
ar
X

iv
:2

20
8.

04
15

9v
2

 [
cs

.I
T

]
 1

1
M

ay
 2

02
3

1

Constructing MSR codes with subpacketization

2
n/3 for k + 1 helper nodes

Ningning Wang, Guodong Li, Sihuang Hu, Member, IEEE, and Min Ye

Abstract

Wang et al. (IEEE Transactions on Information Theory, vol. 62, no. 8, 2016) proposed an explicit construction

of an (n = k + 2, k) Minimum Storage Regenerating (MSR) code with 2 parity nodes and subpacketization 2k/3.

The number of helper nodes for this code is d = k + 1 = n − 1, and this code has the smallest subpacketization

among all the existing explicit constructions of MSR codes with the same n, k and d. In this paper, we present a

new construction of MSR codes for a wider range of parameters. More precisely, we still fix d = k + 1, but we

allow the code length n to be any integer satisfying n ≥ k + 2. The field size of our code is linear in n, and the

subpacketization of our code is 2n/3. This value is slightly larger than the subpacketization of the construction by

Wang et al. because their code construction only guarantees optimal repair for all the systematic nodes while our

code construction guarantees optimal repair for all nodes.

Index Terms

distributed storage, repair bandwidth, MDS array codes, minimum storage regenerating (MSR) codes, sub-

packetization.

I. INTRODUCTION

Dimakis et al. initiated the study of repairing MDS codes in distributed storage systems [2], where the main

objective is to construct MDS codes that can efficiently repair any single node failure. In a distributed storage

system, an (n, k) MDS array code consists of k information nodes and r = n − k parity nodes. Each node of

the array code is a length-ℓ vector over some finite field F, where the parameter ℓ is called the subpacketization

or the node size of the array code. When there is a single node failure, one may connect to d helper nodes and

download part of the information stored on these nodes to recover the failed node, where the value of d satisfies

Research partially funded by National Key R&D Program of China under Grant No. 2021YFA1001000, National Natural Science Foundation

of China under Grant No. 12001322 and 12231014, Shandong Provincial Natural Science Foundation under Grant No. ZR202010220025,

Shenzhen Stable Support program under Grant No. WDZC20220811170401001, RISC-V International Open Source Laboratory, and a Taishan

scholar program of Shandong Province. This paper was presented in part at the 2022 IEEE International Symposium on Information Theory [1].

Ningning Wang, Guodong Li and Sihuang Hu are with Key Laboratory of Cryptologic Technology and Information Security, Ministry of Edu-

cation, Shandong University, Qingdao, Shandong, 266237, China and School of Cyber Science and Technology, Shandong University, Qingdao,

Shandong, 266237, China. S. Hu is also with Quancheng Laboratory, Jinan 250103, China. Email: {nningwang,guodongli}@mail.sdu.edu.cn,

husihuang@sdu.edu.cn

Min Ye is with Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China. Email:

yeemmi@gmail.com

http://arxiv.org/abs/2208.04159v2

2

k ≤ d ≤ n − 1. The amount of downloaded data in the repair procedure is called the repair bandwidth. For an

(n, k) MDS array code with subpacketization ℓ, it was shown in [2] that the repair bandwidth is at least dℓ
d−k+1

when the repair procedure involves d helper nodes. This lower bound is called the cut-set bound. An MDS code

that achieves the optimal repair bandwidth for the repair of any single failed node from any d helper nodes is called

an Minimum Storage Regenerating (MSR) code.

The first explicit construction of MSR codes is the product matrix construction [3]. Yet it is limited to the low code

rate regime. After that, explicit constructions of high-rate MSR codes were given in [4], [5], [6], [7], [8], [9], [10],

[11], [12], [13]. The complete list of constructions and parameters of MSR codes can be find in recent paper [14]

and [15]. Among these MSR code constructions, the most relevant one to this paper is the (n = k+2, k) MSR code

construction with subpacketization 2k/3 proposed in [5]. More precisely, Wang et al. [5] proposed a framework of

constructing MDS array codes with subpacketization rk/(r+1) that can optimally repair all the systematic nodes

from d = n− 1 helper nodes. For the special case of r = 2, they further gave explicit constructions of such codes

over any finite field whose size is larger than 2
3k. This construction has the smallest subpacketization among all

the existing MSR code constructions with parameters d = k + 1 and n = k + 2.

In this paper, we propose a new construction of MSR codes for which we relax the condition d = n− 1 in the

(n = k+2, k) MSR code constructed in [5]. Specifically, the number of helper nodes in [5] is d = k+1 = n− 1.

In our new construction, we still fix d = k + 1, but we allow n to be any integer satisfying n ≥ k + 2. Our code

can be constructed over finite fields whose size is linear in n, and the subpacketization of our code is 2n/3. This

value is slightly larger than the subpacketization in [5] because their code construction only guarantees optimal

repair for all the systematic nodes while our code construction guarantees optimal repair for all nodes.

In the discussion of our new code construction above, we have implicitly assumed that n is divisible by 3. If

n is not a multiple of 3, then the subpacketization of our new code becomes 2⌈n/3⌉. Since the code construction

in the non-divisible case can be easily obtained by puncturing/removing some nodes from the construction in the

divisible case, in this paper we will focus on the case where n is a multiple of 3.

One main technical obstacle of this paper is to prove the invertibility of the matrix Q in Lemma 3. We explicitly

compute the determinant of Q by first treating it as a multivariable polynomial of the entries (seen as variables)

of Q, and then extract as many polynomial factors as we can using elementary column operations. The choice of

parameters in our code construction guarantees that all the polynomial factors are nonzero. At last by comparing

the terms in the expansion of the determinant and the product of these polynomial factors, we conclude that the

determinant is equal to the product of these polynomial factors up to some coefficient c ∈ {−1, 1}, and hence

nonzero.

Finally, we note that a recent work [13] proposed a generalization of the MSR code construction in [7], [8],

[11], and their generalization of [7], [8], [11] is somewhat similar to the generalization of [5] in this paper. More

precisely, both the construction in [7], [8], [11] and the construction in [5] require d = n − 1. Vajha et al. [13]

generalized the construction in [7], [8], [11] to the case d < n− 1 while we generalize the construction in [5] to

the case d < n− 1. However, the construction in [7], [8], [11] is very different from the construction in [5], and

the generalization in this paper also uses different techniques from the generalization in [13]. For d = k + 1, the

3

subpacketization in [13] is 2n/2. This value is larger than the subpacketization 2n/3 in our paper, but the MSR

codes constructed in [13] guarantee that both the amount of accessed data and the repair bandwidth in the repair

procedure achieve the cut-set bound while the MSR codes in this paper only guarantee the optimal repair bandwidth.

II. NEW CODE CONSTRUCTION

We write a codeword of an (n, k) array code with subpacketization ℓ as (C0, C1, . . . , Cn−1), where each Ci =

(Ci(0), Ci(1), . . . , Ci(ℓ− 1))T is a vector of length ℓ over some finite field F. We define an (n, k) array code by

the following set of parity check equations: for a = 0, 1, . . . , ℓ− 1,

n−1∑

i=0

(
Ai(a, 0)Ci(0) + Ai(a, 1)Ci(1) + · · · + Ai(a, ℓ − 1)Ci(ℓ − 1)

)
= 0. (1)

Each Ai(a, b) in the above equation is a column vector of length r = n− k for all 0 ≤ a, b ≤ ℓ− 1. The 0 on the

right-hand side of the equation denotes the all-zero column vector of length r 1. In our construction, we set ℓ = 2n/3,

so for every a ∈ {0, 1, . . . , ℓ − 1}, we can write its n/3-digit binary expansion as a = (an/3−1, an/3−2, . . . , a0),

where a0 is the least significant bit.

We divide the n nodes (C0, C1, . . . , Cn−1) into n/3 groups of size 3. More precisely, for every 0 ≤ i ≤ n/3−1,

the three nodes C3i, C3i+1, C3i+2 are in the same group. For the index 3i+ j of each node, the value i is the index

of the group to which this node belongs, and j ∈ {0, 1, 2} is the index of the node within the group. Let F be a

finite field with size |F| ≥ 2n+ 1. Let λ0, λ1, . . . , λ2n−1 be 2n distinct elements in F satisfying

(λ6i+1 − λ6i+3)(λ6i+1 − λ6i+5)

(λ6i+1 − λ6i)(λ6i+1 − λ6i+4)

6=
(λ6i+2 − λ6i+3)(λ6i+2 − λ6i+5)

(λ6i+2 − λ6i)(λ6i+2 − λ6i+4)
for all 0 ≤ i ≤ n/3− 1.

(2)

For 0 ≤ i ≤ n/3− 1, we introduce the shorthand notation

γ6i+1 = −
(λ6i+1 − λ6i+3)(λ6i+1 − λ6i+5)

(λ6i+1 − λ6i)(λ6i+1 − λ6i+4)
,

γ6i+2 = −
(λ6i+2 − λ6i+3)(λ6i+2 − λ6i+5)

(λ6i+2 − λ6i)(λ6i+2 − λ6i+4)
,

(3)

which will be used in later sections. The condition (2) is equivalent to

γ6i+1 6= γ6i+2 for all 0 ≤ i ≤ n/3− 1. (4)

In Lemma 1 below, we show that as long as |F| ≥ 2n+ 1, one can always choose 2n distinct λi’s satisfying (4).

We further write

Li :=




1

λi

λ2
i

...

λr−1
i




. (5)

1Throughout this paper, we will use 0 to denote the number 0 or the all-zero matrix, and use bold 0 to denote the all-zero column vector.

The size of vector and matrix can be easily derived from the context.

4

Now we are ready to define the vectors Ai(a, b) in (1). For every 0 ≤ i ≤ n/3 − 1 and every 0 ≤ a, b ≤ ℓ − 1,

define

A3i(a, b) =





L6i+ai
if a = b

L6i − L6i+1 if ai = 0, bi = 1,

and aj = bj ∀j 6= i

0 otherwise,

A3i+1(a, b) =





L6i+2+ai
if a = b

L6i+3 − L6i+2 if ai = 1, bi = 0,

and aj = bj ∀j 6= i

0 otherwise,

A3i+2(a, b) =





L6i+4+ai
if a = b

0 otherwise.

(6)

Lemma 1. If |F| ≥ 2n+ 1, then we can always choose 2n distinct elements λ0, λ1, . . . , λ2n−1 from F satisfying

(4).

Proof. Note that for each value of i ∈ {0, 1, . . . , n/3−1}, the equation in (4) involves 6 numbers λ6i, λ6i+1, . . . , λ6i+5.

As a consequence, each λj appears in exactly one equation for 0 ≤ j ≤ 2n− 1. To prove the lemma, we first show

that we can choose the 6 numbers λ6i, λ6i+1, . . . , λ6i+5 from any 7 distinct elements in F. Indeed, suppose that

η0, η1, · · · , η6 are 7 distinct elements in F. Let λ6i+j = ηj for j = 0, 1, 2, 3, 4. By (4), after fixing the values of

λ6i, λ6i+1, . . . , λ6i+4, the last element λ6i+5 can not be the root of the linear equation ξ(λ6i+1 − x) = λ6i+2 − x,

where

ξ =
(λ6i+2 − λ6i)(λ6i+2 − λ6i+4)(λ6i+1 − λ6i+3)

(λ6i+1 − λ6i)(λ6i+1 − λ6i+4)(λ6i+2 − λ6i+3)
6= 0.

If ξ = 1, then the linear equation has no roots because λ6i+1 6= λ6i+2. If ξ 6= 1, then the linear equation has only

one root, so at least one of η5 and η6 is not the root of ξ(λ6i+1 −x) = λ6i+2−x, and we let λ6i+5 take that value.

This proves that we can choose 6 numbers λ6i, λ6i+1, . . . , λ6i+5 satisfying (4) from any 7 distinct elements in F.

Now we let S be the set of any 7 distinct elements of F. Then we can choose λ0, λ1, · · · , λ5 satisfying (4) from

S. Next we pick another 7 distinct elements in F\{λ0, λ1, · · · , λ5} and similarly we can choose λ6, λ7, · · · , λ11

satisfying (4) from these 7 elements. As |F| ≥ 2n+1, we can repeat this process n/3 times, and obtain 2n distinct

elements λ0, λ1, . . . , λ2n−1 from F satisfying (4).

III. A CONCRETE EXAMPLE

We use a concrete example to illustrate the above code construction. We take n = 9 and k = 5, so ℓ = 29/3 = 8

and r = n − k = 4. In order to explicitly write out the code construction, we define a sequence of 2D arrays

A0, A1, . . . , An−1. Each of them has ℓ = 8 columns and ℓ = 8 block rows. The entry at the cross of the ath block

5

row and the bth column of Ai is Ai(a, b). Note that each entry here is a column vector of length r = 4. By (6) we

have

A0 =




L0 L0 − L1 0 0 0 0 0 0

0 L1 0 0 0 0 0 0

0 0 L0 L0 − L1 0 0 0 0

0 0 0 L1 0 0 0 0

0 0 0 0 L0 L0 − L1 0 0

0 0 0 0 0 L1 0 0

0 0 0 0 0 0 L0 L0 − L1

0 0 0 0 0 0 0 L1




A1 =




L2 0 0 0 0 0 0 0

L3 − L2 L3 0 0 0 0 0 0

0 0 L2 0 0 0 0 0

0 0 L3 − L2 L3 0 0 0 0

0 0 0 0 L2 0 0 0

0 0 0 0 L3 − L2 L3 0 0

0 0 0 0 0 0 L2 0

0 0 0 0 0 0 L3 − L2 L3




A2 =




L4 0 0 0 0 0 0 0

0 L5 0 0 0 0 0 0

0 0 L4 0 0 0 0 0

0 0 0 L5 0 0 0 0

0 0 0 0 L4 0 0 0

0 0 0 0 0 L5 0 0

0 0 0 0 0 0 L4 0

0 0 0 0 0 0 0 L5




A3 =




L6 0 L6 − L7 0 0 0 0 0

0 L6 0 L6 − L7 0 0 0 0

0 0 L7 0 0 0 0 0

0 0 0 L7 0 0 0 0

0 0 0 0 L6 0 L6 − L7 0

0 0 0 0 0 L6 0 L6 − L7

0 0 0 0 0 0 L7 0

0 0 0 0 0 0 0 L7




6

A4 =




L8 0 0 0 0 0 0 0

0 L8 0 0 0 0 0 0

L9 − L8 0 L9 0 0 0 0 0

0 L9 − L8 0 L9 0 0 0 0

0 0 0 0 L8 0 0 0

0 0 0 0 0 L8 0 0

0 0 0 0 L9 − L8 0 L9 0

0 0 0 0 0 L9 − L8 0 L9




A5 =




L10 0 0 0 0 0 0 0

0 L10 0 0 0 0 0 0

0 0 L11 0 0 0 0 0

0 0 0 L11 0 0 0 0

0 0 0 0 L10 0 0 0

0 0 0 0 0 L10 0 0

0 0 0 0 0 0 L11 0

0 0 0 0 0 0 0 L11




A6 =




L12 0 0 0 L12 − L13 0 0 0

0 L12 0 0 0 L12 − L13 0 0

0 0 L12 0 0 0 L12 − L13 0

0 0 0 L12 0 0 0 L12 − L13

0 0 0 0 L13 0 0 0

0 0 0 0 0 L13 0 0

0 0 0 0 0 0 L13 0

0 0 0 0 0 0 0 L13




A7 =




L14 0 0 0 0 0 0 0

0 L14 0 0 0 0 0 0

0 0 L14 0 0 0 0 0

0 0 0 L14 0 0 0 0

L15 − L14 0 0 0 L15 0 0 0

0 L15 − L14 0 0 0 L15 0 0

0 0 L15 − L14 0 0 0 L15 0

0 0 0 L15 − L14 0 0 0 L15




A8 =




L16 0 0 0 0 0 0 0

0 L16 0 0 0 0 0 0

0 0 L16 0 0 0 0 0

0 0 0 L16 0 0 0 0

0 0 0 0 L17 0 0 0

0 0 0 0 0 L17 0 0

0 0 0 0 0 0 L17 0

0 0 0 0 0 0 0 L17




.

7

A. MDS property

We first explain why this code is an MDS array code. In order to prove the MDS property, we need to show that

any 4 nodes of this code can be recovered from the remaining 5 nodes. We will use two concrete cases to illustrate

how to prove the MDS property.

First case: How to recover C0, C1, C3, C5 from the remaining 5 nodes. To that end, we only need to show

that if all the coordinates of C2, C4, C6, C7, C8 are 0, then C0 = C1 = C3 = C5 = 0 is the only solution to the

parity check equations (1). Indeed, when C2 = C4 = C6 = C7 = C8 = 0, the equations (1) can be written as

follows: for a = 0, 1, · · · , 7,

A0(a, 0)C0(0) + · · ·+A0(a, 7)C0(7) (7)

+A1(a, 0)C1(0) + · · ·+A1(a, 7)C1(7)

+A3(a, 0)C3(0) + · · ·+A3(a, 7)C3(7)

+A5(a, 0)C5(0) + · · ·+A5(a, 7)C5(7) = 0.

Now we only consider a = 0, 1, 2, 3. Since Ai(a, b) = 0 for every i = 0, 1, 3, 5 and a = 0, 1, 2, 3, b = 4, 5, 6, 7,

the equation can be further written as

MC = (A′
0, A

′
1, A

′
3, A

′
5) · C = 0,

where

A′
0 =




L0 L0 − L1 0 0

0 L1 0 0

0 0 L0 L0 − L1

0 0 0 L1



,

A′
1 =




L2 0 0 0

L3 − L2 L3 0 0

0 0 L2 0

0 0 L3 − L2 L3



,

A′
3 =




L6 0 L6 − L7 0

0 L6 0 L6 − L7

0 0 L7 0

0 0 0 L7



,

A′
5 =




L10 0 0 0

0 L10 0 0

0 0 L11 0

0 0 0 L11



,

and

C =
(
C0(0), C0(1), C0(2), C0(3), C1(0), C1(1), C1(2), C1(3),

8

C3(0), C3(1), C3(2), C3(3), C5(0), C5(1), C5(2), C5(3)
)T

.

Summing up the equations of block row2 2 and 3 in MC = 0, we obtain

L0(C0(2) + C0(3)) + L3(C1(2) + C1(3))

+L7(C3(2) + C3(3)) + L11(C5(2) + C5(3)) = 0.

Since [L0, L3, L7, L11] is a 4×4 Vandermonde matrix, we have C0(2)+C0(3) = C1(2)+C1(3) = C3(2)+C3(3) =

C5(2) + C5(3) = 0. Taking these back into the equations of block row 2 and 3 in MC = 0, we obtain

− L1C0(3) + L2C1(2) + L7C3(2) + L11C5(2) = 0,

L1C0(3)− L2C1(2) + L7C3(3) + L11C5(3) = 0.

Similarly we have C0(3) = C1(2) = C3(2) = C3(3) = C5(2) = C5(3) = 0. Combining this with C0(2)+C0(3) =

C1(2) + C1(3) = 0, we obtain that Ci(j) = 0 for all i = 0, 1, 3, 5 and j = 2, 3. Taking this into block row 0 and

1 of MC = 0, we obtain

L0C0(0) + (L0 − L1)C0(1)

+L2C1(0) + L6C3(0) + L10C5(0) = 0,

L1C0(1) + (L3 − L2)C1(0)

+L3C1(1) + L6C3(1) + L10C5(1) = 0.

(8)

Summing up these two equations, we have

L0(C0(0) + C0(1)) + L3(C1(0) + C1(1))

+L6(C3(0) + C3(1)) + L10(C5(0) + C5(1)) = 0.

Therefore, C0(0) + C0(1) = C1(0) + C1(1) = C3(0) + C3(1) = C5(0) + C5(1) = 0. Taking these back into (8),

we obtain

− L1C0(1) + L2C1(0) + L6C3(0) + L10C5(0) = 0,

L1C0(1)− L2C1(0) + L6C3(1) + L10C5(1) = 0.

Therefore, C0(1) = C1(0) = C3(0) = C3(1) = C5(0) = C5(1) = 0. Combining these with C0(0) + C0(1) =

C1(0) + C1(1) = 0, we have Ci(j) = 0 for all i = 0, 1, 3, 5 and j = 0, 1.

Now we have used a = 0, 1, 2, 3 of equations (7) to conclude that Ci(j) = 0 for all i = 0, 1, 3, 5 and j = 0, 1, 2, 3.

The same analysis of a = 4, 5, 6, 7 of equations (7) allows us to obtain that Ci(j) = 0 for all i = 0, 1, 3, 5 and

j = 4, 5, 6, 7. Thus we have shown that C0 = C1 = C3 = C5 = 0. This proves that C0, C1, C3, C5 can be recovered

from the remaining 5 nodes.

Second case: How to recover C0, C1, C2, C5 from the remaining 5 nodes. To that end, we only need to show

that if all the coordinates of C3, C4, C6, C7, C8 are 0, then C0 = C1 = C2 = C5 = 0 is the only solution to the

2In this paper, we assume that the row index and column index start from 0.

9

parity check equations (1). Indeed, when C3 = C4 = C6 = C7 = C8 = 0, the equations (1) can be written as

follows: for a = 0, 1, · · · , 7, we have

A0(a, 0)C0(0) + · · ·+A0(a, 7)C0(7) (9)

+A1(a, 0)C1(0) + · · ·+A1(a, 7)C1(7)

+A2(a, 0)C2(0) + · · ·+A2(a, 7)C2(7)

+A5(a, 0)C5(0) + · · ·+A5(a, 7)C5(7) = 0.

Now we only consider a = 0, 1, 2, 3. Since Ai(a, b) = 0 for every i = 0, 1, 2, 5 and a = 0, 1, 2, 3, b = 4, 5, 6, 7,

the equation can be further written as

MC = (A′
0, A

′
1, A

′
2, A

′
5) · C = 0,

where

A′
0 =




L0 L0 − L1 0 0

0 L1 0 0

0 0 L0 L0 − L1

0 0 0 L1



,

A′
1 =




L2 0 0 0

L3 − L2 L3 0 0

0 0 L2 0

0 0 L3 − L2 L3



,

A′
2 =




L4 0 0 0

0 L5 0 0

0 0 L4 0

0 0 0 L5



,

A′
5 =




L10 0 0 0

0 L10 0 0

0 0 L11 0

0 0 0 L11



,

and

C =
(
C0(0), C0(1), C0(2), C0(3), C1(0), C1(1), C1(2), C1(3),

C2(0), C2(1), C2(2), C2(3), C5(0), C5(1), C5(2), C5(3)
)T

.

The equations of block row 0 and 1 in MC = 0 can be written in the matrix form:

M ′C′ = (A0,A1,A2,A5) · C
′ = 0,

10

where

A0 =


L0 L0 − L1

0 L1


 , A1 =


 L2 0

L3 − L2 L3


 ,

A2 =


L4 0

0 L5


 , A5 =


L10 0

0 L10


 ,

C′ =
(
C0(0), C0(1), C1(0), C1(1), C2(0), C2(1), C5(0), C5(1)

)T

.

Next we show that M ′ is invertible, so Ci(j) = 0 for all i = 0, 1, 2, 5 and all j = 0, 1. To that end, we perform

the following elementary column operations on M ′:

• add column 0 multiplied by (−1) to column 1 of A0, denoted as A′
0,

• add column 1 multiplied by (−1) to column 0 of A1, denoted as A′
1,

• A′
2 = A2,

• A′
5 = A5.

Then we have

A′
0 =


L0 −L1

0 L1


 ,A′

1 =


 L2 0

−L2 L3


 ,

A′
2 =


L4 0

0 L5


 ,A′

5 =


L10 0

0 L10


 .

Let

M ′′ =(A′
0,A

′
1,A

′
2,A

′
5)

=


L0 −L1 L2 0 L4 0 L10 0

0 L1 −L2 L3 0 L5 0 L10


 .

The 8× 8 matrix M ′′ can be written in the following form:



1 −1 1 0 1 0 1 0

λ0 −λ1 λ2 0 λ4 0 λ10 0

λ2
0 −λ2

1 λ2
2 0 λ2

4 0 λ2
10 0

λ3
0 −λ3

1 λ3
2 0 λ3

4 0 λ3
10 0

0 1 −1 1 0 1 0 1

0 λ1 −λ2 λ3 0 λ5 0 λ10

0 λ2
1 −λ2

2 λ2
3 0 λ2

5 0 λ2
10

0 λ3
1 −λ3

2 λ3
3 0 λ3

5 0 λ3
10




.

It is obvious that M ′′ is invertible if and only if M ′ is invertible because the elementary column operations do

not change the invertibility of matrix.

11

Now we only need to show that M ′′ is invertible, so is M ′, then by M ′C′ = 0, we have C′ = 0. To that

end, let us consider a row vector f = (f0,0, f0,1, f0,2, f0,3, f1,0, f1,1, f1,2, f1,3) of length 8 and a column vector

~y = (y0,0, y0,1, y1,0, y1,1, y2,0, y2,1, y5,0, y5,1)
T of length 8. The matrix M ′′ is invertible if and only if ~y = 0 is the

only solution to the equation M ′′~y = 0. Define two polynomials

f0(x) =(x− λ0)(x − λ4)(x − λ10)

=f0,0 + f0,1x+ f0,2x
2 + f0,3x

3,

f1(x) =(x− λ3)(x − λ5)(x − λ10)

=f1,0 + f1,1x+ f1,2x
2 + f1,3x

3.

Then fM ′′~y = 0 implies that


0 −f0(λ1) f0(λ2) 0 0 0 0 0

0 f1(λ1) −f1(λ2) 0 0 0 0 0







y0,0

y0,1

y1,0

y1,1

y2,0

y2,1

y5,0

y5,1




= 0.

The equations can be written as


−f0(λ1) f0(λ2)

f1(λ1) −f1(λ2)




y0,1
y1,0


 = 0. By the fact that λ1, λ2, λ10 are distinct and

condition (4), the determinant of the left matrix is f0(λ1)f1(λ2) − f0(λ2)f1(λ1) = (λ1 − λ10)(λ2 − λ10)
(
(λ1 −

λ0)(λ1 − λ4)(λ2 − λ3)(λ2 − λ5)− (λ2 − λ0)(λ2 − λ4)(λ1 − λ3)(λ1 − λ5)
)
6= 0, so y0,1 = y1,0 = 0. Taking these

back into M ′′~y = 0, we obtain


L0 0 L4 0 L10 0

0 L3 0 L5 0 L10







y0,0

y1,1

y2,0

y2,1

y5,0

y5,1




= 0.

Since the first three rows of the 4 × 3 matrix [L0, L4, L10] is a 3 × 3 Vandermonde matrix, we have y0,0 =

y2,0 = y5,0 = 0. Similarly the first three rows of the 4 × 3 matrix [L3, L5, L10] is a 3 × 3 Vandermonde matrix,

we have y1,1 = y2,1 = y5,1 = 0. Therefore, ~y = 0, we conclude that M ′′ is invertible. From the previous analysis,

M ′′ is invertible implies C′ = 0, that is Ci(j) = 0 for all i = 0, 1, 2, 5 and all j = 0, 1. Using exactly the same

method, one can show that Ci(j) = 0 for all i = 0, 1, 2, 5 and all j = 2, 3 from the equations of block row 2 and

3 in MC = 0.

12

Now we have used a = 0, 1, 2, 3 of equations (9) to conclude that Ci(j) = 0 for all i = 0, 1, 2, 5 and j = 0, 1, 2, 3.

The same analysis of a = 4, 5, 6, 7 of equations (9) allows us to obtain that Ci(j) = 0 for all i = 0, 1, 2, 5 and

j = 4, 5, 6, 7. Thus we have shown that C0 = C1 = C2 = C5 = 0. This proves that C0, C1, C2, C5 can be recovered

from the remaining 5 nodes.

B. Optimal repair bandwidth for single node failure

We also use two cases to illustrate the repair procedure.

First case: How to repair C0. Note that the parity check equations in (1) can be written in the matrix form

A0C0 +A1C1 +A2C2 + · · ·+A8C8 = 0, (10)

where each Ci is a column vector of length ℓ = 8. Each block row in the matrices A0, . . . , A8 corresponds to a

set of r = n − k = 4 parity check equations because the length of each Li is 4. Since there are 8 block rows in

each matrix Ai, we have 8 sets of parity check equations in total. The repair of C0 only involves 4 out of these 8

sets of parity check equations. More precisely, among the 8 block rows in each matrix Ai, we only need to look

at the block rows whose indices lie in the set {0, 2, 4, 6}. These 4 block rows of parity check equations can again

be organized in the matrix form

Ã0C̃0 + Â0Ĉ0 +

8∑

i=1

AiCi = 0, (11)

where Ã0, Â0, Ai, 1 ≤ i ≤ 8 are all 4 × 4 matrices, and C̃0, Ĉ0, Ci, 1 ≤ i ≤ 8 are all column vectors of length 4.

More specifically, the matrices in (11) are

Ã0 =




L0 0 0 0

0 L0 0 0

0 0 L0 0

0 0 0 L0




Â0 =




−L1 0 0 0

0 −L1 0 0

0 0 −L1 0

0 0 0 −L1




A1 =




L2 0 0 0

0 L2 0 0

0 0 L2 0

0 0 0 L2




A2 =




L4 0 0 0

0 L4 0 0

0 0 L4 0

0 0 0 L4




A3 =




L6 L6 − L7 0 0

0 L7 0 0

0 0 L6 L6 − L7

0 0 0 L7




A4 =




L8 0 0 0

L9 − L8 L9 0 0

0 0 L8 0

0 0 L9 − L8 L9




A5 =




L10 0 0 0

0 L11 0 0

0 0 L10 0

0 0 0 L11




A6 =




L12 0 L12 − L13 0

0 L12 0 L12 − L13

0 0 L13 0

0 0 0 L13




A7 =




L14 0 0 0

0 L14 0 0

L15 − L14 0 L15 0

0 L15 − L14 0 L15




A8 =




L16 0 0 0

0 L16 0 0

0 0 L17 0

0 0 0 L17




13

and the column vectors in (11) are

C̃0 =




C0(0) + C0(1)

C0(2) + C0(3)

C0(4) + C0(5)

C0(6) + C0(7)



, Ĉ0 =




C0(1)

C0(3)

C0(5)

C0(7)



,

Ci =




Ci(0)

Ci(2)

Ci(4)

Ci(6)




for 1 ≤ i ≤ 8.

Here we make an important observation: The matrices A3, A4, . . . , A8 are precisely the 6 parity check matrices

that would appear in our MSR code construction with code length n = 6 and subpacketization ℓ = 26/3 = 4.

The other 4 matrices Ã0, Â0, A1, A2 are all block-diagonal matrices3, and the diagonal entries are the same within

each matrix. Moreover, the λi’s (or equivalently Li’s) that appear in Ã0, Â0, A1, A2 do not intersect with the λi’s

that appear in A3, A4, . . . , A8. The method we used to prove the MDS property of our MSR code construction in

Section III-A can be easily generalized to show that (11) also defines an MDS array code (C̃0, Ĉ0, C1, C2, . . . , C8)

with code length 10 and code dimension 6. Therefore, C̃0 and Ĉ0 can be recovered from any 6 vectors in the set

{C1, C2, . . . , C8}. Once we know the values of C̃0 and Ĉ0, we are able to recover all the coordinates of C0.

Second case: How to repair C8. In order to repair C8, we sum up four pairs of block rows of each matrix Ai

in equation (10). Specifically, we sum up 0th block row and the 4th block row, the 1st block row and the 5th block

row, the 2nd block row and the 6th block row, the 3rd block row and the 7th block row. (The row index starts from

0.) In this way, we obtain 4 block rows of parity check equations from the original 8 block rows of parity check

equations in (10). These 4 block rows of parity check equations can be written in the matrix form

Ã8C̃8 + Â8Ĉ8 +

7∑

i=0

AiCi = 0, (12)

where Ã8, Â8, Ai, 0 ≤ i ≤ 7 are all 4 × 4 matrices, and C̃8, Ĉ8, Ci, 0 ≤ i ≤ 7 are all column vectors of length 4.

More specifically, the matrices in (12) are

A0 =




L0 L0 − L1 0 0

0 L1 0 0

0 0 L0 L0 − L1

0 0 0 L1




A1 =




L2 0 0 0

L3 − L2 L3 0 0

0 0 L2 0

0 0 L3 − L2 L3




A2 =




L4 0 0 0

0 L5 0 0

0 0 L4 0

0 0 0 L5




A3 =




L6 0 L6 − L7 0

0 L6 0 L6 − L7

0 0 L7 0

0 0 0 L7




A4 =




L8 0 0 0

0 L8 0 0

L9 − L8 0 L9 0

0 L9 − L8 0 L9




A5 =




L10 0 0 0

0 L10 0 0

0 0 L11 0

0 0 0 L11




3They are block-diagonal matrices because every entry in these matrices is a column vector of length 4.

14

A6 =




L12 0 0 0

0 L12 0 0

0 0 L12 0

0 0 0 L12




A7 =




L15 0 0 0

0 L15 0 0

0 0 L15 0

0 0 0 L15




Ã8 =




L16 0 0 0

0 L16 0 0

0 0 L16 0

0 0 0 L16




Â8 =




L17 0 0 0

0 L17 0 0

0 0 L17 0

0 0 0 L17




and the column vectors in (12) are

Ci =




Ci(0) + Ci(4)

Ci(1) + Ci(5)

Ci(2) + Ci(6)

Ci(3) + Ci(7)




for 0 ≤ i ≤ 7,

C̃8 =




C8(0)

C8(1)

C8(2)

C8(3)



, Ĉ8 =




C8(4)

C8(5)

C8(6)

C8(7)



.

The matrices A0, A1, . . . , A5 are precisely the 6 parity check matrices that would appear in our MSR code

construction with code length n = 6 and subpacketization ℓ = 26/3 = 4. The other 4 matrices Ã8, Â8, A6, A7

are all block-diagonal matrices, and the diagonal entries are the same within each matrix. Moreover, the λi’s

(or equivalently Li’s) that appear in Ã8, Â8, A6, A7 do not intersect with the λi’s that appear in A0, A1, . . . , A5.

The method we used to prove the MDS property of our MSR code construction in Section III-A can be easily

generalized to show that (12) also defines an MDS array code (C0, C1, C2, . . . , C7, C̃8, Ĉ8) with code length 10

and code dimension 6. Therefore, C̃8 and Ĉ8 can be recovered from any 6 vectors in the set {C0, C1, . . . , C7}.

Once we know the values of C̃8 and Ĉ8, we are able to recover all the coordinates of C8.

IV. MDS PROPERTY

In this section, we prove that our code construction allows us to recover any r = n− k node failures. We write

the index set of failed nodes as F , whose size is |F| = r. Recall that all the nodes are divided into groups of size

3. The failed nodes fall into different groups, and we classify these groups into the following seven sets

G1(F) = {i : 0 ≤ i ≤ n/3− 1, 3i ∈ F , 3i+ 1 ∈ F , 3i+ 2 ∈ F},

G2(F) = {i : 0 ≤ i ≤ n/3− 1, 3i ∈ F , 3i+ 1 ∈ F , 3i+ 2 6∈ F},

G3(F) = {i : 0 ≤ i ≤ n/3− 1, 3i ∈ F , 3i+ 1 /∈ F , 3i+ 2 ∈ F},

G4(F) = {i : 0 ≤ i ≤ n/3− 1, 3i /∈ F , 3i+ 1 ∈ F , 3i+ 2 ∈ F},

G5(F) = {i : 0 ≤ i ≤ n/3− 1, 3i ∈ F , 3i+ 1 /∈ F , 3i+ 2 /∈ F},

G6(F) = {i : 0 ≤ i ≤ n/3− 1, 3i /∈ F , 3i+ 1 ∈ F , 3i+ 2 /∈ F},

G7(F) = {i : 0 ≤ i ≤ n/3− 1, 3i /∈ F , 3i+ 1 /∈ F , 3i+ 2 ∈ F}.

By definition, G1(F) consists of the groups whose all 3 nodes fail, G2(F) consists of the groups whose first 2

nodes fail, and so on.

15

Definition 1. For an integer vector ~z = (z1, z2, z3, z4, z5, z6, z7), we say that an erasure pattern F is of type

~z = (z1, z2, z3, z4, z5, z6, z7) if |Gi(F)| = zi for 1 ≤ i ≤ 7.

From the set of all erasure patterns of type ~z, we pick the only erasure pattern F(~z) that satisfies

G1(F(~z)) = {j : 0 ≤ j < z1},

Gi(F(~z)) = {j : z1 + z2 + · · ·+ zi−1 ≤ j < z1 + z2 + · · ·+ zi}

for 2 ≤ i ≤ 7,

(13)

and call it the canonical erasure patterns of type ~z. In Appendix, we show that if we can recover from the canonical

erasure pattern F(~z), then we can recover from all erasure patterns of type ~z. It is easy to see that if F is of

type ~z = (z1, z2, z3, z4, z5, z6, z7), then |F| = 3z1 + 2z2 + 2z3 + 2z4 + z5 + z6 + z7. Therefore, in order to prove

the MDS property, we only need to show that we can recover from the canonical erasure pattern F(~z) for all

~z = (z1, z2, z3, z4, z5, z6, z7) satisfying

3z1 + 2z2 + 2z3 + 2z4 + z5 + z6 + z7 = r. (14)

Now let us pick a vector ~z satisfying (14). To prove that we can recover from F(~z), we only need to show that

if Ci = 0 for every i /∈ F(~z), then Ci = 0 for every i ∈ F(~z) is the only solution to the parity check equations

(1). When Ci = 0 for every i /∈ F(~z), the equations (1) can be written in the following matrix form

∑

i∈F(~z)

AiCi = 0, (15)

where each Ai is a rℓ × ℓ matrix defined by (6), and 0 on the right-hand side is the all-zero column vector of

length rℓ.

For 0 ≤ i ≤ n− 1 and 1 ≤ u ≤ ℓ, we define A
(u)
i as the ur × u submatrix at the top left corner of Ai. Let us

take the matrices A0, A1, . . . , A8 defined in Section III as examples: For these matrices, we have

A
(2)
0 =


L0 L0 − L1

0 L1


 , A

(2)
1 =


 L2 0

L3 − L2 L3


 ,

A
(4)
3 =




L6 0 L6 − L7 0

0 L6 0 L6 − L7

0 0 L7 0

0 0 0 L7



,

where Li is a column vector of length r.

According to (6), for 0 ≤ i ≤ 2, we have

AiCi =




A
(2)
i (Ci(0), Ci(1))

T

A
(2)
i (Ci(2), Ci(3))

T

...

A
(2)
i (Ci(ℓ − 2), Ci(ℓ − 1))T



,

16

where A
(2)
i (Ci(2j), Ci(2j + 1))T is a column vector of length 2r. For 0 ≤ i ≤ 5, we have

AiCi =





A
(4)
i (Ci(0), Ci(1), Ci(2), Ci(3))

T

A
(4)
i (Ci(4), Ci(5), Ci(6), Ci(7))

T

..

.

A
(4)
i (Ci(ℓ− 4), Ci(ℓ− 3), Ci(ℓ− 2), Ci(ℓ− 1))T




.

In general, for 1 ≤ v ≤ n/3 and 0 ≤ i ≤ 3v − 1, we have

AiCi =

















A
(2v)
i (Ci(0), Ci(1), . . . , Ci(2

v − 1))T

A
(2v)
i (Ci(2v), Ci(2v + 1), . . . , Ci(2v+1 − 1))T

.

.

.

A
(2v)
i (Ci(ℓ− 2v), Ci(ℓ− 2v + 1), . . . , Ci(ℓ− 1))T

















. (16)

For a vector ~z = (z1, z2, z3, z4, z5, z6, z7) satisfying (14), we write z = z1 + z2 + · · ·+ z7. Let us write the set

F(~z) as F(~z) = {i1, i2, . . . , ir}, where i1 < i2 < · · · < ir, and we define a 2zr × 2zr matrix M~z as follows:

M~z =
[
A

(2z)
i1

A
(2z)
i2

. . . A
(2z)
ir

]
. (17)

Lemma 2. For a vector ~z satisfying (14), the equation (15) only has zero solution if and only if the matrix M~z is

invertible.

Proof. By definition (13), we have i ≤ 3z− 1 for all i ∈ F(~z). Therefore, we can use (16) to decompose (15) into

the following ℓ/2z equations:

∑

i∈F(~z)

A
(2z)
i (Ci(2

z · j), Ci(2
z · j + 1), . . . , Ci(2

z(j + 1)− 1))T = 0

for 0 ≤ j ≤ ℓ/2z − 1.

It is clear that these ℓ/2z equations only have zero solution if and only if M~z is invertible.

Next we prove that the matrix M~z is invertible for all ~z satisfying (14), and we divide the proof into seven cases.

Case 1: ~z = (z1, 0, 0, 0, 0, 0, 0). In this case, (14) implies that z1 = r/3 and F(~z) = {0, 1, 2, . . . , r − 1}, and

the size of M~z is 2z1r × 2z1r. In order to prove that M~z is invertible, let us consider a column vector

~y = (y0,0, y0,1 · · · , y0,2z1−1, y1,0, y1,1 · · · , y1,2z1−1, · · · ,

yr−1,0, yr−1,1, · · · , yr−1,2z1−1)
T

(18)

of length 2z1r. Next we assume M~z ~y = 0, and we will prove that ~y = 0 is the only solution. The proof is divided

into two steps: The first step is to prove that the following set of coordinates

{y3i,b : 0 ≤ i ≤ z1 − 1, 0 ≤ b ≤ 2z1 − 1, bi = 1}

∪{y3i+1,b : 0 ≤ i ≤ z1 − 1, 0 ≤ b ≤ 2z1 − 1, bi = 0}
(19)

are all zero, and the second step is to prove that the remaining coordinates are all zero. The condition bi = 1 (or

0) above means that the i-th digit in the binary expansion of b is 1 (or 0).

For the first step, we define a sequence of polynomials

ga,i(x) =




(x− λ6i)(x− λ6i+4), if ai = 0,

(x− λ6i+3)(x− λ6i+5), if ai = 1,

(20)

17

for 0 ≤ i ≤ z1 − 1 and 0 ≤ a ≤ 2z1 − 1. We define another sequence of polynomials

fa(x) =

z1−1∏

i=0

ga,i(x) (21)

for 0 ≤ a ≤ 2z1 −1. Since each ga,i is a quadratic polynomial, the degree of fa is 2z1, and we write its coefficients

as fa,0, fa,1, . . . , fa,2z1 , i.e., we write fa(x) = fa,0 + fa,1x+ · · ·+ fa,2z1x
2z1 =

∑2z1
i=0 fa,ix

i.

For each 0 ≤ a ≤ 2z1 − 1, we define an (r − 2z1)× r = z1 × r matrix Fa as
















fa,0 fa,1 · · · · · · · · · · · · · · · fa,2z1 0 0 · · · 0

0 fa,0 fa,1 · · · · · · · · · · · · · · · fa,2z1 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 · · · 0 fa,0 fa,1 · · · · · · · · · · · · · · · fa,2z1

















.

Next we define a 2z1z1 × 2z1r matrix F as

F :=




F0 0 0 · · · 0

0 F1 0 · · · 0

0 0 F2 · · · 0
...

...
...

...
...

0 0 0 · · · F2z1−1




,

where each 0 is a z1 × r matrix with all zero entries.

M~z =















L0 L0 − L1 0 0 L2 0 0 0 L4 0 0 0 L6 0 L6 − L7 0 L8 0 0 0 L10 0 0 0

0 L1 0 0 L3 − L2 L3 0 0 0 L5 0 0 0 L6 0 L6 − L7 0 L8 0 0 0 L10 0 0

0 0 L0 L0 − L1 0 0 L2 0 0 0 L4 0 0 0 L7 0 L9 − L8 0 L9 0 0 0 L11 0

0 0 0 L1 0 0 L3 − L2 L3 0 0 0 L5 0 0 0 L7 0 L9 − L8 0 L9 0 0 0 L11















(22)

FM~z =















0 −f0(λ1)L′
1 0 0 f0(λ2)L′

2 0 0 0000000 −f0(λ7)L′
7 0 f0(λ8)L′

8 0 000000

0 f1(λ1)L′
1 0 0 −f1(λ2)L′

2 0 0 0000000 0 −f1(λ7)L′
7 0 f1(λ8)L′

8 000000

0 0 0 −f2(λ1)L′
1 0 0 f2(λ2)L′

2 0000000 f2(λ7)L′
7 0 −f2(λ8)L′

8 0 000000

0 0 0 f3(λ1)L′
1 0 0 −f3(λ2)L′

2 0000000 0 f3(λ7)L′
7 0 −f3(λ8)L′

8 000000















(23)

Q =















−f0(λ1)L′
1 0 f0(λ2)L′

2 0 −f0(λ7)L′
7 0 f0(λ8)L′

8 0

f1(λ1)L′
1 0 −f1(λ2)L′

2 0 0 −f1(λ7)L′
7 0 f1(λ8)L′

8

0 −f2(λ1)L′
1 0 f2(λ2)L′

2 f2(λ7)L′
7 0 −f2(λ8)L′

8 0

0 f3(λ1)L′
1 0 −f3(λ2)L′

2 0 f3(λ7)L′
7 0 −f3(λ8)L′

8















(24)

The equation M~z ~y = 0 implies that FM~z ~y = 0. The product FM~z is a 2z1z1 × 2z1r matrix, and we represent

it in the following form

FM~z =
[
B0 B1 · · · Br−1

]
, (25)

18

where each Bi is a 2z1z1 × 2z1 matrix. We further represent each matrix Bi as




Bi(0, 0) Bi(0, 1) · · · Bi(0, 2
z1 − 1)

Bi(1, 0) Bi(1, 1) · · · Bi(1, 2
z1 − 1)

...
...

...
...

Bi(2
z1 − 1, 0) Bi(2

z1 − 1, 1) · · · Bi(2
z1 − 1, 2z1 − 1)




,

where each Bi(a, b) is a column vector of length z1 for 0 ≤ i ≤ r− 1 and 0 ≤ a, b ≤ 2z1 − 1. More precisely, for

every 0 ≤ i ≤ z1 − 1 and 0 ≤ a, b ≤ 2z1 − 1, we have

B3i(a, b) =






fa(λ6i+1)L
′
6i+1 if a = b and ai = bi = 1,

−fa(λ6i+1)L
′
6i+1 if ai = 0, bi = 1

and aj = bj ∀j 6= i,

0 otherwise,

B3i+1(a, b) =






fa(λ6i+2)L
′
6i+2 if a = b and ai = bi = 0,

−fa(λ6i+2)L
′
6i+2 if ai = 1, bi = 0

and aj = bj ∀j 6= i,

0 otherwise,

B3i+2(a, b) = 0 for all a and b,

(26)

where the length of each all-zero vector is z1, and

L′
6i+1 =




1

λ6i+1

λ2
6i+1

...

λz1−1
6i+1




, L′
6i+2 =




1

λ6i+2

λ2
6i+2

...

λz1−1
6i+2




for 0 ≤ i ≤ z1 − 1. (27)

From (26) we can see that B3i+2 is an all-zero matrix for every 0 ≤ i ≤ z1 − 1. Moreover, B3i and B3i+1 have

exactly half of their columns to be nonzero: The b-th column of B3i is nonzero if and only if bi = 1; the b-th

column of B3i+1 is nonzero if and only if bi = 0. Therefore, the matrix FM~z in (25) has 2z1z1 nonzero columns,

and these nonzero columns are multiplied with the coordinates in (19). We use Q to denote the 2z1z1 × 2z1z1

matrix formed by the 2z1z1 nonzero columns of FM~z, and we use ~y(1) to denote the subvector of ~y formed by the

2z1z1 coordinates in (19). Then the equation FM~z ~y = 0 is equivalent to Q~y(1) = 0. In Lemma 3, we prove that

Q is invertible, which immediately implies that the coordinates in (19) are all zero. Before presenting Lemma 3,

we first give an example of the matrices M~z, FM~z and Q.

Example 1. Let us take ~z = (2, 0, 0, 0, 0, 0, 0). Then r = 3z1 = 6. In this case, M~z is matrix (22), where each Li

is a column vector of length r = 6, and each 0 is an all-zero column vector of length r = 6. After multiplying F

with M~z , we obtain equation (23), where each L′
i is a column vector of length 2, and each 0 is an all-zero column

vector of length 2. Therefore, Q is matrix (24).

Lemma 3. Let Q be the 2z1z1× 2z1z1 matrix formed by the 2z1z1 nonzero columns of FM~z . Then Q is invertible.

19

D2i(a, b) =





−fa(λ6i+1)L
′
6i+1 if a = (bz1−2, bz1−3, · · · , bi, 0, bi−1, bi−2, · · · , b0),

fa(λ6i+1)L
′
6i+1 if a = (bz1−2, bz1−3, · · · , bi, 1, bi−1, bi−2, · · · , b0),

0 otherwise,

D2i+1(a, b) =





fa(λ6i+2)L
′
6i+2 if a = (bz1−2, bz1−3, · · · , bi, 0, bi−1, bi−2, · · · , b0),

−fa(λ6i+2)L
′
6i+2 if a = (bz1−2, bz1−3, · · · , bi, 1, bi−1, bi−2, · · · , b0),

0 otherwise,

(29)

Proof. We write Q in the form

Q =
[
D0 D1 D2 · · · D2z1−1

]
,

where each Di is a 2z1z1 × 2z1−1 matrix. We further write each matrix Di as



Di(0, 0) Di(0, 1) · · · Di(0, 2z1−1 − 1)

Di(1, 0) Di(1, 1) · · · Di(1, 2z1−1 − 1)

.

.

.
.
.
.

.

.

.
.
.
.

Di(2z1 − 1, 0) Di(2z1 − 1, 1) · · · Di(2z1 − 1, 2z1−1 − 1)



, (28)

where each Di(a, b) is a column vector of length z1 for 0 ≤ i ≤ 2z1 − 1, 0 ≤ a ≤ 2z1 − 1 and 0 ≤ b ≤ 2z1−1 − 1.

More precisely, for every 0 ≤ i ≤ z1 − 1, 0 ≤ a ≤ 2z1 − 1 and every 0 ≤ b ≤ 2z1−1 − 1, we have equations (29),

where the vectors L′
6i+1 and L′

6i+2 are defined in (27). Note that the binary expansion of a has one more digit

than that of b because the range of a is larger than the range of b.

For each 0 ≤ i ≤ z1 − 1 and 0 ≤ b ≤ 2z1−1 − 1, we introduce the shorthand notation

a(i, 0, b) := (bz1−2, bz1−3, · · · , bi, 0, bi−1, bi−2, · · · , b0),

a(i, 1, b) := (bz1−2, bz1−3, · · · , bi, 1, bi−1, bi−2, · · · , b0).

Two corner cases are worth mentioning: When i = 0 or z1 − 1, we have

a(0, 0, b) = (bz1−2, bz1−3, · · · , b0, 0),

a(0, 1, b) = (bz1−2, bz1−3, · · · , b0, 1),

a(z1 − 1, 0, b) = (0, bz1−2, bz1−3, · · · , b0),

a(z1 − 1, 1, b) = (1, bz1−2, bz1−3, · · · , b0).

Next we will construct a 2z1z1 × 2z1z1 matrix

Q =
[
D0 D1 D2 · · · D2z1−1

]
, (30)

where each Di has the same size as Di. For 0 ≤ i ≤ 2z1−1, the matrix Di is obtained from multiplying a nonzero

element to each column of Di. For 0 ≤ i ≤ 2z1− 1, 0 ≤ a ≤ 2z1 − 1 and 0 ≤ b ≤ 2z1−1− 1, we define the column

vector Di(a, b) in the same way as Di(a, b) in (28).

With the above notation at hand, we are ready to explain how to construct Di, or equivalently, how to construct Q.

For 0 ≤ i ≤ z1−1 and 0 ≤ b ≤ 2z1−1−1, the bth column of D2i is obtained from multiplying −1/fa(i,0,b)(λ6i+1)

20

to the bth column of D2i, and the bth column of D2i+1 is obtained from multiplying 1/fa(i,0,b)(λ6i+2) to the bth

column of D2i+1. Therefore,

D2i(a(i, 0, b), b) = L′
6i+1,

D2i(a(i, 1, b), b) = −
fa(i,1,b)(λ6i+1)

fa(i,0,b)(λ6i+1)
L′
6i+1,

(31)

and D2i(a, b) is an all-zero vector for all other a 6= a(i, 0, b), a(i, 1, b). Similarly,

D2i+1(a(i, 0, b), b) = L′
6i+2,

D2i+1(a(i, 1, b), b) = −
fa(i,1,b)(λ6i+2)

fa(i,0,b)(λ6i+2)
L′
6i+2,

(32)

and D2i+1(a, b) is an all-zero vector for all other a 6= a(i, 0, b), a(i, 1, b).

By definition (20), the polynomial ga,i only depends on the ith digit in the binary expansion of a. Since a(i, 0, b)

and a(i, 1, b) only differ in the ith digit in their binary expansions, we have ga(i,0,b),j(x) = ga(i,1,b),j(x) for all

j 6= i. Then by (21), we have

−
fa(i,1,b)(λ6i+1)

fa(i,0,b)(λ6i+1)

=−
ga(i,1,b),i(λ6i+1)

ga(i,0,b),i(λ6i+1)

=−
(λ6i+1 − λ6i+3)(λ6i+1 − λ6i+5)

(λ6i+1 − λ6i)(λ6i+1 − λ6i+4)

=γ6i+1,

(33)

where the last equality follows from the definition (3). Similarly,

−
fa(i,1,b)(λ6i+2)

fa(i,0,b)(λ6i+2)

=−
ga(i,1,b),i(λ6i+2)

ga(i,0,b),i(λ6i+2)

=−
(λ6i+2 − λ6i+3)(λ6i+2 − λ6i+5)

(λ6i+2 − λ6i)(λ6i+2 − λ6i+4)

=γ6i+2

(34)

where the last equality follows from the definition (3). Taking (33)–(34) into (31)–(32), we obtain

D2i(a, b) =





L′
6i+1 if a = a(i, 0, b),

γ6i+1L
′
6i+1 if a = a(i, 1, b),

0 otherwise,

D2i+1(a, b) =





L′
6i+2 if a = a(i, 0, b),

γ6i+2L
′
6i+2 if a = a(i, 1, b),

0 otherwise,

(35)

for 0 ≤ i ≤ z1 − 1, 0 ≤ a ≤ 2z1 − 1 and 0 ≤ b ≤ 2z1−1 − 1.

Since all the λi’s in our code construction are distinct, (20)–(21) imply that −1/fa(i,0,b)(λ6i+1) and 1/fa(i,0,b)(λ6i+2),

i.e., the elements multiplied to each column of Q, are nonzero. Therefore, Q is invertible if and only if Q is invertible.

21

Before proceeding to prove that Q is invertible, we first give a concrete example of Q: For the choice of parameters

in Example 1, we have

Q =




L′
1 0 L′

2 0 L′
7 0 L′

8 0

γ1L
′
1 0 γ2L

′
2 0 0 L′

7 0 L′
8

0 L′
1 0 L′

2 γ7L
′
7 0 γ8L

′
8 0

0 γ1L
′
1 0 γ2L

′
2 0 γ7L

′
7 0 γ8L

′
8



.

To prove that Q is invertible, we only need to show that det(Q) 6= 0. From (35) we can see that det(Q) is a

polynomial of λ6i+1, λ6i+2, γ6i+1, γ6i+2 for 0 ≤ i ≤ z1−1. The variables λ6i+1 and γ6i+1 appear in every column

of D2i, and they do not appear in any other Dj for j 6= 2i. The maximum degree of λ6i+1 in each column of

D2i is z1 − 1, and the maximum degree of γ6i+1 in each column of D2i is 1. The matrix D2i has 2z1−1 columns.

Therefore, the degree of λ6i+1 in det(Q) is at most (z1 − 1)2z1−1, and the degree of γ6i+1 in det(Q) is at most

2z1−1. Using similar arguments we can show that the degree of λ6i+2 in det(Q) is at most (z1 − 1)2z1−1, and the

degree of γ6i+2 in det(Q) is at most 2z1−1.

Next we prove that (λ6i+1 − λ6j+1)
2z1−2

is a factor of det(Q) for every pair of i 6= j. For 0 ≤ i ≤ 2z1 − 1

and 0 ≤ b ≤ 2z1−1 − 1, we use Di(b) to denote the bth column of the matrix Di. For 0 ≤ i < j ≤ z1 − 1 and

0 ≤ b ≤ 2z1−1 − 1, we define

φ(i, j, b)

=(bz1−2, bz1−3, . . . , bj , bj−2, bj−3, . . . , bi, 0, bi−1, bi−2, . . . , b0).

Three corner cases are worth mentioning: (i) If j = z1 − 1, then bz1−2, bz1−3, . . . , bj is an empty subvector, i.e.,

we remove this part from the above definition; (ii) if i = j − 1, then bj−2, bj−3, . . . , bi is an empty subvector; (iii)

if i = 0, then bi−1, bi−2, . . . , b0 is an empty subvector. For 0 ≤ i ≤ z1 − 2, we define a set

Ti := {b : 0 ≤ b ≤ 2z1−1 − 1, bi = 0}.

Given a pair of i, j such that i < j, we define a 2z1z1 × 2z1−1 matrix D
′

2i as follows: For 0 ≤ b ≤ 2z1−1 − 1,

we write the bth column of D
′

2i as D
′

2i(b). If b ∈ Tj−1, then

D
′

2i(b) =D2i(b) + γ6j+1D2i(b+ 2j−1)

−D2j(φ(i, j, b)) − γ6i+1D2j(φ(i, j, b) + 2i);
(36)

If b /∈ Tj−1, then D
′

2i(b) = D2i(b). We further define a 2z1z1 × 2z1z1 matrix Q
′

obtained from replacing D2i

with D
′

2i on the right-hand side of (30). It is easy to see that det(Q
′
) = det(Q). Next we show that for every

b ∈ Tj−1, (λ6i+1−λ6j+1) is a common factor of all the entries in the column D
′

2i(b). To see this, we write D
′

2i(b)

as

D
′

2i(b) =




D
′

2i(0, b)

D
′

2i(1, b)
...

D
′

2i(2
z1 − 1, b)



,

where each D
′

2i(a, b) is a column vector of length z1 for 0 ≤ a ≤ 2z1 − 1. Note that for b ∈ Tj−1 we have

b =

22

(bz1−2, bz1−3, . . . , bj , 0, bj−2, bj−3, . . . , bi, bi−1, bi−2, . . . , b0),

b+ 2j−1 =

(bz1−2, bz1−3, . . . , bj , 1, bj−2, bj−3, . . . , bi, bi−1, bi−2, . . . , b0),

φ(i, j, b) =

(bz1−2, bz1−3, . . . , bj , bj−2, bj−3, . . . , bi, 0, bi−1, bi−2, . . . , b0),

φ(i, j, b) + 2i =

(bz1−2, bz1−3, . . . , bj , bj−2, bj−3, . . . , bi, 1, bi−1, bi−2, . . . , b0),

a(i, 0, b) =

(bz1−2, bz1−3, . . . , bj , 0, bj−2, bj−3, . . . , bi, 0, bi−1, bi−2, . . . , b0),

a(i, 0, b) + 2i =

(bz1−2, bz1−3, . . . , bj , 0, bj−2, bj−3, . . . , bi, 1, bi−1, bi−2, . . . , b0),

a(i, 0, b) + 2j =

(bz1−2, bz1−3, . . . , bj , 1, bj−2, bj−3, . . . , bi, 0, bi−1, bi−2, . . . , b0),

a(i, 0, b) + 2i + 2j =

(bz1−2, bz1−3, . . . , bj , 1, bj−2, bj−3, . . . , bi, 1, bi−1, bi−2, . . . , b0).

Then by (36), for b ∈ Tj−1, we have

D
′

2i(a, b) =



L′
6i+1 − L′

6j+1 if a = a(i, 0, b),

γ6i+1(L
′
6i+1 − L′

6j+1) if a = a(i, 0, b) + 2i,

γ6j+1(L
′
6i+1 − L′

6j+1) if a = a(i, 0, b) + 2j,

γ6i+1γ6j+1(L
′
6i+1 − L′

6j+1) if a = a(i, 0, b) + 2i + 2j ,

0 otherwise,

where 0 in the last line denotes the all-zero column vector of length z1; the vectors L′
6i+1 and L′

6i+2 are defined

in (27). Since (λ6i+1 − λ6j+1) is a common factor of all the entries in (L′
6i+1 − L′

6j+1), it is also a common

factor of all the entries in D
′

2i(b) for every b ∈ Tj−1. The size of Tj−1 is |Tj−1| = 2z1−2, so we can extract

the factor (λ6i+1 − λ6j+1) from 2z1−2 columns of the matrix D
′

2i. Therefore, (λ6i+1 − λ6j+1)
2z1−2

is a factor of

det(Q
′
) = det(Q) for every pair of i 6= j.

Using the same method we can prove that (λ6i+1−λ6j+2)
2z1−2

, (λ6i+2−λ6j+1)
2z1−2

and (λ6i+2−λ6j+2)
2z1−2

are also factors of det(Q) for every pair of i 6= j. Therefore, the following polynomial

h1 :=

z1−2∏

i=0

z1−1∏

j=i+1

(
(λ6i+1 − λ6j+1)

2z1−2

(λ6i+2 − λ6j+1)
2z1−2

(λ6i+1 − λ6j+2)
2z1−2

(λ6i+2 − λ6j+2)
2z1−2

)
(37)

is a factor of det(Q). It is easy to see that the degree of both λ6i+1 and λ6i+2 in the polynomial h1 is (z1−1)2z1−1

for all 0 ≤ i ≤ z1−1. Since the degree of λ6i+1 and λ6i+2 in the polynomial det(Q) cannot exceed (z1−1)2z1−1,

23

we conclude that the polynomial h2 := det(Q)/h1 does not contain variables λ6i+1 or λ6i+2 for any 0 ≤ i ≤ z1−1.

In other words, we have obtained a factorization

det(Q) = h1 · h2, (38)

where h1 only contains λ6i+1 and λ6i+2 for 0 ≤ i ≤ z1−1, and h2 only contains γ6i+1 and γ6i+2 for 0 ≤ i ≤ z1−1.

The next step is to prove that (γ6i+1 − γ6i+2)
2z1−1

is a factor of det(Q) for all 0 ≤ i ≤ z1 − 1. To that end, we

replace the column D2i(b) with D2i(b)−D2i+1(b) for every 0 ≤ b ≤ 2z1−1 − 1. Clearly, these operations do not

change the determinant of the matrix Q. For every 0 ≤ b ≤ 2z1−1 − 1, the only two nonzero parts in the column

vector D2i(b)−D2i+1(b) are L′
6i+1−L′

6i+2 and γ6i+1L
′
6i+1−γ6i+2L

′
6i+2. When we set λ6i+1 = λ6i+2, the vector

L′
6i+1−L′

6i+2 becomes the all-zero vector, and the vector γ6i+1L
′
6i+1−γ6i+2L

′
6i+2 becomes (γ6i+1−γ6i+2)L

′
6i+1.

Therefore, when λ6i+1 = λ6i+2, (γ6i+1 − γ6i+2) is a common factor of all the entries in D2i(b)−D2i+1(b). Since

b takes 2z1−1 possible values, we conclude that (γ6i+1−γ6i+2)
2z1−1

is a factor of det(Q) when λ6i+1 = λ6i+2. On

the other hand, the factorization (38) tells us that the factors containing γ6i+1 and γ6i+2 are independent of the the

values of λ6i+1 and λ6i+2. Therefore, (γ6i+1 − γ6i+2)
2z1−1

is always a factor of det(Q) no matter λ6i+1 is equal

to λ6i+2 or not. Since the degree of γ6i+1 and γ6i+2 in the polynomial det(Q) cannot exceed 2z1−1, we conclude

that (γ6i+1 − γ6i+2)
2z1−1

is the only factor in det(Q) that contains γ6i+1 and γ6i+2. Therefore, the polynomial h2

in (38) can be written as

h2 = c

z1−1∏

i=0

(γ6i+1 − γ6i+2)
2z1−1

, (39)

where c is a constant that is independent of γ6i+1, γ6i+2, λ6i+1, λ6i+2 for all 0 ≤ i ≤ z1 − 1.

The final step is to prove that the constant c in (39) is either 1 or −1. To that end, we write det(Q) as a linear

combination of monomials, and we will show that

z1−1∏

i=0

(
λ
(z1−1−i)2z1−1

6i+1 · λ
(z1−1−i)2z1−1

6i+2 · γ2z1−1

6i+1

)
(40)

is a monomial in this linear combination. To see this, we pick the entry γ6i+1λ
z1−1−i
6i+1 from the column D2i(b),

and we pick the entry λz1−1−i
6i+2 from the column D2i+1(b) for every 0 ≤ i ≤ z1 − 1 and every 0 ≤ b ≤ 2z1−1 − 1.

Since all these entries are located in different rows, their product, which is given by the monomial in (40), appears

in det(Q). Moreover, the coefficient of this monomial in det(Q) is either 1 or −1. On the other hand, we can also

write h1 and h2 as linear combinations of monomials. In particular,

z1−1∏

i=0

(
λ
(z1−1−i)2z1−1

6i+1 · λ
(z1−1−i)2z1−1

6i+2

)

is a monomial that appears in h1. To see this, for 0 ≤ i < j ≤ z1 − 1, we write the product (λ6i+1 −

λ6j+1)
2z1−2

(λ6i+2 − λ6j+1)
2z1−2

(λ6i+1 − λ6j+2)
2z1−2

(λ6i+2 − λ6j+2)
2z1−2

on the right-hand side of (37) as a

linear combination of monomials. It is easy to see that λ2z1−1

6i+1 λ2z1−1

6i+2 is a monomial in this linear combination.

Therefore, the product
∏z1−2

i=0

∏z1−1
j=i+1(λ

2z1−1

6i+1 λ2z1−1

6i+2) =
∏z1−1

i=0

(
λ
(z1−1−i)2z1−1

6i+1 · λ
(z1−1−i)2z1−1

6i+2

)
appears in h1.

By (39), it is easy to see that c
∏z1−1

i=0 γ2z1−1

6i+1 is a monomial that appears in h2. Therefore,

c

z1−1∏

i=0

(
λ
(z1−1−i)2z1−1

6i+1 · λ
(z1−1−i)2z1−1

6i+2 · γ2z1−1

6i+1

)

24

is a monomial that appears in det(Q) = h1 ·h2. From the previous analysis, we know that the coefficient c is either

1 or −1.

Since all the λi’s are distinct, we have h1 6= 0. The condition (4) further guarantees that h2 6= 0. Thus we

conclude that det(Q) 6= 0, so Q and Q are both invertible.

M~z =

[
A

(2z−1)
i1

. . . A
(2z−1)
ir−2

I ⊗ L6z−6 I ⊗ (L6z−6 − L6z−5) I ⊗ L6z−4

A
(2z−1)
i1

. . . A
(2z−1)
ir−2

I ⊗ L6z−5 I ⊗ (L6z−3 − L6z−4) I ⊗ L6z−3

]

(41)

As mentioned at the beginning of Case 1, our objective is to prove that ~y = 0 is the only solution to the equation

M~z ~y = 0, where the vector ~y is defined in (18). Now we have shown that all the coordinates in (19) are equal to

zero. Replacing all the coordinates in (19) with 0 in the equation M~z ~y = 0, we obtain

z1−1∑

i=0

(
(1− bi)L6iy3i,b + biL6i+3y3i+1,b + L6i+4+biy3i+2,b

)
= 0

for 0 ≤ b ≤ 2z1 − 1,

(42)

where Li is a column vector of length r defined in (5). Note that

(1 − bi)L6iy3i,b + biL6i+3y3i+1,b =





L6iy3i,b if bi = 0,

L6i+3y3i+1,b if bi = 1.

Therefore, the linear combination on the left-hand side of (42) contains 2z1 distinct Li’s. Since the length of each

Li in this case is r = 3z1, these Li’s are linearly independent, so their coefficients must be 0. This tells us that

y3i+2,b = 0 for all 0 ≤ b ≤ 2z1 − 1; y3i,b = 0 if bi = 0; y3i+1,b = 0 if bi = 1. Combining this with the fact that all

the coordinates in (19) are equal to zero, we conclude that ~y = 0 is the only solution to the equation M~z ~y = 0.

This completes the proof for Case 1.

Case 2: ~z = (z1, z2, 0, 0, 0, 0, 0). In this case, (14) implies that r = 3z1 + 2z2, z = z1 + z2, and the size of M~z

(defined in (17)) is 2z1+z2r × 2z1+z2r.

Our task is still to show that M~z is invertible, and we prove it by induction on z2. The base case z2 = 0 was

already proved in Case 1. For the inductive step, we assume that the conclusion holds for (z1, z2 − 1, 0, 0, 0, 0, 0),

and we prove the conclusion for (z1, z2, 0, 0, 0, 0, 0).

To prove the invertibility of M~z, our method is still to show that ~y = 0 is the only solution to the equation

M~z ~y = 0, where the vector ~y is defined as

~y = (y0,0, y0,1 · · · , y0,2z−1,

y1,0, y1,1, · · · , y1,2z−1,

· · · ,

yr−1,0, yr−1,1, · · · , yr−1,2z−1)
T .

(43)

Recall from (17) that i1, i2, . . . , ir are the indices in the set F(~z). Since we assume that ~z = (z1, z2, 0, 0, 0, 0, 0)
with z2 ≥ 1, we have ir−1 = 3z − 3 and ir = 3z − 2. Note that M~z is matrix (41), where ⊗ is the Kronecker

25

product, I = I2z−1 is the identity matrix of size 2z−1×2z−1, and the column vector Li is defined in (5). We define
a 2z−1r × 2z−1r matrix

Q~z =

[
A

(2z−1)
i1

A
(2z−1)
i2

. . . A
(2z−1)
ir−2

I
2z−1 ⊗ L6z−6 I

2z−1 ⊗ L6z−3

]
,

and a vector

~ysum = (ysum
0,0 , y

sum
0,1 · · · , ysum

0,2z−1−1,

ysum
1,0 , y

sum
1,1 , · · · , y

sum
1,2z−1−1,

· · · ,

ysum
r−1,0, y

sum
r−1,1, · · · , y

sum
r−1,2z−1−1)

T ,

where ysum
i,a = yi,a+yi,a+2z−1 for 0 ≤ i ≤ r−1 and 0 ≤ a ≤ 2z−1−1. If we add the ath block row of the equation

M~z ~y = 0 to the (a+ 2z−1)th block row for every 0 ≤ a ≤ 2z−1 − 1, then we obtain Q~z~y
sum = 0.

The next step is to show that Q~z is invertible, which implies that ~ysum is an all-zero vector.

Lemma 4. If M(z1,z2−1,0,0,0,0,0) is invertible, then Q(z1,z2,0,0,0,0,0) is also invertible.

The condition of this lemma is the induction hypothesis.

Proof. Let us write ~z = (z1, z2, 0, 0, 0, 0, 0) and ~z′ = (z1, z2−1, 0, 0, 0, 0, 0). Note that the size of M~z′ is 2z−1(r−

2)× 2z−1(r− 2), where z = z1 + z2 and r = 3z1 +2z2. In order to prove that Q~z is invertible, we will show that

~ysum = 0 is the only solution to the equation Q~z~y
sum = 0.

We define a quadratic polynomial f(x) = (x − λ6z−6)(x − λ6z−3), and we write its coefficients as f0, f1, f2,

i.e., we write f(x) = f0 + f1x+ f2x
2. We define an (r − 2)× r matrix F0 as

F0 :=




f0 f1 f2 0 0 0 0 0 · · · 0

0 f0 f1 f2 0 0 0 0 · · · 0

0 0 f0 f1 f2 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...

0 0 0 0 · · · 0 f0 f1 f2




,

and a 2z−1(r − 2)× 2z−1r matrix F as

F :=




F0 0 0 · · · 0

0 F0 0 · · · 0

0 0 F0 · · · 0
...

...
...

...
...

0 0 0 · · · F0




,

where each 0 is a (r − 2)× r matrix with all zero entries, and F0 appears in total 2z−1 times on the diagonal.

The equation Q~z~y
sum = 0 implies that FQ~z~y

sum = 0. It is easy to see that

F (I2z−1 ⊗ L6z−6) = F (I2z−1 ⊗ L6z−3) = 0,

26

where 0 on the right-hand side is the all-zero matrix of size 2z−1(r − 2)× 2z−1. Therefore,

FQ~z =
[
FA

(2z−1)
i1

FA
(2z−1)
i2

. . . FA
(2z−1)
ir−2

0 0
]
. (44)

Define r − 2 matrices

Bi1 = FA
(2z−1)
i1

, Bi2 = FA
(2z−1)
i2

, . . . , Bir−2 = FA
(2z−1)
ir−2

(45)

of size 2z−1(r − 2)× 2z−1. We further define a 2z−1(r − 2)× 2z−1(r − 2) matrix

K = [Bi1 Bi2 · · · Bir−2]. (46)

The next step is to show that K is invertible. To that end, we represent each matrix Bit as



Bit (0, 0) Bit (0, 1) · · · Bit (0, 2
z−1 − 1)

Bit (1, 0) Bit (1, 1) · · · Bit (1, 2
z−1 − 1)

.

.

.

.

.

.

.

.

.

.

.

.

Bit (2
z−1 − 1, 0) Bit (2

z−1 − 1, 1) · · · Bit (2
z−1 − 1, 2z−1 − 1)


 (47)

for 1 ≤ t ≤ r − 2, where each Bit(a, b) is a column vector of length r − 2 for 0 ≤ a, b ≤ 2z−1 − 1. In order to

characterize the matrices Bi1 , . . . , Bir−2 , we further introduce the notation

Li :=




1

λi

λ2
i

...

λr−3
i




.

By definition, if it = 3j for some j ∈ {0, 1, . . . , z − 2}, then

Bit(a, b)

=B3j(a, b)

=





f(λ6j+aj
)L6j+aj

if a = b,

f(λ6j)L6j − f(λ6j+1)L6j+1 if aj = 0, bj = 1

and ai = bi ∀i 6= j,

0 otherwise.

If it = 3j + 1 for some j ∈ {0, 1, . . . , z − 2}, then

Bit(a, b)

=B3j+1(a, b)

=





f(λ6j+2+aj
)L6j+2+aj

if a = b,

f(λ6j+3)L6j+3 − f(λ6j+2)L6j+2 if aj = 1, bj = 0

and ai = bi ∀i 6= j,

0 otherwise.

27

If it = 3j + 2 for some j ∈ {0, 1, . . . , z − 2}, then

Bit(a, b)

=B3j+2(a, b)

=





f(λ6j+4+aj
)L6j+4+aj

if a = b,

0 otherwise.

Next we define another r − 2 matrices Bi1 , Bi2 , . . . , Bir−2 whose size is the same as Bi1 , Bi2 , . . . , Bir−2 , and

K = [Bi1 Bi2 · · · Bir−2].

We define the column vector Bit(a, b) in the same way as we defined Bit(a, b) in (47). The value of Bit(a, b) is

given as follows: If it = 3j for some j ∈ {0, 1, . . . , z − 2}, then

Bit(a, b)

=B3j(a, b)

=





f(λ6j+aj
)L6j+aj

if a = b,

−f(λ6j+1)L6j+1 if aj = 0, bj = 1

and ai = bi ∀i 6= j,

0 otherwise.

If it = 3j + 1 for some j ∈ {0, 1, . . . , z − 2}, then

Bit(a, b)

=B3j+1(a, b)

=





f(λ6j+2+aj
)L6j+2+aj

if a = b,

−f(λ6j+2)L6j+2 if aj = 1, bj = 0

and ai = bi ∀i 6= j,

0 otherwise.

If it = 3j + 2 for some j ∈ {0, 1, . . . , z − 2}, then

Bit(a, b)

=B3j+2(a, b)

=





f(λ6j+4+aj
)L6j+4+aj

if a = b,

0 otherwise.

We use Bit(b) and Bit(b) to denote the bth column of Bit and Bit , respectively. The relation between the matrices

Bit and Bit can be described as follows: If it = 3j for some j ∈ {0, 1, . . . , z − 2}, then

Bit(b) =





Bit(b)−Bit(b− 2j) if bj = 1,

Bit(b) if bj = 0.

28

If it = 3j + 1 for some j ∈ {0, 1, . . . , z − 2}, then

Bit(b) =





Bit(b)−Bit(b+ 2j) if bj = 0,

Bit(b) if bj = 1.

If it = 3j + 2 for some j ∈ {0, 1, . . . , z − 2}, then Bit = Bit . The relation between Bit and Bit immediately

implies that det(K) = det(K). Therefore, K is invertible if and only if K is invertible.

To prove the invertibility of K, we introduce another variation of Bit and K: Define r−2 matrices B̃i1 , B̃i2 , . . . , B̃ir−2

whose size is the same as Bi1 , Bi2 , . . . , Bir−2 . We further define

K̃ = [B̃i1 B̃i2 · · · B̃ir−2].

The column vector B̃it(a, b) is defined in the same way as we defined Bit(a, b) in (47). The value of B̃it(a, b) is

given as follows: If it = 3j for some j ∈ {0, 1, . . . , z − 2}, then

B̃it(a, b) = B̃3j(a, b) =





L6j+aj
if a = b,

−L6j+1 if aj = 0, bj = 1

and ai = bi ∀i 6= j,

0 otherwise.

If it = 3j + 1 for some j ∈ {0, 1, . . . , z − 2}, then

B̃it(a, b) = B̃3j+1(a, b) =





L6j+2+aj
if a = b,

−L6j+2 if aj = 1, bj = 0

and ai = bi ∀i 6= j,

0 otherwise.

If it = 3j + 2 for some j ∈ {0, 1, . . . , z − 2}, then

B̃it(a, b) = B̃3j+2(a, b) =





L6j+4+aj
if a = b,

0 otherwise.

We use B̃it(b) to denote the bth column of B̃it . The relation between Bit and B̃it can be described as follows: If

it = 3j for some j ∈ {0, 1, . . . , z − 2}, then

Bit(b) = f(λ6j+bj)B̃it(b).

If it = 3j + 1 for some j ∈ {0, 1, . . . , z − 2}, then

Bit(b) = f(λ6j+2+bj)B̃it(b).

If it = 3j + 2 for some j ∈ {0, 1, . . . , z − 2}, then

Bit(b) = f(λ6j+4+bj)B̃it(b).

Since all the λi’s are distinct, the coefficients f(λ6j+bj), f(λ6j+2+bj), f(λ6j+4+bj) in the above equations are

nonzero. Therefore, B̃it is obtained from multiplying a nonzero element to each column of Bit for every 1 ≤ t ≤

r−2. Thus we conclude that the invertibility of K̃ is equivalent to the invertibility of K, which is further equivalent

to the invertibility of K .

29

Next we use the invertibility of M~z′ to prove the invertibility of K̃. By definition (17),

M~z′ =
[
A

(2z−1)
i1

A
(2z−1)
i2

. . . A
(2z−1)
ir−2

]
.

For 0 ≤ b ≤ 2z−1 − 1 and 1 ≤ t ≤ r − 2, we use A
(2z−1)
it

(b) to denote the bth column of A
(2z−1)
it

. It is easy to

verify the following relation between A
(2z−1)
it

and B̃it : If it = 3j for some j ∈ {0, 1, . . . , z − 2}, then

B̃it(b) =





A
(2z−1)
it

(b)−A
(2z−1)
it

(b− 2j) if bj = 1,

A
(2z−1)
it

(b) if bj = 0..

If it = 3j + 1 for some j ∈ {0, 1, . . . , z − 2}, then

B̃it(b) =





A
(2z−1)
it

(b)−A
(2z−1)
it

(b + 2j) if bj = 0,

A
(2z−1)
it

(b) if bj = 1.

If it = 3j+2 for some j ∈ {0, 1, . . . , z−2}, then B̃it = A
(2z−1)
it

. The relation between A
(2z−1)
it

and B̃it immediately

implies that det(M~z′) = det(K̃). Since M~z′ is invertible, we conclude that the three matrices K,K and K̃ are all

invertible.

Since K is invertible, the equation FQ~z~y
sum = 0 and (44)–(46) together imply that the first 2z−1(r − 2)

coordinates of ~ysum are all equal to 0. Taking this result back into the equation Q~z~y
sum = 0, we immediately obtain

that the last 2z coordinates of ~ysum are also equal to 0. Therefore, ~ysum = 0 is the only solution to the equation

Q~z~y
sum = 0. This completes the proof of the lemma.

Now we have shown that ~ysum is an all-zero vector. Before proceeding to prove that ~y is also an all-zero vector,
we need to introduce some notation. We define a 2z−1r × 2z−1r matrix

Q
(1)
~z

=

[
A

(2z−1)
i1

A
(2z−1)
i2

. . . A
(2z−1)
ir−2

I
2z−1 ⊗ L6z−5 I

2z−1 ⊗ L6z−4

]

and a vector

~y(1) = (y
(1)
0,0, y

(1)
0,1 · · · , y

(1)
0,2z−1−1,

y
(1)
1,0, y

(1)
1,1, · · · , y

(1)
1,2z−1−1,

· · · ,

y
(1)
r−1,0, y

(1)
r−1,1, · · · , y

(1)
r−1,2z−1−1)

T ,

where y
(1)
i,a = yi,a for all 0 ≤ i ≤ r−3 and all 0 ≤ a ≤ 2z−1−1; y

(1)
r−2,a = −yr−2,a+2z−1 for all 0 ≤ a ≤ 2z−1−1;

y
(1)
r−1,a = yr−1,a for all 0 ≤ a ≤ 2z−1 − 1.

The result ~ysum = 0 implies that ysum
r−2,a = yr−2,a + yr−2,a+2z−1 = 0 for all 0 ≤ a ≤ 2z−1 − 1. Taking this into

the equation M~z ~y = 0, the first 2z−1 block rows of M~z ~y = 0 become Q
(1)
~z ~y(1) = 0. Since the matrices Q

(1)
~z and

Q~z have the same structure, we can use the method in the proof of Lemma 4 to show that Q
(1)
~z is also invertible.

Therefore, ~y(1) = 0. Combining ~y(1) = 0 with ~ysum = 0, we immediately conclude that ~y is an all-zero vector.

This proves that M~z is invertible for Case 2.

Case 3: ~z = (z1, z2, z3, 0, 0, 0, 0). In this case, (14) implies that r = 3z1 + 2z2 + 2z3 and z = z1 + z2 + z3.

We prove the invertibility of M~z by induction on z3. The base case z3 = 0 was already proved in Case 2. For the

30

inductive step, we assume that the conclusion holds for (z1, z2, z3 − 1, 0, 0, 0, 0), and we prove the conclusion for

(z1, z2, z3, 0, 0, 0, 0).
Our method is still to show that ~y = 0 is the only solution to the equation M~z ~y = 0, where the vector ~y is

defined in (43). Since we assume that ~z = (z1, z2, z3, 0, 0, 0, 0) with z3 ≥ 1, we have ir−1 = 3z−3 and ir = 3z−1
in (17). We define two 2z−1r × 2z−1r matrices

Q
(2)
~z

=

[
A

(2z−1)
i1

A
(2z−1)
i2

. . . A
(2z−1)
ir−2

I
2z−1 ⊗ L6z−6 I

2z−1 ⊗ L6z−2

]
,

Q
(3)
~z

=

[
A

(2z−1)
i1

A
(2z−1)
i2

. . . A
(2z−1)
ir−2

I
2z−1 ⊗ L6z−5 I

2z−1 ⊗ L6z−1

]
.

Using the method in the proof of Lemma 4, we can show that both Q
(2)
~z and Q

(3)
~z are invertible. We further define

two vectors

~y(2) = (y
(2)
0,0, y

(2)
0,1 · · · , y

(2)
0,2z−1−1,

y
(2)
1,0, y

(2)
1,1, · · · , y

(2)
1,2z−1−1,

· · · ,

y
(2)
r−1,0, y

(2)
r−1,1, · · · , y

(2)
r−1,2z−1−1)

T ,

~y(3) = (y
(3)
0,0, y

(3)
0,1 · · · , y

(3)
0,2z−1−1,

y
(3)
1,0, y

(3)
1,1, · · · , y

(3)
1,2z−1−1,

· · · ,

y
(3)
r−1,0, y

(3)
r−1,1, · · · , y

(3)
r−1,2z−1−1)

T ,

where y
(2)
i,a = yi,a and y

(3)
i,a = yi,a+2z−1 for 0 ≤ i ≤ r − 1 and 0 ≤ a ≤ 2z−1 − 1. The last 2z−1 block rows of

M~z ~y = 0 give us Q
(3)
~z ~y(3) = 0. Since Q

(3)
~z is invertible, we have ~y(3) = 0. Taking this back into M~z ~y = 0, the

first 2z−1 block rows of M~z ~y = 0 become Q
(2)
~z ~y(2) = 0. Since Q

(2)
~z is invertible, we conclude that ~y(2) = 0, so

~y is an all-zero vector. This completes the proof for Case 3.

Case 4: ~z = (z1, z2, z3, z4, 0, 0, 0). In this case, (14) implies that r = 3z1+2z2+2z3+2z4 and z = z1+z2+z3+z4.

We prove the invertibility of M~z by induction on z4. The base case z4 = 0 was already proved in Case 3. For the

inductive step, we assume that the conclusion holds for (z1, z2, z3, z4 − 1, 0, 0, 0), and we prove the conclusion for

(z1, z2, z3, z4, 0, 0, 0).
Our method is still to show that ~y = 0 is the only solution to the equation M~z ~y = 0, where the vector ~y

is defined in (43). Since we assume that ~z = (z1, z2, z3, z4, 0, 0, 0) with z4 ≥ 1, we have ir−1 = 3z − 2 and
ir = 3z − 1 in (17). We define two 2z−1r × 2z−1r matrices

Q
(4)
~z

=

[
A

(2z−1)
i1

A
(2z−1)
i2

. . . A
(2z−1)
ir−2

I
2z−1 ⊗ L6z−4 I

2z−1 ⊗ L6z−2

]
,

Q
(5)
~z

=

[
A

(2z−1)
i1

A
(2z−1)
i2

. . . A
(2z−1)
ir−2

I
2z−1 ⊗ L6z−3 I

2z−1 ⊗ L6z−1

]
.

Using the method in the proof of Lemma 4, we can show that both Q
(4)
~z and Q

(5)
~z are invertible. Recall the

definitions of ~y(2) and ~y(3) in Case 3. The first 2z−1 block rows of M~z ~y = 0 give us Q
(4)
~z ~y(2) = 0. Since Q

(4)
~z

is invertible, we have ~y(2) = 0. Taking this back into M~z ~y = 0, the last 2z−1 block rows of M~z ~y = 0 become

Q
(5)
~z ~y(3) = 0. Since Q

(5)
~z is invertible, we conclude that ~y(3) = 0, so ~y is an all-zero vector. This completes the

proof for Case 4.

31

Case 5: ~z = (z1, z2, z3, z4, z5, 0, 0). The proof is the same as Case 3.

Case 6: ~z = (z1, z2, z3, z4, z5, z6, 0). The proof is the same as Case 4.

Case 7: ~z = (z1, z2, z3, z4, z5, z6, z7). The proof is the same as Case 3 and Case 4.

V. OPTIMAL REPAIR BANDWIDTH FOR SINGLE NODE FAILURE

According to Appendix, no matter which node fails, we can always convert it to the first group, so we only need

to prove that the nodes in the first group can be repaired. Next, We will use three cases to illustrate the repair

procedure.

First case: How to repair C0. Note that the parity check equations in (1) can be written in the matrix form

A0C0 +A1C1 +A2C2 + · · ·+An−1Cn−1 = 0, (48)

where each Ci is a column vector of length ℓ. Each block row in the matrices A0, . . . , An−1 corresponds to a set

of r parity check equations because the length of each Li is r. Since there are ℓ block rows in each matrix Ai,

we have ℓ sets of parity check equations in total. The repair of C0 only involves ℓ/2 out of these ℓ sets of parity

check equations. More precisely, among the ℓ block rows in each matrix Ai, we only need to look at the block

rows whose indices lie in the set {0, 2, 4, · · · , 2(ℓ/2 − 1)}. These ℓ/2 block rows of parity check equations can

again be organized in the matrix form

Ã0C̃0 + Â0Ĉ0 +

n−1∑

i=1

AiCi = 0, (49)

where Ã0, Â0, Ai, 1 ≤ i ≤ n− 1 are all ℓ/2× ℓ/2 matrices, and C̃0, Ĉ0, Ci, 1 ≤ i ≤ n− 1 are all column vectors

of length ℓ/2. More specifically, the matrices in (49) are for every 0 ≤ a, b ≤ ℓ/2− 1,

Ã0(a, b) =





L0 if a = b,

0 otherwise,

Â0(a, b) =





−L1 if a = b,

0 otherwise,

A1(a, b) =





L2 if a = b,

0 otherwise,

A2(a, b) =





L4 if a = b,

0 otherwise,

32

and for every 1 ≤ i ≤ n/3− 1,

A3i(a, b) =





L6i+ai−1 if a = b,

L6i − L6i+1 if ai−1 = 0, bi−1 = 1,

and aj = bj ∀j 6= i− 1,

0 otherwise,

A3i+1(a, b) =





L6i+2+ai−1 if a = b,

L6i+3 − L6i+2 if ai−1 = 1, bi−1 = 0,

and aj = bj ∀j 6= i− 1,

0 otherwise,

A3i+2(a, b) =





L6i+4+ai−1 if a = b,

0 otherwise,

where 0 in the last line denotes the all-zero column vector of length r, and the column vectors in (49) are for every

0 ≤ a ≤ ℓ/2− 1,

C̃0(a) = C0(2a) + C0(2a+ 1),

Ĉ0(a) = C0(2a+ 1),

and for every 0 ≤ i ≤ n− 1 and i 6= 0,

Ci(a) = Ci(2a).

Here we make an important observation: The matrices A3, A4, . . . , An−1 are precisely the n − 3 parity check

matrices that would appear in our MSR code construction with code length n − 3 and subpacketization ℓ/2 =

2n/3−1 = 2(n−3)/3. The other 4 matrices Ã0, Â0, A1, A2 are all block-diagonal matrices, and the diagonal entries

are the same within each matrix. Moreover, the λi’s (or equivalently Li’s) that appear in Ã0, Â0, A1, A2 do not

intersect with the λi’s that appear in A3, A4, . . . , An−1. The method we used to prove the MDS property of our

MSR code construction in Section IV can be easily generalized to show that (49) also defines an MDS array code

(C̃0, Ĉ0, C1, C2, . . . , Cn−1) with code length n + 1 and code dimension k + 1. Therefore, C̃0 and Ĉ0 can be

recovered from any k+1 vectors in the set {C1, C2, . . . , Cn−1}. Once we know the values of C̃0 and Ĉ0, we are

able to recover all the coordinates of C0.

Second case: How to repair C1. It is similar to the first case, but here we need to look at the block rows whose

indices lie in the set {1, 3, 5, · · · , 2(ℓ/2−1)+1}. These ℓ/2 block rows of parity check equations can be organized

in the matrix form

A0C0 + Ã1C̃1 + Â1Ĉ1 +

n−1∑

i=2

AiCi = 0, (50)

33

where A0, Ã1, Â1, Ai, 2 ≤ i ≤ n− 1 are all ℓ/2× ℓ/2 matrices, and C0, C̃1, Ĉ1, Ci, 2 ≤ i ≤ n− 1 are all column

vectors of length ℓ/2. More specifically, the matrices in (50) are for every 0 ≤ a, b ≤ ℓ/2− 1,

A0(a, b) =





L1 if a = b,

0 otherwise,

Ã1(a, b) =





−L2 if a = b,

0 otherwise,

Â1(a, b) =





L3 if a = b,

0 otherwise,

A2(a, b) =





L5 if a = b,

0 otherwise,

and for every 1 ≤ i ≤ n/3− 1,

A3i(a, b) =





L6i+ai−1 if a = b,

L6i − L6i+1 if ai−1 = 0, bi−1 = 1,

and aj = bj ∀j 6= i− 1,

0 otherwise,

A3i+1(a, b) =





L6i+2+ai−1 if a = b,

L6i+3 − L6i+2 if ai−1 = 1, bi−1 = 0,

and aj = bj ∀j 6= i− 1,

0 otherwise,

A3i+2(a, b) =





L6i+4+ai−1 if a = b,

0 otherwise,

where 0 in the last line denotes the all-zero column vector of length r, and the column vectors in (50) are for every

0 ≤ a ≤ ℓ/2− 1,

C̃1(a) = C1(2a),

Ĉ1(a) = C1(2a) + C1(2a+ 1),

and for every 0 ≤ i ≤ n− 1 and i 6= 1,

Ci(a) = Ci(2a+ 1).

Here we still make an important observation: The matrices A3, A4, . . . , An−1 are precisely the n− 3 parity check

matrices that would appear in our MSR code construction with code length n − 3 and subpacketization ℓ/2 =

2n/3−1 = 2(n−3)/3. The other 4 matrices A0, Ã1, Â1, A2 are all block-diagonal matrices, and the diagonal entries

are the same within each matrix. Moreover, the λi’s (or equivalently Li’s) that appear in A0, Ã1, Â1, A2 do not

intersect with the λi’s that appear in A3, A4, . . . , An−1. The method we used to prove the MDS property of our

MSR code construction in Section IV can be easily generalized to show that (50) also defines an MDS array code

(C0, C̃1, Ĉ1, C2, . . . , Cn−1) with code length n + 1 and code dimension k + 1. Therefore, C̃1 and Ĉ1 can be

34

recovered from any k+1 vectors in the set {C0, C2, . . . , Cn−1}. Once we know the values of C̃1 and Ĉ1, we are

able to recover all the coordinates of C1.

Third case: How to repair C2. In order to repair C2, we sum up ℓ/2 pairs of block rows of each matrix Ai in

equation (48). Specifically, we sum up (2i)th block row and the (2i+1)th block row for every i ∈ {0, 1, · · · , ℓ/2−1}.

In this way, we obtain ℓ/2 block rows of parity check equations from the original ℓ block rows of parity check

equations in (48). These ℓ/2 block rows of parity check equations can be written in the matrix form

A0C0 +A1C1 + Ã2C̃2 + Â2Ĉ2 +
n−1∑

i=3

AiCi = 0, (51)

where A0, A1, Ã2, Â2, Ai, 3 ≤ i ≤ n− 1 are all ℓ/2× ℓ/2 matrices, and C0, C1, C̃2, Ĉ2, Ci, 3 ≤ i ≤ n− 1 are all

column vectors of length ℓ/2. More specifically, the matrices in (51) are for every 0 ≤ a, b ≤ ℓ/2− 1,

A0(a, b) =





L0 if a = b,

0 otherwise,

A1(a, b) =





L3 if a = b,

0 otherwise,

Ã2(a, b) =





L4 if a = b,

0 otherwise,

Â2(a, b) =





L5 if a = b,

0 otherwise,

and for every 1 ≤ i ≤ n/3− 1,

A3i(a, b) =





L6i+ai−1 if a = b,

L6i − L6i+1 if ai−1 = 0, bi−1 = 1,

and aj = bj ∀j 6= i− 1,

0 otherwise,

A3i+1(a, b) =





L6i+2+ai−1 if a = b,

L6i+3 − L6i+2 if ai−1 = 1, bi−1 = 0,

and aj = bj ∀j 6= i− 1,

0 otherwise,

A3i+2(a, b) =





L6i+4+ai−1 if a = b,

0 otherwise,

where 0 in the last line denotes the all-zero column vector of length r, and the column vectors in (51) are for every

0 ≤ a ≤ ℓ/2− 1,

C̃2(a) = C2(2a),

Ĉ2(a) = C2(2a+ 1),

and for every 0 ≤ i ≤ n− 1 and i 6= 2,

Ci(a) = Ci(2a) + Ci(2a+ 1).

35

The matrices A3, A4, . . . , An−1 are precisely the n − 3 parity check matrices that would appear in our MSR

code construction with code length n − 3 and subpacketization ℓ/2 = 2n/3−1 = 2(n−3)/3. The other 4 matrices

A0, A1, Ã2, Â2 are all block-diagonal matrices, and the diagonal entries are the same within each matrix. More-

over, the λi’s (or equivalently Li’s) that appear in A0, A1, Ã2, Â2 do not intersect with the λi’s that appear in

A3, A4, . . . , An−1. The method we used to prove the MDS property of our MSR code construction in Section IV

can be easily generalized to show that (51) also defines an MDS array code (C0, C1, C̃2, Ĉ2, C3, . . . , Cn−1) with

code length n+1 and code dimension k+1. Therefore, C̃2 and Ĉ2 can be recovered from any k+1 vectors in the

set {C0, C1, C3, . . . , Cn−1}. Once we know the values of C̃2 and Ĉ2, we are able to recover all the coordinates

of C2.

In summary, the matrices Ai in the parity check matrix (48) have ℓ block rows. Yet the repair of a single failed

node only relies on ℓ/2 block rows of parity check equations. More precisely, for every 0 ≤ i ≤ n/3−1, the repair

of C3i only involves the block rows whose indices lie in the set {a : 0 ≤ a ≤ ℓ − 1, ai = 0}; the repair of C3i+1

only involves the block rows whose indices lie in the set {a : 0 ≤ a ≤ ℓ−1, ai = 1}. The repair of C3i+2 is slightly

more complicated. In this case, we divide the ℓ block rows into ℓ/2 pairs {(a, a+2i) : 0 ≤ a ≤ ℓ− 1, ai = 0} and

we sum up the two block rows in each pair. In this way, we obtain ℓ/2 block rows of parity check equations, and

the repair of C3i+2 only involves these equations.

REFERENCES

[1] G. Li, N. Wang, S. Hu, and M. Ye, “Constructing MSR codes with subpacketization 2n/3 for k + 1 helper nodes,” in 2022 IEEE

International Symposium on Information Theory (ISIT), 2022, pp. 3120–3125.

[2] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Network coding for distributed storage systems,” IEEE

Transactions on Information Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[3] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a

product-matrix construction,” IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5227–5239, 2011.

[4] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes with optimal rebuilding,” IEEE Transactions on Information Theory,

vol. 59, no. 3, pp. 1597–1616, 2013.

[5] Z. Wang, I. Tamo, and J. Bruck, “Explicit minimum storage regenerating codes,” IEEE Transactions on Information Theory, vol. 62, no. 8,

pp. 4466–4480, 2016.

[6] M. Ye and A. Barg, “Explicit constructions of high-rate MDS array codes with optimal repair bandwidth,” IEEE Transactions on Information

Theory, vol. 63, no. 4, pp. 2001–2014, 2017.

[7] ——, “Explicit constructions of optimal-access MDS codes with nearly optimal sub-packetization,” IEEE Transactions on Information

Theory, vol. 63, no. 10, pp. 6307–6317, 2017.

[8] B. Sasidharan, M. Vajha, and P. V. Kumar, “An explicit, coupled-layer construction of a high-rate MSR code with low sub-packetization

level, small field size and all-node repair,” 2016, arXiv:1607.07335.

[9] N. Raviv, N. Silberstein, and T. Etzion, “Constructions of high-rate minimum storage regenerating codes over small fields,” IEEE

Transactions on Information Theory, vol. 63, no. 4, pp. 2015–2038, 2017.

[10] I. Tamo, M. Ye, and A. Barg, “Optimal repair of Reed-Solomon codes: Achieving the cut-set bound,” in 2017 IEEE 58th Annual Symposium

on Foundations of Computer Science (FOCS), Oct 2017, pp. 216–227.

[11] J. Li, X. Tang, and C. Tian, “A generic transformation to enable optimal repair in MDS codes for distributed storage systems,” IEEE

Transactions on Information Theory, vol. 64, no. 9, pp. 6257–6267, 2018.

[12] I. Duursma and H. Wang, “Multilinear algebra for minimum storage regenerating codes: a generalization of the product-matrix construction,”

Applicable Algebra in Engineering, Communication and Computing, pp. 1–27, 2021.

http://arxiv.org/abs/1607.07335

36

[13] M. Vajha, S. B. Balaji, and P. V. Kumar, “Small-d MSR codes with optimal access, optimal sub-packetization and linear field size,” 2021,

arXiv:1804.00598.

[14] S. B. Balaji, M. N. Krishnan, M. Vajha, V. Ramkumar, B. Sasidharan, and P. V. Kumar, “Erasure coding for distributed storage: An

overview,” Science China Information Sciences, vol. 61, no. 10, pp. 1–45, 2018.

[15] Y. Liu, J. Li, and X. Tang, “A generic transformation to generate mds array codes with δ-optimal access property,” IEEE Transactions on

Communications, vol. 70, no. 2, pp. 759–768, 2022.

APPENDIX

Recall that in Section II we write the n/3-digit binary expansion of a as a = (an/3−1, an/3−2, . . . , a0) for

ℓ = 2n/3 and a ∈ {0, 1, . . . , ℓ− 1}. The (n, k) array code we defined in Section II is

C = {(C0, C1, . . . , Cn−1) : A0C0 + A1C1 + · · ·+An−1Cn−1 = 0}.

The n nodes (C0, C1, . . . , Cn−1) are divided into n/3 groups of size 3. Next we show that we can exchange nodes

in group i with nodes in group j in the following way without destructing the MDS property.

For the index of two groups 0 ≤ i < j ≤ n/3−1, we define a function Pi↔j : {0, 1, . . . , ℓ−1} → {0, 1, . . . , ℓ−1}

by

Pi↔j(a)

=Pi↔j((an/3−1, · · · , aj+1, aj , aj−1, · · · , ai+1, ai, ai−1, . . . , a0))

=(an/3−1, · · · , aj+1, ai, aj−1, · · · , ai+1, aj , ai−1, . . . , a0)

=a

=(an/3−1, · · · , aj+1, aj , aj−1, · · · , ai+1, ai, ai−1, . . . , a0).

Now let us define another (n, k) array code by

C = {(C0, C1, . . . , Cn−1) : A0C0 + A1C1 + · · ·+ An−1Cn−1 = 0},

where

Ak(a, b) = Ak(Pi↔j(a), Pi↔j(b)) = Ak(a, b),

for a, b ∈ {0, 1, . . . , ℓ − 1} and k ∈ {0, 1, · · · , n− 1}. We can readily check that if (C0, C1, . . . , Cn−1) ∈ C, then

(C0, C1, . . . , Cn−1) ∈ C where Ck(a) = Ck(Pi↔j(a)) = Ck(a) for 0 ≤ k ≤ n− 1 and 0 ≤ a ≤ ℓ − 1, and vice

versa. Hence C and C are permutation equivalent.

By definition, for the group s ∈ {0, 1, · · · , n/3− 1} and s 6= i, j, we have as = as and

A3s(a, b) = A3s(a, b) =



























L6s+as if a = b,

L6s − L6s+1 if as = 0, bs = 1,

and at = bt, ∀t 6= s,

0 otherwise,

=



























L6s+as if a = b,

L6s − L6s+1 if as = 0, bs = 1,

and at = bt, ∀t 6= s,

0 otherwise,

= A3s(a, b),

A3s+1(a, b) = A3s+1(a, b) = A3s+1(a, b),

http://arxiv.org/abs/1804.00598

37

A3s+2(a, b) = A3s+2(a, b) = A3s+2(a, b).

Note that ai = aj , so for s = i, we have

A3i(a, b) = A3i(a, b) =



























L6i+ai
if a = b,

L6i − L6i+1 if ai = 0, bi = 1,

and at = bt ∀t 6= i,

0 otherwise,

=



























L6i+aj
if a = b,

L6i − L6i+1 if aj = 0, bj = 1,

and at = bt ∀t 6= j,

0 otherwise,

A3i+1(a, b) = A3i+1(a, b) =



























L6i+2+aj
if a = b

L6i+3 − L6i+2 if aj = 1, bj = 0,

and at = bt ∀t 6= j

0 otherwise,

A3i+2(a, b) = A3i+2(a, b) =







L6i+4+aj
if a = b,

0 otherwise.

Similarly we have aj = ai and

A3j(a, b) = A3j(a, b) =



























L6j+ai
if a = b,

L6j − L6j+1 if ai = 0, bi = 1,

and at = bt ∀t 6= i,

0 otherwise,

A3j+1(a, b) = A3j+1(a, b) =



























L6j+2+ai
if a = b

L6j+3 − L6j+2 if ai = 1, bi = 0,

and at = bt ∀t 6= i

0 otherwise,

A3j+2(a, b) = A3j+2(a, b) =







L6j+4+ai
if a = b,

0 otherwise.

Now we define

Ĉ = {(C0, C1, . . . , Cn−1) : Â0C0 + Â1C1 + · · ·+ Ân−1Cn−1 = 0},

where

Â3s = A3s, Â3s+1 = A3s+1, Â3s+2 = A3s+2, for s 6= i, j,

and

Â3i = A3j , Â3i+1 = A3j+1, Â3i+2 = A3j+2,

Â3j = A3i, Â3j+1 = A3i+1, Â3j+2 = A3i+2.

We can easily check that

Ĉ = {(C0, C1, . . . , C3j , C3j+1, C3j+2 , . . . , C3i, C3i+1, C3i+2, . . . , Cn−1) :

(C0, C1, . . . , C3i, C3i+1, C3i+2, . . . , C3j , C3j+1, C3j+2 , . . . , Cn−1) ∈ C},

which says that Ĉ is permutation equivalent to C.

From the above, we can see that Â3j(= A3i), Â3j+1(= A3i+1) and Â3j+2(= A3i+2) are defined in the same way

as A3j , A3j+1 and A3j+2, but using λ6i, · · · , λ6i+5 instead of λ6j , · · · , λ6j+5. Similarly Â3i(= A3j), Â3i+1(=

38

A3j+1) and Â3i+2(= A3j+2) are defined in the same way as A3i, A3i+1 and A3i+2, but using λ6j , · · · , λ6j+5

instead of λ6i, · · · , λ6i+5. Therefore any repair scheme works for C will also work for Ĉ, and vice versa. In summary,

we can exchange group i with group j as above without destructing the MDS property. At last we point out any

erasure pattern can be converted to the canonical erasure pattern using the above operation recursively.

	I Introduction
	II New code construction
	III A concrete example
	III-A MDS property
	III-B Optimal repair bandwidth for single node failure

	IV MDS property
	V Optimal repair bandwidth for single node failure
	References
	Appendix

