choose I = (1, 2, · · · , 2k − 1) and J = (2, 3, · · · , 2k). If the corresponding linear system (3)

has only nonzero solutions of the form (x,−x) ∈ F
2k
q , then we have

(f1(x), f2(x), · · · , fn−1(x)) = (f2(y), f3(y), · · · , fn(y)) = (f2(x), f3(x), · · · , fn(x)).
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So, f1(x) = f2(x) = · · · = f2k(x). This further shows that the code C has a codeword of the form

c(1) = (1, 1, · · · , 1
︸ ︷︷ ︸

2k

, ∗, ∗, · · · , ∗).

Similarly, choosing I = (2, 3, · · · , 2k) and J = (3, 4, · · · , 2k + 1), we can derive that the code C has

a codeword of the form

c(2) = (⋆, 1, 1, · · · , 1
︸ ︷︷ ︸

2k

, ⋆, ⋆, · · · , ⋆).

Repeating the above process n− 2k + 1 times, we get the (n− 2k + 1)th codeword in C of the form

c(n−2k+1) = (⋄, ⋄, · · · , ⋄, 1, 1, · · · , 1
︸ ︷︷ ︸

2k

).

Suppose that u,v ∈ F
k
q are the message vectors of c(1) and c(2), respectively. Then we have

(uG2,uG3, · · · ,uG2k) = (vG2,vG3, · · · ,vG2k) = (1, 1, · · · , 1),

where G′
is are columns of the generator matrix of G. This implies that

(u− v)(G2, G3, · · · , G2k
︸ ︷︷ ︸

Ḡ

) = (0, 0, · · · , 0). (4)

Since n− d < 2k − 1, i.e., n− d+ 1 ≤ 2k − 1, by Lemma 2.1 there exist k columns of Ḡ are linearly

independent over Fq, i.e., the rank of Ḡ is equal to k. So, the linear system (4) has only zero solution,

i.e., u = v. This leads to c(1) = c(2). Repeating above discussion we derive that the code C has a

codeword

c(1) = c(2) = · · · = c(n−2k+1) = (1, 1, · · · , 1).

This is a contradiction. �

Theorem 3.1 and Lemma 2.5 show that the insdel distance of a linear code will be affected by

whether it contains the codeword 1. This fact can be verified by the following simple example. Let C

be an [n, 1] code over Fq, then C = {ac : a ∈ Fq}, where c ∈ F
n
q . If 1 ∈ C, then C = {a · 1 : a ∈ Fq}.

For any two distinct codewords c1, c2 ∈ C, ℓ(c1, c2) = 0, and so, dI(C) = 2n. In this case, the

insdel distance of the code C reaches the half-Singleton bound given in Lemma 2.5. If 1 /∈ C, then

we can show that there always exist two codewords c1, c2 ∈ C such that ℓ(c1, c2) ≥ 1, and so,

dI(C) ≤ 2(n− 1). In this case, the insdel distance of the code C may reach the upper bound given in

Theorem 3.1, but never reach the upper bound given in Lemma 2.5.

By Theorem 3.1, we give another proof of the half-Singleton bound on the insdel distance of

linear codes.

Corollary 3.2 Let C be an [n, k] linear code over Fq. Its insdel distance satisfies

dI(C) ≤ max {2(n− 2k + 2), 2} .
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Proof: If 1 /∈ C, by Theorem 3.1, we have dI(C) ≤ max {2(n − 2k + 1), 2} ≤ max {2(n− 2k + 2), 2}.

If 1 ∈ C, we only need to prove that there exist two distinct codewords a,b ∈ C satisfying

ℓ(a,b) ≥ min {2k − 2, n− 1}. Since 1 ∈ C, C has a generator matrix as the following form:

G =

(

1n−1 1

Gn−1 0Tn−1

)

, (5)

where Gn−1 is a (k − 1)× (n− 1) matrix over Fq, 1n−1 = (1, 1, · · · , 1
︸ ︷︷ ︸

n−1

) and 0n−1 = (0, 0, · · · , 0
︸ ︷︷ ︸

n−1

). Let

Cn−1 be the [n − 1, k − 1] linear code generated by Gn−1. If 1n−1 ∈ Cn−1, then 1′ = (1n−1, 0) ∈ C

and ℓ(1′,1) = n − 1 ≥ min {2k − 2, n− 1}. If 1n−1 /∈ Cn−1, by Theorem 3.1, there exist two

distinct codewords an−1,bn−1 ∈ Cn−1 such that ℓ(an−1,bn−1) ≥ min {2k − 3, n− 2}. It is clear that

a = (an−1, 0) ∈ C, b = (bn−1, 0) ∈ C, and ℓ(a,b) ≥ min {2k − 2, n− 1}. �

For a linear code C over Fq, we know that dI(C) = 2 if n < 2k by Lemma 2.5. These codes

can not correct insdel errors. When n = 2k, from Lemma 4 in [1] we know that the following linear

insdel code attains the half-Singleton bound.

Corollary 3.3 For a positive integer k, let C be an [2k, k] code over Fq given by

C = {(c1, c2, · · · , c2k) : ci = c2k−i+1 ∈ Fq, i = 1, 2, · · · , k} .

Then dI(C) = 4, i.e., C is optimal with respect to the half-Singleton bound.

Remark 3.4 The length of the optimal linear insdel codes given in Corollary 3.3 is independent of

the size of the finite field.

The following corollary shows that only in very special cases, a linear code C and its dual

C⊥ have the insdel error-correcting capability at the same time. This result directly follows from

Theorem 3.1 and Lemma 2.5.

Corollary 3.5 Let C be an [n, k] code over Fq and C⊥ be its dual code. If both C and C⊥ have insdel

error-correcting capability, then n = 2k. In this case, 1 ∈ C, dI(C) = dI(C
⊥) = 4 and p |n, where p

is the characteristic of the field Fq.

4 Optimal linear insdel codes attaining the strict half-Singleton

bound

In this section, we present a sufficient condition for a linear insdel code to be optimal according to

the strict half-Singleton bound given in Theorem 3.1. Then we give several examples of optimal

linear insdel codes. To this end, we first introduce some useful notation. Let n, k be positive integers

with 2k < n. Let I, J ∈ [n]2k be increasing vectors with length 2k. Let I ∩ J be a increasing vector

made up of the corresponding equal components of I and J , i.e., I ∩ J = (r1, r2, · · · , rt), t ≤ 2k,

where ri = Iei = Jei , which is the eith component of I and J for 1 ≤ i ≤ t.
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Theorem 4.1 Let C be an [n, k] code over Fq with generator matrix G = (G1, G2, · · · , Gn), where Gi

is the ith column of G and n > 2k. If for every two increasing vectors I, J ∈ [n]2k with rank(GI∩J) <

k, where GI∩J = (Ge1 , Ge2 , · · · , Get) and I ∩ J = (e1, e2, · · · , et), it holds that det(MIJ) 6= 0, where

MIJ =

(

GI1 GI2 · · · GI2k

GJ1 GJ2 · · · GJ2k

)

,

then dI(C) = 2(n − 2k + 1), i.e., C is optimal with respect to the strict half-Singleton bound.

Proof: First, we show that 1 /∈ C. Otherwise, assume that 1 ∈ C, then it has a generator

matrix as the following form:

G′ =









1 1 · · · 1

g′21 g′22 · · · g′2n
...

...
...

g′k1 g′k2 · · · g′kn









=
(

G′
1 G′

2 · · · G′
n

)

.

Consider the matrix

M ′
IJ =

(

G′
I1

G′
I2

· · · G′
I2k

G′
J1

G′
J2

· · · G′
J2k

)

for two increasing vectors I, J ∈ [n]2k with rank(GI∩J) < k. Since M ′
IJ has two rows with all 1s,

det(M ′
IJ ) = 0. On the other hand, there exists a k × k invertible matrix Q such that G = QG′. Let

N =

(

Q 0k×k

0k×k Q

)

.

It is easy to verify that NM ′
IJ = MIJ . Then det(MIJ) = det(N) det(M ′

IJ) = 0. This is a contradic-

tion. It follows that 1 /∈ C. By Theorem 3.1, dI(C) ≤ 2(n − 2k + 1).

Second, we show that for any two different codewords a,b ∈ C, ℓ(a,b) ≤ 2k − 1. Otherwise,

assume that there exist two distinct codewords a,b such that ℓ(a,b) ≥ 2k, then there exist two

increasing vectors I, J ∈ [n]2k such that aI = bJ , i.e., aIs = bJs for s = 1, 2, · · · , 2k. Let x,y ∈ F
k
q be

the message symbols of the codewords a,b respectively, i.e., a = xG and b = yG. From assumption

we see that the linear system

zGI∩J = (ae1 ,ae2 , · · · ,aet)

has two distinct solutions x and y. So, rank(GI∩J ) < k. Since aI = bJ , we have

(x,−y)MIJ = 0.

So, det(MIJ) = 0. This contradicts the assumption in the theorem. Thus, it follows that dI(C) ≥

2(n − 2k + 1), and then dI(C) = 2(n− 2k + 1) by Theorem 3.1. �

Next we use Theorem 4.1 to give some examples of optimal linear insdel codes.

Example 4.2 Let q = 49 and w be a generator of Fq. Let C be an [5, 2] code over Fq with generator

matrix

G =

(

w28 w w39 w26 w20

w10 w13 2 w37 w

)

.
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It is easy to see that any two columns of G are linear independent over Fq. Two different increasing

vectors I, J ∈ [5]4 satisfying rank(GI∩J) < 2 if and only if I ∩ J = (∅), (1) or (5). So, all possible

cases of the vectors I and J are as follows: I = (1, 2, 3, 4) and J = (2, 3, 4, 5); I = (1, 2, 3, 4) and

J = (1, 3, 4, 5); I = (1, 2, 3, 5) and J = (2, 3, 4, 5). The corresponding matrices MIJ are as follows:

MIJ =








w28 w w39 w26

w10 w13 2 w37

w w39 w26 w20

w13 2 w37 w








,








w28 w w39 w26

w10 w13 2 w37

w28 w39 w26 w20

w10 2 w37 w








,








w28 w w39 w20

w10 w13 2 w

w w39 w26 w20

w13 2 w37 w








.

By help of Magma one easily show that det(MIJ ) 6= 0 for above three cases. From Theorem 4.1 we

know that dI(C) = 4. In fact, we find two codewords a = (w38, w14, w7, w15, w21),b = (w2, w38, w14, w7, w2)

satisfying ℓ(a,b) = 3, and so dI(a,b) = 4.

Example 4.3 Let q = 121, and w be a generator of Fq. Let C be an [8, 3] code over Fq with generator

matrix

G =






w40 w20 w22 w3 w49 w55 w54 w65

w86 w27 w89 w64 w73 w23 w44 w79

w88 w103 w110 w97 w21 w51 w47 w70




 .

By help of Magma, we can verify that det(MIJ) 6= 0 for all two different increasing vectors I, J ∈ [8]4

that satisfy rank(GI∩J ) < 3. From Theorem 4.1, we know that dI(C) = 6. In fact, we find two

codewords a = (w95, w,w2, w80, w67, w40, w31, w79),b = (6, w95, w,w2, w80, w67, w6, w112) satisfying

ℓ(a,b) = 5, and so dI(a,b) = 6.

Example 4.4 Let q = 169, and w be a generator of Fq. Let C be an [9, 4] code over Fq with generator

matrix

G =








w81 w120 w4 w136 w147 w71 w166 w132 w103

w83 w155 w82 w163 w48 w36 w88 w63 w45

w143 w85 w72 w146 w117 w18 w95 w12 w134

w131 w160 w27 w148 w164 w7 w109 w107 w32








.

By help of Magma, we can verify that det(MIJ) 6= 0 for all two different increasing vectors I, J ∈ [9]4

that satisfy rank(GI∩J) < 4. From Theorem 4.1, we know dI(C) = 4. In fact, we find two codewords

a = (w9, w127, w13, w22, w21, w11, w53, w165, w110), b = (w120, w9, w127, w13, w22, w21, w11, w53, 7) sat-

isfying ℓ(a,b) = 7, and so dI(a,b) = 4.

In the following, we present a class of optimal [2k + 1, k] linear insdel codes over Fq for some

positive integer k. To this end, we first introduce some notation. Let t be a positive integer with

t ≤ k and Ωt = {t, t+1, · · · , k}. Denote by Ωo
t = {i ∈ Ωt | k− i is odd }, Ωe

t = {i ∈ Ωt | k− i is even }

and

G =









1 0 · · · 0 a1 0 · · · 0 1

0 1 · · · 0 a2 0 · · · 1 0
...

...
...

...
...

...
...

0 0 · · · 1 ak 1 · · · 0 0









k×(2k+1)

, (6)

where ai ∈ Fq for i = 1, 2, · · · , k satisfy
∑k

i=1 ai 6= 1.

10



Proposition 4.5 Let symbols be given as above and C be an [2k + 1, k] code with generator matrix

G given in (6). If for any t with 1 ≤ t ≤ k satisfies

∑

i∈Ωo
t

ai −
∑

i∈Ωe
t

ai 6= 1,

then dI(C) = 4, i.e., C is optimal with respect to the strict half-Singleton bound.

Proof: Since
∑k

i=1 ai 6= 1, it is easy to verify that 1 /∈ C. So, dI(C) ≤ 2(2k + 1 − 2k + 1) = 4

by Theorem 3.1. In the following, we show that dI(C) 6= 2.

Assume dI(C) = 2, then the linear code C contains a codeword c = (c1, c2, · · · , cn) and a

nonzero codeword x = (x1, x2, · · · , xn) as characterized in Lemma 2.6 for some u, v and α, where

n = 2k + 1. Since x is nonzero, from the representation of codewords in C we know that xi 6= 0

for some i < k + 1. Thus u < k + 1 and v > k + 1. Let t = min{i | i ∈ [n] and xi 6= 0} and

t′ = max{i | i ∈ [n] and xi 6= 0}, then t′ = n− t+ 1, 1 ≤ t ≤ k and u ≤ t < k + 1 < t′ ≤ v. Thus,

xi =







0, for 1 ≤ i < t or t′ < i ≤ n

ci+1 − ci, for t ≤ i < t′

β, for i = t′
,

where β ∈ Fq. From the generator matrix of C we know that the codeword c = (c1, c2, · · · , cn) ∈ C

satisfies that

ck+1 =
k∑

i=1

aici, cj = cn+1−j , j = k + 2, k + 3, · · · , n. (7)

Then the codeword y = c+ x = (y1, y2, · · · , yn) ∈ C satisfies that

yi =







ci, for 1 ≤ i < t or t′ < i ≤ n

ci+1, for t ≤ i < t′

ct + β, for i = t′
.

Since any codeword in C satisfies the relation given in (7), from the representation of y we have that

ct = ct+2 = · · · = ck−1 = ck+1 and ct+1 = ct+3 = · · · = ck−2 = ck

if k − t is odd, and

ct = ct+2 = · · · = ck−2 = ck and ct+1 = ct+3 = · · · = ck−1 = ck+1

if k − t is even. So, for the codeword c we have

ck+1 =

t−1∑

i=1

ciai + ck
∑

i∈Ωe
t

ai + ck+1

∑

i∈Ωo
t

ai, (8)

and for the codeword y we have

ck =
t−1∑

i=1

ciai + ck
∑

i∈Ωo
t

ai + ck+1

∑

i∈Ωe
t

ai. (9)
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By (8)− (9), we have

ck+1 − ck = (ck+1 − ck)




∑

i∈Ωo
t

ai −
∑

i∈Ωe
t

ai



 . (10)

Since x is a nonzero codeword, we know that ck+1 6= ck. From (10) we have

∑

i∈Ωo
t

ai −
∑

i∈Ωe
t

ai = 1.

This is a contradiction. So, dI(C) = 4, and C is an optimal linear insdel code with respect to the

strict half-Singleton bound.

Remark 4.6 When q > 2, one can verify that for any t with 1 ≤ t ≤ k, there exist ai ∈ Fq satisfying

k∑

i=1

ai 6= 1 and
∑

i∈Ωo
t

ai −
∑

i∈Ωe
t

ai 6= 1. (11)

For example, ak−1 ∈ Fq \ {0, 1} and ai = 0 for all i ∈ {1, 2, · · · , k} \ {k − 1} satisfy (11). So,

there exist optimal [2k + 1, k, 4] linear insdel codes over Fq if q > 2. Moreover, the length of C is

independent of the size of the finite field Fq.

5 Optimal binary linear insdel codes attaining the (strict) half-

Singleton bound

In this section we study optimal linear insdel codes over F2 with respect to the half-Singleton bound

and the strict half-Singleton bound proposed in Theorem 3.1, respectively.

Lemma 5.1 For a positive integer k, let C be an [2k + 3, k] linear insdel code over F2 without

codeword with 2k consecutive coordinates being 1. Then there exist two distinct codewords u,v ∈ C

such that ℓ(u,v) ≥ 2k.

Proof: Let dH be the minimal Hamming distance of C, then there exist a codeword z ∈ C such

that wH(z) = dH . So ℓ(z,0) = 2k +3− dH . If dH ≤ 3, then the conclusion follows. Next we discuss

the case of dH > 3.

Let G = (G1, G2, · · · , G2k+3) be a generator matrix of C. Consider the linear equations

(x,−y)

(

G1 G2 · · · G2k−1

G2 G3 · · · G2k

)

︸ ︷︷ ︸

M

= 0. (12)

The rank of M is less than 2k. So, the linear system (12) has a nonzero solution (x1,−y1) ∈ F
2k
2 .

Moreover, we claim that x1 6= y1. Otherwise, if x1 = y1, then from (12) we have

(f1(x1), f2(x1), · · · , f2k−1(x1)) = (f2(y1), f3(y1), · · · , f2k(y1)) = (f2(x1), f3(x1), · · · , f2k(x1)) ,
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where fi(x) = xGi for 1 ≤ i ≤ 2k. So, f1(x1) = f2(x1) = · · · = f2k(x1). Since dH(C) > 3, we derive

that C has a codeword of the form (1, 1, · · · , 1
︸ ︷︷ ︸

2k

, ∗, ∗, ∗). This is a contradiction.

Let x1,y1 be message symbols of codewords a, ā, respectively. Then they are different and

have the following form:

a = (a1, a2, a3, a4, · · · , a2k−1, α1, α2, α3, α4) , ā = (ᾱ1, a1, a2, a3, · · · , a2k−2, a2k−1, ᾱ2, ᾱ3, ᾱ4) .

It is clear that the length of the longest common subsequence of a and ā is at least 2k − 1. If there

exist some i ∈ {1, 2, 3, 4} and j ∈ {2, 3, 4} such that αi = ᾱj , then ℓ(a, ā) ≥ 2k, and the conclusion

follows. If αi 6= ᾱj for any i ∈ {1, 2, 3, 4} and j ∈ {2, 3, 4}, we have

αi + ᾱj = 1. (13)

By choosing proper matrix M as in (12) we can show that C has two different codewords b

and b̄ as the following form:

b = (β1, b1, b2, b3, · · · , b2k−2, b2k−1, β2, β3, β4), b̄ = (β̄1, β̄2, b1, b2, · · · , b2k−3, b2k−2, b2k−1, β̄3, β̄4).

It is clear that the length of the longest common subsequence of b and b̄ is at least 2k − 1. If

β1 ∈ {β̄1, β̄2} or {β2, β3, β4}∩{β̄3, β̄4} 6= ∅, then ℓ(b, b̄) ≥ 2k, and the conclusion follows. Otherwise,

for j ∈ {1, 2}, u ∈ {2, 3, 4} and v ∈ {3, 4} we have

β1 + β̄j = 1 and βu + β̄v = 1. (14)

Since C is a linear code, a+ b and ā+ b̄ are also codewords of C and have the following form:

a+ b = (a1 + β1, a2 + b1, a3 + b2, a4 + b3, · · · , a2k−1 + b2k−2, α1 + b2k−1, α2 + β2, α3 + β3, α4 + β4),

ā+ b̄ = (ᾱ1+ β̄1, a1+ β̄2, a2+b1, a3+b2, · · · , a2k−2+b2k−3, a2k−1+b2k−2, ᾱ2+b2k−1, ᾱ3+ β̄3, ᾱ4+ β̄4).

If a + b 6= ā + b̄, by (13) and (14) we have that ℓ(a + b, ā + b̄) ≥ 2k, and the conclusion follows.

If a + b = ā + b̄, by (13) and (14), then we can derive that a + b = (0, 1, 1, · · · , 1
︸ ︷︷ ︸

2k−1

, 0, 0, 0) or

(1, 0, 0, · · · , 0
︸ ︷︷ ︸

2k−1

, 1, 1, 1).

Again by similar analysis of the beginning of the proof, we can show that C has two different

codewords c and c̄ as the following form:

c = (γ1, γ2, c1, c2, c3, · · · , c2k−2, c2k−1, γ3, γ4), c̄ = (γ̄1, γ̄2, γ̄3, c1, c2, · · · , c2k−3, c2k−2, c2k−1, γ̄4).

It is clear that the length of the longset common subsequence of c and c̄ is at least 2k − 1. If

{γ1, γ2} ∩ {γ̄1, γ̄2, γ̄3} 6= ∅ or γ̄4 ∈ {γ3, γ4}, then ℓ(c, c̄) ≥ 2k, and the conclusion follows. Otherwise,

for i ∈ {3, 4}, s ∈ {1, 2} and t ∈ {1, 2, 3} we have

γi + γ̄4 = 1 and γs + γ̄t = 1. (15)

Since C is a linear code, b+ c and b̄+ c̄ are also codewords of C and have the following form:

b+ c = (β1 + γ1, b1 + γ2, b2 + c1, b3 + c2, · · · , b2k−1 + c2k−2, β2 + c2k−1, β3 + γ3, β4 + γ4)
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and

b̄+ c̄ = (β̄1 + γ̄1, β̄2 + γ̄2, b1 + γ̄3, b2 + c1, b3 + c2, · · · , b2k−1 + c2k−2, β̄3 + c2k−1, β̄4 + γ̄4).

If b+ c 6= b̄+ c̄, by (14) and (15) we have that ℓ(b + c, b̄ + c̄) ≥ 2k and the conclusion follows. If

b+c = b̄+c̄, by (14) and (15) we can derive that b+c = (0, 0, 1, 1, · · · , 1
︸ ︷︷ ︸

2k−1

, 0, 0) or (1, 1, 0, 0, · · · , 0
︸ ︷︷ ︸

2k−1

, 1, 1).

If a+b = ā+b̄ and b+c = b̄+c̄ at the same time, then we can derive that ℓ(a+b,b+c) = 2k+2

or ℓ(a+ c,b + c) = 2k or ℓ(a+ b,a+ c) = 2k. So, we can always obtain two distinct codewords of

C such that the length of their longest common subsequence is at least 2k. �

Lemma 5.2 For a positive integer k, let C be an [2k + 3, k] linear insdel code over F2 having a

codeword with 2k consecutive coordinates being 1. Then there exist two distinct codewords u,v ∈ C

such that ℓ(u,v) ≥ 2k.

Proof: Let dH be the minimal Hamming distance of C, then there exist a codeword c ∈ C such

that wH(c) = dH . So, ℓ(c,0) = 2k+3−dH . If dH ≤ 3, then the conclusion follows. Next, we discuss

the case of dH > 3.

We only prove the case that C has a codeword of the form h = (1, 1, · · · , 1
︸ ︷︷ ︸

2k

, 0, 0, 0), and the

other cases can be shown similarly.

Let G = (G1, G2, · · · , G2k+3) be a generator matrix of C. Consider the linear equations

(x,−y)

(

G4 G5 · · · G2k+2

G5 G6 · · · G2k+3

)

︸ ︷︷ ︸

M

= 0. (16)

The rank of M is less than 2k. So, the linear system (16) has a nonzero solution (x1,−y1) ∈ F
2k
2 . If

x1 = y1 then we have

(f4(x1), f5(x1), · · · , f2k+2(x1)) = (f5(y1), f6(y1), · · · , f2k+3(y1)) = (f5(x1), f6(x1), · · · , f2k+3(x1)).

where fi(x) = xGi for 4 ≤ i ≤ 2k + 3. So, f4(x1) = f5(x1) = · · · = f2k+3(x1). Since dH > 3,

we derive that C has a codeword of the form a = (∗, ∗, ∗, 1, 1, · · · , 1
︸ ︷︷ ︸

2k

). It is clear that a 6= h and

ℓ(a,h) ≥ 2k, then the conclusion follows. If x1 6= y1, and let a = x1G and ā = y1G. Then a and ā

have the following form:

a = (α1, α2, α3, a1, a2, a3, a4, · · · , a2k−1, α4), ā = (ᾱ1, ᾱ2, ᾱ3, ᾱ4, a1, a2, a3, · · · , a2k−2, a2k−1).

It is obvious that the length of the longest common subsequence of a and ā is at least 2k−1. If there

exist some i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4} such that αi = ᾱj , then ℓ(a, ā) ≥ 2k, and the conclusion

follows. Otherwise, for any i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}, we have

αi + ᾱj = 1. (17)
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By choosing proper matrices M as in (16), we can show that C has four codewords b, b̄, c and c̄ as

the following form:

b = (β1, β2, b1, b2, b3, b4, · · · , b2k−2, b2k−1, β3, β4), b̄ = (β̄1, β̄2, β̄3, b1, b2, b3, · · · , b2k−3, b2k−2, b2k−1, β̄4);

c = (γ1, γ2, c1, c2, c3, c4, · · · , c2k−2, γ3, c2k−1, γ4), c̄ = (γ̄1, γ̄2, γ̄3, c1, c2, c3, · · · , c2k−2, γ̄4, c2k−1).

By analysis similar to that above, we have ℓ(b,h) ≥ 2k if b = b̄. Otherwise, if b 6= b̄, then the length

of the longest common subsequence of b and b̄ is at least 2k−1. Only when {β1, β2}∩{β̄1, β̄2, β̄3} = ∅

and β̄4 /∈ {β3, β4}, we have ℓ(b, b̄) = 2k − 1. In this case, for i ∈ {1, 2}, j ∈ {1, 2, 3} and u ∈ {3, 4},

we have

βi + β̄j = 1 and βu + β̄4 = 1. (18)

Since C is linear, a+ b and ā+ b̄ are codewords of C and have the following form:

a+ b = (α1 + β1, α2 + β2, α3 + b1, a1 + b2, a2 + b3, · · · , a2k−2 + b2k−1, a2k−1 + β3, α4 + β4),

ā+ b̄ = (ᾱ1 + β̄1, ᾱ2 + β̄2, ᾱ3 + β̄3, ᾱ4 + b1, a1 + b2, · · · , a2k−3 + b2k−2, a2k−2 + b2k−1, a2k−1 + β̄4).

If a + b 6= ā + b̄, by (17) and (18), we have ℓ(a + b, ā + b̄) ≥ 2k and the conclusion follows. If

a+ b = ā+ b̄, we can derive that a+ b = (0, 0, 0, 1, 1, · · · , 1
︸ ︷︷ ︸

2k−1

, 0) or (1, 1, 1, 0, 0, · · · , 0
︸ ︷︷ ︸

2k−1

, 1).

Next, we consider the codewords c and c̄. If c = c̄, then we derive that c = (∗, ∗, 1, 1, · · · , 1
︸ ︷︷ ︸

2k+1

)

or (∗, ∗, 1, 1, · · · , 1
︸ ︷︷ ︸

2k−1

, 0, 0) or (1, 1, 0, 0, · · · , 0
︸ ︷︷ ︸

2k−1

, 1, 1). In this case, we have ℓ(c,h) ≥ 2k or ℓ(a+b, c) ≥ 2k

or ℓ(a + b + c,h) ≥ 2k, then conclusion follows. If c 6= c̄, it is clear that the length of the longest

common subsequence of c and c̄ is at least 2k−1. Only when {γ1, γ2}∩{γ̄1, γ̄2, γ̄3} = ∅ and γ3 6= γ̄4,

i.e., for i ∈ {1, 2} and j ∈ {1, 2, 3},

γi + γ̄j = 1 and γ3 + γ̄4 = 1, (19)

we have ℓ(c, c̄) = 2k − 1. In this case, we consider the codewords a+ c, ā + c̄ ∈ C as the following

form:

a+c = (α1+γ1, α2+γ2, α3+c1, a1+c2, a2+c3, · · · , a2k−3+c2k−2, a2k−2+γ3, a2k−1+c2k−1, α4+γ4),

ā+c̄ = (ᾱ1+γ̄1, ᾱ2+γ̄2, ᾱ3+γ̄3, ᾱ4+c1, a1+c2, · · · , a2k−4+c2k−3, a2k−3+c2k−2, a2k−2+γ̄4, a2k−1+c2k−1).

If a+c 6= ā+c̄, by (17) and (19), we have ℓ(a+c, ā+c̄) ≥ 2k, then conclusion follows. If a+c = ā+c̄,

we have a + c = (0, 0, 0, 1, 1, · · · , 1
︸ ︷︷ ︸

2k−2

, 0, 0) or (1, 1, 1, 0, 0, · · · , 0
︸ ︷︷ ︸

2k−2

, 1, 1), then ℓ(a + b,a + c) ≥ 2k or

ℓ(b+ c,h) ≥ 2k. So, we can always obtain two distinct codewords of C such that the length of their

common subsequence is at least 2k. �

By Lemma 5.1, Lemma 5.2 and the proof of Corollary 3.2 we have the main theorem in this

section.

Theorem 5.3 Let C be an [n, k] linear insdel code over F2.

(1) If n > 2k, 1 /∈ C and C is optimal with respect to the strict half-Singleton bound proposed in

Theorem 3.1, then its code length n and dimension k satisfy 2k + 1 ≤ n ≤ 2k + 2.

15



(2) If n ≥ 2k and C is optimal with respect to the half-Singleton bound, then its code length n and

dimension k satisfy 2k ≤ n ≤ 2k + 1.

Let C be an [n, k] linear insdel code. When k = 2, if 1 /∈ C, there are 17 optimal [5, 2] linear

codes with respect to the strict half-Singleton bound given in Theorem 3.1; If 1 ∈ C then there are

2 optimal [4, 2] linear codes with respect to the half-Singleton bound. All these optimal linear insdel

codes are listed in Table 1 and Table 2 by generators, respectively. A large number of experimental

results show that Theorem 5.3 can be strengthened into the following conjecture.

Conjecture 5.4 Let C be an [n, k] linear insdel code over F2.

(1) If n > 2k, 1 /∈ C and C is optimal with respect to the strict half-Singleton bound in Theorem 3.1,

then C has the parameters [2k + 1, k, 4].

(2) If n ≥ 2k and C is optimal with respect to the half-Singleton bound, then C has the parameters

[2k, k, 4].

Table 1: two generators of optimal [5,2] linear insdel codes

v1, v2 v1, v2 v1, v2

(1, 1, 0, 0, 0), (0, 0, 1, 1, 0) (1, 1, 0, 0, 0), (0, 0, 1, 0, 1) (1, 1, 0, 0, 0), (0, 0, 0, 1, 1)

(1, 0, 1, 0, 0), (0, 0, 0, 1, 1) (1, 0, 0, 1, 0), (0, 1, 1, 0, 0) (1, 0, 0, 0, 1), (0, 1, 1, 0, 0)

(1, 0, 0, 0, 1), (0, 1, 0, 1, 0) (1, 0, 0, 0, 1), (0, 0, 1, 1, 0) (0, 1, 1, 0, 0), (0, 0, 0, 1, 1)

(0, 1, 0, 0, 1), (0, 0, 1, 1, 0) (1, 0, 1, 1, 0), (0, 0, 1, 1, 1) (1, 1, 0, 0, 1), (0, 0, 1, 1, 1)

(1, 1, 1, 0, 0), (0, 0, 1, 1, 1) (1, 1, 0, 1, 0), (0, 1, 0, 1, 1) (0, 1, 1, 0, 1), (1, 0, 0, 1, 1)

(1, 1, 1, 0, 0), (0, 1, 1, 0, 1) (1, 1, 0, 0, 1), (1, 0, 1, 1, 0)

Table 2: two generators of optimal [4,2] linear insdel codes

v1, v2 v1, v2

(1, 1, 0, 0), (0, 0, 1, 1) (1, 0, 0, 1), (0, 1, 1, 0)

6 Strict direct upper bound

In this section we prove the strict direct upper bound. This bound is only true for linear insdel

codes. For a linear [n, k] code C ⊂ F
n
q , the subset S ⊂ {1, · · · , n} of h coordinate positions is

called an information free coordinate subset if the natural projection ΦS : C −→ F
h
q defined by

ΦS((c1, · · · , cn)) = (ci1 , · · · , cih) is surjective. It is clear h ≤ k. When h = k this is the information

set. It is obvious that for any generator k × n matrix G of this linear [n, k] code, the columns at

these positions of an information-free subset are linear independent vectors in F
k
q .

Theorem 6.1 (Strict direct upper bound) Let C ⊂ F
n
q be a linear [n, k] code with the minimum

Hamming distance dH . Let x ∈ C be a minimum weight codeword with its zero coordinate position
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set [n] − supp(x) = {i1, i2, · · · , in−dH}, where i1 < i2 < · · · < in−dH . Suppose there are t pairs

of coordinate positions {ju, wu}, u = 1, · · · , t, satisfying {ju, wu} is in some [iv + 1, iv+1 − 1] for

u = 1, · · · , t, and {j1, w1, . . . , jt, wt} is an information-free subset. Then

dI(C) ≤ 2(dH − t).

Proof. Let G be an k × n generator matrix of this linear code C, with n columns G1, . . . , Gn.

Let x = u ·G be the minimum weight codeword claimed in the condition. Then u is a non-zero vector

in F
k
q and u · Gj = 0 for j = i1, . . . , in−dH . Since {j1, w1, . . . , jt, wt} is an information-free subset,

Gj1 , Gw1 , . . . , Gjt , Gwt
are linear independent vectors in F

k
q . Then Gj1−Gw1 , Gj2−Gw2 , . . . , Gjt−Gwt

are linear independent vectors in F
k
q . Hence we can find a non-zero vector v ∈ F

k
q satisfying v ·(Gju −

Gwu
) = u · Gwu

for 1 ≤ u ≤ t. Now for two codewords x1 = v · G and x2 = (v + u) · G = x1 + x,

their coordinates at positions i1 < i2 < · · · < in−dH are the same. Since

v ·Gju = (v + u) ·Gwu
, u = 1, 2, · · · , t,

the coordinates of x1 and x2 at position pairs {ju, wu} are the same. Since {ju, wu} is always in some

[iv + 1, iv+1 − 1], we have a common subsequence with length n − dH + t of these two codewords.

The conclusion is proved. �

If a linear code C is projective then we have the following corollary.

Corollary 6.2 Let C ⊂ F
n
q be a projective linear code with the minimum Hamming distance dH >

n+1
2 . Then

dI(C) ≤ 2(dH − 1).

Proof. Since n − dH + 1 < dH , for any minimum weight codeword x with zero-coordinate

positions i1 < i2 < · · · < in−dH , we have an interval [iv +1, iv+1 − 1] containing at least two support

coordinate positions of x. The two columns at these two positions are linear independent from the

condition dH(C⊥) ≥ 3. The conclusion follows directly. �

Next we give two examples of linear insdel codes attaining the strict direct upper bound and

an example showing that Theorem 6.1 is not true for nonlinear insdel codes.

Example 6.3 Let C be an [11, 4] linear code over F2 with the following generator matrix,

G =








1 1 1 1 0 1 0 0 0 1 1

1 1 1 0 1 0 1 0 0 0 0

1 0 0 0 0 1 1 1 0 0 0

1 0 0 0 0 0 0 0 1 1 1








= (G1, G2, · · · , G11).

One can verify that dH(C) = 4, and there is a minimum weight codeword x = (0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0)

in C with a zero coordinate position set {1, 2, 3, 6, 7, 10, 11}. Then there are two pairs of coordinate

positions {4, 5} and {8, 9} are in [3, 6] and [7, 10], respectively, such that {4, 5, 8, 9} is an information-

free subset. Then by Theorem 6.1, we know that dI(C) ≤ 2(dH − 2) = 4. On the other hand, we can

verify that dI(C) = 4. In fact, there are two distinct codewords x1 = (0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1) and

x2 = x1 + x = (0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1) in C such that ℓ(x1,x2) = 9, which is the longest common

subsequence of codewords in C. So, dI(C) = 4 and C attains the strict direct upper bound proposed in

Theorem 6.1 for t = 2.
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Example 6.4 Let C′ be a nonlinear code consisting of four codewords of C in Example 6.3 as follows:

C′ =
{
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1),

(1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1), (0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0)
}
.

One can verify that dH(C′) = 4 and dI(C
′) = 8. A minimum weight codeword (1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1)

in C′ has a zero coordinate position set {2, 3, 4, 5, 6, 7, 8}. It is easy to see that there is a pair of

coordinate positions {9, 11} in [9, 11] such that this set is an information-free subset. However,

dI(C
′) > 2(dH(C′)− 1). This example shows that Theorem 6.1 is not true for nonlinear insdel codes.

Example 6.5 Let p be a prime number and let e > 1 be a positive integer. Let ij = 2j−1 for

1 ≤ j ≤ n satisfying 3 · 2n−2 < e. Let θ be a primitive element in the finite field Fpe and

C =
{
(λ+ µθi1 , λ+ µθi2 , · · · , λ+ µθin) |λ, µ ∈ Fpe

}

be a two-dimensional RS code of length n over Fpe. Since C is an MDS code, dH(C) = n− 1. From

Corollary C in [4], we know that dI(C) = 2n − 4. Thus, dI(C) = 2(dH − 1) and C attains the strict

direct upper bound proposed in Corollary 6.2.

7 Concluding remark

In this paper, we proposed the strict half-Singleton bound for linear insdel codes without all 1

codeword and a method to construct optimal linear insdel codes with respect to this upper bound.

Then, we proved that the length of optimal binary linear insdel codes with respect to the (strict) half-

Singleton bound is about twice the dimension. A large number of experimental results suggested that

optimal binary linear insdel codes have parameters [2k, k, 4] or [2k+1, k, 4] with respect to the half-

Singleton bound or the strict half-Singleton bound proposed in Theorem 3.1, respectively. Moreover,

interestingly explicit optimal linear insdel codes attaining the (strict) half-Singleton bound, with the

code length being independent of the finite field size, were obtained. Finally, we also gave the strict

direct upper bound for the minimum insdel distances of linear insdel codes and optimal linear insdel

codes attaining our strict direct upper bound were presented.
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