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Bregman divergence based em algorithm and its
application to classical and quantum rate distortion

theory
Masahito Hayashi Fellow, IEEE

Abstract

We formulate em algorithm in the framework of Bregman divergence, which is a general problem setting
of information geometry. That is, we address the minimization problem of the Bregman divergence between an
exponential subfamily and a mixture subfamily in a Bregman divergence system. Then, we show the convergence
and its speed under several conditions. We apply this algorithm to rate distortion and its variants including the
quantum setting, and show the usefulness of our general algorithm. In fact, existing applications of Arimoto-Blahut
algorithm to rate distortion theory make the optimization of the weighted sum of the mutual information and the cost
function by using the Lagrange multiplier. However, in the rate distortion theory, it is needed to minimize the mutual
information under the constant constraint for the cost function. Our algorithm directly solves this minimization.
In addition, we have numerically checked the convergence speed of our algorithm in the classical case of rate
distortion problem.

Index Terms

em algorithm, Bregman divergence, information geometry, rate distortion

I. INTRODUCTION

Em algorithm is known as a useful algorithm in various areas including machine learning and neural
network [1], [2], [3]. Its basic idea can be backed to the reference [4]. In information theory, the
Arimoto-Blahut algorithm [5], [6] is known as a powerful tool to calculate various information-theoretical
optimization problems including mutual information. Both algorithms are composed of iterative steps. In
this paper, we apply em algorithm to rate distortion and its variants including the quantum setting.

Although em algorithm has several variants, the most general form is given as the minimum divergence
between a mixture family and an exponential family [1]. However, the convergence speed of em algorithm
is not known in general. Moreover, it has a possibility to converge to a local minimum [1], [2], [3].
Therefore, it is needed to guarantee the convergence to the global minimum and clarify the convergence
speed. In this paper, to address these problems in a unified viewpoint, similar to the paper [2], we
formulate em algorithm in a framework of Bregman divergence, which is given from a general smooth
convex function as a general problem setting of information geometry [7], [8]. In this general framework,
we derive a necessary condition for the global convergence, and discuss the convergence speed. When
an additional condition is satisfied, this algorithm has exponential convergence. This additional condition
is easily satisfied when the iteration is close to the true value. Hence, this algorithm rapidly converges
around the true value under a certain condition.

When an information-theoretical optimization problem is written in the above form, em algorithm can
be applied to it. As a typical example, we consider the rate distortion problem, which is written as a
minimization of the mutual information under a linear constraint to a given distribution. That is, the
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objective distribution of this problem belongs to a certain mixture family. Mutual information is written
as the minimum divergence between a given distribution and the set of independent distributions, which
forms an exponential family. Hence, this minimization is given as the minimization of the divergence
between the given mixture family and the exponential family composed of independent distributions. The
minimization for the rate distortion problem was studied by Blahut [5] and various papers [9], [10], [11].
However, to remove the constraint, they change the objective function by using a Lagrange multiplier. That
is, they minimize the weighted sum of the original objective function and the cost function, whereas the
Lagrange multiplier corresponds to the weight coefficient. When the Lagrange multiplier is suitably chosen,
the solution of this modified minimization given the solution of the original minimization. However, no
preceding paper showed how to choose the Lagrange multiplier. Therefore, it was required to develop
how to find the suitable the Lagrange multiplier. Fortunately, the set of conditional distribution with a
linear constraint forms a mixture family. Hence, our method can directly solve the required minimization
with a linear constraint. Then, we apply these obtained general results to several variants [12], [13] of
the rate distortion problem including the quantum setting [14].

The remaining part of this paper is organized as follows. Section II formulates general basic properties
for Bregman divergence. Section III explains how the set of probability distributions and the set of quantum
states satisfy the condition for Bregman divergence. Section IV states em algorithm in the framework of
Bregman divergence, and derives its various properties. Section V applies the above general results to
classical rate distribution and its variants. Section VI applies them to its quantum extension.

II. BREGMAN DIVERGENCE: INFORMATION GEOMETRY BASED ON CONVEX FUNCTION

In this section, we prepare general basic properties for Bregman divergence. Originally, information
geometry was studied as the geometry of probability distributions. This structure can be generalized as a
geometry of a smooth strictly convex function, which is called Bregman Divergence. This section discusses
several useful properties of Bregman Divergence.

A. Legendre transform
In this paper, a sequence a = (ai)ki=1 with an upper index expresses an vertical vector and a sequence

b = (bi)
k
i=1 with an lower index expresses an horizontal vector as

a =


a1

a2

...
ak

 , b = (b1, b2, . . . , bk). (1)

Let Θ be an open convex set in Rd and F : Θ → R be a C∞-class strictly convex function. We
introduce another parametrization η = (η1, . . . , ηd) ∈ Rd as

ηj := ∂jF (θ), (2)

where ∂j expresses the partial derivative for the j-th variable. We introduce the vector ∇(e)[F ](θ) :=
(∂jF (θ))dj=1. Hence, the relation (2) is rewritten as

η = ∇(e)[F ](θ). (3)

Therefore, ∇(e) can be considered as a horizontal vector.
Since F is a C∞-class strictly convex function, this conversion is one-to-one. the parametrization ηj is

called the mixture parameter. We denote the open set of vectors η(θ) = (η1, . . . , ηd) given in (2), by Ξ.
For η ∈ Ξ, we define the Legendre transform F ∗ = L[F ] of F

F ∗(η) = sup
θ∈Θ
〈η, θ〉 − F (θ). (4)
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We have [2, Section 3][15, Section 2.2]

∂jF ∗(η(θ)) = θj, (5)

where ∂j expresses the partial derivative for the j-th variable under the mixture parameter. We introduce
the vector ∇(m)[F ∗](η) := (∂jF ∗(η))dj=1. Hence, the relation (5) is rewritten as

θ = ∇(m)[F ∗](η(θ)). (6)

In later discussion, we address subfamilies related to m vectors v1, . . . , vm ∈ Rd. For a preparation for
such cases, we prepare the following two equations, which will be used for calculations based on mixture
parameters. Then, we define a d×m matrix V as (v1 . . . vm). The multiplication function of V from the
left (right) hand side is denoted by L[V ] (R[V ]). Since

∂j(F ◦ L[V ])(θ) =
∂F

∂θj
(V θ) =

∑
i

vij∂iF (V θ) = (R[V ] ◦ (∇(e)[F ]) ◦ L[V ](θ))j, (7)

we have

∇(e)[F ◦ L[V ]] = R[V ] ◦ (∇(e)[F ]) ◦ L[V ]. (8)

In the same way, we can show

∇(m)[F ∗ ◦R[V ]] = L[V ] ◦ ∇(m)[F ∗] ◦R[V ]. (9)

Also, we have

(F ∗ ◦R[V ])∗(θ′) = sup
η
〈η, θ′〉 − sup

θ∈Θ
〈ηV, θ〉 − F (θ)

= sup
η

inf
θ∈Θ
〈η, θ′ − V θ〉+ F (θ) = inf

θ:θ′=V θ
F (θ). (10)

When V is one-to-one, we define the function F ◦ L[V −1] on L[V ](Θ). Since

F ∗ ◦R[V ](η) = sup
θ∈Θ
〈ηV, θ〉 − F (θ) = sup

θ∈Θ
〈η, V θ〉 − F (θ)

= sup
θ′∈L[V ](Θ)

〈η, θ〉 − F (V −1θ′) = (F ◦ L[V −1])∗(η), (11)

we have

(F ◦ L[V −1])∗ = F ∗ ◦R[V ] (12)

Combining the above two relations, we have

∇(m)[(F ◦ L[V −1])∗] = ∇(m)[F ∗ ◦R[V ]] = L[V ] ◦ ∇(m)[F ∗] ◦R[V ]. (13)

B. Exponential subfamily
A subset E ⊂ Θ is called an exponential subfamily generated by l linearly independent vectors

v1, . . . , vl ∈ Rd at θ0 ∈ Θ when the subset E is given as

E =
{
φ

(e)
E (θ̄) ∈ Θ

∣∣θ̄ ∈ ΘE

}
. (14)

In the above definition, φ(e)
E (θ̄) is defined for θ̄ = (θ̄1, . . . , θ̄l) ∈ Rl as

φ
(e)
E (θ̄) := θ0 +

l∑
j=1

θ̄jvj (15)
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and the set ΘE is defined as

ΘE := {θ̄ ∈ Rl|φ(e)
E (θ̄) ∈ Θ}. (16)

Since Θ is an open set, the set ΘE is an open set. In the following, we restrict the domain of φ(e)
E to ΘE .

We define the inverse map ψ(e)
E := (φ

(e)
E )−1 : E → ΘE .

For an exponential subfamily E , we define the function FE as

FE(θ̄) := F (φ
(e)
E (θ̄)). (17)

In fact, even in an exponential subfamily E , we can employ the mixture parameter ψ(m)
E,j (φ

(e)
E (θ̄)) :=

∂jFE(θ̄) because the map θ̄ 7→ FE(θ̄) is also a C∞-class strictly convex function. We define the set
ΞE := {(∂jFE(θ̄))lj=1}θ̄∈ΘE . We define the inverse map φ(m)

E := (ψ
(m)
E )−1 : ΞE → E .

C. Mixture subfamily
For d linearly independent vectors u1, . . . , ud ∈ Rd, and a vector a = (a1, . . . , ad−k)

T ∈ Rd−k, a subset
M⊂ Θ is called a mixture subfamily generated by the constraint

d∑
i=1

uik+j∂iF (θ) = aj (18)

for j = 1, . . . , d− k when the subset M is written as

M = {θ ∈ Θ | Condition (18) holds.} . (19)

We define a d×d matrix U as (u1 . . . ud). To make a parametrization in the above mixture subfamilyM,
we set the new natural parameter θ̄ = (θ̄1, . . . , θ̄d) as θ = Uθ̄, and introduce the new mixture parameter

η̄i = ∂j(F ◦ U)(θ̄) (20)

Since η̄k+i = ai for i = 1, . . . , d − k in M, the initial k elements η̄1, . . . , η̄k gives a parametrization for
M. For the parametrization, we define the map ψ(m)

M as ψ(m)
M (Uθ̄) := (∂j(F ◦U)(θ̄))kj=1. We define the set

ΞM := {ψ(m)
M (θ)|θ ∈M} of the new mixture parameters, and the inverse map φ(m)

M := (ψ
(m)
M )−1 : ΞM →

M. Since Θ is an open set, the set ΞM is an open subset of Rk. When an element η̄ ∈ ΞM satisfies
η̄j = ∂j(F ◦ U)(θ̄) for j = 1, . . . , k, we have

∂i(F ◦ U)∗(η̄, a) = θ̄i (21)

for i = 1, . . . , d. Since η̄ 7→ (F ◦ U)∗(η̄, a) is strictly convex, the map η̄ 7→ (∂i(F ◦ U)∗(η̄, a))ki=1 is
one-to-one. Hence, the initial k elements θ̄1, . . . , θ̄k give a parametrization for M. That is, we have

((U−1θ)i)ki=1 = (∂i(F ◦ U)∗(ψ
(m)
M (θ), a))ki=1. (22)

We define the set ΘM := {((U−1θ)i)ki=1|θ ∈M}. This set is written as

ΘM =

{
(θ1, . . . , θk) ∈ Rk

∣∣∣∣∣
∃(θk+1, . . . , θd) ∈ Rd−k such that∑d

i=1 u
i
k+j∂iF (U(θ1, . . . , θd)) = aj

for j = 1, . . . , d− k.

}
. (23)

When the mixture subfamily M is an exponential subfamily generated by u1, . . . , uk, we retake θ0

such that (U−1θ0)i = 0 for i = 1, . . . , k. Then, the subsets ΘM and ΞM are the same subsets defined in
Subsection II-B.
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D. Bregman Divergence and e- and m- projections
Definition 1 (Bregman Divergence): Let Θ be an open set in Rd and F : Θ→ R be a C∞-class strictly

convex function. The Bregman divergence DF is defined by

DF (θ1‖θ2) := 〈∇(e)[F ](θ1), θ1 − θ2〉 − F (θ1) + F (θ2) (θ1, θ2 ∈ Θ). (24)

We call the triplet (Θ, F,DF ) a Bregman divergence system. In the one-parameter case, we have the
following lemma.

Lemma 1: Assume that d = 1. ∂
∂θ1
DF (θ1‖θ2) = d2

dθ2F (θ1)(θ1 − θ2). Hence, when DF (θ1‖θ2) is
monotonically increasing for θ1 in (∞, θ2], and is monotonically decreasing for θ1 in (θ2,−∞).

By using the Hesse matrix Ji,j(θ) := ∂2F
∂θi∂θj

(θ), this quantity can be written as

DF (θ1‖θ2) =

∫ 1

0

∑
i,j

(θi1 − θi2)(θj1 − θ
j
2)Ji,j(θ2 + t(θ1 − θ2))tdt. (25)

This expression shows the inequality

DF (θ1‖θ2) ≥ DF (θ1‖θ2 + t(θ1 − θ2)) +DF (θ2 + t(θ1 − θ2)‖θ2) (26)

for t ∈ (0, 1).
For an invertible matrix U , we have

DF (θ1‖θ2) = DF◦U(U−1(θ1)‖U−1(θ2)). (27)

Since
∂

∂θi2

∂

∂θj2
DF (θ1‖θ2) = Ji,j(θ2), (28)

DF (θ1‖θ2) is convex function with respect to the second parameter θ2.
When θ2 is given as θ1 + ∆θ, and the norm of ∆θ is small, The relation (25) shows that

DF (θ1‖θ1 + ∆θ) =
∑
i,j

1

2
Ji,j(θ1)(∆θ)i(∆θ)j + o(‖∆θ‖2). (29)

Since the relations (2) and (4) imply

F ∗(η) =
d∑
i=1

θiη(θi)− F (θ) = 〈η(θ), θ〉 − F (θ), (30)

we have

DF ∗(∇(e)[F ](θ2)‖∇(e)[F ](θ1)) = DF ∗(η(θ2)‖η(θ1))

=〈η(θ2)− η(θ1), θ2〉 − F ∗(η(θ2)) + F ∗(η(θ1))

=〈η(θ1), θ1 − θ2〉 − F (θ1) + F (θ2) = DF (θ1‖θ2). (31)

Therefore, when θ2 is fixed and DF (θ1‖θ2) is a convex function for a mixture parameter η(θ1). We define
the matrix J∗(θ) := (J i,j,∗(θ))i,j as

J i,j,∗(θ) :=
∂2F ∗

∂ηi∂ηj
(η) (32)

with η = η(θ), which is the inverse matrix J(θ)−1 of J(θ). Applying the formula (25) to F ∗, we have

DF (θ1‖θ2) = DF ∗(η(θ2)‖η(θ1))

=

∫ 1

0

d∑
i=1

d∑
j=1

(η(θ2)− η(θ1))i(η(θ2)− η(θ1))jJ
i,j,∗(θ(s))sds, (33)
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where θ(s) is defined as η(θ(s)) = η(θ1) + s(η(θ2)− η(θ1)). Similar to (26), we have

DF ∗(η(θ2)‖η(θ1)) =DF (θ2‖θ1) ≥ DF ∗(η(θ2)‖η(θ(s))) +DF ∗(η(θ(s))‖η(θ1))

=DF (θ2‖θ(s)) +DF (θ(s)‖θ1). (34)

In fact, when we restrict both inputs into an exponential subfamily E , we have the following charac-
terization. That is, the restriction of the Bregman divergence system (Θ, F,DF ) to E can be considered
as the Bregman divergence system (ΘE , FE , D

FE ) because we have

DF ((φ
(e)
E (θ̄1)‖(φ(e)

E (θ̄2)) = DFE (θ̄1‖θ̄2) (35)

for θ̄1, θ̄2 ∈ ΘE .
Using a simple calculation, we can show the following proposition.
Propositon 1 (Pythagorean Theorem [7]): Let E ⊂ Θ be an exponential subfamily generated by l

vectors v1, . . . , vl ∈ Rd at θ0 ∈ Θ, and M ⊂ Θ be a mixture subfamily generated by the constraint∑d
i=1 v

i
jηi(θ) = aj for j = 1, . . . , l. Assume that an intersection θ∗ of E and M exists. For any θ ∈ E

and θ′ ∈M, we have

DF (θ‖θ′) = DF (θ‖θ∗) +DF (θ∗‖θ′). (36)

Proof: To show the relation (36), we choose an invertible matrix U = (u1 . . . ud) such that ui = vi for
i = 1, . . . , l. Using the formula (27), we have

DF (θ‖θ′) = DF◦U(U−1(θ)‖U−1(θ′))

=
d∑
i=1

∂

∂θi
F ◦ U(θ)((U−1θ)i − (U−1θ′)i)− F (θ) + F (θ′)

(a)
=

d∑
i=1

∂

∂θi
F ◦ U(θ)((U−1θ)i − (U−1θ∗)i)− F (θ) + F (θ∗)

+
l∑

i=1

∂

∂θi
F ◦ U(θ∗)((U−1θ∗)i − (U−1θ′)i)− F (θ∗) + F (θ′)

=DF (θ‖θ∗) +DF (θ∗‖θ′), (37)

where (a) follows from the following facts; Since θ∗ and θ′ belong to the same exponential family
E , (U−1θ∗)i = (U−1θ′)i for i = l + 1, . . . , d. Since θ∗ and θ belong to the same mixture family M,
∂
∂θi
F ◦ U(θ) = ∂

∂θi
F ◦ U(θ∗) for i = 1, . . . , l.

Lemma 2: Let E be an exponential family generated by l vectors v1, . . . , vl ∈ Rd. The following
conditions are equivalent for the exponential subfamily E , θ∗ ∈ E , and θ0 ∈ Θ.

(E0) The element θ∗ ∈ E achieves a local minimum for the minimization minθ̂∈E D
F (θ0‖θ̂).

(E1) The element θ∗ ∈ E achieves the minimum value for the minimization minθ̂∈E D
F (θ0‖θ̂).

(E2) LetM⊂ Θ be the mixture subfamily generated by the constraint
∑d

i=1 v
i
jηi(θ) =

∑d
i=1 v

i
jηi(θ0)

for j = 1, . . . , l. The element θ∗ ∈ E belongs to the intersection M∩ E .
Further, when there exists an element θ∗ ∈ E to satisfy the above condition, such an element is unique.

In the following, we denote the above mixture family M by Mθ0→E . Then, θ∗ ∈ E is called the e-
projection of θ onto an exponential subfamily E , and is denoted by Γ

(e),F
E (θ) because the points θ and

θ∗ are connected via the mixture family Mθ0→E . We call the minimum minθ̂∈E D
F (θ‖θ̂) the projected

Bregman divergence between θ and E .
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Proof: Assume that (E0) holds. When an element θ̂ ∈ E belongs to the neighbor hood of θ∗, we have

DF (θ0‖θ̂)−DF (θ0‖θ∗)

=
l∑

i=1

∂

∂θi
F ◦ U(θ0)((U−1θ∗)i − (U−1θ̂)i)− F (θ∗) + F (θ̂)

=
l∑

i=1

( ∂

∂θi
F ◦ U(θ∗)− ∂

∂θi
F ◦ U(θ0)

)
((U−1θ∗)i − (U−1θ̂)i)

+
l∑

i=1

∂

∂θi
F ◦ U(θ0)((U−1θ∗)i − (U−1θ̂)i)− F (θ∗) + F (θ̂)

=
l∑

i=1

( ∂

∂θi
F ◦ U(θ∗)− ∂

∂θi
F ◦ U(θ0)

)
((U−1θ∗)i − (U−1θ̂)i)

+DF (θ∗‖θ̂). (38)

In the following, assuming ( ∂
∂θi
F ◦ U(θ∗))li=1 6= ( ∂

∂θi
F ◦ U(θ0))li=1, we derive the contradiction. Since

θ∗ is an inner element of E , we choose an element θ̂ ∈ E as θ∗ + x∆θ such that T :=
∑l

i=1

(
∂
∂θi
F ◦

U(θ∗) − ∂
∂θi
F ◦ U(θ0)

)
(∆θ)i < 0. Then, due to (29), the divergence DF (θ∗‖θ̂) behaves as the order

O(x2). Hence, choosing sufficiently small x, we have DF (θ0‖θ̂)−DF (θ0‖θ∗) = Tx+O(x2) < 0, which
implies contradiction. Hence, we have ( ∂

∂θi
F ◦ U(θ∗))li=1 = ( ∂

∂θi
F ◦ U(θ0))li=1, which implies that θ∗ is

an intersection between M and E . Hence, (E2) holds.
Assume that (E2) holds. Let θ∗ an intersection between M and E . Then, the relation (36) guarantees

that the element θ∗ realizes the minimum minθ̂∈E D
F (θ0‖θ̂). Hence, (E1) holds. Further, (E1) implies (E0).

When there are two different intersections between M and E , the above discussion and the relation
(36) guarantee that the divergence between two intersections must be zero, which yields contradiction.
Thus, the intersection between M and E should be unique.

Exchanging the roles of the exponential family and the mixture family, we have the following lemma.
Lemma 3: We choose l vectors v1, . . . , vl ∈ Rd. Let M be an mixture family generated by generated

by the constraint
∑d

i=1 v
i
jηi(θ) =

∑d
i=1 v

i
jηi(θ0) for j = 1, . . . , l. The following conditions are equivalent

for the mixture subfamily M, θ∗∗ ∈M, and θ0 ∈ Θ.
(M0) The element θ∗∗ ∈M achieves a local minimum for the minimization minθ̂∈MDF (θ̂‖θ0).
(M1) The element θ∗∗ ∈M achieves the minimum value for the minimization minθ̂∈MDF (θ̂‖θ0).
(M2) Let E ⊂ Θ be the mixture subfamily generated by l vectors v1, . . . , vl ∈ Rd at θ0 ∈ Θ. The

element θ∗∗ ∈M belongs to the intersection M∩ E .
Further, when there exists an element θ∗∗ ∈M to satisfy the above condition, such an element is unique.

In the following, we denote the above exponential family E by Eθ0→M. Then, θ∗∗ ∈ M is called the
m-projection of θ onto an mixture subfamily M, and is denoted by Γ

(m),F
M (θ) because the points θ and

θ∗∗ are connected via the exponential family Eθ0→M. WhenM is an exponential subfamily and a mixture
subfamily, we can define both projections Γ

(e),F
M and Γ

(m),F
M , and these projections are different maps.

Hence, the subscripts (e) and (m) are needed.
Lemma 4: Let E ⊂ Θ be an exponential subfamily generated by l vectors v1, . . . , vl ∈ Rd at θ0 ∈ Θ. For

θ∗ ∈ Θ, the element Γ
(e),F
E (θ∗) = θ∗ ∈ E is uniquely characterized as

∑d
j=1 v

j
i ∂jF (θ∗) =

∑d
j=1 v

j
i ∂jF (θ∗),

i.e., R[V ]◦∇[F ](θ∗) = R[V ]◦∇[F ](θ∗). That is, the mixture parameter of the element Γ
(e),F
E (θ∗) = θ∗ ∈ E

is given by the above condition.
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Proof: We choose the mixture subfamily M generated by the constraint
d∑
j=1

vji ∂jF (θ) =
d∑
j=1

vji ∂jF (θ∗) (39)

for i = 1, . . . , l. Due to Pythagorean theorem (Proposition 1), the point θ∗ is characterized by the
intersection between M and E . Hence, the constraint (39) for M guarantees the desired statement.

Lemma 5: Let l vectors u1, . . . , ud ∈ Rd be linearly independent. Let M⊂ Θ be a mixture subfamily
generated by the constraint

d∑
i=1

uij∂iF (θ) = aj (40)

for j = k+ 1, . . . , d. When the maximum maxθ∈MDF (θ‖θ∗∗) exists, we obtain the following characteri-
zations for Γ

(m),F
M (θ∗∗).

(A1) The point Γ
(m),F
M (θ∗∗) = θ∗∗ ∈M is uniquely characterized as

(U−1θ∗∗)i = (U−1θ∗∗)
i (41)

for i = 1, . . . , k, where U is defined in the same way as Subsection II-C.
(A2) We choose the exponential subfamily E generated by d − k vectors uk+1, . . . , ud ∈ Rd at θ∗∗.

The intersection between M and E is composed of the unique element Γ
(m),F
M (θ∗∗).

(A3) The point Γ
(m),F
M (θ∗∗) = θ∗∗ ∈ M is uniquely characterized as θ∗∗ +

∑d−k
j′=1 τ̄

j′uk+j′ , where
(τ̄ 1, . . . , τ̄ d−k) is the unique element to satisfy

∂

∂τ j
F
(
θ∗ +

l∑
j′=1

τ j
′
uk+j′

)
= aj (42)

for j = 1, . . . , d− k.
Proof: To characterize elements of M, we employ the parameter η̄ defined in (20). Then, the set M is
given as {(η̄1, . . . , η̄k, a1, . . . , ad−k)|(η̄1, . . . , η̄k) ∈ Rk} under this parameterization. Then, using (31), we
have

DF (φ
(m)
M (η̄1, . . . , η̄k, a1, . . . , ad−k)‖θ∗∗)

=D(F◦U)∗(ψ
(m)
M (θ∗∗)‖(η̄1, . . . , η̄k, a1, . . . , ad−k)) (43)

Since the map (η̄1, . . . , η̄k) 7→ D(F◦U)∗(ψ
(m)
M (θ∗∗)‖(η̄1, . . . , η̄k, a1, . . . , ad−k)) is smooth and convex, the

minimum min(η̄1,...,η̄k) D
(F◦U)∗(ψ

(m)
M (θ∗∗)‖(η̄1, . . . , η̄k, a1, . . . , ad−k)) is realized when

∂i(F ◦ U)∗(η̄1, . . . , η̄k, a1, . . . , ad−k) = ∂i(F ◦ U)∗(ψ
(m)
M (θ∗∗)). (44)

for i = 1, . . . , k. Since (44) is equivalent to (41) due to (21), we obtain (A1).
The exponential subfamily E is characterized as {θ|(U−1θ)i = (U−1θ∗∗)

i for i = 1, . . . , k}. Then, we
find that the intersection between M and E is not empty and contains θ∗∗. Further, when an element θ
belongs to the intersection between M and E , the Pythagorean theorem (Proposition 1) guarantees that
the element θ realizes the maximum maxθ∈MDF (θ‖θ∗∗). Hence, the intersection between M and E is
composed of the unique element Γ

(m),F
M (θ∗∗). Hence, we obtain (A2).

Due to (A2), the unique element Γ
(m),F
M (θ∗∗) is characterized as an element in E = {θ∗∗+

∑d−k
j′=1 τ

j′uk+j′ |
(τ 1, . . . , τ d−k) ∈ Rd−k} to satisfy (42). Hence, we obtain (A3).

Due to Lemmas 2 and 3, it is important to find a sufficient condition for (E2) and (M2). To discuss
this issue for a convex function F and Θ, we fix l linearly independent vectors v1, . . . , vl ∈ Rd. Then, we
consider the following conditions;
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(M3) We denote the exponential family generated by the l linearly independent vectors v1, . . . , vl ∈ Rd

at θ0 ∈ Θ by E(θ0). The l-dimensional parameter space ΘE(θ0) does not depend on θ0 ∈ Θ. while
the space ΘE(θ0) is defined in the way as (16). In this case, this set is denoted by Ξ(v1, . . . , vl).

(E3) We denote the mixture family generated by the constraint
∑d

i=1 v
i
j∂iF (θ) = aj for j = 1, . . . , l

by M(a1, . . . , al). The d − l-dimensional parameter space ΘM(a1,...,al) does not depend on
(a1, . . . , al) ∈ Rl unless M(a1, . . . , al) is empty while the space ΘM(a1,...,al) is defined in the
way as (23). In this case, this set is denoted by Θ(v1, . . . , vl).

Under the above condition, we have the following lemmas.
Lemma 6: Assume that the l linearly independent vectors v1, . . . , vl ∈ Rd satisfy Condition (M3).

Given (a1, . . . , al) ∈ Ξ(v1, . . . , vl), we define the mixture family M(a1, . . . , al) by using the condition
(40). Then, for θ0 ∈ Θ, the projected point Γ

(m),F
M(a1,...,al)

(θ0) exists.
Proof: When the assumption holds, for θ0 ∈ Θ, the exponential family E(θ0) contains an element whose
mixture parameter is (a1, . . . , al). Hence, due to Lemma 3, the exponential family E(θ0) and the mixture
family M(a1, . . . , al) have a unique intersection. Therefore, the projected point Γ

(m),F
M(a1,...,al)

(θ0) exists
unless M(a1, . . . , al) is empty.

Lemma 7: Assume that the l linearly independent vectors v1, . . . , vl ∈ Rd satisfy Condition (E3). Then,
for (b1, . . . , bd−l) ∈ Rd−l and θ0 ∈ Θ, the projected point Γ

(e),F

E(b1,...,bd−l)
(θ0) exists unless E(b1, . . . , bd−l) is

empty where the exponential family E(b1, . . . , bd−l) is defined as {(
∑d−l

i=1 u
j
i b
i+
∑l

i=1 u
j
iθ
i)dj=1|(θ1, . . . , θl) ∈

Rl} ∩Θ.
Proof: Assume that the assumption holds. For θ0 ∈ Θ, we define the mixture family M(θ0) by using
the constraint;

∑d
j=1 v

j
i ∂jF (θ) =

∑d
j=1 v

j
i ∂jF (θ0) for i = 1, . . . , l. Then, the mixture family M(θ0)

contains an element whose natural parameter is (b1, . . . , bd−l). Hence, due to Lemma 2 the mixtureM(θ0)
and the exponential family E(b1, . . . , bd−l) have a unique intersection. Therefore, the projected point
Γ

(e),F

E(b1,...,bd−l)
(θ0) exists unless E(b1, . . . , bd−l) is empty.

In addition, we introduce the following conditions for the Bregman divergence system (Θ, F,DF ).
(M4) Any l linearly independent vectors v1, . . . , vl ∈ Rd satisfy Condition (M3) for l = 1, . . . , d− 1.
(E4) Any l linearly independent vectors v1, . . . , vl ∈ Rd satisfy Condition (E3) for l = 1, . . . , d− 1.

When (M4) holds, the m-projection Γ
(m),F
M can be defined for any mixture subfamily M. Also, when

(E4) holds, the e-projection Γ
(e),F
E can be defined for any exponential subfamily E . Therefore, these two

conditions are helpful for the analysis of these projections.

TABLE I
SUMMARY OF DIMENSIONS

Symbol Space
d Dimension of the whose space
l Dimension of Exponential family E
k Dimension of Mixture family M

E. Evaluation of Bregman divergence without Pythagorean theorem
Next, we evaluate Bregman divergence when we cannot use Pythagorean theorem. For this aim, we

focus on J(θ)−1, i.e., the inverse of the Hesse matrix J(θ) defined for the parameters of Θ. Then, we
introduce the following quantity γ(Θ̂|Θ) for a subset Θ̂ of Θ.

γ(Θ̂|Θ) := inf{γ|γJ(θ1)−1 ≥ J(θ2)−1 for θ1, θ2 ∈ Θ̂} (45)
(46)

We say that a subset Θ̂ of Θ is a star subset for an element θ1 ∈ Θ̂ when λη(θ) + (1− λ)η(θ1) ∈ η(Θ̂)
for θ ∈ Θ̂ and λ ∈ (0, 1).
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Then, we have the following theorem.
Theorem 1: We assume that Condition (M4) holds. Then, for a star subset with Θ̂ for θ1 ∈ Θ̂, θ2 ∈ Θ̂,

and θ3 ∈ Θ, we have

DF (θ1‖θ2)

≤DF (θ1‖θ3) + γ(Θ̂|Θ)DF (θ2‖θ3) + 2γ(Θ̂|Θ)
√
DF (θ1‖θ3)DF (θ2‖θ3). (47)

The proof of Theorem 1 is given in Appendix B.

F. Bregman divergence system for mixture subfamily
When E is an exponential subfamily, the triplet (ΘE , FE , D

FE ) is a Bregman divergence system as
explained in (35). However, when M is a mixture subfamily and it is not an exponential subfamily, it
is not so trivial to recover a Bregman divergence system. We use the symbols defined in Subsection
II-C. Any element in M can be parameterized by an element θ̄ ∈ ΘM. Therefore, there uniquely exists
an vector κ(θ̄) ∈ Rd−k such that U(θ̄, κ(θ̄)) ∈ M. Then, we define the map φ

(e)
M : ΘM → M as

φ
(e)
M(θ̄) := U(θ̄, κ(θ̄)), and its inverse map ψ(e)

M := (φ
(e)
M)−1 :M→ ΘM.

A convex function FM(θ̄) is defined as

FM(θ̄) :=(F ◦ U)(θ̄, κ(θ̄))−
d∑

i=k+1

∂i(F ◦ U)(θ̄, κ(θ̄))κi−k(θ̄)

=(F ◦ U)(θ̄, κ(θ̄))−
d∑

i=k+1

aiκ
i−k(θ̄). (48)

(F ◦U)∗|ΞM is a convex function. Due to (22), the Legendre transform of (F ◦U)∗|ΞM is FM(θ̄). Hence,
FM(θ̄) is a convex function.

Also, we have

∂

∂θ̄j
FM(θ̄)

=∂j(F ◦ U)(θ̄, κ(θ̄)) +
d∑

i=k+1

∂i(F ◦ U)(θ̄, κ(θ̄))∂jκ
i−k(θ̄)−

d∑
i=k+1

aiκ
i−k(θ̄)

=∂j(F ◦ U)(θ̄, κ(θ̄)). (49)

Thus,

DFM(θ̄1‖θ̄2)

=FM(θ̄1)− FM(θ̄2)−
k∑
j=1

∂

∂θ̄j
FM(θ̄)(θ̄j1 − θ̄

j
2)

=F ◦ U(θ̄1, κ(θ̄1))− F ◦ U(θ̄2, κ(θ̄2))

−
d∑
j=1

∂j(F ◦ U)((θ̄1, κ(θ̄1))j − (θ̄2, κ(θ̄2))j)

=DF◦U((θ̄1, κ(θ̄1))‖(θ̄2, κ(θ̄2))) = DF (U(θ̄1, κ(θ̄1))‖U(θ̄2, κ(θ̄2)))

=DF (φ
(e)
M(θ̄1)‖φ(e)

M(θ̄2)). (50)

Therefore, the Bregman divergence in the Bregman divergence system (ΘM, FM, D
FM) equals the Breg-

man divergence in the Bregman divergence system (Θ, F,DF ) for two elements in M.
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A subset E ⊂ M is called an l-dimensional exponential subfamily of M generated by l linearly
independent vectors v1, . . . , vl ∈ Rk at θ0 ∈ ΘM with l ≤ k when the subset E is given as

E =

{
φ

(e)
M

(
θ0 +

l∑
i=1

θ̄ivi

)∣∣∣∣∣ θ̄ ∈ Rl

}
∩M. (51)

A subset M1 ⊂ Θ is called an l-dimensional mixture subfamily of M generated by the additional
constraints

k∑
i=1

vijηi = aj (52)

for j = 1, . . . , l with v1, . . . , vl ∈ Rk when the subset M1 is written as

M1 =
{
φ

(m)
M (η) ∈M

∣∣∣ η ∈ ΞM satisfies Condition (52).
}

(53)

G. Closed convex mixture subfamily
A closed subset M of a mixture subfamily M̂ is called a closed mixture subfamily. The mixture

subfamily M̂ is called the extended mixture family of M when M̂ and M have the same dimension.
When a closed mixture subfamily M is a convex set with respect to the mixture parameter, it is called a
closed convex mixture subfamily.

We define the boundary set ∂M := M \ intM, where intM is the interior of M. For an element
θ ∈ ∂M, a d−1-dimensional mixture familyM′ is called a tangent space ofM at θ whenM′∩M 6= ∅
andM′∩ intM = ∅. WhenM is a closed convex mixture subfamily, any element θ ∈ ∂M has a tangent
space. When M is composed of one element, we consider that M̂ :=M, ∂M = ∅, and intM =M.

Lemma 8: Assume that the Bregman divergence system (Θ, F,DF ) satisfies Condition (M4). For any
element θ ∈ Θ and any closed convex mixture subfamily M, there uniquely exists a minimum point

Γ
(m),F
M (θ) := argmin

θ′∈M
DF (θ′‖θ). (54)

In addition, any element θ′ ∈M satisfies the inequality

DF (θ′‖θ) ≥ DF (θ′‖Γ
(m),F
M (θ)) +DF (Γ

(m),F
M (θ)‖θ). (55)

Further, we denote the extended mixture family of M by M̂. When θ belongs to M̂ \M, then,

Γ
(m),F
M (θ) ∈ ∂M. (56)

Proof: Step 1: We choose a sequence θ(n) ∈ ∂M such that

lim
n→∞

DF (θ(n)‖θ) = inf
θ′∈M

DF (θ′‖θ). (57)

Since {θ′ ∈M|DF (θ′‖θ) ≤ DF (θ(1)‖θ)} is a compact subset, there exists a subsequence of nm such that
θ(nm) converges. Since M is a closed subset, θ∗ := limm→∞ θ

(nm) belongs to M.
We define the vector v := (θ∗ − θ) ∈ Rd and the real numbers a∗ :=

∑d
i=1 v

i∂iF (θ∗) ∈ R and
b∗ :=

∑d
i=1 v

i∂iF (θ) ∈ R. When a∗ > b∗, as shown in Step 2, any element θ′ ∈M satisfies
d∑
i=1

vi∂iF (θ′) ≥ a∗. (58)

Otherwise, any element θ′ ∈M satisfies
d∑
i=1

vi∂iF (θ′) ≤ a∗. (59)



M. HAYASHI: BREGMAN DIVERGENCE BASED EM ALGORITHM 12

Step 2: We show only (58) by contradiction because the relation (59) can be shown in the same way.
We choose an element θ′ ∈M such that (58) does not hold. We denote the mixture parameters of θ∗ and
θ′ by η∗ and η′. Since M is convex with respect to the mixture parameter, θ(η∗ + t(η′ − η∗)) belongs to
M for t ∈ [0, 1].

We denote the one-dimensional exponential subfamily {θ + t(θ∗ − θ)}t∈R ∩ Θ by E1. We define
a(t) :=

∑d
i=1 v

i∂iF (θ(η∗ + t(η′ − η∗))). We denote the d − 1-dimensional mixture subfamily {θ′′ ∈
Θ|
∑d

i=1 v
i∂iF (θ′′) = a(t)} by M(t). Condition (M4) guarantees that the intersection M(t) ∩ E1 is

composed of only one element. We denote the element by θ(t). Then, we have

DF (θ(η∗ + t(η′ − η∗))‖θ) = DF (θ(η∗ + t(η′ − η∗))‖θ(t)) +DF (θ(t)‖θ). (60)

We assume that t > 0 is sufficiently small. Since (58) does not hold, the formula (25) implies DF (θ∗‖θ)−
DF (θ(t)‖θ) = O(t). However, DF (θ(η∗ + t(η′ − η∗))‖θ(t)) = O(t). The combination of these relations
shows that

DF (θ(η∗ + t(η′ − η∗))‖θ) < DF (θ∗‖θ), (61)

which yields the contradiction.

1
E

M

M' 'θ

θ̂

*
θ

θ

(1)M

Fig. 1. Figure for Step 3 of the proof of Lemma 8.

Step 3: We show the uniqueness of the minimum point and (55) only in the case when a∗ > b∗. We
can show the other case in the same way.
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We define a′ :=
∑d

i=1 v
i∂iF (θ′). We denote the d−1-dimensional mixture subfamily {θ′′ ∈ Θ|

∑d
i=1 v

i∂iF (θ′′) =
a′} by M′. Condition (M4) guarantees that the intersection M′ ∩ E1 is composed of only one element.
We denote the element by θ̂. Hence, we have

DF (θ′‖θ) (a)
=DF (θ′‖θ̂) +DF (θ̂‖θ)
(b)

≥DF (θ′‖θ̂) +DF (θ̂‖θ∗) +DF (θ∗‖θ)
(c)
=DF (θ′‖θ∗) +DF (θ∗‖θ), (62)

where (a) and (c) follow from Proposition 1, and (b) follows from (26). The relation (62) implies that
DF (θ′‖θ) > DF (θ∗‖θ). Hence, we obtain the uniqueness of the minimum point. Also, (62) implies (55).
Step 4: We show (56) by contradiction only in the case when a∗ > b∗ because we can show the other
case in the same way. We assume that (56) does not hold. We parameterize the exponential family E1

as {θt} such that θ0 = θ and θ1 = θ∗ = Γ
(m),F
M (θ). Since θ1 ∈

∫
M, there is an element t0 ∈ (0, 1)

such that θt ∈ ∂M. Hence, Lemma 1 guarantees that DF (θt‖θ0) > DF (θ1‖θ0), which contradicts that
θ1 = Γ

(m),F
M (θ).

We say that a set of closed convex mixture subfamilies {Mλ}λ∈Λ covers the boundary ∂M of a closed
convex mixture familyM with subsets Λλ ⊂ Λ and λ ∈ Λ∗ := Λ∪{0} when the following two conditions
hold; The relation

∂Mλ = ∪λ′∈ΛλMλ′ (63)

holds unless ∂Mλ = ∅. That is, when ∂Mλ = ∅, Λλ is the empty set. The relation

Mλ′ 6⊂ Mλ′′ (64)

holds for two elements λ′, λ′′ ∈ Λλ. That is, 0 ∈ Λ∗ is considered as the index to express M. Hence, we
define M0 :=M.

Also, we define the subset Λ̄λ := {λ′ ∈ Λ|∃λ2, . . . , λx−1 such that λi+1 ∈ Λλi with λ1 = λ, λx = λ′}.
In addition, we define the depth D(λ) of an element λ ∈ Λ as follows. The depth D(λ) of an element λ is
zero when Λλ is the empty set. Otherwise, the depth D(λ) of an element λ is defined as 1+maxλ′∈Λλ D(λ′).
Then, the depth of M is defined to be the depth D(0).

Lemma 9: The sets intMλ are disjoint, i.e.,

intMλ ∩ intMλ′ = ∅ for λ 6= λ′ ∈ Λ∗. (65)

Also, we have

∂M = ∪λ′∈Λ intMλ′ . (66)

Proof of Lemma 9: We show the following statement by induction for depth D(λ); The relations

intMλ′ ∩ intMλ′′ = ∅ for λ′ 6= λ′′ ∈ Λλ. (67)
∂Mλ = ∪λ′∈Λ̄λ intMλ′ . (68)

The relations (67) and (68) are trivial when D(λ) = 0. In the following, we show the relations (67)
and (68) for D(λ) = k when they hold for D(λ) ≤ k − 1.

The convexity of Mλ guarantees that Mλ′ ∩Mλ′′ ∈ ∂Mλ′ , ∂Mλ′′ for λ′, λ′′ ∈ Λλ. Hence, we have
(67). For λ′ ∈ Λλ, the assumption of induction implies

∂Mλ′ = ∪λ′′∈Λ̄λ′
intMλ′′ . (69)
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Thus,

∂Mλ = ∪λ′∈ΛλMλ′ = ∪λ′∈Λλ

(
intMλ′ ∪ ∂Mλ′

)
= ∪λ′∈Λλ

(
intMλ′ ∪

(
∪λ′′∈Λ̄λ′

intMλ′′
))

= ∪λ′∈Λ̄λ intMλ′ . (70)

Under the above case, the point Γ
(m),F
M (θ) for θ ∈ Θ can be characterized as follows.

Lemma 10: Assume that a set of closed convex mixture subfamilies {Mλ}λ∈Λ covers the boundary
∂M of a closed convex mixture family M with subsets Λλ ⊂ Λ and λ ∈ Λ∗ := Λ ∪ {0}. We
denote the extended mixture subfamily of Mλ by M̂λ for λ ∈ Λ∗. For θ ∈ Θ, we define λ0 :=
argmin
λ′∈Λ∗

{DF (Γ
(m),F

M̂λ′
(θ)‖θ)|Γ(m),F

M̂λ′
(θ) ∈ intMλ′}. Then, we have Γ

(m),F
M (θ) = Γ

(m),F

M̂λ0

(θ).

Proof: Due to Lemma 9, there uniquely exists λ0 ∈ Λ such that Γ
(m),F
M (θ) ∈ intMλ0 . Then, Γ

(m),F
M (θ) =

argmin
θ′∈intMλ0

DF (θ′‖θ). Since Lemma 3 guarantees that argmin
θ′∈intMλ0

DF (θ′‖θ) = argmin
θ′∈M̂λ0

DF (θ′‖θ), we have

Γ
(m),F
M (θ) = Γ

(m),F

M̂λ0

(θ).

When λ ∈ Λ satisfies the condition Γ
(m),F

M̂λ
(θ) ∈ intMλ, we have DF (Γ

(m),F

M̂λ0

(θ)‖θ) = DF (Γ
(m),F
M (θ)‖θ) ≤

DF (Γ
(m),F

M̂λ
(θ)‖θ) because Γ

(m),F

M̂λ
(θ) ∈M. Hence, we obtain the desired statement.

III. EXAMPLES OF BREGMAN DIVERGENCE

A. Classical system
We consider the set of probability distributions on the finite set X = {1, . . . , n}. We focus on d linearly

independent functions f1, . . . , fd defined on X , where the linear space spanned by f1, . . . , fd does not
contain a constant function and d ≤ n− 1. Then, we define the C∞ strictly convex function µ on Rd as
µ(θ) := log(

∑
x∈X exp(

∑d
j=1 θ

jfj(x)), which yields the Bregman divergence system (Rd, µ,Dµ). When
d = n− 1, any probability distribution with full support on X can be written as Pθ, which is defined as
Pθ(x) := exp

(
(
∑n−1

j=1 θ
jfj(x))−µ(θ)

)
. It is known that the KL divergence equals the Bregman divergence

of the potential function µ [7, Section 3.4], i.e., we have

Dµ(θ‖θ′) = D(Pθ‖Pθ′) (71)

for θ ∈ Rd, where the KL divergence D(q‖p) is defined as

D(q‖p) =
∑
ω

p(ω)(log p(ω)− log q(ω)). (72)

Examle 1: When d = n − 1, the Bregman divergence system (Rd, µ,Dµ) describes the set PX of
distributions on X with full support and the KL divergence.

Examle 2: When X is given as X1×X2 with ni = |Xi|, fi is a function on X1 or X2, and d = n1+n2−2,
the Bregman divergence system (Rd, µ,Dµ) describes the set PX1 × PX2 of independent distributions on
X1 ×X2.

Examle 3: When X is given as X1×X2×X3 with ni = |Xi|, fi is a function on X1,X2 or X2,X3, and
d = n2(n1 + n3 − 2) + n2 − 1, the Bregman divergence system (Rd, µ,Dµ) describes the set PX1−X2−X3

of distributions on X1 ×X2 ×X3 to satisfy the Markovian condition X1 −X2 −X3.
When the parameter θ is limited to (θ̄, 0, . . . , 0︸ ︷︷ ︸

d−l

) with θ̄ ∈ Rl, the set of distributions Pθ forms an

exponential subfamily. Also, when the linear space spanned by d − k linearly independent functions
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g1, . . . , gd−k does not contain a constant function, for d − k constants a1, . . . , ad−k, the following set of
distributions forms a mixture subfamily;{

Pθ

∣∣∣∑
x∈X

gi(x)Pθ(x) = ai for i = 1, . . . , d− k
}
. (73)

When we make linear constraints as explained in Subsection II-F, changing the potential function µ in
the way as (48), we can recover (71).

For the possibility of the projection, we have the following lemma.
Lemma 11: The Bregman divergence system (Rd, µ,Dµ) defined in this subsection satisfies Conditions

(E4) and (M4).
To show this lemma, we prepare the following lemma.
Lemma 12: For (θ1, . . . , θd−l) ∈ Rd−l and ξ := (ξ1, . . . , ξl) ∈ Rl, we define

τ(θ1,...,θd−l)(ξ) :=

(∑
x∈X fd−j(x) exp

(∑d
i=1 θ

ifi(x)
)

µ(θ)

)l

j=1

∈ Rl (74)

with θd−l+i = ξi. Then, the set T1,(θ1,...,θd−l) := {τ(θ1,...,θd−l)(ξ)|ξ ∈ Rl} equals the inner T2 of the convex
full of {(fd−j(x))lj=1}x∈X .

Proof of Lemma 12: In this proof, T1,(θ1,...,θd−l) and τ(θ1,...,θd−l)(ξ) are simplified to T1 and τ(ξ). Since
T1 ⊂ T2 is trivial, we show only the opposite relation.

Step 1: Any element in the boundary of the convex full of {(fd−j(x))lj=1}x∈X is written as
(∑l′

i=1 pifd−j(xi)
)l
j=1

with extremal points (fd−j(xi))
l
j=1 with at most l elements xi ∈ X and at most l positive numbers pi, where

i = 1, . . . , l′ ≤ l. There exists an element ξ∗ ∈ Rl such that maxx∈X
∑l

j=1 ξ
j
∗fd−j(x) =

∑l
j=1 ξ

j
∗fd−j(xi) =

1 and
∑l

j=1 ξ
j
∗fd−j(x) < 1 unless (fd−j(x))lj=1 is written as a convex combination of {(fd−j(xi))lj=1}l

′
i=1.

For any xi, there exists an element ξ(xi)∗ ∈ Rl such that maxx∈X
∑l

j=1 ξ(xi)
j
∗fd−j(x) =

∑l
j=1 ξ(xi)

j
∗fd−j(xi) =

1,
∑l

j=1 ξ(xi)
j
∗fd−j(x) < 1 for x 6= xi and

∑l
j=1 ξ(xi)

j
∗fd−j(xi′) > 0 for i′ 6= i. Then, there exist elements

ti > 0 such that

exp
(∑l′

i′=1

∑l
j=1 ti′ξ(xi′)

j
∗fd−j(xi) +

∑d−l
j=1 θ

jfj(xi)
)

∑l′

i′′=1 exp
(∑l′

i′=1

∑l
j=1 ti′ξ(xi′)

j
∗fd−j(xi′′) +

∑d−l
j=1 θ

jfj(xi′′)
) = pi. (75)

Hence, we have

τ
(
tξ(x0) +

l′∑
i′=1

ti′ξ(xi′)∗

)
→
( l′∑
i=1

pifd−j(xi)
)l
j=1

(76)

as t→∞.
Step 2: Conversely, for any ξ ∈ Rl, we can choose at most l elements x1, . . . , xl′ ∈ X such that
maxx∈X

∑l
j=1 ξ

jfd−j(x) =
∑l

j=1 ξ
jfd−j(xi) and

∑l
j=1 ξ

jfd−j(x) <
∑l

j=1 ξ
jfd−j(xi) for x /∈ {x1, . . . , xl′}.

Then, we have

τ(tξ)→

(
l′∑
i=1

exp
(∑d−l

j=1 θ
jfj(xi)

)
∑l′

i′=1 exp
(∑d−l

j=1 θ
jfj(xi′)

)fd−j(xi))l

j=1

(77)

as t→∞.
Step 3: We consider the compact set T (t) := {τ(ξ)}maxx∈X

∑l
j=1 ξ

jfd−j(x)=t for a large real number
t > 0. The analysis on Steps 1 and 2 shows that the set T (t) approaches to the boundary of the convex
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full of {(fd−j(x))lj=1}x∈X when t approaches infinity. Since map τ is continuous, the image D(t) of
{ξ ∈ Rl|maxx∈X

∑l
j=1 ξ

jfd−j(x) ≤ t} for the map τ is a compact subset whose boundary is close to
the boundary of the convex full of {(fd−j(x))lj=1}x∈X . Therefore, ∪t>0D(t) equals the convex full of
{(fd−j(x))lj=1}x∈X .

Proof of Lemma 11: It is sufficient to show Conditions (E3) and (M3) for any set of vectors v1, . . . , vl,
where l = 1, . . . , d− 1. This fact can be shown as follows. First, we show (E3). For this aim, we choose
an invertible matrix U such that ud−i = vi for i = 1, . . . , l. For simplicity, we rewrite

∑d
i=1 u

i
jfi by fj .

Also, we choose (a1, . . . , al) ∈ Rl such that M(a1, . . . , al) is not empty. We show that M(a1, . . . , al) is
Rd−l. Due to Lemma 12, for (θ1, . . . , θd−l) ∈ Rd−l, there exists (θd−l+1, . . . , θd) ∈ Rl such that∑

x∈X fd−j(x) exp
(∑d

i=1 θ
ifi(x)

)
µ(θ)

= aj (78)

for j = 1, . . . , l. The above condition is equivalent to

∂µ

∂θj
(θ) = aj. (79)

This condition implies the relation M(a1, . . . , al) = Rd−l. Hence, we have Condition (E3).
Next, we show (M3). The relation (78) means that the set ΞE(θ0) does not depend on θ0 ∈ Θ because

the choice of (θ1, . . . , θd−l) ∈ Rd−l corresponds to the choice of θ0 ∈ Θ in the relation (79). Hence, we
have Condition (M3).

B. Classical system with fixed marginal distribution
We consider the set of probability distributions on the finite set X × Y with n1 = |X | and n2 = |Y|.

In particular, the marginal distribution on X is restricted as PX(x) = px. We focus on d linearly
independent functions f̄1, . . . , f̄n2−1 defined on Y , where the linear space spanned by f̄1, . . . , f̄n2−1

does not contain a constant function. Then, we define the C∞ strictly convex function µ̄ on Rn1(n2−1)

as µ̄(θ̄) :=
∑

x∈X pxµx(θ̄), where µx(θ̄) := log(
∑

y∈Y exp(
∑n2−1

j=1 θ̄(x−1)(n2−1)+j f̄j(y)), which yield the
Bregman divergence system (Rn1(n2−1), µ̄, Dµ̄).

A probability distribution with full support on X ×Y with the marginal distribution px can be written as
Pθ, which is defined as as Pθ̄(x, y) := px exp

(
(
∑n2−1

j=1 θ̄(x−1)(n2−1)+j f̄j(y))− µx(θ̄)
)

. The KL divergence
equals the Bregman divergence of the potential function µ̄, i.e., we have

Dµ̄(θ̄‖θ̄0)

=
∑
x,j

px

( ∂µx(θ̄)

∂θ̄(x−1)(n2−1)+j
(θ̄(x−1)(n2−1)+j − θ̄(x−1)(n2−1)+j

0 )− µx(θ̄) + µx(θ̄0)
)

=D(Pθ̄‖Pθ̄0) (80)

for θ ∈ Rd.
Next, we consider the Bregman divergence system (Rn1n2−1, µ,Dµ) defined in Subsection III-A with

f1, . . . , fn1n2−1 defined as follows; f(i−1)(n2−1)+j(x, y) := δi,xf̄x(y) for i = 1, . . . , n1 and j = 1, . . . , n2−1.
fn1(n2−1)+i(x, y) := δi,x for i = 1, . . . , n1 − 1. We define the mixture subfamily M by the constraint

∂µ

∂θn1(n2−1)+i
= pi (81)

for i = 1, . . . , n1 − 1. We apply the discussion given in Subsection II-F to the mixture subfamily M.
The matrix U is the identity matrix. The mixture subfamily M is parameterized by the natural parameter
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θ̄ = (θ̄1, . . . , θ̄n1(n2−1)). The function κ is chosen as κn1(n2−1)+i(θ̄) := µx(θ̄). Then, the parameter (θ̄, κ(θ̄))
satisfies the condition (81). Hence, the mixture subfamily M coincides with the Bregman divergence
system (Rn1(n2−1), µ̄, Dµ̄).

As an extension of Lemma 11, we have the following lemma.
Lemma 13: The Bregman divergence system (Rn1(n2−1), µ̄, Dµ̄) defined in this subsection satisfies

Conditions (E4) and (M4).
Proof: Condition (E4) holds because the parameter set is Rn1(n2−1). Since the Bregman divergence
system (Rn1n2−1, µ,Dµ) satisfies Condition (M4), its mixture subfamily M satisfies Condition (M4).
Hence, (Rn1(n2−1), µ̄, Dµ̄) satisfies Condition (M4).

C. Quantum system
In the quantum system, we focus on the n-dimensional Hilbert space H [15]. We choose d linearly

independent Hermitian matrices X1, . . . , Xd on H, where the linear space spanned by X1, . . . , Xd does
not contain the identify matrix. Then, we define the C∞ strictly convex function µ on Rd as µ(θ) :=
log(Tr exp(

∑d
j=1 θ

jXj). A quantum state on H is given as a positive semi definite Hermitian matrix ρ
with the condition Tr ρ = 1, which is called a density matrix. We denote the set of density matrices
by S(H). Any density matrix with full support on H can be written as ρθ, which is defined as as
ρθ := exp

(
(
∑d

j=1 θ
jXj)−µ(θ)

)
. It is known that the relative entropy equals the Bregman divergence of

the potential function µ [7, Section 7.2], i.e., we have

Dµ(θ‖θ′) = D(ρθ‖ρθ′) (82)

for θ ∈ Rd, where the relative entropy D(ρ‖ρ′) is defined as

D(ρ‖ρ′) = Tr ρ(log ρ− log ρ′). (83)

Examle 4: When d = n2 − 1, the Bregman divergence system (Rd, µ,Dµ) describes the set S(H) of
density matrices on H with full support and the relative entropy.

Examle 5: When H is given as H1⊗H2 with ni = dimHi, Xi is an Hermitian matrices with the form
A ⊗ I or I ⊗ B, and d = n2

1 + n2
2 − 2, the Bregman divergence system (Rd, µ,Dµ) describes the set

S(H1)⊗ S(H2) of product density matrices on H1 ⊗H2.
When the parameter θ is limited to (θ̄, 0, . . . , 0︸ ︷︷ ︸

d−l

) with θ̄ ∈ Rl, the set of distributions ρθ forms an

exponential family. Also, when the linear space spanned by d−k linearly independent Hermitian matrices
Y1, . . . , Yd−k does not contain a constant function, for d− k constants a1, . . . , ad−k, the following set of
distributions forms a mixture family;{

ρθ

∣∣∣TrYiρθ = ai for i = 1, . . . , d− k
}
. (84)

For the possibility of the projection, we have the following lemma.
Lemma 14: The Bregman divergence system (Rd, µ,Dµ) defined in this section satisfies Conditions

(E4) and (M4).
To show this lemma, we prepare the following lemma in a way similar to Lemma 12.
Lemma 15: For (θ1, . . . , θd−l) ∈ Rd−l and ξ := (ξ1, . . . , ξl) ∈ Rl, we define

τ(θ1,...,θd−l)(ξ) :=

(
TrXd−j exp

(∑d
i=1 θ

jXd−i

)
µ(θ)

)l

j=1

(85)

with θd−l+i = ξi. Then, the set T1,(θ1,...,θd−l) := {τ(θ1,...,θd−l)(ξ)|ξ ∈ Rl} equals the inner T2 of the convex
full of {(TrXd−jρ)lj=1}ρ∈P , where P is the set of pure states.
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Proof of Lemma 15: In this proof, T1,(θ1,...,θd−l) and τ(θ1,...,θd−l)(ξ) are simplified to T1 and τ(ξ). Since
T1 ⊂ T2 is trivial, we show only the opposite relation.
Step 1: Any element in the boundary of the convex full of {(TrXd−jρ)lj=1}ρ∈P is written as(∑l′

i=1 pi Tr ρiXn−1−j

)l
j=1

with extremal points (Tr ρXd−j)
l
j=1 with at most l orthogonal elements ρi ∈ P

and at most l positive numbers pi, where i = 1, . . . , l′ ≤ l. There exists an element ξ∗ ∈ Rl such that
maxρ∈P

∑l
j=1 ξ

j
∗ Tr ρXd−j =

∑l
j=1 ξ

j
∗ Tr ρiXd−j = 1 and

∑l
j=1 ξ

j
∗ Tr ρXd−j < 1 unless (Tr ρXd−j)

l
j=1 is

written as a convex combination of {(Tr ρiXd−j)
l
j=1}l

′
i=1. For any ρi, there exists an element ξ(ρi)∗ ∈ Rl

such that maxρ∈P
∑l

j=1 ξ(ρi)
j
∗Tr ρXd−j =

∑l
j=1 ξ(ρi)

j
∗Tr ρiXd−j = 1,

∑l
j=1 ξ(xi)

j
∗Tr ρXd−j < 1 for

ρ(6= ρi) ∈ P and
∑l

j=1 ξ(xi)
j
∗Tr ρi′Xd−j > 0 for i′ 6= i. Then, there exists elements ti > 0 such that

Tr ρi exp
(∑l′

i′=1

∑l
j=1 ti′ξ(xi′)

j
∗Xn−1−j +

∑d−l
j=1 θ

jXj

)
∑l′

i′′=1 Tr ρi′′ exp
(∑l′

i′=1

∑l
j=1 ti′ξ(xi′)

j
∗Xd−j +

∑d−l
j=1 θ

jXj

) = pi. (86)

Hence, we have

τ
(
tξ(x0) +

l′∑
i′=1

ti′ξ(xi′)∗

)
→
( l′∑
i=1

pi Tr ρiXd−j

)l
j=1

(87)

as t→∞.
Step 2: Conversely, for any ξ ∈ Rl, we can choose at most l orthogonal pure states ρ1, . . . , ρl′ ∈ X
such that

∑l
j=1 ξ

jXd−j is commutative with ρ1, . . . , ρl′ , maxρ∈P
∑l

j=1 ξ
j Tr ρXd−j =

∑l
j=1 ξ

j Tr ρiXd−j

and
∑l

j=1 ξ
j Tr ρXd−j <

∑l
j=1 ξ

j Tr ρiXd−j unless (Tr ρXd−j)
l
j=1 is written as a convex combination of

{(Tr ρiXd−j)
l
j=1}l

′
i=1. Then, we have

τ(tξ)→

(
l′∑
i=1

Tr ρi exp
(∑d−l

j=1 θ
jXj

)
∑l′

i′=1 Tr ρi′ exp
(∑d−l

j=1 θ
jXj

)Xd−j

)l

j=1

(88)

as t→∞.
Step 3: We consider the compact set T (t) := {τ(ξ)}‖(∑l

j=1 ξ
jXd−j)+‖=t for large real number t > 0,

where (X)+ is an operator composed of the positive part. The analysis on Steps 1 and 2 shows that the
set T (t) approaches to the boundary of the convex full of {(Tr ρXd−j)

l
j=1}ρ∈P when t approaches infinity.

Since the map τ is continuous, the image D(t) of {ξ ∈ Rl| ‖(
∑l

j=1 ξ
jXd−j)+‖ ≤ t} for the map τ is

a compact subset whose boundary is close to the boundary of the convex full of {(Tr ρXd−j)
l
j=1}ρ∈P .

Therefore, ∪t>0D(t) equals the convex full of {(Tr ρXd−j)
l
j=1}ρ∈P .

Proof of Lemma 14: Lemma 14 can be shown in the same way as Lemma 11 by replacing the role of
Lemma 12 by Lemma 15.

IV. EM-ALGORITHM

A. Basic description for algorithm
In this section, we address a minimization problem for a pair of a k-dimensional mixture subfamilyM

and an l-dimensional exponential subfamily E although the paper [2] discussed a similar problem setting
based on Bregman divergence. Here, we employ notations uik+j , aj , etc, for a k-dimensional mixture
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subfamily M and an l-dimensional exponential subfamily E that are introduced in Subsections II-B and
II-C. We assume the following condition;

(B0) The Bregman divergence system (Θ, F,DF ) satisfies Conditions (E4) and (M4).
Hence, the minimums minθ′∈E D

F (θ‖θ′) and minθ∈MDF (θ‖θ′) exist. We consider the following mini-
mization problem;

Cinf(M, E) := inf
θ∈M

DF (θ‖Γ
(e),F
E (θ)) = inf

θ∈M
min
θ′∈E

DF (θ‖θ′). (89)

The first task is to clarify whether the minimum exists in (89). If the minimum exists, our second task
is to find the minimization point

θ∗(M, E) := argmin
θ∈M

DF (θ‖Γ
(e),F
E (θ)). (90)

When we define θ∗(M, E) := Γ
(e),F
E (θ∗(M, E)), we have the opposite relation θ∗(M, E) = Γ

(m),F
M (θ∗(M, E))

because θ∗(M, E) achieves the maximum. Hence, we have the relation Mθ∗→E = Eθ∗→M. If there is no
risk of confusion, θ∗(M, E) and θ∗(M, E) are simplified to θ∗ and θ∗, respectively. If the minimum does
not exit, our second task is to find a sequence of elements {θ∗n(M, E)} in M to achieve the infimum
(89).

*
θ

E

M

*
θ

( )t
θ

( 1)t

θ
+

( 1)t
θ

+
→E

M
( )t

θ →M
E

*
θ →E

M

( 1)t
θ

+

*θ →M
E

=

Fig. 2. Algorithms 1 and 2: This figure shows the topological relation among θ∗, θ∗, θ(t+1), θ(t+1), and θ(t), which is used in the application
of Phythagorean theorem (Proposition 1). Mθ∗→E = Eθ∗→M and Mθ(t+1)→E are the mixture subfamilies to project θ(ε1) and θ(t+1) to
the exponential subfamily E , respectively. Eθ(t)→M is the exponential subfamily to project θ(t) to the mixture subfamily M.

Although the above minimization problem is very common in machine learning and statistics, many
kinds of minimization problems in information theory can be written in the above form as explained in
Section I. The above minimization asks to minimize the divergence between two points in the mixture and
exponential subfamilies E and M. Algorithm 1 shows an algorithm to calculate the element θ∗(M, E) to
achieve the minimum. This algorithm is called the em algorithm, and is illustrated in Fig. 2. By describe
the m-step in a concrete form, Algorithm 1 is rewritten as Algorithm 2, which follows from (A3) of
Lemma 5.

When the mixture family M has to many parameters, the optimization in m-step takes a long time. In
this case, m-step can be replaced by another optimization problem with d−k parameters. This replacement
is useful when k > d− k.
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Algorithm 1 em-algorithm
Assume that M is characterized by (40). Choose the initial value θ(1) ∈ E ;
repeat

m-step: Calculate θ(t+1) := Γ
(m),F
M (θ(t)). That is, θ(t+1) is given as argmin

θ∈M
DF (θ‖θ(t)), i.e., the

unique element in M to realize the minimum of the smooth convex function θ 7→ DF (θ‖θ(t)).
e-step: Calculate θ(t+1) := Γ

(e),F
E (θ(t+1)). That is, θ(t+1) is given as argmin

θ′∈E
DF (θ(t+1)‖θ′), i.e., the

unique element in E to realize the minimum of the smooth convex function θ′ 7→ DF (θ(t+1)‖θ′).
until convergence.

Algorithm 2 em-algorithm
Assume that M is characterized by (40). Choose the initial value θ(1) ∈ E ;
repeat

m-step: Calculate θ(t+1) := Γ
(m),F
M (θ(t)). That is, θ(t+1) is given as θ(t) +

∑d
j=k+1 τ

j
ouj , where

(τ k+1
o , . . . , τ do ) is the unique element to satisfy

∂

∂τ j̄
F
(
θ(t) +

l∑
j=1

τ juj

)∣∣∣
τ j=τ jo

= aj̄ (91)

for j̄ = k + 1, . . . , d. The above choice is equivalent to the following;

(τ k+1
o , . . . , τ do ) := argmin

τ̄k+1,...,τ̄d
F
(
θ(t) +

l∑
j=1

τ̄ juj

)
−

d∑
j=k+1

τ̄jaj. (92)

e-step: Calculate θ(t+1) := Γ
(e),F
E (θ̂(t+1)). That is, θ(t+1) is given as argmin

θ′∈E
DF (θ(t+1)‖θ′), i.e., the

unique element in E to realize the minimum of the smooth convex function θ′ 7→ DF (θ(t+1)‖θ′).
until convergence.

The em-algorithm repetitively applies the function Γ
(m),F
M ◦Γ

(e),F
E |M for an element θ ∈ M. Since

the application of Γ
(m),F
M ◦Γ

(e),F
E |M monotonically decreases the minimum Bregman divergence from the

exponential family E , when we apply the updating rule θ(t+1) := Γ
(m),F
M ◦Γ

(e),F
E |M(θ(t)), it is expected

that the outcome θ(t) of the repetitive application converges to θ∗(M, E). However, it is not guaranteed
that the converged point gives the global minimum in general [1], [2], [3]. To get a global minimum by
this algorithm, we introduce the following condition for an exponential subfamily E .

(B1) The relation

DF (θ′‖θ) ≥ DF (Γ
(e),F
E (θ′)‖Γ

(e),F
E (θ)) (93)

holds for any θ, θ′ ∈ Θ.
Also, as its weak version, we consider the following condition.

(B1M) The relation

DF (θ′‖θ) ≥ DF (Γ
(e),F
E (θ′)‖Γ

(e),F
E (θ)) (94)

holds for any θ, θ′ ∈M.
Then, we have the following theorem.
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Theorem 2: Assume Conditions (B0), (B1M), and supθ∈E D
F (θ‖θ(1)) <∞ for a pair of a k-dimensional

mixture subfamily M and an l-dimensional exponential subfamily E . Then, in Algorithms 1 and 2, the
quantity DF (θ(t)‖Γ

(e),F
E (θ(t))) converges to the minimum Cinf(M, E) with the speed

DF (θ(t)‖Γ
(e),F
E (θ(t)))− Cinf(M, E) = o(

1

t
). (95)

Also, we have another type evaluation

DF (θ(t)‖Γ
(e),F
E (θ(t)))− Cinf(M, E) ≤

supθ∈MDF (θ‖θ(1))

t− 1
. (96)

Further, when t− 1 ≥ supθ∈MDF (θ‖θ(1))

ε
, the parameter θ(t) satisfies

DF (θ(t)‖Γ
(e),F
E (θ(t)))− Cinf(M, E) ≤ ε. (97)

In particular, when the minimum in (89) exists, i.e., θ∗(M, E) exists, the supremum supθ∈E D
F (θ‖θ(1))

in the above evaluation is replaced by DF (θ∗(M, E)‖θ(1)).
The proof of Theorem 2 is given in Appendix C.

To improve the above evaluation, we introduce a strength version of Condition (B1) as a condition for
M, E , and θ′ ∈ E .

(B1+) The minimizer θ∗ = θ∗(M, E) exists. There exists a constant β(θ′) < 1 to satisfy the follow-
ing condition. When an element θ ∈ Im Γ

(m),F
M |E ⊂ M satisfies the condition DF (θ∗‖θ) ≤

DF (θ∗‖θ′), the relation

β(θ′)DF (θ∗‖θ) ≥ DF (θ∗‖Γ
(e),F
E (θ)) (98)

holds.
Then, we have the following theorem.

Theorem 3: Assume that Conditions (B0) and (B1+) hold for a pair of a k-dimensional mixture subfamily
M, an l-dimensional exponential subfamily E , and θ′ = θ(1) ∈ E . Then, in Algorithms 1 and 2, the quantity
DF (θ(t)‖Γ

(e),F
E (θ(t))) converges to the minimum Cinf(M, E) with the speed

DF (θ(t)‖Γ
(e),F
E (θ(t)))− Cinf(M, E) = β(θ(1))

t−2DF (θ∗‖θ(1)). (99)

Further, when t− 2 ≥ logDF (θ∗‖θ(1))−log ε

− log β(θ(1))
, the parameter θ(t) satisfies

DF (θ(t)‖Γ
(e),F
E (θ(t)))− Cinf(M, E) ≤ ε. (100)

The proof of Theorem 3 is given in Appendix D.
In fact, it is not so easy to find θ(1) to satisfy Condition (B1+). However, when we apply Algorithm

2, θ(t) becomes close to θ∗ with sufficiently large t. When θ(t) ∈ E belongs to the neighborhood of θ∗,
Condition (B1+) holds by substituting θ(t) into θ(1) so that Theorem 3 can be applied with sufficiently t.
That is, once θ(t) ∈ E belongs to the neighborhood of θ∗, we have an exponential convergence.

Further, it is not easy to implement e- and m- projections perfectly, in general. Hence, we need an
alternative algorithm instead of Algorithms 1 and 2. Now, we consider the case when only e-step can be
perfectly implemented and m-step is approximately done with ε error. Examples of such a case will be
discussed later sections. Algorithm 1 is modified as follows.

Then, we have the following theorem.
Theorem 4: Assume Conditions (B0), (B1), and the existence of the minimizer θ∗ = θ∗(M, E) in (90)

for a pair of a k-dimensional mixture subfamily M and an l-dimensional exponential subfamily E . In
addition, we define the set E0 := {θ ∈ E|DF (θ∗‖θ) ≤ DF (θ∗‖θ(1))} ⊂ E .
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Algorithm 3 em-algorithm with ε approximated m-step in the mixture subfamily M
Assume that M is characterized by (40). Choose the initial value θ(1) ∈ E ;
repeat

m-step: Calculate θ(t+1). That is, we choose an element θ(t+1) ∈M such that

DF (θ(t+1)‖θ(t)) ≤ min
(
DF (θ(t)‖θ(t)),min

θ∈M
DF (θ‖θ(t)) + ε

)
, (101)

where DF (θ(1)‖θ(1)) is defined as ∞.
e-step: Calculate θ(t+1) := Γ

(e),F
E (θ̂(t+1)). That is, θ(t+1) is given as argmin

θ′∈E
DF (θ(t+1)‖θ′), i.e., the

unique element in E to realize the minimum of the smooth convex function θ′ 7→ DF (θ(t+1)‖θ′).
until convergence.

Then, in Algorithm 3, the quantity DF (θ(t)‖Γ
(e),F
E (θ(t))) converges to the minimum Cinf(M, E) with

the speed

DF (θ(t+1)‖Γ
(e),F
E (θ(t+1)))− Cinf(M, E)

≤
DF (θ∗‖θ(1))

t
+ 2γ

√
DF (θ∗‖θ(1))ε+ (γ + 1)ε. (102)

where γ := γ(E0|E). Further, when t ≥ 2DF (θ∗,1‖θ(1))

ε′
+ 1 and ε ≤ ε′2

4(3γ+1)2DF (θ∗‖θ(1))
, the parameter θ(t)

satisfies

DF (θ(t)‖Γ
(e),F
E (θ(t)))− Cinf(M, E) ≤ ε′. (103)

The proof of Theorem 4 is given in Appendix E.

Algorithm 4 em-algorithm with ε approximated m-step in the exponential subfamily
Assume that M is characterized by (40). We choose two parameters ε1 < ε2. Choose the initial value
θ(1) ∈ E ;
repeat

m-step: We choose θ(t+1) ∈M and θ̄(t+1) = θ(t) +
∑d

j=k+1 τ
j
ouj such that

F
(
θ(t) +

d∑
j=k+1

τ jouj

)
−

d∑
j=k+1

τ joaj

≤ min
τ̄k+1,...,τ̄d

F
(
θ(t) +

d∑
j=k+1

τ̄ juj

)
−

d∑
j=k+1

τ̄ jaj + ε1. (104)

and

D(θ(t+1)‖θ̄(t+1)) ≤ ε2. (105)

e-step: Calculate θ(t+1) := Γ
(e),F
E (θ̄(t+1)).

until t = t1 − 1.
final step: We output the final estimate θ(t1)

f := θ(t2) ∈ M by using t2 := argmin
t=2,...,t1

DF (θ(t)‖θ(t−1)) −

DF (θ(t)‖θ̄(t)).

Since m-step has two conditions, Algorithm 4 seems complicated. This step can be realized as follows.
The condition (104) simply shows the error for the minimization of the convex function F

(
θ(t) +
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∑d
j=k+1 τ̄

juj

)
−
∑d

j=k+1 τ̄
jaj . The condition (105) is related to the choice of θ(t+1) ∈ M. As one

possible choice, we choose θ(t+1) as follows. Next, we choose the element κj′ by solving the equations

ui
′

j′

(
ηi′(θ̄

(t+1)) +
d∑
i=1

Ji′,i(θ̄
(t+1))

d∑
j=k+1

uijκ
j
)

= aj′ (106)

for j′ = k+1, . . . , d. Then, we choose the element θ(t+1) by ηj(θ(t+1)) = ηj(θ̄
(t+1))+

∑d
i=1

∑d
j′=k+1 Jj,i(θ̄

(t+1))uij′κ
j′

for j = 1, . . . , d. If θ(t+1) does not satisfy (105), we retake θ̄(t+1) such that the value F
(
θ(t)+

∑d
j=k+1 τ

j
ouj

)
−∑d

j=k+1 τ
j
oaj is smaller than the previous one.

In this way, the m-step of Algorithm 3 requires the approximate calculation of the minimum minθ∈MDF (θ‖θ(t)),
which can be done as the convex minimization with respect to the mixture parameter inM. However, this
minimization needs to handle d− k parameters. If k < d− k, the alternative minimization given in (92)
has a smaller number of parameters. As an approximate version of Algorithm 2, we have Algorithm 4.
Indeed, if we can calculate the derivative of the convex function F

(
θ(t) +

∑d
j=k+1 τ̄

juj

)
−
∑d

j=k+1 τ̄
jaj ,

we can employ algorithms explained in Appendix A.
In Algorithm 4, we use the relation

Γ
(e),F
E (θ(t+1)) = Γ

(e),F
E (θ̄(t+1)). (107)

In fact, the point Γ
(e),F
E (θ(t+1)) is characterized by the intersection between the exponential subfamily

E and the mixture subfamily whose mixture parameters η1, . . . , ηl are fixed to η1(θ(t+1)), . . . , ηl(θ
(t+1)).

Hence, the above relation (107) holds.
Then, we have the following theorem.
Theorem 5: Assume Conditions (B0), (B1), and the existence of the minimizer θ∗ := θ∗(M, E) in (90)

for a pair of a k-dimensional mixture subfamily M and an l-dimensional exponential subfamily E . Then,
in Algorithm 4, we have

DF (θ(t+1),∗‖θ̄(t+1)) ≤ ε1 (108)

for t = 1, . . . , t1−1, where θ(t+1),∗ is defined as θ(t)+
∑d

j=k+1 τ
j
∗uj by using (τ k+1

∗ , . . . , τ d∗ ) := argmin
τ̄k+1,...,τ̄d

F
(
θ(t)+∑d

j=k+1 τ̄
juj

)
−
∑d

j=k+1 τ̄
jaj . Also, the quantity DF (θ

(t1)
f ‖Γ

(e),F
E (θ

(t1)
f )) converges to the minimum Cinf(M, E)

with the speed

DF (θ
(t1)
f ‖Γ

(e),F
E (θ

(t1)
f ))− Cinf(M, E)

≤ 1

t1 − 1
DF (θ∗‖θ(1)) + ε1 + ε2. (109)

The proof of Theorem 5 is given in Appendix F.
Considering Taylor expansion, we have

aj′ =
∑
j′

ui
′

j′ηi′(θ(t2−1) +
d∑

j=k+1

τ j∗uj)

∼=ui
′

j′

(
ηi′(θ̄

(t2)) +
d∑
i=1

Ji′,i(θ̄
(t2))

d∑
j=k+1

uij(τ
j
∗ − τ̄ j)

)
(110)

for j′ = k + 1, . . . , d. Hence,

κj ∼= (τ j∗ − τ̄ j) (111)
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Using (29), we have

DF (θ(t2),∗‖θ̄(t2)) ∼=
1

2

d∑
j=1

d∑
i=1

d∑
j′=k+1

d∑
i′=k+1

Jj,i(θ̄
(t2))uij′(τ

j′

∗ − τ̄ j
′
)uji′(τ

i′

∗ − τ̄ i
′
). (112)

Using (29), we have

DF (θ(t2)‖θ̄(t2)) = DF ∗(η(θ̄(t2))‖η(θ(t2)))

∼=
1

2

d∑
j=1

d∑
j̄=1

(J(θ̄(t2))−1)j,j̄
d∑
ī=1

d∑
j̄′=k+1

Jj̄ ,̄i(θ̄
(t2))uij̄′κ

j̄′
d∑
i=1

d∑
j′=k+1

Jj,i(θ̄
(t2))uij′κ

j′

=
1

2

d∑
j=1

d∑
i=1

d∑
j′=k+1

d∑
i′=k+1

Jj,i(θ̄
(t2))uij′κ

j′uji′κ
i′ . (113)

Combining (108), (113), and (112), we have

DF (θ(t2)‖θ̄(t2)) / ε1 (114)

Therefore, (109) is rewritten as

DF (θ
(t1)
f ‖Γ

(e),F
E (θ

(t1)
f ))− Cinf(M, E)

/
1

t1 − 1
DF (θ∗‖θ(1)) + 2ε1. (115)

Hence, when t1 − 1 ≥ 3DF (θ∗,1‖θ(1))

ε
, and ε1 ≤ ε

3
, the parameter θ(t) satisfies

DF (θ
(t1)
f ‖Γ

(e),F
E (θ

(t1)
f ))− Cinf(M, E) / ε. (116)

B. Closed convex mixture family
In this section, we address a similar minimization problem for a pair of a k-dimensional closed convex

mixture subfamily M and an l-dimensional exponential subfamily E under the following condition (B0).
That is, we discuss a closed convex mixture subfamily instead of a mixture subfamilyM while we consider
an exponential subfamily E . Under this condition, we employ the same e-projection Γ

(e),F
E defined in

Lemma 7 as in the previous subsection, but, we use the m-projection Γ
(m),F
M defined in Lemma 8. Hence,

we consider Algorithm 5 instead of Algorithm 2.

Algorithm 5 em-algorithm with closed convex mixture family
Assume that M is characterized by the mixture parameter η. Choose the initial value θ(1) ∈ E ;
repeat

m-step: Calculate η(t+1). That is, η(t+1) is given as argmin
η∈ΞM

DF (φ
(m)
M (η)‖θ(t)), i.e., the unique

element in M to realize the minimum of the smooth convex function η 7→ DF (φ
(m)
M (η)‖θ(t)).

e-step: Calculate θ(t+1) := Γ
(e),F
E (φ

(m)
M (η(t+1))). That is, θ(t+1) is given as

argmin
θ′∈E

DF (φ
(m)
M (η(t+1))‖θ′), i.e., the unique element in E to realize the minimum of the

smooth convex function θ′ 7→ DF (φ
(m)
M (η(t+1))‖θ′).

until convergence.

When the boundary ∂M is composed of a finite number of closed mixture families, due to Lemmas 5
and 10, Algorithm 5 can be simplified to Algorithm 6 because Lemma 10 guarantees that Γ

(m),F
M (θ(t)) is
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Algorithm 6 em-algorithm with closed convex mixture family whose boundary is composed of finite
number of closed mixture families

Assume the following conditions; A set of closed convex mixture subfamilies {Mλ}λ∈Λ covers the
boundary ∂M of a closed convex mixture family M with subsets Λλ ⊂ Λ and λ ∈ Λ∗ := Λ ∪ {0}.
Each closed convex mixture subfamily Mλ is generated by the constraint by

∑d
i=1 u

i
j,λ∂iF (θ) = aj,λ

for j = kλ + 1, . . . , d for λ ∈ Λ∗. Choose the initial value θ(1) ∈ E ;
repeat

m-step: Calculate θ(t+1) := Γ
(m),F
M (θ(t)) in the following way. For λ ∈ Λ∗, we calculate θ(t+1),λ is

given as θ(t) +
∑d

j=kλ+1 τ
j,λuj , where (τ kλ+1,λ, . . . , τ d,λ) is the unique element to satisfy

∂

∂τ j̄,λ
F
(
θ(t) +

d∑
j=kλ+1

τ j,λuj

)
= aj̄,λ (117)

for j̄ = kλ + 1, . . . , d. We set θ(t+1) as θ(t+1),λ0 , where

λ0 := argmin
λ∈Λ∗

{DF (θ(t+1),λ‖θ(t))|θ(t+1),λ ∈M}. (118)

e-step: Calculate θ(t+1) := Γ
(e),F
E (θ̂(t+1)). That is, θ(t+1) is given as argmin

θ′∈E
DF (θ(t+1)‖θ′), i.e., the

unique element in E to realize the minimum of the smooth convex function θ′ 7→ DF (θ(t+1)‖θ′).
until convergence.

given as Γ
(m),F

M̂λ0

(θ(t)), where we denote the extended mixture subfamily of Mλ by M̂λ for λ ∈ Λ∗, and
λ0 is given in (118).

Then, in the same way as Theorem 2, we have the following theorem.
Theorem 6: Assume Conditions (B0), (B1), and supθ∈E D

F (θ‖θ(1)) <∞ for a pair of a k-dimensional
closed convex mixture subfamily M and an l-dimensional exponential subfamily E . Then, Algorithms 5
and 6 have the same conclusion as Theorem 2.

Also, in the same way as Theorem 3, we have the following theorem;
Theorem 7: Assume that Conditions (B0) and (B1+) hold for a pair of a k-dimensional close convex

mixture subfamily M, an l-dimensional exponential subfamily E , and θ′ = θ(1) ∈ E . Then, the quantity
DF (θ(t)‖Γ

(e),F
E (θ(t))) converges to the minimum Cinf(M, E) with the speed

DF (θ(t)‖Γ
(e),F
E (θ(t)))− Cinf(M, E) = β(θ(1))

t−2DF (θ∗‖θ(1)). (119)

Further, when t− 2 ≥ logDF (θ∗‖θ(1))−log ε

log β(θ(1))
, the parameter θ(t) satisfies

DF (θ(t)‖Γ
(e),F
E (θ(t)))− Cinf(M, E) ≤ ε. (120)

Theorems 6 and 7 are shown in Appendix G.
When we need to care the error in the m-step, as an error version of Algorithm 5, we have Algorithm

7 in the same way as Algorithm 3.
Then, we have the following theorem.
Theorem 8: Assume Conditions (B0), (B1), and the existence of the minimizer θ∗ := θ∗(M, E) in (90)

for a pair of a k-dimensional mixture subfamily M and an l-dimensional exponential subfamily E . In
addition, we define the set E0 := {θ ∈ E|DF (θ∗‖θ) ≤ DF (θ∗‖θ(1))} ⊂ E and θ∗ := Γ

(e),F
E (θ∗). Then,

Algorithm 7 has the same conclusion as Theorem 4.
Theorem 8 is shown in Appendix G.
When k < d− k, we need an alternative minimization for the m-step for Algorithm 7 in a way similar

to Algorithm 4. However, although we can consider a modification of Algorithm 6 in a way similar to
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Algorithm 7 em-algorithm with ε approximated m-step
Assume that M is characterized by the mixture parameter η. Choose the initial value θ(1) ∈ E ;
repeat

m-step: Calculate η(t+1). That is, we choose η(t+1) ∈M such that

DF (θ(t+1)‖θ(t)) ≤ min
(
DF (θ(t)‖θ(t)),min

θ∈M
DF (θ‖θ(t)) + ε

)
, (121)

where DF (θ(1)‖θ(1)) is defined as ∞.
e-step: Calculate θ(t+1) := Γ

(e),F
E (φ

(m)
M (η(t+1))). That is, θ(t+1) is given as

argmin
θ′∈E

DF (φ
(m)
M (η(t+1))‖θ′), i.e., the unique element in E to realize the minimum of the

smooth convex function θ′ 7→ DF (φ
(m)
M (η(t+1))‖θ′).

until convergence.

Algorithm 4, it is not so easy to evaluate the error or the modified algorithm. Hence, to take into account
the error in the m-step, we propose another method to modify Algorithm 6 as Algorithm 8.

Algorithm 8 em-algorithm with ε approximated m-step in the exponential subfamily
We assume the same conditions as Algorithm 6. We denote the extended mixture subfamily of Mλ by
M̂λ for λ ∈ Λ∗.
1st-step: For λ ∈ Λ∗, we apply Algorithm 4 to the pair of the exponential subfamily E and the mixture
subfamily M̂λ. As the result with t iteration, we denote the number t2 in this application of Algorithm
4 by t2(λ). Then, we denote θ(t2(λ)), θ̄(t2(λ)), and θ(t2(λ)−1) in this application by θ(t2(λ)),λ, θ̄(t2(λ)),λ, and
θ(t2(λ)−1),λ, respectively
2nd-step: We output the final estimate θ(t)

f := θ(t2(λ0)),λ0 ∈M, where

λ0 := argmin
λ∈Λ∗

{
DF
(
θ(t2(λ)),λ

∥∥∥θ(t2(λ)−1),λ

)∣∣∣θ(t2(λ)),λ ∈Mλ

}
. (122)

To evaluate the error of Algorithm 8, we prepare the following lemma. Therefore, using Theorem 5,
we obtain the following theorem for the error evaluation of Algorithm 8.

Theorem 9: Assume the same assumption as Algorithm 8 and Conditions (B0) and (B1) for E . Also,
we assume the existence of the minimizer θ∗ := θ∗(Mλ, E) in (90) for λ ∈ Λ∗. Then, in Algorithm 8, the
quantity DF (θ

(t)
f ‖Γ

(e),F
E (θ

(t)
f )) converges to the minimum Cinf(M, E) with the speed

DF (θ
(t)
f ‖Γ

(e),F
E (θ

(t)
f ))− Cinf(M, E)

≤(D(0) + 1) max
λ∈Λ∗

( 1

t1 − 1
DF (θ∗(Mλ, E)‖θ(1)) + ε1 +DF (θ(t2(λ)),λ‖θ̄(t2(λ)),λ)

)
. (123)

Notice that D(λ) is defined before Lemma 9.
The proof of Theorem 9 is given in Appendix H.

V. CLASSICAL RATE DISTORTION

A. Classical rate distortion without side information
Let X := {1, . . . , n1} and Y := {1, . . . , n2} be finite sets. We call a map W : X → PY a channel from
X to Y . We denote the set of the above maps by PY|X . We use the notation Wx(y) := W (y|x). For q ∈ PX
and r ∈ PY , W ·q ∈ PY , W×q ∈ PX×Y , and q×r ∈ PX×Y are defined by (W ·q)(y) :=

∑
x∈X W (y|x)q(x),

(W × q)(x, y) := W (y|x)q(x), and (q × r)(x, y) := q(x)r(y) respectively.
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Given a distortion measure d(x, y) on X ×Y and a distribution PX on X , we define the following sets;

Pd,PX ,DY|X :=
{
W ∈ PY|X

∣∣∣ ∑
x∈X ,y∈Y

d(x, y)W × PX(x, y) = D
}

(124)

Pd,PX ,D,≤Y|X :=
{
W ∈ PY|X

∣∣∣ ∑
x∈X ,y∈Y

d(x, y)W × PX(x, y) ≤ D
}
. (125)

We define d̄(x, y) as

d̄(x, y) := d(x, y)− d(x, n2), d̄(x, n2) := 0 (126)

for x ∈ X and y = 1, . . . , n2 − 1. Then, the condition∑
x∈X ,y∈Y

d(x, y)W × PX(x, y) ≤ D (127)

is equivalent to ∑
x∈X ,y∈Y

d̄(x, y)W × PX(x, y) ≤ D −
∑
x∈X

PX(x)d(x, n2). (128)

Hence, for simplicity, we assume that d(x, n2) = 0 in the following. Also, we define the vector d =

(dj)
n1(n2−1)
j=1 as d(x−1)(n2+1)+y := d(i, j) for x ∈ X and y = 1, . . . , n2 − 1.

The standard rate distortion function is given as

min
W∈Pd,PX,D,≤Y|X

I(X;Y )W×PX = min
W∈Pd,PX,D,≤Y|X

D(W × PX‖(W · PX)× PX)

= min
W∈Pd,PX,D,≤Y|X

min
q∈PY

D(W × PX‖q × PX). (129)

In the following, we use the notation W∗ := argmin
W∈Pd,PX,D,≤Y|X

I(X;Y )W×PX .

When there exists a distribution QY on Y such that∑
x,y

PX(x)QY (y)d(x, y) ≤ D, (130)

the above minimum (129) is zero. The existence of QY to satisfy the condition (130) is equivalent to

min
y
dY (y) ≤ D, (131)

where dY (y) :=
∑

x∈X PX(x)d(x, y).
Then, we consider the Bregman divergence system (Rn1(n2−1), µ̄, Dµ̄) defined in Subsection III-B, which

coincides with the set of distributions W × PX . The set of distributions q × PX forms an exponential
subfamily E , and the subset Pd,PX ,DY|X × PX forms a mixture subfamily M.

Then, we have the following theorem.
Lemma 16: When (131) holds, min

W∈Pd,PX,D,≤Y|X
I(X;Y )W×PX = 0. Otherwise,

min
W∈Pd,PX,D,≤Y|X

I(X;Y )W×PX = min
W∈Pd,PX,DY|X

I(X;Y )W×PX

= min
W∈Pd,PX,DY|X

min
q∈PY

D(W × PX‖q × PX). (132)

Proof: The first statement has been already shown. We show the second statement by contradiction.
Assume that (131) nor the first equation in (132) does not hold. We define QY,1 as QY,1×PX = Γ

(e),µ̄
E (W∗×

PX).



M. HAYASHI: BREGMAN DIVERGENCE BASED EM ALGORITHM 28

Since QY,1×PX does not belong to Pd,PX ,D,≤Y|X , applying (56) in Lemma 8 to the closed convex mixture
subfamily Pd,PX ,D,≤Y|X , we find that Γ

(m),µ̄
M (QY,1 × PX) = Γ

(m),µ̄
M ◦Γ

(e),µ̄
E (W∗ × PX) belongs to Pd,PX ,DY|X . We

choose W1 such that (W1 × PX) = Γ
(m),µ̄
M (QY,1 × PX). Hence, we have

I(X;Y )W∗×PX =D(W∗ × PX‖QY,1 × PX)

≥D(W1 × PX‖QY,1 × PX) ≥ I(X;Y )W1×PX , (133)

which contradicts W∗ = argmin
W∈Pd,PX,D,≤Y|X

I(X;Y )W×PX .

Due to Lemma 16, when (131) does not hold, it is sufficient to address the minimization (132). In the
following, we address the minimization problem (132), which is a special case of the minimization (89)
with the formulation given in Subsection IV-A. The mixture family M has n1(n2 − 1)− 1 parameters.

Since the total dimension is n1(n2− 1), we employ Algorithm 2 instead of Algorithm 1. Since Lemma
13 guarantees Condition (B0) for this problem, Algorithm 2 works and is rewritten as Algorithm 9.

Algorithm 9 em-algorithm for rate distortion

Choose the initial distribution P (1)
Y on Y . Then, we define the initial joint distribution PXY,(1) as P (1)

Y ×
PX ;
repeat

m-step: Calculate P (t+1)
XY as P (t+1)

XY (x, y) := PX(x)P
(t)
Y (y)eτ̄d(x,y)

(∑
y′ P

(t)
Y (y′)eτ̄d(x,y′)

)−1

, where τ̄
is the unique element τ to satisfy

∂

∂τ

∑
x

PX(x) log
(∑

y

P
(t)
Y (y)eτd(x,y)

)
= D (134)

This choice can be written in the way as (92).
e-step: Calculate P (t+1)

Y (y) as
∑

x∈X P
(t+1)
XY (x, y).

until convergence.

To check Condition (B1), we set θ and θ′ be elements of Rn1n2−1 corresponding to W × PX and
W ′ × PX in the sense of the Bregman divergence system (Rn1(n2−1), µ̄, Dµ̄) defined in Subsection III-B.
Then, the relation

Dµ̄(Γ
(e),µ̄
E (θ′)‖Γ

(e),µ̄
E (θ)) = D((W ′ · PX)× PX‖(W ′ · PX)× PX)

=D(W ′ · PX‖W ′ · PX) ≤ D(W ′ × PX‖W ′ × PX) = Dµ̄(θ′‖θ) (135)

guarantees condition (B1). When the initial value θ(1) is chosen as the case that W has full support,
supθ∈E D

µ̄(θ‖θ(1)) has a finite value. Hence, Theorem 6 guarantees the convergence to the global minimum.
Now, we set θ(1) to be the product of PX and the uniform distribution on Y . Then, we have

Dµ̄(θ∗‖θ(1)) ≤ sup
θ∈M

Dµ̄(θ‖θ(1)) = log n2. (136)

Hence, the inequality (96) is rewritten as

I(X;Y )
P

(t)
XY
− min

W∈Pd,PX,D,≤Y|X

I(X;Y )W×PX ≤
log n2

t− 1
(137)

In particular, when t ≥ logn2

ε
+ 1, the above value is bounded by ε.

The original problem (132) is written as a concave optimization with respect to n1(n2 − 1) mixture
parameters because the mutual information is concave with respect to the conditional distribution. Although
our protocol contains a convex optimization in m-step, the convex optimization in m-step has only one
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variable. Therefore, our method is considered to convert a complicated concave optimization with a larger
size to iterative applications of a convex optimization with one variable.

Next, we consider the case when we cannot exactly calculate the unique element τ̄ to satisfy (134). Alter-
natively, we need to use ε approximation for the solution. We employ Algorithm 4, which requires to solve
the minimization of the one-variable smooth convex function F̂ [PY ](τ) :=

∑
x PX(x) log

(∑
y PY (y)eτ(D−d(x,y)))

)
.

That is, it is needed to find the minimizer τ∗[PY ] := argmin
τ

F̂ [PY ](τ).

To consider this minimization, we focus on the one-parameter exponential subfamily PX,Y |τ [PY ](x, y) :=

PX(x) PY (y)eτ(D−d(x,y))∑
y′ PY (y′)eτ(D−d(x,y′)) . The first and second derivatives are calculated as

d

dτ
F̂ [PY ](τ) =EPX,Y |τ [PY ][D − d(X, Y )] (138)

d2

dτ 2
F̂ [PY ](τ) =EPX,Y |τ [PY ][(D − d(X, Y ))2]− EPX,Y |τ [PY ][D − d(X, Y )]2. (139)

Defining ζ+ := maxx,y |D − d(x, y)|2, we have

d2

dτ 2
F̂ [PY ](τ) ≤ ζ+. (140)

The condition (140) guarantees that

F̂ [PY ](τ) ≤ F̂ [PY ](0) +
d

dτ
F̂ [PY ](0)τ +

1

2
ζ+τ

2 (141)

for τ > 0. To solve minτ F̂ [PY ](τ), we employ the bisection method explained in Appendix A-A. Since
(131) holds, the relation EPX×PY [d(X, Y )] > D, i.e., d

dτ
F̂ [PY ](0) < 0 holds for any distribution PY .

Hence, d
dτ
F̂ [PY ](−

d
dτ
F̂ [PY ](0)

ζ−
) ≥ 0.

For the application of the bisection method, we consider the following condition for the convex function
F̂ [PY ](τ);

d2

dτ 2
F̂ [PY ](τ) ≥ ζ− for τ ∈ [0, τ∗[PY ]]. (142)

Since the condition (142) guarantees 0 ≤ τ∗[PY ] ≤ −
d
dτ
F̂ [PY ](0)

ζ−
, we can apply the bisection method,

Algorithm 15 with a = 0 and b = −
d
dτ
F̂ [PY ](0)

ζ−
. Under the condition (142), we have

F̂ [PY ](0)− F̂ [PY ](τ∗[PY ]) ≤ − d

dτ
F̂ [PY ](0)τ∗[PY ] ≤ 1

ζ−

( d
dτ
F̂ [PY ](0)

)2
. (143)

We choose the estimate τk[PY ] as bk of Algorithm 15, which requires k iterations. Then, we have
d
dτ
F̂ [PY ](τk[PY ]) > 0. The relation (202) guarantees that

F̂ [PY ](τk[PY ])− F̂ [PY ](τ∗[PY ])

≤ 1

2k−1
max

(
F̂ [PY ](0)− F̂ [PY ](τ∗[PY ]), F̂ [PY ](−

d
dτ
F̂ [PY ](0)

ζ−
)− F̂ [PY ](τ∗[PY ])

)
≤ 1

2k−1
max

( 1

ζ−

( d
dτ
F̂ [PY ](0)

)2

,

1

ζ−

( d
dτ
F̂ [PY ](0)

)2

+
d

dτ
F̂ [PY ](0) ·

− d
dτ
F̂ [PY ](0)

ζ−
+

1

2
ζ+ ·

(− d
dτ
F̂ [PY ](0)

ζ−

)2)
=

1

2k

( d
dτ
F̂ [PY ](0)

)2 ζ+

ζ2
−
. (144)
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The relation (204) guarantees that

0 ≤ τk[PY ]− τ∗[PY ] ≤ − 1

2k

d
dτ
F̂ [PY ](0)

ζ−
. (145)

Hence,

0 ≤ d

dτ
F̂ [PY ](τk[PY ]) ≤ −ζ+

2k

d
dτ
F̂ [PY ](0)

ζ−
. (146)

We can choose κ[PY ] ≥ 0 as 0 = (1−κ[PY ])EPX,Y |τk[PY ][PY ][D− d(X, Y )] +κ[PY ]EPX×PY [D− d(X, Y )].
Then,

0 ≤ κ[PY ] =
d
dτ
F̂ [PY ](τk[PY ])

d
dτ
F̂ [PY ](τk[PY ])− d

dτ
F̂ [PY ](0)

≤
d
dτ
F̂ [PY ](τk[PY ])

− d
dτ
F̂ [PY ](0)

≤ ζ+

2kζ−
. (147)

Then, we choose PXY |k[PY ] as follows.

PXY |k[PY ] := (1− κ[PY ])PX,Y |τk[PY ][PY ] + κ[PY ]PX × PY . (148)

Since

D(PY × PX‖PX,Y |τk[PY ][PY ]) = F̂ [PY ](τk[PY ])− F̂ [PY ](0)− d

dτ
F̂ [PY ](0)τk[PY ]

≤− d

dτ
F̂ [PY ](0)τk[PY ] ≤

(
d
dτ
F̂ [PY ](0)

)2

ζ−
, (149)

we have

D(PXY |k[PY ]‖PX,Y |τk[PY ][PY ])

≤(1− κ[PY ])D(PX,Y |τk[PY ][PY ]‖PX,Y |τk[PY ][PY ]) + κ[PY ]D(PX × PY ‖PX,Y |τk[PY ][PY ])

=κ[PY ]D(PX × PY ‖PX,Y |τk[PY ][PY ])

≤κ[PY ]

(
d
dτ
F̂ [PY ](0)

)2

ζ−
≤ ζ+

2kζ2
−

( d
dτ
F̂ [PY ](0)

)2
. (150)

Given ε′ > 0, we choose k as

k[PY , ε
′] := log2

(( d
dτ
F̂ [PY ](0)

)2 ζ+

ζ2
−

)
− log2 ε

′ ≤ log2

(ζ2
+

ζ2
−

)
− log2 ε

′. (151)

The relations (144) and (150) guarantee

F̂ [PY ](τk[PY ])− F̂ [PY ](τ∗[PY ]) ≤ε′ (152)
D(PXY |k[PY ]‖PX,Y |τk[PY ][PY ]) ≤ε′. (153)

Combining the above discussion for the bisection method and Algorithm 4, we obtain Algorithm 10.
Since ε′ is chosen as ε/2 in Algorithm 10, and the conditions (B0) and (B1) hold, Theorem 5 guarantees

the precision (109) with ε1 = ε2 = ε/3. For its calculation complexity, we have the following lemma .
Lemma 17: Assume the conditoins ζ− = O(1), (142), and ζ+ = O(n2

2). We choose P (1)
Y as the uniform

distribution on Y . To guarantee

I(X;Y )
P

(t)
XY
− min

W∈Pd,PX,D,≤Y|X

I(X;Y )W×PX ≤ ε, (154)

Algorithm 10 needs calculation complexity O(n1n2 logn2

ε
(log2 n2 + log2 ε)).
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Algorithm 10 em-algorithm for rate distortion

Choose the initial distribution P (1)
Y on Y . Then, we define the initial joint distribution PXY,(1) as P (1)

Y ×
PX ;
repeat

m-step: Calculate P
(t+1)
XY and P̄

(t+1)
XY as follows. We apply Algorithm 15 with a := 0 and b :=

−
d
dτ
F̂ [P

(t)
Y ](0)

ζ
with k = k[P

(t)
Y , ε

3
] iterations; We choose P̄

(t+1)
XY and P̄

(t+1)
XY as PX,Y |τk[PY ][PY ] and

PXY |k[PY ], respectively.
e-step: Calculate P (t+1)

Y (y) as
∑

x∈X P̄
(t+1)
XY (x, y).

until t = t1 − 1.
final step: We output the final estimate P (t1)

XY,f := P
(t2)
XY ∈ M by using t2 := argmin

t=2,...,t1

D(P
(t)
XY ‖PX ×

P
(t−1)
Y )−D(P

(t)
XY ‖P̄

(t)
XY ).

Proof: Each iteration in the bisection method needs calculation complexity O(n1n2). Each application
of the bisection method has O(log2 n2 + log2 ε) iterations. Hence, one application of the bisection method
has O(n1n2(log2 n2 + log2 ε)) calculation complexity.

Since D(θ∗‖θ1) = D(W∗ × PX‖PY × PX) ≤ log n2, the number t1 = 3 logn2

ε
+ 1 satisfies

1

t1 − 1
D(θ∗‖θ1) ≤ ε

3
. (155)

Since ε1 and ε2 are chosen as ε1 = ε2 = ε/3 in Algorithm 10, the RHS of (109) is upper bounded
by ε, which implies (154). In this case, the calculation complexity of Algorithm 10 is (3 logn2

ε
+ 1) ·

O(n1n2(log2 n2 + log2 ε)) = O(n1n2 logn2

ε
(log2 n2 + log2 ε)).

Next, we compare Algorithm 15 and a simple application of accelerated proximal gradient method
whose performance is evaluated as (208). In this application of accelerated proximal gradient method, we
treat I(X;Y )W×PX as a convex function for the mixture parameter, which is composed of (n2 − 1)n1

parameters. In this case, L in (207) is ζ
1
2
+ and ‖x0−x∗‖2 in (208) is O((n2−1)n1). Hence, to achieve the

same precision as (154), the number of iteration is O(n
1
2
2 n

1
2
1 ζ

1
4
+

1
ε
). Each iteration has calculation complexity

O(n1n2). Hence, in total, this method has calculation complexity O(1
ε
n

3
2
2 n

3
2
1 ζ

1
4
+) = O(1

ε
n2

2n
3
2
1 ). This is larger

than the calculation complexity given in Lemma 17.
Remark 1: Next, we see what Blahut algorithm [5] solved in the relation to (129). For this aim, we

focus on the function f(D) := min
W∈Pd,PX,DY|X

I(X;Y )W×PX Instead of f(D), using Lagrange multiplier
τ0, Blahut [5] focused on the minimization

min
W∈PY|X

τ0D + I(X;Y )W×PX − τ0

∑
x∈X ,y∈Y

d(x, y)(W × PX)(x, y). (156)

When d
dD
f(D) = τ0, the minimum (156) equals f(D). However, finding such τ0 is not so easy. The

algorithm to find such τ0 was not given in [5]. The algorithm by [5] to solves (156) is the same as
Algorithm 9 with replacing τ̄ by τ0. That is, his algorithm does not consider the condition (134). Attaching
the condition (134), our algorithm guarantees the following constraint condition (157) in each iteration.∑

x∈X ,y∈Y

d(x, y)PY |X × PX(x, y) = D. (157)

The algorithm by [5] has calculation complexity O(n1n2 logn2

ε
). While our algorithm has the additional

factor − log ε, this factor can be considered as the additional cost to satisfy (157).



M. HAYASHI: BREGMAN DIVERGENCE BASED EM ALGORITHM 32

B. Numerical analysis for classical rate distortion without side information
To see how our algorithm works, we make numerical analysis for the case when n1 = n2 = 3 and

D = 1.5. We choose the cost function d as d(1, 1) d(1, 2) d(1, 3)
d(2, 1) d(2, 2) d(2, 3)
d(3, 1) d(3, 2) d(3, 3)

 =

 0 1 2
1 2 0
3 0 1

 , (158)

and the distribution PX as

PX(1) = 0.5, PX(2) = 0.3, PX(3) = 0.2. (159)

We set the initial marginal distribution P (1)
Y to be the uniform distribution. By applying Algorithm 9, the

mutual information I(X;Y )
P

(t)
XY

converges to

I(X;Y )P ∗XY := 0.100039, (160)

and the conditional distribution P (t)
Y |X converges to

P ∗Y |X =

 0.0855598 0.188594 0.430983
0.22431 0.494433 0.139579
0.69013 0.316974 0.429438

 . (161)

In particular, the marginal distribution P (t)
Y converges to

P ∗Y =

 0.185555
0.288401
0.526045

 . (162)

Also, the parameter τ̄ appearing in Algorithm 9 converges to 0.522814. Fig. 4 shows the behavior of the
parameter τ̄ . In addition, Fig. 3 shows that the error I(X;Y )

P
(t)
X,Y
− I(X;Y )P ∗X,Y is much smaller than

the upper bound given in (137), which suggests the existence of a much better evaluation than (137).

C. Another approach to classical rate distortion without side information
To see the exponential decay, we discuss another approach to classical rate distortion without side

information. To apply Theorem 3, we need to satisfy Condition (B1+) holds. For this aim, we apply the
model given in Section III-A to the case when X is X × Y . Then, we consider the Bregman divergence
system (Rn1n2−1, µ,Dµ) given in Section III-A. The set of distributions q×PX forms an exponential family
E and the set of distributions W ×PX forms a mixture familyM. Hence, the minimization problem (129)
is a special case of the minimization (89) with the formulation given in Subsection IV-B.

Since the mixture family M has n1(n2 − 1) − 1 parameters, and the total dimension is n1n2 − 1,
Algorithm 2 is rewritten as Algorithm 11. In this case Conditions (B0) and (B1) hold in the same way
as Subsection V-A.

The m-step in Algorithm 11 has optimization with n1-variable convex function
log
(∑

x′,y′ PXY,(t)(x
′, y′)eτx′+τ0d(x′,y′)

)
. However, this case can satisfy Condition (B1+), which leads the

exponential decay as follows. That is, the above evaluation for the convergence can be improved by
using Theorem 3, i.e., the same precision (100) can be realized with t− 2 ≥ (log logn)−log ε

log β
. In fact, when

an element θ′ close to θ∗ satisfies Condition (B1+), the iterated point θ(t) converges to the true value
exponentially after the iterated point θ(t) is close to the true value.

In the following, we discuss a necessary condition for (B1+) with an element θ′ close to θ∗. When two
elements are close to each other, the divergence can be approximated by the Fisher information. Hence,
we consider the Fisher information version of (B1+). For this aim, we consider the exponential family
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Fig. 3. Behavior of the error I(X;Y )
P

(t)
X,Y

− I(X;Y )P∗
X,Y

of the minimum mutual information. Red points show the value of the

I(X;Y )
P

(t)
X,Y

− I(X;Y )P∗
X,Y

depending on the number of iteration t. The blue points show its upper bound given in (137).
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Fig. 4. The behavior of the parameter τ depending on the number of iteration t. The green points show the parameter τ in algorithm (9).
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Algorithm 11 em-algorithm for rate distortion

Choose the initial distribution P (1)
Y on Y . Then, we define the initial joint distribution PXY,(1) as P (1)

Y ×
PX ;
repeat

m-step: Calculate P (t+1)
XY as P (t+1)

XY (x, y) := PXY,(t)(x, y)eτ̄x+τ̄0d(x,y))
(∑

x′,y′ PXY,(t)(x
′, y′)eτ̄x′+τ̄0d(x′,y′)

)−1

,
where (τ̄x)x∈X and τ̄0 are the unique elements (τx)x∈X and τ0 to satisfy

∂

∂τx
log
(∑
x′,y′

PXY,(t)(x
′, y′)eτx′+τ0d(x′,y′)

)
= PX(x) (163)

∂

∂τ0

log
(∑
x′,y′

PXY,(t)(x
′, y′)eτx′+τ0d(x′,y′)

)
= D (164)

for x ∈ X \ {n1} and τn1 = τ̄n1 is fixed to 0. This choice can be written in the way as (92).
e-step: Calculate PXY,(t+1) as P (t+1)

Y × PX where P (t+1)
Y (y) :=

∑
x∈X P

(t+1)
XY (x, y).

until convergence.

{Pθ,Y } defined in Subsection III-A with d = n2− 1 by replacing X by Y . Let Jθ,1 and Jθ,2 be the Fisher
information matrices of {Γ(m),µ

M (Pθ,Y × PX)} and {Γ(e),µ
E ◦Γ

(m),µ
M (Pθ,Y × PX)}. We choose θ∗ ∈ Rn1n2−1

corresponding to Γ
(m),µ
M (Pθ∗0 ,Y × PX) in the sense of the Bregman divergence system (Rn1n2−1, µ,Dµ)

given in Section III-A. The local version of Condition (B1+) is written as

βJθ∗0 ,1 ≥ Jθ∗0 ,2 (165)

with a constant 0 < β < 1. In this case, when the iterated point θ(t) is close to the true minimum point,
the difference DF (θ(t)‖Γ

(e),F
E (θ(t)))−Cinf(M, E) approaches to zero exponential rate log β−1. Therefore,

our algorithm has such an exponential convergence at the neighborhood when the inequality

Jθ∗0 ,1 > Jθ∗0 ,2 (166)

holds, i.e., Jθ∗0 ,1 − Jθ∗0 ,2 is strictly positive-semidefinite.
Then, we have the following theorem.
Theorem 10: The matrix Jθ,1 − Jθ,2 is a strictly positive semi-definite matrix when the linear space

spanned by the distributions {Wθ,x}x∈X has dimension at least n2 as a function space on Y .
Therefore, when the condition for Theorem 10 holds, Algorithm 11 has such an exponential convergence

at the neighborhood.

Proof of Theorem 10: To show Theorem 10, we define the parametric family {PXY,θ,τ}θ,τ with θ =
(θi)n2−1

i=1 and τ = (τ i)n1−1
i=0 as

PXY,θ,τ (x, y) :=
Pθ,Y (y)PX(x)e

∑n1−1
i=0 gi(x,y)τi∑

x′y′ Pθ,Y (y′)PX(x′)e
∑n1−1
i=0 gi(x′,y′)τi

, (167)

where gi(x, y) := δi,x and g0(x, y) := d(x, y). We define the Fisher information matrix Jθ,τ,3 of the
parametric family {PXY,θ,τ}θ,τ . We define the channel Wθ from X to Y as Wθ×PX = Γ

(m),µ
M (Pθ,Y ×PX).

Also, we choose τ(θ) as Wθ×PX = PXY,θ,τ(θ). In the n1 +n2−1 dimensional vector space, we denote the
projections to the first n2 − 1-dimensional space corresponding to θ and the latter n1-dimensional space
corresponding to τ by P1 and P2, respectively.

Then, Theorem 10 follows from the following two lemmas.
Lemma 18: The relation KerP2Jθ,τ(θ),3P1 = {0} holds when the linear space spanned by the distributions
{Wθ,x}x∈X has dimension at least n2 as a function space on Y .
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Lemma 19: The matrix Jθ,1−Jθ,2 is a strictly positive semi-definite matrix if and only if KerP2Jθ,τ(θ),3P1 =
{0}.
Lemmas 18 and 19 is shown in Appendix I.

Remark 2: Now, we can explain why we cannot show Condition (B1+) for Algorithm 9 in the above
method. If we apply the same discussion to Algorithm 9 the projection P2 is the projection to the one-
dimensional space. Hence, the condition KerP2Jθ,τ(θ),3P1 = {0} does not hold unless n2 = 2.

D. Classical rate distortion with multiple distortion constraint without side information
Recently, the paper [13, Theorem 1] considers a rate-distortion problem motivated by the consideration

of semantic information. That is, it considers two sets X̂ and Ŝ in addition to the set X , and focus on
two distortion measures ds(x, ŝ) and da(x, x̂) for x ∈ X , x̂ ∈ X̂ and ŝ ∈ Ŝ. Then, we define the following
set for channels W : X → X̂ × Ŝ as

Pda,ds,PX ,Da,Ds,≤
X̂×Ŝ|X

:=

{
W

∣∣∣∣∣ ∑
x∈X ,ŝ∈Ŝ,x̂∈X̂

di(x, x̂)W × PX(x, x̂, ŝ) ≤ Di for i = a, s

}
. (168)

The paper [13, Theorem 1] addresses the following minimization problem;

min
W∈Pda,ds,PX,Da,Ds,≤

X̂×Ŝ|X

I(X; X̂, Ŝ)W×PX . (169)

For its generalization, we consider a set Y and m distortion measures di(x, y) for x ∈ X , y ∈ Y and
i = 1, . . . ,m. We define the following set for channels W : X → Y as

P(di)
m
i=1,PX ,(Di)

m
i=1,≤

Y|X

:=

{
W

∣∣∣∣∣ ∑
x∈X ,y∈Y

di(x, y)W × PX(x, y) ≤ Di for i = 1, . . . ,m

}
. (170)

Then, the following minimization problem can be regarded a generalization of (169) by considering the
case with Y = (X̂, Ŝ) and m = 2;

min
W∈P

(di)
m
i=1

,PX,(Di)
m
i=1

,≤
Y|X

I(X;Y )W×PX

= min
W∈P

(di)
m
i=1

,PX,(Di)
m
i=1

,≤
Y|X

min
q∈PY

D(W × PX‖q × PX). (171)

The minimization problem (171) can be considered as rate distortion with multiple distortion functions.
Now, we focus on the Bregman divergence system (Rn1(n2−1), µ̄, Dµ̄) defined in Subsection III-B, which
coincides with the set of distributions W × PX . The set of distributions q × PX forms an exponential
subfamily E , and the subset P(di)

m
i=1,PX ,(Di)

m
i=1,≤

Y|X ×PX forms a closed convex mixture subfamilyM. Then,
the minimization problem (171) is a special case of the minimization (89) with the formulation given in
Subsection IV-B

Since Lemma 11 guarantees Condition (B0) for this problem, Algorithm 6 works for the minimization
problem (171) and is rewritten as Algorithm 12. Condition (B1) can be checked in the same way as
(135). In addition, similar to Algorithm 4 in Subsection V-A, when we cannot solve the equations (172),
Algorithm 8 works in this model.
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Algorithm 12 em-algorithm for rate distortion with multiple distortion functions

Choose the initial distribution P (1)
Y on Y . Then, we define the initial joint distribution PXY,(1) as P (1)

Y ×
PX ;
repeat

m-step: For any subset A ⊂ {1, . . . ,m}, Calculate P
(t+1),A
XY as P

(t+1),A
XY (x, y) :=

PX(x)PY |X,(t)(y|x)e
∑
i∈A τ̄A,idi(x,y))

(∑
y′ PY |X,(t)(y

′|x)e
∑
i∈A τ̄A,idi(x,y

′)
)−1

, where (τ̄A,i)i∈A are the
unique elements (τA,i)i∈A to satisfy

∂

∂τA,i

∑
x

PX(x) log
(∑

y′

PY |X,(t)(y
′|x)eτx′+

∑
i′∈A τA,i′di′ (x,y

′)
)

= Di (172)

for i ∈ A. Choose P (t+1)
XY to be P (t+1),A0

XY , where

A0 := argmin
A⊂{1,...,m}

{
D(P

(t+1),A
XY ‖PXY,(t+1))

∣∣∣∣ ∑x,y P
(t+1),A
XY (x, y)di(x, y) ≤ Di

for i = 1, . . . ,m

}
. (173)

e-step: Calculate PXY,(t+1) as P (t+1)
Y × PX where P (t+1)

Y (y) :=
∑

x∈X P
(t+1)
XY (x, y).

until convergence.

E. Classical rate distortion with side information
Next, we consider the rate distortion problem when the side information state S ∈ S = {1, . . . , n3} is

available to both the encoder and the decoder [12]. Hence, our channel W is given as a map X ×S → PY .
Given a distortion measure d(x, y) on X ×Y and a distribution PXS on X × S, we define the following
sets;

Pd,P,XSDY|X×S :=
{
W
∣∣∣ ∑
x∈X ,s∈S,y∈Y

d(x, y)W × PXS(x, s, y) = D
}

(174)

Pd,PXS ,D,≤Y|X×S :=
{
W
∣∣∣ ∑
x∈X ,s∈S,y∈Y

d(x, y)W × PXS(x, s, y) ≤ D
}
. (175)

We define the set PX−S−Y of distributions on X × S × Y to satisfy the Markov chain X − S − Y with
the marginal distribution PXS . The rate distortion function is given as

min
W∈Pd,P,D,≤Y|X×S

I(Y ;X|S)W×PXS

= min
W∈Pd,P,D,≤Y|X×S

∑
s∈S

PS(s)D(W × PX|S=s‖(W · PX|S=s)× PX|S=s)

= min
W∈Pd,P,D,≤Y|X×S

min
Q∈PX−S−Y

D(W × PXS‖Q), (176)

where PX|S=s is the conditional distribution on X with the condition S = s of PXS . PS is the marginal
distribution on S of PXS . Now, we apply the discussion in Subsection III-B to the joint system (X×S)×Y .
Then, we consider the Bregman divergence system (Rn1n3(n2−1), µ̄, Dµ̄), which coincides with the set of
distributions W×PXS . The set PX−S−Y forms an exponential subfamily E , and the subset Pd,P,XSDY|X×S ×PXS
forms a mixture subfamily M. Similar to (131), there exists a distribution PXSY ∈ E such that∑

x,y,s

PXY S(x, y, s)d(x, y) ≤ D (177)
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if and only if ∑
s

PS(s) min
y
dY S(y, s) ≤ D (178)

where dY S(y, s) :=
∑

x PX|S=sd(x, y). Therefore, in the same way as Lemma 16, we can show the
following lemma.

Lemma 20: When (178) holds, min
W∈Pd,PXS,D,≤Y|X×S

I(X;Y |S)W×PXS = 0. Otherwise,

min
W∈Pd,PXS,D,≤Y|X×S

I(X;Y |S)W×PXS = min
W∈Pd,PXS,DY|X×S

I(X;Y |S)W×PXS

= min
W∈Pd,P,DY|X×S

min
Q∈PX−S−Y

D(W × PXS‖Q). (179)

Due to Lemma 20, when (178) does not hold, it is sufficient to address the minimization (179). In the
following, we discuss the minimization problem (179), which is a special case of the minimization (89)
with the formulation given in Subsection IV-A. The mixture family M has n1n3(n2− 1)− 1 parameters.
Since the total dimension is n1n3(n2− 1), we employ Algorithm 2 instead of Algorithm 1. Since Lemma
13 guarantees Condition (B0) for this problem, Algorithm 2 works and is rewritten as Algorithm 13.

Algorithm 13 em-algorithm for rate distortion with side information

Choose the initial conditional distribution P
(1)
Y |S on Y with the condition on S. Then, we define the

initial joint distribution PXY S,(1) as P (1)
Y |S × PXS;

repeat
m-step: Calculate P (t+1)

XY S as P (t+1)
XY S (x, y, s) := PXS(x, s)PY |S,(t)(y|s)eτ̄d(x,y))

(∑
y′ PY |S,(t)(y

′|s)eτ̄d(x,y′))
)−1

,
where τ̄ is the unique element τ to satisfy

∂

∂τ

∑
x,s

PXS(x, s) log
(∑

y′

PY |S,(t)(y
′|s)eτd(x,y′))

)
= D. (180)

e-step: Calculate PXY S,(t+1) as P
(t+1)
Y |S × PXS where P

(t+1)
Y |S (y|s) :=∑

x∈X P
(t+1)
XY S (x, y, s)/

∑
x′∈X ,y′∈Y P

(t+1)
XY S (x′, y′, s).

until convergence.

To check condition (B1), we set θ and θ′ be elements of Rn1n3(n2−1) corresponding to W × PXS and
W ′×PXS . We define the distribution QW on X×S×Y as QW (x, s, y) =

∑
x′W (y|x′, s)PX|S=s(x

′)PS(s).
In the same way, we define QW ′ on X × S × Y by replacing W by W ′. Then, the relations

Dµ̄(Γ
(e),µ̄
E (θ′)‖Γ

(e),µ̄
E (θ)) = D(QW ′‖QW )

=
∑
s∈S

PS(s)D((W ′
Y |X,S=s · PX|S=s)× PX|S=s‖(WY |X,S=s · PX|S=s)× PX|S=s)

=
∑
s∈S

PS(s)D(W ′
Y |X,S=s · PX|S=s‖WY |X,S=s · PX|S=s)

≤
∑
s∈S

PS(s)D(W ′
Y |X,S=s × PX|S=s‖WY |X,S=s × PX|S=s)

=D(W ′ × PXS‖W × PXS) = Dµ̄(θ′‖θ) (181)

guarantee Condition (B1). When the initial value θ(1) is chosen as the case that W has full support,
supθ∈E D

µ̄(θ‖θ(1)) has a finite value. Hence, Theorem 2 guarantees the convergence to the global minimum



M. HAYASHI: BREGMAN DIVERGENCE BASED EM ALGORITHM 38

as follows. When we choose the initial value θ(1) in the same way as the above case, the precision (97)
holds with t ≥ logn2

ε
+ 1. In addition, in the same way as Subsection IV-A, we can apply Algorithm 4.

Next, we consider the case when we cannot exactly calculate the unique element τ̄ to satisfy (180). Alter-
natively, we need to use Algorithm 4, which can be rewritten in the same way as Algorithm 10. That is, it is
sufficient to replace X by XS and define F̂ (t)(τ) by

∑
x,s PXS(x, s) log

(∑
y′ PY |S,(t)(y

′|s)eτ(D−d(x,y′)))
)

in Algorithm 10. When we fix the precision level ε > 0 and choose ε1 := ε
3
, this algorithm achieves

the precision condition (116) with 2 logn2

ε
+ 1 rounds due to (136). The calculation complexity can be

evaluated in the same way as Algorithm 10.

VI. QUANTUM ENTANGLEMENT-ASSISTED RATE DISTORTION

Consider two quantum systems HA and HB with dimension dA and dB. Let HR be the reference
system of HA with the dimension dA. We focus on a density matrix ρ on HA and a Hermitian matrix
∆ on HR ⊗HB, which expresses our distortion measure. Using a purification Ψ of ρ on HA ⊗HR, we
define the following sets of TP-CP maps with the input system HA and the output system HB.

P∆,ρ,D
A→B :=

{
N
∣∣∣Tr ∆(idR ⊗N )(|Ψ〉〈Ψ|) = D

}
(182)

P∆,ρ,D,≤
A→B :=

{
N
∣∣∣Tr ∆(idR ⊗N )(|Ψ〉〈Ψ|) ≤ D

}
. (183)

The entanglement-assisted rate distortion function is given as [14, Theorem 2]

min
N∈P∆,ρ,D,≤

A→B

D((idR ⊗N )(|Ψ〉〈Ψ|)‖(idR ⊗N )(|Ψ〉〈Ψ|)R ⊗ (idR ⊗N )(|Ψ〉〈Ψ|)B)

= min
N∈P∆,ρ,D,≤

A→B

min
σB∈S(HB)

D((idR ⊗N )(|Ψ〉〈Ψ|)‖ρR ⊗ σB). (184)

where ρR := TrA |Ψ〉〈Ψ|. Essentially, the above minimization handles the state (idR⊗N )(|Ψ〉〈Ψ|). Hence,
we introduce the following sets of states on HR ⊗HB;

S∆,Ψ,D
RB :=

{
ρ̄RB

∣∣∣Tr ∆ρ̄RB = D, ρ̄R = ρR

}
(185)

S∆,Ψ,D,≤
RB :=

{
ρ̄RB

∣∣∣Tr ∆ρ̄RB ≤ D, ρ̄R = ρR

}
. (186)

The minimization (184) is rewritten as

min
ρ̄RB∈S∆,Ψ,D,≤

RB

min
σB∈S(HB)

D(ρ̄RB‖ρR ⊗ σB). (187)

Now, we apply the discussion in Section III-C to the case when H is HR ⊗ HB. Then, we consider
the Bregman divergence system (Rd2

Ad
2
B−1, µ,Dµ). The set of states ρR⊗ σB forms an exponential family

E , and the set S∆,Ψ,D
RB forms a mixture family M.

Similar to (131), there exists a state σB such that

Tr ∆ρR ⊗ σB ≤ D (188)

if and only if

λmin(∆B) ≤ D (189)

where ∆B := TrR ∆ρR ⊗ IB and λmin(∆B) expresses the minimum eigenvalue of ∆B. Therefore, in the
same way as Lemma 16, we can show the following lemma.

Lemma 21: When (189) holds, the minimum (187) equals zero. Otherwise,

min
ρ̄RB∈S∆,Ψ,D,≤

RB

min
σB∈S(HB)

D(ρ̄RB‖ρR ⊗ σB) (190)

= min
ρ̄RB∈S∆,Ψ,D

RB

min
σB∈S(HB)

D(ρ̄RB‖ρR ⊗ σB). (191)
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Due to Lemma 21, when (189) does not hold, it is sufficient to address the minimization (191). In the fol-
lowing, we discuss the minimization problem (191). To address it as a special case of the minimization (89)
with the formulation given in Subsection IV-A, we choose d2

B−1 linearly independent Hermitian matrices
X1,R, . . . , Xd2

B−1 on HR, and set H to be HR ⊗HB. Then, we consider the Bregman divergence system
(Rn1(n2−1), µ,Dµ) defined in Subsection III-C, where Xd2

R(d2
B−1) = ∆ and Xd2

R(d2
B−1)+1, . . . , Xd2

Ad
2
B−1 are

θiX1,R ⊗ IB, . . . , θiXd2
R−1,R ⊗ IB. Then, S∆,Ψ,D

RB is given as

M := {θ ∈ Rd2
Rd

2
B−1|Conditions (193) and (194) hold.}, (192)

where

Tr ρθXd2
R(d2

B−1) = D, (193)

Tr ρθXd2
R(d2

B−1)+j = Tr ρRXd2
R(d2

B−1)+j, (194)

for j = 1, . . . , d2
B − 1. Also, we choose the set E as

E := {θ ∈ Rd2
Rd

2
B−1|ρθ = ρR ⊗ σB}. (195)

The mixture family M has d2
A(d2

B − 1) parameters. Since the total dimension is d2
Ad

2
B − 1, we employ

Algorithm 2 instead of Algorithm 1. Since Lemma 14 guarantees Condition (B0) for this problem,
Algorithm 2 works and is rewritten as Algorithm 14.

Since

D(ρθ‖ρR ⊗ σB) =D(ρθ‖ρR ⊗ TrR ρθ) +D(TrR ρθ‖σB)

=D(ρθ‖ρR ⊗ TrR ρθ) +D(ρR ⊗ TrR ρθ‖ρR ⊗ σB), (196)

we find that

ρ
Γ

(e),µ
E (θ)

= ρR ⊗ TrR ρθ. (197)

Therefore, we have

Dµ(Γ
(e),µ
E (θ′)‖Γ

(e),µ
E (θ)) =D(ρR ⊗ TrR ρθ′‖ρR ⊗ TrR ρθ) = D(TrR ρθ′‖TrR ρθ)

≤D(ρθ′‖ρθ) = Dµ(θ′‖θ), (198)

which guarantees Condition (B1). Hence, Theorem 6 guarantees the convergence to the global minimum.
Since Conditions (B0) and (B1) hold, Theorem 5 guarantees that Algorithm 4 works when m-step has
an error. Since m-step of this case has d2

R parameters, it requires more calculation amount as a convex
optimization than Algorithms 10 and 13. However, it still has small smaller calculation amount of the
case when the original problem (187) is treated as a convex optimization because (187) has d2

R(d2
B − 1)

variables.

VII. CONCLUSION

We have formulated em algorithm in the general framework of Bregman divergence, and have shown
the convergence to the true value and the convergence speed under conditions that match information-
theoretical problem settings. Then, we have applied them to the rate distortion problem and its variants
including the quantum settings.

Our em algorithm in the general framework contains two types of minimization processes in e- and
m- steps. Due to the above property of our em algorithm, our em algorithm has merit only when the
optimizations in the e- and m- step are written in a form without optimization, or are converted to simpler
optimizations with a smaller number of parameters than the original minimization problem. Fortunately,
rate distortion problem and its variants satisfy this condition. In particular, classical rate distortion problem
with and without side information need only a one-parameter convex optimization in each iteration.
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Algorithm 14 em-algorithm for Quantum entanglement-assisted rate distortion

Choose the state ρ(1)
B , and set ρRB,(1) to be ρR ⊗ ρ(1)

B .
repeat

m-step: Calculate ρ(t+1)
RB as ρ(t+1)

RB := exp(log ρRB,(t) +
∑

i θ
iXi ⊗ IB + θ0∆)/Tr exp(log ρRB,(t) +∑

i θ
iXi,R ⊗ IB + θ0∆), where (θi) are the unique elements to satisfy

∂

∂θi
log Tr exp(log ρRB,(t) +

∑
i

θiXi ⊗ IB + θ0∆) = TrXiρR (199)

∂

∂θ0
log Tr exp(log ρRB,(t) +

∑
i

θiXi ⊗ IB + θ0∆) = D (200)

for i = 1, . . . , d2
R − 1.

e-step: Calculate ρRB,(t+1) as ρR ⊗ ρ(t+1)
B , where ρ(t+1)

B := TrR ρ
(t+1)
RB .

until convergence.

To remove the constraint (157), existing papers for the rate distortion problem and its variants changed
the objective function by using a Lagrange multiplier, and no preceding paper showed how to choose the
Lagrange multiplier [5], [9], [10], [11]. Indeed, the number of studies for this topic is limited while more
papers studied channel capacities [5], [6], [10], [11], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26]. Since the set of conditional distributions with the linear constraint (157) forms a mixture family,
our method can be directly applied to the original objective function with the linear constraint (157). To
handle the linear constraint, each iteration has a convex optimization only with one variable in m-step.
Due to this convex optimization, our algorithm has a larger calculation complexity than the algorithm by
[5]. However, this difference is not so large, and can be considered as the additional cost to exactly solve
the original minimization (129) instead of the modified minimization (156).

Further, since our result is written in a form of Bregman divergence, we can expect large applicability.
That is, our results have the advantage with respect to its generality over existing methods. To emphasize
our advantage, we need to apply our method to other problems because the problems discussed in this
paper are limited. Hence, it is an interesting open problem to apply our em algorithm to other optimization
problems. For example, it can be expected to extend our result to the case with memory [10], [27], [28]
because various information quantities in the Markovian setting can be written in a form of Bregman
divergence [29], [30], [31], [32], [33], [34]. As another future problem, it is interesting to extend our
method to the optimization of the exponential decreasing rate in various settings, which requires the
optimization of Rényi mutual information by using Rényi version of Pythagorean theorem [35, Lemma 3
in Suppl. Mat.][36, Lemma 2.11].
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APPENDIX A
REVIEW OF CONVEX OPTIMIZATION

In this appendix, we review several existing algorithms for the minimization of a differentiable convex
function F defined on a closed convex set C. In the following, we use the notation x∗ := argmin

x∈C
F (x).
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A. Bisection method
First we consider the bisection method, which works with one-variable differentiable convex function

F defined on an interval [a, b] [16].

Algorithm 15 Bisection method
Set a0 := a and b0 := b;
repeat
k + 1th-step: Set xk := ak+bk

2
. If d

dx
F (xk) > 0, we set ak+1 := ak and bk+1 := xk. Otherwise,

we set ak+1 := xk and bk+1 := bk. This construction guarantees the conditions d
dx
F (ak+1) ≤ 0

d
dx
F (bk+1) ≥ 0.

until convergence.

To see the precision, we define the parameter V0 := maxx,y∈[a,b] |F (x)− F (y)|.
When we use the bisection method, i.e., Algorithm 15, we have

F (xk)− F (x∗) ≤
V0

2k
(201)

F (ak)− F (x∗), F (bk)− F (x∗) ≤
V0

2k−1
(202)

|xk − x∗| ≤
b− a
2k+1

(203)

x∗ − ak, bk − x∗ ≤
b− a

2k
. (204)

That is, to guarantee |F (xk)− F (x∗)| ≤ ε, the number of iteration k needs to satisfy k ≥ log2
V0

ε
.

B. Gradient method
Next, we consider the gradient method, which works for a differentiable d-variable convex with the

uniform Lipschitz condition. We consider a differentiable d-variable convex function F defined on a
convex set C ⊂ Rd, and assume the uniform Lipschitz condition with a constant L;

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖ (205)

for x, y ∈ C.

Algorithm 16 Gradient method
Set an initial value x0 ∈ C;
repeat
k + 1th-step: Set xk+1 as

xk+1 := xk −
1

L
∇F (xk). (206)

until convergence.

When we use the gradient method, i.e., Algorithm 16, we have [37, Chapter 10] [38], [39]

|F (xk)− F (x∗)| ≤
L

2k
‖x∗ − x0‖2. (207)

That is, to guarantee |F (xk)−F (x∗)| ≤ ε, the number of iteration k needs to satisfy k ≥ L‖x∗−x0‖2
2ε

. When
we employ accelerated proximal gradient methods, the evaluation (207) is improved as [38], [40], [39],
[41], [42], [43]

|F (xk)− F (x∗)| ≤
L

2(k + 2)2
‖x∗ − x0‖2. (208)
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APPENDIX B
PROOF OF THEOREM 1

In this proof, we simplify γ(Θ̂|Θ) to γ. We consider the mixture subfamily M := {θ ∈ Θ|∃λ ∈
R, η(θ) = (1−λ)η(θ1)+λη(θ2)}. Due to Condition (M4), we can define the m-projection Γ

(m),F
M (θ3) ∈M.

We choose λ such that Γ
(m),F
M (θ3) = (1 − λ)η(θ1) + λη(θ2) We consider three cases; (i) λ < 0. (ii)

0 ≤ λ ≤ 1. (iii) 1 < λ.
Case (i); Since the subset Θ̂ ⊂ Θ is a star subset for θ1 ∈ Θ̂, and θ2 ∈ Θ̂, we have θ(s) ∈ Θ̂ for

s ∈ [0, 1]. Hence, we have the matrix inequality

J(θ(s))−1 ≤ γJ(θ(1− s))−1. (209)

Thus, we have

DF (θ1‖θ2)
(a)
=

∫ 1

0

d∑
i=1

d∑
j=1

(η(θ2)− η(θ1))i(η(θ2)− η(θ1))j(J(θ(s))−1)i,jsds

(b)

≤γ
∫ 1

0

d∑
i=1

d∑
j=1

(η(θ2)− η(θ1))i(η(θ2)− η(θ1))j(J(θ(1− s))−1)i,jsds

(c)
=γDF (θ2‖θ1) (210)

where (a), (b), and (c) follow from (33), (209), and (33), respectively.
Also, we have

DF (θ2‖θ1) ≤ DF (θ2‖Γ
(m),F
M (θ3))

≤DF (θ2‖Γ
(m),F
M (θ3)) +DF (Γ

(m),F
M (θ3)‖θ3) = DF (θ2‖θ3). (211)

The combination of (210) and (211) yields (47).
Case (iii); We have

DF (θ1‖θ2) ≤ DF (θ1‖Γ
(m),F
M (θ3))

≤DF (θ1‖Γ
(m),F
M (θ3)) +DF (Γ

(m),F
M (θ3)‖θ3) = DF (θ1‖θ3). (212)

Case (ii); We use the quantity M :=
(

maxs∈[0,1]

∑d
i=1

∑d
j=1(η(θ2)−η(θ1))i(η(θ2)−η(θ1))j(J(θ(s))−1)i,j

)
.

Then, we have

DF (θ1‖θ3)

=DF (θ1‖Γ
(m),F
M (θ3)) +DF (Γ

(m),F
M (θ3)‖θ3)

≥DF (θ1‖Γ
(m),F
M (θ3)) = DF (θ1‖θ(λ))

=

∫ λ

0

d∑
i=1

d∑
j=1

(η(θ2)− η(θ1))i(η(θ2)− η(θ1))j(J(θ(s))−1)i,jsds

≥
(∫ λ

0

sds
)(

min
s∈[0,1]

d∑
i=1

d∑
j=1

(η(θ2)− η(θ1))i(η(θ2)− η(θ1))j(J(θ(s))−1)i,j
)

≥λ
2

2γ
M, (213)
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and

DF (θ2‖θ3)

=DF (θ2‖Γ
(m),F
M (θ3)) +DF (Γ

(m),F
M (θ3)‖θ3)

≥DF (θ2‖Γ
(m),F
M (θ3)) = DF (θ2‖θ(λ))

=(1− λ)2

∫ 1

0

d∑
i=1

d∑
j=1

(η(θ2)− η(θ1))i(η(θ2)− η(θ1))j(J(θ(1− s(1− λ)))−1)i,jsds

≥(1− λ)2

2

(
min
s∈[0,1]

d∑
i=1

d∑
j=1

(η(θ2)− η(θ1))i(η(θ2)− η(θ1))j(J(θ(s))−1)i,j
)

≥(1− λ)2

2γ
M. (214)

That is, we obtain

λ ≤
√

2γDF (θ1‖θ3)

M
, 1− λ ≤

√
2γDF (θ2‖θ3)

M
. (215)

Therefore, we have

DF (θ1‖θ2)
(a)
=

∫ 1

0

d∑
i=1

d∑
j=1

(η(θ2)− η(θ1))i(η(θ2)− η(θ1))j(J(θ(s))−1)i,jsds

(a)
=

∫ λ

0

d∑
i=1

d∑
j=1

(η(θ2)− η(θ1))i(η(θ2)− η(θ1))j(J(θ(s))−1)i,jsds

+

∫ 1

λ

d∑
i=1

d∑
j=1

(η(θ2)− η(θ1))i(η(θ2)− η(θ1))j(J(θ(s))−1)i,jsds

(b)

≤DF (θ1‖θ(λ)) +
(∫ 1

λ

sds
)
M

(c)

≤DF (θ1‖θ3) +
1− λ2

2
M

(c)
=DF (θ1‖θ3) + ((1− λ)2 + λ(1− λ))

M

2
(c)

≤DF (θ1‖θ3) +
2γ

M

(
DF (θ2‖θ3) +

√
DF (θ1‖θ3)DF (θ2‖θ3)

)M
2
, (216)

which implies (47).

APPENDIX C
PROOF OF THEOREM 2

Remember that θ(t) is Γ
(e),F
E (θ(t)), which implies that Γ

(m),F
M (θ(t)) = θ(t+1). For any ε1 > 0, we choose an

element θ(ε1) ofM such that DF (θ(ε1)‖Γ
(e),F
E (θ(ε1))) ≤ Cinf(M, E)+ε1. Also, let θ(ε1)∗ be Γ

(e),F
E (θ(ε1)).

As explained in Fig. 5, Phythagorean theorem (Proposition 1) guarantees that the divergence DF (θ(ε1)‖θ(t))
can be written in the following two ways (as two equations (a) and (b));

DF (θ(ε1)‖θ(t+1)) +DF (θ(t+1)‖θ(t))
(a)
= DF (θ(ε1)‖θ(t))

(b)
=DF (θ(ε1)‖θ(ε1)∗) +DF (θ(ε1)∗‖θ(t)). (217)
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Fig. 5. Algorithms 1 and 2: This figure shows the topological relation among θ(ε1)∗, θ(ε1), θ(t+1), θ(t+1), and θ(t), which is used in the
application of Phythagorean theorem (Proposition 1). Mθ(ε1)→E and Mθ(t+1)→E are the mixture subfamilies to project θ(ε1) and θ(t+1)

to the exponential subfamily E , respectively. Eθ(t)→M is the exponential subfamily to project θ(t) to the mixture subfamily M.

Hence,

DF (θ(t+1)‖θ(t))− Cinf(M, E)− ε1
≤DF (θ(t+1)‖θ(t))−DF (θ(ε1)‖θ(ε1)∗)
(a)
=DF (θ(ε1)∗‖θ(t))−DF (θ(ε1)‖θ(t+1))
(b)

≤DF (θ(ε1)∗‖θ(t))−DF (Γ
(e),F
E (θ(ε1))‖Γ

(e),F
E (θ(t+1)))

=DF (θ(ε1)∗‖θ(t))−DF (θ(ε1)∗‖θ(t+1)), (218)

where the steps (a) and (b) follows from (217) and Condition (B1M), respectively. Thus,
t∑
i=2

DF (θ(i)‖θ(i−1))− Cinf(M, E)− ε1

≤
t∑
i=2

DF (θ(ε1)∗‖θ(i−1))−DF (θ(ε1)∗‖θ(i))

=DF (θ(ε1)∗‖θ(1))−DF (θ(ε1)∗‖θ(t)) ≤ DF (θ(ε1)∗‖θ(1))

≤ sup
θ∈E

DF (θ‖θ(1)). (219)

Taking the limit ε1 → 0 in (219), we have
t∑
i=2

DF (θ(i)‖θ(i−1))− Cinf(M, E) ≤ sup
θ∈E

DF (θ‖θ(1)). (220)
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Since the relations

DF (θ(i+1)‖Γ
(e),F
E (θ(i+1))) ≤DF (θ(i+1)‖θ(i)) ≤ DF (θ(i)‖θ(i))

=DF (θ(i)‖Γ
(e),F
E (θ(i))) (221)

for i = 2, . . . , t, (220) implies

(t− 1)(DF (θ(t)‖θ(t−1))− Cinf(M, E)) ≤ sup
θ∈E

DF (θ‖θ(1)). (222)

Thus, we have

DF (θ(t)‖θ(t))− Cinf(M, E) ≤DF (θ(t)‖θ(t−1))− Cinf(M, E)

≤ 1

t− 1
sup
θ∈E

DF (θ‖θ(1)), (223)

which implies (96) and (97).
When the inequality

DF (θ(t)‖θ(t−1))− Cinf(M, E) ≥ DF (θ(t)‖θ(t))− Cinf(M, E) ≥ c(
1

t
) (224)

holds with a constant c > 0, the relation (220) implies

∞ =
∞∑
t=1

c(
1

t
) ≤ sup

θ∈E
DF (θ‖θ(1)), (225)

which yields the contradiction. Hence, we have

DF (θ(t)‖θ(t))− Cinf(M, E) = o(
1

t
). (226)

Combining (221), we obtain (95).
Indeed, when the minimum in (89) exists, i.e., θ∗(M, E) exists, the supremum supθ∈E D

F (θ‖θ(1)) in
the above evaluation is replaced by DF (θ∗(M, E)‖θ(1)) because θ(ε1) is replaced by θ∗(M, E).

APPENDIX D
PROOF OF THEOREM 3

We use the same notation as the proof of Theorem 2. We set β := β(θ(1)). The relations (218) is
rewritten as the folloiwing way for the case with ε1 = 0;

0 ≤DF (θ(t+1)‖θ(t))− Cinf(M, E)

≤DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1)) (227)

≤DF (θ∗‖θ(t))−DF (Γ
(e),F
E (θ∗)‖Γ

(e),F
E (θ(t+1)))

=DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1)). (228)

Thus, we have DF (θ∗‖θ(t+1))
(a)

≤ DF (θ∗‖θ(t))
(b)

≤ DF (θ∗‖θ(t−1))
(c)

≤ DF (θ∗‖θ(1)), where (a) and (b)
follow from (227) and (228), respectively, and (c) follows from multiple use of (227). Thus, Condition
(B1+) implies βDF (θ∗‖θ(t+1)) ≥ DF (θ∗‖Γ

(e),F
E (θ(t+1))) = DF (θ∗‖θ(t+1)). Combining (227), we have

βDF (θ∗‖θ(t)) ≥ DF (θ∗‖θ(t+1)). Thus, we have

DF (θ∗‖θ(t+1)) ≤ βtDF (θ∗‖θ(1)). (229)

Using (227), we have

DF (θ(t+1)‖θ(t+1))− Cinf(M, E)

≤DF (θ(t+1)‖θ(t))− Cinf(M, E)

≤DF (θ∗‖θ(t)) ≤ βt−1DF (θ∗‖θ(1)). (230)

Hence, we obtain (99).



M. HAYASHI: BREGMAN DIVERGENCE BASED EM ALGORITHM 46

APPENDIX E
PROOF OF THEOREM 4

Step 1: In this proof, we use the notations θ(t+1),∗ := Γ
(m),F
M (θ(t)) and θ(t+1),∗ := Γ

(e),F
E (θ(t+1),∗). From

the construction, DF (θ(t)‖θ(t)) is monotonically decreasing for t as

DF (θ(t+1)‖θ(t+1)) ≤ DF (θ(t+1)‖θ(t))
(a)

≤ DF (θ(t)‖θ(t)), (231)

where (a) follows from (101).
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Fig. 6. Algorithm 3: This figure shows the topological relation among θ∗, θ∗, θ(t+1), θ(t+1), θ(t+1),∗, θ(t+1),∗, and θ(t), which is used in
the application of Phythagorean theorem (Proposition 1). Mθ∗→E , Mθ(t+1),∗→E , and Mθ(t+1)→E are the mixture subfamilies to project
θ∗, θ(t+1),∗, and θ(t+1) to the exponential subfamily E , respectively. Eθ(t)→M is the exponential subfamily to project θ(t) to the mixture
subfamily M.

Step 2: The aim of this step is the derivation of the relation;

DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1))

≥DF (θ(t+1)‖θ(t+1))−DF (θ∗‖θ∗)− 2γ
√
DF (θ∗‖θ(t))ε− (γ + 1)ε. (232)

We notice that

DF (θ(t+1)‖θ(t+1),∗)
(a)
= DF (θ(t+1)‖θ(t))−DF (θ(t+1),∗‖θ(t))

(b)

≤ ε, (233)

where (a) and (b) follow from Phythagorean theorem (Proposition 1) and (101), respectively. Since
θ(t+1),∗ = Γ

(m),F
M (θ(t)), we have

DF (θ(t+1),∗‖θ(t)) ≤ DF (θ(t)‖θ(t)). (234)
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Since the set E0 is a star subset of E for θ∗, we can apply Theorem 1 to the set E0 as a star subset for
θ∗, and obtain

DF (θ∗‖θ(t+1))
(a)

≤DF (θ∗‖θ(t+1),∗) + 2γ
√
DF (θ∗‖θ(t+1),∗)DF (θ(t+1)‖θ(t+1),∗)

+ γDF (θ(t+1)‖θ(t+1),∗)
(b)

≤DF (θ∗‖θ(t+1),∗) + 2γ
√
DF (θ∗‖θ(t+1),∗)DF (θ(t+1)‖θ(t+1),∗)

+ γDF (θ(t+1)‖θ(t+1),∗)
(c)

≤DF (θ∗‖θ(t+1),∗) + 2γ
√
DF (θ∗‖θ(t+1),∗)ε+ γε, (235)

where (a), (b), and (c) follow from Theorem 1, Condition (B1), and (233), respectively.
The definition (89) implies

DF (θ(t+1),∗‖θ(t)) ≥ Cinf(M, E) = DF (θ∗‖θ∗). (236)

Also, applying Phythagorean theorem (Proposition 1) to DF (θ∗‖θ(t)), we have

DF (θ∗‖θ(t+1),∗) +DF (θ(t+1),∗‖θ(t))
(a)
= DF (θ∗‖θ(t))

(b)
= DF (θ∗‖θ(t)) +DF (θ∗‖θ∗). (237)

That is, steps (a) and (b) in (237) follow from Phythagorean theorem. Using (237), we have

0
(a)

≤DF (θ(t+1),∗‖θ(t))−DF (θ∗‖θ∗)
(b)
=DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1),∗)
(c)

≤DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1),∗)
(d)

≤DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1)) + 2γ
√
DF (θ∗‖θ(t+1),∗)ε+ γε

(e)

≤DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1)) + 2γ
√
DF (θ∗‖θ(t))ε+ γε, (238)

where (a), (b), (c), and (d) follow from (236), (237), Condition (B1), and (235), respectively. The final
step (e) is derived by the inequality DF (θ∗‖θ(t)) − DF (θ∗‖θ(t+1),∗) ≥ 0, which can be shown from (a)
and (b). Comparing the RHS of (a) and the final term, we have

DF (θ(t+1),∗‖θ(t))−DF (θ∗‖θ∗)

≤DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1)) + 2γ
√
DF (θ∗‖θ(t))ε+ γε. (239)

In addition, DF (θ(t+1),∗‖θ(t)) can be evaluated as

DF (θ(t+1)‖θ(t+1))
(a)

≤DF (θ(t+1)‖θ(t))
(b)
= DF (θ(t+1)‖θ(t+1),∗) +DF (θ(t+1),∗‖θ(t))

(c)

≤ε+DF (θ(t+1),∗‖θ(t)), (240)

where (a), (b), and (c) follow from the relation θ(t+1) = Γ
(e),F
E (θ(t+1)), the relation θ(t+1),∗ = Γ

(m),F
M (θ(t)),

and (233), respectively.
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Combining the above relations, we have

DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1))
(a)

≥DF (θ(t+1),∗‖θ(t))−DF (θ∗‖θ∗)− 2γ
√
DF (θ∗‖θ(t))ε− γε

(b)

≥DF (θ(t+1)‖θ(t+1))−DF (θ∗‖θ∗)− 2γ
√
DF (θ∗‖θ(t))ε− (γ + 1)ε. (241)

where (a) and (b) follow from (239) and (240), respectively. Hence, we obtain (232).
Step 3: The aim of this step is showing

DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1)) ≥ 0 (242)

for t ≤ t0 by induction when we assume that t0 satisfies the following condition with t ≤ t0;

DF (θ(t)‖θ(t))−DF (θ∗‖θ∗) ≥ 2γ
√
DF (θ∗‖θ(1))ε+ (γ + 1)ε. (243)

Due to the assumption of induction, we have

DF (θ∗‖θ(t)) ≤ DF (θ∗‖θ(1)). (244)

The combination of (232), (243), and (244) implies the relation (242).
Step 4: The aim of this step is showing

DF (θ(t0+1)‖θ(t0+1))−DF (θ∗‖θ∗)

≤
DF (θ∗‖θ(1))

t0
+ 2γ

√
DF (θ∗‖θ(1))ε+ (γ + 1)ε. (245)

If there exists a number t ≤ t0 that does not satisfy the condition (243), we have (245) as

DF (θ(t0+1)‖θ(t0+1))−DF (θ∗‖θ∗)
≤DF (θ(t)‖θ(t))−DF (θ∗‖θ∗)

<2γ
√
DF (θ∗‖θ(1))ε+ (γ + 1)ε

≤
DF (θ∗‖θ(1))

t0
+ 2γ

√
DF (θ∗‖θ(1))ε+ (γ + 1)ε. (246)

Hence, it is sufficient to show (245) under the assumption (243) with t ≤ t0.
Using the facts shown above, under this assumption, we have

DF (θ(t+1)‖θ(t+1))−DF (θ∗‖θ∗)
(a)

≤DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1)) + 2γ
√
DF (θ∗‖θ(t))ε+ (γ + 1)ε

(b)

≤DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1)) + 2γ
√
DF (θ∗‖θ(1))ε+ (γ + 1)ε, (247)

where (a) and (b) follow from (232) and (242), respectively.
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Taking the sum for (247), we have

t0

(
DF (θ(t0+1)‖θ(t0+1))−DF (θ∗‖θ∗)

)
(a)

≤
t0∑
t=1

(
DF (θ(t+1)‖θ(t+1))−DF (θ∗‖θ∗)

)
(b)

≤
t0∑
t=1

(
DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1)) + 2γ

√
DF (θ∗‖θ(1))ε+ (γ + 1)ε

)
=DF (θ∗‖θ(1))−DF (θ∗‖θ(t0+1)) + 2t0γ

√
DF (θ∗‖θ(1))ε+ t0(γ + 1)ε

≤DF (θ∗‖θ(1)) + 2t0γ
√
DF (θ∗‖θ(1))ε+ t0(γ + 1)ε, (248)

where (a) and (b) follow from (231) and (247), respectively. Hence, we have (245).
Step 5: Finally, we derive (103) from (102). The condition t ≥ 2DF (θ∗,1‖θ(1))

ε′
+ 1 implies DF (θ∗‖θ(1))

t
≤ ε′.

The condition ε ≤ ε′2

4(3γ+1)2DF (θ∗‖θ(1))
implies (3γ + 1)

√
DF (θ∗‖θ(1))ε ≤ ε′

2
. Since DF (θ∗‖θ(1)) ≥ ε and

γ > 1, we have +2γ
√
DF (θ∗‖θ(1))ε+ (γ + 1)ε ≤ ε′

2
. Thus, we obtain (103).

APPENDIX F
PROOF OF THEOREM 5

Step 1: We define θ∗ := Γ
(e),F
E (θ∗). The aim of this step is showing the inequality (108). The condition

(104) implies that

F (θ̄(t+1))−
d∑

j=k+1

(θ̄(t+1))jaj ≤ F (θ(t+1,∗))−
d∑

j=k+1

(θ(t+1,∗))jaj + ε1. (249)

Hence,

DF (θ(t+1),∗‖θ̄(t+1)) =
d∑
i=1

ηi(θ
(t+1),∗)(θ(t+1),∗ − θ̄(t+1))i − F (θ(t+1),∗) + F (θ̄(t+1)) ≤ ε1. (250)

Step 2: The aim of this step is showing

DF (θ(t3),∗‖θ(t3−1))−DF (θ∗‖θ∗) ≤
1

t1 − 1
DF (θ∗‖θ(1)) + ε1 (251)

under the choice of t3 := argmin
2≤t≤t1

DF (θ(t),∗‖θ(t−1)).

Pythagorean theorem (Proposition 1) implies that

DF (θ∗‖θ(t+1),∗) +DF (θ(t+1),∗‖θ(t)) = DF (θ∗‖θ(t)) = DF (θ∗‖θ∗) +DF (θ∗‖θ(t)). (252)

Using the result of Step 1 and various formulas, we have

DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1))
(a)

≥DF (θ∗‖θ(t))−DF (θ∗‖θ̄(t+1))
(b)
= DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1),∗)−DF (θ(t+1),∗‖θ̄(t+1))

(c)
=DF (θ(t+1),∗‖θ(t))−DF (θ∗‖θ∗)−DF (θ(t+1),∗‖θ̄(t+1))
(d)

≥DF (θ(t+1),∗‖θ(t))−DF (θ∗‖θ∗)− ε1, (253)

where each step is derived as follows. Step (a) follows from Condition (B1). Step (b) follows from
Pythagorean theorem (Proposition 1). Step (c) follows from (252). Step (d) follows from (250).
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Fig. 7. Algorithm 4: This figure shows the topological relation among θ∗, θ∗, θ(t+1), θ(t+1), θ̄(t+1), θ(t+1),∗, and θ(t), which is used in
the application of Phythagorean theorem (Proposition 1). Mθ∗→E , Mθ(t+1),∗→E , and Mθ(t+1)→E are the mixture subfamilies to project
θ∗, θ(t+1),∗, and θ(t+1) to the exponential subfamily E , respectively. Eθ(t)→M is the exponential subfamily to project θ(t) to the mixture
subfamily M.

We choose t3 := argmin
2≤t≤t1

DF (θ(t),∗‖θ(t−1)). Hence, for t ≤ t1 − 1, we have

DF (θ(t3),∗‖θ(t3−1))−DF (θ∗‖θ∗)− ε1 ≤DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1)). (254)

Taking the sum for (254), we have

DF (θ(t3),∗‖θ(t3−1))−DF (θ∗‖θ∗)− ε1

≤ 1

t1 − 1

t=t1−1∑
t=1

DF (θ∗‖θ(t))−DF (θ∗‖θ(t+1))

=
1

t1 − 1
(DF (θ∗‖θ(1))−DF (θ∗‖θ(t1))) ≤

1

t1 − 1
DF (θ∗‖θ(1)). (255)

Therefore, we obtain (251).
Step 3: The aim of this step is showing the following inequality;

DF (θ(t2)‖θ(t2−1))−DF (θ∗‖θ∗)

≤ 1

t1 − 1
DF (θ∗‖θ(1)) + ε1 +DF (θ(t2)‖θ̄(t2)). (256)

Remember that the final estimate θ(t1)
f is defined as θ(t2) ∈ M by using t2 = argmin

t=2,...,t1

DF (θ(t)‖θ(t−1)) −
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DF (θ(t)‖θ̄(t)). Then, Eq. (256) is shown as follows.

DF (θ(t2)‖θ(t2−1))−DF (θ(t2)‖θ̄(t2))
(a)

≤DF (θ(t3)‖θ(t3−1))−DF (θ(t3)‖θ̄(t3))
(b)
=DF (θ(t3)‖θ(t3),∗) +DF (θ(t3),∗‖θ(t3−1))−DF (θ(t3)‖θ̄(t3))

≤DF (θ(t3)‖θ(t3),∗) +DF (θ(t3),∗‖θ̄(t3)) +DF (θ(t3),∗‖θ(t3−1))−DF (θ(t3)‖θ̄(t3))
(c)
=DF (θ(t3),∗‖θ(t3−1))
(d)

≤ 1

t1 − 1
DF (θ∗‖θ(1)) + ε1 +DF (θ∗‖θ∗), (257)

where each step is derived as follows. Step (a) follows from the definition of t2. Steps (b) and (c) follow
from Pythagorean theorem (Proposition 1) for DF (θ(t3)‖θ(t3−1)) and DF (θ(t3)‖θ̄(t3)), respectively. Step (d)
follows from (251).
Step 4: The aim of this step is showing Eq. (109). Eq. (109) is shown as follows;

DF (θ
(t1)
f ‖Γ

(e),F
E (θ

(t1)
f ))−DF (θ∗‖θ∗)

=DF (θ(t2)‖Γ
(e),F
E (θ(t2)))−DF (θ∗‖θ∗)

(a)

≤DF (θ(t2)‖θ(t2−1))−DF (θ∗‖θ∗)
(b)

≤ 1

t1 − 1
DF (θ∗‖θ(1)) + ε1 +DF (θ(t2)‖θ̄(t2)), (258)

where Step (a) follows from the definition of Γ
(e),F
E (θ(t2)) and Step (b) follows from (256).

APPENDIX G
PROOFS OF THEOREMS 6, 7, AND 8

Proof of Theorem 6: Theorem 2 is shown by application of Phythagorean theorem (Proposition 1) to
m-projection to M. We can show Theorem 6 in the same way as the proof of Theorem 2 by replacing
the role of Proposition 1 by Lemma 8 In this case, the proof of Theorem 6 is completed by replacing the
equations at (a) of (217) and (a) of (218) by the inequality ≤.

Proof of Theorem 7: In the proof of Theorem 3, Phythagorean theorem is applied to m-projection to
M. However, this theorem is used only in the derivation for (227), which is essentially given in (217).
In the current setting, the step (a) of (217) is derived by Lemma 8 instead of Proposition 1. Hence, the
proof of Theorem 7 is completed.

Proof of Theorem 8: We can show Theorem 8 in the same way as the proof of Theorem 4 by replacing
the role of Proposition 1 by Lemma 8 for Phythagorean theorem to the projeciton to m-projection to M.
In this case, the proof of Theorem 8 is completed by replacing the equations at (a) of (233), (a) of (237),
and (b) of (239) by the inequality ≤.

APPENDIX H
PROOF OF THEOREM 9

Step 1: To show Theorem 9, we prepare the following lemma.
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Lemma 22: Assume the same assumption as Algorithm 8. Also, we assume Conditions (B0) and (B1)
for E . When the relation Cinf(Mλ, E) = Cinf(M̂λ, E) holds for λ ∈ Λ∗, for θ0 ∈ M̂λ \Mλ, we have

min
λ′∈Λλ

Cinf(Mλ′ , E) ≤ DF (θ0‖Γ
(e),F
E (θ0)). (259)

Proof of Lemma 22: Lemma 2 guarantees that there is no local minimum for the minimization
minθ∈Mλ

DF (θ‖Γ
(e),F
E (θ)). Hence, there exists a one-parameter continuous curve θ(s) ∈ Mλ such that

θ(0) = θ0,

lim
s→1

DF
(
θ(s)

∥∥Γ
(e),F
E (θ(s))

)
= Cinf(Mλ, E), (260)

and DF (θ(s)‖Γ
(e),F
E (θ(s))) is monotonically increasing for s. Then, there exits s0 ∈ (0, 1) such that

θ(s0) ∈ ∂Mλ. We choose λ′′ ∈ Λλ such that θ(s0) ∈Mλ′′ . Then, we obtain

min
λ′∈Λλ

Cinf(Mλ′ , E) ≤Cinf(Mλ′′ , E) ≤ DF
(
θ(s0)

∥∥Γ
(e),F
E (θ(s0))

)
≤DF

(
θ0

∥∥Γ
(e),F
E (θ0)

)
. (261)

In the following, we show Theorem 9 by using Lemma 22 and Eq. (256) in the proof of Theorem 5.
Step 2: The aim of this step is showing the following relation by induction for D(λ);

min
λ′∈Λ̄λ∪{λ}:θ(t2(λ′)),λ′∈Mλ′

DF (θ(t2(λ′)),λ′‖θ(t2(λ′)−1),λ′)− Cinf(Mλ, E)

≤ 1

t1 − 1
DF (θ∗(Mλ, E)‖θ(1)) + ε1 +DF (θ(t2(λ)),λ‖θ̄(t2(λ)),λ)

+

D(λ)−1∑
k=0

max
λ′∈Λ̄λ:D(λ′)=k

( 1

t1 − 1
DF (θ∗(Mλ′ , E)‖θ(1)) + ε1 +DF (θ(t2(λ′)),λ′‖θ̄(t2(λ′)),λ′)

)
. (262)

Eq. (256) in the proof of Theorem 5 implies (262) with the condition D(0) = 0. In the following, we
show (262) with the condition D(λ) = k by assuming (262) with the condition D(λ) ≤ k − 1.

When the relation

Cinf(Mλ, E) = Cinf(M̂λ, E) (263)

does not hold, there exists λ′ ∈ Λ̄λ such that Cinf(Mλ, E) = Cinf(Mλ′ , E). Since D(λ) ≤ k − 1, the
assumption of induction implies (262). When the relation

θ(t),λ ∈ M̂λ \Mλ (264)

dos not hold, i.e., θ(t),λ ∈Mλ, Theorem 5 implies (262). Hence, it is sufficient to show (262) when (263)
and (264) hold.

Due to these two conditions, Lemma 22 implies that

min
λ′∈Λλ

Cinf(Mλ′ , E) ≤ DF (θ(t2(λ)),λ‖Γ
(e),F
E (θ(t2(λ)),λ)). (265)

Thus,

min
λ′∈Λλ

Cinf(Mλ′ , E)− Cinf(Mλ, E)

≤DF (θ(t2(λ)),λ‖Γ
(e),F
E (θ(t2(λ)),λ))− Cinf(Mλ, E)

(a)

≤DF (θ(t2(λ)),λ‖θ(t2(λ)−1),λ)− Cinf(Mλ, E)
(b)

≤ 1

t1 − 1
DF (θ∗(Mλ, E)‖θ(1)) + ε1 +DF (θ(t2(λ)),λ‖θ̄(t2(λ)),λ), (266)
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where (a) follows from the definition of the e-projection Γ
(e),F
E and (b) follows from Eq. (256) in the

proof of Theorem 5. Hence, we have

min
λ′∈Λ̄λ∪{λ}:θ(t),λ′∈Mλ′

DF (θ(t2(λ′)),λ′‖θ(t2(λ′)−1),λ′)− Cinf(Mλ, E)

(a)

≤ min
λ′∈Λλ

(
min

λ′′∈Λλ′∪{λ′}:θ(t),λ′′∈Mλ′′
DF (θ(t2(λ′′)),λ′′‖θ(t2(λ′′)−1),λ′′)− Cinf(Mλ, E)

)
= min

λ′∈Λλ

(
min

λ′′∈Λλ′∪{λ′}:θ(t),λ′′∈Mλ′′
DF (θ(t2(λ′′)),λ′′‖θ(t2(λ′′)−1),λ′′)− Cinf(Mλ′ , E)

+
(
Cinf(Mλ′ , E)− Cinf(Mλ, E)

))
≤ max

λ′∈Λλ

(
min

λ′′∈Λλ′∪{λ′}:θ(t),λ′′∈Mλ′′
DF (θ(t2(λ′′)),λ′′‖θ(t2(λ′′)−1),λ′′)− Cinf(Mλ′ , E)

)
+ min

λ′∈Λλ

(
Cinf(Mλ′ , E)− Cinf(Mλ, E)

)
(b)

≤ max
λ′∈Λλ

(
D(λ′)−1∑
k=0

max
λ′′∈Λ̄λ′ :D(λ′′)=k

( 1

t1 − 1
DF (θ∗(Mλ′′ , E)‖θ(1)) + ε1 +DF (θ(t2(λ′′)),λ′′‖θ̄(t2(λ′′)),λ′′)

)
+

1

t1 − 1
DF (θ∗(Mλ′ , E)‖θ(1)) + ε1 +DF (θ(t2(λ′)),λ′‖θ̄(t2(λ′)),λ′)

)
+

1

t1 − 1
DF (θ∗(Mλ, E)‖θ(1)) + ε1 +DF (θ(t2(λ)),λ‖θ̄(t2(λ)),λ)

(c)

≤
D(λ)−1∑
k=0

max
λ′∈Λ̄λ:D(λ′)=k

( 1

t1 − 1
DF (θ∗(Mλ′ , E)‖θ(1)) + ε1 +DF (θ(t2(λ′)),λ′‖θ̄(t2(λ′)),λ′)

)
+

1

t1 − 1
DF (θ∗(Mλ, E)‖θ(1)) + ε1 +DF (θ(t2(λ)),λ‖θ̄(t2(λ)),λ), (267)

where Step (a) follows from the definition of Λ̄λ. The second line of (b) follows from (266). The first
line of (b) follows from the substitution of λ′ into λ in the relation (262) as the assumption of induction.
Step (c) follows from the following fact. For λ′ ∈ Λλ, we have the relations Λ̄λ′ ⊂ Λ̄λ and D(λ)− 1 ≥
D(λ′) > D(λ′)− 1. Hence, we obtain (262) in the general case.
Step 3: The aim of this step is showing (123) by using (262). We apply (262) to the case with λ = 0.
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We have

DF (θ
(t)
f ‖Γ

(e),F
E (θ

(t)
f ))− Cinf(M, E)

(a)
=DF (θ(t2(λ0)),λ0‖Γ

(e),F
E (θ(t2(λ0)),λ0))− Cinf(M, E)

(b)

≤DF (θ(t2(λ0)),λ0‖θ(t2(λ0)−1),λ0)− Cinf(M, E)
(c)
= min

λ′∈Λ∗:θ(t2(λ′)),λ′∈Mλ′

DF (θ(t2(λ′)),λ′‖θ(t2(λ′)−1),λ′)− Cinf(M, E)

(d)
= min

λ′∈Λ̄0∪{0}:θ(t2(λ′)),λ′∈Mλ′

DF (θ(t2(λ′)),λ′‖θ(t2(λ′)−1),λ′)− Cinf(M, E)

(e)

≤ 1

t1 − 1
DF (θ∗(M0, E)‖θ(1)) + ε1 +DF (θ(t2(0)),0‖θ̄(t2(0)),0)

+

D(0)−1∑
k=0

max
λ′∈Λ̄λ:D(λ′)=k

( 1

t1 − 1
DF (θ∗(Mλ′ , E)‖θ(1)) + ε1 +DF (θ(t2(λ′)),λ′‖θ̄(t2(λ′)),λ′)

)
=(D(0) + 1) max

λ∈Λ∗

( 1

t1 − 1
DF (θ∗(Mλ, E)‖θ(1)) + ε1 +DF (θ(t2(λ)),λ‖θ̄(t2(λ)),λ)

)
, (268)

where each step is shown as follows. (a) follows from the definition of θ(t)
f . (b) follows from the definition

of the e-projection Γ
(e),F
E . (c) follows from the definition of λ0. (d) follows from the relation Λ̄0∪{0} = Λ∗.

(e) follows from the application of (262) to the case with λ = 0.

APPENDIX I
PROOFS OF LEMMAS 18 AND 19

Proof of Lemma 18: The assumption implies n1 ≥ n2. It is sufficient to show that the matrix ((P2Jθ,τ(θ),3P1)i,j)i=1,...,n1−1,j=1,...,n2−1

has at least rank n2 − 1 under the given condition. For i = 1, . . . , n1 − 1, j = 1, . . . , n2 − 1, we choose
c1,i and c2,j as ∑

x,y

PX(x)Wθ,x(y)fj(y) = c1,j (269)∑
x,y

PX(x)Wθ,x(y)δi,x = c2,i, (270)

where fj(y) is defined in Subsection III-A. Then, we have

(P2Jθ,τ(θ),3P1)i,j =
∑
x,y

PX(x)Wθ,x(y)(δi,x − c2,i)(fj(y)− c1,j)

=
∑
x

PX(x)(δi,x − c2,i)
(∑

y

Wθ,x(y)(fj(y)− c1,j)
)
. (271)

When (fj(y) − c1,j)y,j is considered as a matrix, its rank is n2 − 1. Also, (Wθ,x(y))x,y can be regarded
as a rank-n2 − 1 matrix. Hence,

(∑
yWθ,x(y)(fj(y)− c1,j)

)
x,j

can be regarded as a rank-n2 − 1 matrix.

Also, (PX(x)(δi,x − c2,i))x,i can be regarded as a rank-n1 − 1 matrix. Since n1 ≥ n2, (P2Jθ,τ(θ),3P1)i,j is
a rank-n1 − 1 matrix.

Proof of Lemma 19: To show Lemma 19, we prepare the following lemma;
Lemma 23: We consider a one-parameterized family of channels {W̄s}s∈R We denote the Fisher

information of {W̄s × PX}s by J̄s,1. We denote the Fisher information of {W̄s · PX}s by J̄s,2. Then,



M. HAYASHI: BREGMAN DIVERGENCE BASED EM ALGORITHM 55

J̄s0,1 ≥ J̄s0,2. The equality hold if and only if the function (x, y) 7→
d
ds
W̄s(y|x)

∣∣
s=s0

W̄s0 (y|x)
can be written as a

function of y.
We denote the mixture parameter of the exponential family {PXY,θ,τ}θ,τ by (η1(θ, τ), η2(θ, τ)). The

condition (164) implies

η2,0(θ, τ(θ)) = D, (272)

and the construction of P (t+1)
XY implies

η2,x(θ, τ(θ)) = PX(x) (273)

for x ∈ X \ {n1}. We choose a one-parameter family c(t) ∈ Rn2−1 such that c(0) = θ0 and v1 :=
d
dt
c(t)|t=0 6= 0. Then, we have

d

dt
η2(c(t), τ(θ0)) +

d

dt
η2(θ0, τ(c(t))) = 0. (274)

We denote d
dt
τ(c(t))|t=0 by v2. The condition (274) is equivalent to the condition;

P2Jθ0,τ(θ0),3P1v1 + P2Jθ0,τ(θ0),3P2v2 = 0. (275)

That is,

v2 = −(P2Jθ0,τ(θ0),3P2)−1P2Jθ0,τ(θ0),3P1v1. (276)

Hence, the vector v2 is not zero for any v1 6= 0 if and only if KerP2Jθ,τ(θ),3P1 = {0}.
In addition,

d

dt
Γ

(m),µ
M (Pθ,Y × PX)(x, y)

∣∣∣
t=0

= Γ
(m),µ
M (Pθ0,Y × PX)(x, y)(

n2−1∑
i=1

vi1fi(y) +

n1−1∑
j=0

vj2gj(x, y)). (277)

Therefore,
d
dt Γ

(m),µ
M (Pθ,Y ×PX)(x,y)

∣∣∣
t=0

Γ
(m),µ
M (Pθ0,Y ×PX)(x,y)

cannot be written as a function of y for any v1 6= 0 if and only if

KerP2Jθ,τ(θ),3P1 = {0}.
We define Wθ as Wθ × PX = Γ

(m),µ
M (Pθ,Y × PX). Applying Lemma 23 with substitution of Wc(t) into

W̄s, we obtain the desired statement of Lemma 19 from the above equivalence relation.

Proof of Lemma 23:

J̄s0,1

=
∑
x,y

( d
ds
W̄s(y|x)|s=s0

)2

W̄s0(y|x)−1PX(x)

=
∑
y

(∑
x′

d

ds
W̄s(y|x′)|s=s0PX(x′)

)2

(
∑
x′

W̄s0(y|x′)PX(x′))−1

+
∑
y

(∑
x′

W̄s0(y|x′)PX(x′)
)

·
∑
x

( d
ds

PX(x)W̄s(y|x)∑
x′ W̄s(y|x′)PX(x′)

∣∣∣
s=s0

)2( PX(x)W̄s0(y|x)∑
x′ W̄s0(y|x′)PX(x′)

)−1

. (278)
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Hence,

J̄s0,1 − J̄s0,2
=
∑
y

(∑
x′

W̄s0(y|x′)PX(x′)
)

·
∑
x

( d
ds

PX(x)W̄s(y|x)∑
x′ W̄s(y|x′)PX(x′)

∣∣∣
s=s0

)2( PX(x)W̄s0(y|x)∑
x′ W̄s0(y|x′)PX(x′)

)−1

=
∑
y

(∑
x′

W̄s0(y|x′)PX(x′)
)

·
∑
x

( d
ds

log
( PX(x)W̄s(y|x)∑

x′ W̄s(y|x′)PX(x′)

)∣∣∣
s=s0

)2( PX(x)W̄s0(y|x)∑
x′ W̄s0(y|x′)PX(x′)

)
=
∑
x,y

W̄s0(y|x)PX(x)

·
( d
ds

(logPX(x)W̄s(y|x))− log
(∑

x′

W̄s(y|x′)PX(x′)
)∣∣∣

s=s0

)2

=
∑
x,y

W̄s0(y|x)PX(x)

·
( d
ds

log W̄s(y|x))
∣∣∣
s=s0
− d

ds
log
(∑

x′

W̄s(y|x′)PX(x′)
)∣∣∣

s=s0

)2

=
∑
x,y

W̄s0(y|x)PX(x)
( d
ds
W̄s(y|x)

∣∣∣
s=s0

W̄s0(y|x)
−

d
ds

(∑
x′ W̄s(y|x′)PX(x′)

)∣∣∣
s=s0∑

x′ W̄s0(y|x′)PX(x′)

)2

=
∑
x,y

W̄s0(y|x)PX(x)
(
l(x, y)−

(∑
x′ l(x

′, y)W̄s0(y|x′)PX(x′)
)

∑
x′ W̄s0(y|x′)PX(x′)

)2

=
∑
x,y

W̄s0(y|x)PX(x)
(
l(x, y)−

(∑
x′ l(x

′, y)W̄s0(y|x′)PX(x′)
)

∑
x′ W̄s0(y|x′)PX(x′)

)2

, (279)

where l(x, y) :=

d
ds
W̄s(y|x)

∣∣∣
s=s0

W̄s0 (y|x)
. Hence, we have J̄s0,1− J̄s0,2 ≥ 0. The equality holds if and only if l(x, y)

depends only on y. The desired statement is obtained.
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