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Abstract

Consider the task of estimating a 3-order n×n×n tensor from noisy observations of randomly
chosen entries in the sparse regime. We introduce a similarity based collaborative filtering
algorithm for estimating a tensor from sparse observations and argue that it achieves sample
complexity that nearly matches the conjectured computationally efficient lower bound on the
sample complexity for the setting of low-rank tensors. Our algorithm uses the matrix obtained
from the flattened tensor to compute similarity, and estimates the tensor entries using a nearest
neighbor estimator. We prove that the algorithm recovers a finite rank tensor with maximum
entry-wise error (MEE) and mean-squared-error (MSE) decaying to 0 as long as each entry
is observed independently with probability p = Ω(n−3/2+κ) for any arbitrarily small κ > 0.
More generally, we establish robustness of the estimator, showing that when arbitrary noise
bounded by ε ≥ 0 is added to each observation, the estimation error with respect to MEE and
MSE degrades by poly(ε). Consequently, even if the tensor may not have finite rank but can
be approximated within ε ≥ 0 by a finite rank tensor, then the estimation error converges to
poly(ε). Our analysis sheds insight into the conjectured sample complexity lower bound, showing
that it matches the connectivity threshold of the graph used by our algorithm for estimating
similarity between coordinates.

1 Introduction

Tensor estimation involves the task of predicting underlying structure in a high-dimensional tensor
structured dataset given only a sparse subset of observations. We call this “tensor estimation”
rather than the conventional “tensor completion” as the goal is not only to fill missing entries but
also to estimate entries whose noisy observations are available. Whereas matrices represent data
associated to two modes, rows and columns, tensors represent data associated to general d modes.
For example, a datapoint collected from a user-product interaction an e-commerce platform may be
associated to a user, product, and date/time, which could be represented in a 3-order tensor where
the three modes would correspond to users, products, and date/time. Image data is also naturally
represented in a 3-order tensor format, with two modes representing the location of the pixel, and
the third mode representing the RGB color components. Video data furthermore introduces a
fourth mode indexing the time. Dynamic network data can also be represented in a tensor with
one mode indexing the time and the other two modes indexing the nodes in the network.

There are many applications in which the dataset inherently has a lot of noise or is very sparsely
observed. For example, e-commerce data is typically very sparse as the typical number of products
a user interacts with is very small relative to the entire product catalog; furthermore the timepoints
at which the user interacts with the platform may be sparse. When the dataset can be represented

∗Massachusetts Institute of Technology, Cambridge, MA; devavrat@mit.edu
†Cornell University, Ithaca NY; cleeyu@cornell.edu

1

ar
X

iv
:1

90
8.

01
24

1v
4 

 [
cs

.L
G

] 
 1

7 
Ja

n 
20

23



as a matrix, equivalent to a 2-order tensor, there has been a significant amount of research in
designing practical algorithms and studying statistical limits for matrix estimation, a critical step in
data pre-processing. Under conditions on uniform sampling and incoherence, the minimum sample
complexity for estimation has been tightly characterized and achieved by simple algorithms. It is
a natural and relevant question then to consider whether the techniques developed can extend to
higher order tensors as well.

The previous literature has primarily focused on attaining consistency with respect to the mean
squared error (MSE). Unfortunately as this is aggregated over the error in the full tensor, it does not
translate to consistent bounds on entrywise error, as the error on a single entry could be very large
despite the MSE being small due to averaging over many entries. However, entrywise bounds are
important in practice as the results of tensor estimation are often used subsequently for decisions
that involve comparisons between the estimates of individual entries.

In this work we focus on attaining consistent max entrywise error bounds by extending similarity
based collaborative filtering algorithms to tensor estimation. Similarity based collaborative filtering
is widely used in industry due to its simplicity, interpretability, and amenability to distributed and
parallelized implementations. In the analysis of our proposed algorithm we show that it achieves
a sample complexity that nearly matches a conjectured lower bound for computationally efficient
algorithms. Perhaps most notably, our theoretical guarantees provide high probability bounds on
the maximum entrywise error of the estimate, which is significantly stronger than the typical mean
squared error style bounds found in the literature for other algorithms. We also provide error
bounds under arbitrary bounded noise, which has implications towards approximately low rank
settings.

1.1 Related Literature

Algorithms for analyzing sparse low rank matrices (equivalent to 2-order tensors) where the obser-
vations are sampled uniformly randomly have been well-studied. The algorithms consist of spectral
decomposition or matrix factorization [1, 2, 3], nuclear norm minimization [4, 5, 6, 7, 8, 9], gradient
descent [1, 2, 10, 11, 12], alternating minimization [13, 14], and nearest neighbor style collaborative
filtering [15, 16, 17, 18, 19]. These algorithms have been shown to be provably consistent as long as
the number of observations is Ω(rn poly(log n)) for the noiseless setting where r is the rank and n is
the number of rows and columns [1, 4]; similar results have been attained under additive Gaussian
noise [2, 5] and generic bounded noise [3, 18]. Lower bounds show that Ω(rn) samples are necessary
for consistent estimation, and Ω(rn log(n)) samples are necessary for exact recovery [5, 6], implying
that the proposed algorithms are nearly sample efficient order-wise up to the information theoretic
lower bounds.

There are results extending matrix estimation algorithms to higher order tensor estimation,
assuming the tensor is low rank and that observations are sampled uniformly at random. The
earliest approaches simply flatten or unfold the tensor to a matrix and subsequently apply matrix
estimation algorithms [20, 21, 22, 23]. A d-order tensor where each dimension is length n would
be unfolded to a nbd/2c × ndd/2e matrix, resulting in a sample complexity of O(ndd/2e poly(log n)),
significantly larger than the natural statistical lower bound that is linear with n due to the model
being parameterized by linear in n latent variables. When d is odd, for example d = 3 the sample
complexity for this naive approach scales as O(n2 poly(log n)).

Subsequent works have improved upon this sample complexity, requiring only Ω(n3/2 poly(log n))
observed entries for a 3-order tensor [24, 25, 26, 27, 28, 29, 30, 31]. [24, 25] analyzes the alternating
minimization algorithm for exact recovery of the tensor given noiseless observations and finite rank
r = Θ(1). [27, 28] use the sum of squares (SOS) method, and [29] introduces a spectral method.
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Both of these latter algorithms can handle noisy observations and overcomplete tensors where the
rank is larger than the dimension. [30, 31] furthermore characterize the minimax optimal rate for
the MSE and achieve it using spectral initialization followed by power iteration. For a general
d-order tensor these results translate into a sample complexity scaling as O(nd/2), improving upon
O(ndd/2e. [32] prove that tensor nuclear norm minimization can recover the underlying low-rank
d-order tensor with O(n3/2 poly(log n)) samples in the noiseless setting; however, the algorithm is
not efficiently computable as computing tensor nuclear norm is NP-hard [33].

[27] conjecture that any polynomial time estimator for a 3-order tensor must require Ω(n3/2)
samples, based on a reduction between tensor estimation for a rank-1 tensor to the random 3-XOR
distinguishability problem. They argue that if using the sum of squares hierarchy to construct
relaxations for tensor rank, any result that achieves a consistent estimator with fewer than n3/2

samples will violate a conjectured hardness of random 3-XOR distinguishability. Information theo-
retic bounds imply that one needs at least Ω(drn) observations to recover a d-order rank r tensor,
consistent with the degrees of freedom or number of parameters in the model. Interestingly, this im-
plies a conjectured gap between the computational and statistically achievable sample complexities,
highlighting how tensor estimation is distinctly more difficult than matrix estimation.

The majority of the results in tensor estimation provide bounds on the mean squared error,
which aggregates errors across entries. In contrast our results will also provide bounds on the
maximum entrywise error. There has been recent interest on developing matrix estimation methods
that provide max entrywise bounds using a leave one out analysis, cf. [34], [35], [36], [37], [38] and
[39]. Subseqeuntly [40, 41] extended the leave one out analysis to the tensor setting to obtain
entrywise error bounds for a gradient descent algorithm with spectral initialization. The analysis
and algorithm in our paper is significantly different than their work, as it results from showing high
probability guarantees on the similarity computation, which is akin to a spectral algorithm, followed
by a nearest neighbor analysis. Our results suggests that a combination of spectral analysis and
nearest neighbor smoothing can achieve entrywise consistent estimates without further gradient
descent refinements. As nearest neighbor methods are still widely used in industry, understanding
their theoretical performance is of interest.

1.2 Contribution

Our results answer the following unresolved questions in the literature.

1. Is there a computationally efficient estimator that can provide a consistent estimation of
low-rank tensor with respect to maximum entry-wise error (MEE) with minimal sample com-

plexity of Ω(n
3
2 ) in the presence of noise?

2. Is there an extension of matrix estimation collaborative filtering algorithm for the setting of
tensor estimation that can provide consistent estimation with such minimal sample complex-
ity?

3. Can the estimator be robust to adversarial bounded noise in the observations?

To begin with, we propose an algorithm for a symmetric 3-order tensor estimation which gener-
alizes a nearest neighbor collaborative filtering algorithm for sparse matrix estimation introduced
in [18]. Näıvely applying the matrix estimation algorithm in [18] to the n × n2 matrix obtained
by unfolding the 3-order tensor would require Ω(n2) samples, far more than the desired sample

complexity of Ω(n
3
2 ). However, we argue that such a matrix obtained from the unfolded tensor

can be used, after non-trivial modification, to compute the similarities between rows accurately
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using Ω(n
3
2

+κ) samples for any positive κ > 0. After computing these similarities we can achieve
consistent estimation via a nearest neighbor estimator by additionally using the tensor structure.

Specifically, we establish that the mean squared error (MSE) in the estimation converges to 0
as long as Ω(n3/2+κ) random samples are observed for any κ > 0 for tensor with rank r = Θ(1).
We further establish a stronger guarantee that the maximum entry-wise error (MEE) converge to
0 with high probability with similar sample complexity of Ω(n3/2+κ). Thus, this simple iterative
collaborative filtering algorithm nearly achieves the conjectured computational sample complexity
lower bound of Ω(n3/2) for tensor estimation. While we present the results for symmetric tensors,
our method and analysis can extend to asymmetric tensors, which we discuss in Section 5.4.

Beyond low-rank tensors, our results hold for tensors with potentially countably infinite rank
as long as they can be well approximated by a low-rank tensor. Specifically, if the tensor can be
approximated with ε ≥ 0 with respect to max-norm by a rank r = Θ(1) tensor, then the MSE
converges to poly(ε) and MEE converges to poly(ε) with high probability as long as Ω(n3/2+κ)
random samples are observed for any κ > 0. This follows as a consequence of the robustness
property of the algorithm that we establish: if arbitrary noise bounded by ε ≥ 0 is added to each
observation, then the estimation error with respect to MEE and MSE degrades by poly(ε).

To establish our results, the key analytic tool is utilizing certain concentration properties of a
bilinear form arising from the local neighborhood expansion of any given coordinate for an asym-
metric matrix with dimensions n × n2. This generalizes the analysis of a similar property for
symmetric matrices in the prior work of [18]. Specifically, establishing the desired concentration
requires handling dependencies arising in the local neighborhood expansion of the 3-order tensor
that was absent in the matrix setting considered in [18]. Subsequently, we require a novel analytic
method compared to the prior work. In particular we believe that the proof techniques in Lemma
7.7 may be useful to other settings in which one may desire a tighter concentration on sums of
sparse random variables. As a consequence, we also establish performance guarantees for matrix
estimation for asymmetric matrices having dimensions of different order, generalizing beyond of
[18].

The algorithm and analysis also sheds insight on the conjectured lower bound for 3-order tensor.
In particular, the threshold of n3/2 is precisely the density of observations needed for the connec-
tivity in the associated graph that is utilized to calculate similarities. If the graph is disconnected,
the similarities can not be computed, while if the graph is connected, we are able to show that
similarity calculations yield an excellent estimator. Understanding this relationship further remains
an interesting open research direction.

A benefit of our algorithm is that it can be implemented in a parallelized manner where the
similarities between pair of indices are computed in parallel. This lends itself to a distributed,
scalable implementation. A naive bound on the computational complexity of our algorithm for 3-
order tensor is at most pn6. As discussed in Section 5.4, with use of approximate nearest neighbors,
these can be further improved and made truly implementable. 1

2 Preliminaries

Tensor estimation from sparse observations hinges on an assumption that the true model exhibits
low dimensional structure despite the high dimensional representation. However, there is not a

1A weaker abbreviated version of this result appeared in [42] without any proofs or discussion. Since the preliminary
results, the convergence rates of the error have improved, and we have new results showing a perturbation analysis
under arbitrary bounded noise, which extends our results to the approximately low rank setting. We also present a
modification of the algorithm that significantly improves the overall computational complexity of the algorithm.
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mode 1

mode 2

mode 3

unfolded tensor along mode 1

mode-1 fiber

…

Figure 1: Depicting an unfolding of a 3rd order tensor along mode 1. The columns of the resulting
matrix are referred to as the mode-1 fibers of the tensor.

unique definition of rank in the tensor setting, as natural generalizations of matrix rank lead to
different quantities when extended to higher order tensors. We will focus on two commonly used
definitions of tensor rank, the CP rank and the Tucker or multilinear rank.

For a d-order tensor F ∈ Rnd , we can decompose F into a sum of rank-1 tensors. For example
if d = 3, then

F =

r∑
k=1

uk ⊗ vk ⊗ wk,

where {uk, vk, wk}k∈[r] is a collection of length n vectors. The CP-rank is the minimum number r
such that F can be written as a sum of r rank-1 tensors, which we refer to as a CP-decomposition.
The CP-rank may in fact be larger than the dimension n, and furthermore the latent vectors need
not be orthogonal as is the case in the matrix setting.

An alternate notion of tensor rank is defined according to the dimension of subspaces corre-
sponding to each mode. Let F(y) denote the unfolded tensor along the y-th mode, which is a matrix

of dimension n× nd−1. Let columns of F(y) be referred to as mode y fibers of tensor F as depicted
in Figure 1. The Tucker rank, or multilinear rank, is a vector (r1, r2, . . . rd) such that for each mode
` ∈ [d], r` is the dimension of the column space of F(y). The Tucker rank is also the minimal values
of (r1, r2, . . . rd) such that the tensor F can be decomposed according to a multilinear multiplication
of a core tensor Λ ∈ Rr1×r2×...rd with latent factor matrices Q1 . . . Qd for Q` ∈ Rn`×r` , denoted as

F = (Q1 ⊗ · · ·Qd) · (Λ) :=
∑

k∈[r1]×[r2]···×[rd]

Λ(k)Q1(·, k1)⊗Q2(·, k2) · · · ⊗Qd(·, kd), (2.1)

and depicted in Figure 2. The higher order SVD (HOSVD) specifies a unique Tucker decomposition
in which the factor matrices Q1 . . . Qd are orthonormal and correspond to the left singular vectors
of the unfolded tensor along each mode [43].

If the CP-rank is r, the Tucker-rank is bounded above by (r, r, . . . r) by constructing a super-
diagonal core tensor. If the Tucker rank is (r1, r2, . . . rd), the CP-rank is bounded by the number of
nonzero entries in the core tensor, which is at most r1r2 · · · rd/(max` r`) [43]. While the latent factors
of the HOSVD are orthogonal, the latent factors corresponding to the minimal CP-decomposition
may not be orthogonal. For simplicity of presentation, we will consider a limited setting where
there exists a decomposition of the tensor into the sum of orthogonal rank-1 tensors. This is equiv-
alent to enforcing that the core tensor Λ associated to the Tucker decomposition is superdiagonal,
or equivalently enforcing that the latent factors in the minimal CP-decomposition are orthogonal.
There does not always exist such an orthogonal CP-decomposition, however this class still includes
all rank 1 tensors which encompasses the class of instances used to construct the hardness conjec-
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(a) CP-rank admits a decomposition of rank-1 tensors (b) Tucker rank admits decomposition of 

Figure 2: (Left) The tensor CP-rank admits a decomposition corresponding to the sum of r rank-1
tensors.
(Right) The Tucker rank or multilinear rank (r1, r2, . . . rd) admits a decomposition corresponding to
a multilinear multiplication of a core tensor of dimensions (r1, r2, . . . rd) with latent factor matrices
associated to each mode.

ture in [27]. Our results also extend beyond to general tensors as well, though the presentation is
simpler in the orthogonal setting.

3 Problem Statement and Model

Consider an n×n×n symmetric tensor F generated as follows: For each u ∈ [n], sample θu ∼ U [0, 1]
independently. Let the true underlying tensor F be described by a Lipschitz function f evaluated
over the latent variables, F (u, v, w) = f(θu, θv, θw) for u, v, w ∈ [n]. Without loss of generality, we
shall assume that supu,v,w∈[0,1] |f(θu, θv, θw)| ≤ 1. For example, if the coordinates of one mode of
the tensor represent users or products in an e-commerce platform, one can view the latent variables
associated to a coordinate as the unknown “type” of the user/product, which can be thought of
as sampled i.i.d. from an underlying population distribution. The latent function f would then
describe the expected observed interaction between units of type θu, θv, and θw.

Let M denote the observed symmetric data tensor, and let Ω ⊆ [n]3 denote the set of observed
indices. Due to the symmetry, it is sufficient to restrict the index set to triplets (u, v, w) such
that u ≤ v ≤ w, as the datapoint is identical for all other permutations of the same triplet. The
datapoint at each of these distinct triplets {(u, v, w) : u ≤ v ≤ w} is observed independently with
probability p ∈ (0, 1], where we assume the observation is corrupted by mean zero independent
additive noise terms. For (u, v, w) ∈ Ω,

M(u, v, w) = F (u, v, w) + εuvw, (3.1)

and for (u, v, w) /∈ Ω, M(u, v, w) = ?2. We shall assume that |M(u, v, w)| ≤ 1 with probability 1.
We allow εuvw to have different distributions for different distinct triplets (u, v, w) as long as it is
uniformly bounded so as to satisfy the boundedness constraints on |M(u, v, w)| and |F (u, v, w)|.
When the observations M(u, v, w) are binary, this model is equivalent to the 3-uniform simple lips-
chitz hypergraphon in [44], which states a generative model for hypergraphs where the hyperedges
consist of size 3 vertex sets. In this setting, F (u, v, w) ∈ [0, 1] would represent the probability
of observing the hyperedge (u, v, w), and M(u, v, w) ∈ {0, 1} would indicate the presence of the
hyperedge (u, v, w). The noise term εuvw is clearly bounded since the observations are binary. For
any application in which the observations M(u, v, w) are bounded, then F (u, v, w) = E[M(u, v, w)]
would also be bounded, such that the boundedness on the noise εuvw would be reasonable. However,
for applications in which M(u, v, w) may not be bounded, or the almost sure bound is very large,

2The notation of ? is used to denote the missing observation. When convenient, we shall replace ? by 0 for the
purpose of computation.
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we can extend our analysis to allow for sub-Gaussian noise εuvw rather than uniformly bounded
noise, which is further discussed in section 6.

The goal is to recover the underlying tensor F from the incomplete noisy observation M so that
the mean squared error (MSE) is small, where MSE for an estimate F̂ is defined as

MSE(F̂ ) := E
[

1
n3

∑
(u,v,w)∈[n]3(F̂ (u, v, w)− F (u, v, w))2

]
. (3.2)

We will also be interested in the maximum entry-wise error (MEE) defined as

‖F − F̂‖max := max
(u,v,w)∈[n]3

|F̂ (u, v, w)− F (u, v, w)|. (3.3)

3.1 Finite spectrum

Consider the setting where the function f has finite spectrum. That is,

f(u, v, w) =
∑r

k=1 λkqk(θu)qk(θv)qk(θw),

where r = Θ(1) and qk(.) denotes the orthonormal `2 eigenfunctions, satisfying
∫ 1

0 qk(θ)
2dθ = 1

and
∫ 1

0 qk(θ)qh(θ)dθ = 0 for k 6= h. Assume that the eigenfunctions are bounded, i.e. |qk(θ)| ≤ B
for all k ∈ [r].

Let Λ denote the diagonal r × r matrix where Λkk = λk. Let Q denote the r × n matrix where
Qka = qk(θa). Let Q denote the r ×

(
n
2

)
matrix where Qkb = qk(θb1)qk(θb2) for some b ∈

(
n
2

)
that

represents the pair of vertices (b1, b2) for b1 < b2. The finite spectrum assumption for f implies
that the sampled tensor F is such that,

F =
∑r

k=1 λk(Q
T ek)⊗ (QT ek)⊗ (QT ek).

That is, F has CP-rank at most r. In above and in the remainder of the paper, ek denotes a vector
with all 0s but kth entry being 1 of appropriate dimension (here it is r).

3.2 Approximately finite spectrum

In general, f may not have finite spectrum, e.g. a generic analytic function f . For such a setting,
we shall consider f with approximately finite spectrum. Specifically, a function f : [0, 1]3 → R,
it is said to have ε-approximate finite spectrum with rank r for ε ≥ 0 if there exists a symmetric
function fr : [0, 1]3 → R such that

sup
θu,θv ,θw∈[0,1]

|f(θu, θv, θw)− fr(θu, θv, θw)| ≤ ε

Fr(u, v, w) = fr(θu, θv, θw) =
∑r

k=1 λkqk(θu)qk(θv)qk(θw), (3.4)

where r = Θ(1) and qk(.) denotes the orthonormal `2 eigenfunctions as before. That is, they satisfy∫ 1
0 qk(θ)

2dθ = 1,
∫ 1

0 qk(θ)qh(θ)dθ = 0 for k 6= h and |qk(θ)| ≤ B for all k ∈ [r].
The above describe property of f implies that the sampled tensor F is has ε-approximate rank

r such that Fr =
∑r

k=1 λk(Q
T ek)⊗ (QT ek)⊗ (QT ek) and

‖F − Fr‖max ≤ ε.
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3.3 Extensions Beyond Orthogonal CP-rank

The orthogonality conditions on our latent variable decomposition imply that the tensor F can
be written as a sum of r rank-1 tensors, where the latent factors are approximately orthogonal.
Alternately, this would suggest a Tucker decomposition of the tensor where the core tensor is
superdiagonal. Not all tensors admit an orthogonal CP-rank decomposition, but this assumption
has also been used in the literature as in [24]. This assumption of the existence of an orthogonal
CP-rank decomposition can be relaxed as the main property that our algorithm and analysis use
is the orthogonal decomposition of the unfolded tensors along each mode. Our algorithm and
analysis will still extend to tensors with Tucker rank bounded by (r, r, r). For a general (r, r, r)
Tucker rank tensor, we would instead carry out the analysis with respect to the latent orthogonal
factors corresponding to the SVD of the unfolded tensor into a matrix, and the algorithm would
use the same procedure to estimate similarities along each of the three modes separately. The
presentation is stated for the orthogonal symmetric setting for simplicity.

3.4 Comparision of Assumptions with Literature

In the decomposition of the model f when it has finite spectrum, we assume that the functions qk
are orthonormal. This induces a decomposition of tensor F in terms of Q ∈ Rr×n with respect to
the sampled latent features θ ∼ U [0, 1]. The rank r of the underlying decomposition is assumed to
be Θ(1). We compare and contrast these with those assumed in the tensor estimation literature.

Most literature on tensor estimation do not impose a distribution on the underlying latent
variables, but instead assume deterministic ‘incoherence’ style conditions on the latent singular
vectors associated to the underlying tensor decomposition. This plays a similar role to our combined
assumption of qk being orthonormal and the latent variables sampled from a uniform distribution
so that the mass in the singular vector matrix is roughly uniformly spread. For example, the
notion of incoherence used in [27] imposes that the entries of the latent factors are bounded by
a constant when the norm of the latent factor vectors scales as Θ(

√
n). As θu ∼ U [0, 1], it holds

that the latent factor vector (qk(θ1), qk(θ2), . . . qk(θn)) will have norm scaling as
√
n. Due to the

the boundedness assumption that |qk(θ)| ≤ B, our model will satisfy incoherence as defined in [27].
Some of the literature on tensor estimation allows for overcomplete tensors, i.e. r > n. While our
finite spectrum setup requires r = Θ(1), the approximately finite spectrum can allow for potentially
countably infinite spectrum but with sharply decaying spectrum so that it has ε-approximate rank
being r = Θ(1).

In order to establish our result for the approximately finite spectrum setting, we perform a per-
turbation analysis wherein each observed entry is perturbed arbitrarily bounded by ε in magnitude:
we shall establish that the resulting estimation error is changed by poly(ε), both with respect to
the MSE and max-norm. That is, with respect to arbitrary bounded noise in the observations, we
are able to characterize the error induced by our method, which is of interest in its own right.

We remark on the Lipschitz property of f : the Lipschitz assumption implies that the tensor is
“smooth”, and thus there are sets of rows and columns that are similar to one another. As our
algorithm is based on a nearest neighbor style approach we need that for any coordinate u, there is
a significant mass of other coordinates a that are similar to u with respect to the function behavior.
Other regularity conditions beyond Lipschitz that would also guarantee sufficiently many “nearest
neighbors” would lead to similar results for our algorithm. Lipschitzness also implies approximate
low rankness as a Lipschitz function can be approximated by a piecewise constant function, where
the number of pieces would then upper bound the rank.

8



4 Algorithm

The algorithm is a nearest neighbor style in which the first phase is to estimate a distance func-
tion between coordinates, denoted dist(u, a) for all (u, a) ∈ [n]2. Given the similarities, for some
threshold η, the algorithm estimates by averaging datapoints from coordinates (a, b, c) for which
dist(u, a) ≤ η, dist(v, b) ≤ η, and dist(w, c) ≤ η.

The entry F (a, b, c) depends on a coordinate a through its representation in the eigenspace,
given by Qea. Therefore f(a, b, c) ≈ f(u, v, w) as long as Qeu ≈ Qea, Qev ≈ Qeb, and Qew ≈ Qec.
Ideally we would like our distance function dist(u, a) to approximate ‖Qeu −Qea‖2, but these are
hidden latent features that we do not have direct access to.

Let’s start with a thought experiment supposing that the density of observations were p =
ω(n−1) and the noise variance is σ2 for all entries. For a pair of coordinates u and a, the expected
number of pairs (b, c) such that both (u, b, c) and (a, b, c) are observed is on the order of p2n2 = ω(1).
For fixed θa, θu, and for randomly sampled θb, θc, the expected squared difference between the two
corresponding datapoints reflects the distance between Qea and Qeu along with the overall level of
noise,

E[(M(a, b, c)−M(u, b, c))2 | θa, θu]

= E[(F (a, b, c)− F (u, b, c))2 | θa, θu] + E[ε2abc + ε2ubc]

= E[(
∑

k λk(qk(θa)− qk(θu))qk(θb)qk(θc))
2 | θa, θu] + 2σ2

= E[
∑

k λ
2
k(qk(θa)− qk(θu))2qk(θb)

2qk(θc)
2 | θa, θu] + 2σ2

=
∑

k λ
2
k(qk(θa)− qk(θu))2 + σ2

= ‖ΛQ(ea − eu)‖22 + 2σ2,

where we use the fact that qk(·) are orthonormal. This suggests that approximating dist(u, a)
with the average squared difference between datapoints corresponding to pairs (b, c) for which both
(u, b, c) and (a, b, c) are observed.

This method does not attain the p = n−3/2 sample complexity, as the expected number of pairs
(b, c) for which (a, b, c) and (u, b, c) are both observed will go to zero for p = o(n−1). This limitation
arises due to the fact that when p = o(n−1), the observations are extremely sparse. Consider the
n×
(
n
2

)
“flattened” matrix of the tensor where row u correspond to coordinates u ∈ [n], and columns

correspond to pairs of indices, e.g. (b, c) ∈ [n]× [n] with b ≤ c. For any given row u, there are very
few other rows that share observations along any column with the given row u, i.e. the number
of ‘neighbors’ of any row index is few. If we wanted to exploit the intuition of the above simple
calculations, we have to somehow enrich the neighborhood. We do so by constructing a graph
using the non-zero pattern of the matrix as an adjacency matrix. This mirrors the idea from [18]
for matrix estimation, which approximates distances by comparing expanded depth 2t + 1 local
neighborhoods in the graph representing the sparsity pattern of the unfolded or flattened tensor.
In particular, we will construct a statistic dist(u, a) such that with high probability it concentrates
around d(u, a) for

d(θu, θa) = ‖Λ2t+1Q(eu − ea)‖22 =

r∑
k=1

λ4t+2
k (qk(θu)− qk(θa))2. (4.1)

As F (u, v, w) = f(θu, θv, θw) =
∑r

k=1 λkqk(θu)qk(θv)qk(θw), we can show that if d(θu, θa), d(θv, θb),
and d(θw, θc) are small, then F (u, v, w) will be close to F (a, b, c). The remaining challenge thus how
to approximate d(u, a). Consider a length 2t path in the bipartite graph from u to a, denoted by
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(u, e1, x1, e2, x2, . . . xt−1, et, a), where x1, . . . xt−1 are distinct coordinates in [n]\{u, a}, and e1, . . . et

consist of pairs in [n]2 such that the coordinates represented in these pairs are distinct from each
other as well as {u, a, x1, . . . xt−1}. Let us denote the pair ei = (ei1, e

i
2). Then the product of weights

along this path in expectation conditioned on θu, θa is equal to

E

[
M(u, e1

1, e
1
2)

(
t−1∏
i=1

M(ei1, e
i
2, x

i)M(xi, ei+1
1 , ei+1

2 )

)
M(et1, e

t
2, a)

∣∣∣∣∣ θu, θa
]

= E

[
f(θu, θe11 , θe12)

(
t−1∏
i=1

f(θei1
, θei2

, θxi)f(θxi , θei+1
1
, θei+1

2
)

)
f(θet1 , θet2 , θa)

∣∣∣∣∣ θu, θa
]

=
r∑

k=1

λ2t
k qk(θu)qk(θa) = eTuQ

TΛ2tQea. (4.2)

Therefore, the product of weights along the path connecting u to a is a good proxy of quantity
eTuQ

TΛ2tQea, for paths which do not revisit coordinates. The algorithm first constructs the local
neighborhood of depth 2t centered at each coordinate u, and then connects these neighborhoods to
form paths of length 4t+ 2 in total, where t is chosen such that for every u, a there are sufficiently
many paths used to construct the statistic dist(u, a) to guarantee concentration. The tensor setting
requires an important modification of how one constructs the local breadth-first-search (BFS) trees
due to the shared latent variables across different modes, as described in step 3 below.

4.1 Formal Description

We provide a formal description of the algorithm below. The crux of the algorithm is to compute
similarity between any pair of indices using the matrix obtained by flattening the tensor, and then
using a nearest neighbor estimator using these similarities between indices over the tensor structure.
Details are as follows.

Step 1: Sample Splitting. Let us assume for simplicity of the analysis that we obtain 2 inde-
pendent fresh observation sets of the data, Ω1 and Ω2. Tensors M1 and M2 contain information
from the subset of the data in M associated to Ω1 and Ω2 respectively. M1 is used to com-
pute pairwise similarities between coordinates, and M2 is used to average over datapoints for
the final estimate. Furthermore, we take the coordinates [n] and split it into two sets, [n] =
{1, 2, . . . , n/2} ∪ {n/2 + 1, n/2 + 2, . . . n}. Without loss of generality, let’s assume that n is even.
Let VA denote the set of coordinate pairs within set 1 consisting of distinct coordinates, i.e.
VA = {(b, c) ∈ [n/2]2 s.t. b < c}. Let VB denote the set of coordinate pairs within set 2 consisting of
distinct coordinates, i.e. VB = {(b, c) ∈ ([n]\ [n/2])2 s.t. b < c}. The sizes of |VA| and |VB| are both
equal to

(
n/2
2

)
. We define MA to be the n-by-

(
n/2
2

)
matrix taking values MA(a, (b, c)) = M1(a, b, c),

where each row corresponds to an original coordinate of the tensor, and each column corresponds to
a pair of coordinates (b, c) ∈ VA from the original tensor. We define MB to be the n-by-

(
n/2
2

)
matrix

taking values MB(a, (b, c)) = M1(a, b, c), where each row corresponds to an original coordinate of
the tensor, and each column corresponds to a pair of coordinates (b, c) ∈ VB from the original ten-
sor. A row-column pair in the matrix corresponds to a triplet of coordinates in the original tensor.
We will use matrices MA and MB to compute similarities or distances between coordinates, and
we use tensor M2 to compute the final estimates via nearest neighbor averaging. The data in MA

is used to construct depth 2t local neighborhoods rooted at each coordinate u, and MB is used to
connect the neighborhoods to form 2t+2 length paths between any two coordinates u and a, which
are then used to estimate the similarity between u and a. This approach is akin to the technique of

10



“sprinkling” used in random graph analysis, in which we first analyze local neighborhoods formed
with the edges in MA, and then “sprinkle” the edges in MB to connect these neighborhoods and
argue that there are sufficiently many paths then that connect any two coordinates u and v.

Step 2: Construct Bipartite Graph from Ω1,MA. We define a bipartite graph corresponding
to the flattened matrix MA. Construct a graph with vertex set [n]∪VA. There is an edge between
vertex a ∈ [n] and vertex (b, c) ∈ VA if (a, b, c) ∈ Ω1, and the corresponding weight of the edge is
M1(a, b, c). Recall that we assumed a symmetric model such that triplets that are permutations of
one another will have the same data entry and thus the same edge weight in the associated graph.
Figure 3(a) provides a concrete example of a bipartite graph constructed from tensor observations.

Step 3: Expanding the Neighborhood. Consider the graph constructed from Ω1,MA. For
each vertex u ∈ [n], we construct a breadth first search (BFS) tree rooted at vertex u such that the
vertices for each depth of the BFS tree consists only of new and previously unvisited coordinates,
i.e. if vertex a ∈ [n] is first visited at depth 4 of the BFS tree, then no vertex corresponding to
(a, b) for any b ∈ [n] can be visited in any subsequent depths greater than 4. Similarly, if (a′, b′)
is visited in the BFS tree at depth 3, then vertices that include either of these coordinates, i.e. a′,
b′, (a′, c), or (b′, c) for any c ∈ [n], can not be visited in subsequent depths greater than 3. This
restriction is only across different depths; we allow (a, b) and (a, c) to be visited at the same depth
of the BFS tree.

There may be multiple valid BFS trees due to different ordering of visiting edges at the same
depth. For example, if a vertex at depth s has edges to two different vertices at depth s−1 (i.e. two
potential parents), only one of the edges can be chosen to maintain the tree property, but either
choice is equally valid. Let us assume that when there is more than one option, one of the valid
edges are chosen uniformly at random. Figure 3(c) shows valid BFS trees for a bipartite graph
constructed from an example tensor.

The graph is bipartite so that each subsequent layer of the BFS tree alternates between the
vertex sets [n] and VA. Consider a valid BFS tree rooted at vertex u ∈ [n] which respects the
constraint that no coordinate is visited more than once. We will use Uu,s ⊆ VA to denote the set
of vertices at depth (2s− 1) of the BFS tree, and we use Su,s ⊆ [n] to denote the set of vertices at
depth 2s of the BFS tree. Let Bu,s ⊂ [n] ∪ VA denote the set of vertices which are visited in the
first s layers of the BFS tree,

Bu,s = ∪h∈bs/2cSu,h ∪l∈ds/2e Uu,l.

We will overload notation and sometimes use Bu,s to denote the subset of coordinates in [n] visited
in the first s layers of the BFS tree, including both visited single coordinate vertices or coordinates
in vertices VA, i.e.

Bu,s = ∪h∈bs/2cSu,h ∪
{
x ∈ [n] s.t. ∃(y, z) ∈ ∪l∈ds/2eUu,l satisfying x ∈ {y, z}

}
.

Let G(Bu,s) denote all the information corresponding to the subgraph restricted to the first s layers
of the BFS tree rooted at u. This includes the vertex set Bu,s, the latent variables {θa}a∈Bu,s and
the edge weights {M1(a, b, c)}a,(b,c)∈Bu,s .

We define neighborhood vectors which represent the different layers of the BFS tree. Let
Nu,s ∈ [0, 1]n be associated to set Su,s, where the a-th coordinate is equal to the product of weights
along the path from u to a in the BFS tree for a ∈ Su,s. Similarly, let Wu,s ∈ [0, 1]VA be associated
to set Uu,s, where the (b, c)-th coordinate is equal to the product of weights along the path from u
to (b, c) in the BFS tree for (b, c) ∈ Uu,s. For a ∈ [n], let πu(a) denote the parent of a in the valid
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BFS tree rooted at vertex u. For (b, c) ∈ VA, let πu(b, c) denote the parent of (b, c) in the BFS tree
rooted at vertex u. We can define the neighborhood vectors recursively,

Nu,s(a) = MA(a, πu(a))Wu,s(πu(a))I(a∈Su,s)
Wu,s(b, c) = MA(πu(b, c), (b, c))Nu,s−1(πu(b, c))I((b,c)∈Uu,s)

and Nu,0 = eu. Let Ñu,s denote the normalized vector Ñu,s = Nu,s/|Su,s| and let W̃u,s denote the
normalized vector W̃u,s = Wu,s/|Uu,s|. Figure 3(d) illustrates the neighborhood sets and vectors
for a valid BFS tree. Recall from Eq. (4.2) that conditioned on θu and θa, E[Nu,s(a) | θu, θa] =
P (a ∈ Sus) eTuQTΛ2sQea. Furthermore the event that a ∈ Sus only depends on the presence of
the edges as determined by the Bernoulli uniform sampling, and is thus independent from the
latent variable θa. We will show in a subsequent Lemma 7.2 that eTkQÑu,t ≈ eTk Λ2tQeu, implying
that the neighborhood vector Ñu,t, which is constructed from products of weights over length 2s
paths originating at u, is a statistic that is approximates Λ2tQeu. Similar calculations show that
E[Wu,s(b, c) | θu, θb, θc] = P ((b, c) ∈ Uus)

∑r
k=1 λ

2t−1
k qk(θu)qk(θb)qk(θc).

Step 4: Computing the distances using MB. Let

t =
⌈ ln(n)

2 ln(p2n3)

⌉
. (4.3)

A heuristic for the distance would be

dist(u, v) ≈ 1

|VB|p2
(Ñu,t − Ñv,t)MBMB

T (Ñu,t − Ñv,t) (4.4)

=
1

|VB|p2

∑
(α,β)∈VB

∑
a,b∈[n]2

(Ñu,t(a)− Ñv,t(a))MB(a, α, β)MB(b, α, β)(Ñu,t(b)− Ñv,t(b))

For technical reasons that facilitate cleaner analysis, we use the following distance calculations.
There are two deviations from the equation in (4.4). First we exclude a = b from the summation.
Second we exclude coordinates for α or β that have been visited previously in Bu,2t or Bv,2t. Define
distance as

dist(u, v) = (Zuu + Zvv − Zuv − Zvu), (4.5)

Zuv =
1

|VB(u, v, t)|p2|Su,t||Sv,t|
∑

(α,β)∈VB(u,v,t)

Tuv(α, β),

VB(u, v, t) = {(α, β) ∈ VB s.t. α /∈ Bu,2t ∪ Bv,2t, β /∈ Bu,2t ∪ Bv,2t},

Tuv(α, β) =
∑

a6=b∈[n]

Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β)). (4.6)

We will show in Lemma 6.2 that dist(u, v) ≈ d(u, v) := ‖Λ2t+1Q(eu − ev)‖22. The estimate
is constructed by averaging over the product of weights over paths from u to v, where the term
Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β)) in Eq. (4.6) is the product of weights over the path that
goes from u to a to (α, β) to b to v, as Nu,t(a) represents the products of weights on the path from
u to a and Nv,t(b) represents the products of weights on the path from b to v. The parameter t is
chosen such that there are sufficiently many paths that we are averaging over in order to reduce the
noise. In particular, the choice of t ≥ ln(n)/2 ln(p2n3) implies that |Su,t| ≥ (p2n3)t = Ω(n1/2), such
that the number of paths the estimator averages over is approximately n2p2|Su,t||Sv,t| = Ω(p2n3).
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(a) Bipartite graph constructed from tensor; set 𝒱' = { 1,2 , 1,3 , 1,4 , 2,3 , 2,4 , 3,4 }

(b) Traditional BFS trees (c) Valid BFS trees for our algorithm, 
no repeat coordinates across depths

(d) Neighborhood sets and vectors for a valid BFS tree with root vertex 𝑢 = 4. 
Let 𝑒! and 𝑒(#,%) denote standard basis vectors.

5 1,2 5

6

1,4
4

1,3

2,3

1,2 6

4

1,3
2,3
1,2

6

3
5

5

78

8

8

7
7

7

<latexit sha1_base64="4pyUemqMeb2HwTDL1cfCbvzUKVM="></latexit>

N4,0 = e4

W4,1 = M1(4, 1, 3)e(1,2) + M1(4, 2, 3)e(2,3) + M1(4, 1, 3)e(1,3)

N4,1 = M1(4, 1, 2)M1(1, 2, 6)e6 + M1(4, 1, 2)M1(1, 2, 5)e5

Figure 3: Consider a symmetric 3-order tensor with n = 8, and the observation set Ω1 =
{(1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 4), (1, 4, 8), (2, 3, 4), (2, 4, 5),
(2, 5, 6), (3, 4, 7), (3, 5, 6)}. Figure (a) depicts the bipartite graph constructed from this set of ob-
servations. Weights would be assigned to edges based on the value of the observed entry in the
tensor M1. Figure (b) depicts the traditional notion of the BFS tree rooted at vertices 1 and 4.
Vertices at layer/depth s correspond to vertices with shortest path distance of s to the root vertex.
Figure (c) depicts valid BFS trees for our algorithm, which imposes an additional constraint that
coordinates cannot be repeated across depths. For the BFS tree rooted at vertex 1, edges ((2, 4), 3)
and ((3, 4), 2) are not valid, as coordinates 2 and 3 have both been visited in layer 2 by the vertices
(2, 4) and (3, 4). For the BFS tree rooted at vertex 4, edge (5, (2, 4)) is not valid as coordinate 2
has been visited in layer 2 by the vertex (2, 3) and coordinate 4 has veen visited in layer 1 by the
root vertex 4. Figure (d) depicts the sets Su,s and Uu,s along with the neighborhood vectors Nu,s

and Wu,s for a specific valid BFS tree rooted at vertex u = 4.
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This rough calculation highlights that p must be ω(n−3/2) to guarantee that the number of paths
used to compute dist(u, v) is increasing with n.

Step 5: Averaging datapoints to produce final estimate. Let Ω2uvw denote the set of indices
(a, b, c) such that a ≤ b ≤ c, (a, b, c) ∈ Ω2, and the estimated distances dist(u, a), dist(v, b), dist(w, c)
are all less than some chosen threshold parameter η. The final estimate averages the datapoints
corresponding to indices in Ω2uvw,

F̂ (u, v, w) = 1
|Ω2uvw|

∑
(a,b,c)∈Ω2uvw

M2(a, b, c). (4.7)

4.2 Difference between tensor and matrix setting

The modifications in the construction of the breadth-first-search (BFS) tree for the tensor setting
relative to the matrix setting are critical to the analysis. If we simply considered the classical
construction of a BFS tree in the associated bipartite graph (as the matrix setting uses), this would
lead to higher variance and bias due to the correlations of vertices sharing common latent variables
associated to the same underlying coordinates of the tensor. Alternatively, if one constructed a
BFS tree by not allowing any coordinate of the tensor to be visited more than once, this would also
lead to suboptimal results as it would throw away too many entries, limiting the computed statistic
to only order n data points. Our final algorithm, which allows for vertices with shared coordinates
in the same depth of the BFS but not across different depths, is carefully chosen in order to break
dependencies across different depths of the BFS tree, while still allowing for sufficient expansion in
each depth.

To extend the algorithm to d-order tensors for d > 3, we will compute similarities between
u, v via a similar computation as described in Steps 2-4 above, except it would be applied to the
n×nd−1 matrix and associated bipartite graph corresponding to an unfolding of the tensor. Given
the similarity estimates for pairwise coordinates, the final estimate would result from a standard
nearest neighbor estimator over the high dimensional tensor. The primary part of the proof that
would need to be modified is the analysis of the neighborhood vectors Nu,s and Wus in step 3,
which may involve constraining the growth of the BFS trees such that they extend deep enough
before exhausting the visited coordinates.

5 Main Result

We provide an upper bound on the mean squared error (MSE) as well as the max entry-wise error
(MEE) for the algorithm, showing that both the MSE and the MEE converge to zero as long as
p = n−3/2+κ for some κ > 0. Our result implies that the simple variant of collaborative filtering
algorithm based on estimating similarities produces a consistent estimator when the tensor latent
function has finite spectrum or low rank. Further we show that it is robust to arbitrary, additive
perturbation in that the estimation error increases gracefully in the amount of perturbation. To
the best of our knowledge, such robustness to arbitrary bounded additive noise with respect to
max-norm estimation is first of its kind in the literature on tensor estimation.

5.1 Finite spectrum

We establish consistency of our estimator with respect to MSE and max-norm error of the algorithm
when the underlying f has finite spectrum, i.e. rank r model with r = Θ(1).
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Theorem 5.1. We assume that the function f is rank r, L-Lipschitz and that θ ∼ U [0, 1]. Assume
that p = n−3/2+κ for some κ ∈ (0, 1

2). Let t be defined according to (4.3). For any arbitrarily small
ψ ∈ (0,min(κ, 3

8)), choose the threshold

η = Θ
(
n−(κ−ψ)

)
.

The algorithm produces estimates so that,

MSE = O(n−(κ−ψ)) = O

(
nψ

(p2n3)1/2

)
,

and

‖F − F̂‖max = O(n−(κ−ψ)/2),

with probability 1−O
(
n4 exp(−Θ(n2ψ))

)
.

The error bounds in Theorem 5.1 imply that our estimator is consistent as long as p = n−3/2+κ

for some κ > 0, with a MSE that scales as O(1/pn3/2). The threshold of p = Ω(n−3/2) is optimal,
and furthermore this requirement is precisely the threshold at which the constructed bipartite graph
in Step 2 of the algorithm is fully connected. Below the connectivity threshold, the graph will be
disconnected into small components with insufficient information to recover the expected value of
edges across disconnected components.

In comparison to the literature, [31] prove that the minimax optimal MSE is O(1/pn2), which is
achieved via spectral initialization followed by power iteration [31] or gradient descent [40] as long
as p = Ω(n−3/2). While our result achieves a similar sample complexity threshold, our MSE rate is
suboptimal by a factor of

√
n. A limitation of neighborhood smoothing is that we do not achieve

exact recovery under the noiseless setting, and we do not achieve the minimax optimal rates. It is
unclear whether the gap is due to a limitation in the analysis or the algorithm. A benefit of our
analysis in contrast to the literature is that the neighborhood smoothing approach can more easily
deal with approximate low rank settings as arise under smoothness, as presented in Theorem 5.2.
While low rank is often a useful modeling concept for real world datasets, in reality most real-world
applications are likely only approximately low rank rather than exactly low rank.

5.2 Approximately finite spectrum

For approximate rank r model, we establish a natural perturbation result for the algorithm. Specif-
ically, if the underlying model has ε-approximate rank r, then we argue that the result of Theorem
5.1 remain true, both with respect to MSE and max-norm error, with perturbation amount of
poly(ε).

Theorem 5.2. We assume that the function f has ε-approximate rank r, L-Lipschitz and that
θ ∼ U [0, 1]. Assume that p = n−3/2+κ for some κ ∈ (0, 1

2). Choosing t according to (4.3), it follows
that t = d 1

4κe. For any arbitrarily small ψ ∈ (0,min(κ, 3
8)), choose the threshold

η = Θ
(
n−(κ−ψ) + tε(1 + ε)2t−1 + t2ε2(1 + ε)4t−2

)
.

The algorithm produces estimates so that,

MSE = O(n−(κ−ψ) + tε(1 + ε)2t−1 + t2ε2(1 + ε)4t−2)

= O

(
nψ

(p2n3)1/2
+ tε(1 + ε)2t−1 + t2ε2(1 + ε)4t−2

)
,
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and

‖F − F̂‖max = O(n−(κ−ψ)/2 + tε(1 + ε)2t−1 +
√
tε(1 + ε)2t−1),

with probability 1−O
(
n4 exp(−Θ(n2ψ))

)
−O(n−2).

As the entries of F are normalized such that ‖F‖max ≤ 1, the bound is meaningful when
ε < 1, in which case the dominating term of the additional error due to the perturbation is
linear in ε, as t is a constant. The proof of Theorem 5.2 relies on the following observation: the
distribution of the data under the setting where the latent function f has ε-rank r is equivalent
to the distribution of data generated according to the rank r approximation of f and then adding
a deterministic perturbation to each observation accounting for the difference between f and its
rank r approximation fr, which is entrywise bounded by ε. In particular, the proof of Theorem 5.2
shows that under arbitary deterministic perturbation of a rank r model where the perturbation is
bounded by ε, the estimation error is perturbed by at most poly(ε). As a byproduct, our result
proves that our estimator is robust to arbitrary deterministic bounded noise in the observations.

The approximation guarantee depends on the spectral decay. Since the analysis allows any
arbitrary adversarial model for the ε deviation from a low rank model, the resulting guarantee
depending polynomially in ε is qualitatively best one can hope for. By definition, the minimal
error must be lower bounded by ε, but determining the best achievable error as a function of ε is
an important open question for future investigation. It is worth noting that no other prior work
addresses such a robust error model.

5.3 Reducing Computational Complexity

The computational complexity can be estimated by analyzing steps 3-5 of the algorithm. Step 3
costs O(pn4), as there are n BFS trees to construct, which each take at most pn3 edge traversals as
there are at most order pn3 edges in the constructed graph. Step 4 costs O(p2n6) as there are order
n2 pairwise distances to compute, and each computed distance involves sums over terms indexed
by a, b, α, β ∈ [n]4 where (a, α, β) and (b, α, β) are in the observation set. As the sparsity of the
dataset is p, this results in order p2n4 nonzero terms in the summation, each of which is the product
of 4 quantities, taking O(1) to compute. Step 5 costs O(pn6) as there are Θ(n3) triplets we need to
estimate, and each involves averaging at most O(pn3) datapoints. In summary, the computation

cost of the entire method, for p = n−
3
2

+κ is O(pn4 +p2n6 +pn6) where the cost in Step 5 dominates.
This computation cost can be improved drastically. For example, as explained in [18], by use

of ‘representative’ or ’anchor’ vertices chosen as random, the algorithm can instead cluster the
vertices with respect to these anchor vertices and learn a block constant estimate, significantly
reducing the involved computation. If there are y anchor vertices, then Step 4 reduces to only
computing pairwise distances between

(
y
2

)
+ ny pairs of vertices, as non-anchor vertices are only

compared to the small set of y anchor vertices. Step 5 reduces to only estimating
(
y
3

)
entries

of the tensor corresponding to combinations of the anchor vertices, and then extrapolating the
estimate to other vertices assigned to the same cluster. This would result in a computational
cost of O(pn4 + (y2 + ny)p2n4 + y3pn3). When p = n−

3
2

+κ, our proof indicates that by choosing
y = Θ((p2n3)1/4) = Θ(nκ/2), the corresponding block constant estimator would achieve the same
rates on the MSE and MEE as presented in Theorem 5.1, while requiring a reduced computational
complexity of O(n5/2+κ + n2+5κ/2).

Corollary 5.3. We assume that the function f is rank r, L-Lipschitz and that θ ∼ U [0, 1]. Assume
that p = n−3/2+κ for some κ ∈ (0, 1

2). Let t be defined as per (4.3). For any arbitrarily small
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ψ ∈ (0,min(κ, 3
8)), choose the threshold

η = Θ
(
n−(κ−ψ)

)
.

The modified algorithm which subsamples y = Ω((p2n3)1/4) = Ω(nκ/2) anchor vertices at random
and uses them to cluster the vertices to learn a block constant estimate will achieve

MSE = O(n−(κ−ψ)) = O

(
nψ

(p2n3)1/2

)
,

and

‖F − F̂‖max = O(n−(κ−ψ)/2),

with probability 1−O
(
n4 exp(−Θ(n2ψ))

)
.

5.4 Discussion of Assumptions

We assumed in our algorithm and analysis that we had two fresh samples of the dataset, M1 and
M2. The dataset M1 is used to estimate distances between coordinates, and the dataset M2 is used
to compute the final nearest neighbor estimates. Given only a single dataset, the same theoretical
results can also be shown by simply splitting the samples uniformly into two sets, one used to
estimate distances and one used to compute the nearest neighbor estimates. as we are considering
the sparse regime with p = n−3/2+κ for κ ∈ (0, 1

2), the two subsets after sample splitting will be
nearly independent, such that the analysis only needs to be slightly modified. This is formally
handled in the paper on collaborative filtering for matrix estimation in [18].

Our model and analysis assumes that the latent variables {θu}u∈[n] are sampled uniformly on
the unit interval, and that the function f is Lipschitz with respect to θ. This assumption can in
fact be relaxed significantly, as it is only used in the final step of the proof in analyzing the nearest
neighbor estimator. Proving that the distance estimates concentrate well does not require these
assumptions, in particular it primarily uses the low rank assumption. Given that the distance
estimate concentrates well, the analysis of the nearest neighbor estimator depends on the local
measure, i.e. what fraction of other coordinates have similar function values so that the estimated
distance is small. We used Lipschitzness and uniform distribution on the unit interval in order to
lower bound the fraction of nearby coordinates, however many other properties would also lead to
such a bound. The dependence of the noisy nearest neighbor estimator on the local measure is
discussed in detail in [16]. Similar extensions as presented in [16] would apply for our analysis here,
leading to consistency and convergence rate bounds for examples including when

• the latent space has only finitely many elements, or equivalently the distribution of θ has
finite support;

• the latent space is the unit hypercube in a finite dimensional space and the latent function is
Lipschitz;

• the latent space is a complete, separable metric space, i.e. Polish space, with bounded diam-
eter and the latent function is Lipschitz.

Although our stated results assume a symmetric tensor, the results naturally extend to asym-
metric (n1×n2×n3) tensors as long as n1, n2, and n3 are proportional to one another. Our analysis
can be modified for the asymmetric setting, or one can reduce the asymmetric tensor to a (n×n×n)
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symmetric tensor where n = n1 + n2 + n3, and the coordinates of the new tensor consists of the
union of the coordinates in all three dimensions of the asymmetric tensor. The results applied to
this larger tensor would still hold with adjustments of the model allowing for piecewise Lipschitz
functions.

In the proof sketch that follows below, we show that for the 3-order tensor, the sample complex-
ity threshold of p = ω(n−3/2) directly equals the density of observations needed to guarantee the
bipartite graph is connected with high probability. Although our stated results assume a 3-order
tensor, our algorithm and analysis can be likely extended to general d-order tensors. The proof
would instead require analysis of the n×nd−1 matrix and associated bipartite graph corresponding
to the unfolding of the tensor. The bipartite graph would consist of vertex sets [n] and [n]d−1.

Remark 5.1. In order for the vertices in [n] to be fully connected to each other, p needs to be
Ω(nd/2), which can be proved using the standard branching process analysis as is used to prove
the connectivity threshold of an Erdos Renyi graph [45]. Let Xu denote the set of vertices v ∈ [n]
such that the distance between u and v in the bipartite graph is 2. It follows that P (v ∈ Xu) =

1− (1−p2)n
d−1

, such that E[|Xu|] = (n−1)(1− (1−p2)n
d−1

) = Θ(p2nd). As a result, if p = o(nd/2),
it follows that P (Xu = ∅) = 1 − P (|Xv| ≥ 1) ≥ 1 − E[|Xu|] = 1 − o(1), such that with probability
tending to 1 the vertex u will be isolated, i.e. not connected to any other vertex v ∈ [n]. To prove
that the graph is connected for p = Ω̃(nd/2), one would relate the growth of a local neighborhood
in the graph to an appropriate branching process, where the expected number of descendents
alternates between pn and pnd−1. To formalize the argument, one would then argue that the
branching process survives to infinity if p2nd is sufficiently large, e.g polylog(n), and also argue
that the branching process is a reasonable approximation for the neighborhood growth of the
graph until a linear number of vertices are visited. The requirement for graph connectivity in our
algorithm and analysis arises from the similarity computation dist(u, v), which involves products of
weights over paths in the graph that connect u and v. The fact that nd/2 also corresponds to the
connectivity threshold in the corresponding bipartite graph sheds light on the computational lower
bound for tensor completion in [27], giving another way to explain the Ω(nd/2) lower bound.

6 Proof

In this section, we present the proof for Theorem 5.1. The proof outline is similar to the matrix
setting in [18], in that the core of the analysis is proving that the distance function as defined in
(4.5) concentrates appropriately and captures an appropriate notion of distance that enables the
classical “nearest neighbor” algorithm to be effective. However, due to high-dependencies across
latent factors associated with columns that share tensor coordinates, the concentration of the BFS
neighborhood expansion in section 7.2 requires a new argument beyond the simple martingale
argument in the matrix setting. This involves a careful application of the concentration of U-
statistics. Furthermore, the concentration of the distance calculation in Eq (4.6) as analyzed in
section 7.4 requires a new argument relating the computed statistic to a thresholded variant more
amenable to analysis. This is due to both the dependencies in the latent factors along with the
lopsidedness in the dimensions so that straightforward applications of standard concentration results
are too weak and insufficient to drive the error to zero.

While the proof is stated for bounded observations, i.e. bounded noise, the result can be ex-
tended to sub-Gaussian noise rather than uniformly bounded noise. This would involve showing
that the norms of the neighborhood vectors Nus and Wus are well-controlled such that the appli-
cation of Hoeffding’s inequality used in Lemmas 7.4 and 7.5 still hold. Additionally the proof of
7.7 naively bounds the products of weights over a path in absolute value by 1; if the noise were not
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bounded but sub-Gaussian, one would have to additionally argue that the product of the weights
would be sufficienty controlled with high probability.

The critical lemma that the proof hinges on shows that the computed similarities, i.e. dist(u, a),
concentrates around the function d(u, a) = ‖Λ2t+1Q(eu − ea)‖22. This then implies that if d(u, a),
d(v, b) and d(w, c) are small, the function value F (u, v, w) would be close to F (a, b, c). Additionally,
we use Lipschitzness of the latent function f along with the assumption that θu are sampled inde-
pendently from U [0, 1] to argue that for any u, there is a sufficiently large set of other coordinates a
such that d(u, a) is small. If these properties hold, then a simple analysis of nearest neighbor aver-
aging using dist(u, a) to determine the neighbors will result in a bias variance tradeoff that can be
tuned to show our final results. As such, the complexity of the proof revolves around showing that
the computed dist(u, a) concentrates around d(u, a). This involves a delicate analysis which involves
first arguing that the normalized neighborhood vectors Ñu,t satisfy eTkQÑu,t ≈ eTk Λ2tQeu, which
involves martingale concentration as well as concentration of appropriately defined U-statistics.
Subsequently we need to argue that the statistic

Zuv =
1

|VB(u, v, t)|p2|Su,t||Sv,t|
∑

(α,β)∈VB(u,v,t)

∑
a6=b∈[n]

Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β))

≈ ÑT
u,tQ

TΛ2QÑv,t.

A challenge in the analysis is that each term in the sum has very small probability of being nonzero
such that the sum is sparse enough that the standard concentration inequalities are not tight
enough. Thus we relate the sum to a thresholded variant and use a tighter approximation of the
binomial cdf to obtain the desired bound.

6.1 Analyzing Noisy Nearest Neighbors

We start by stating an important Lemma 6.1, adapted from [18] that characterizes the error of the
noisy nearest neighbor algorithm. Recall that our algorithm estimates F (u, v, w), i.e. f(θu, θv, θw),
according to (4.7), which simply averages over data-points M2(a, b, c) corresponding to tuples
(a, b, c) for which a is close to u, b is close to v and c is close to w according to the estimated
distance function. The choice of parameter η allows for tradeoff between bias and variance of the
algorithm.

We first argue that the data-driven distance estimates dist will concentrate around an ideal
data-independent distance d(θu, θv) for d : [0, 1]2 → R+. We subsequently argue that the nearest
neighbor estimate produced by (4.7) using d(θu, θv) in place of dist(u, v) will yield a good estimate
by properly choosing the threshold η to tradeoff between bias and variance. The bias will depend on
the local geometry of the function f relative to the distances defined by d. The variance depends on
the measure of the latent variables {θu}u∈[n] relative to the distances defined by d, i.e. the number
of observed tuples (a, b, c) ∈ Ω2 such that d(θu, θa) ≤ η, d(θv, θb) ≤ η and d(θw, θc) ≤ η needs to be
sufficiently large. We formalize the above stated desired properties.

Property 6.1 (Good Distance). We call an ideal distance function d : [0, 1]2 → R+ to be a bias-good
distance function for some bias : R+ → R+ if for any given η > 0 it follows that |f(θa, θb, θc) −
f(θu, θv, θw)| ≤ bias(η) for all (θa, θb, θc, θu, θv, θw) ∈ [0, 1]4 such that d(θu, θa) ≤ η, d(θv, θb) ≤ η
and d(θw, θc) ≤ η.

Property 6.2 (Good Distance Estimation). For some ∆ > 0, we call distance d̂ : [n]2 → R+ a
∆-good estimate for ideal distance d : [0, 1]2 → R+, if |d(θu, θa)− d̂(u, a)| ≤ ∆ for all (u, a) ∈ [n]2.
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Property 6.3 (Sufficient Representation). The collection of coordinate latent variables {θu}u∈[n] is

called meas-represented for some meas : R+ → R+ if for any u ∈ [n] and η′ > 0, 1
n

∑
a∈[n] I(d(u,a)≤η′) ≥

meas(η′).

Lemma 6.1. Assume that property 6.1 holds with probability 1, property 6.2 holds for any given
pair u, a ∈ [n] with probability 1−α1, and property 6.3 holds with probability 1−α2 for some η,∆,
and η′ = η −∆; in particular d is a bias-good distance function, d̂ = dist as estimated from MA is
a ∆-good distance estimate for d, and {θu}u∈[n] is meas-represented. Then noisy nearest neighbor

estimate F̂ computed according to (4.7) satisfies

MSE(F̂ ) ≤bias2(η + ∆) +
σ2

(1− δ)p (meas(η −∆)n)3 + exp

(
−δ

2p (meas(η −∆)n)3

2

)
+ 3nα1 + α2,

for any δ ∈ (0, 1). Furthermore, for any δ′ ∈ (0, 1) and (u, v, w) ∈ [n]3,

|F̂ (u, v, w)− f(θu, θv, θw)| ≤ bias(η + ∆) + δ′,

with probability at least

1− exp
(
−1

2δ
2p (meas(η −∆)n)3

)
− exp

(
−δ′2(1− δ)p (meas(η −∆)n)3

)
− 3nα1 − α2.

The proof of Lemma 6.1 is a modification from [18] and is included in the Appendix.

6.2 Proofs of Theorems 5.1 and 5.2

Proof. We prove that as long as p = n−3/2+κ for any κ ∈ (0, 1
2), with high probability, properties

6.1-6.3 hold for an appropriately chosen function d, and for distance estimates d̂ = dist computed
according to (4.5) with t defined in (4.3). We subsequently use Lemma 6.1 to conclude Theorem 5.1
and Theorem 5.2. The proofs of Properties 6.1 and 6.3 are identical in Theorem 5.1 and Theorem
5.2, while that of property 6.2 differ. For Theorem 5.1, we utilize Lemma 6.2 while for Theorem
5.2, we utilize Lemma 6.3. The proof of Theorem 5.2 follows nearly the same argument, where f
will be replaced by the rank r approximation fr, c.f. (3.4).

Good distance d and Property 6.1. We start by defining the ideal distance d as follows. For all
(u, v) ∈ [n]2, let

d(θu, θv) = ‖Λ2t+1Q(eu − ev)‖22 =

r∑
k=1

λ
2(2t+1)
k (qk(θu)− qk(θv))2. (6.1)

Recall that t is defined in (4.3). Since p = n−3/2+κ and κ ∈ (0, 1
2), we have that

t =

⌈
ln(n)

2 ln(p2n3)

⌉
=

⌈
1

4κ

⌉
. (6.2)

We want to show that there exists bias : R+ → R+ so that |(f(θa, θb, θc)−f(θu, θv, θw))| ≤ bias(η)
for any η > 0 and (u, a, v, b, w, c) ∈ [n]3 such that d(θu, θa) ≤ η, d(θv, θb) ≤ η and d(θw, θc) ≤ η.
Consider

|f(θu, θv, θw)− f(θa, θb, θc)| ≤ |f(θu, θv, θw)− f(θa, θv, θw)|+ |f(θa, θv, θw)− f(θa, θb, θw)|
+ |f(θa, θb, θw)− f(θa, θb, θc)|. (6.3)
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Now

|f(θu, θv, θw)− f(θa, θv, θw)| = |
∑
k

λk(qk(θu)− qk(θa))qk(θv)qk(θw)|

(a)

≤ B2|
∑
k

λk(qk(θu)− qk(θa))|

= B2‖ΛQ(eu − ea)‖1
≤ B2√r‖ΛQ(eu − ea)‖2
≤ B2√r|λr|−2t‖Λ2t+1Q(eu − ea)‖2
= B2√r|λr|−2t

√
d(θu, θa). (6.4)

In above, (a) follows from the ‖qk(·)‖∞ ≤ B for all k. Repeating this argument to bound the other
terms in (6.3), we obtain that

|f(θu, θv, θw)− f(θa, θb, θc)| ≤ 3B2√r|λr|−2t max
(√

d(θu, θa),
√
d(θv, θb),

√
d(θw, θc)

)
≤ 3B2|λr|−2t√rη ≡ bias(η). (6.5)

In summary, property 6.1 is satisfied for distance function d defined according to (6.1) and bias(η) =
3B2|λr|−2t√rη.

Good distance estimate d̂ and Property 6.2. We state the following Lemma whose proof is delegated
to Section 7.

Lemma 6.2. Given f with rank r, assume that p = n−3/2+κ for κ ∈ (0, 1
2). Let d̂ = dist as defined

in (4.5). Then for any (u, a) ∈ [n]2, for any ψ ∈ (0, κ),

|d(θu, θa)− d̂(u, a)| = O
(
rλ4t

maxn
−(κ−ψ)

)
,

with probability at least 1−O
(

exp(−n2ψ(1− o(1)))
)

.

Lemma 6.2 implies that property 6.2 holds with probability 1− o(1) for ∆ = Θ
(
rλ4t

maxn
−(κ−ψ)

)
when f has rank r.

Lemma 6.3. Given f with ε-approximate rank r for ε ≥ 0, assume that p = n−3/2+κ for κ ∈ (0, 1
2).

Let d̂ = dist as defined in (4.5). Then for any (u, a) ∈ [n]2, for any ψ ∈ (0, κ),

|d(θu, θa)− d̂(u, a)| = O
(
rλ4t

maxn
−(κ−ψ)

)
+O

(
tε(1 + ε)2t−1 + t2ε2(1 + ε)4t−2

)
,

with probability at least 1−O
(

exp(−n2ψ(1− o(1)))
)
−O

(
n−6

)
.

Lemma 6.3 implies that property 6.2 holds with probability 1− o(1) for

∆ = Θ
(
rλ4t

maxn
−(κ−ψ) + tε(1 + ε)2t−1 + t2ε2(1 + ε)4t−2

)
,

when f has ε-approximate rank r.
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Sufficient representation and Property 6.3. Since f is L-Lipschitz, the distance d as defined in (6.1)
is bounded above by the squared `2 distance:

d(θu, θv) = ‖Λ2t+1Q(eu − ev)‖22
≤ |λ1|4t‖ΛQ(eu − ev)‖22

= |λ1|4t
( r∑
k=1

λ2
k(qk(θu)− qk(θv))2

= |λ1|4t
r∑

k=1

λ2
k(qk(θu)− qk(θv))2

( ∫ 1

0
qk(θa)

2dθa
)

×
( ∫ 1

0
qk(θb)

2dθb
)

= |λ1|4t
r∑

k=1

λ2
k

∫
[0,1]2

(qk(θu)qk(θa)qk(θb)− qk(θv)qk(θa)qk(θb))2dθadθb

)
(a)
= |λ1|4t

∫ 1

0

∫ 1

0
(f(θu, θa, θb)− f(θv, θa, θb))

2dθadθb

≤ |λ1|4tL2|θu − θv|2, (6.6)

where in (a) we have used the fact that qk(·), k ∈ [r] are orthonormal with respect to uniform dis-
tribution over [0, 1]. We assumed that the latent parameters {θu}u∈[n] are sampled i.i.d. uniformly
over [0, 1]. Therefore, for any θu ∈ [0, 1], for any v ∈ [n] and η′ > 0,

P
(
d(θu, θv) ≤ η′

∣∣ θu) ≥ P
(
|λ1|4tL2|θu − θv|2 ≤ η′

∣∣ θu)
= P

(
|θu − θv| ≤

√
η′

|λ1|2tL
∣∣ θu)

≥ min
(

1,

√
η′

|λ1|2tL

)
. (6.7)

Let us define

meas(η′) =
(1− δ)

√
η′

|λ1|tL
(6.8)

for all η′ ∈ (0, |λ1|4tL2). By an application of Chernoff’s bound and a simple majorization argument,
it follows that for all η′ ∈ (0, |λ1|4tL2) and δ ∈ (0, 1),

P

 1

n− 1

∑
a∈[n]\u

I(d(u,a)≤η′) ≤ meas(η′)

∣∣∣∣∣ θu
 ≤ exp

(
−δ

2(n− 1)
√
η′

2|λ1|2tL

)
.

By using union bound over all n indices, it follows that for any η′ ∈ (0, |λ1|4tL2), with probability

at least 1− n exp
(
− δ2(n−1)

√
η′

2|λ1|2tL

)
, property 6.3 is satisfied with meas as defined in (6.8).

Concluding Proof of Theorem 5.1. In summary, property 6.1 holds with probability 1, by Lemma 6.2

property 6.2 holds for a given tuple (u, a) ∈ [n]2 with probability 1−α1 where α1 = O
(

exp(−n2ψ(1−

o(1)))
)

for ψ ∈ (0,min(κ, 3
8)) and κ ∈ (0, 1

2), property 6.3 holds with probability 1 − α2 where
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α2 = n exp
(
− δ2(n−1)

√
η−∆

2|λ1|2tL

)
with distance estimate d̂ = dist defined in (4.5) with

d(θu, θv) = ‖Λ2t+1Q(eu − ev)‖22,
bias(η) = 3B2|λr|−2t√rη,

∆ = Θ(rλ4t
maxn

−(κ−ψ)),

meas(η′) =
(1− δ)

√
η′

|λ1|2tL
, (6.9)

for any η > 0, δ ∈ (0, 1) and η′ = η −∆ ∈ (0, |λ1|4tL2). By substituting the expressions for bias,
meas, and α into Lemma 6.1, it follows that

MSE(F̂ ) ≤ 9B4|λr|−4tr(η + ∆) +
σ2L3|λ1|6t

(1− δ)4p
(√
η −∆n

)3 + nO
(

exp(−n2ψ(1− o(1)))
)

+ exp

(
−
δ2(1− δ)3p

(√
η −∆n

)3
2L3|λ1|6t

)
+ n exp

(
−δ

2(n− 1)
√
η −∆

2|λ1|2tL

)
.

Additionally, for any δ′ ∈ (0, 1),

|F̂ (u, v, w)− f(θu, θv, θw)| ≤ 3B2|λr|−2t
√
r(η + ∆) + δ′ (6.10)

with probability at least

1− exp

(
−
δ2(1− δ)3p

(√
η −∆n

)3
2L3|λ1|6t

)
− exp

(
−
δ′2(1− δ)4p

(√
η −∆n

)3
L3|λ1|6t

)

− nO
(

exp(−n2ψ(1− o(1)))
)
− n exp

(
−δ

2(n− 1)
√
η −∆

2|λ1|2tL

)
.

By selecting η = Θ
(
∆
)

= Θ(rλ4t
maxn

−(κ−ψ)) with a large enough constant so that η −∆ = Θ(η), it
follows that by the conditions that ψ > 0 and κ < 1

2 ,

η ±∆ = Θ(rλ4t
maxn

−(κ−ψ)),

p(
√
η −∆n)3 = Θ(r3/2λ6t

maxn
3
2
−κ

2
+ 3ψ

2 ) = Ω(n
5
4 ),

n
√
η −∆ = Θ(r1/2λ2t

maxn
1−κ−ψ

2 ) = Ω(n
3
4 ).

By substituting this choice of η and δ = 1
2 , it follows that

MSE(F̂ ) = O
(
r2(λmax/λr)

4tn−(κ−ψ)
)
. (6.11)

By choosing δ′ = n−(κ−ψ)/2 such that δ′ = Θ(
√
η) and δ′2p(

√
η −∆n)3 = Ω(n

3
4 ) = Ω(n2ψ) because

ψ < 3
8 . Therefore, by substituting into (6.10), it follows that for any given (u, v, w) ∈ [n]3, with

probability 1−O(n exp(−Θ(n2ψ))
)

,

|F̂ (u, v, w)− f(θu, θv, θw)| = O
(
r(λmax/λr)

2tn−(κ−ψ)/2
)
. (6.12)

Using union bound over choices of (u, v, w) ∈ [n]3, it follows that the maximum entry-wise error

is bounded above by O
(
n−(κ−ψ)/2

)
with probability 1−O(n4 exp(−Θ(n2ψ))

)
. This completes the

proof of Theorem 5.1.
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Concluding Proof of Theorem 5.2. We follow similar line of argument as for proof of Theorem
5.1. As noted earlier, property 6.1 holds with probability 1, by Lemma 6.3 property 6.2 holds for

a given tuple (u, a) ∈ [n]2 with probability 1 − α1 where α1 = O
(

exp(−n2ψ(1 − o(1))) + n−6
)

for ψ ∈ (0,min(κ, 3
8)) and κ ∈ (0, 1

2), property 6.3 holds with probability 1 − α2 where α2 =

n exp
(
− δ2(n−1)

√
η−∆

2|λ1|2tL

)
with distance estimate d̂ = dist defined in (4.5) with

d(θu, θv) = ‖Λ2t+1Q(eu − ev)‖22,
bias(η) = 3B2|λr|−2t√rη,

∆ = Θ(rλ4t
maxn

−(κ−ψ) + tε(1 + ε)2t−1 + t2ε2(1 + ε)4t−2),

meas(η′) =
(1− δ)

√
η′

|λ1|2tL
, (6.13)

for any η > 0, δ ∈ (0, 1) and η′ = η −∆ ∈ (0, |λ1|4tL2). By substituting the expressions for bias,
meas, and α into Lemma 6.1, it follows that for any δ′ ∈ (0, 1),

|F̂ (u, v, w)− fr(θu, θv, θw)| ≤ 3B2|λr|−2t
√
r(η + ∆) + δ′, (6.14)

with probability at least

1− exp

(
−
δ2(1− δ)3p

(√
η −∆n

)3
2L3|λ1|6t

)
− exp

(
−
δ′2(1− δ)4p

(√
η −∆n

)3
L3|λ1|6t

)

− nO
(

exp(−n2ψ(1− o(1))) + n−6
)
− n exp

(
−δ

2(n− 1)
√
η −∆

2|λ1|2tL

)
.

By selecting

η = ∆ + min
(
∆, |λ1|4tL2

)
, (6.15)

it follows by the conditions ψ > 0 and κ < 1
2 that

η + ∆ = Θ(rλ4t
maxn

−(κ−ψ) + tε(1 + ε)2t−1 + t2ε2(1 + ε)4t−2),

η −∆ = Ω(n−(κ−ψ)),

p(
√
η −∆n)3 = Ω(n

5
4 ),

n
√
η −∆ = Ω(n

3
4 ).

By choosing δ′ = n−(κ−ψ)/2 such that δ′ = O(
√
η) and δ′2p(

√
η −∆n)3 = Ω(n

3
4 ) = Ω(n2ψ)

because ψ < 3
8 . Therefore, by substituting into (6.14), it follows that for any given (u, v, w) ∈ [n]3,

with probability 1−O(n exp(−Θ(n2ψ))
)
−O(n−5),

|F̂ (u, v, w)− f(θu, θv, θw)| ≤ |F̂ (u, v, w)− fr(θu, θv, θw)|+ |fr(θu, θv, θw)− f(θu, θv, θw)|

= O
(
r(λmax/λr)

2tn−(κ−ψ)/2 + tε(1 + ε)2t−1 +
√
tε(1 + ε)2t−1

)
,

where the bias between fr and f is bounded by ε, and dominated by the bound between F̂ and fr.
The final result follows from a union bound over (u, v, w) ∈ [n]3.
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The bound on MSE also follows by substituting δ = 1
2 and the same choice of η from (6.15) into

Lemma 6.1, and again noting that the bias between F and Fr is dominated by the error between
F̂ and Fr such that

MSE(F̂ ) = O
(
r2(λmax/λr)

4tn−(κ−ψ) + tε(1 + ε)2t−1
)

+O
(
t2ε2(1 + ε)4t−2

)
.

This completes the proof of Theorem 5.2.

6.3 Proof of Corollary 5.3

Proof. The proof follows the same format as the proof of Theorem 5.1. Let us denote the set of
anchor vertices as Y such that |Y| = y, and they are assumed to be chosen uniformly at random
amongst all vertices. For a pair of vertices (a, b) ∈ Y2, the estimate F̂ (a, b) follows the same exact
computation as described in Section 4.1. As a result it follows from Theorem 5.1 that with high
probability,

max
(a,b,c)∈Y3

|F (a, b, c)− F̂ (a, b, c)| = O(n−(κ−ψ)/2).

Next we need to show the error is not degraded for non-anchor vertices (u, v, w) ∈ ([n] \ Y)3.
Let ζ : [n] → Y denote the function that maps from each vertex to the closest anchor vertex as
determined by the true distances d,

ζ(u) = arg min
a∈A

d(θu, θa),

and let ζ̂ : [n]→ Y denote the data-dependent function that maps from each vertex to the closest
anchor vertex as determined by the computed distances d̂,

ζ̂(u) = arg min
a∈A

d̂(u, a).

The estimate for non-anchor vertices is then taken to be the estimate computed for the corre-
sponding closest anchor vertices,

F̂ (u, v, w) = F̂ (ζ̂(u), ζ̂(v), ζ̂(w)),

such that

|F̂ (u, v, w)− F (u, v, w)| ≤ |F̂ (ζ̂(u), ζ̂(v), ζ̂(w))− F (ζ̂(u), ζ̂(v), ζ̂(w))|+ |F (ζ̂(u), ζ̂(v), ζ̂(w))− F (u, v, w)|.

By Theorem 5.1, as (ζ̂(u), ζ̂(v), ζ̂(w)) ∈ Y3, the first term is bounded by O(n−(κ−ψ)/2) with high
probability. By property 6.1,

|F (ζ̂(u), ζ̂(v), ζ̂(w))− F (u, v, w)| ≤ 3B2√r|λr|−2t
√

max
(
d(θu, θζ̂(u)), d(θv, θζ̂(v)), d(θw, θζ̂(w))

)
.

The modified algorithm computes distances using Step 4 of the described algorithm between
all pairs of anchor vertices, as well as all pairs (u, a) such that u ∈ [n] and a ∈ Y. For each
computed distance between a pair (u, a), by Lemma 6.2, property 6.2 holds for ∆ = Θ(n−κ+ψ)

with probability 1− α1 where α1 = O
(

exp(−n2ψ(1− o(1)))
)

for ψ ∈ (0,min(κ, 3
8)) and κ ∈ (0, 1

2).
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In order to bound maxu∈[n] d(θu, θζ̂(u)), we argue that for every u ∈ [n], with high probability

d(θu, θζ̂(u))
(a)

≤ d̂(u, ζ̂(u)) + ∆

(b)

≤ d̂(u, ζ(u)) + ∆

(c)

≤ d(θu, θζ(u)) + 2∆

(d)
= min

a∈A
d(θu, θa) + 2∆,

where (a) and (c) hold with high probability for ∆ = Θ(n−κ+ψ) as a result of property 6.2, and (b)
and (d) follow from the definition of the functions ζ̂ and ζ.

To bound mina∈A d(θu, θa), we use (6.7) from property 6.3 to show that for any u ∈ [n], η =
Θ(n−κ+ψ), and y = Ω((p2n3)1/4) = Ω(nκ/2)

P
(

min
a∈Y

d(θu, θa) > η
∣∣ θu) =

∏
a∈Y

P
(
d(θu, θa) > η

∣∣ θu)
≤
(

1−
√
η

|λ1|2tL

)y
≤ exp(− y

√
η′

|λ1|2tL
) = exp(−Θ(nψ/2)).

As a result, the max entrywise error is bounded by O(n−(κ−ψ)/2) with high probability, which
can be used to show the MSE bound of O(n−(κ−ψ)).

7 Proving distance estimate is close

In this section we argue that the distance estimate as defined in (4.5) is close to an ideal distance
as claimed in the Lemma 6.2.

7.1 Regular enough growth of breadth-first-search (BFS) tree

The distance estimation algorithm of interest constructs a specific BFS tree for each vertex u ∈ [n]
with respect to the bipartite graph between vertices [n] and VA where recall that VA = {(b, c) ∈
[n/2]2 s.t. b < c}. The BFS tree construction is done so that vertices at different levels do not
share coordinates, i.e. if vertex a ∈ [n] is visited in an earlier layer of the BFS tree, then no vertex
corresponding to (a, b) for any b ∈ [n] can be visited subsequently. Similarly, if (a, b) is visited in
the BFS tree, then no subsequent vertices including either coordinates a or b can be visited. The
restriction is placed across different depths, whereas pairs of vertices (a, b) and (a, c) can be visited
in the same depth. Amongst various valid BFS trees, the algorithm chooses one arbitrarily (for
example, see Figure 3(c)).

We recall some notations. Consider a valid BFS tree rooted at vertex u ∈ [n] which respects
the constraint that no coordinate is visited more than once. Recall that for any s ≥ 1, Uu,s ⊆ VA
denotes the set of vertices at depth (2s−1) and Su,s ⊆ [n] denotes the set of vertices at depth 2s of
the BFS tree, Bu,s = ∪l∈ds/2eUu,l∪h∈bs/2c Su,h, G(Bu,s) denotes all the information corresponding to
the subgraph restricted to the first s layers of the BFS tree which includes Bu,s, the latent variables
{θa}a∈Bu,s and the edge weights {M1(a, b, c)}a,(b,c)∈Bu,s . The vector Nu,s ∈ [0, 1]n is such that the
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a-th coordinate is equal to the product of weights along the path from u to a in the BFS tree for
a ∈ Su,s, and the vector Wu,s ∈ [0, 1]VA is such that the (b, c)-th coordinate is equal to the product
of weights along the path from u to (b, c) in the BFS tree for (b, c) ∈ Uu,s. The normalized vectors
are Ñu,s = Nu,s/|Su,s| and W̃u,s = Wu,s/|Uu,s| for u ∈ [n], s ≥ 1.

In a valid BFS tree rooted at vertex u, πu(a) denotes the parent of a ∈ [n], and πu(b, c) denotes
the parent of (b, c) ∈ VA. The neighborhood vectors satisfy recursive relationship,

Nu,s(a) = MA(a, πu(a))Wu,s(πu(a))I(a∈Su,s)
Wu,s(b, c) = MA(πu(b, c), (b, c))Nu,s−1(πu(b, c))I((b,c)∈Uu,s)

with Nu,0 = eu. We state the following result regarding regularity in the growth of the BFS tree.

Lemma 7.1. Let p = n−3/2+κ for κ ∈ (0, 1
2). Let t be as defined in (4.3). For a given δ ∈ (0, 1

2)

and for any u ∈ [n], with probability 1−O
(
n exp

(
−Θ(n2κ)

))
, or all s ∈ [t− 1],

|Su,s| ∈
[
(1− δ)2s2−3sn2κs(1− o(1)), (1 + δ)2s2−sn2κs

]
, (7.1)

for s = t,

|Su,t| ∈
[
(1− δ)2t2−3t−1n2κt(1− o(1)), (1 + δ)2t2−tn2κt

]
, (7.2)

and for s ∈ [t],

|Uu,s| ∈
[
(1− δ)2s−12−3sn

1
2

+κ(2s−1)(1− o(1)), (1 + δ)2s−12−sn
1
2

+κ(2s−1)
]
. (7.3)

The set of single coordinate vertices visited within depth 2t is o(n),

| ∪t`=0 Su,`| = o(n). (7.4)

Proof. First observe that if t is as defined in (4.3) with κ ∈ (0, 1
2), then

t =
⌈ ln(n)

2 ln(p2n3)

⌉
=
⌈ 1

4κ

⌉
such that

1

4κ
≤ t < 1

4κ
+ 1. (7.5)

Note that t is constant with respect to n.
For any s ∈ [t], we study the growth of |Su,s| and |Uu,s| conditioned on Bu,2s−1 ∪ Uu,s and

Bu,2(s−1) ∪ Su,s−1 respectively. To that end, conditioned on the set Bu,2s−1 and the set Uu,s, any

vertex i ∈ [n]\Bu,2s−1 is in Su,s independently with probability (1− (1−p)|Uu,s|). Thus the number
of vertices in Su,s is distributed as a binomial random variable. By Chernoff’s bound,

P
(
|Su,s| /∈ (1± δ)(|[n] \ Bu,2s−1|)(1− (1− p)|Uu,s|) | Bu,2s−1,Uu,s

)
≤ 2 exp

(
−1

3
δ2(|[n] \ |Bu,2s−1|)(1− (1− p)|Uu,s|)

)
. (7.6)

Similarly, conditioned on the sets Bu,2(s−1) and Su,s−1, the set of vertices in Uu,s is equivalent to
the number of edges in a graph with vertices [n/2] \ Bu,2(s−1) and an edge between (i, j) if there is
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some h ∈ Su,s−1 such that (i, j, h) ∈ Ω1. This is an Erdos-Renyi graph, as each edge is independent
with probability (1− (1− p)|Su,s−1|). By Chernoff’s bound,

P
(
|Uu,s| /∈ (1± δ)

(
|[n/2] \ Bu,2(s−1)|

2

)
(1− (1− p)|Su,s−1|) | Bu,2(s−1),Su,s−1

)
≤ 2 exp

(
−1

3
δ2

(
|[n/2] \ Bu,2(s−1)|

2

)
(1− (1− p)|Su,s−1|)

)
. (7.7)

Let us define the events

A1
u,s(δ) =

{
|Su,s| ∈ (1± δ)(|[n] \ Bu,2s−1|)(1− (1− p)|Uu,s|)

}
, (7.8)

A2
u,s(δ) =

{
|Uu,s| ∈ (1± δ)

(
|[n/2] \ Bu,2(s−1)|

2

)
(1− (1− p)|Su,s−1|)

}
. (7.9)

Since p ∈ (0, 1) and hence 1−(1−p)x ≤ px for all x ≥ 1, we have that under events A1
u,s(δ)∩A2

u,s(δ),

|Su,s| ≤ (1 + δ)np|Uu,s| and |Uu,s| ≤ (1 + δ)

(
n/2

2

)
p|Su,s−1|,

which together implies that conditioned on event ∩sh=1

(
A1
u,h(δ) ∩ A2

u,h(δ)
)
, for all s ∈ [t]

|Su,s| ≤
(

(1 + δ)2 p
2n3

8

)s
= (1 + δ)2s2−3sn2κs, (7.10)

and

|Uu,s| ≤ (1 + δ)
pn2

8

(
(1 + δ)2 p

2n3

8

)s−1

= (1 + δ)2s−12−3sn
1
2

+κ(2s−1). (7.11)

Therefore, for any s ∈ [t− 1] such that s ≤ 1
4κ by the definition of t,

|Bu,2s| ≤ 1 +
s∑
`=1

(2|Uu,`|+ |Su,`|)

≤ 1 +
s∑
`=1

(
2(1 + δ)

pn2

8

(
(1 + δ)2 p

2n3

8

)`−1

+

(
(1 + δ)2 p

2n3

8

)`)

= 1 +

(
2(1 + δ)

pn2

8
+

(
(1 + δ)2 p

2n3

8

)) s∑
`=1

(
(1 + δ)2 p

2n3

8

)`−1

= O
(
pn2(p2n3)s−1

)
= O

(
nκ(2s−1)+ 1

2
)

= O
(
n1−κ) = o(n). (7.12)

With a similar argument we can show that

t∑
`=0

|Su,`| ≤
t∑

`=0

(
(1 + δ)2 p

2n3

8

)`
= O((p2n3)t) = O(n2κt) = o(n). (7.13)

The last step follows from checking that when κ ∈ [1
4 ,

1
2), t = 1 such that n2κt = o(n), and when

κ ∈ (0, 1
4), from t ≤ 1

4κ + 1, it follows such that n2κt = O(n
1
2

+2κ) = o(n) as κ < 1
4 . Recall that we
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split the coordinates such that ∪t`=1Uu,` ⊂ VA, and the coordinates represented in (a, b) ∈ VA are
such that a ∈ [n/2] and b ∈ [n/2]. Therefore by (7.13),

|[n] \ Bu,2t−1| ≥ n/2−
t−1∑
`=0

|Su,`| =
n

2
(1− o(1)).

Using (7.12), we establish lower bounds on |Su,s| and |Uu,s| next. Note that, for p ∈ (0, 1),
1− p ≤ e−p and for any x ∈ (0, 1), e−x ≤ 1− x+ x2. It follows that 1− (1− p)x ≥ px(1− px). For
s ∈ [t] we can show that

|Uu,s| ≥ (1− δ)(n(1− o(1)))2(1− o(1))

8
(1− (1− p)|Su,s−1|)

≥ (1− δ)n
2

8
p|Su,s−1|(1− p|Su,s−1|)(1− o(1))

= (1− δ)n
2

8
p|Su,s−1|(1− o(1)).

For s ∈ [t− 1] we can show that

|Su,s| ≥ (1− δ)n(1− o(1))(1− (1− p)|Uu,s|)
≥ (1− δ)n(1− o(1))p|Uu,s|(1− p|Uu,s|)
≥ (1− δ)n(1− o(1))p|Uu,s|(1− o(1))

= (1− δ)pn|Uu,s|(1− o(1)),

and for s = t,

|Su,t| ≥ (1− δ)n
2

(1− o(1))(1− (1− p)|Uu,t|).

Then for s ∈ [t],

|Uu,s| ≥ (1− δ)2 p
2n3

8
|Uu,s−1|(1− o(1))

≥
(

(1− δ)2 p
2n3

8

)s−1

|Uu,1|(1− o(1))

≥
(

(1− δ)2 p
2n3

8

)s−1

(1− δ)pn
2

8
(1− o(1))

= (1− δ)2s−12−3sn
1
2

+κ(2s−1)(1− o(1)); (7.14)

for s ∈ [t− 1],

|Su,s| ≥ (1− δ)2pn
n2

8
p|Su,s−1|(1− o(1)),

≥
(

(1− δ)2 p
2n3

8

)s
(1− o(1)),

= (1− δ)2s2−3sn2κs(1− o(1)); (7.15)

and for s = t, |Su,t| ≥ (1− δ)2t2−3t−1n2κt(1− o(1)).
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To conclude the proof of Lemma 7.1, we need to argue that ∩ts=1

(
A1
u,s(δ)∩A2

u,s(δ)
)

holds with
high probability. To that end,

P
(
¬(∩ts=1(A1

u,s(δ) ∩ A2
u,s(δ)))

)
= P

(
∪ts=1¬(A1

u,s(δ) ∩ A2
u,s(δ))

)
=

t∑
s=1

P
(
¬(A1

u,s(δ) ∩ A2
u,s(δ)) ∩s−1

h=1 (A1
u,h(δ) ∩ A2

u,h(δ))
)

≤
t∑

s=1

P
(
¬(A1

u,s(δ) ∩ A2
u,s(δ)) | ∩s−1

h=1 (A1
u,h(δ) ∩ A2

u,h(δ))
)

≤
t∑

s=1

P
(
¬A1

u,s(δ) | ∩s−1
h=1 (A1

u,h(δ) ∩ A2
u,h(δ))

)
+

t∑
s=1

P
(
¬A2

u,s(δ) | A1
u,s(δ) ∩s−1

h=1 (A1
u,h(δ) ∩ A2

u,h(δ))
)
.

We bound the each of the two summation terms on the right hand side in the last inequality next.
Using (7.6) and (7.10), we have

t∑
s=1

P
(
¬A1

u,s(δ) | ∩s−1
h=1 (A1

u,h(δ) ∩ A2
u,h(δ))

)
≤

t−1∑
s=1

2 exp

(
−1

3
δ2(1− δ)p

2n3

2

(
(1− δ)2 p

2n3

2

)s−1

(1− o(1))

)

+ 2 exp

(
−1

3
δ2(1− δ)p

2n3

4

(
(1− δ)2 p

2n3

2

)t−1

(1− o(1))

)

≤ 4 exp

(
−1

3
δ2(1− δ)p

2n3

2
(1− o(1))

)
= O

(
exp

(
−Θ(n2κ)

))
.

Similarly, using (7.7) and (7.11), we have

t∑
s=1

P
(
¬A2

u,s(δ) | A1
u,s(δ) ∩s−1

h=1 (A1
u,h(δ) ∩ A2

u,h(δ))
)

≤
t+1∑
s=1

2 exp

(
−1

3
δ2n

2p

2

(
(1− δ)2 p

2n3

2

)s−1

(1− o(1))

)

≤ 4 exp

(
−1

3
δ2n

2p

2
(1− o(1))

)
= O

(
exp

(
−Θ(n

1
2

+κ)
))
.

Putting it all together, we have that

P
(
¬(∩ts=1(A1

u,s(δ) ∩ A2
u,s(δ)))

)
≤ O

(
exp

(
−Θ(n2κ)

))
+O

(
exp

(
−Θ(n

1
2

+κ)
))

= O
(

exp
(
−Θ(n2κ)

))
,

since κ ∈ (0, 1
2). By union bound over all u ∈ [n], we obtain the desired bound on the probability

of error. This concludes the proof of Lemma 7.1.

30



7.2 Concentration of Quadratic Form One

Let A3
u,t(δ) denote the event that (7.1) holds for all s ∈ [t−1], (7.2) holds, (7.3) holds for all s ∈ [t],

and (7.4) holds. Lemma 7.1 established that this event holds with high probability. Conditioned
on the event A3

u,t(δ), we prove that a specific quadratic form concentrates around its mean. This
will be used as the key property to eventually establish that the distance estimates are a good
approximation to the ideal distances.

Lemma 7.2. Let p = n−3/2+κ for κ ∈ (0, 1
2), t as defined in (4.3), δ ∈ (0, 1

2), and ψ ∈ (0, κ). For
any u ∈ [n], with probability 1− 2 exp(−n2ψ(1− o(1))),

|eTkQÑu,t − eTk Λ2tQeu| <
16λ2t−2

k nψ

(1− δ)nκ
.

Proof. Recall that conditioning on event A3
u,t(δ) simply imposes the restriction that the neighbor-

hood of u ∈ [n] grows at a specific rate. This event is independent from latent parameters {θa}a∈[n],
the precise entries in Ω1 as well as associated values, i.e. M1.

Conditioned on A3
u,t(δ), let Fu,s for 0 ≤ s ≤ 2t denote the sigma-algebra containing information

about the latent parameters, edges and the values associated with nodes in the bipartite graph
up to distance s from u, i.e. nodes Su,h′ for h′ ≤ bs/2c, Uu,h′′ for h

′′ ≤ ds/2e, associated latent
parameters as well as edges of Ω1. Specifically, Fu,0 contains information about latent parameter θu

associated with u ∈ [n]; Fu,s contains information about latent parameters ∪bs/2ch=1 {θa}a∈Su,h ∪
ds/2e
h=1

{θb, θc}(b,c)∈Uu,h and all the associated edges and observations. This implies that Fu,0 ⊂ Fu,1 ⊂ Fu,2,
etc.

Recall that Q denotes the r × n matrix where Qka = qk(θa), k ∈ [r], a ∈ [n]. We modify
the notation due to the sample splitting, and we let Q denote the r ×

(
n/2
2

)
matrix where Qkb =

qk(θb1)qk(θb2) for some b ∈ VA that represents the pair of coordinates (b1, b2) for b1 < b2 ∈ [n/2].
We shall consider a specific martingale sequence with respect to the filtration Fu,s that will help

establish the desired concentration of eTkQÑu,t − eTk Λ2tQeu. For 1 ≤ s ≤ 2t, define

Yu,s =

{
eTk Λ2t−sQÑu,s/2 if s even

eTk Λ2t−sQW̃u,(s+1)/2 if s odd

Du,s = Yu,s − Yu,s−1,

Yu,2t − Yu,0 = eTkQÑu,t − eTk Λ2tQÑu,0 =
2t∑
s=1

Du,s.

Note that Ñu,0 = eu, and Yu,s is measurable with respect to Fu,s because eTk Λ2t−sQÑu,s/2 and

eTk Λ2t−sQÑu,(s+1)/2 only depend on observations in the BFS tree within depth s.
By Lemmas 7.4 and 7.5, it follows that Yu,s is martingale with respect to Fu,s for 1 ≤ s ≤ t, i.e.

E[Du,s | Fu,s−1] = 0. (7.16)

Furthermore, for properly chosen νs as specified in Lemmas 7.4 and 7.5,

E[eλDs | Fs−1,A3
u,t(δ)] ≤ eλ

2ν2
s/2

almost surely for any λ ∈ R.
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We can then apply Proposition 7.3 with any arbitrarily small α∗ such that for any x ≥ 0,

P
(
|eTkQÑu,t − eTk Λ2tQeu| ≥ x | A3

u,t(δ)
)
≤ 2 exp

(
− x2

2
∑2t

s=1 ν
2
s

)

where for n large enough,

2t∑
s=1

ν2
s =

t∑
s=1

(1 + 4π)λ4t−4s
k 23s−1(1 + o(1))

(1− δ)2sn2κs
+

t∑
s=1

(1 + 16π)72λ4t−4s+2
k B423s−1(1 + o(1))

(1− δ)2s−1nmin{1, 1
2

+κ(2s−1)}

≤
8(1 + 4π)λ4t−4

k (1 + o(1))

(1− δ)2n2κ
,

and 1 + 4π ≤ 16.

For ψ ∈ (0, κ), we choose x =
16λ2t−2

k nψ

(1−δ)nκ = o(1), such that with probability 1− 2 exp(−n2ψ(1−
o(1))),

|eTkQÑu,t − eTk Λ2tQeu| < x.

We recall the following concentration inequality for Martingale difference sequence, cf. [46,
Theorem 2.19]:

Proposition 7.3. Let {Dk,Fk}k≥1 be a martingale difference sequence such that E[eλDk |Fk−1] ≤
eλ

2ν2
k/2 almost surely for all λ ∈ R. Then for all x > 0,

P

(∣∣∣ n∑
k=1

Dk

∣∣∣ ≥ x) ≤ 2 exp

(
− x2

2
∑n

k=1 ν
2
k

)
. (7.17)

Lemma 7.4. For any s ∈ [t],

E
[
Du,2s | Fu,2s−1,A3

u,t(δ)
]

= 0.

Let ν =

√
Q(1+4π)

2 , and

Q =
B2λ4t−4s

k 23s(1 + o(1))

(1− δ)2sn2κs
.

For any λ ∈ R,

E
[
eλDu,2s | Fu,2s−1,A3

u,t(δ)
]
≤ exp

(λ2ν2

2

)
.

Proof. Recall F2s−1 contains all information in the depth 2s − 1 neighborhood of vertex u. In
particular this includes the vertex set

Bu,2s−1 = ∪sl=1Uu,l ∪s−1
h=1 Su,h,
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the vertex latent variables {θi}i∈Bu,2s−1 and the edges and corresponding weights. Let us addition-
ally condition on the set Su,s. As 2s is even,

Du,2s = Yu,2s − Yu,2s−1

= λ2t−2s
k

(
eTkQÑu,s − λkeTkQW̃u,s

)
= λ2t−2s

k

 1

|Su,s|
∑
i∈[n]

Nu,s(i)qk(θi)− λkeTkQW̃u,s


= λ2t−2s

k

(
1

|Su,s|
∑
i∈Su,s

∑
a=(a1,a2)∈Uu,s

Wu,s(a)I(a=π(i))M1(a1, a2, i)qk(θi)− λkeTkQW̃u,s

)
.

Let us define

Xi =
∑

a=(a1,a2)∈Uu,s

Wu,s(a)I(a=π(i))M1(a1, a2, i)qk(θi)

=
∑

a=(a1,a2)∈Uu,s

Wu,s(a)I(a=π(i))(f(θa1 , θa2 , θi) + εa1a2i)qk(θi).

The randomness in Xi only depends on θi, εa1a2i, I(a=π(i)). Note that we already conditioned on
θa1 , θa2 for a ∈ Uu,s ⊂ B2s−1. Xi is independent from Xj because the vertices and edges are disjoint,
and π(i) is independent from π(j) as different vertices are allowed to have the same (or different)
parents. First we compute the mean of Xi (conditioned on i ∈ Su,s). For any vertex i ∈ Su,s, it
must have exactly one parent in Uu,s due to the BFS tree constraints. The parent is equally likely
to be any vertex in Uu,s due to the symmetry in the randomly sampled observations. Because the
additive noise terms are mean zero, the eigenfunctions are orthonormal, and π(i) is equally likely
to be any a ∈ Uu,s,

E[Xi | i ∈ Su,s] = E

 ∑
a=(a1,a2)∈Uu,s

Wu,s(a)I(a=π(i))(f(θa1 , θa2 , θi) + εa1a2i)qk(θi)


=

∑
a=(a1,a2)∈Uu,s

1

|Uu,s|
E

[
Wu,s(a)

∑
h

λhqh(θa1)qh(θa2)qh(θi)qk(θi)

]

=
∑

a=(a1,a2)∈Uu,s

W̃u,s(a)λkqk(θa1)qk(θa2)

= eTk ΛQW̃u,s.

Furthermore, |Xi| ≤ B almost surely as we assumed |qk(θ)| ≤ B. By Hoeffding’s inequality, it
follows that

P (|Du,2s| ≥ z | Fu,2s−1,Su,s) ≤ 2 exp

(
− 2|Su,s|z2

λ4t−4s
k B2

)
.

If we condition on the event A3
u,t(δ),

|Su,s| ≥ (1− δ)2s2−3s−1n2κs(1− o(1))
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for s ∈ [t]. Therefore,

P
(
|Du,2s| ≥ z | Fu,2s−1,A3

u,t(δ)
)
≤ 2 exp

(
−2(1− δ)2s2−3s−1n2κs(1− o(1))z2

λ4t−4s
k B2

)
.

We finish the proof by using Lemma A.2 with c = 2 and Q =
B2λ4t−4s

k 23s(1+o(1))

(1−δ)2sn2κs .

Lemma 7.5. For any s ∈ [t],

E
[
Du,2s−1 | Fu,2s−1,A3

u,t(δ)
]

= 0.

Let ν =

√
Q(1+16π)

2 , and

Q =
72λ4t−4s+2

k B423s(1 + o(1))

(1− δ)2s−1nmin{1, 1
2

+κ(2s−1)}
.

For any λ ∈ R,

E
[
eλDu,2s−1 | Fu,2s−1,A3

u,t(δ)
]
≤ exp

(λ2ν2

2

)
.

Proof. As 2s− 1 is odd,

Du,2s−1 = Yu,2s−1 − Yu,2(s−1)

= λ2t−2s+1
k

(
eTkQW̃u,s − λkeTkQÑu,s−1

)
.

Recall F2s−2 contains all information in the depth 2s − 2 neighborhood of vertex u. In particular
this includes the vertex set

Bu,2s−2 = ∪l∈[s−1]Uu,l ∪h∈[s−1] Su,h,

the vertex latent variables {θi}i∈Bu,2(s−1)
and the edges and corresponding weights {M1(i, a)}i,a∈Bu,2(s−1)

.
Consider

eTkQW̃u,s =
1

|Uu,s|
∑

i=(i1,i2)∈Uu,s

Wu,s(i)qk(θi1)qk(θi2)

=
1

|Uu,s|
∑

i=(i1,i2)∈Uu,s

∑
v∈Su,s−1

Nu,s−1(v)I(v=π(i))M1(v, i)qk(θi1)qk(θi2)

=
1

|Uu,s|
∑

i=(i1,i2)∈Uu,s

Xi,

where we define for i = (i1, i2) ∈ Uu,s,

Xi =
∑

v∈Su,s−1

Nu,s−1(v)I(v=π(i))M1(v, i)qk(θi1)qk(θi2)

=
∑

v∈Su,s−1

Nu,s−1(v)I(v=π(i))

(∑
l

λlql(θv)ql(θi1)ql(θi2) + εvi1i2

)
qk(θi1)qk(θi2).

Conditioned on Fu,2(s−1) the randomness in Xi only depends on θi1 , θi2 , επ(i)i1i2 , and I(v=π(i)).
Conditioned on Uu,s and {θi1 , θi2}i∈Uu,s , the random variables Xi are independent as επ(i)i1i2 and
I(v=π(i)) are independent. The parent of i = (i1, i2) ∈ Uu,s is equally likely to be any vertex in
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Su,s−1, and the parent of i = (i1, i2) ∈ Uu,s is independent from the parent of j = (j1, j2) ∈ Uu,s
with j 6= i as different vertices are allowed to have the same (or different) parent. First we compute
the mean of Xi conditioned on i ∈ Uu,s and θi1 , θi2 . Because the additive noise terms are mean zero
and the parent of i is equally likely to be any v ∈ Su,s−1,

E[Xi | θi1 , θi2 , i ∈ Uu,s] = E[
∑

v∈Su,s−1

Nu,s−1(v)I(v=π(i))

(∑
l

λlql(θv)ql(θi1)ql(θi2)

)
qk(θi1)qk(θi2) | θi1 , θi2 ]

=
1

|Su,s−1|
∑

v∈Su,s−1

Nu,s−1(v)

(∑
l

λlql(θv)ql(θi1)ql(θi2)

)
qk(θi1)qk(θi2).

Furthermore, |Xi| ≤ B2 almost surely as we assumed |qk(θ)| ≤ B. By Hoeffding’s inequality, it
follows that

P
(
|eTkQW̃u,s − E[eTkQW̃u,s | {θi1 , θi2}i∈Uu,s ,Uu,s]| > z | Fu,2(s−1),Uu,s, {θi1 , θi2}i∈Uu,s

)
≤ 2 exp

(
−|Uu,s|z

2

B4

)
. (7.18)

Next we consider concentration with respect to the random subset Uu,s out of the VA \ Bu,2(s−1)

possible vertices. In particular we would like to argue that with high probability,

1

|Uu,s|
∑
i∈Uu,s

∑
l

λlql(θv)ql(θi1)ql(θi2)qk(θi1)qk(θi2)

≈ 1

|VA \ Bu,2(s−1)|
∑

i∈VA\Bu,2(s−1)

∑
l

λlql(θv)ql(θi1)ql(θi2)qk(θi1)qk(θi2).

Next, we formalize it. To that end, conditioned on the size |Uu,s|, the set Uu,s is a uniform random
sample of the possible set of vertices VA\Bu,2(s−1). The above expression on the left is thus the mean
of a random sample Uu,s without replacement from VA \ Bu,2(s−1). Due to negative dependence, it
concentrates around its means no slower than assuming that they were a sample of the same size
from the same population with replacement, cf. [47, Theorem 4]. Therefore, using∑

l

λlql(θv)ql(θi1)ql(θi2)qk(θi1)qk(θi2) = |f(θv, θi1 , θi2)qk(θi1)qk(θi2)| ≤ B2,

we can apply Hoeffding’s inequality to argue that

P
(∣∣∣ 1

|Uu,s|
∑
i∈Uu,s

ql(θi1)ql(θi2)qk(θi1)qk(θi2)

− 1

|VA \ Bu,2(s−1)|
∑

i∈VA\Bu,2(s−1)

ql(θi1)ql(θi2)qk(θi1)qk(θi2)
∣∣∣ ≥ z | {θi1 , θi2}i∈VA , |Uu,s|)

≤ 2 exp
(
− |Uu,s|z

2

B4

)
. (7.19)

Finally, we need to account for the randomness in {θi1 , θi2}i∈VA , arguing that with high probability

1

|VA \ Bu,2(s−1)|
∑

i∈VA\Bu,2(s−1)

∑
l

λlql(θv)ql(θi1)ql(θi2)qk(θi1)qk(θi2) ≈ λkqk(θv).
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To formalize this, we start by recalling that

VA \ Bu,2(s−1) = {(i1, i2) s.t. i1 < i2, {i1, i2} ⊂ [n/2] \ Bu,2(s−1)}.

Let nu,s = |[n/2] \ Bu,2(s−1)|, then |VA \ Bu,2(s−1)| =
(|nu,s|

2

)
. Then the above summation can be

written as a pairwise U-statistic,

U =
1

|VA \ Bu,2(s−1)|
∑

(i1,i2)∈VA\Bu,2(s−1)

g(θi1 , θi2)

where g is a symmetric function and each term g(θi1 , θi2) is bounded in absolute value by B2.
Furthermore,

E

[∑
l

λlql(θi2)qk(θi1)qk(θi2)

]
= λkqk(θv)

by the orthogonality model assumption. Therefore, by Lemma A.3

P

∣∣∣ 1

|VA \ Bu,2(s−1)|
∑

i∈VA\Bu,2(s−1)

∑
l

λlql(θi1)ql(θi2)qk(θi1)qk(θi2)− λkqk(θv)
∣∣∣ ≥ z


≤ 2 exp

(
− nu,sz

2

8B4

)
. (7.20)

By putting together all calculations, it also follows that

E[eTkQW̃u,s] = eTk ΛQÑu,s−1,

and for z1, z2, z3 > 0, with probability at least

1− 2 exp
(
− |Uu,s|z

2
1

B4

)
− 2 exp

(
− |Uu,s|z

2
2

B4

)
− 2 exp

(
− nu,sz

2
3

8B4

)
it holds that

|eTkQW̃u,s − eTk ΛQÑu,s−1|
≤ |eTkQW̃u,s − E[eTkQW̃u,s | {θi1 , θi2}i∈Uu,s ,Uu,s]|

+
∣∣∣ 1

|Su,s−1|
∑

v∈Su,s−1

Nu,s−1(v)
( 1

|Uu,s|
∑
i∈Uu,s

∑
l

λlql(θv)ql(θi1)ql(θi2)qk(θi1)qk(θi2)

− 1

|VA \ Bu,2(s−1)|
∑

i∈VA\Bu,2(s−1)

∑
l

λlql(θv)ql(θi1)ql(θi2)qk(θi1)qk(θi2)
)∣∣∣

+
∣∣∣ 1

|Su,s−1|
∑

v∈Su,s−1

Nu,s−1(v)
(∑

i∈VA\Bu,2(s−1)

∑
l λlql(θv)ql(θi1)ql(θi2)qk(θi1)qk(θi2)

|VA \ Bu,2(s−1)|
− λkqk(θv)

)∣∣∣
≤ z1 +

1

|Su,s−1|
∑

v∈Su,s−1

|Nu,s−1(v)|z2 +
1

|Su,s−1|
∑

v∈Su,s−1

|Nu,s−1(v)|z3

≤ z1 + z2 + z3,

since ‖Nu,s−1‖∞ ≤ 1. Conditioned on A3
u,t(δ), nu,s = n/2(1− o(1)), and

|Uu,s| ∈
[
(1− δ)2s−12−3sn

1
2

+κ(2s−1)(1− o(1)), (1 + δ)2s−12−sn
1
2

+κ(2s−1)
]
.
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As a result, for z1 = z2 = z3, the expression in (7.18) and (7.19) asymptotically dominate the
expression in (7.20). It follows that, with appropriate choice of z1 = z2 = z3 in the above,

P
(
|Du,2s−1| ≥ z | F2s−2,A3

u,t(δ)
)
≤ 6 exp

(
−(1− δ)2s−12−3snmin{1, 1

2
+κ(2s−1)}(1− o(1))z2

72λ4t−4s+2
k B4

)
.

We finish the proof by using Lemma A.2 with c = 4 and Q =
72λ4t−4s+2

k B423s(1+o(1))

(1−δ)2s−1nmin{1, 12 +κ(2s−1)}
.

7.3 Concentration of Quadratic Form Two

Lemma 7.2 suggests the following high probability events: for any u ∈ [n], k ∈ [r], t as defined in

(4.3), i.e. t =
⌈

1
4κ

⌉
, δ ∈ (0, 1), and

x =
16λ2t−2

max n
ψ

(1− δ)nκ
.

define
A4
u,k,t(x, δ) =

{
|eTkQÑu,t − eTk Λ2tQeu| < x

}
∩ A3

u,t(δ).

Now, we state a useful concentration that builds on the above condition holding. It will be useful
step towards establishing Lemma 6.2.

Lemma 7.6. Let p = n−3/2+κ for κ ∈ (0, 1
2), t as defined in (4.3), and δ ∈ (0, 1

2). For any
u, v ∈ [n], conditioned on ∩rk=1

(
A4
u,k,t(x, δ) ∩ A4

v,k,t(x, δ)
)
,

∣∣ÑT
u,tQ

TΛ2QÑv,t − eTuQTΛ2(2t+1)Qev
∣∣ ≤ x2

(
r∑

k=1

λ2
k

)
+ xB

(
r∑

k=1

2λ
2(t+1)
k

)
.

Proof. Proof of Lemma 7.6. Assuming event ∩rk=1

(
A4
u,k,t(x, δ) ∩ A4

v,k,t(x, δ)
)

holds,

|ÑT
u,tQ

TΛ2QÑv,t − eTuQTΛ2(2t+1)Qev| ≤ |(ÑT
u,tQ

T − eTuQTΛ2t)(Λ2QÑv,t − Λ2(t+1)Qev)|

+ |(ÑT
u,tQ

T − eTuQTΛ2t)Λ2(t+1)Qev|

+ |eTuQTΛ2(t+1)(QÑv,t − Λ2tQev)|

≤
∣∣∣ r∑
k=1

(eTkQÑu,t − eTk Λ2tQeu)(eTk Λ2QÑv,t − eTk Λ2(t+1)Qev)
∣∣∣

+
∣∣∣ r∑
k=1

(eTkQÑu,t − eTk Λ2tQeu)eTk Λ2(t+1)Qev

∣∣∣
+
∣∣∣ r∑
k=1

(eTk Λ2(t+1)Qeu)(eTkQÑv,t − eTk Λ2tQev)
∣∣∣. (7.21)

In above, we have simply used the fact that for two vectors a, b ∈ Rr, aT b =
∑

k akbk =
∑

k(e
T
k a)(eTk b).

Now, consider the first term on the right hand side of the last inequality. If ∩rk=1A4
u,k,t(x, δ)

holds, then |(eTkQÑu,t − eTk Λ2tQeu)| ≤ x. And if ∩rk=1A4
v,k,t(x, δ) holds, then |(eTk Λ2QÑv,t −
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eTk Λ2(t+1)Qev)| ≤ λ2
kx. Similar application to other terms and the fact that |eTkQeu|, |eTkQev| ≤

‖qk(·)‖∞ ≤ B, we conclude that

|ÑT
u,tQ

TΛ2QÑv,t − eTuQTΛ2(2t+1)Qev| ≤ x2

(
r∑

k=1

λ2
k

)
+ xB

(
r∑

k=1

2λ
2(t+1)
k

)
. (7.22)

7.4 Concentration of Quadratic Form Three

We establish a final concentration that will lead us to the proof of good distance function property.
For any u ∈ [n], define event

A′u,v,t(x, δ) = ∩rk=1

(
A4
u,k,t(x, δ) ∩ A4

v,k,t(x, δ)
)
. (7.23)

Lemma 7.7. Let p = n−3/2+κ for κ ∈ (0, 1
2), t as defined in (4.3), δ ∈ (0, 1

2), and

x =
16λ2t−2

max n
ψ

(1− δ)nκ
.

Let S ≡ Su,v,t = [n]\(Bu,2t ∪ Bv,2t ∪ [n/2]). Then, under event A′u,v,t(x, δ),∣∣∣∣∣∣ 1(|S|
2

)
p2|Su,t||Sv,t|

∑
α<β∈S×S

T (α, β)− ÑT
u,tQ

TΛ2QÑv,t

∣∣∣∣∣∣ = O

(
nψ

(|S|2p2|Su,t||Sv,t|)1/2

)
+O

(
nψ

|S|1/2

)

with probability at least 1− 4 exp(−n2ψ(1− o(1)))−O(n−6) with ψ ∈ (0, κ).

Proof. First, note that A′u,v,t(x, δ) includes events A3
u,t(δ) and A3

v,t(δ). This implies that |S| =
n
2 − o(n) = n(1−o(1))

2 . Furthermore, it implies that |Su,t| and |Sv,t| are both greater than or equal
to (1− δ)2t2−3t−1n2κt(1− o(1)). As a result,

|S|2p2|Su,t||Sv,t| ≥
n2

8
p2

(
(1− δ)2

8
n2κ

)2t

(1− o(1)) (7.24)

≥ n2+4κtn2(− 3
2

+κ) 1

8

(
(1− δ)2

8

)2t

(1− o(1)) (7.25)

= Θ(n−1+2κ(2t+1)) (7.26)

= Ω(n2κ). (7.27)

The asymptotic relationships follow from the choice of t ≥ 1
4κ , and the fact that δ and t are both

constants.
Recall that MB(a, (α, β)) = I((a,α,β)∈Ω1)(F (a, α, β) + εaαβ) for

F (a, α, β) =
r∑

k=1

λkqk(θa)qk(θα)qk(θβ).

There are 3 sources of randomness: the sampling of entries in Ω1, the observation noise terms
εaαβ, and the latent variables θa, θα, θβ. Since we enforce that α and β are in the complement of
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Bu,2t ∪Bv,2t, the sampling, observations, and latent variables involved in MB are independent from
Nu,t and Nv,t.

Let us define the quantity

T̃ (α, β) = min(max(T (α, β),−φ2), φ2)

= sign(T (α, β)) min(|T (α, β)|, φ2)

for φ = d16/(1− 2κ)e where recall that

T (α, β) =
∑

a6=b∈[n]

Nu,t(a)Nv,t(b)MB(a, (α, 0β))MB(b, (α, β)).

Trivially, due to this thresholding, |T̃ (α, β)| ≤ φ2 such that |T̃ (α, β)− E[T̃ (α, β)]| ≤ 2φ2.
To begin with, Nu,t(a) = 0 if a /∈ Su,t ⊂ Bu,2t and Nv,t(b) = 0 if b /∈ Sv,t ⊂ Bv,2t. Further,

conditioned on event A′u,v,t(x, δ), all the information associated with Bu,2t and Bv,2t is revealed;
however, information about [n]\(Bu,2t ∪ Bv,2t) is not. Let F(u, v, t, x, δ) denote all the information
revealed such that event A′u,v,t(x, δ) holds.

Let’s prove concentration in two steps. In step one, we condition on F(u, v, t, x, δ) and the latent
variables {θi}i∈[n]. The sampling process (edges in Ω1) and the observation noise are independent
for distinct pairs (α, β) and (α′, β′). As a result, T (α, β) and T (α′, β′) are conditionally independent
as long as {α, β}∩{α′, β′} 6= 2, i.e. they are not the exact same pair. The correlations across T (α, β)
and T (α′, β′) are due only to the latent variables if α, β, α′, β′ share any values. We will bound the
variance of T (α, β) in Lemma 7.8, and by combining it with the conditional independence property
across T (α, β), it follows that (using notation F = F(u, v, t, x, δ))

Var

 ∑
α<β∈S×S

T (α, β)

∣∣∣∣∣∣ F , {θi}i∈[n]

 =
∑

α<β∈S×S
Var

[
T (α, β) | F , {θi}i∈[n]

]
≤ 2

(
|S|
2

)
p2|Su,t||Sv,t|(1 + o(1)).

The variables T̃ (α, β) are also independent across (α, β) conditioned on the latent variables
{θi}i∈[n], and their variance is bounded above by the corresponding variances of T (α, β). Using the

boundedness of T̃ (α, β), by applying Bernstein’s inequality with the choice of z = 2nψ
((|S|

2

)
p2|Su,t||Sv,t|

)1/2

for ψ ∈ (0, κ), it follows that

P

∣∣∣ ∑
α<β∈S×S

(T̃ (α, β)− E[T̃ (α, β) | F , {θi}i∈[n]])
∣∣∣ ≥ z ∣∣∣∣∣ F(u, v, t, x, δ), {θi}i∈[n]


≤ 2 exp

(
−

z2

2

2
(|S|

2

)
p2|Su,t||Sv,t|(1 + o(1)) + 2φ2z

3

)
= 2 exp(−n2φ(1− o(1))). (7.28)

The last equality arises from the observation that t is chosen such that conditioned on F , we can
plug in (7.27) to show that for our choice of z, it holds that

z = o(|S|2p2|Su,t||Sv,t|).
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In Lemma 7.9, we will show a bound on P
(
|T (α, β)| ≥ φ2

)
, which translates to a bound on

E[I|T (α,β)|≥φ2(|T (α, β)| − φ2) | F ], which then upper bound the difference between the conditional

expectations of T and T̃ according to

|E[T (α, β) | F ]− E[T̃ (α, β) | F ]| ≤ E[|T (α, β)− T̃ (α, β)| | F ]

= E[|T (α, β)| −min(|T (α, β)|, φ2) | F ]

= E[I|T (α,β)|≥φ2(|T (α, β)| − φ2) | F ]

Using this bound from Lemma 7.9 along with the conditions from F that guarantee |S| = Θ(n)
and naively |Su,t ∪ Sv,t| = O(n), it follows that∣∣∣ ∑

α<β∈S×S
(E[T̃ (α, β) | F , {θi}i∈[n]]− E[T (α, β) | F , {θi}i∈[n]])

∣∣∣
≤ (1 + o(1))

(
|S|
2

)
2φ

ln(|Su,t ∪ Sv,t|−1p−1)
(|Su,t ∪ Sv,t|p)φ

= O
(
|S|2 (|Su,t ∪ Sv,t|p)φ

)
= O

(
n2
(
n−( 1

2
−κ)
)φ)

. (7.29)

We choose φ = d 16
1−2κe ≥

16
1−2κ so that this difference between the expectations of T and T̃ is

O(n−6).
By plugging in our choice of φ into Lemma 7.9, it also follows that

P
(
∪α,β{T̃ (α, β) 6= T (α, β)} | F

)
≤ O(n−6). (7.30)

By combining (7.28), (7.29), and (7.30), with probability at least 1 − 2 exp(−n2ψ(1 − o(1))) −
O(n−6),∣∣∣∣∣∣

∑
α<β∈S×S

(
T (α, β)− E

[
T (α, β) | F , {θi}i∈[n]

])∣∣∣∣∣∣ ≤ 2nψ
((
|S|
2

)
p2|Su,t||Sv,t|

)1/2

+O(n−6), (7.31)

where the first term will dominate the second term.
Finally we want to show concentration of the following expression with respect to the latent

variables,

1(|S|
2

)
p2|Su,t||Sv,t|

E

 ∑
α<β∈S×S

T (α, β)

∣∣∣∣∣∣ F , {θi}i∈[n]

 .
The expression can be written as a pairwise U-statistic,

U =
1(|S|
2

) ∑
α<β∈S×S

g(θα, θβ),

where g is a symmetric function, and

g(θα, θβ) =
1

p2|Su,t||Sv,t|
E
[
T (α, β) | F , {θi}i∈[n]

]
=

1

p2|Su,t||Sv,t|
∑

a6=b∈[n]

Nu,t(a)Nv,t(b)× E
[
MB(a, (α, β))MB(b, (α, β)) | F , {θi}i∈[n]

]
=

1

|Su,t||Sv,t|
∑

a6=b∈[n]

Nu,t(a)Nv,t(b)F (a, α, β)F (b, α, β).
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It follows by boundedness of entries in F and the fact that ‖Nu,t‖∞ ≤ 1 and ‖Nu,t‖0 = |Su,t|, that
|g(θα, θβ)| ≤ 1 almost surely. Therefore, by Lemma A.3 and choosing z =

√
8nψ|S|−1/2,

P

∣∣∣∣∣∣ 1(|S|
2

)
p2|Su,t||Sv,t|

∑
α<β∈S×S

(
E
[
T (α, β) | F , {θi}i∈[n]

]
− E [T (α, β) | F ]

)∣∣∣∣∣∣ ≥ z


≤ 2 exp
(
− |S|z

2

8

)
= 2 exp(n2ψ). (7.32)

The expected value with respect to the randomness in the latent variables is

1(|S|
2

)
p2|Su,t||Sv,t|

E

 ∑
α<β∈S×S

T (α, β)

∣∣∣∣∣∣ F


=
1(|S|
2

) ∑
α<β∈S×S

1

|Su,t||Sv,t|
∑

a6=b∈[n]

Nu,t(a)Nv,t(b)E[F (a, α, β)F (b, α, β)]

=
1(|S|
2

) ∑
α<β∈S×S

1

|Su,t||Sv,t|
∑

a6=b∈[n]

Nu,t(a)Nv,t(b)
∑
k

λ2
kqk(θa)qk(θb)

= ÑT
u,tQ

TΛ2QÑv,t −
∑
a∈[n]

Ñu,t(a)Ñv,t(a)
∑
k

λ2
kq

2
k(θa).

Furthermore, ∣∣∣∣∣∣
∑
a∈[n]

Ñu,t(a)Ñv,t(a)
∑
k

λ2
kq

2
k(θa)

∣∣∣∣∣∣ ≤ B2
(∑

k λ
2
k

)
max(|Su,t|, |Sv,t|)

= O((|Su,t||Sv,t|)−1/2). (7.33)

By combining (7.31), (7.32), and (7.33), it follows that conditioned on F(u, v, s, `, x, δ), with prob-
ability

1− 2 exp
(
−n2ψ(1− o(1))

)
− 2 exp(n2ψ)−O(n−6),

it holds that ∣∣∣∣∣∣ 1(|S|
2

)
p2|Su,t||Sv,t|

∑
α<β∈S×S

T (α, β)− ÑT
u,tQ

TΛ2QÑv,t

∣∣∣∣∣∣
≤ 2nψ

((
|S|
2

)
p2|Su,t||Sv,t|

)−1/2

+O(n−6) +

√
8nψ

|S|1/2

+ o

(((
|S|
2

)
p2|Su,t||Sv,t|

)−1
)

+
B2
(∑

k λ
2
k

)
max(|Su,t|, |Sv,t|)

≤ O
(

nψ

(|S|2p2|Su,t||Sv,t|)1/2

)
+O

(
nψ

|S|1/2

)
+O

(
1

(|Su,t||Sv,t|)1/2

)
.

Note that the third term is dominated by the first term as |S|p = o(1). This completes the proof
of Lemma 7.7.
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Lemma 7.8. Let F = F(u, v, t, x, δ) denote all the information revealed such that event A′u,v,t(x, δ)
holds.

Var[T (α, β) | F , {θi}i∈[n]] ≤ 2p2|Su,t||Sv,t|(1 + o(1)).

Proof. To compute the variance of T (α, β) conditioned on F , {θi}i∈[n], note that there is correlation
in the terms within the sum of T (α, β) as there may be pairs (a, b) and (a′, b′) that share coordinates.
In particular because the observation noise and sampling randomness for MB(a, b, c) is independent
across different entries (a, b, c), then conditioned on {θi}i∈[n], for a 6= b and a′ 6= b′, if all four
coordinates {a, b, a′, b′} are distinct,

Cov[MB(a, (α, β))MB(b, (α, β)),MB(a′, (α, β))MB(b′, (α, β))] = 0;

if |{a, b} ∩ {a′, b′}| = 2, i.e. (a′, b′) = (a, b) or (a′, b′) = (b, a),∣∣Cov[MB(a, (α, β))MB(b, (α, β)),MB(a′, (α, β))MB(b′, (α, β))]
∣∣

= Var[MB(a, (α, β))MB(b, (α, β))]

≤ E[MB
2(a, (α, β))MB

2(b, (α, β))] ≤ p2;

and if {a, b} ∪ {a′, b′} = {x, y, z} such that {a, b} ∩ {a′, b′} = {x}, then∣∣Cov[MB(a, (α, β))MB(b, (α, β)),MB(a′, (α, β))MB(b′, (α, β)) | F , {θi}i∈[n]]
∣∣

= |Var[MB(x, (α, β))]E[MB(y, (α, β))]E[MB(z, (α, β))]|
≤
∣∣E[MB

2(x, (α, β))]E[MB(y, (α, β))]E[MB(z, (α, β))]
∣∣

≤ p3.

The inequalities follow from the property that every entry of MB has absolute value bounded by
1, and takes value 0 with probability (1− p) in the event it is not observed.

We use this to expand the variance calculation, and use the properties that for every entry
a, |Nu,t(a)| ≤ I(a∈Su,t). We have dropped the conditioning notation due to the length of the
expressions.

Var[T (α, β) | F , {θi}i∈[n]]

=
∑

a6=b∈[n]

(
N2
u,t(a)N2

v,t(b) +Nu,t(a)Nv,t(b)Nu,t(b)Nv,t(a)
)

Var[MB(a, (α, β))MB(b, (α, β))]

+
∑

a6=b∈[n]

∑
c/∈{a,b}

(
N2
u,t(a)Nv,t(b)Nv,t(c) +N2

v,t(a)Nu,t(b)Nu,t(c) +Nu,t(a)Nu,t(b)Nv,t(a)Nv,t(c)

+Nu,t(a)Nu,t(c)Nv,t(a)Nv,t(b)
)

Var[MB(a, (α, β))]E[MB(b, (α, β))]E[MB(c, (α, β))]

≤ p2
∑

a6=b∈[n]

(I(a∈Su,t,b∈Sv,t) + I({a,b}⊂Su,t∩Sv,t))

+ p3
∑

a6=b∈[n]

∑
c/∈{a,b}

(
I(a∈Su,t,{b,c}⊂Sv,t) + I(a∈Sv,t,{b,c}⊂Su,t) + I(a∈Su,t∩Sv,t,b∈Su,t,c∈Sv,t) + I(a∈Su,t∩Sv,t,c∈Su,t,b∈Sv,t)

)
≤ 2p2|Su,t||Sv,t|+ 2p3|Su,t||Sv,t|2 + 2p3|Su,t|2|Sv,t|
= 2p2|Su,t||Sv,t|(1 + o(1)).

The first term dominates because p|Su,t| ≤ pn = o(1) and p|Sv,t| = o(1).
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Lemma 7.9.
P (|T (α, β)| ≥ z | F) ≤ (|Su,t ∪ Sv,t|p)d

√
ze (1 + o(1).

As a result,

P (∪α,β{|T (α, β)| ≥ z} | F) ≤
(
|S|
2

)
(|Su,t ∪ Sv,t|p)d

√
ze (1 + o(1)),

and

E[I|T (α,β)|≥φ2(|T (α, β)| − φ2) | F ] ≤ (1 + o(1))
2φ

ln(|Su,t ∪ Sv,t|−1p−1)
(|Su,t ∪ Sv,t|p)φ

Proof. Let us define

Zu(α, β) = {a ∈ [n] s.t. a ∈ Su,t, (a, α, β) ∈ Ω1},
Zv(α, β) = {b ∈ [n] s.t. b ∈ Sv,t, (b, α, β) ∈ Ω1}.

Furthermore, because |MB(·, ·, ·)| ≤ 1 and ‖Nu,s‖∞ ≤ 1, for any a, b ∈ [n], it follows that

|Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β))| ≤ I(a∈Zu(α,β))I(b∈Zv(α,β)),

which implies
|T (α, β)| ≤ |Zu(α, β)||Zv(α, β)| ≤ |Zu(α, β) ∪ Zv(α, β)|2.

Note that |Zu(α, β) ∪ Zv(α, β)| ∼ Binomial(|Su,t ∪ Sv,t|, p). It follows then that

P (|T (α, β)| ≥ z | F) ≤ P
(
|Zu(α, β) ∪ Zv(α, β)|2 ≥ z | F

)
= P

(
|Zu(α, β) ∪ Zv(α, β)| ≥ d

√
ze | F

)
=

|Su,t∪Sv,t|∑
i=d
√
ze

(
|Su,t ∪ Sv,t|

i

)
pi(1− p)|Su,t∩Sv,t|−i

≤ (1− p)|Su,t∪Sv,t|
|Su,t∪Sv,t|∑
i=d
√
ze

(
|Su,t ∪ Sv,t|p

1− p

)i

≤ (1− p)|Su,t∪Sv,t|
(
|Su,t ∪ Sv,t|p

1− p

)d√ze ∞∑
i=0

(
|Su,t ∪ Sv,t|p

1− p

)i
≤ (1− p)|Su,t∪Sv,t|

(
|Su,t ∪ Sv,t|p

1− p

)d√ze
(1 + o(1))

≤ (|Su,t ∪ Sv,t|p)d
√
ze (1 + o(1))

≤ (|Su,t ∪ Sv,t|p)
√
z (1 + o(1)),

where we used the fact that |Su,t ∪ Sv,t|p = o(1).
We use the bound on the tail probabilities to show that

E[I|T (α,β)|≥φ2(|T (α, β)| − φ2) | F ] =

∫ ∞
0

P
(
|T (α, β)| ≥ φ2 + z

)
dz

≤ (1 + o(1))

∫ ∞
0

(|Su,t ∪ Sv,t|p)
√
φ2+z dz

≤ (1 + o(1))

∫ ∞
φ

2y (|Su,t ∪ Sv,t|p)y dy

= (1 + o(1))
2φ

ln(|Su,t ∪ Sv,t|−1p−1)
(|Su,t ∪ Sv,t|p)φ.

43



7.5 Proof of Lemma 6.2

Proof. Now we are ready to bound the difference between d(u, v) and d̂(u, v) for any u, v ∈ [n].
Recall,

d(θu, θv) = ‖Λ2t+1Q(eu − ev)‖2

= (eu − ev)TQTΛ4t+2Q(eu − ev) (7.34)

= eTuQ
TΛ4t+2Qeu + eTvQ

TΛ4t+2Qev − eTuQTΛ4t+2Qev − eTvQTΛ4t+2Qeu,

and according to (4.5),

dist(u, v) =
1(|S|

2

)
p2

(Zuu + Zvv − Zuv − Zvu) (7.35)

for S ≡ Su,s,t = n \ (Bu,t ∪ Bv,t ∪ [n/2]) and

Zuv =
1(|Su,s,t|

2

)
p2|Su,t||Sv,t|

∑
α<β∈Su,s,t×Su,s,t

Tuv(α, β). (7.36)

By Lemma 7.1, event A3
u,t(δ) holds with probability at least 1−O

(
n exp

(
−Θ(n2κ)

))
. By Lemmas

7.2 and 7.6, conditioned on A3
u,t(δ), for

x =
16λ2t−2

max n
ψ

(1− δ)nκ
= o(1),

event A′u,v,t(x, δ) holds with probability at least 1− 4r exp(−n2ψ(1− o(1))), implying

∣∣ÑT
u,tQ

TΛ2QÑv,t − eTuQTΛ2(2t+1)Qev
∣∣ ≤ nψ

nκ

(
16Bλ2(t−1)

max

(
r∑

k=1

2λ
2(t+1)
k

)
(1− δ)−1(1 + o(1))

)
.

By Lemma 7.7, conditioned on A′u,v,t(x, δ), with probability 1− 4 exp(−n2ψ(1− o(1))),

|Zuv − ÑT
u,tQ

TΛ2QÑv,t| = O

(
nψ

(|Su,s,t|2p2|Su,t||Sv,t|)1/2

)
+O

(
nψ

|Su,s,t|1/2

)
,

where |Su,s,t| = Θ(n) = Ω(n2κ), by event A′u,v,t(x, δ) and t ≥ 1
4κ ,

|Su,s,t|2p2|Su,t||Sv,t| = Θ(n2n−3+2κn4κt) = Ω(n2κ).

To put it all together, for ψ ∈ (0, κ), with probability at least

1−O
(

exp(−n2ψ(1− o(1)))
)
,

it holds that

|dist(u, v)− d(θu, θv)| = O

(
rλ4t

maxn
ψ

nκ

)
.

This completes the proof of Lemma 6.2.
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8 Proof of Lemma 6.3: perturbation analysis of distance

We establish the proof of Lemma 6.3 here. To do so, we establish a perturbation property of dist
here, which combined with Lemma 6.2 will result into the proof of Lemma 6.3.

We study the perturbation in the dist estimate when each noisy observed entry is arbitrarily
perturbed. Specifically, for any (u, v, w) ∈ [n]3, M1(u, v, w) is observed with probability p. If
observed, according to (3.1), M1(u, v, w) = F (u, v, w) + εuvw = Fr(u, v, w) + εuvw + εuvw, where Fr
is the best rank r approximation to F . This expression shows that we can interpret the deviation
from a rank r model as a deterministic perturbation of εuvw, bounded in absolute value by ε.
Note that εuvw can be any arbitrary (or adversarial), unknown deterministic quantity satisfying
|εuvw| ≤ ε.

Lemma 8.1 provides a bound on the perturbation in the distance estimate, dist, that results
from these entrywise perturbabtions of the observations.

Lemma 8.1. Let p = n−3/2+κ for κ ∈ (0, 1
2), t as defined in (4.3), δ ∈ (0, 1

2), and

x =
16λ2t−2

max n
ψ

(1− δ)nκ
.

For any u ∈ [n], recall the event

A′u,v,t(x, δ) = ∩rk=1

(
A4
u,k,t(x, δ) ∩ A4

v,k,t(x, δ)
)
. (8.1)

Let event A′u,v,t(x, δ) hold. Let each observed entry of M1 be perturbed by adding arbitrary, determin-
istic quantity bounded by ε ≥ 0. Then for any u, v ∈ [n]2, the distance estimate dist(u, v) is perturbed
by at most O(tε(1 +ε)2t−1 + t2ε2(1 +ε)4t−2) with probability at least 1− exp

(
−Ω(n2κ)

)
−O(n−8).

Proof. Recall definition of dist in (4.5):

dist(u, v) = (Zuu + Zvv − Zuv − Zvu),

Zuv =
1

|VB(u, v, t)|p2|Su,t||Sv,t|
∑

(α,β)∈VB(u,v,t)

Tuv(α, β),

VB(u, v, t) = {(α, β) ∈ VB s.t. α /∈ Bu,2t ∪ Bv,2t, β /∈ Bu,2t ∪ Bv,2t},

Tuv(α, β) =
∑

a6=b∈[n]

Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β))

We shall bound the perturbation on Zuv. Similar bounds will follow for the other three terms
which will conclude the main results. Our interest is in understanding how does Zuv change if each
observed entry is changed by arbitrary quantity bounded by ε ≥ 0. This will induce a bound on the
changes in Tuv(·, ·) which will help bound the change in Zuv. By assumption (8.1), A′u,v,t(x, δ) holds.
Conditioned on event A′u,v,t(x, δ), all the information associated with Bu,2t and Bv,2t is revealed;
however, information about [n]\(Bu,2t ∪ Bv,2t) is not. Let F(u, v, t, x, δ) denote all the information
revealed such that event A′u,v,t(x, δ) holds.

Under A′u,v,t(x, δ), by definition A3
u,t(δ) and A3

v,t(δ) holds. This implies that for S ≡ VB(u, v, t),

|S| = n
2 − o(n) = n(1−o(1))

2 . Furthermore, it implies that |Su,t| and |Sv,t| are both greater than or
equal to (1− δ)2t2−3t−1n2κt(1− o(1)). As shown in (7.27),

|S|2p2|Su,t||Sv,t| = Ω(n2κ) (8.2)

results from the choice of t ≥ 1
4κ , and the fact that δ and t are both constants.
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For given α 6= β ∈ VB(u, v, t), Tuv(α, β) is summation over terms, indexed by a 6= b ∈ [n],
containing product Nu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β)). Now Nu,t(a) = 0 if a /∈ Su,t, Nv,t(b) =
0 if b /∈ Sv,t. For a ∈ Su,t, Nu,t(a) is product of 2t terms, each bounded in absolute value by 1: let
Nu,t(a) =

∏2t
i=1wi with |wi| ≤ 1 for all i ≤ 2t. Let εi be arbitrary, deterministic quantity added to

wi with |εi| ≤ ε for i ≤ 2t. Then change in Nu,t(a) is bounded as

∣∣ 2t∏
i=1

wi −
2t∏
i=1

(wi + εi)
∣∣ =

∣∣ ∑
S⊂[2t]:S 6=∅

∏
i∈S

εi
∏

s∈[2t]\S

wi
∣∣

≤
∑

S⊂[2t]:S 6=∅

∏
i∈S
|εi|

∏
s∈[2t]\S

|wi|

≤
∑

S⊂[2t]:S 6=∅

ε|S| =
2t∑
i=1

(
2t

i

)
εs

= ε
( 2t−1∑
i=0

(2t)!

(2t− i− 1)!(i+ 1)!
εi
)

≤ 2tε
( 2t−1∑
i=0

(2t− 1)!

((2t− 1)− i)!i!
εi
)

= 2tε
( 2t−1∑
i=0

(
2t− 1

i

)
εi
)

= 2tε(1 + ε)2t−1 ≡ ∆(t, ε). (8.3)

That is, Nu,t(a) changes by at most ∆(t, ε). Similarly Nv,t(b) changes by at most ∆(t, ε). Therefore,
Nu,t(a)Nv,t(b) can change at most by O(∆(t, ε) + ∆(t, ε)2).

By definition |MB(a, (α, β))|, |MB(b, (α, β))| ≤ 1. Further, MB(a, (α, β))MB(b, (α, β)) 6= 0 only
if I((a,α,β)∈Ω1)I((b,α,β)∈Ω1) = 1. Therefore, we can bound change in the termNu,t(a)Nv,t(b)MB(a, (α, β))MB(b, (α, β))
as I((a,α,β)∈Ω1)I((b,α,β)∈Ω1)O(∆(t, ε) + ∆(t, ε)2). Therefore, we can bound the change in Zuv by

O(∆(t, ε) + ∆(t, ε)2)

|S|2p2|Su,t||Sv,t|

( ∑
a∈Su,t,b∈Sv,t,α,β∈S

I((a,α,β)∈Ω1)I((b,α,β)∈Ω1)Ia6=b
)

(8.4)

=
O(∆(t, ε) + ∆(t, ε)2)

|S|2p2|Su,t||Sv,t|
∑
α,β∈S

Xαβ (8.5)

where
Xαβ =

∑
a∈Su,t,b∈Sv,t,a6=b

I((a,α,β)∈Ω1)I((b,α,β)∈Ω1).

To conclude the Lemma, it will be sufficient to argue that
∑

α,β∈S Xαβ = O(|S|2p2|Su,t||Sv,t|)
with high probability given F . We use a similar argument as the proof of Lemma 7.7. Given
F ≡ F(u, v, t, x, δ), {Xαβ}α,β∈S2 are conditionally independent random variables. By the same
argument as that in Lemma 7.9, it follows that

P
(
∪α,β{Xα,β ≥ φ2} | F

)
≤
(
|S|
2

)
(|Su,t ∪ Sv,t|p)φ (1 + o(1)) (8.6)

E[IXα,β≥φ2(Xα,β − φ2) | F ] ≤ (1 + o(1))
2φ

ln(|Su,t ∪ Sv,t|−1p−1)
(|Su,t ∪ Sv,t|p)φ. (8.7)
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We define X̃αβ = min(Xαβ, φ
2) for φ = d16/(1 − 2κ)e so that |X̃αβ − E[X̃αβ]| ≤ φ2. By (8.6),

and the choice of φ along with the conditions from F that guarantee |S| = Θ(n) and naively
|Su,t ∪ Sv,t| = O(n),

P

∑
α,β

Xα,β 6=
∑
α,β

X̃α,β | F

 ≤ (|S|
2

)
(|Su,t ∪ Sv,t|p)φ (1 + o(1)) = O

(
n−6

)
. (8.8)

By (8.7),

|E[Xα,β | F ]− E[X̃α,β | F ]| ≤ E[IXα,β≥φ2(Xα,β − φ2) | F ]

≤ (1 + o(1))
2φ

ln(|Su,t ∪ Sv,t|−1p−1)
(|Su,t ∪ Sv,t|p)φ

= O
(
n−6

)
. (8.9)

By the same argument as that in Lemma 7.8, it follows that

Var[X̃α,β | F , {θi}i∈[n]] ≤ Var[Xα,β | F , {θi}i∈[n]]

≤ 2p2|Su,t||Sv,t|(1 + o(1)).

By Bernstein’s inequality, for z = 2nψ|S|p(|Su,t||Sv,t|)1/2 for ψ ∈ (0, κ),

P

 ∑
α,β∈S

(
X̃α,β − E[X̃α,β]

)
> z

 ≤ exp
(
− 3z2

2zφ2 + 12(1 + o(1))|S|2p2|Su,t||Sv,t|

)
= exp(−n2ψ(1− o(1))). (8.10)

By (8.5), (8.8), (8.9), and (8.10), given A′u,v,t(x, δ) holds, with probability 1 − exp
(
− n2κ(1 −

o(1))
)
−O(n−6), the change in Zuv is bounded above by

O(∆(t, ε) + ∆(t, ε)2)

|S|2p2|Su,t||Sv,t|
∑
α,β∈S

Xαβ =
O(∆(t, ε) + ∆(t, ε)2)

|S|2p2|Su,t||Sv,t|
∑
α,β∈S

X̃αβ

=
O(∆(t, ε) + ∆(t, ε)2)

|S|2p2|Su,t||Sv,t|
(E[

∑
α,β∈S

Xαβ | F ] + 2nψ|S|p(|Su,t||Sv,t|)1/2).

By (8.2), this choice of 2nψ|S|p(|Su,t||Sv,t|)1/2) = o(|S|2p2|Su,t||Sv,t|) for ψ ∈ (0, κ). Finally we

use the bound that E[
∑

α,β∈S Xαβ | F ] =
(|S|

2

)
p2|Su,t||Sv,t| to argue that with high probability the

change in Zuv is bounded above by

O(∆(t, ε) + ∆(t, ε)2) = O(tε(1 + ε)2t−1 + t2ε2(1 + ε)4t−2).

This completes the proof of Lemma 8.1.

8.1 Completing proof of Lemma 6.3

Under the setup of Lemma 6.3, as argued in the proof of Lemma 6.2, A′u,v,t(x, δ), with appro-
priate choice of x, δ as considered in statement of Lemma 8.1, holds with probability at least
1 − 4r exp(−n2ψ(1 − o(1))). And dist (without perturbation), is within O

(
n−(κ−ψ)

)
for any

pair of u, v ∈ [n]. By Lemma 8.1, under event A′u,v,t(x, δ), the dist is further perturbed by

O
(
tε(1 + ε)2t−1 + t2ε2(1 + ε)4t−2

)
with probability at least 1−O

(
exp(−n2ψ(1−o(1)))

)
−O

(
n−6

)
.

Putting these together, we conclude the claim of Lemma 6.3.
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A Useful Lemmas and Omitted Proofs

We present the Proof of Lemma 6.1 below.

Proof. [Lemma 6.1] We assumed the algorithm has access to two fresh samples, where M1 is used
to compute d̂, and M2 is used to compute the final estimate F̂ . Alternatively one could effectively
obtain two sample sets by sample splitting. For some (a, b, c) ∈ Ω2, the observation M2(a, b, c) is
independent of d̂, and E[M2(a, b, c)] = f(θa, θb, θc). Conditioned on Ω2, by definition of F̂ and by
assuming properties 6.1 and 6.2, it follows that

E[(F̂ (u, v, w)− f(θu, θv, θw))2] =

 1

|Ω2uvw|
∑

(a,b,c)∈Ω2uvw

f(θa, θb, θc)− f(θu, θv, θw)

2

+
1

|Ω2uvw|2
∑

(a,b,c)∈Ω2uvw

Var[M2(a, b, c)]

(a)

≤ bias2(η + ∆) +
σ2

|Ω2uvw|
.

Inequality (a) follows from property 6.1 and property 6.2 for all 3n tuples {(u, a) : a ∈ [n]}∪{(v, b) :
b ∈ [n]} ∪ {(w, c) : c ∈ [n]}: |d(u, a)− d̂(u, a)| ≤ ∆ and d̂(u, a) ≤ η =⇒ d(u, a) ≤ η + ∆, similarly
d(v, b), d(w, c) ≤ η+∆. As per (3.1), we have that Var[M2(a, b, c)] ≤ σ2 for all (a, b, c) ∈ Ω2. Define
Vuvw = {(a, b, c) ∈ [n]3 : d(u, a) < η −∆, d(v, b) < η −∆, d(w, c) < η −∆}. Assuming property
6.3,

|Vuvw| = |{a ∈ [n] : d(u, a) < η −∆}| |{b ∈ [n] : d(v, b) < η −∆}|
× |{c ∈ [n] : d(w, c) < η −∆}|

≥ (meas(η −∆)n)3 .

By the Bernoulli sampling model, each tuple (a, b, c) ∈ [n]3 belongs to Ω2 with probability p
independently. By a straightforward application of Chernoff’s bound, it follows that for any δ ∈
(0, 1),

P
(
|Ω2 ∩ Vuvc| ≤ (1− δ) (meas(η −∆)n)3

)
≤ exp

(
−δ

2p (meas(η −∆)n)3

2

)
. (A.1)

Therefore, by assuming property 6.2 for 3n tuples {(u, a) : a ∈ [n]}∪ {(v, b) : b ∈ [n]}∪ {(w, c) : c ∈
[n]}, it follows that with probability at least 1− exp

(
− δ2p(meas(η−∆)n)3

2

)
,

|Ω2uvw| = |{(a, b, c) ∈ Ω2 : d̂(u, a) < η, d̂(v, b) < η, d̂(w, c) < η}|
≥ |{(a, b, c) ∈ Ω2 : d(u, a) < η −∆, d(v, b) < η −∆, d(w, c) < η −∆}|
= |Ω2 ∩ Vuvw|
≥ (1− δ)p (meas(η −∆)n)3 .

Define the event H = {|Ω2uvw| ≥ (1− δ)p (meas(η −∆)n)3 |}. It follows that

P (Hc) ≤ exp

(
−1

2
δ2p (meas(η −∆)n)3

)
.
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By definition, F (u, v, w) = f(θu, θv, θw) ∈ [0, 1] for all u, v, w ∈ [n]. Therefore,

E[(F̂ (u, v, w)− f(θu, θv, θw))2] ≤ E[(F̂ (u, v, w)− f(θu, θv, θw))2
∣∣∣ H] + P (Hc)

≤ bias2(η + ∆) +
1

(1− δ)p (meas(η −∆)n)3

+ exp

(
−1

2
δ2p (meas(η −∆)n)3

)
.

We add an additional 3nα1 + α2 in the final MSE bound: 3nα1 for violation of property 6.2 for
any of the 3n tuples {(u, a) : a ∈ [n]} ∪ {(v, b) : b ∈ [n]} ∪ {(w, c) : c ∈ [n]}, and α2 for violation of
property 6.3.

To obtain the high-probability bound, note that M2(a, b, c) are independent across indices
(a, b, c) ∈ Ω2 as well as independent of observations in Ω1. Additionally, the model assumes that
F (a, b, c),M2(a, b, c) ∈ [0, 1], and E[M2(a, b, c)] = F (a, b, c) for observed tuples (a, b, c). By an ap-
plication of Hoeffding’s inequality for bounded, zero-mean independent variables, for any δ′ ∈ (0, 1)
it follows that assuming property 6.1, property 6.2 for 3n tuples {(u, a) : a ∈ [n]} ∪ {(v, b) : b ∈
[n]} ∪ {(w, c) : c ∈ [n]}, and property 6.3 hold, we have

P


∣∣∣∑(a,b,c)∈Ω2uvw

(M(a,b,c)−F (a,b,c))

∣∣∣
|Ω2uvw|

≥ δ′
∣∣∣∣∣∣ H

 ≤ exp
(
−δ′2(1− δ)p (meas(η −∆)n)3

)
.

Therefore,
|F̂uvw − f(θu, θv, θw)| ≤ bias(η + ∆) + δ′,

with probability at least

1− exp

(
−1

2
δ2p (meas(η −∆)n)3

)
− exp

(
−δ′2(1− δ)p (meas(η −∆)n)3

)
− 3nα1 − α2.

This completes the proof of Lemma 6.1.

Lemma A.1. The following inequalities hold:

(a) For any ρ ≥ 2 and integer r ≥ 1,

r∑
s=1

ρs ≤ 2ρr.

(b) For any ρ ≥ 2 and non-negative integer s,

ρs ≥ sρ.

(c) Further, if exp(−aρ) ≤ 1
2 for some a > 0, then

r∑
s=1

exp(−aρs) ≤ 2 exp(−aρ)
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Proof. To prove (a), note that for any ρ ≥ 2,

r∑
s=1

ρs ≤ ρr
r∑
s=1

ρs−r = ρr
r−1∑
s=0

ρ−s ≤ ρr
r−1∑
s=0

2−s ≤ 2ρr.

To prove (b), first check that it trivially holds for s = 0 and s = 1. The inequality holds for s = 2
iff ρ ≥ 2. The inequality hold for s iff ρ ≥ s1/(s−1). We can verify that s1/(s−1) is a decreasing
function in s, such that if the inequality holds for s = 2, it will also hold for s ≥ 2. To prove (c),
further consider exp(−aρ) ≤ 1

2 ,

r∑
s=1

exp(−aρs) ≤
r∑
s=1

exp(−asρ)

≤ exp(−aρ)
r∑
s=1

exp(−aρ(s− 1))

≤ exp(−aρ)
r−1∑
s=0

exp(−aρs)

≤ exp(−aρ)

r−1∑
s=0

2−s

≤ 2 exp(−aρ).

Lemma A.2. If P (|X| ≥ z) ≤ c exp(− z2

Q ), then for all λ ∈ R,

E[eλX ] ≤ exp(
λ2ν2

2
)

with ν =

√
Q(1+c2π)

2 .

Proof.

E[eλX ] =

∫ ∞
0

P
(
eλX ≥ Z

)
dZ

=

∫ ∞
−∞

P (λX ≥ z) ezdz

≤
∫ ∞
−∞

c exp(− z2

Qλ2
+ z)dz

≤ c exp(
λ2Q

4
)

∫ ∞
−∞

exp(− 1

λ2Q
(z − λ2Q

2
)2)dz

≤ c exp(
Qλ2

4
)
√
πλ2Q.

Using the fact that
√
x < ex/5 for all x ≥ 0, it follows that

E[eλX ] ≤ exp(
Qλ2

4
+
c2πλ2Q

4
)
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Therefore, for all λ ∈ R,

E[eλX ] ≤ exp(
(1 + c2π)Qλ2

4
).

Lemma A.3. Let X1, . . . , Xn be i.i.d. random variables taking values in X . Let g : X × X → R
be a symmetric function. Consider U-statistics with respect to g of X1, . . . , Xn defined as

U =
1(
n
2

) ∑
1≤i<j≤n

g(Xi, Xj). (A.2)

Let ‖g‖∞ ≤ b for some b > 0. Then,

P (|U − E[U ]| > t) ≤ 2 exp
(
− nt2

8b2

)
. (A.3)

The proof follows directly from an implication of Azuma-Hoeffding’s inequality. For example,
see [46, Example 2.23] for a proof.
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