
ar
X

iv
:2

20
6.

03
34

2v
1 

 [
cs

.I
T

] 
 7

 J
un

 2
02

2
1

Group Properties of Polar Codes for

Automorphism Ensemble Decoding
Valerio Bioglio, Ingmar Land, Charles Pillet

Abstract—In this paper, we propose an analysis of the au-
tomorphism group of polar codes, with the scope of designing
codes tailored for automorphism ensemble (AE) decoding. We
prove the equivalence between the notion of decreasing monomial
codes and the universal partial order (UPO) framework for
the description of polar codes. Then, we analyze the algebraic
properties of the affine automorphisms group of polar codes,
providing a novel description of its structure and proposing
a classification of automorphisms providing the same results
under permutation decoding. Finally, we propose a method to
list all the automorphisms that may lead to different candidates
under AE decoding; by introducing the concept of redundant
automorphisms, we find the maximum number of permutations
providing possibly different codeword candidates under AE-SC,
proposing a method to list all of them. A numerical analysis of the
error correction performance of AE algorithm for the decoding
of polar codes concludes the paper.

Index Terms—Polar codes, monomial codes, permutation de-
coding, AE decoding, automorphisms groups.

I. INTRODUCTION

Polar codes [1] are a class of linear block codes relying

on the phenomenon of channel polarization. Under successive

cancellation (SC) decoding, they can provably achieve capac-

ity of binary memoryless symmetric channels for infinite block

length. However, in the short length regime, the performance

of polar codes under SC decoding is far from state-of-the-art

channel codes. To improve their error correction capabilities,

the use of a list decoder based on SC scheduling, termed

as SC list (SCL) decoding, has been proposed in [2]. The

concatenation of a cyclic redundancy check (CRC) code to

the polar code permits to greatly improve its error correction

performance [3], making the resulting CRC-aided SCL (CA-

SCL) decoding algorithm the de-facto standard decoder for

polar codes adopted in 5G standard [4]. In order to avoid

the extra decoding delay due to information exchange among

parallel SC decoders in hardware implementation of CA-SCL

decoders, permutation-based decoders have been proposed in

[5] for SC; a similar approach was proposed in [6] for belief

propagation (BP) and in [7] for soft cancellation (SCAN).

In a permutation-based decoder, M instances of the same

decoder are run in parallel on permuted factor graphs of the

code, or alternatively on permuted versions of the received
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signal. Even if the decoding delay is reduced, the error

correction performance gain of permutation-based decoders is

quite poor due to the alteration of the frozen set caused by

the permutation. Research towards permutations not altering

the frozen set were carried out [8]; such permutations are

the automorphisms of the code and form the group of per-

mutations mapping a codeword into another codeword. This

new decoding approach, i.e. the use of automorphisms in a

permutation decoder, is referred to as automorphism ensemble

(AE) decoding.

Given their affinity with polar codes, the analysis of the

automorphisms group of Reed-Muller (RM) codes is providing

a guidance for this search. In fact, the automorphism group

of binary Reed-Muller code is known to be the general affine

group [9], and an AE decoder for RM codes has been proposed

in [10] using BP as component decoder. The boolean code

nature of RM codes permitted authors in [11] to propose a

monomial code description of polar codes. Through this defi-

nition, in the same papers the authors proved that the group of

lower-triangular affine (LTA) transformations form a subgroup

of the automorphisms group of polar codes. However, it has

been proved in [10] that LTA transformations commute with

SC decoding, in the sense that LTA transformations do not alter

the result of SC decoding process; this property leads to no

gain under AE decoding when these automorphisms are used.

Fortunately, the LTA transformation group is not always the

full automorphisms group of polar codes [12]; if carefully de-

signed, a polar code exhibits a richer automorphisms group. In

[13], [14], the complete affine automorphisms group of a polar

code is proved to be the block-lower-triangular affine (BLTA)

group. Authors in [12], [13] showed that automorphisms in

BLTA group (not belonging to LTA) can be successfully used

in an AE decoder; in practice, these automorphisms are not

absorbed by the SC decoder. Unfortunately, the group of affine

automorphisms of polar codes asymptotically is not much

bigger than LTA [15]. These discoveries paved the way for

the analysis of the automorphism group of polar codes, and

in general on the struggle of constructing polar codes having

”good” automorphism groups, i.e. a set of automorphisms to

be used in an AE decoder. Author in [16] followed another

approach, focusing on the use of polar subcodes in conjunction

with a peculiar choice of the permutation set to design

polar codes for AE decoding. However, this approach is less

systematic than the analysis of the automorphism group of the

polar code, leading to less predictable gains.

In this paper, we propose an analysis of the automorphisms

group of polar codes, with the scope of designing codes

exhibiting good error correction performance under AE decod-

http://arxiv.org/abs/2206.03342v1


2

ing. To begin with, in Section II we delve into the monomial

codes description of polar codes proposed in [11], proving the

equivalence between the notion of decreasing monomial codes

and the universal partial order (UPO) framework proposed

in [17] for the description of polar codes. This parallelism

will allow us to analyze the algebraic properties of the

affine automorphisms group of polar codes in Section III,

namely a sub-group of the complete automorphisms group of

polar codes whose elements can be described through affine

transformations. Thanks to this analysis, we will provide a

novel proof of the structure of the affine automorphism group

of polar codes, that is different from the ones provided in

[13], [14] and is connected to the UPO framework. Next, in

Section IV we study the nature of AE decoders introducing

the notion of decoder equivalence, namely a classification of

automorphism providing the same results under permutation

decoding. Thanks to this new formalism, we prove that LTA

is not always the complete SC absorption group, namely

that a larger set of automorphisms may be absorbed under

SC decoding. This result is an extension of our preliminary

analysis of decoder equivalence published in [18]. We provide

an alternative proof of a very recent result presented in

[19], namely that the complete SC absorption group has a

BLTA structure. Finally, we propose a method to list all the

automorphisms that may lead to different candidates under per-

mutation decoding; by introducing the concept of redundant

automorphisms, we find the maximum number of permutations

providing possibly different codeword candidates under AE-

SC. Our method permits to easily list all these automorphisms,

greatly simplifying the search for automorphisms to be used

in AE-SC decoding. All the results presented in the paper are

correlated with examples to guide the reader in the process

of constructing and using automorphisms for AE decoding of

polar codes. Section V, including a numerical analysis of the

performance of AE algorithm for the decoding of polar codes,

concludes the paper.

II. POLAR CODES AND MONOMIAL CODES

In this section we analyze the parallelism between polar

codes and decreasing monomial codes. Monomial codes have

been introduced in [11] as a family of codes including polar

and RM codes. In the same paper, decreasing monomial codes

are introduced to provide a monomial description of polar

codes. Through this description, authors in [11] were able

to prove that lower triangular affine (LTA) transformations

form a sub-group of the automorphisms group of polar codes.

In this section, we extend the results in [11] proving the

equivalence between the notion of decreasing monomial codes

and the universal partial order (UPO) framework proposed

in [17]. UPO represents a method to partially sort virtual

polarized channels independently of the actual channel used

for the transmission. Due to the structure of the polarization

phenomenon, some of the virtual channels are inherently better

than others, and the UPO framework is able to catch this

nuance and creates a structure of virtual channels. To the best

of our knowledge, this is the first time that this equivalence is

proved.

A. Polar Codes

To begin with, we provide a definition of polar code. In the

following, the binary field with elements t0, 1u is denoted by

F2, while the set of non-negative integers smaller than N is

written as ZN “ t0, 1, . . . , N ´ 1u.

Definition 1 (Polar codes). A polar code of length N “ 2n

and dimension K is defined by a transformation matrix

Tn “ Tbn
2

, where T2 fi r 1 0
1 1
s, and a frozen set F Ă Z2n , or

inversely by an information set I “ Fc “ Z2nzF . Encoding

is performed as x “ u ¨ TN , where uF “ 0; the code is then

given by

C “ tx “ u ¨ TN : u P FN
2
, uF “ 0u. (1)

Elements of the information set I are usually chosen

according to their reliability; in practice, virtual channels

originated by the transformation matrix are sorted in reliability

order, and the indices of the K most reliable ones form

the information set of the code. The reliability of virtual

channels depend on the characteristics of the transmission

channel, forcing the code designer to recalculate the reliability

order every time the channel parameters change. However,

even if the polarization effect is non-universal, the structure

of transformation matrix TN permits to define an universal

partial order (UPO) among virtual channels. In practice, we

say that i ĺ j if virtual channel represented by index i is

always weaker (i.e. less reliable) than the channel represented

by index j, independently of the original channel [17]. A polar

code fulfills the UPO if this partial reliability order is followed.

Definition 2 (Universal partial order). A polar code is said

to fulfill the universal partial order (UPO) if @i, j P Z2n such

that i ĺ j then i P I ñ j P I.

Figure 1 provides a graphical representation of the relations

among the virtual channels for a polar code of length N “ 32.

A node in the diagram represents a virtual channel, while a

directed edge represents the order relation between two virtual

channels. Nodes that are connected by a directed path can be

compared through the UPO, while the order relation between

unconnected nodes depends on the transmission channel and

should be verified. As an example, since nodes 5 and 9 are

connected, we know that 5 ĺ 9 and virtual channel 5 is

always weaker than virtual channel 9; on the other hand,

nodes 6 and 9 are not connected, and hence the order between

these two virtual channels depends on the original channels.

A polar code fulfilling the UPO can be described through few

generators composing the minimum information set Imin [13]

as

I “
ď

jPImin

ti P rN s, j ĺ iu. (2)

It is worth noticing that a polar code designed to be decoded

under SCL may not fulfill the UPO; the universal reliability

sequence standardized for 5G is an example of this exception

[4]. However, in the following we will focus on polar codes

fulfilling the UPO, since we are interested in AE decoders

having SC component decoders.

The UPO is induced by noticing that the binary expansion

of the virtual channel index actually provides the sequence
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00000
0

m0

V̄0V̄1V̄2V̄3V̄4

10000
1

m1

V̄1V̄2V̄3V̄4

01000
2

m2

V̄0V̄2V̄3V̄4

00100
4

m4

V̄0V̄1V̄3V̄4

11000
3

m3

V̄2V̄3V̄4

00010
8

m8

V̄0V̄1V̄2V̄4

10100
5

m5

V̄1V̄3V̄4

00001
16

m16

V̄0V̄1V̄2V̄3

10010
9

m9

V̄1V̄2V̄4

01100
6

m6

V̄0V̄3V̄4

10001
17

m17

V̄1V̄2V̄3

01010
10

m10

V̄0V̄2V̄4

11100
7

m7

V̄3V̄4

01001
18

m18

V̄0V̄2V̄3

00110
12

m12

V̄0V̄1V̄4

11010
11

m11

V̄2V̄4

00101
20

m20

V̄0V̄1V̄3

11001
19

m19

V̄2V̄3

10110
13

m13

V̄1V̄4

00011
24

m24

V̄0V̄1V̄2

10101
21

m21

V̄1V̄3

01110
14

m14

V̄0V̄4

10011
25

m25

V̄1V̄2

01101
22

m22

V̄0V̄3

11110
15

m15

V̄4

01011
26

m26

V̄0V̄2

11101
23

m23

V̄3

00111
28

m28

V̄0V̄1

11011
27

m27

V̄2

10111
29

m29

V̄1

01111
30

m30

V̄0

11111
31

m31

1

Fig. 1: Hasse diagram of UPO for N “ 32; integers and their binary expansions are depicted in black, corresponding monomials

are depicted in blue.

of channel modifications, where a 0 represents a channel

degradation and a 1 represents a channel upgrade.

Definition 3 (Binary expansion). The canonical binary expan-

sion connecting F
n
2

and Z2n ,

v P Fn
2 pv P Z2n

p̈

q̈

maps an integer v to its binary expansion pv with least signif-

icant bit (LSB) on the left, namely with v0 representing the

LSB of v; zero padding is performed if the number of bits

representing v is smaller than n, namely if v ă 2n´1.

So, given two virtual channel indices i, j P Z2n with i ă
j, if pi and pj represent their binary expansions, we have that

the corresponding nodes in the Hasse diagram are directly

connected, and hence i ĺ j, when:

‚ if pi and pj only differ for a single entry t, where pit “ 0

and pjt “ 1;

‚ if pi and pj only differ for two consecutive entries t and

t` 1, where pit “ 1,pit`i “ 0 and pjt “ 0,pjt`1 “ 1.

These rules are iterated to generate the UPO among the virtual

channels, and hence among the integers representing these

channels.

B. Monomial Codes

Monomial codes are a family of codes of length N “ 2n

defined by evaluations of boolean functions of n variables. A

boolean function can be described as a map from a string of

n bits to a single bit defined by a specific truth table; this map

can always be rewritten as a polynomial f in the polynomial

ring in n indeterminates over F2, i.e. f P F2rV0, . . . , Vn´1s fi

F
rns
2

. Since an element of Fn
2

can be interpreted as the binary

representation of an integer, boolean functions can be seen

as maps associating a bit to each integer in Z2n . Every

boolean function can be written as a linear combination of

monomials in variables Vi, forming a basis for the space of

boolean functions. A monomial in Vi is a product of powers of

variables Vi, with 0 ď i ă n, having non-negative exponents,

e.g. V 2

0
V2. However, since V 2

i “ Vi in F
rns
2

, variables either

appear or not in monomials. Similarly, negative monomials,

namely monomials in V̄i “  Vi “ p1‘Viq, form a basis of the

same space; in the following, we will use negative monomials

to smoothly map polar codes to monomial codes, and we call

Mrns Ă F
rns
2

the set of monomials in n indeterminates over

F2. Given their importance in the definition of boolean func-

tions, we introduce here a notation to connect each monomial

in Mrns to an integer in Z2n .

Definition 4 (Monomials canonical map). The canonical map

connecting Z2n and Mrns,

Z2n ØMrns

tØ mt,

connects integer t P Z2n , where for some Q Ă Zn

t “
ÿ

iPQ

2i, (3)

to monomial mt PM
rns, defined by

mt “
ź

iRQ

V̄i (4)

In practice, the monomials canonical map transforms a

monomial into an integer having zeroes in its binary expansion

corresponding to the variable indices, and ones elsewhere.

Equipped with this map, we can now define the monomial

evaluation function.

Definition 5 (Evaluation function). The evaluation function

eval : F
rns
2
Ñ F

N
2 checks the output of f for all elements of

F
n
2

in increasing order; in practice,

xpfq “ evalpfq fi pfpp0q, fpp1q, . . . , fp{N ´ 1qq. (5)

As a consequence, every boolean function f can be naturally

associated to a binary vector xpfq of length N through the

evaluate function evalpfq. An example of this construction can

be found in Appendix A. Given that high degree monomials

are defined as products of degree-one monomials, namely

single variables, knowing the evaluations of single variables it

is easy to calculate the evaluation of high-degree monomials

as xor of the associated binary strings. This property permits
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to generate a family of block codes based on the evaluation

of monomial functions.

Definition 6 (Monomial codes). A monomial code of length

N “ 2n and dimension K is given by the evaluations of

linear combinations of the monomials included in a generating

monomial set G ĂMrns, with |G| “ K .

Given n variables, it is possible to form 2n different

monomials, of which
`
n
r

˘
are of degree r. A monomial code

of length N “ 2n and dimension K is generated by picking

K monomials out of the N . Reed-Muller codes are monomial

codes defined by picking all monomials up to a certain degree:

in particular, Rpr, nq code is generated by all monomials of

degree smaller or equal to r. The family of monomial codes

being so rich, in order to introduce a parallelism between

these codes and the polar codes, a notion of partial order

among monomials is needed. Authors in [11] propose such a

partial order. Given two monomials mt1 ,mt2 P G of degrees

s1 and s2 respectively, where mt1 “ V̄i0 ¨ . . . ¨ V̄is1´1
and

mt2 “ V̄j0 ¨ . . . ¨ V̄js2´1
, we say that mt1 ĺ mt2 :

‚ when s1 “ s2 “ s, then if and only if il ď jl for all

l “ 0, . . . , s´ 1.

‚ when s1 ă s2, then if and only if there exists a monomial

mt1 such that mt1 |mt2 , degpmt1q “ degpmt1q and mt1 ĺ

mt1 .

It is worth noticing that we used the same symbol to define

the partial order relations for integers and for monomials; in

fact, we will see that these two orders are equivalent. Equipped

with the notion of partial order among monomials, authors in

[11] define the family of decreasing monomial codes as the

monomial codes for which for every monomial in G, all its

sub-monomial factors are also included in G.

Definition 7 (Decreasing monomial codes). A monomial code

is decreasing if for every monomial mt1 ,mt2 P Mrns such

that mt1 ĺ mt2 then mt2 P G ñ mt1 P G.

C. Monomial and Polar Codes Equivalence

TABLE I: Canonical map between integers and monomials for

n “ 3.

degree monomial evaluation row of T8 expansion

0 m7 “ 1 11111111 7 111

1

m6 “ V̄0 10101010 6 011

m5 “ V̄1 11001100 5 101

m3 “ V̄2 11110000 3 110

2

m4 “ V̄0V̄1 10001000 4 001

m2 “ V̄0V̄2 10100000 2 010

m1 “ V̄1V̄2 11000000 1 100

3 m0 “ V̄0V̄1V̄2 10000000 0 000

Polar codes can be described as monomial codes. In fact, the

kernel matrix T2 can be seen as the evaluation of monomials in

F2rV̄0s; evalpV̄0q “ r1, 0s represents the first row of T2, while

evalp1q “ r1, 1s represents its second row. An example of this

parallelism is provided in Table I for n “ 3. This parallelism

can be extended to polar codes of any length N “ 2n, such

that each monomial in Mrns is represented by an integer in

Z2n through the monomials canonical map. This map permits

to connect row t of transformation matrix T “ Tbn
2

to a

unique monomial mt; Then, polar codes can be equivalently

defined in terms of information set I or generating monomial

set G, since mt P G ô t P I. To summarize, polar codes can

be seen as monomial codes where the generating monomials

are chosen according to polarization effect.

In the following, we prove the main result of this section,

namely that UPO property for polar codes is equivalent to

decreasing property for monomial codes. As a consequence,

every polar code fulfilling the UPO is also a decreasing

monomial code, and vice versa. The fact that UPO is a

sufficient condition for the generation of decreasing monomial

codes has been proved in [11], while, for the best of our

knowledge, this is the first time that it is proven that it is

also a necessary condition. Before proving the main theorem

of the section, we need to prove the equivalence between the

partial order defined on integers and the partial order defined

on monomials.

Lemma 1. For every a, b P Z2n , then b ĺ aô ma ĺ mb

Proof. Sufficient condition: Given a, b P Z2n such that b ĺ a,

we want to prove that ma ĺ mb by checking if the two

conditions for the partial ordering of the monomials are

satisfied. If we call HW pptq the Hamming weight of the binary

expansion of integer t, then HW pptq “ n ´ degpmtq by

Definition 4, and the degree conditions of monomial partial

orders can be rewritten as conditions on the Hamming weights

of binary expansions of integers.

If HW ppaq “ HW ppbq “ n´s, then degpmaq “ degpmbq “
s; if we call S̄ the set of variable indices composing monomial

mt, namely mt “
ś

iPS̄ V̄i P Mrns, then ma ĺ mb if and

only if i
paq
l ď j

pbq
l for all l “ 0, . . . , s ´ 1, where i

ptq
l is the

l-th bit in the binary expansion of integer t. Since b ĺ a and

HW ppaq “ HW ppbq, then it is possible to create a chain of

integers t0, . . . , tr such that b “ tr ĺ tr´1 ĺ . . . ĺ t1 ĺ t0 “
a such that they all have the same Hamming weight and each

couple of subsequent integers in the chain only differ for two

consecutive entries. By definition, we have that mti ĺ mti`1

for the monomials partial order definition, and then the chain

can be rewritten as ma “ mt0 ĺ mt1 ĺ . . . ĺ mtr´1
ĺ

mtr “ mb.

Alternatively, if HW ppbq ă HW ppaq, than there is at least

one chain of integers such that b “ tr ĺ tr´1 ĺ . . . ĺ

t1 ĺ t0 “ a, where each couple of subsequent integers

only differ for a single or two consecutive entries. Now, let

us focus on three elements of the chain ti`1 ĺ ti ĺ ti´1

such that ti`1 and ti differ for a single entry, while ti and

ti´1 differ for two consecutive entries; in this case, there

exists another integer t1
i such that ti`1 ĺ t1

i ĺ ti´1 and

ti`1 and t1
i differ for two consecutive entries, while t1

i and

ti´1 differ for a single entry. In practice, it is always possible

to invert the application of two different rules in the chain.

As a consequence, it is always possible to create a chain

b “ t1
r ĺ t1

r´1
ĺ . . . ĺ t1

1
ĺ t1

0
“ a such that integers

from b “ t1
r to a certain integer t1

c differ for a single entry,

while from t1
c to t1

0
“ a two consecutive integers differ for two

consecutive entries. Then, from this chain we extract element

t1
c with b ĺ t1

c ĺ a; by construction, the set of the indices
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of the positions of zeroes in the binary expansion of t1
c is a

subset of the same set of b, and hence mt1
c
|mb. Moreover,

HW pt1
cq “ HW ppaq, and then degpmt1

c
q “ degpmaq and thus

ma ĺ mb.

Sufficient condition: Given ma,mb PM
rns such that ma ĺ

mb, we want to prove that b ĺ a by checking if the two

conditions for the partial ordering of the integers are satisfied.

If degpmaq “ degpmbq, we can create a chain of intermediate

monomials ma “ mtr ĺ mtr´1
ĺ . . . ĺ mt1 ĺ mt0 “ mb

such that they all have the same degree and each couple of

subsequent monomials in the chain only differ by a variable; in

other words, there exists a variables swap chain passing from

ma to mb where each step of the chain can be sorted according

to the partial order. This monomials chain can be mirrored to

the corresponding integers chain b “ t0 ĺ t1 ĺ . . . ĺ tr´1 ĺ

tr “ a, where consecutive integers differ for two consecutive

entries, and thus b ĺ a. Alternatively, If degpmaq ă degpmbq,
then there exists a monomial mt dividing mb and having the

same degree of ma such that ma ĺ mt ĺ mb. Then, t ĺ a

for the previous case, and b ĺ t.

Equipped with Lemma 1, we can now prove the main result

of this section, namely the equivalence between UPO polar

codes and decreasing monomial codes.

Theorem 1. A polar code design is compliant with the UPO

framework if and only if it is a decreasing monomial code.

Proof. First, we assume that the information set of the polar

code is compliant with the UPO framework. We need to prove

that, if mt P G, then also mt1 P G for every mt1 ĺ mt.

According to Lemma 1, t ĺ t1, and since t P I we have

that also t1 P I for the UPO hypothesis, and hence mt1 P G.

Second, we assume the code to be decreasing monomial; now

we need to prove that for every t P I, then also mt1 P G

for every t ĺ t1. Again, Lemma 1 says that mt1 ĺ mt, and

since mt P G then also mt1 P G for the decreasing monomial

hypothesis, and hence t1 P I.

III. POLAR CODE AUTOMORPHISMS

Automorphisms are permutations of code bit positions that

are invariant to the code, namely that map codewords into

codewords. The analysis of the automorphism group of a

code permits to discover hidden symmetries of the codewords,

and can be used to find new properties of the code. In this

paper, our study of the automorphism group of polar codes is

driven by the will of improving AE decoding algorithms for

this family of codes. In this section, we first revise permuta-

tions defined by general affine transforms and then discuss

properties of such permutations that are automorphisms of

polar codes. Moreover, we provide all the tools to help the

reader to map an affine transformation to the related code bit

permutation, by explicitly showing how to pass from one to

the other. Equipped with this map, it will be easier for the

reader to understand the main results of following sections

and to reproduce the results presented in Section V.

A. Permutations as affine transformations

Definition 8 (Permutation). A permutation π over the set Z2n ,

π : Z2n Ñ Z2n

i ÞÑ πpiq,

is a bijection of Z2n onto itself.

The trivial (identity) permutation is written as 1 and maps

every integer to itself. Permutations can be applied to vectors

in different ways; in the following, for permutations of vectors

we will use the functional passive notation, where the element

in position i is replaced by element in position πpiq after the

permutation and permutations are concatenated giving priority

to the right [20].

Definition 9 (Vector permutation). Given a permutation π, the

vector y “ py0, y1, . . . , y2n´1q is called the permuted vector

of vector x “ px0, x1, . . . , x2n´1q, if and only if

yi “ xπpiq

for all i P Z2n . For convenience we may write1 y “ πpxq and

call y the permutation of x.

According to the introduced notation, the concatenation of

two permutations π1 and π2 is written as π2˝π1 “ π2π1, to be

applied from right to left, i.e., π1 first and π2 second. To apply

this to vectors, assume three vectors x, y “ π1pxq, and z “
π2pyq “ π2pπ1pxqq; then yi “ xπ1piq and zj “ yπ2pjq from

Definition 9, and zj “ xπ1pπ2pjqq by substituting i “ π1pjq.
Next, we define the group of affine transformations over binary

vector, and we show how these transformations are related to

permutations.

Definition 10 (Affine transformations). The General Affine

(GA) group GApnq is the group of affine transformations of

binary vectors v P Fn
2

,

TpA,bq : F
n
2 Ñ F

n
2

v ÞÑ Av ` b,

with invertible matrices A P F
nˆn
2

and arbitrary vectors b P
F
n
2 . Each element TpA,bq of this group is uniquely identified

by a matrix-vector pair pA, bq.

Every affine transformation gives rise to a permutation, and

it does this in natural way for codewords of monomial codes

through Definition 3 as shown as follows.

Definition 11 (GA permutations). The GA permutations

group is the group of permutations over Z2n defined by affine

transformations as πpA,bqpvq “ TpA,bqpv; the mapping between

Z2n and F
n
2 is given as

Z2n F
n
2

Z2n F
n
2

πpA,bq

p̈

TpA,bq

q̈

v pv

πpA,bqpvq Apv ` b

πpA,bq

p̈

TpA,bq

q̈

1The meaning of π becomes clear from the context.
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It is worth noticing that the vice versa is not true, namely

that not every permutation can be expressed as an affine

transformation. Assuming a boolean function f P F
rns
2

, an

affine transformation TpA,bq can be applied to f , obtaining

boolean function g “ TpA,bqpfq defined by

gpV q “ fpA ¨ V ` bq.

It is possible to concatenate affine transformations; given

g “ TpA1,b1qpfq and h “ TpA2,b2qpgq, we have that h “
TpA,bqpfq “ TpA2,b2q ˝TpA1,b1qpfq. By definition, we have that

hpV q “ gpA2 ¨ V ` b2q “ fpA1pA2 ¨ V ` b2q ` b1q “ (6)

“ fpA1A2 ¨ V `A1b2 ` b1q. (7)

As a consequence, TpA,bq is defined by matrix A “ A1A2 and

vector b “ A1b2 ` b1. Note that the order is of the matrices

is reversed, as compared to the order of the permutations.

Let us consider now g “ TpA,bqpfq and its evaluation xpgq “

evalpgq “ px
pgq
0

, . . . , x
pgq
2n´1

q; this represents a binary vector

that is connected to xpfq by a permutation as follows.

Lemma 2. Assume a GA transform TpA,bq over F
n
2 and a

boolean functions f P F
rns
2

, then

xpTpA,bqpfqq “ πpA,bq

´
xpfq

¯
,

where πpA,bq follows Definition 11.

Proof. Let us consider boolean function g “ TpA,bqpfq; by

Definitions 5 and 9, we have that

x
pTpA,bqpfqq
i “ x

pgq
i “ gppiq “ f

´
Api` b

¯
“ (8)

“ f
´

{πpA,bqpiq
¯
“ x

pfq
πpA,bqpiq. (9)

As a consequence, binary vector xpgq is a permutation of

xpfq; this permutation is the one induced by affine transfor-

mation TpA,bq, as expressed in this scheme:

f xpfq

g xpgq

TpA,bq

eval

πpA,bq

eval

For convenient (though imprecise) notation we may simply

write πA,bpiq “ Ai ` b, presuming the equivalence between

an integer i and its binary expansions pi; in practice, we will

apply affine transformations or the equivalent permutation on

both vectors and boolean functions, the meaning becoming

clear from the context. An example of this construction can

be found in Appendix A.

Operating over binary vectors, Lemma 2 associates a code-

word permutation to each GA transform, and we will refer

to these as GA permutations; note, however, that not all

permutations can be represented by GA transforms. The GA

permutations group is obviously isomorphic to the group of

affine transformations GApnq. For convenience we refer to

GApnq and the group of permutations simply as the group

GA.

The relation between GA transforms and permutations as

given in Lemma 2 gives rise to the question how this translates

to concatenation. This is answered in the following lemma.

Lemma 3 (Concatenation of GA permutations). Given two

GA permutations πpA1,b1q and πpA2,b2q, their concatenation

πpA,bq “ πpA2,b2q ˝ πpA1,b1q,

namely when πA1,b1 is applied first and πA2,b2 second, is the

GA permutation TpA,bq defined by

A “ A1A2 , b “ A1b2 ` b1.

Proof. As GA permutations form a group, their composition

is obviously also a GA transform. The scheme of the concate-

nation is:

f g h

xpfq xpgq xphq

TpA,bq

eval

TpA1,b1q

eval

TpA2,b2q

eval

πpA,bq

πpA1,b1q πpA2,b2q

If we call πj “ πpAj ,bjq and Tj “ TpAj,bjq for j “ 1, 2, by

Lemma 2 we have that

π2 ˝ π1px
pfq
i q “ x

pfq
π1pπ2piqq “ x

pT1pfqq
π2piq “ x

pgq
π2piq “ (10)

“ x
pT2pgqq
i “ x

pT2˝T1pfqq
i . (11)

Given the equivalence between affine transformations and

affine permutations, in the following we may use π to define

an affine transformation.

In addition to the group GA itself, we introduce several

sub-groups of GA and the corresponding permutations. These

sub-groups will be used in the following sections to prove

various results concerning the automorphisms group of polar

codes. The following sub-groups are defined by transforma-

tions TpA,bq, where A and B assume a peculiar format:

‚ the General Linear group GL, for which b “ 0;

‚ the Lower-Triangular Affine group LTA, for which A is

lower-triangular;

‚ the Block-Lower-Triangular Affine group BLTApSq, for

which A is block-lower-triangular with profile S “
ps1, s2, ..., slq with s1 ` s2 ` ... ` sl “ n, i.e. a block

diagonal matrix having non-zero elements below the

diagonal;

‚ the Upper-Triangular Linear group UTL, for which A is

upper-triangular;

‚ the Permutation Linear group PL, for which A is a

permutation matrix;

‚ the Translation group T, for which A is the identity

matrix.

Similarly to GA we may use GL, LTA, BLTA, UTL, and PL

to refer to the corresponding groups of permutations.
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B. The affine automorphisms group of polar codes

Definition 12 (Automorphism). A permutation π is called an

automorphism of code C if πpCq “ C, i.e., if πpxq P C for all

x P C. The set of automorphisms of a code C is denoted by

AutpCq and forms a group.

For monomial codes, the permutations from GA are of

particular interest, since they represent linear operations on

the variables. If a GA permutation is an automorphism, we

call it a GA (or affine) automorphism. We further denote the

group of affine automorphisms of a code C by

A fi GAX AutpCq. (12)

We consider binary pN,Kq polar codes C of length N “ 2n

and dimension K , having information set I and monomial set

G and following UPO framework. In this section, we will prove

that the affine automorphisms group of such a polar code is

a BLTA group. This property has been proved in [13], [14];

in this paper, we provide an alternative proof based on the

introduction of elementary permutations and on the algebraic

structure of the BLTA group.

To begin with, we notice that GA permutations map mono-

mials of G to linear combinations of monomials in Mrns. A

property of GA automorphisms is their capacity to map the

generating monomial set into itself.

Lemma 4. π P A if and only if for every mt P G, then for

every mt1 , . . . ,mts such that

πpmtq “ mt1 ` . . .`mts , (13)

we have that mti P G.

Proof. This condition is obviously necessary: if all mti P G,

then also πpmtq P G for every mt P G. Conversely, if π P A,

then also πpmtq P G. However, in order for the polynomial

mt1 ` . . .`mts to be included into xGy, all its addends must

belong to G because monomials form a base for the code

space.

Equipped with these definitions, we now focus on the

characterization of A. To begin with, we prove that LTA Ď A

for any polar code, namely that all the LTA transformations

are automorphisms; it is worth noticing that this property holds

only for polar codes fulfilling the UPO framework. In order

to prove it, we denote the row-addition elementary matrix

by Epi,jq, namely the n ˆ n square matrix with ones on the

diagonal and an additional one at row i and column j. This

matrix is associated to the elementary linear transformation

Epi,jq : V̄i Ñ V̄i ` V̄j ` 1, (14)

defined by permutation ǫpi,jq “ πpEpi,jq ,0q. This elementary

matrix is of particular interest since every LTA transforma-

tion can be decomposed as the product of elementary linear

transformations having their one below the diagonal, plus a

translation.

Lemma 5. Every πpA,bq P LTA can be decomposed as

πpA,bq “ ǫpiq,jqq ˝ . . . ˝ ǫpi1,j1q ˝ τ, (15)

where ǫpi,jq is an elementary linear transformation, τ P T and

q is the number of nonzero entries of A below the diagonal.

Proof. To begin with, we prove that every lower triangular

matrix A can be written as a product of q row-addition

elementary matrices. To do it, we sort the nonzero entries of

A below the diagonal from top to bottom and then from left

to right: in practice, if ail,jl and ail`1,jl`1
are nonzero entries

of A, then il ď il`1 and, if il “ il`1, then jl ă jl`1; in this

way, we have that

A “
qź

l“1

Epil,jlq. (16)

In fact, given a matrix B, we have that B ¨Epi,jq is the matrix

produced from B by adding column i to column j; we have

that il ą jl since A is lower triangular, hence realizing the

product from left to right results in adding at every step a

nonzero entry in position pil, jlq, resulting in matrix A. Next,

if we define τ “ πI,b, the lemma is proved.

When applied to monomials, however, these elementary

transformations may lead to polynomials, making it difficult

to connect monomial sets. In fact, given mt PM
rns, then

ǫpi,jqpmtq “

"
mt if i R Q or i, j P Q
mt `mt1 `mt2 if i P Q and j P Q

(17)

where t1 is obtained from t by swapping entries i and j of its

binary expansion and t2 by adding a one in position i of the

binary expansion of t. Lemma 4 shows that ǫpi,jq P A if and

only if for every mt P G, then mt1 and mt2 obtained from

(17) belong to G. In order to prove the first main result of this

section, we need to prove that we can focus our analysis only

on elementary linear transformations, neglecting the effect of

translations. The following lemma gives us this possibility.

Lemma 6. If C follows UPO framework, then T Ă A.

Proof. Translation τi P T maps V̄i to V̄i ` 1. Then, it

maps each monomial in G including V̄i into the sum of the

monomial itself and the same monomial without V̄i; since the

last monomial is included in G due to the UPO hypothesis,

then T Ă A.

Since translations are always automorphisms, we can focus

on automorphisms in GL, and more in details we can use ele-

mentary linear transformations to prove the following lemma,

that is the first main result of this section.

Theorem 2. LTA Ď A if and only if C follows UPO

framework.

Proof. To begin with, we show that this is a necessary

condition. The matrix A of a given LTA transformation can

be decomposed as a product of elementary matrices having

their extra one below the diagonal. for any of these ele-

mentary transformations ǫpi,jq, any mt P G is transformed

into a polynomial mt ` mt1 ` mt2 (or remains the same).

By definition, mt2 ĺ mt, and then, by UPO hypothesis,

also mt2 P G; moreover, since by construction i ă j,

also mt1 ĺ mt, and again mt1 P G by UPO hypothesis.

Since all the monomials forming it belong to G, then also
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ǫpi,jqpmtq P G and ǫpi,jq P AutpCq when i ă j; since the

product of automorphisms is still an automorphism, we have

that LTA Ď Aq.
To show that it is a sufficient condition, let us proceed

by absurd. We suppose C not following the UPO framework,

namely there exists some a P I for which at least one integer

b, a ĺ b, such that b R I. It is then possible to create a

chain of integers a “ t0 ĺ t1 ĺ . . . ĺ tr´1 ĺ tr “ b such

that the passage from an integer to the next one is performed

by one of the UPO basic rules. By absurd hypothesis, there

exists an index s such that ts P I and ts`1 R I. Then, it

is possible to find two integers i, j, with i ą j, such that

ǫpi,jqpmtsq “ mts`1
`mt1 , either by taking the indices of the

swapped entries if HW ptsq “ HW pts`1q or setting i as the

index of the added one otherwise. By construction, ǫpi,jq R A
and then LTA Ę A.

Theorem 2 proves that, if the polar code follows the UPO

framework, then LTA Ď A. Now we expand this result by

proving that the affine automorphisms group of a polar code

fulfilling UPO has a BLTA structure. To begin with, we prove

a lemma regarding elementary linear transformations.

Lemma 7. If C follows UPO framework, then ǫpi,jq P A

implies that also ǫpi`1,jq, ǫpi,j´1q P A.

Proof. According to the hypothesis, for every mt P G and

ǫpi,jq P A such that ǫpi,jqpmtq “ mt ` mt1 ` mt2 , then

mt1 ,mt2 P G. Then if ǫpi`1,jqpmtq “ mt ` mt1 ` mt2 , by

construction we have that mt1 ĺ mt1 and mt2 ĺ mt2 , and

hence by UPO hypothesis mt1 ,mt2 P G and ǫpi`1,jq P A

by Lemma 4. Similarly, if ǫpi,j´1qpmtq “ mt `mt3 `mt2 ,

by construction we have that mt3 ĺ mt1 and hence by UPO

hypothesis mt3 P G and ǫpi,j´1q P A by Lemma 4.

Lemma 7 will be used to prove the second main result of

this section.

Theorem 3. A polar code C is compliant with the UPO

framework if and only if for some profile s we have that

A “ BLTApSq.

Proof. The condition is necessary since LTA Ď BLTApSq for

any profile S, and for Theorem 2 LTA Ď A implies that C is

compliant with the UPO framework.

To prove that the condition is sufficient, we begin from

the observation that Lemma 7 implies that the affine auto-

morphism group of a code C following UPO framework has

an overlapping block triangular (OBLT) structure. In practice,

this structure is defined by blocks over the diagonal that

can overlap. In the following, we show that such a structure

cannot be a group, and hence a BLTA is the only ”blocky”

matrix structure compliant with Lemma 7. In the following,

we restrict our analysis to the case depicted in Figure 2,

namely an OBLTps1, s2q structure with s1 ` s2 ą n and

s1 ą s2; the results of this case study can be easily extended

to more general OBLT structures. In the following, we will

show that it is possible to generate a matrix having a non-

zero entry in row i and column j, for every 0 ď i ă n ´ s2
and n ´ s1 ď j ă n, as the result of the multiplication of

two matrices belonging to OBLTps1, s2q. This would prove

n

s1

m

s2

i

j

indices n´ s2 ´ 1, . . . , s1 ´ 1

Fig. 2: Structure of OBLT matrix.

that OBLTps1, s2q is not a group, and the closure of this set

represents the group structure of the automorphisms. Given i, j

defined above, elementary matrices Epi,s1´1q and Eps1´1,jq

belong to OBLTps1, s2q by construction: the first is included

in the upper block, while the other is included in the lower

block. Matrix A “ Epi,s1´1q ¨Eps1´1,jq is given by Eps1´1,jq

but adding row s1 ´ 1 to row i. As a result, ai,j “ 1, and

OBLTps1, s2q is not a group.

IV. CLASSIFICATION OF AFFINE AUTOMORPHISMS

In this section, we describe a new framework for the

analysis of automorphisms for permutation decoding of polar

codes. We introduce the concept of permutation decoding

equivalence for automorphisms; this notion permits to cluster

code automorphisms into classes of automorphisms always

providing the same codeword candidate under permutation

decoding, no matter the received signal. As a consequence,

the selection of automorphisms for AE decoding should avoid

automorphisms belonging to the same class. These classes are

generated as cosets of the absorption group of the polar code,

which plays a capital role in the definition of the classes. This

result is an extension of our preliminary analysis of decoder

equivalence published in [18].

Next, we focus on the analysis of the absorption group

under SC decoding, providing an alternative proof of a very

recent result presented in [19], namely that the complete

SC absorption group has a BLTA structure. Thanks to the

knowledge of the structure of the SC absorption group, we

calculate the number of the equivalence classes, representing

the maximum number of permutations providing possibly

different codeword candidates under AE-SC decoding. Finally,

we propose a practical method to find one automorphism for

each equivalence class, in order to avoid redundant automor-

phisms.

A. Permutation decoding equivalence

We begin by formally defining what is a decoding func-

tion of polar codes. We consider transmission over a binary
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Fig. 3: Structure of the automorphism ensemble (AE) decoder.

symmetric memoryless channel with output y such that

ppyi|xi “ 0q “ pp´yi|xi “ 1q (18)

for i “ 0, 1, . . . , N ´ 1. An example of such a channel is the

BI-AWGN channel,

y “ x̃` w,

where x̃ “ bpskpxq with BPSK mapping bpskp0q “ `1,

bpskp1q “ ´1, and w is i.i.d. Gaussian noise with distribution

N p0, σ2q. We assume a decoding algorithm for the AWGN

channel, operating on the channel outputs2 y.

Definition 13 (Decoding function). The function

dec : RN Ñ C

y ÞÑ x “ decpyq (19)

denotes the decoding function for polar codes.

This definition can be generalized to the notion of decoding

function wrapped by an automorphism. An automorphism

decoder is a decoder run on a received signal that is scrambled

according to a code automorphism; the result is then scrambled

back to retrieve the original codeword estimation.

Definition 14 (Automorphism decoding function). For an

automorphism π P AutpCq, the function

adec : RN ˆ AutpCq Ñ C (20)

y ÞÑ x “ adecpy;πq (21)

with

adecpy;πq fi π´1pdecpπpyqqq. (22)

is called the automorphism decoding function of the polar

code.

Note that this function may be seen as a decoding function

with parameter π. Moreover, we focus our analysis on affine

automorphisms in A Ď AutpCq. An automorphism ensemble

(AE) decoder, originally proposed in [10] for Reed-Muller

codes, consists of M automorphism decoders running in

parallel, as depicted in Figure 3, where the codeword candidate

is selected using a least-squares metric. Starting from these

2If the decoder operates on LLRs, we may include the LLR computation
into the channel model.

definitions, we analyze the effects of automorphism decoding

on polar codes.

Definition 15 (Decoder equivalence). Two automorphisms

π1, π2 P A are called equivalent with respect to dec, written

as π1 „ π2, if

adecpy;π1q “ adecpy;π2q for all y P RN . (23)

This is an equivalence relation, since it is reflexive, sym-

metric and transitive. The equivalence classes are defined as

rπs fi tπ1 P A : π „ π1u. (24)

The equivalence class r1s of the trivial permutation 1 is also

called the set of decoder-absorbed automorphisms. In fact, for

all π P r1s,

adecpy;πq “ decpyq for all y P RN , (25)

i.e., these permutations are absorbed by the decoder, or in

other words, the decoding function is invariant to these per-

mutations. This happens also when an absorbed permutation

is concatenated to other permutations. In fact, given two

automorphisms π, σ P A, then

adecpy;π ˝ σq “ σ´1padecpσpyq;πqq, (26)

and if π P r1s, we obtain

adecpy;π ˝ σq “ σ´1padecpσpyq;πqq “ (27)

“ σ´1pdecpσpyqqq “ adecpy;σq, (28)

i.e., the component π of the composition π ˝ σ is absorbed.

In the following, we generalize these properties by showing

that r1s forms a sub-group of A. To begin with, we prove that

the inverse of an absorbed automorphism is also absorbed.

Lemma 8. If π P r1s, then π´1 P r1s.

Proof. From the definition of the equivalence class, we have

that

decpyq “ π´1pdecpπpyqqq ô πpdecpyqq “ decpπpyqq
(29)

(with the latter denoting an equivariance); and so

adecpy;π´1q “ πpdecpπ´1pyqqq “ (30)

“ decpπpπ´1pyqqq “ decpyq. (31)

Now we can prove that r1s ď A;

Lemma 9. The equivalence class r1s (set of decoder-absorbed

automorphisms) is a subgroup of A, i.e., r1s ď A.

Proof. We prove this lemma using the subgroup test, stating

that r1s ď A if and only if @π, σ P r1s then π´1σ P r1s:

adecpy;π´1σq “ pπ´1σq´1pdecppπ´1σqpyqqq “ (32)

“ σ´1
`
π

`
dec

`
π´1 pσ pyqq

˘˘˘
“ (33)

“ σ´1 pdec pσ pyqqq “ (34)

“ dec pyq . (35)
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Now, we use cosets of r1s to classify automorphisms into

equivalence classes (ECs) containing permutations providing

the same results under AE decoding.

Lemma 10. Equivalence classes rσs defined by decoder

equivalence correspond to right cosets of r1s.

Proof. Right cosets of r1s are defined as

r1sσ fi tπ ˝ σ : π P r1su. (36)

Hence, permutations σ1, σ2 P r1sσ if and only if there exist

two permutations π1, π2 P r1s such that σ1 “ π1 ˝ σ and

σ2 “ π2 ˝ σ, where the second implies σ “ π´1

2
˝ σ2. Then

the proof is concluded by

adecpy;σ1q “ adecpy;π1σq “ (37)

“ adecpy;π1π
´1

2
σ2q “ adecpy;σ2q. (38)

According to our notation, two automorphisms in the same

EC always provide the same candidate under adec decoding.

The number of non-redundant automorphisms for AE-dec,

namely the maximum number of different candidates listed by

an AE-dec decoder, is then given by the number of equivalence

classes of our relation.

Lemma 11. There are E “ |A|
|r1s| equivalence classes rπs, π P

A, all having the same size.

Proof. Follows from Lemma 10 and Lagrange’s Theorem.

The number E of equivalence classes provides an upper

bound on the number of different candidates of an adec de-

coder. In fact, all the permutations included in an equivalence

class give the same result under adec decoding. Then, when

selecting permutations for the adec decoder, it is fundamental

to select permutations of different equivalence classes. More-

over, it is useless to select more permutations than the number

of equivalence classes. This observation permits to control the

list size of an adec decoder. However, the proposed relation

does not assure that, for some value of y, two ECs do not

produce the same candidate; in practice, our relation permits

to calculate the maximum number of different results under

adec, providing an upper bound of parameter M of an AE-dec

decoder.

Equipped with the definition of equivalence classes under

a given decoder, it is worth analyzing the redundancy of an

automorphism set L used in an AE decoder. Let us denote

by M “ |L| the number of automorphisms used in the

AE decoder; if the elements of L are randomly drawn from

Azr1s, we call Pě1pMq the probability of having redundant

automorphisms in the set, i.e. that at least two automorphisms

belong to the same equivalence class and hence provably

provide always the same candidates. The probability of having

non-redundant sets is connected to the birthday problem; if we

denote by E “ |EC| the number of equivalence classes under

the chosen decoder, this probability is given by

Pě1pMq “ 1´ P0pMq “ 1´
M´1ź

i“0

E ´ i

E
, (39)

where PmpMq represents the probability of having exactly m

redundant automorphisms. The probability PmpMq is more

difficult to compute, since the m automorphism may belong

to the same equivalence classes or from different equivalence

classes. The second possibility being more likely to happen,

we provide a lower bound of PmpMq as the probability of

having m EC with exactly 2 representatives as

PmpMq ě

ˆ
E

m

˙ m´1ź

k“0

ˆ
M ´ 2k

2

˙ M´2m´1ź

k“0

E ´ i´m

E
.

(40)

The effect of the redundancy of L will be shown in Section V.

In the next section, we will analyze ECs under SC decoding.

B. Absorption group of Successive Cancellation decoders

We assume the standard algorithm for SC decoding for the

AWGN channel, operating with the min-approximation of the

boxplus operation, with the kernel decoding equations

l´ “ sgnpl0q ¨ sgnpl1q ¨mint|l0|, |l1|u,

l` “ l0 ` l1.

This decoder is independent3 of the SNR and can directly

operate on the channel outputs y rather than (properly scaled)

channel LLRs. Here we propose again Definitions 13,14 for

SC decoding.

Definition 16 (SC decoding function). The function

SC : RN Ñ C

y ÞÑ x “ SCpyq (41)

denotes the decoding function implemented by the SC algo-

rithm (with min-approximation).

Definition 17 (Automorphism SC decoding function). For an

automorphism π P A, the function

aSC : RN ˆAÑ C (42)

y ÞÑ x “ aSCpy;πq (43)

with

aSCpy;πq fi π´1pSCpπpyqqq. (44)

is called the automorphism SC decoding function.

Again, aSC function may be seen as a decoding function

with parameter π. The notion of SC-absorbed automorphisms

group r1s has been introduced in [10] as the set of permu-

tations that are SC decoding invariant. In the same paper,

authors proved that LTA automorphisms are absorbed under

SC decoding; this result is reported in the following lemma:

Lemma 12 (SC-absorption of LTA). The group LTA is SC-

absorbed, LTA ď r1s.

Proof. The proof is provided in [10].

In [10] it was also conjectured that r1s “ LTA, however

this statement is not true. In fact, the full absorption group of

a polar code may be larger than LTA:

3The decoder with the exact boxplus operation has similar properties, but
depends on the SNR.
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Lemma 13. If BLTApSq is the affine permutation group of a

polar code with s1 ą 1, then BLTAp2, 1, . . . , 1q ă r1s.

Proof. Given πpA,bq P A, to set a0,1 “ 1 in matrix A corre-

sponds to map variable X0 to variable a0,0`X1; in practice it

represents a permutation that identically scrambles 4-uples of

the codeword. To be more precise, the entries a0,0, a0,1 of A

represent a permutation of the first 4 entries of the codeword,

which is repeated identically for every subsequent block of

4 entries of the vector. Under SC decoding, this represents a

permutation of the entries of the last 4 ˆ 4 decoding block;

in practice, the difference between the aSC decoding of two

codewords permuted according two permutations differing

only for entries a0,0, a0,1 is that entries of the leftmost 4 ˆ 4

decoding block are permuted. Since the polar code follows

UPO as stated by Theorem 3, each block of 4 entries of

the input vector can be described as one of the following

sequences of frozen (F) and information (I) bits, listed in

increasing rate order with the notation introduced for fast-SC

decoders [21];

‚ [FFFF]: this represents a rate-zero node, and returns a

string of four zeroes no matter the input LLRs; this is

independent of the permutation.

‚ [FFFI]: this represents a repetition node, and returns a

string of four identical bits given by the sign of the sum

of the LLRs; this is independent of the permutation.

‚ [FFII]: this case is not possible if s1 ą 1.

‚ [FIII]: this represents a single parity check node, and

returns the bit representing the sign of each LLR while

the smallest LLR may be flipped if the resulting vector

has even Hamming weight; permuting them back gives

the same result for the two decoders.

‚ [IIII]: this represents a rate-one node, and returns the bit

representing the sign of each LLR; permuting them back

gives the same result for the two decoders.

As a consequence, changing entries a0,0, a0,1 of the permuta-

tion matrix (while keeping it invertible) does not change the

result of the aSC decoder.

Recently, authors in [19] extended this result to other BLTA

structures, proving that, under SC decoding, r1s is a BLTA

space, and providing guidance to find the profile of such

a group. Here we reconsider this result, providing a non-

constructive proof based on algebraic reasoning that does not

consider the frozen set of the code.

Theorem 4. If A “ BLTApSq, then r1s “ BLTApS
1

q,
with S

1

“ ps1,1, s1,2, . . . , s1,j1 , s2,1, . . . , s2,j2 , . . . , ssl,1, . . . ,
ssl,jlq where si,1 ` . . .` si,ji “ si for every 1 ď i ď l.

Proof. The proof follows from Lemma 13 and from the

same line of reasoning of the proof of sufficient condition

of Theorem 3.

In practice, to construct the profile S
1

, the block of size si
of S is divided into sub-blocks of size si,1, . . . , si,ji . Given

that both A and r1s have a BLTA structure under SC decoding,

in order to count the number of ECs under this decoder we

need to calculate the size of such a group.

Lemma 14. The size of BLTApSq, with S “ ps1, . . . , stq andřt

i“1
si “ n, is:

|BLTApSq| “ 2
npn`1q

2 ¨
tź

i“1

˜
siź

j“2

`
2j ´ 1

˘
¸
. (45)

Proof. It is well known that |GLpmq| “
śm´1

i“0

`
2m ´ 2i

˘
.

From this, we have that

|GLpmq| “
m´1ź

i“0

`
2m ´ 2i

˘
“

“
m´1ź

i“0

2i
`
2m´i ´ 1

˘
“

“

˜
m´1ź

j“0

2j

¸
¨

˜
m´1ź

i“0

`
2m´i ´ 1

˘
¸
“

“ 2
řm´1

j“0
j ¨

mź

i“1

`
2i ´ 1

˘
“

“ 2
mpm´1q

2 ¨
mź

i“2

`
2i ´ 1

˘
.

It is worth noting that we rewrote the size of GLpmq as the

product of the number of lower-triangular matrices and the

product of the first n powers of two, diminished by one. This

property can be used to simplify the calculation of BLTApSq.
In fact, each block of the BLTA structure forms an independent

GApsiq space, having size |GApsiq|. All the entries above the

block diagonal are set to zero, so they are not taken into

account in the size calculation, while the entries below the

block diagonal are free, and can take any binary value. Then,

the size of BLTApSq can be calculated as |LTApnq| “ 2
npn`1q

2

multiplied by the product of the first si powers of two,

diminished by one, for each size block si, which concludes

the proof.

Now we can prove the last result of this section, namely the

number of ECs under SC decoding.

Lemma 15. A polar code of length N “ 2n with A “
BLTApSq, S “ ps1, . . . , stq and r1s “ BLTApS

1

q defined

in Theorem 4 has

E “
|BLTApSq|

|BLTApS
1

q|
“

śt
i“1

´śsi
j“2

`
2j ´ 1

˘¯

śt

i“1

śji
l“1

`śsi,l
r“2

p2r ´ 1q
˘ . (46)

equivalence classes under SC decoding.

Proof. This follows from the application of Lemma 11 and

Lemma 14.

Lemma 15 also provides an upper bound on the number

of ECs for a polar code under SC decoding; in fact, since

LTA ă r1s, we have that

E “
|BLTApSq|

|r1s|
ď
|BLTApSq|

|LTA|
“

tź

i“1

˜
siź

j“2

`
2j ´ 1

˘
¸
.

(47)
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In the scenario of Lemma 13, the upper bound provided by

Lemma 15 on the number of ECs for a polar code under SC

decoding can be rewritten as

E “
|BLTApSq|

|BLTAp2, 1, . . . , 1q|
“

1

3

tź

i“1

˜
siź

j“2

`
2j ´ 1

˘
¸
. (48)

C. Decomposition of equivalence classes under SC decoding

Lemma 11 provides the number of ECs of the aSC decoding

relation, however without providing a method to calculate

them. In this section we show how, thanks to the structure of

the automorphism group of polar codes, EC representatives can

be decomposed in blocks, which can be calculated separately.

This decomposition greatly simplifies the task of listing all the

ECs of the relation for practical application of our proposal.

To begin with, we define the block diagonal matrix B “
diagpB1, . . . , Blq where Bi is an invertible square matrix in

GLpsiq. By definition, B is the transformation matrix of an

automorphism of the code; in the following, we will prove that

every EC contains at least an automorphism defined by such a

matrix. In particular, we call the equivalence sub-class ECi “
GLpsiq{BLTLpsi,1, . . . , si,jiq, namely the set of the cosets of

BLTLpsi,1, . . . , si,jiq in GLpsiq. By definition, we have thatśl
i“1
|ECi| “ |EC| under SC decoding; in the following, we

prove that a representative of any EC can be expressed as the

juxtaposition of representatives of equivalence sub-classes.

Lemma 16. For every Bi, Di P GLpsiq such that B “
diagpB1, . . . , Blq and D “ diagpD1, . . . , Dlq for all i “
1, . . . , l, then rπpB,0qs “ rπpD,0qs if and only if Bi and Di

belong to the same coset of GLpsiq{BLTApsi,1, . . . , si,jiq.

Proof. First, assume that Bi and Di belong to the same

equivalence sub-class for all i “ 1, . . . , l; since each block

is independent,

BD´1 “ diagpB1D
´1

1
, . . . , BlD

´1

l q P BLTApS
1

q (49)

since for every block BiD
´1

i P BLTLpsi,1, . . . , si,jiq. Con-

versely, assume rπpB,0qs “ rπpD,0qs. This means that BD´1 P
BLTApS

1

q, and given that each block is independent,BiD
´1

i P
BLTLpsi,1, . . . , si,jiq for all i “ 1, . . . , l.

Now we can prove that every EC can be represented by

an affine automorphism whose matrix can be expressed as a

block diagonal matrix.

Theorem 5. Every EC includes at least an affine automor-

phism whose matrix is block diagonal.

Proof. Lemma 16 proves the connection between equivalence

sub-classes and ECs; in particular, we have seen that different

compositions of sub-classes lead to different ECs. The proof

can be conluded by proving that the number of ways to

compose block diagonal matrices using representatives of

different sub-classes is equal to the number of ECs; in fact,

lź

i“1

|ECi| “
lź

i“1

|GLpsiq{BLTApsi,1, . . . , si,jiq| “ (50)

“
lź

i“1

|GLpsiq|

|BLTApsi,1, . . . , si,jiq|
“ (51)

“
lź

i“1

2
sipsi´1q

2

śsi
j“2
p2j ´ 1q

2
sipsi´1q

2

śt
i“1
p
śsi,jt

j“2
p2j ´ 1qq

“ (52)

“

śt

i“1

´śsi
j“2

`
2j ´ 1

˘¯

śt
i“1

śji
l“1

`śsi,l
r“2

p2r ´ 1q
˘ “ (53)

“ |EC|. (54)

It is worth noticing that this property holds when LTA ď
r1s; if the absorption group is smaller, the property may not

be true. This property can be used to efficiently list all the

equivalence classes under SC decoding. In fact, each block of

the BLTA automorphism group can be searched independently,

and the resulting sub-classes can be merged to find all the

equivalence classes.

Focusing on a sub-class ECi, we propose to use PUL matrix

decomposition to further simplify the representatives search.

Definition 18 (PUL decomposition). The matrices P P PL,

U P UTL and L P LTL form the PUL decomposition of

invertible matrix A if A “ PUL.

The PUL decomposition exists for all A P GL and is not

necessarily unique; this is due to the non-uniqueness of the LU

decomposition, of which the PUL decomposition is merely

a variation. We extend the notion of PUL decomposition to

automorphisms πpA,bq P A, corresponding to the concatenation

of the permutations as

πpA,bq “ πpL,bq ˝ πpU,0q ˝ πpP,0q, (55)

applied from right to left. By Lemma 12, we have that under

SC decoding πL,b P r1s. In the following, we show that

representatives of ECs can be decomposed as the product

of two automorphisms, one belonging to UTL and the other

belonging to PL. If we call AP and AU the subgroups of

A containing only PL and UTL automorphisms respectively,

we can always find an EC representative composing elements

from these two sets.

Lemma 17. Each EC contains at least an automorphism P ¨U
with P P AP and U P AU .

Proof. By Theorem 5 we know that every EC includes an

affine automorphism πpD,bq such that D “ diagpD1, . . . , Dlq.
Every sub-matrix Di has PUL decomposition Di “ PiUiLi,

and we define P “ diagpP1, . . . , Plq, U “ diagpU1, . . . , Ulq
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and L “ diagpL1, . . . , Llq, with P P AP and U P AU . then,

we have that

πpD,bq “ πpdiagpD1,...,Dlq,bq “ (56)

“ πpdiagpP1U1L1,...,PlUlLlq,bq “ (57)

“ πpPUL,bq “ (58)

“ πpL,bq ˝ πpU,0q ˝ πpP,0q, (59)

and since πpL,bq P r1s we have that rπpD,bqs “ rπpU,0q˝πpP,0qs.

The proof of the previous lemma is constructive, in the sense

that it proposes a method to list all ECs by mixing UTL and

PL automorphisms that are block diagonal. In fact, in order to

generate an EC candidate matrix A, it is sufficient to randomly

draw l UTL matrices U1, . . . , Ul and l PL matrices P1, . . . , Pl,

of size s1, . . . , sl respectively, create the block diagonal ma-

trices U “ diagpU1, . . . , Ulq and P “ diagpP1, . . . , Plq and

generate A “ P ¨U . By listing all the possible matrices P and

U , Lemma 16 ensures that all the ECs will be found.

However, since the PUL decomposition of a matrix is not

unique, this method is redundant, in the sense that it may

generate multiple representatives of the same EC. A further

check is required to assure that the EC representative does not

belong to an already calculated EC. This check is done by

multiplying the calculated P ¨U matrix and the P ¨U matrices

of the previously calculated ECs as stated in Lemma 18.

Lemma 18. Given π1, π2 P A having transformation matrices

A1, A2, then π1 P rπ2s if and only if A1 ¨ A
´1

2
P BLTApS

1

q.

Proof. This follows directly from the definitions of EC and

r1s.

We can now propose a practical method to create the

automorphisms list L, including an automorphism for every

EC. The idea is to start by dividing the affine transformation

matrix in l blocks of size s1, . . . , sl. For each block, all the

matrices belonging to Upsiq and Ppsiq, namely the group

of upper triangular and permutation matrices of size si, are

calculated. Next, all the block upper diagonal matrices U P AU

having matrices in Upsiq on the diagonal are calculated,

along with all the block permutation matrices P P AP

having matrices in Ppsiq on the diagonal; each block diagonal

matrix is considered ad the affine transformation matrix of a

representative of an EC and included in L, after checking that

the new automorphisms is not includes in any coset already

included in the list as stated in Lemma 17. Next, matrices in

the form P ¨U are included in the list if they pass the check of

Lemma 17. When |EC| representatives are found, the searching

process stops.

In order to evaluate the complexity of the proposed method,

we need to evaluate the number of matrices that are generated

during the process. By construction, we have that

|Upsiq| “ 2
sipsi´1q

2 , |Ppsiq| “ si! . (60)

For a block structure S “ ps1, . . . , stq, the number of UTL

and PL automorphisms are:

|AU | “
tź

i“1

2
sipsi´1q

2 , |AP | “
tź

i“1

si! . (61)
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Fig. 4: Error-correction performance of p128, 85q polar codes

under AE-SC decoding.

Hence, the number of generated matrix is given by

|AU | ` |AP | ` |AU | ¨ |AP |. (62)

It is worth noticing that if r1s “ LTA then every EC include

only one UTL or PL matrix, such that AU Y AP Ă L. An

example of this construction can be found in Appendix A.

V. NUMERICAL RESULTS

In this section, we present a numerical analysis of error

correction performance of AE decoders. Simulation results are

obtained under BPSK modulation over the AWGN channel.

We analyze polar codes having meaningful affine automor-

phism groups, decoded under AE-M -dec where M repre-

sents the number of parallel adec decoders. For each code,

we provide the minimum information set Imin, the affine

automorphism group A and the SC absorption group r1s.
Automorphism set L are generated according to the method

described in Lemma 18; the results obtained are compared

to a random selection of automorphisms. We compare error-

correction performance of proposed polar codes to 5G polar

codes under CRC-aided SCL [4]; ML bounds depicted in the

figures are retrieved with the truncated union bound, computed

with the minimum distance dmin and the number of minimum

distance codewords of the code [11].

Figure 4 shows the performance of AE-SC decoding for

the p128, 85q code defined by Imin “ t23, 25u and having

A “ BLTAp3, 1, 3q. Following the procedure of Lemma 13,

it is possible to prove that this code has sequences of length

8 of frozen and information bits that are invariant under SC

decoding, thus r1s “ BLTAp3, 1, 1, 1, 1q [19]. This code has

E “ 21 equivalence classes, so a set L composed of 21 EC

representatives provides a bound on the decoding performance

of AE-SC decoding. AE with a set of M “ 3 randomly drawn

automorphisms suffers from a significant loss with respect to

AE having a set composed of M “ 3 EC representatives;

this loss is eliminated by drawing an additional automorphism,

setting M “ 4. In this case, a set of 21 random automorphisms

is essentially matching the AE bound; the impact of new non-

redundant automorphisms seems to be reducing with the list

size M , and a small number of equivalence classes E reduces
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Fig. 5: Error-correction performance of p256, 95q polar codes

under AE-SC and AE-SCAN decoding.

the effect of the AE decoder. Performance of 5G polar code

decoded under CA-SCL with L “ 4 is plotted as a reference;

proposed polar code under AE decoding outperforms CA-

SCL 5G polar code for BLERě 10´3, while 5G polar code

shows better performance for lower BLER, however at a larger

decoding cost.

Next, in Figure 5 we investigate the error-correction perfor-

mance of the p256, 95q code defined by Imin “ t55, 120, 228u
and having A “ BLTAp2, 1, 1, 1, 3q. The number of ECs under

SC decoding for this code can be calculated as E “ 21 by

knowing that r1s “ BLTAp2, 1, 1, 1, 1, 1, 1q. For M “ 7, AE-

SC decoding with a random automorphism set suffers from a

loss with respect to AE-SC decoding performed with automor-

phisms from 7 distinct ECs. The bound under AE-SC decoding

is obtained by using M “ 21 non-redundant automorphisms,

one representative from each EC. However, this AE bound is

far away from the ML bound of the code; then, the error-

correction performance under AE-SCAN decoding is ana-

lyzed. We observe that error-correction performance of AE-2-

SCAN with a set composed of two LTA automorphisms is not

equivalent to the error-correction performance of SCAN. Thus,

the absorption group of SCAN is smaller than LTA, permitting

to use additional automorphisms without redundancy; the

characterization of the absorption set under SCAN decoding,

that we conjecture to be limited to the trivial permutation,

is still an open problem. Decoding performance of AE-64-

SCAN designed with a set of 64 random automorphism from

BLTAp2, 1, 1, 1, 3q matches the ML bound for low BLER.

Figure 6 shows the error-correction of p128, 60q code de-

fined by Imin “ t27u. This code has A “ BLTAp3, 4q and

SC absorption group r1sSC “ BLTAp2, 1, 1, 1, 1, 1q. Under SC

decoding, the code exhibits E “ 2205 ECs permitting to

match the ML bound under AE-SC when M “ 2205 non-

redundant automorphisms are used. Given the large number

of ECs, the probability for a random set of automorphisms to

include redundant permutation is quite small; as an example,

Pď1p8q “ 0.0126. A more accurate analysis shows that for

large sets L, some aSC decoding units returns the correct

codeword, whereas AE-SC decoder selects another codeword

based on the least-square metric. To overcome this problem,
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Fig. 6: Error-correction performance of p128, 60q polar code

with A “ BLTAp3, 4q under AE-SC.

we introduced a short CRC of 3 bits; simulation results show

that in this way it is possible to beat the ML bound of the code

with only M “ 64 automorphisms. However, the introduction

of a CRC is not always useful; in fact, its introduction for the

previously analyzed codes did not provide any benefit. How

and when to introduce a CRC under AE-SC decoding is still an

open problem. Finally, we note that the code investigated has

a good ML bound allowing the error correction performance

of AE decoding with M “ 8 to outperform 5G polar code

decoded under CA-SCL-8 decoding.

VI. CONCLUSIONS

In this paper, we introduced the notion of redundant au-

tomorphisms of polar codes under AE decoding. This notion

permits to greatly reduce the number of automorphisms that

can be used in AE-SC decoding of polar codes. Moreover, by

analyzing the number of non-redundant automorphisms it is

possible to have an idea of the impact of an AE-SC dedoder:

in fact, even if a polar code has a large affine automorphism

group, if it SC absorption group is too large, the number

of distinct codeword candidate under AE-SC decoding may

be too small. Then, we introduced a method to generate a

set if non-redundant automorphisms to be used in AE-SC

decoding. All these results were made possible by a preliminar

analysis of the structure of the affine automorphism group

of polar codes. We proposed a novel approach to prove the

most recent results in this field, and we provide a proof of

the equivalence between decreasing monomial codes and polar

codes following UPO. Simulation results show the goodness

of our approach, however leaving open various problems: the

structure of the absorption group of decoding algorithms other

than SC, e.g. BP or SCAN, is still unknown, while it is not

clear if it is possible to further reduce the automorphism set

size by eliminating automorphisms providing the same result

under a given received signal y. With our paper, we hope

to provide new tools to help the researcher to answer to

these and to other question related to AE decoding of polar

codes, a really promising decoding algorithm for high parallel

implementations.
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APPENDIX

BOOLEAN FUNCTIONS AND PERMUTATIONS

Boolean function f P F
r3s
2

defined by

f “ V̄2‘ V̄0V̄1‘ V̄0V̄2‘ V̄1V̄2 “ m3`m4`m2`m1 (63)

TABLE II: Truth table for boolean function f in (63).

i pi evalpV̄0q evalpV̄1q evalpV̄2q
0 0 0 0 1 1 1
1 1 0 0 0 1 1
2 0 1 0 1 0 1
3 1 1 0 0 0 1
4 0 0 1 1 1 0
5 1 0 1 0 1 0
6 0 1 1 1 0 0
7 1 1 1 0 0 0

can be easily evaluated on the basis of single variable evalu-

ations given by

xpm6q “ evalpV̄0q “10101010

xpm5q “ evalpV̄1q “11001100

xpm3q “ evalpV̄2q “11110000

Each single variable evaluation is described by a column of

the Truth Table II. In fact, the evaluation of function f is given

by

xpm3q “ evalpV̄2q 11110000 ‘
xpm4q “ evalpV̄0V̄1q 10001000 ‘
xpm2q “ evalpV̄0V̄2q 10100000 ‘

xpm1q “ evalpV̄1V̄2q 11000000 “

xpfq “ evalpfq 00011000

Now let us apply left shift permutation σj to this vector, where

σjpiq “ ri`js2n , with r¨s2n representing modulo 2n operation;

according to our notation, element in i is replaced by element

in ri ` js2n . Double left shift σ2 can be expressed as an

affine transformation, while σ3 cannot; for n “ 3, σ2 can

be expressed as an affine transformation defined by

A “
”
1 0 0
0 1 0
0 1 1

ı
, b “

”
0
1
0

ı
.

Let us take boolean function g P F
r3s
2

defined by g “
V̄0V̄2‘ V̄1V̄2 “ m2`m1, having evaluation xpgq “ 01100000.

According to Lemma 2, we have that σ2

`
xpfq

˘
“ xpgq when

g “ σ2pfq. In fact, according to its affine transformation

definition, σ2 maps

V̄0 ÞÑ V̄0,V̄1 ÞÑ V̄1 ‘ 1, V̄2 ÞÑ V̄1 ‘ V̄2 ‘ 1.

It is worth noticing that the use of negative monomials adds

a ”‘1” addend compared to positive monomials when the

number of output variables is even. It is easy to verify that

applying this variables substitutions to boolean function f

leads to boolean function g.

EC REPRESENTATIVES CALCULATION

Here we provide an example of the generation of auto-

morphisms list L according to the proposed method. We

analyze the p256, 95q code defined by Imin “ t55, 120, 228u
and having A “ BLTAp2, 1, 1, 1, 3q, whose error correction
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performance are depicted in Figure 5. According to Lemma 14,

this code has

|A| “ 2
8p8`1q

2 ¨
5ź

i“1

˜
siź

j“2

`
2j ´ 1

˘
¸
“ 236 ¨p3q¨p3¨7q “ 63¨236

(64)

affine automorphisms. This code has SC absorption group

r1s “ BLTAp2, 1, 1, 1, 1, 1, 1q, and again for Lemma 14 the

number of SC absorbed affine automorphisms is given by

|r1s| “ 2
8p8`1q

2 ¨
7ź

i“1

˜
siź

j“2

`
2j ´ 1

˘
¸
“ 3 ¨ 236. (65)

According to Lemma 11, there are E “ |A|
|r1s| “ 21 equivalence

classes under SC decoding, as confirmed by Lemma 15. So,

there are only 21 possible different outcomes under AE-SC

decoding, greatly reducing the maximum size M of the AE

decoder.

In the following, we use the result of Lemma 17 to create

a list of 21 affine automorphisms belonging to different

equivalence classes under SC decoding. In this case, there

are |AU | “ 16 UTL automorphisms and |AP | “ 12 PL

automorphisms; it is worth noticing that |AU | ` |AP | ą 21

since r1s Ĺ LTA, so automorphisms in AU and AP are not all

included in r1s. To begin with, we generate all the 16 UTL

automorphisms composing AU ; each of them has the form

πpU,0q where

U “

»
————–

U1 0

1

1

1

0 U5

fi
ffiffiffiffifl
, (66)

and U1 is a 2 ˆ 2 UTL matrix, while U5 is a 3 ˆ 3 UTL

matrix. There are only 2 UTL matrices of size 2 and 8 UTL

matrices of size 3; combining them in U it is possible to list

all the 16 UTL affine automorphisms of the code. Similarly, a

PL automorphism of the code is described by where

P “

»
————–

P1 0

1

1

1

0 P5

fi
ffiffiffiffifl

(67)

and P1 is a 2ˆ2 PL matrix and P5 is a 3ˆ3 PL matrix. Again,

there are only 2 PL matrices of size 2 and 6 PL matrices of size

3, for a total of 12 PL automorphisms. In order to generate

L “ tπi, . . . , π21u, where πi “ πAi,0, we begin by setting

A1 “ I , such that rπ1s “ r1s. Next, we star adding to L

the elements of AU ; only 7 of them can be added, an they

are listed as A2, . . . , A8. This happens because the first block

U1 of an UTL matrix U is always included in the absorption

group, and hence only the matrices having different last block

U5 can be included, as stated by Lemma 18. Next, elements

of AP are added; only 5 of them are independent from the

already included ones, and they are listed as A9, . . . , A13.

Finally, the remaining elements of L need to be calculated

as P ¨ U , with U P AU and P P AP , as stated in Lemma 17.

There are |AU | ¨ |AP | “ 192 possible combinations of UTL an

PL automorphisms; however, it is not mandatory to calculate

all of them, since when the remaining 8 independent matrices

are calculated, the process can stop. Finally, we can generate

the automorphism list L “ tπi, . . . , π21u, where πi “ πAi,0

and

A1 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

fi
ffifl , A2 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

fi
ffifl ,

A3 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

fi
ffifl , A4 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

fi
ffifl ,

A5 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

fi
ffifl , A6 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

fi
ffifl ,

A7 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

fi
ffifl , A8 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

fi
ffifl ,

A9 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

fi
ffifl , A10 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0

fi
ffifl ,

A11 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

fi
ffifl , A12 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

fi
ffifl ,

A13 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

fi
ffifl , A14 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0

fi
ffifl ,

A15 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

fi
ffifl , A16 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1

fi
ffifl ,

A17 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

fi
ffifl , A18 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1

fi
ffifl ,

A19 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0

fi
ffifl , A20 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

fi
ffifl ,

A21 “

»
—–

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

fi
ffifl .
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