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Bregman divergence based em algorithm and its
application to classical and quantum rate distortion
theory
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Abstract

We formulate em algorithm in the framework of Bregman divergence, which is a general problem setting
of information geometry. That is, we address the minimization problem of the Bregman divergence between an
exponential subfamily and a mixture subfamily in a Bregman divergence system. Then, we show the convergence
and its speed under several conditions. We apply this algorithm to rate distortion and its variants including the
quantum setting, and show the usefulness of our general algorithm. In fact, existing applications of Arimoto-Blahut
algorithm to rate distortion theory make the optimization of the weighted sum of the mutual information and the cost
function by using the Lagrange multiplier. However, in the rate distortion theory, it is needed to minimize the mutual
information under the constant constraint for the cost function. Our algorithm directly solves this minimization.
In addition, we have numerically checked the convergence speed of our algorithm in the classical case of rate
distortion problem.

Index Terms

em algorithm, Bregman divergence, information geometry, rate distortion

I. INTRODUCTION

Em algorithm is known as a useful algorithm in various areas including machine learning and neural
network [1], [2], [3]. Its basic idea can be backed to the reference [4]]. In information theory, the
Arimoto-Blahut algorithm [3], [6] is known as a powerful tool to calculate various information-theoretical
optimization problems including mutual information. Both algorithms are composed of iterative steps. In
this paper, we apply em algorithm to rate distortion and its variants including the quantum setting.

Although em algorithm has several variants, the most general form is given as the minimum divergence
between a mixture family and an exponential family [1]. However, the convergence speed of em algorithm
is not known in general. Moreover, it has a possibility to converge to a local minimum [1[], [2], [3].
Therefore, it is needed to guarantee the convergence to the global minimum and clarify the convergence
speed. In this paper, to address these problems in a unified viewpoint, similar to the paper [2]], we
formulate em algorithm in a framework of Bregman divergence, which is given from a general smooth
convex function as a general problem setting of information geometry [7]], [8]. In this general framework,
we derive a necessary condition for the global convergence, and discuss the convergence speed. When
an additional condition is satisfied, this algorithm has exponential convergence. This additional condition
is easily satisfied when the iteration is close to the true value. Hence, this algorithm rapidly converges
around the true value under a certain condition.

When an information-theoretical optimization problem is written in the above form, em algorithm can
be applied to it. As a typical example, we consider the rate distortion problem, which is written as a
minimization of the mutual information under a linear constraint to a given distribution. That is, the
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objective distribution of this problem belongs to a certain mixture family. Mutual information is written
as the minimum divergence between a given distribution and the set of independent distributions, which
forms an exponential family. Hence, this minimization is given as the minimization of the divergence
between the given mixture family and the exponential family composed of independent distributions. The
minimization for the rate distortion problem was studied by Blahut [5] and various papers [9], [10], [LL].
However, to remove the constraint, they change the objective function by using a Lagrange multiplier. That
is, they minimize the weighted sum of the original objective function and the cost function, whereas the
Lagrange multiplier corresponds to the weight coefficient. When the Lagrange multiplier is suitably chosen,
the solution of this modified minimization given the solution of the original minimization. However, no
preceding paper showed how to choose the Lagrange multiplier. Therefore, it was required to develop
how to find the suitable the Lagrange multiplier. Fortunately, the set of conditional distribution with a
linear constraint forms a mixture family. Hence, our method can directly solve the required minimization
with a linear constraint. Then, we apply these obtained general results to several variants [12], [13] of
the rate distortion problem including the quantum setting [14].

The remaining part of this paper is organized as follows. Section [II formulates general basic properties
for Bregman divergence. Section [III|explains how the set of probability distributions and the set of quantum
states satisfy the condition for Bregman divergence. Section states em algorithm in the framework of
Bregman divergence, and derives its various properties. Section |V| applies the above general results to
classical rate distribution and its variants. Section [VI| applies them to its quantum extension.

II. BREGMAN DIVERGENCE: INFORMATION GEOMETRY BASED ON CONVEX FUNCTION

In this section, we prepare general basic properties for Bregman divergence. Originally, information
geometry was studied as the geometry of probability distributions. This structure can be generalized as a
geometry of a smooth strictly convex function, which is called Bregman Divergence. This section discusses
several useful properties of Bregman Divergence.

A. Legendre transform

In this paper, a sequence a = (a')*_, with an upper index expresses an vertical vector and a sequence

b = (b;)¥_, with an lower index expresses an horizontal vector as
a = . s b:(bl,bg,...,bk>. (1)

Let © be an open convex set in R? and ' : © — R be a C™-class strictly convex function. We
introduce another parametrization n = (1;,...,74) € R? as

n; == ajF(e)v (2)

where 0; expresses the partial derivative for the j-th variable. We introduce the vector V) [F](¢) :=
(8;F(6))}_,. Hence, the relation (2) is rewritten as

n = VOIF)(0). 3)

Therefore, V¢ can be considered as a horizontal vector.

Since F'is a C*°-class strictly convex function, this conversion is one-to-one. the parametrization 7); is
called the mixture parameter. We denote the open set of vectors n(0) = (11,...,7n4) given in ), by =.
For n € E, we define the Legendre transform F* = L[F| of F

F(n) = gggm, 0) — F(0). 4)
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We have [2, Section 3][15, Section 2.2]
FE(n(0)) =6, (5)

where &7 expresses the partial derivative for the j-th variable under the mixture parameter. We introduce
the vector V™[F*|(n) := (87 F*(n))?_,. Hence, the relation (5) is rewritten as

0 = VF](1(0)). (6)

In later discussion, we address subfamilies related to m vectors vy, ..., v, € R% For a preparation for
such cases, we prepare the following two equations, which will be used for calculations based on mixture
parameters. Then, we define a d x m matrix V' as (v; ...v,,). The multiplication function of V from the
left (right) hand side is denoted by L[V] (R[V]). Since

9;(F o LIV])(0) = %(VG) = Z Vi F(VO) = (R[V] o (V[F]) o LIV](0)),, (7)
we have
VOIF o L[V]] = R[V] o (VO[F]) o L[V]. (8)

In the same way, we can show
V[F* o R[V]] = L[V] o VU™ [F*] o R[V]. )
Also, we have
(F* o RIVIY'(6) = sup(s. ¢) — suplt’, ) — F(6)
:sgp ggcf)(n, 6 — Vo) ; F(0) = e;gflifve F(0). (10)
When V' is one-to-one, we define the function F o L[V ] on L[V](©). Since
F*o R[V](n) = Ztelng, 0) — F'(0) = sup(n, V) — F(0)

0cO
= sup (n,0) —F(V7'0') = (Fo L[V ')"(n), (11)
0’eL[V](©)
we have
(FoL[V™)" = F* o R[V] (12)

Combining the above two relations, we have

VM[(F o LIVY)*] = V™[F* o R[V]] = L[V] o V™ [F*] o R[V]. (13)

B. Exponential subfamily

A subset & C O is called an exponential subfamily generated by [ linearly independent vectors
v1,...,u € R? at §, € © when the subset £ is given as

5:{ (;)(é)e@we@g}. (14)

In the above definition, ¢\ () is defined for 6 = (6*,...,8') € R' as

l
68(0) =0+ > v, (15)
j=1
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and the set ©¢ is defined as
O == {0 e R'|¢{(0) € ©}. (16)

Since © is an open set, the set @g 1s an open set. In the following, we restrict the domain of gzﬁg to O¢.

We define the inverse map ¢ ( ) : & = Og.
For an exponential subfamily 8 we define the function Fy as

Fe(0) := F(¢¥(9)). 17)

In fact, even in an exponential subfamily £, we can employ the mixture parameter g’;)( (;)(é)) =
0;F¢(0) because the map 6 +— Fc(6) is also a Coo—class strictly convex function. We define the set
Ze = {(9;Fe(0)):_, Ysco,- We define the inverse map oI = (M) Ep o £

C. Mixture subfamily

For d linearly independent vectors u1, ..., uq € R% and a vector a = (ay,...,aq_x) € RF, a subset
M C O is called a mixture subfamily generated by the constraint

d
Z up,, 0 F(0) = a; (18)
i=1

for j =1,...,d — k when the subset M is written as

= {0 € ©| Condition holds. } . (19)

We define a d x d matrix U as (u; ...u4). To make a parametrization in the above mixture subfamily M,
we set the new natural parameter 0 = (91 .,0%) as § = U0, and introduce the new mixture parameter
i = 0;(F o U)(0) (20)

Since 7j4; = a; for e =1,...,d — k in M, the initial k£ elements 7, ..., 7, gives a parametrization for

M. For the parametrization, we define the map @bm) as @/Jﬁ)(U 0) := (0;(FoU )(5))?11. We define the set

SIVEE {@D&T)(Q)W € M} of the new mixture parameters, and the inverse map gb(ﬁ) = (1/15\74"))*1 CEMm —
M. Since © is an open set, the set Z, is an open subset of R*. When an element 7] € =, satisfies
n; = 0;(FoU)(#) for j =1,...,k, we have

O (FolU)(,a) =6 1)
for i = 1,...,d. Since 7] — (F o U)*(7],a) is strictly convex, the map 7j — (9'(F o U)*(7],a))t, is
one-to-one. Hence, the initial k elements &', ..., 0% give a parametrization for M. That is, we have

(U0))ey = (O (F o U) (4 (6), @)y (22)

We define the set O := {((U710)")*_,|0 € M}. This set is written as

EI(@’I€+1 ,0%) € R%* guch that
@M:{(Ql, L0F) e RF| S 1ukﬂaF( (01, ...,0%) = qa; } (23)
forj=1,...,d—k.
When the mixture subfamily M is an exponential subfamily generated by wq,...,u;, we retake 6,
such that (U'6,)* = 0 for i = 1,..., k. Then, the subsets © and = are the same subsets defined in

Subsection
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D. Bregman Divergence and e- and m- projections

Definition 1 (Bregman Divergence): Let © be an open set in R and ' : © — R be a C*°class strictly
convex function. The Bregman divergence D is defined by

D (0,]|62) == (VO[F)(61), 01 — 62) — F(61) + F(62) (61,62 € ©). (24)

We call the triplet (O, F, D¥') a Bregman divergence system. In the one-parameter case, we have the
following lemma.

Lemma 1: Assume that d = 1. 52-D"(6,]/6;) = L F(6,)(61 — 65). Hence, when DT (6,]/6s) is
monotonically increasing for ¢, in (oo, 6], and is monotonically decreasing for 6, in (65, —00).

By using the Hesse matrix J; ;(6) := %(9), this quantity can be written as
1
D OI62) = [ S0~ 65161 — 090162 + (61 — B0t (25)
0 %7
This expression shows the inequality
DF(01]|62) > D (6,02 + (01 — 62)) + D (0 + (6, — 62)||02) (26)
for t € (0,1).
For an invertible matrix U, we have
D" (61]|62) = DT (U ()T (62))- @27
Since
o 0
-— D¥(0,)165) = J;i.;(62), 28
o0, 06] (61(62) = J; ;(02) (28)

DT (01]|62) is convex function with respect to the second parameter 6.
When 6, is given as ¢, + A6, and the norm of A# is small, The relation (25]) shows that

1 A .
D" (616, + A0) = > 5% (01)(A0)'(A0) + o([| A1), (29)
4,3
Since the relations (2) and (4) imply
d
F'(n) =Y _0'n(t:) — F(6) = (n(6).0) — F(6), (30)
1=1

we have
DT (VOIF](6:) [V [F](61)) = D (n(62)|In(61))
=(n(02) —n(01),02) — F*(n(02)) + F*(n(61))
=(n(61),01 — 02) — F(61) + F(62) = D" (6:]62). (31

Therefore, when 0, is fixed and D*'(,]|6) is a convex function for a mixture parameter 7(6;). We define
the matrix J*(0) := (J“*(0));; as
o 82F*
T () = 0 (32)
) on;n; )
with 7 = 7(#), which is the inverse matrix J(6)~! of J(6). Applying the formula to F*, we have

DF(91H€2) = D" (n(62)[In(61))

:/0 Z Z(’?(92) —1(01))i(n(62) — 1(61));7°7*(0(s))sds, (33)
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where 6(s) is defined as 7(6(s)) = n(01) + s(n(f2) — n(61)). Similar to (26), we have

D" (n(62)[n(61)) =D"(62]|61) = D™ (n(62)[|n(6(s))) + D™ (n(6(s))|In(61))
=D"(0,]16(s)) + D" (6(s)]|61). (34)

In fact, when we restrict both inputs into an exponential subfamily £, we have the following charac-
terization. That is, the restriction of the Bregman divergence system (O, F, D¥') to £ can be considered
as the Bregman divergence system (O¢, Fg, D¢) because we have

D ((6£(01) (6% (B2)) = D™= (0, 162) (35)

for él, ég € @g.

Using a simple calculation, we can show the following proposition.

Propositon 1 (Pythagorean Theorem [7)]): Let £ C © be an exponential subfamily generated by [
vectors vy,...,u; € R% at § € ©, and M C O be a mixture subfamily generated by the constraint
Zle vini(0) = a; for j = 1,... 1. Assume that an intersection §* of £ and M exists. For any 6 € £
and ¢’ € M, we have

D" (6]|6') = D"(0]|6*) + D" (6*||6"). (36)

Proof: To show the relation (36), we choose an invertible matrix U = (uy ...uq) such that u; = v; for
t=1,...,l. Using the formula (27)), we have

DF(0)|¢") = DU (UHO) U (8"))
-3 %F o U@O)(U0) — (U9)) — F(8) + F(¢)

@ a%F o UO)(UT'0)' — (UT'07)") = F(6) + F(67)

" Zl 8862‘1’ CU(B)(UT'67) — (U'9)) — F(6") + F(#)

=D"(0]|6%) + D" (6"||¢"), (37)

where (a) follows from the following facts; Since 6* and €' belong to the same exponential family
E, (U0 = (U9 fori =1+ 1,...,d. Since 6* and 6 belong to the same mixture family M,

L FoU(l) = FolU(0*) fori=1,...,1 [
Lemma 2: Let £ be an exponential family generated by [ vectors vy,...,v; € R% The following

conditions are equivalent for the exponential subfamily £, 8* € £, and 6, € O.
(E0) The element 0* € £ achieves a local minimum for the minimization ming_. D (6;0).

(E1) The element 6* € £ achieves the minimum value for the minimization min;_, D (6o)16).

(E2) Let M C © be the mixture subfamily generated by the constraint 3¢ | vini(0) = S vini(6o)

for j =1,...,l. The element §* € £ belongs to the intersection M N E&. ’
Further, when there exists an element §* € £ to satisfy the above condition, such an element is unique.
In the following, we denote the above mixture family M by My,_,¢. Then, 6* € £ is called the e-
projection of 0 onto an exponential subfamily &£, and is denoted by Fée)’F(H) because the points ¢ and
0* are connected via the mixture family My, _,¢. We call the minimum ming_ D (0]|0) the projected

Bregman divergence between ¢ and &.
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Proof: Assume that (EO) holds. When an element hcé& belongs to the neighbor hood of 6%, we have
D" (60]16) — D" (60]167)

0
91

FoU(0)(U'0*) — (U™'0)") — F(6*) + F(0)

F"qN

i=1

I
/N QO

0 . 0 —1p%\i —1/vi
gt e U") = 55 F o U0)) (U0 = (U0))

1

7

+ Z %F o U(0y)((U'0*)" — (U'0)) — F(0%) + F(0)

:g (5P o U) = =P o U(0)) (U0°) — (U6
D (67)0). "

In the following, assuming (.0 F o U(6*))._; # (WF o U(6y))._,, we derive the contradiction. Since

6* is an inner element of £, we choose an element 0 c & as 0* + xAP such that T := Z ( WF o

U0*) — 4 F o U(90)>(A9)i < 0. Then, due to (29), the divergence D (6*|d) behaves as the order

O(z?%). Hence, choosing sufficiently small z, we have D¥ (GOHé) D¥(6,]|60*) = Tz + O(2*) < 0, which
implies contradiction. Hence, we have (:2: F o U(6*))._, FoU(6y))_,, which implies that 6* is
an intersection between M and £. Hence, (E2) holds.
Assume that (E2) holds. Let 6* an intersection between M and €. Then, the relation (36) guarantees
that the element 0" realizes the minimum min, . DF (90||0) Hence, (E1) holds. Further, (E1) implies (EO).
When there are two different intersections between M and &, the above discussion and the relation
(36) guarantee that the divergence between two intersections must be zero, which yields contradiction.
Thus, the intersection between M and £ should be unique. |
Exchanging the roles of the exponential family and the mixture family, we have the following lemma.
Lemma 3: We choose l vectors vy, ...,v; € Re Let M be an mixture family generated by generated
by the constraint Zl L Umi(0) = Zle vin;(0o) for j =1,...,1. The following conditions are equivalent
for the mixture subfamily M, 6** € M, and 6, € O.
(MO0) The element §** € M achieves a local minimum for the minimization ming_,, D* (0]160).
(M1) The element §** € M achieves the minimum value for the minimization ming_,, D* (0]160).
(M2) Let & C © be the mixture subfamily generated by [ vectors vy,...,v; € R% at §, € ©. The
element 0** € M belongs to the intersection M N E.

Further, when there exists an element 6** € M to satisfy the above condition, such an element is unique.
In the following, we denote the above exponential family & by &, (. Then, 6 € M is called the
m-projection of 6 onto an mixture subfamily M, and is denoted by FE\ZL) F(@) because the points ¢ and

6** are connected via the exponential family &y, 4. When M is an exponential subfamily and a mixture

subfamily, we can define both projections P (e} and T M F, and these projections are different maps.

Hence, the subscripts (e) and (m) are needed
Lemma 4: Let & C © be an exponential subfamily generated by [ vectors vy, ..., v; € R? at 6, € O. For

0. € ©, the element Fé) (0,) = 0* € £ is uniquely characterized as Z L) F(é’*) = Z] (VIO F(6,),

i.e., R[V]oV[F](0*) = R[V]oV[F](0.). That is, the mixture parameter of the element F(g) 0,)=0*€&
is given by the above condition.

= (5
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Proof: We choose the mixture subfamily M generated by the constraint
d
> vl0;F(0 Z vl 0;F (0 (39)
j=1 j=1

for i = 1,...,l. Due to Pythagorean theorem (Proposition [I)), the point #* is characterized by the
intersection between M and €. Hence, the constraint (39) for M guarantees the desired statement. W

Lemma 5: Let | vectors i, ..., uy € R? be linearly independent. Let M C © be a mixture subfamily
generated by the constraint

d
i=1
for j = k+1,...,d. When the maximum maxger D7 (0||0..) exists, we obtain the following characteri-

zations for T'[77(6,.).
(A1) The point FE(A”)’F(G**) = 0™ € M is uniquely characterized as
(U10™) = (U10,.) (41)

fori=1,...,k, where U is defined in the same way as Subsection [II-C

(A2) We choose the exponential subfamily £ generated by d — k vectors uy1, ..., uq € R? at 0,,.
The intersection between M and £ is composed of the unique element F(AZL)’F(Q**).

(A3) The point F%)’F(Q**) = 0" € M is uniquely characterized as 0., + Z;l,; kl %j'ukﬂv, where
(71,...,7%7%) is the unique element to satisfy

a(i] (0. + ZT ki) = 4 (42)

Jj'=
for j=1,...,d—k.
Proof: To characterize elements of M, we employ the parameter 77 defined in (20). Then, the set M is

given as {(7y,..., Mk, a1,---,aq_1)| (M, .., 7Mx) € R*} under this parameterization. Then, using (31), we
have

DY@ iy, . Ty an, - agi)]|0us)

ZD(FOU)*( (m( O, Ty an, - Gag)) 43)

Since the map (771, cey TIE) D(FOU) (1/1( Ou)|| (71, - -+, 7, @1, - - ., Gg—f)) is smooth and convex, the
minimum ming, ) DY) (wM (0 [(T15 - -, Ty @15 - - -y aqg—y)) is realized when

D(F o UV (... Tk, ... aqr) = O (FoU) (W (0..)). (44)

fori =1,...,k. Since (44) is equivalent to (41I) due to (21, we obtain (Al).

The exponential subfamily £ is characterized as {6|(U~'6)" = (U'0,,)" fori = 1,...,k}. Then, we
find that the intersection between M and £ is not empty and contains 6**. Further, when an element 6
belongs to the intersection between M and &, the Pythagorean theorem (Proposition [I)) guarantees that
the element 6 realizes the maximum max@E m DF(0]|0..). Hence, the intersection between M and & is
composed of the unique element N . Hence, we obtain (A2).

Due to (A2) the unique element T /\? ) **) is characterized as an element in £ = {9**—1-2 o 1 7I ukﬂ /|

(71,...,77%) € Rk} to satisfy @]) Hence, we obtain (A3). |
Due to Lemmas 2] and [3] it is important to find a sufficient condition for (E2) and (M2). To discuss
this issue for a convex function F and ©, we fix [ linearly independent vectors vy,...,v; € R?. Then, we

consider the following conditions;
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(M3) We denote the exponential family generated by the [ linearly independent vectors vy, . .., v; € R?
at dp € © by £(6). The [-dimensional parameter space O¢ g,) does not depend on 6, € ©. while
the space Og(g,) is defined in the way as (16). In this case, this set is denoted by Z(vy,...,v;).

(E3) We denote the mixture family generated by the constraint 2?21 vi0;F(0) = a; for j =1,...,1
by M(ay,...,a;). The d — I-dimensional parameter space ©,q(q,,. q,) does not depend on
(a1,...,a;) € R' unless M(ay,...,q;) is empty while the space O, 4, is defined in the
way as (23). In this case, this set is denoted by O(vy,...,v;).

Under the above condition, we have the following lemmas.

Lemma 6: Assume that the [ linearly independent vectors vy,...,v; € RY satisfy Condition (M3).
Given (ay,...,a;) € Z(vy,...,v), we define the mixture family M(ay,...,a;) by using the condition
(40). Then, for 6, € O, the projected point F%gi 77777 oy (o) exists.

Proof: When the assumption holds, for 6, € ©, the exponential family £(6,) contains an element whose
mixture parameter is (aq, ...,q;). Hence, due to Lemma [3] the exponential family £(6,) and the mixture
family M(ay,...,q;) have a unique intersection. Therefore, the projected point T" MzaF 77777 a) (00) exists
unless M(aq,...,a ) is empty. [
Lemma 7: Assume that the [ linearly independent vectors vy, ..., v; € R? satisfy Condition (E3). Then,

for (b%,...,b%Y) € R and 6, € O, the projected point Fé()bl i l)(eo) exists unless (b, ..., b3 is

empty where the exponential family £(b*,.. ., b%") is defined as { (3] w/bi+3"L_ ulf?)L 1](91 L0 e
R’} NO.

Proof:  Assume that the assumption holds For 0, € ©, we define the mixture family M (6y) by using
the constraint; Z?Zl v F(0) = S vI9;F(6y) for i = 1,...,1. Then, the mixture family M (6,)

-----

7=1 v;
contains an element whose natural parameter is (b, ..., b%!). Hence, due to Lemma 2| the mixture M (6;)
and the exponential family £(b',... b%"!) have a unique intersection. Therefore, the projected point
Pé“"()l,f pi-1y(00) exists unless E(b', ..., b"") is empty. |

In addition, we introduce the followmg conditions for the Bregman divergence system (O, F, D).

(M4) Any [ linearly independent vectors vy, . ..,v; € R? satisfy Condition (M3) for [ =1,...,d — 1.

(E4) Any [ linearly independent vectors vy, ..., v; € R? satisfy Condition (E3) for [ =1,...,d — 1.
When (M4) holds, the m-projection F%)’F can be defined for any mixture subfamily M. Also, when

(E4) holds, the e-projection F(ge)’F can be defined for any exponential subfamily £. Therefore, these two
conditions are helpful for the analysis of these projections.

TABLE 1
SUMMARY OF DIMENSIONS
Symbol Space
d Dimension of the whose space
l Dimension of Exponential family £
k Dimension of Mixture family M

E. Evaluation of Bregman divergence without Pythagorean theorem
Next, we evaluate Bregman divergence when we cannot use Pythagorean theorem. For this aim, we
focus on J(f)~", i.., the inverse of the Hesse matrix J(f) defined for the parameters of ©. Then, we
introduce the following quantity v(©|O) for a subset © of O.
7(010) :=inf{y|y.J(61) " > J(02)"" for 61,0, € O} (45)
(46)
We say that a subset © of © is a star subset for an element 6; € © when An(6) + (1 — \)n(6;) € n(O)
for # € © and \ € (0, 1).
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Then, we have the following theorem. . R A
Theorem 1: We assume that Condition (M4) holds. Then, for a star subset with © for 6; € ©, 0, € ©,
and 05 € ©, we have

D" (6,]16,)
<D*(6,]|65) +~(8]©) D" (62]|63) + 27(6]0)/DF (61]|6) DF (6]|65). (47)

The proof of Theorem [I] is given in Appendix

F. Bregman divergence system for mixture subfamily

When £ is an exponential subfamily, the triplet (O¢, Fe, D*¢) is a Bregman divergence system as
explained in (35). However, when M is a mixture subfamily and it is not an exponential subfamily, it
is not so trivial to recover a Bregman divergence system. We use the symbols defined in Subsection
- Any element in M can be parameterized by an element § € O . Therefore, there uniquely exists
an vector k(f) € R* such that U(f, k(0 )) € ./\/l Then, we define the map ngM Om — M as
¢M( 9) := U(f, k(0)), and its inverse map 1/1 : ( ) M = O

A convex function Fy,(f) is defined as

d
Fx(0) :=(F o U)(0.5(0)) = Y 0i(FoU)(0,r(8))x"*(0)
i=k+1
d
=(FoU)(0,k(0) — Y ai’*(0). (48)
i=k+1
(FoU)*|z,, is a convex function. Due to (22), the Legendre transform of (F o U)*|z,,
F(0) is a convex function.
Also, we have

is F\(). Hence,

- Fu(0)
0;(F o U)(0,1(0)) + zd: 0i(F o U)(0,5(0))0;""(8) — Xd: a;r'~*(0)
=0,;(F o U)(0, x(0)). - - (49)
Thus,
DF(6,]/62)
=F(01) — Fra(f) — jéé%Fwaﬂ—éﬁ

:FoU@hM@D—FOUWm(@»

=30, (F o U) (61, 5(01)) — (B2, 5(6)))

—DP (B, ~(8)(Ba, 5(82))) = DF (U (B, x(B1)||U (B, 5(62)))
—DP($)() [64)(B)). 0

Therefore, the Bregman divergence in the Bregman divergence system (O, F)rq, D) equals the Breg-
man divergence in the Bregman divergence system (O, F, D) for two elements in M.
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A subset £ C M is called an [-dimensional exponential subfamily of M generated by [ linearly
independent vectors vy, ...,v; € R¥ at §, € ©, with [ < k when the subset £ is given as

l
_ (e) i
£ {¢M(90+;9w)

A subset M; C O is called an [-dimensional mixture subfamily of M generated by the additional
constraints

eeRl}mM. (51)

k
> v = (52)
i—1
for j =1,...,1 with v;,...,v; € R* when the subset M, is written as
My = {gbxln) (n) € M‘ n € =, satisfies Condition @])} (53)

G. Closed convex mixture subfamily

A closed subset M of a mixture subfamily M is called a closed mixture subfamily. The mixture
subfamily M is called the extended mixture family of M when M and M have the same dimension.
When a closed mixture subfamily M is a convex set with respect to the mixture parameter, it is called a
closed convex mixture subfamily.

We define the boundary set OM := M \ int M, where int M is the interior of M. For an element
0 € OM, a d — 1-dimensional mixture family M’ is called a tangent space of M at § when M'NM # ()
and M'Nint M = (). When M is a closed convex mixture subfamily, any element § € OM has a tangent
space. When M is composed of one element, we consider that M := M, OM = (), and int M = M.

Lemma 8: Assume that the Bregman divergence system (O, I, D) satisfies Condition (M4). For any
element 6 € © and any closed convex mixture subfamily M, there uniquely exists a minimum point

T F(0) := argmin DT (0/]|6). (54)
0'eM
In addition, any element 6’ € M satisfies the inequality
DF(0'6) = D[ T (6)) + DT (0L (0)]16). (55)
Further, we denote the extended mixture family of M by M. When 0 belongs to M \ M, then,
' (6) € oM. (56)
Proof: Step 1: We choose a sequence 0™ € dM such that
lim DF(0™]|0) = inf DF(0]|6). (57)
n—00 0'eM

Since {6 € M|DF(¢'||0) < DF(6||6)} is a compact subset, there exists a subsequence of n,, such that
9("m) converges. Since M is a closed subset, #* := lim,,_,, 6" belongs to M.
We define the vector v := (6* — ) € R? and the real numbers a* := Zle v'0;F(6*) € R and
b* = zgzl v'0;F(0) € R. When a* > b*, as shown in Step 2, any element ' € M satisfies
d
> VOF () > a. (58)
i=1
Otherwise, any element ¢’ € M satisfies
d
> VO F) <a”. (59)

=1
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Step 2: We show only by contradiction because the relation (59) can be shown in the same way.
We choose an element §' € M such that does not hold. We denote the mixture parameters of ¢* and
0’ by n* and 7. Since M is convex with respect to the mixture parameter, 0(n* + t(n’ — n*)) belongs to
M for t € [0, 1].

We denote the one-dimensional exponential subfamily {0 + t(0* — 0)},cxg N © by &;. We define
at) == S V'O FO(n* + t(f — 1%))). We denote the d — 1-dimensional mixture subfamily {#" €
O| %, v, F(0") = a(t)} by M(t). Condition (M4) guarantees that the intersection M(t) N & is
composed of only one element. We denote the element by 6(t). Then, we have

DO +t(n' —n"))lI0) = DT(O(n" + t(n" —n*)6(8)) + D" (O(t)]6). (60)

We assume that ¢ > 0 is sufficiently small. Since does not hold, the formula implies D' (0*|6) —
DE(0(t)||0) = O(t). However, D¥(O(n* + t(n' — n*))||0(t)) = O(t). The combination of these relations
shows that

D (0(n* + t(n' —n"))||6) < D" (6*6), (61)

which yields the contradiction.

6
El
M(1)
9*
M 0’
0
M

Fig. 1. Figure for Step 3 of the proof of Lemma

Step 3: We show the uniqueness of the minimum point and (33) only in the case when a* > b*. We
can show the other case in the same way.
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We define o’ := Zle v'0;F(6). We denote the d—1-dimensional mixture subfamily {¢” € O)| Zle VIO F(0") =
a'} by M’. Condition (M4) guarantees that the intersection M’ N & is composed of only one element.
We denote the element by #. Hence, we have

/ (a) A A
D" (#'|6) =D"(¢'|6) + D" (6])6)
() N .
>D"(0')|6) + D" (6]|6*) + D" (6*|10)
©DF(')6%) + DF(670), 62)

where (a) and (c¢) follow from Proposition |1} and (b) follows from (26]). The relation (62) implies that
DT (0'||0) > D¥(0*||0). Hence, we obtain the uniqueness of the minimum point. Also, implies (53).
Step 4: We show (56) by contradiction only in the case when a* > b* because we can show the other
case in the same way. We assume that (56) does not hold. We parameterize the exponential family &
as {0;} such that 6y = 0 and 6, = 0, = F%)’F(Q). Since 6, € [ M, there is an element ¢, € (0,1)
such that ¢, € OM. Hence, Lemma |1| guarantees that D (6;]|60y) > D (6,]|6o), which contradicts that
6, = 107 (). |

We say that a set of closed convex mixture subfamilies { M },ca covers the boundary M of a closed
convex mixture family M with subsets Ay C A and A € A, := AU{0} when the following two conditions
hold; The relation

OM )y = Uyer, My (63)
holds unless O My, = (). That is, when OM, = (), A, is the empty set. The relation
My & My (64)

holds for two elements A, \” € A,. That is, 0 € A, is considered as the index to express M. Hence, we
define Mg := M.

Also, we define the subset Ay := {\ € A|T\y,..., A\, such that \;;; € Ay, with \; = A\, )\, = N}
In addition, we define the depth D(\) of an element A € A as follows. The depth D(\) of an element A is
zero when A, is the empty set. Otherwise, the depth D(\) of an element A is defined as 1+maxyep, D(X).
Then, the depth of M is defined to be the depth D(0).

Lemma 9: The sets int M) are disjoint, i.e.,

int M, Nint My = () for X # X € A,. (65)
Also, we have

8./\/1 = UXGA nt M,\/. (66)

Proof of Lemma @ We show the following statement by induction for depth D(\); The relations
int M)\/ Nint M)\// = @ for )\, 7£ /\H € A)\. (67)
oM, = Uyea, int M. (68)
The relations and are trivial when D(\) = 0. In the following, we show the relations (67)
and (68) for D(\) = k when they hold for D(\) < k — 1.

The convexity of M, guarantees that M, N M » € OM,0M,» for X', X\’ € A,. Hence, we have
(67). For X' € A,, the assumption of induction implies

8./\/1 N o= U)\//E]\)\/ int M/\// . (69)
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Thus,
OM ) =Uyen, My = Uyen, (int My UIMy)
= Uxea, <int My U ( Uxrex,, int M)\//))
= Uyea, int My (70)

|

Under the above case, the point FS\TZ)’F(H) for 6 € © can be characterized as follows.

Lemma 10: Assume that a set of closed convex mixture subfamilies { M} ca covers the boundary
OM of a closed convex mixture family M with subsets Ay C A and A € A, := AU {0}. We
denote the extended mixture subfamily of M, by M s for A € A,. For § € ©, we define )\, =
argmin{ D" (" (6)[16)| T, "" (6) € int My }. Then, we have ryj’f(e) =177 0).

NEA. 0
Proof: Due to Lemma @, there uniquely exists A € A such that ' M "(#) € int M,,. Then, F(m) ") =
argmin D(6'[|0). Since Lemma [3{ guarantees that argmin D(¢||f) = argmin D" (6'[|0), we have

./\/l

9 cint My, 9 cint My, ey,
I (6) = )" (0).

When A € A satisfies the condition rx;if(e) € int M., we have DF(F(m (0)]16) = DF(0F()]10) <
D¥ (F( i (0)]|0) because F(m) F(#) € M. Hence, we obtain the desired statement. |

III. EXAMPLES OF BREGMAN DIVERGENCE
A. Classical system

We consider the set of probability distributions on the finite set X = {1,...,n}. We focus on d linearly
independent functions fi,..., f; defined on X, where the linear space spanned by fi,..., f; does not
contain a constant function and d < n — 1. Then, we define the C'™ strictly convex function z on R? as
w(0) :==1og(d_,cr exp(zg.lzl 67 f;(x)), which yields the Bregman divergence system (R?, x, D*). When
d = n — 1, any probability distribution with full support on X’ can be written as Fj, which is defined as
Py(z) :=exp g(zyzll 7 f;(x)) —u(@)) . It is known that the KL divergence equals the Bregman divergence
of the potential function y [7, Section 3.4], i.e., we have

D*(0116") = D(Fs|| Por) (71)
for 0 € R?, where the KL divergence D(q||p) is defined as

D(qllp) = Zp (log p(w) — log g(w)). (72)

Examle 1: When d = n — 1, the Bregman divergence system (R? u, D*) describes the set Py of
distributions on X with full support and the KL divergence.

Examle 2: When X is given as X} X X, with n; = |&;|, f; is a function on X} or X», and d = ny+ny—2,
the Bregman divergence system (R¢, i, D*) describes the set Py, x Pa, of independent distributions on
Xl X XQ.

Examle 3: When X is given as X; x Xy x X3 with n; = |X;|, f; is a function on X}, X, or Xy, A3, and
d = ny(ny + nz — 2) + ny — 1, the Bregman divergence system (R, ui, D*) describes the set Py, x,- x;
of distributions on X7 x X, x X3 to satisfy the Markovian condition X; — Xy — Xj.

When the parameter 6 is limited to (,0,...,0) with § € R/, the set of distributions Py forms an

d—1
exponential subfamily. Also, when the linear space spanned by d — k linearly independent functions
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g1, - -, 94—k does not contain a constant function, for d — k constants aq, ..., a4, the following set of
distributions forms a mixture subfamily;
{Pg‘Zgi(I)Pg(x) — g, for i = 1,...,d—k}. (73)
zeX

When we make linear constraints as explained in Subsection [[I-F changing the potential function p in
the way as @D, we can recover (/1)).

For the possibility of the projection, we have the following lemma.

Lemma 11: The Bregman divergence system (R?, i, D*) defined in this subsection satisfies Conditions
(E4) and (M4).

To show this lemma, we prepare the following lemma.

Lemma 12: For (0*,...,097)) e R¢t and ¢ := (¢,..., &) € R, we define

ron i (€) = <Z$€X fa—j(x)exp (Zizl Hifi($)> )

R 74
1(0) © 7

Jj=1

..........

----------

71 C T3 is trivial, we show only the opposite relation. l
Step 1:  Any element in the boundary of the convex full of {(f4—;(x))}_, }zex is written as ( Zi,:l Pifa—; (x2)>
j=1

with extremal points (fy—;(;))’_, with at most [ elements z; € X" and at most [ positive numbers p;, where

i=1,...,0' <l There exists an element &, € R such that max,cy 22:1 & faj(x) = 23:1 & faj(z;) =
1 and Zé‘:l & fa—j(x) < 1 unless (fy_;(x))}_; is written as a convex combination of {(fu—;(z:))}—; }i_;.

For any x;, there exists an element £(z;), € R such that max,c 22:1 §(xi)] fa—j(x) = Zé.:l E(xi)l faj(z:) =
1, 22:1 &(xi) fa—j(z) < 1 for x # x; and z;:1 &(xi) fa—;(xir) > 0 for i’ # i. Then, there exist elements

t; > 0 such that

exp (b Shon oo fas () + X5 07 fi ()
’ i . . = Di-
Sy exp (b, Sl teb oo fug(wn) + S0 09 (o)

(75)

Hence, we have

(o) + zl/jtif(xi,)*) - (zyjpifd_j<xi>)i (76)

=1 -
as t — oo.
Step 2: Conversely, for any ¢ € R!, we can choose at most [ elements 1, ..., 2y € X such that

maxger Yoy & fuj () = 305, & fary(wi) and Y2y & faj(w) < 3051, & fur (i) forw & {wy, ..., xp}.

Then, we have

l

v e (X5 0()
() — < p fj(l'i)) (7
; i1 exp (E?;i 07 f; (l"z")> ’ j=1
as t — oo.

Step 3: We consider the compact set 7(¢) := {7({)} 0., S €if, i (a)=t TOT a large real number
t > 0. The analysis on Steps 1 and 2 shows that the set 7 (¢) approaches to the boundary of the convex
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full of {(fa—;(x))i—;}eex when t approaches infinity. Since map 7 is continuous, the image D(t) of
{¢ € R max ey Zé’:l & f4_j(z) < t} for the map 7 is a compact subset whose boundary is close to
the boundary of the convex full of {(fs—;(x))}; }eex. Therefore, UioD(t) equals the convex full of

{(fa-i(@))j1 }rer.
|

Proof of Lemma 11} 1t is sufficient to show Conditions (E3) and (M3) for any set of vectors vy, ..., v,
where [ = 1,...,d — 1. This fact can be shown as follows. First, we show (E3). For this aim, we choose
an invertible matrix U such that uy_; = v; for ¢« = 1,... . For simplicity, we rewrite El LU u' f; by fj.
Also, we choose (ai,...,a;) € R' such that M(ay,...,a;) is not empty. We show that M(ay, ..., q) is
R, Due to Lemma 12} for (6%,...,097") € R?!, there exists (§4-F1 ... 0%) € R! such that

Y sen fams(@)exp (L, 0 fi(a))

= a; (78)
p(0) ’
for j =1,...,l. The above condition is equivalent to
o
This condition implies the relation M(ay, ..., a;) = R4, Hence, we have Condition (E3).

Next, we show (M3). The relation means that the set Z¢(g,) does not depend on ¢, € © because
the choice of (0*,...,09°!) € R%! corresponds to the choice of 6, € © in the relation (79). Hence, we
have Condition (M3). |

B. Classical system with fixed marginal distribution

We consider the set of probability distributions on the finite set X' x ) with n; = |X| and ny = |Y|.
In particular, the marginal distribution on X is restricted as Px(xz) = p,. We focus on d linearly
independent functions fi,..., fn,_1 defined on ), where the linear space spanned by fi,..., fu,—1
does not contain a constant function. Then, we define the C™ strictly convex function fi on R™("2~1)

as i(0) == Y cx Patte(), Where 1o (0) := log(3 oy exp(3-72) L gle=1(n2=D+i f.(y)), which yield the
Bregman divergence system (R™ (2= 7 DF).

A probability distribution with full support on X x ) with the marginal distribution p, can be written as
Py, which is defined as as Py(z,y) := p, exp ((2"211 gle=D (=4 £ (y)) — Nm(é)). The KL divergence
equals the Bregman divergence of the potential function f, i.e., we have

D" (9]16o)
a'uff x—1)(ng— z—1)(n2— ) n
_Z <89:v . n2)1)+ (fle=Dm2=147 _ gle—Dma—D+y Mz(9)+UI(90))

(PQHPQO) (80)

for § € R<.

Next, we consider the Bregman divergence system (]R"l”?_*l, w, D*) defined in Subsection [III-A| with
Jis -5 faing—1 defined as follows; fi—1)(mo—1)+j(%,¥y) == i fo(y) fori=1,... ,njandj =1,... ,no—1.
frita—1)4i(2,y) = 8;, for i =1,...,ny — 1. We define the mixture subfamily M by the constraint

op
for i = 1,...,n; — 1. We apply the discussion given in Subsection to the mixture subfamily M.
The matrix U is the identity matrix. The mixture subfamily M is parameterized by the natural parameter
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6 = (0*,...,0m"2=1) The function x is chosen as ™ ("2~ D+¢() := 11,.(). Then, the parameter (7, x(f))
satisfies the condition (81). Hence, the mixture subfamily M coincides with the Bregman divergence
system (R™(m2=1) 5 D),

As an extension of Lemma [T} we have the following lemma.

Lemma 13: The Bregman divergence system (R™("2~1 7 D) defined in this subsection satisfies
Conditions (E4) and (M4).
Proof: Condition (E4) holds because the parameter set is R™ ("2~ Since the Bregman divergence
system (R™™2~1 ; DH) satisfies Condition (M4), its mixture subfamily M satisfies Condition (M4).
Hence, (R™"2=Y i DF) satisfies Condition (M4). [ |

C. Quantum system

In the quantum system, we focus on the n-dimensional Hilbert space H [15]. We choose d linearly
independent Hermitian matrices Xy, ..., Xy on H, where the linear space spanned by X;,..., X, does
not contain the identify matrix. Then, we define the C*° strictly convex function z on R? as p(f) :=
log(Tr eXP(ijl 67X;). A quantum state on H is given as a positive semi definite Hermitian matrix p
with the condition Trp = 1, which is called a density matrix. We denote the set of density matrices
by S(H). Any density matrix with full support on H can be written as py, which is defined as as

Po 1= €xp ((Z?Zl 67 X;) — u(@)). It is known that the relative entropy equals the Bregman divergence of
the potential function p [7, Section 7.2], i.e., we have

D*(61/6") = D(pollpa) (82)
for 0 € R?, where the relative entropy D(p||p’) is defined as

D(pl|p") = Tr p(log p — log p'). (83)

Examle 4: When d = n? — 1, the Bregman divergence system (R, ui, D*) describes the set S(H) of
density matrices on H with full support and the relative entropy.

Examle 5: When H is given as H; ® Ho with n; = dim H;, X; is an Hermitian matrices with the form
A® I orI® B, and d = n? + n2 — 2, the Bregman divergence system (R? 1, D*) describes the set
S(H1) ® S(Hsz) of product density matrices on H; ® Ho.

When the parameter 6 is limited to (é,O7 ...,0) with 6 € R, the set of distributions p, forms an

d-1
exponential family. Also, when the linear space spanned by d — k linearly independent Hermitian matrices
Yy, ..., Yy« does not contain a constant function, for d — k constants a, ..., a4, the following set of
distributions forms a mixture family;

{pg TrYipp = a; forz':l,...,d—k}. (84)

For the possibility of the projection, we have the following lemma.

Lemma 14: The Bregman divergence system (R? z, D*) defined in this section satisfies Conditions
(E4) and (M4).

To show this lemma, we prepare the following lemma in a way similar to Lemma [12]

Lemma 15: For (0*,...,097)) e R¢! and ¢ := (¢,...,&") € R, we define

Tr X4 jexp (Zle Hde_i) !
Tr,..., Gd*l)(€> = N(@)

7777777777

(85)

Jj=1
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Step 1: Any element in the boundary of the convex full of {(Tr X4_;p)i_,},ep is written as

I
( Zi/:l pi Tr pz'Xn—l—j> -
and at most [ positive rjlumbers pi, where @ = 1,...,1’ < [. There exists an element &, € R’ such that
max,cp 22:1 ETrpXy ;= 25‘:1 & TrpiXy—; =1 and 22:1 & TrpX4—j < 1 unless (TrpXq_;)i_, is
written as a convex combination of {(Tr p;X4;)}_;}\_,. For any p;, there exists an element £(p;). € R’
such that max,ep Y5 E(pi) TrpXygy = S5 E(pili TrpiXgoy = 1, 30 &(2:)] TrpXy_y < 1 for
p(# p;) € P and Zézl &(x;)l Tr py Xq—; > 0 for i’ # i. Then, there exists elements ¢; > 0 such that

T pexp (L) Sjoy o€ (e X1y + L1 00X
Zi’i/:l Tr pPirr €XP ( 2521 Z;:l tilf(a:i/)le,j + Zj;i 9ij>

with extremal points (Tr PXd—j)é':1 with at most [ orthogonal elements p; € P

= Pi- (86)

Hence, we have
% v
l
T (té(xo) + ; tif(xi/)*> — ( Epi Tr piXd_j) X (87)

Jj=

as t — oo.

Step 2: Conversely, for any ¢ € R!, we can choose at most | orthogonal pure states pi,...,py € X
such that 22:1 Xy jis commqtative with p1, ..., pr, max,cp 22:1 FTrpXaj =358 TrpXa
and Zé’:l &Iy p),(d_j < Z;Zl & Tr p; Xq—;j unless (TrpXy_;)’_, is written as a convex combination of
{(Tr piXa—j)’—, }i—,- Then, we have

v Tr p; exp <Z;l;i 9jXJ'> X > | (88)
)

RIS
i=1 221:1 Tr pir exp (Zj;i 07X j=1

as t — oo.
Step 3: We consider the compact set 7 (t) := {7(5)}\\@@:1ﬁdefj)HI:t for large real number ¢ > 0,
where (X)), is an operator composed of the positive part. The analysis on Steps 1 and 2 shows that the
set 7 () approaches to the boundary of the convex full of {(Tr pX4_;)}_, },e» When t approaches infinity.
Since the map 7 is continuous, the image D(t) of {¢ € R!| ||(Z:§:1 X4 )+ <t} for the map 7 is
a compact subset whose boundary is close to the boundary of the convex full of {(Tr de_j)é-zl}pe’p.
Therefore, U;-oD(t) equals the convex full of {(Tr pX4_;)}_;}pep.

|

Proof of Lemma [[4} Lemma [I4] can be shown in the same way as Lemma [ 1] by replacing the role of
Lemma [12] by Lemma |

IV. EM-ALGORITHM
A. Basic description for algorithm

In this section, we address a minimization problem for a pair of a k-dimensional mixture subfamily M
and an [-dimensional exponential subfamily £ although the paper [2] discussed a similar problem setting
based on Bregman divergence. Here, we employ notations u;, +j» g, ete, for a k-dimensional mixture
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subfamily M and an [-dimensional exponential subfamily £ that are introduced in Subsections and
We assume the following condition;

(BO) The Bregman divergence system (O, I, D) satisfies Conditions (E4) and (M4).
Hence, the minimums mingecg D (0|6') and minge g DF(6]|0") exist. We consider the following mini-
mization problem:;

A [p—— F (6),F — : F /
Cing(M, &) := inf D(0|T¢™ (0)) = inf min D™ (6]|¢"). (89)

The first task is to clarify whether the minimum exists in (89). If the minimum exists, our second task
is to find the minimization point
0" (M, E) := argmin D¥ (4] 17 (6)). (90)
feM
When we define 0,(M, ) := F(ge)’F (0*(M, E)), we have the opposite relation 0* (M, E) = F%)’F(G* (M, E))
because 0*(M, E) achieves the maximum. Hence, we have the relation My, ¢ = &y, 0. If there is no
risk of confusion, 6*(M, &) and 0.(M, E) are simplified to 6* and 0., respectively. If the minimum does
not exit, our second task is to find a sequence of elements {0 (M,E)} in M to achieve the infimum

6* H(t+1) ly) E

(t)
0 >E

Il
E

6. —M Ea(t)—m

o't g
M
6*
e(t+1)

Fig. 2. Algorithms and This figure shows the topological relation among 0., 0%, 6(;11), 0t and 0(+), which is used in the application
of Phythagorean theorem (Proposition |I). Mg, e = Eg=— a1 and M41)_, o are the mixture subfamilies to project 6(e1) and 0U*Y to
the exponential subfamily &, respectively. £ ,) »a1 is the exponential subfamily to project 6 to the mixture subfamily M.

Although the above minimization problem is very common in machine learning and statistics, many
kinds of minimization problems in information theory can be written in the above form as explained in
Section [I} The above minimization asks to minimize the divergence between two points in the mixture and
exponential subfamilies £ and M. Algorithm [1| shows an algorithm to calculate the element 6*(M, &) to
achieve the minimum. This algorithm is called the em algorithm, and is illustrated in Fig. [2] By describe
the m-step in a concrete form, Algorithm [I] is rewritten as Algorithm [2] which follows from (A3) of
Lemma [3

When the mixture family M has to many parameters, the optimization in m-step takes a long time. In
this case, m-step can be replaced by another optimization problem with d — & parameters. This replacement
is useful when k& > d — k.
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Algorithm 1 em-algorithm
Assume that M is characterized by (40). Choose the initial value 61y € &;
repeat
m-step: Calculate 00 = 777 (0)). That is, 64D is given as argmin D¥(06)), ie., the
feEM

unique element in M to realize the minimum of the smooth convex function 6 — D (6]|6)).
e-step:  Calculate 01y := V7 (9¢+D). That is, f;41) is given as argmm DF (D6, i.e., the
ce

unique element in & to realize the minimum of the smooth convex functlon o' — D¥(9¢+D]0").
until convergence.

Algorithm 2 em-algorithm
Assume that M is characterized by (40). Choose the initial value 61y € &;

repeat
m-step: Calculate 04D = T (0. That is, 0D is given as 0 + E;l:kﬂ TJuj, where
(rk+1 ... 79) is the unique element to satisfy
i —
5 (o0 ZT DI oD
for j = k+1,...,d. The above choice is equivalent to the following;
d
(rh ) = i&%mlg F(Q(t) + Z TJUJ> — Z T;ia;. (92)
Fhtl j=k+1
e-step:  Calculate 01y := ['v" (9¢+D). That is, f41) is given as argmin DF (910", i.e., the
ce

unique element in £ to realize the minimum of the smooth convex functlon 0" — DF(9¢+D]0").
until convergence.

The em-algorithm repetltlvely applies the function st)’ ofg | m for an element § € M. Since

the application of F( A ol (e).F |~ monotonically decreases the minimum Bregman divergence from the
exponential family £, when we apply the updating rule (¢+1 = F(m) o F(e) |A(0®), it is expected
that the outcome #®) of the repetitive application converges to 0*(/\/1, £). However, it is not guaranteed
that the converged point gives the global minimum in general [1], [2], [3]. To get a global minimum by
this algorithm, we introduce the following condition for an exponential subfamily £.

(B1) The relation
DF(#')|6) > DT (0" ()| TE (9)) 93)

holds for any 6,6 € ©.
Also, as its weak version, we consider the following condition.
(B1M) The relation

DF(@')|0) > DF (" (9" 1" (0)) (94)

holds for any 6,6 € M.
Then, we have the following theorem.
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Theorem 2: Assume Conditions (B0), (B1M), and supycs D¥(0]|6(1)) < oo for a pair of a k-dimensional
mixture subfamily M and an [-dimensional exponential subfamily 5 Then, in Algorithms [I] and [2] the
quantity DF (9| F(e (0™)) converges to the minimum Ci,¢(M, £) with the speed

DF(EO T (09)) — (M, E) = o 7). ©3)

Also, we have another type evaluation

supge s DT (0]10(1y)

DEOV T (09)) = Cur(M, £) < == — (96)
Further, when ¢ — 1 > 2PeeM DEF(9||9(1)), the parameter A" satisfies
DF (V| P F(00)) — Cie(M, E) < e. (97)

In particular, when the minimum in exists, i.e., 0*(M, E) exists, the supremum supyce DF(0]|0(1))
in the above evaluation is replaced by D* (6*(M, E)|01)).
The proof of Theorem 2] is given in Appendix [C]
To improve the above evaluation, we introduce a strength version of Condition (B1) as a condition for
M, E, and 0 € £.
(B1+) The minimizer * = 0*(M, ) exists. There ex1sts a constant 3(0') < 1 to satisfy the follow-
ing condition. When an element § € ImT{ M "le € M satisfies the condition D (6*[|0) <
DT (0,]|¢'), the relation

B(8") DT (6*]|6) > DT (6.| T (9)) (98)

holds.
Then, we have the following theorem.
Theorem 3: Assume that Conditions (B0) and (B1+) hold for a pair of a k-dimensional mixture subfamily
/\/l an [-dimensional exponential subfamily £, and 6’ = 61y € £. Then, in Algorithms|l| I andl 2, the quantity

DF (W 1y % F( ®))) converges to the minimum Ci,¢(M, ) with the speed

DFOO TE(0D)) = Coar(M, ) = B(01)" DT (0. ]101))- (99)
Further, when ¢ — 2 > log Dfl(f; g@(g()l));loge’ the parameter 0 satisfies
DT (OO Y (01)) — Ciap(M, E) < e. (100)

The proof of Theorem [3]is given in Appendix D}

In fact, it is not so easy to find 0y to satisfy Condition (B1+). However, when we apply Algorithm
0(+) becomes close to 6, with sufficiently large t. When 6,y € £ belongs to the neighborhood of 0,
Condition (B1+) holds by substituting ¢y into ¢;) so that Theorem [3| can be applied with sufficiently ¢.
That is, once ;) € £ belongs to the neighborhood of 6., we have an exponential convergence.

Further, it is not easy to implement e- and m- projections perfectly, in general. Hence, we need an
alternative algorithm instead of Algorithms [I] and 2] Now, we consider the case when only e-step can be
perfectly implemented and m-step is approximately done with e error. Examples of such a case will be
discussed later sections. Algorithm (1| is modified as follows.

Then, we have the following theorem.

Theorem 4: Assume Conditions (B0), (B1), and the existence of the minimizer 0* = 6*(M, £) in (90)
for a pair of a k-dimensional mixture subfamily M and an /-dimensional exponential subfamily £. In
addition, we define the set & := {0 € £|D¥(0,0) < D¥(6.]|61))} C €.
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Algorithm 3 em-algorithm with ¢ approximated m-step in the mixture subfamily M
Assume that M is characterized by (40). Choose the initial value 61y € &;
repeat

m-step: Calculate 0%+, That is, we choose an element 1) € M such that

DF (0 [8y) < min (D" (6 81y), min D" (0]6) +<). (101)
where DF(0W]|6,)) is defined as oco.
e-step: Calculate 0,1y := T F (90D, That is, Ot+1) is given as argmin D (9¢F1)|¢"), i.e., the
o'es

unique element in £ to realize the minimum of the smooth convex function ¢ — D (9¢+1)]|0").
until convergence.

Then, in Algorithm |3 I the quantity DF (6@ || P{F(8®)) converges to the minimum Ciy(M, &) with
the speed

DF(Q(t+1)H F(ge),F<(9(t+1))) — Cint(M, E)
D¥(0,]|0
< ( t|| ) + 294/ DF(0.]100))e + (7 + De. (102)

2D (0.,1116(1)) 2
E/

where v := 7(&|E). Further, when ¢t > +1 and € < 1512 DF . 100)° the parameter /(")

satisfies

DFOV T (09)) — Crp (M, E) < €. (103)
The proof of Theorem [{] is given in Appendix [E|

Algorithm 4 em-algorithm with ¢ approximated m-step in the exponential subfamily
Assume that M is characterized by {0). We choose two parameters €; < €5. Choose the initial value

0(1) - g;
repeat
m-step:  We choose 6*) € M and 0¢+V) = 6, + >0, | m3u; such that
d
F(H(t)—i— Z Tguj) — Z Tgaj
j=k+1 j=k+1
d
< min_ F< Z ﬂuj> - Y Fa e (104)
""" =kt j=k+1
and
D09 < e, (105)

e-step: Calculate 04 1) == F‘(‘:e)vF(e_(tJrl)).
until t =¢; — 1.
final step:  We output the final estimate 9}(31 02 ¢ M by using t, := argmln DF (0 ( (t)H(g(t—l)) _

preoygey. T !

Since m-step has two conditions, Algorithm (4| seems complicated. This step can be realized as follows.
The condition (104) simply shows the error for the minimization of the convex function F<0(t) +
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Z;l:k T %juj> — Z;l:k .17 a;. The condition (T03) is related to the choice of §**1) € M. As one

possible choice, we choose #+1) as follows. Next, we choose the element x/° by solving the equations

d
ul, (e (8+) +Z Joa@F0) 37 wind) = ay (106)

j=k+1

for j' = k+1, ..., d. Then, we choose the element §**+1) by n;(4*+1) = 7;(A+D) 4377 Z ey i (00 “))ué,/{j/

forj =1,...,d.If 01*+Y does not satisfy (T03), we retake 6+ such that the value F <H(t +3¢ ka1 TAU;
Zj ft 1 7Ja; is smaller than the previous one.

In this way, the m-step of Algorlthml requires the approximate calculation of the minimum minge ¢ D (0 164))
which can be done as the convex minimization with respect to the mixture parameter in M. However, this
minimization needs to handle d — k parameters. If k < d — k, the alternative minimization given in (92))
has a smaller number of parameters. As an approximate version of Algorithm |2 we have Algorithm

Indeed, if we can calculate the derivative of the convex function F<9(t) + Z;l:k i Tu; ) — Z?Zk +1 aj,

we can employ algorithms explained in Appendix [Al
In Algorithm {4 we use the relation

P (00) = (), (107)

In fact, the point Fée)’F(G(t+1)) is characterized by the intersection between the exponential subfamily
£ and the mixture subfamily whose mixture parameters 7;,...,7; are fixed to n;(9¢+D), ... n(0¢+D).
Hence, the above relation holds.

Then, we have the following theorem.

Theorem 5: Assume Conditions (B0), (B1), and the existence of the minimizer 6* := 0*(M, £) in (90)
for a pair of a k-dimensional mixture subfamily M and an [-dimensional exponential subfamily £. Then,
in Algorithm ] we have

DF<0(t+1),* Hé(tﬂ)) < (108)

Ju; by using (¥, ... 74) := argmin F(@(t)+

) Tk
7——k+1 ..... 7——d

Z;l:k a7 uj> —Z;.l:k 1 T a;. Also, the quantity D (9?1) | Fée)’F(G;tl))) converges to the minimum Ci,¢(M, £)
with the speed

fort =1,. —1, where 01+1)* is defined as Q(t)+2?:k+1 T

DFOMTE T (00) — Ciar(M, E)
1
1DF(9*||9(1)) + €1 + €. (109)

1 —

The proof of Theorem [5 is given in Appendix
Considering Taylor expansion, we have

/—Zu,m (Oto—1) + Z TIu;)

j=k+1
d
= (i () +ZJM )N (e - 7)) (110)
j=k+1
for / =k-+1,...,d. Hence,
K (1] —77) (111)

*
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Using (29), we have
1 d d d d '
DF (92)*||§t2)) = 5 ZZ Z Z T (002l (73" — 7Yl (71 — 7). (112)

Using (29), we have

44 d d d
g% Z Z(J(é(tz))*l)jaj Z Jﬁ(é(”))uj.—//if Z Z Jj,i(g(h))u;’“j/

J=1 j=1 i=1 j'=k+1 i=1 j'=k+1

d d d d
:%ZZ SN J0ul el s (113)

j=1 =1 j'=k+1i'=k+1

Combining (108), (113)), and (112), we have
DF(0"))01%2)) < e (114)
Therefore, (109) is rewritten as

DF(@gctl)” F‘(‘:e),F(e;m))) . Cmf(M,g)
1
t1 —1

< D (0,11001)) + 2€;. (115)

3D¥F (6,16 .
Hence, when t; — 1 > M, and ¢ < §, the parameter 01 satisfies

DO TEOT(01)) = Cue(M, ) S e (116)

B. Closed convex mixture family

In this section, we address a similar minimization problem for a pair of a k-dimensional closed convex
mixture subfamily M and an [-dimensional exponential subfamily £ under the following condition (BO).
That is, we discuss a closed convex mixture subfamily instead of a mixture subfamily M while we consider
an exponential subfamily £. Under this condition, we employ the same e-projection I‘(ge)’F defined in
Lemma (7| as in the previous subsection, but, we use the m-projection FS(/I”)’F defined in Lemma [8] Hence,

we consider Algorithm [5 instead of Algorithm 2]

Algorithm 5 em-algorithm with closed convex mixture family
Assume that M is characterized by the mixture parameter 7. Choose the initial value 6(;) € £;
repeat

m-step: Calculate 7"*!). That is, n*) is given as argmin D” (67 (n)[|fs), i.e., the unique
NEEM

element in M to realize the minimum of the smooth convex function 7 > D* (gbxj) (M10))-
e-step: Calculate 04y = F(;)’F(qﬁs\’j)(n(t* U)).  That is, 0y is given as

aregn;inDF (¢<ﬁ>(n<t+1>)\|9'), i.e., the unique element in £ to realize the minimum of the
‘e

smooth convex function 6’ — DF ({7 (nt1)]|¢").
until convergence.

When the boundary M is composed of a finite number of closed mixture families, due to Lemmas [3]
and Algorithm |5| can be simplified to Algorithm @ because Lemma (10| guarantees that F%)’F(ﬁ(t)) is
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Algorithm 6 em-algorithm with closed convex mixture family whose boundary is composed of finite
number of closed mixture families
Assume the following conditions; A set of closed convex mixture subfamilies { M} ca covers the
boundary OM of a closed convex mixture family M with subsets Ay C A and A € A, := AU {0}.
Each closed convex mixture subfamily M, is generated by the constraint by Z?Zl u; ZOIF(0) = aj
for j = ky+1,...,d for A € A,. Choose the initial value 6,y € &;

repeat
m-step: Calculate 0+ = I‘%)’F(G(t)) in the following way. For A € A,, we calculate §¢+1* s
given as 6 + Z?ka L1 Ty, where (TRATEA 0 74A) s the unique element to satisfy
P d
5 EAF(Q@) + Y T]’)\Uj> — 0, (117)
T j=kx+1

for j = kyx+1,...,d. We set 01 as 9120 where

Ao = argmin{ D¥ (9D 0.,))|0" TV € M. (118)
AEA.
e-step:  Calculate 0,1y := 5" (9¢*D). That is, f,.1) is given as argmin D¥ (0D 0'), ie., the
=

unique element in € to realize the minimum of the smooth convex function ¢ — DF (9(¢+1]|9").
until convergence.

given as F( ) (6(t)), where we denote the extended mixture subfamily of M, by M, for A € A,, and

Ao is given in @

Then, in the same way as Theorem 2] we have the following theorem.

Theorem 6: Assume Conditions (B0), (B1), and supycs D¥(0||0(1)) < oo for a pair of a k-dimensional
closed convex mixture subfamily M and an [-dimensional exponential subfamily £. Then, Algorithms
and [0l have the same conclusion as Theorem [2l

Also, in the same way as Theorem 3| we have the following theorem;

Theorem 7: Assume that Conditions (B0O) and (B1+) hold for a pair of a k-dimensional close convex
mixture subfamily M, an [-dimensional exponential subfamily £, and ¢’ = 6(;) € £. Then, the quantity

DF (90| F (7 (9®)) converges to the minimum Ciy¢(M, E) with the speed

DFOV T (1)) = Clar(M, €) = B(00)" > D" (0.]|61)). (119)
Further, when t — 2 > log DTO(Z*BH(Z((?)))_ME, the parameter A" satisfies
DF (OO 1S (01)) — Clag(M, E) < e. (120)

Theorems [6] and [7] are shown in Appendix

When we need to care the error in the m-step, as an error version of Algorithm [5| we have Algorithm
in the same way as Algorithm [3]

Then, we have the following theorem.

Theorem 8: Assume Conditions (B0), (B1), and the existence of the minimizer 6* := 6*(M, £) in
for a pair of a k-dimensional mixture subfamily M and an /-dimensional exponential subfam11y E. In
addition, we define the set & := {0 € £|D"(6,]|0) < D¥(0.]|61))} C € and 0, := Fg ¥(6*). Then,
Algorithm [7) has the same conclusion as Theorem [4]

Theorem [§] is shown in Appendix

When k < d — k, we need an alternative minimization for the m-step for Algorithm [7|in a way similar
to Algorithm ] However, although we can consider a modification of Algorithm [f] in a way similar to
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Algorithm 7 em-algorithm with ¢ approximated m-step

Assume that M is characterized by the mixture parameter 7. Choose the initial value 6(;) € £;
repeat
m-step: Calculate n**Y. That is, we choose n(**1) € M such that

DF(#“*V]|6) < min (DF(WH@(t))?gliAIAl D" (0]|6) + 6), (121)
S

where D (0W]|6y)) is defined as oco.

e-step: Calculate 04y = (ngM( (1)), That is, 6y s given as

argmin D¥ (¢5\T)(77(t+1))”9/), ie., the umque element in & to realize the minimum of the
'ce

smooth convex function 6 — DF ({7 (nt+1)]|¢").
until convergence.

Algorithm 4} it is not so easy to evaluate the error or the modified algorithm. Hence, to take into account
the error in the m-step, we propose another method to modify Algorithm [6] as Algorithm

Algorithm 8 em-algorithm with € approximated m-step in the exponential subfamily
We assume the same conditions as Algorithm [6} We denote the extended mixture subfamily of M, by
M, for \ € A,
Ist-step: For A\ € A,, we apply Algorithm[4]to the pair of the exponential subfamily £ and the mixture
subfamily M. As the result w1th t 1terat10n we denote the number ¢, in this appl1cat10n of Algorithm
I by t5(A). Then, we denote ), §2(V) "and 6,y —1) in this application by §(t2(A):A §t2(0):A “ang
O(t2(0)—1),1, TESpECtively
2nd-step: We output the final estimate 9( = gt2(2)) Ao e M, where

Ao = ar)\grll\lin {DF (9(t2(/\))’)\H‘g(tg(A)—l),/\> ’9(1&2()\)),)\ c M}\}. (122)
€A

To evaluate the error of Algorithm [§] we prepare the following lemma. Therefore, using Theorem [3]
we obtain the following theorem for the error evaluation of Algorithm [§

Theorem 9: Assume the same assumption as Algorithm [8| and Conditions (B0) and (B1) for £. Also,
we assume the existence of the minimizer 6* := 6*(M,, ) in for A € A.. Then, in Algorithm (8} the
quantity DF (Q(t)“ F(e)’F(Q(t))) converges to the minimum Ci,¢(M, £) with the speed

DFOY T (01)) — Cag (M, €)

<(D(0) + 1) &réé}\x(t ! DF(G*(MA,E)HQO))—1—61+DF((‘)(“(A))’A|]0_(t2(A))’A)>. (123)
* 1 —

Notice that D()\) is defined before Lemma [9]
The proof of Theorem [9is given in Appendix

V. CLASSICAL RATE DISTORTION
A. Classical rate distortion without side information

Let X :={1,...,n1} and YV := {1,...,ns} be finite sets. We call a map W : X — Py, a channel from
X to ). We denote the set of the above maps by Py x. We use the notation W, (y) := W (y|x). For g € Py
and r € Py, W-q € Py, Wxq € Pxxy,and gxr € Pxyy are defined by (W-q)(y) := >, W(y|z)q(z),
(W x q)(z,y) := W(y|z)q(z), and (¢ x r)(z,y) := q(z)r(y) respectively.
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Given a distortion measure d(x,y) on X x ) and a distribution Py on X, we define the following sets;

Py =W e Pya| S dley)W x Px(e,y) = D} (124)
reX yey
Pt = {w e Pm‘ S dl,y)W x Py(r,y) < D} (125)
zeX yey
We define d(z,y) as
d(x,y) == d(z,y) — d(z,n2), d(x,ny) :=0 (126)
forx € X and y = 1,...,ny — 1. Then, the condition
> d(w,y)W x Px(x,y) <D (127)
reX yey
is equivalent to
> d(z,y)W x Px(x,y) < D= Px(z)d(z,ny). (128)
zeX ,yey rzeX

Hence, for simplicity, we assume that d(x,ns) = 0 in the following. Also, we define the vector d =
(d;)™7Y as d(@—1)(na+1)+y = d(i,j) forz € X and y =1,...,ny — 1.

j=1
The standard rate distortion function is given as
min [(X7Y)W><PX = min D(WXP)(“(WP)()XP)()
WEP;"I;X b= Wepj;ll;x s
— i in D(W x P Px). 129
L 129
In the following, we use the notation W, := argmin I(X;Y)wxpy.
WGP;’@X o=
When there exists a distribution )y on ) such that
> Px(2)Qy(y)d(z,y) < D, (130)
T,y

the above minimum (129) is zero. The existence of )y to satisfy the condition (I30) is equivalent to

mindy (y) < D, (131)
v

where dy (y) == > . Px(x)d(z,y).

Then, we consider the Bregman divergence system (R™ (2= 7 D) defined in Subsection [[II-B, which
coincides with the set of distributions W x Pyx. The set of distributions ¢ x Px forms an exponential
subfamily £, and the subset Pj‘i"ix’D x Px forms a mixture subfamily M.

Then, we have the following theorem.

Lemma 16: When (I31)) holds, min __ary.0,< I(X;Y)wxp, = 0. Otherwise,

WEP)}\X
min  I(X;Y)wwp, = min  I(X;Y)wxp
wepl s T o
= min min D(W X Pxllqg x Px). (132)

d,Px,D gePy
WGPMX

Proof:  The first statement has been already shown. We show the second statement by contradiction.
Assume that (13 1)) nor the first equation in (132)) does not hold. We define )y; as Qy1 X Px = I‘ée)’“ (W, x
Py).
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Since Q)y;1 X Px does not belong to Pf,@x D% , applying (56) in Lemma (8| to the closed convex mixture

subfamily Py "=, we find that T'\¢"" (Qy,1 x Px) = L'\ o ¥ (W. x Px) belongs to Py . We
choose W, such that (1, X Px) = (m) # (Qy1 X Px). Hence, we have

I(X;5Y)w,xpy =D(Wi x Px||Qy X Px)
>D(Wh x Px||Qy1 x Px) > I(X; Y )w, xpy, (133)

which contradicts W, = argmin  I(X;Y)wxpy. |
WE,P(i PX D,<
Due to Lemma [16] when (131] - ) does not hold, it is sufficient to address the minimization (132). In the
following, we address the minimization problem (132), which is a special case of the minimization (89)
with the formulation given in Subsection The mixture family M has n;(n, — 1) — 1 parameters.
Since the total dimension is n;(ny — 1), we employ Algorithm [2| instead of Algorithm |1} Since Lemma
guarantees Condition (B0) for this problem, Algorithm [2] works and is rewritten as Algorithm [9]

Algorithm 9 em-algorithm for rate distortion

Choose the initial distribution Pi(/l) on ). Then, we define the initial joint distribution Pxy, (1) as PS) X
Px;
repeat )
m-step: Calculate P as PUTY (2, ) := Py () P (y)em@w) (Z PP (y)e fd(z’y')) , where 7
is the unique element 7 to satisfy

8TZPX log<ZP Td“’):D (134)

This choice can be written in the way as .
e-step: Calculate Pgﬂ)(y) as .oy P)((t;rl (x,y).
until convergence.

To check Condition (B1), we set § and &' be elements of R™"2~! corresponding to W x Py and
W’ x Py in the sense of the Bregman divergence system (R™ ("2~ i DF) defined in Subsection [III-B
Then, the relation

DR O TE"(0)) = D((W' - Px) x Px[|(W'- Px) x Px)
=D(W'"- Px|[W'- Px) < D(W' x Px||W' x Px) = D"(¢|0) (135)
guarantees condition (B1). When the initial value () is chosen as the case that W has full support,

supgege DF(0)|6(1)) has a finite value. Hence, Theorem@ guarantees the convergence to the global minimum.
Now, we set 6’(1) to be the product of Py and the uniform distribution on ). Then, we have

D*(0.]101y) < sup D*(0]|0)) = log na. (136)
feM
Hence, the inequality is rewritten as
1
[X5Y)po —  min I(XGY iy < - (137)
XY Wep;"};an’f t - 1

In particular, when ¢ > log% + 1, the above value is bounded by e.

The original problem (132)) is written as a concave optimization with respect to ny(n, — 1) mixture
parameters because the mutual information is concave with respect to the conditional distribution. Although
our protocol contains a convex optimization in m-step, the convex optimization in m-step has only one
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variable. Therefore, our method is considered to convert a complicated concave optimization with a larger
size to iterative applications of a convex optimization with one variable.

Next, we consider the case when we cannot exactly calculate the unique element 7 to satisfy (134). Alter-
natively, we need to use e approximation for the solution. We employ Algorithm 4] which requires to solve

the minimization of the one-variable smooth convex function F[Py](7) := 3. Px(x)log ( >, Pry)et? _d(Ly)))) :
That is, it is needed to find the minimizer 7,[Py] := argmin F'[Py](7).

To consider this minimization, we focus on the one-parameter exponential subfamily Px y|,[Py](x,y) =

Py(x) Py (y)em(P—d(@v))

S Py (y)e D@ The first and second derivatives are calculated as
Yy

%F[Py](T) =Epy (o) [D — d(X,Y)] (138)
da .
WF[PY](T) =Epy y, i) [(D — d(X,Y))*] —=Ep, 1o [D — d(X, Y] (139)
Defining ¢, := max,, |D — d(x,y)[*, we have
a? .
WF[PY](T) < (- (140)
The condition (140) guarantees that
. . d - 1
F[Py]() < F[Py])(0) + %F[Py}(O)T + 5@# (141)

for 7 > 0. To solve min, F[Py|(7), we employ the bisection method explained in Appendix Since
(T31)) holds, the relation Ep, . p, [d(X,Y)] > D, ie., LF[Py](0) < 0 holds for any distribution Py.

> dr
; 2= FIPy](0)
Hence, %F[Py](—%) > 0.

For the application of the bisection method, we consider the following condition for the convex function

A

FlPy](r);

d—QF[Py] (1) > ¢_ for 7 € [0, 7. [Py]]. (142)

dr?
) .. -4 F[Py](0)
Since the condition (142) guarantees 0 < 7,[Py| < —‘“T

L
Algorithm |15| with ¢ = 0 and b = —M. Under the condition (142)), we have

FIPA0) = FIR(RIR) < ~ 2 FIRIOR R < (- FIAI0) (143)

, we can apply the bisection method,

_ T

We choose the estimate 7;[Py] as by of Algorithm |I5] which requires & iterations. Then, we have
L ['[Py]([Py]) > 0. The relation (202) guarantees that

F(Py)(r[Py]) — F[Py](.[Py])

<5 max (FIRIO) = FIRIIR), PR E ) - PR riR)
S213—1 max <<i_ <%F[PY](O)>2,
= (GEIPA) + S FIP0) _EFC[PY](O) + 56 (_EFC[PYKO)Y)
Lod, ¢,
=5 (= F1PY]0) o (144)
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The relation (204) guarantees that

Iy
0 < 7[Py] — m[Py] < —2—1k—dTF[fY](O). (145)
Hence,
R P (0
o< L FR iR < - O (146
We can choose [Py] = 0 as 0 = (1 —&[Py])Epy o ip[D = d(X,Y)]+ K[y ]Epy cpy [D—d(X,Y)].
Then,
L F[Py](i[Py]) LEPY(mlPY]) ¢
0 < k[Py] _dr / <4 - < . (147)
VT EEFRImIB]) - £ERI0) T —£FRI0) 2
Then, we choose Pxy i[FPy] as follows.
Pxy[Py] = (1 = 6[Py]) Pxy|r[py)[Py] + &[Py]Px x Py. (148)
Since
D(Py x Px||Px.y|np[Py]) = F[Py)(m[Py]) — F[Py](0) — %p[PY](U)Tk[PY]
i ~ 2
<~ L pp)min < ESBI0) (149)
dr (_
we have
D(Pxy[Py]|| Pxym 1 [Pr])
<(1 = k[P ]) D(Px y r [Py [PY | P y o] [P ]) + [Py ] D(Px % Py || Px y|n,py) [ Py])
=k[Py]|D(Px X Py| Pxy|rpy[Py])
4 I Py(0)) .
<k[Py] (i [CY]( ) < 2522 (— F[P 1(0))%. (150)
Given € > 0, we choose k as
’ d - 2<+ ! C—?— /
k[Py,¢] = log, (<%F[Py](0)> C_E> ~log, ¢ < log, <C_3> ~log, €. (151)
The relations (144) and (T50) guarantee
F[Py](m|Py]) — F[Py|(m.[Py]) <¢ (152)
D(Pxy k[ Py]|| Px,vimpy][Py]) <€ (153)

Combining the above discussion for the bisection method and Algorithm [ we obtain Algorithm [I0]
Since € is chosen as €/2 in Algorithm and the conditions (BO) and (B1) hold, Theorem |5 guarantees
the precision (109) with ¢; = €5 = ¢/3. For its calculation complexity, we have the following lemma .
Lemma 17: Assume the conditoins (_ = O(1), (142), and {, = O(n3). We choose Pf/l) as the uniform
distribution on Y. To guarantee

I(X; Y)P(t) —  min  I(X;Y)wxp, <e, (154)

d,Px,D,<
WGPMX

(nlng log na (

Algorithm m needs calculation complexity O log, ny + log, €)).
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Algorithm 10 em-algorithm for rate distortion

Choose the initial distribution Pi(/l) on Y. Then, we define the initial joint distribution Pxy,(1) as Pi(,l) X
Py;

repeat ~
m-dstgpzm Calculate P)(f;rl) and P)((t;ﬁl) as follows. We apply Algorithm (15| with a := 0 and b :=
240

with k = k[P}, §] iterations; We choose P{Y" and P{Y" as Py yir,in[Py] and
Py x[Py], respectively.
e-step: Calculate P,(/tﬂ)(y) as >y p)((f;;l)(x’y)'

until £t = ¢, — 1.

final step: We output the final estimate P)(f;) §i= P)(g/) € M by using ¢, := argmin D(P)(Q/HPX X
’ t=2,...t1

—1 —
PEVY = D(PO PG,

Proof: Each iteration in the bisection method needs calculation complexity O(niny). Each application
of the bisection method has O(log, ns + log, €) iterations. Hence, one application of the bisection method
has O(nyny(log, no + log, €)) calculation complexity.
Since D(6,61) = D(W, x Px||Py x Px) < logns, the number ¢; = %62 4 1 satisfies
1
t1—1

Since €; and €, are chosen as € = €3 = ¢/3 in Algorithm the RHS of (109) is upper bounded
by €, which implies (I54). In this case, the calculation complexity of Algorithm |10 is (29872 4 1) .
O(nina(logy ns + logy €)) = O(M1221812 (1o, 1, + log, €)).

Next, we compare Algorithm [I5] and a simple application of accelerated proximal gradient method
whose performance is evaluated as (208)). In this application of accelerated proximal gradient method, we
treat (X;Y)wxp, as a convex function for the mixture parameter, which is composed of (ny — 1)n,

1
parameters. In this case, L in (207) is ¢? and ||z¢ — 2.||* in (208) is O((ny — 1)n;). Hence, to achieve the
111
same precision as (T34), the number of iteration is O(n3nf({1). Each iteration has calculation complexity
303 1 3
O(niny). Hence, in total, this method has calculation complexity O(n3ni () = O(tn3n}). This is larger
than the calculation complexity given in Lemma
Remark 1: Next, we see what Blahut algorithm [5] solved in the relation to (129). For this aim, we

focus on the function f(D) := minWEP;,‘iX,D I(X;Y)wxp, Instead of f(D), using Lagrange multiplier

To, Blahut [5]] focused on the minimization

min 70D + I(X;Y)wxpy — 7o Z d(z,y)(W x Px)(z,y). (156)

WePyix reX yey

D(6.]|61) < § (155)

When -% f(D) = 7o, the minimum equals f(D). However, finding such 7y is not so easy. The
algorithm to find such 75 was not given in [5]. The algorithm by [5] to solves (I56) is the same as
Algorithm [9) with replacing 7 by 7. That is, his algorithm does not consider the condition (134)). Attaching
the condition (134), our algorithm guarantees the following constraint condition (157) in each iteration.

> d(x,y)Pyix x Px(z,y) = D. (157)

reX,yey

The algorithm by [5] has calculation complexity O(Miogm). While our algorithm has the additional
factor — loge, this factor can be considered as the additional cost to satisfy (157).
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B. Numerical analysis for classical rate distortion without side information

To see how our algorithm works, we make numerical analysis for the case when n;y = ny, = 3 and
D = 1.5. We choose the cost function d as

d(1,1) d(1,2) d(1,3) 01 2
d(2,1) d(2,2) d(2,3) =112 0], (158)
d(3,1) d(3,2) d(3,3) 3 01
and the distribution Px as
Px(1) =0.5, Px(2) =0.3, Px(3)=0.2. (159)

We set the initial marginal distribution PX(/I) to be the uniform distribution. By applying Algorithm @, the
mutual information /(X;Y) p(t) converges to
XY

I(X;Y)ps. :=0.100039, (160)

*
PXY

and the conditional distribution Px(/?x converges to

0.0855598 0.188594 0.430983
Pyy = 0.22431  0.494433 0.139579 | . (161)
0.69013  0.316974 0.429438

In particular, the marginal distribution P)(,t ) converges to

0.185555
Py = 0.288401 |. (162)
0.526045

Also, the parameter 7 appearing in Algorithm [9] converges to 0.522814. Fig. 4] shows the behavior of the
parameter 7. In addition, Fig. '3 shows that the error I(X;Y) — I(X;Y)ps . is much smaller than
(137)

the upper bound given in

Q)
P XY
, which suggests the existence of a much better evaluation than (137).

C. Another approach to classical rate distortion without side information

To see the exponential decay, we discuss another approach to classical rate distortion without side
information. To apply Theorem (3|, we need to satisfy Condition (B1+) holds. For this aim, we apply the
model given in Section to the case when X is X x ). Then, we consider the Bregman divergence
system (R™™2~1 1 DI given in Section The set of distributions ¢ x Px forms an exponential family
& and the set of distributions W x Py forms a mixture family M. Hence, the minimization problem (129)
is a special case of the minimization (89) with the formulation given in Subsection [[V-B

Since the mixture family M has ni(ny — 1) — 1 parameters, and the total dimension is nins — 1,
Algorithm [2] is rewritten as Algorithm [I1] In this case Conditions (B0) and (B1) hold in the same way
as Subsection [V=Al

The m-step in Algorithm |11] has ogatimization with n;-variable convex function

log (Z%y/ Pxy, (@', y )eTe t10d@y") ) However, this case can satisfy Condition (B1+), which leads the

exponential decay as follows. That is, the above evaluation for the convergence can be improved by

using Theorem , i.e., the same precision (100) can be realized with ¢t — 2 > %‘ In fact, when

an element @’ close to 6* satisfies Condition (B1+), the iterated point #() converges to the true value
exponentially after the iterated point () is close to the true value.

In the following, we discuss a necessary condition for (B1+) with an element ¢ close to #*. When two
elements are close to each other, the divergence can be approximated by the Fisher information. Hence,
we consider the Fisher information version of (B1+). For this aim, we consider the exponential family
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Fig. 4. The behavior of the parameter 7 depending on the number of iteration ¢. The green points show the parameter 7 in algorithm (J).
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Algorithm 11 em-algorithm for rate distortion

Choose the initial distribution Pi(/l) on Y. Then, we define the initial joint distribution Pxy,(1) as Pi(,l) X
Py;
repeat

m-step: Calculate P)((t;l) as P)((t;l)(x, y) := Pxy ) (x,y)emFod@) ( > ary Pxvi (2, y’)efw’ﬁod(x/’y/))

where (7,).ex and 7 are the unique elements (7, ),cx and 7y to satisfy

a s
or, (zy: Py (', /)70 = P (o) (163)
8 s

for x € X \ {ni} and 7,, = 7,, is fixed to 0. This choice can be written in the way as (92).
e-step: Calculate Pyy, ;11) as Pl(/tﬂ) x Px where P,(/tﬂ)(y) =D iex P)((t;il)(:c,y).
until convergence.

{Py,y} defined in Subsection [III-A| with d = ny — 1 by replacing X by V. Let Jy; and Jy o be the Fisher
information matrices of {FS\TZ *(Ppy x Px)} and {Fée)’“ ofs\’/[”)’“(Pg’Y x Px)}. We choose #* € R™m2-!
corresponding to FS(Z)’“ (Poz.y x Px) in the sense of the Bregman divergence system (Rmm2=1 0y DM

given in Section The local version of Condition (B1+) is written as
Bos1 = Joz 2 (165)

with a constant 0 < 3 < 1. In this case, when the iterated point 6®) is close to the true minimum point,
the difference D' (6®)|| F‘(f)’F (0®)) — Cint (M, &) approaches to zero exponential rate log 3~!. Therefore,
our algorithm has such an exponential convergence at the neighborhood when the inequality

52 (166)

0>

Jgg,l > Jy
holds, i.e., J9571 — Jggg is strictly positive-semidefinite.
Then, we have the following theorem.
Theorem 10: The matrix Jp; — Jpo is a strictly positive semi-definite matrix when the linear space
spanned by the distributions {Wjy , }.cx has dimension at least n, as a function space on ).
Therefore, when the condition for Theorem [I0] holds, Algorithm [I1] has such an exponential convergence
at the neighborhood.

Proof of Theorem ' To show Theorem we define the parametric family {Pxyg,}o, with 6 =
(0927 and 7 = (7)1, as

Pyy (y) Py (x)eZio oilow)r
>y Po (i) Py (a')eZido o)’

PXY,@,T(x7 3/) = (167)

where g¢;(z,y) = d;, and go(z,y) = d(z,y). We define the Fisher information matrix Jy,3 of the
parametric family { Pxy,,}o . We define the channel Wy from &X' to ) as Wy x Px = I‘SC?)’“ (Pyy x Px).
Also, we choose 7(0) as Wy x Px = Pxvy 7). In the n; +ny —1 dimensional vector space, we denote the
projections to the first no — 1-dimensional space corresponding to ¢ and the latter n;-dimensional space
corresponding to 7 by P, and P, respectively.

Then, Theorem [I0] follows from the following two lemmas.

Lemma 18: The relation Ker Py Jy (9 3P1 = {0} holds when the linear space spanned by the distributions
{Ws.+}zex has dimension at least ny as a function space on ).

-1

b
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Lemma 19: The matrix Jy 1 —Jy 2 is a strictly positive semi-definite matrix if and only if Ker Py.Jp - (9) 31 =
{0}.
Lemmas [18| and [19] is shown in Appendix [ |
Remark 2: Now, we can explain why we cannot show Condition (B1+) for Algorithm [9] in the above
method. If we apply the same discussion to Algorithm [9] the projection P, is the projection to the one-
dimensional space. Hence, the condition Ker P.Jy (9) 31 = {0} does not hold unless ny = 2.

D. Classical rate distortion with multiple distortion constraint without side information

Recently, the paper [13, Theorem 1] considers a rate-distortion problem motivated by the consideration
of semantic information. That is, it considers two sets X’ and S in addition to the set X, and focus on
two distortion measures ds(z, 5) and da(z,2) for z € X, 2 € X and § € S. Then, we define the following
set for channels W : X - X x S as

Pda,ds,PX:Da:DS:S
XxS|X

~fw

The paper [[13, Theorem 1] addresses the following minimization problem;

i AXGX Swry (169)
XxS|x

> di(x,#)W x Px(x,2,5) < D for i = a,s}. (168)

zeX, se8,8eX

weP

For its generalization, we consider a set ) and m distortion measures d;(x,y) for x € X,y € ) and
1=1,...,m. We define the following set for channels W : X — ) as

’P(C‘ll):ll7PX7(D1)le7§
V|xX

;:{W

Then, the following minimization problem can be regarded a generalization of (T69) by considering the
case with Y = (X, S) and m = 2;

Z di(x,y)W x Px(z,y) < D; forizl,...,m}. (170)

zeX,ye)

min I(X;Y )wupy
Wep(di)i=1’PX7(Di>,-=1,§
y|x
= min min D(W x Px||¢ x Px). (171)
WGP(d it Px (D)L 1,< q€PY
vix

The minimization problem can be considered as rate distortion with multiple distortion functions.
Now, we focus on the Bregman divergence system (R™("2=1 7 D#) defined in Subsection which
coincides with the set of distributions W X PX The set of distributions ¢ X Px forms an exponential
subfamily &, and the subset P(d PP o Px forms a closed convex mixture subfamily M. Then,
the minimization problem (171)) is a special case of the minimization with the formulation given in
Subsection

Since Lemma [T1] guarantees Condition (BO) for this problem, Algorithm [6] works for the minimization
problem and is rewritten as Algorithm [I2] Condition (B1) can be checked in the same way as
(I35). In addition, similar to Algorithm [ in Subsection [V-A] when we cannot solve the equations (172)),
Algorithm (8| works in this model.
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Algorithm 12 em-algorithm for rate distortion with multiple distortion functions

Choose the initial distribution Pi(/l) on Y. Then, we define the initial joint distribution Pxy,(1) as Pi(,l) X

Py;

repeat
m-step: For any subset A C {1,...,m}, Calculate P)((t;ll)’A as PUDA(zy) =
Px(2) Py |x,) (y|x)e2icaTadi(@y) < >y Prix (| ) e2iea FA,idi(ﬂcvy')> , where (Ta;)ica are the
unique elements (74,;);ca to satisfy

0 :
aTA . Z PX (33‘) log (Z PYIX,(t) (y/|$)e‘rgc/+z7;/eA Ta,idi (T,y )) — Di (172)
g T y/
for i € A. Choose P)((t;rl) to be P{FV ™ where
(t+1),A 4 4
Ap := argmin {D(P§§§l)’AI|ny,<t+1>) zf:x»y.]}Y (z,y)di(2,y) < D; } . (173)
Ac{l,...m} ort=1,...,m

e-step: Calculate Pxy,41) as PSH) x Px where Pé””(y) =D sex P)(f;rl)(:v,y).
until convergence.

E. Classical rate distortion with side information

Next, we consider the rate distortion problem when the side information state S € S = {1,...,n3} is
available to both the encoder and the decoder [12]. Hence, our channel IV is given as a map X xS — Py.
Given a distortion measure d(z,y) on X x ) and a distribution Pys on X x S, we define the following
sets;

Pywks :Z{W’ > d(z,y)W x Pxs(x,s,y) = D} (174)
rEX ,SES,YEY
Pywss ::{W’ > d(a,y)W x Pxs(x,s,y) < D}. (175)

zeX,seS,yc)

We define the set Px_g_y of distributions on & X § x ) to satisfy the Markov chain X — S — Y with
the marginal distribution Pxg. The rate distortion function is given as

WePSls
- H}lizr}D < Z PS(S)D(W X PX\S:S”<W ' PXlS:s) X PX|S:5)
Wepy])éx:si sES
= 1 i D(W x P 176
omin, o min D x Pxs]Q) 116
V|X xS

where Px|s—, is the conditional distribution on X with the condition S = s of Pxg. Ps is the marginal
distribution on S of Pxg. Now, we apply the discussion in Subsection to the joint system (X' xS) x ).
Then, we consider the Bregman divergence system (R™7("2=1) 7 D) which coincides with the set of
distributions W x Pxg. The set Px_g_y forms an exponential subfamily £, and the subset P;l,’f;”x‘gD X Pxg
forms a mixture subfamily M. Similar to (I3T)), there exists a distribution Pxgy € &€ such that

> Pxys(x,y,s)d(z,y) < D (177)

"E7y’s
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if and only if

> Ps(s)mindys(y,s) < D (178)
Yy

where dys(y,s) := >, Px|s=sd(z,y). Therefore, in the same way as Lemma we can show the
following lemma.

Lemma 20: When holds, min . __arys.n.< [(X;Y]S)wxpys = 0. Otherwise,

WeP

V|X xS
min [(XY‘S)WXP = min [(XY’S)WXP
WePyIAE" = , . wePS A" | .
= min min  D(W x Pxg . 179
wepihe acPits ( xs[Q) (179)

Due to Lemma 20} when does not hold, it is sufficient to address the minimization (I79). In the
following, we discuss the minimization problem ((179), which is a special case of the minimization (89)
with the formulation given in Subsection The mixture family M has nins(ns — 1) — 1 parameters.
Since the total dimension is nynz(ns — 1), we employ Algorithm 2] instead of Algorithm [I} Since Lemma
[13] guarantees Condition (BO) for this problem, Algorithm [2] works and is rewritten as Algorithm [I3]

Algorithm 13 em-algorithm for rate distortion with side information

Choose the initial conditional distribution P vis On Y with the condition on S. Then, we define the

initial joint distribution Pxyg 1) as P! |)s X Pxg;
repeat

-1
m-step: Calculate P)((H) as P)((t;rs)(x,y, s) := Pxs(z,s)Py|s,u)(y|s)e Tdacy))(z Pyis.(¥]s) ?d(w’))>
where T is the unique element 7 to satisfy

a !
5 ; Pxs(x, s)log (; Pyiso(y|s)em @ ”) —D. (180)
e-step: Calculate Pxys,t+1) as Pl(,tlgl) X  Pxg where Pytgl (yls) =

t+1) (t+1
erx P)((YS (z,y,s)/ Zz 1eX €Y XYS)(I Yy, s).
until convergence.

To check condition (B1), we set # and &' be elements of R™"("2=1 corresponding to W x Pxg and
W' x Pxg. We define the distribution Qy on X' xSx Y as Qw(x,s,y) = Y., W(y|2', s) Px|s=s(2") Ps(s).
In the same way, we define Qy» on X X S x ) by replacing W by W’. Then, the relations

DA(rg” < OITE () = D(Qwl|Qw)
= Ps(s)D((Wyx g - Pxis=s) ¥ Pxs—s|(Wyx,5=s - Px|s=s) X Px|s=s)

seS
= " Ps(s)D(Wy x5 - Pxis=sl|Wy|x.5=s - Px|s=s)
SES
< ZPS(S)D(W{V\X,SZS X Pxis=s||Wy|x,5=s X Px|s=s)
SES
=D(W' x Pxs||W x Pxg) = D"(¢'||0) (181)

guarantee Condition (B1). When the initial value ;) is chosen as the case that TV has full support,
supgege DF(0||6(1)) has a finite value. Hence, Theorem 2| guarantees the convergence to the global minimum



M. HAYASHI: BREGMAN DIVERGENCE BASED EM ALGORITHM 38

as follows. When we choose the initial value 6, in the same way as the above case, the precision (97)

holds with ¢ > log% + 1. In addition, in the same way as Subsection we can apply Algorithm
Next, we consider the case when we cannot exactly calculate the unique element 7 to satisfy (I80). Alter-

natively, we need to use Algorithm] which can be rewritten in the same way as Algorithm [I0] That is, it is

sufficient to replace X by XS and define F()(7) by e Pxs(z, 8)log (Zy/ Py|S,(t)(y'|8)eT(D*d(x’y/)))>
in Algorithm @} When we fix the precision level € > 0 and choose €; := £, this algorithm achieves

the precision condition (TT6) with 2°2”2 + 1 rounds due to (T36). The calculation complexity can be
evaluated in the same way as Algorithm [I0}

VI. QUANTUM ENTANGLEMENT-ASSISTED RATE DISTORTION

Consider two quantum systems H 4 and Hp with dimension d4 and dp. Let Hpy be the reference
system of H 4 with the dimension d4. We focus on a density matrix p on H4 and a Hermitian matrix
A on Hgr ® Hp, which expresses our distortion measure. Using a purification ¥ of p on H4 ® Hg, we
define the following sets of TP-CP maps with the input system H 4 and the output system Hp.

P ={ V| Tr Alidr @ M) () (¥) = D} (182)
phrD< ::{N( Tr Alidg @ N (|0)(0]) < D}. (183)
The entanglement-assisted rate distortion function is given as [14, Theorem 2]

min _ D((idr @ N)(|W)(¥|)[[(idr @ N)(|W)(¥[)r @ (idr @ N)(|)(¥])5)

A,p,D,<
NePPs

= min min  D((idg @ N)(|U)(¥|)||pr @ oB). (184)

NepLtD-< opeS(Hp)

where pg := Trs |¥)(U|. Essentially, the above minimization handles the state (idg QN)(|¥)(¥|). Hence,
we introduce the following sets of states on Hr @ Hp;

Sgn” 32{?33‘ TrAprp =D, pr= PR} (185)
SAD< ::{ﬁRB‘ TrAprp <D, pr= pR}- (186)

The minimization 1s rewritten as
min min  D(prp|lpr ® 0B). (187)

F_’RBGSI%;BW’D’S opES(HB

Now, we apply the discussion in Section to the case when H is Hr ® Hp. Then, we consider
the Bregman divergence system (R%9~1 ;. D"). The set of states pr ® o5 forms an exponential family
£, and the set SI%]’;”D forms a mixture family M.

Similar to (I31)), there exists a state op such that

TrApr®op < D (188)
if and only if
Amin(Ap) < D (189)

where Ap := Trg Apg ® Ip and A\ (Ap) expresses the minimum eigenvalue of Ap. Therefore, in the
same way as Lemma [I6] we can show the following lemma.
Lemma 21: When (189) holds, the minimum equals zero. Otherwise,

min min  D(p R0 00
ﬁRBGSﬁj;’*D*S oBES(Hp) (pRB”pR B) ( )
=  min min  D(prg|lpr ® 0B). (191)

prEESRY P oBES(HEB)
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Due to Lemma 21}, when does not hold, it is sufficient to address the minimization (191). In the fol-
lowing, we discuss the minimization problem (191)). To address it as a special case of the minimization (89)
with the formulation given in Subsection we choose d% — 1 linearly independent Hermitian matrices
Xi,R, -, Xqz_1 on Hp, and set H to be Hp ® Hp. Then, we consider the Bregman divergence system
(Rm(ng—l)’u, DH) qeﬁned in Subsection where X2 2 1) = A and X2 (21415 Xazaz, 1 are
OX1r®Ip,... vQZXdﬁrl,R ® Ip. Then, S’D is given as

M := {6 € R%%~"|Conditions (T93) and (T94) hold.}, (192)
where
Tr po Xz (a2,1) = D, (193)
TrpoXaz a2, -1)+5 = Tr prX a2 (a2 -1) 15 (194)
for j =1,...,d% — 1. Also, we choose the set £ as
£:={0 e R%%Bpy = pr ® op). (195)

The mixture family M has d%(d% — 1) parameters. Since the total dimension is d4d% — 1, we employ
Algorithm [2| instead of Algorithm Since Lemma guarantees Condition (BO) for this problem,
Algorithm 2 works and is rewritten as Algorithm [I4]

Since
D(pellpr ® o) =D(pellpr @ Trr po) + D(Trg pgllos)
=D(pollpr @ Trr pe) + D(pr @ Trr pollpr @ o), (196)
we find that
Prieingy = PR ® Trr po. (197)

Therefore, we have

D“(P(se)’u(el) I F(ge)’u(e)) =D(pr @ Trr po|lpr ® Trg po) = D(Trr po || Trr po)
<D(pgr|lps) = D"(6']|6), (198)

which guarantees Condition (B1). Hence, Theorem [6] guarantees the convergence to the global minimum.
Since Conditions (B0) and (B1) hold, Theorem [5| guarantees that Algorithm [4] works when m-step has
an error. Since m-step of this case has d% parameters, it requires more calculation amount as a convex
optimization than Algorithms [I0| and [I3] However, it still has small smaller calculation amount of the
case when the original problem is treated as a convex optimization because has d%(d% — 1)
variables.

VII. CONCLUSION

We have formulated em algorithm in the general framework of Bregman divergence, and have shown
the convergence to the true value and the convergence speed under conditions that match information-
theoretical problem settings. Then, we have applied them to the rate distortion problem and its variants
including the quantum settings.

Our em algorithm in the general framework contains two types of minimization processes in e- and
m- steps. Due to the above property of our em algorithm, our em algorithm has merit only when the
optimizations in the e- and m- step are written in a form without optimization, or are converted to simpler
optimizations with a smaller number of parameters than the original minimization problem. Fortunately,
rate distortion problem and its variants satisfy this condition. In particular, classical rate distortion problem
with and without side information need only a one-parameter convex optimization in each iteration.
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Algorithm 14 em-algorithm for Quantum entanglement-assisted rate distortion

Choose the state pg), and set prp (1) to be pr ® pg).

repeat
m-step:  Calculate pggl) as pg;) := exp(log pre,) + 2_;0'X; @ Ip + 0°A)/ Trexp(log prp,@) +
30X, R ® Ip + 0°A), where (6%) are the unique elements to satisfy

% log Tr exp(log prp,) + Z 0'X; ® Ig +0°A) = Tr X;pp (199)
0 .
50 108 Trexp(log prs ) + Z 0'X; ® Ig+6°A) =D (200)

fori=1,...,d% — 1.
e-step: Calculate prp (14+1) as pr ® pgﬂ), where pgﬂ) = Trp p%gl).
until convergence.

To remove the constraint (157), existing papers for the rate distortion problem and its variants changed
the objective function by using a Lagrange multiplier, and no preceding paper showed how to choose the
Lagrange multiplier [S]], [9]], [1O], [11]. Indeed, the number of studies for this topic is limited while more
papers studied channel capacities [S], [6], [10], [11], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26]. Since the set of conditional distributions with the linear constraint forms a mixture family,
our method can be directly applied to the original objective function with the linear constraint (I57)). To
handle the linear constraint, each iteration has a convex optimization only with one variable in m-step.
Due to this convex optimization, our algorithm has a larger calculation complexity than the algorithm by
[S]. However, this difference is not so large, and can be considered as the additional cost to exactly solve
the original minimization (129)) instead of the modified minimization (I56)).

Further, since our result is written in a form of Bregman divergence, we can expect large applicability.
That is, our results have the advantage with respect to its generality over existing methods. To emphasize
our advantage, we need to apply our method to other problems because the problems discussed in this
paper are limited. Hence, it is an interesting open problem to apply our em algorithm to other optimization
problems. For example, it can be expected to extend our result to the case with memory [10], [27], [28]
because various information quantities in the Markovian setting can be written in a form of Bregman
divergence [29], [30], [31], [32], [33], [34]. As another future problem, it is interesting to extend our
method to the optimization of the exponential decreasing rate in various settings, which requires the
optimization of Rényi mutual information by using Rényi version of Pythagorean theorem [35, Lemma 3
in Suppl. Mat.][36, Lemma 2.11].
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APPENDIX A
REVIEW OF CONVEX OPTIMIZATION

In this appendix, we review several existing algorithms for the minimization of a differentiable convex

function F' defined on a closed convex set C'. In the following, we use the notation z, := argmin F'(z).
zeC
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A. Bisection method

First we consider the bisection method, which works with one-variable differentiable convex function
F defined on an interval [a, b] [16].

Algorithm 15 Bisection method
Set ag := a and by := b;

repeat
k + 1th-step: Set x;, := % If %F(azk) > 0, we set ag,1 := aj and by, := x. Otherwise,
we set axy1 = xp and bgyq := bg. This construction guarantees the conditions %F (ary1) < 0

L F(bgs1) > 0.
until convergence.

To see the precision, we define the parameter Vj := max, yejop |[F(2) — F(y)].
When we use the bisection method, i.e., Algorithm [I5] we have

Fley) ~ Flx.) <30 (201)

Flag) — Flx), F(b) — F(x.) g% 202)
I _Z,;f (203)

vy by, <O (204)

That is, to guarantee |F(z)) — F(z,)| < ¢, the number of iteration k needs to satisfy k > log, 2.

B. Gradient method

Next, we consider the gradient method, which works for a differentiable d-variable convex with the
uniform Lipschitz condition. We consider a differentiable d-variable convex function F' defined on a
convex set C' C R%, and assume the uniform Lipschitz condition with a constant L;

IVE(z) = VE(y)| < Lz -yl (205)
for x,y € C.
Algorithm 16 Gradient method
Set an initial value z( € C;
repeat
k + 1th-step: Set x;.; as
1
Tpg1 = Tp — ZVF(xk) (206)

until convergence.

When we use the gradient method, i.e., Algorithm we have [37, Chapter 10] [38]], [39]

L
[F(ze) = Fz)] < gpllee = ol (207)
That is, to guarantee |F'(x) — F(x,)| < ¢, the number of iteration k& needs to satisfy k& > LHI2—?(’H2 When
we employ accelerated proximal gradient methods, the evaluation (207) is improved as [38], [40], [39],
(411, [42], [43]

L
[Fzx) = Flz.)] < 5
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APPENDIX B
PROOF OF THEOREM

In this proof, we simplify 7(6|©) to . We consider the mixture subfamily M := {9 € O3 €
R,n(0) = (1-X\)n (01)—|—)\77(6’2)} Due to Condition (M4), we can define the m-projection FM "(05) e M.
We choose A such that 1“5\/1) (03) = (1 — X\)n(01) + An(02) We consider three cases; (i) A < 0. (ii)
0< A< 1 (Gii) 1 < A, ) ) ) )

Case (i); Since the subset © C O is a star subset for #; € ©, and 6, € O, we have 6(s) € © for
s € [0, 1]. Hence, we have the matrix inequality

J(O(s)) "t <A J(O(1—s)) (209)

Thus, we have

o [0 S8~ (O (0(62) (), 0(1 — 5)) s
9 DF (0,]61) (210)

where (a), (b), and (c) follow from (33), (209), and (33)), respectively.
Also, we have

D (6,]|61) < D" (0] T (83))
<DF (0 T (05)) + DF (0 (05)]165) = D (62]05). @11
The combination of (210) and 211) yields (@7).
Case (ii1); We have
F<91||92> DF (0] TS (05))
<DF(OI T (05)) + DF (0 (0)]105) = DT (61]105). 212)

Case (ii); We use the quantity M := ( max,eio,y S0, 20, (7(62) —1(61)): (0(62) —(6:));((6(5)) )14 ).
Then, we have

D" (64]65)
=D (0, T (65)) + DT (TS (05))105)
>DF(01H r(’")’F(ﬁ )) = DF(0:]6()))

/ ZZ (62) — n(61))s(n(62) — n(61));(J(8(s)) ") sds

2(/0 345)(35%2% (62) = 1(00))(0(82) = (62)); (T (0(5) 1))

=1 j=1

2
>2

21
25 M, (213)
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and
D" (65]165)
=D" (0] T (85)) + DT (T (64)]165)
> DT (6] TS (85)) = DT (6:]|6(N))
1 d d
/0 S e D)i(n(02) — n(0:)); (T(O1 — s(1 = X)) ™) sds
(1—\)2 ) ]d_ d -
>0 (i S5 0082 = 0(00)):0002) = (00, (700:)) ™))
2(1 — )\>2M. (214)
2y
That is, we obtain
27 DF(0,]05) 27D (0,]05)
A< — 1-2< i (215)
Therefore, we have
1 4 d ..
P00 2 [7S7D00) ~n0)00(02) ~ (001, 0(5) s
d d
/0 2 0(02) (02 = OO
T / > e Di(n(0) — 1(60));(J(0(s)) ") sdls
(<)DF(Q1||9()\)) (/}\1 sds)M
(0al0) + ~5-
DD (B165) + (1= A+ M1 = N5
(_QDF(91H€3) + %(DF(@HG?’) + \/DF(91||93)DF(92||93))% (216)

which implies (@7).

APPENDIX C
PROOF OF THEOREM

Remember that 6 is Fée)’F(G(t)), which implies that FSZ‘)’F(G(@) = 0+ For any ¢, > 0, we choose an
element 6(e;) of M such that DF(8(e))|| TS (8(e1))) < Cinr(M, E)+ey. Also, let 6(e, ), be D57 (6(ey)).

As explained in Fig. [5, Phythagorean theorem (Proposition guarantees that the divergence DF (0(e)|0s))
can be written in the following two ways (as two equations (a) and (b));

DF(0(e)|[0%D) + DF (8D 18)) £ D (6(e1)[00s))
©DF @) [6(e1).) + DT (B(er).]|6w)- 217)
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o(¢,). H(t+1) e(t) =

0(&)—>E

0(t+1)_>£

0(¢,)

H(t+1)

Fig. 5. Algorithms I and I This figure shows the topological relation among 6(e1)«, 0(e1), O 41y 0¢*Y  and 0+, which is used in the
application of Phythagorean theorem (Proposition E]) /\/lg(el)_w and M:+1)_,. are the mixture subfamilies to project 6(e1) and )
to the exponential subfamily &, respectively. 59( »—M Is the exponential subfamily to project 0 to the mixture subfamily M.

Hence,

DF OV |0) — Cont(M, E) — €1

(
<D0 V]|0) — D" (0(e1) 0(e1).)
D O(er).10) — DT (0(er)[0°)
EDF (0(e). 0) — DF (S (0(e0) || T (60+1)

=D"(0(e1) 1)) — D" (Oe) 01y, (218)
where the steps (a) and (b) follows from (217) and Condition (B1.M), respectively. Thus,

t
Z DF(090u-1)) — Cint(M, ) — &

<ZD )llf-1)) = D" (Oer)[l0)

IDF( (e1):[l01)) = D" (Oe1) 1)) < DT (0(er).10r))

<sup D (0]|01)). (219)
et

Taking the limit ¢; — 0 in (219)), we have

t
> DF(0D)|6-1)) — Ciug(M, E) < sup D' (0]|61)). (220)

<
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Since the relations
DT (0| T (901)) <DT (00D 16)) < DT (0D]6s)

DF (V| T (o)) (221)
for i =2,...,t, (220) implies
(t = (DT (OD|0—1)) — Cing(M, E)) < sup D (0]|6y)- (222)
S

Thus, we have
DF(0D604)) — Cine(M, E) <DF(0D10(1—1)) — Cint (M, E)

7 sup DY (6]16)), (223)
0e&

1
<
S7C

which implies (96) and (97).
When the inequality
1
DF(0D|0 1)) — Omf(M, £) > DI (0D )0u) — Cint(M, E) > c(;) (224)
holds with a constant ¢ > 0, the relation implies
00 = ) < sup D¥ (6|6 (225)
Z sup D" (00,

which yields the contradiction. Hence, we have
1
DF(0V)101)) — Cins(M, &) = o(2). (226)

Combining (221)), we obtain (95).
Indeed, when the minimum in 89) exists, i.e., 0,(M, &) exists, the supremum sup,ce D (0]|6(1)) in

the above evaluation is replaced by D¥(0.(M, £)||0(1)) because (e;) is replaced by 0,(M, E).

APPENDIX D
PROOF OF THEOREM

We use the same notation as the proof of Theorem [2l We set 3 := B(6")). The relations (Z18) is
rewritten as the folloiwing way for the case with ¢; = 0;

0 <D"(# (tH)H@(t)) — Cint(M, )
<D"(0.)6)) — D (67)|0"D) (227)
<DF(0.]|0) — DT (" (67)|| 0" (90+D))
=D"(0.]101)) — D" (0.|0(s41))- (228)

a b c

Thus, we have DT (6*||0¢+Y) (<) DF(0.6)) S) D¥(0,10¢-1)) (<) D¥(0,0.1)), where (a) and (b)
follow from (227) and (228)), respectively, and (c) follows from multiple use of (227] - Thus, Condition
(B1+) implies BDF(H*HG““)) > DF(0,|| T (00+D)) = DF(0,]|f441)). Combining @27), we have
BD*(6,]|04) > D¥(6.]|04+1)). Thus, we have

D" (0.]10(41)) < B'DT(0.]10y)- (229)

—~

Using (227), we have
DF(0"V|0(111)) — Ciu (M, €)
<DF(0“V|00)) — Cing(M, E)
<D"(0.[|0()) < B~ D" (6.[101))- (230)
Hence, we obtain (99).
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APPENDIX E
PROOF OF THEOREM

Step 1: In this proof, we use the notations 00+ := PUPF (9,)) and 04,1y, := DY 7 (90+D*). From
the construction, D¥'(§®)]|6,)) is monotonically decreasing for ¢ as

(@
D (0D 0411)) < DF(OV)100) < DT (0W]|6)), (231)

where (a) follows from (101).

0.
E Oy, O es1)
7/

()
Me*—>£ Ee(t) —M
m Me(t-l-l),* SE
£
6 6" &

e(t+1),*
PRPTE

Fig. 6. Algorithm This figure shows the topological relation among 6., 6%, 6,11, 0D 0,11y« 04TV and (), which is used in
the application of Phythagorean theorem (Proposition . Mos e, Myty,«_ g, and Myq1)_, ¢ are the mixture subfamilies to project
0%, 9¢+1D* and 9¢+Y to the exponential subfamily £, respectively. Sg(t)HM is the exponential subfamily to project 6 to the mixture
subfamily M.

Step 2: The aim of this step is the derivation of the relation;

DY (0.]10w) — DT (0.]10t+1))
>D" (0D )10(141)) — DF(07]16.) — 21/ DF (0.]160)e — (v + De. (232

We notice that
u b
DF (641 6¢+1) © DF(9D)]jg,) — DF (6 6,) < e, (233)
where (a) and (b) follow from Phythagorean theorem (Proposition (I) and (IOT]), respectively. Since
GU+1)* — F(E)’F(Q(t)), we have

—~
=

DF (0" 16) < DF(09]|6)). (234)



M. HAYASHI: BREGMAN DIVERGENCE BASED EM ALGORITHM 47

Since the set & is a star subset of £ for 6,, we can apply Theorem [I| to the set & as a star subset for
0., and obtain

D (0.[10+1))

(a)
< D" (0:ll011).) + 27\/ DE(0(1011)2) D (04 10e41).)
+ D" (01 10t41).4)

)
<D (0. 81).) + 27y DF (66110 DF (6D 6+))
+ ,YDF(H(t+1) He(tJrl),*)

(c)
<DF(0.]10) + 29/ DF (01641 )e + e, (235)

where (a), (b), and (c) follow from Theorem [, Condition (B1), and (233)), respectively.
The definition (89) implies

DE (0D |04) > Cing(M, E) = DF(67|6.). (236)
Also, applying Phythagorean theorem (Proposition [1) to D'( «9*||0(t ), we have
DF(§°10¢1) + DF( 0 0) E DT (0°]100) 2 DF(O.]10w) + DT (E"0.). (@37)
That is, steps (a) and (b) in follow from Phythagorean theorem. Using (237)), we have

0 <DF<9““ “16@) — D (©"]6.)
F<e 10) = DF (6" 0"+D)
F(9 1)) — D" (6:]16+1).+)

DF(0.1100)) — DF (0ullf1)) + 274/ DF (Bullf(eany 1) + e

(©)
<D"(0.]|0(1)) — D" (0:)10+1)) + 271/ DF (0,16 )€ + ve, (238)

where (a), (b), (¢), and (d) follow from 236), (237), Condition (B1), and (233)), respectively. The final
step (e) is derived by the inequality D* (6.]|0) — D¥ (6.|0(t+1).) > 0, which can be shown from (a)
and (b). Comparing the RHS of (@) and the final term, we have

DF (0" V]|6)) — DF(6"6.)

DY (0.110)) — D" (0.]|0(1+1)) + 271/ DF (0.]|01)e + ve. (239)

In addition, D¥(0®+1*||04)) can be evaluated as

(a)
DF(Q(t—i-l)”e(tJrl)) SDF( t+1 ||9 ) DF( (t+1)||9(t+1),*)+DF( t+1 ”0 )
(c)
<e+ DT (0¥ 0,), (240)

where (a), (b), and (c) follow from the relation 0,1y = T (60+D), the relation 9D+ = Fﬁ)’F(ﬁ(t)),
and (233)), respectively.
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Combining the above relations, we have

D (0.116)) — D" (0. [161+1))
(a)
> D0 [6)) — DT (07]16.) — 271/ DF (0.6 )e — e
(b)
> D (0 [010)) — D (O°]10.) — 291/ DF (0.0 — (7 + e

where (a) and (b) follow from [239) and (240)), respectively. Hence, we obtain (232)).
Step 3: The aim of this step is showing

D" (6.)165)) — D* (6,]|0(¢41)) > 0

for ¢t <ty by induction when we assume that ¢, satisfies the following condition with ¢ < #y;

DF(09]10y) — DT (0°]16.) = 271/ DF (B.]10)e + (7 + e

Due to the assumption of induction, we have
D¥(0.[10)) < DT (6.]16))-
The combination of (232)), (243), and (244) implies the relation (242)).

Step 4: The aim of this step is showing
D (0 V||0yy+1)) — DT (67]16.)

DT (0,0
= (tH (1))‘+27\/DF(9*||9(1))€+(7+1)6-
0

If there exists a number ¢ < ¢, that does not satisfy the condition ([243)), we have (243)) as
D (D 101+1) — DT (616
<D*(0“6) — D" ("6.)
<29,/DF(0.10))e + (7 + 1)e

DF (6.6 /
0

Hence, it is sufficient to show (243)) under the assumption (243)) with ¢ < ¢.
Using the facts shown above, under this assumption, we have

DF (0" V[641)) — DF(67(|6.)

(a)
<D (0.)105) — D" (0.]10141)) + 271/ DF (0.]|0))e + (v + 1)e
(t)
<D"(0.]10¢)) — D" (0.[10(141)) + 271/ DF (0|01) ) + (v + 1)e,

where (a) and (b) follow from ([232) and (242)), respectively.

48

(241)

(242)

(243)

(244)

(245)

(246)

(247)
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Taking the sum for (247), we have
to(DF (0% 0,41)) — DF (6°16.) )

(a) &2
<> (DO 0en) — DT (E)10.))
t=1

(b)
< Z <DF(9*||9(t)) — DF(0.)10(t41)) + 27/ DF (8.]1000))e + (7 + 1)5)
=1

=D"(0.[10(1)) — D" (0:]|0(19+1)) + 2toy(/ DF (0.]1001) Je + to (v + 1)e
<D(0.116(1)) + 2tov1/ DT (6.]160))e + to(y + e, (248)

where (a) and (b) follow from [231)) and (247), respectively. Hence, we have (243)

F
Step 5: Finally, we derive @ from (]@[) The condition ¢ > w + 1 implies
The condition € < 4(37+1)2DF(9 o implies (3y + 1)y/DF(0.]|61))e < §. Since DF(6.]|6(1)) > € and
v > 1, we have +2v,/DT(0,]01))e + (v + 1)e < 5. Thus, we obtain (]'17_75[)

DF(0.116(1)) /
—F— <¢€.

APPENDIX F
PROOF OF THEOREM

Step 1: We define 0, := Fg ¥(6*). The aim of this step is showing the inequality (TOS). The condition
(104) implies that

d d
F(e_(t+1)) _ Z (e_(t+1))jaj S F(e(t+1’*)) o Z (0(t+1,*))jaj 4 €1. (249)
j=k+1 J=k+1
Hence,
d
DF(@(t-‘rl),*”H_(t-‘rl)) — Zni(e(t—l—l),*)(@(t-‘rl),* o e_(t-‘rl))i . F(Q(t+1)’*) + F(é(t—l—l)) S €1. (250)
=1

Step 2: The aim of this step is showing

1
DF (0" |8,—) — DF (0°]1) < 7= D" (B.]160) + (2s1)
under the choice of ¢3 := argmin D (0®)*||0,_1)).
2<t<t;
Pythagorean theorem (Proposition [I)) implies that
DY (7)|0"D) + DF (9D |04)) = DF(0%(|6)) = D¥(6716.) + D¥ (6.]|01)).- (252)

Using the result of Step 1 and various formulas, we have

DF(0.1100)) — DF (6. 0+1)

EU) o) - DF (6*04+9) © DF (6.]y) — DF(6°]19+1) — DF (9|41
SDF (D |0)) — DF (9*0,) — DF (94D +D)

(ZDF( E0*10)) — DF(07)6.) — e, (253)

where each step is derived as follows. Step (a) follows from Condition (B1). Step (b) follows from
Pythagorean theorem (Proposition [I). Step (c) follows from (252). Step (d) follows from (2350).
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E g
£
(t+1)
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Fig. 7. Algorithm {4; This figure shows the topological relation among 6., 6%, O(t41)s 0(t+1), 9(“'1), 0(t+1)’*, and 6, which is used in
the application of Phythagorean theorem (Proposition . Mo e, Myt1),«_, g, and My11y_, o are the mixture subfamilies to project
0*, 0+ “and 9+ to the exponential subfamily £, respectively. Eo(,)—m is the exponential subfamily to project 6, to the mixture

subfamily M.

We choose t3 := argmin D (§®)*|
2<t<ty
DF (09|61, 1)) — DT (6[16.) — &1 <DF(8.116)) — D" (0. 61s).
Taking the sum for (254), we have

DF(Q(ts),*|

0(:—1)). Hence, for t <t¢; — 1, we have

Ots—1)) = D (07[16.) — &1
1 t=t1—1
S > D"(6.]16) — D" (616(11))
t=1
1
-1

Therefore, we obtain (251]).
Step 3: The aim of this step is showing the following inequality;

DF(Q(tQ)HQ(thl)) — DF(Q*HQ*)
1 —
SﬁDF(H*HQ(U) + € + DF(Q(tz)H@(m)).
1 —

1
(DT (8.]101)) — DT (0.1161,))) < 7HleF(G*\I@(l))-

(254)

(255)

(256)

Remember that the final estimate 0?1) is defined as 02 € M by using ¢, = argmin D¥(0D||0;_)) —

t=2,...,t1
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DF(6®]|§M). Then, Eq. (256) is shown as follows.
DF (6|04, -1)) — DF(012)]|"2)
<DF(9 16(25-1)) — DT (61)]|61)
ZDF(0]|0) + D (6|0, 1)) — DT (6 <t3>né<t3>>
(
(

<DF(O909) + DF (O [5) + DR 1, 1)) — D (00

D DF (0|6,

(d) 1 F (%

< (0:10)) + €1 + D7 (67]]0.), (257)

where each step is derived as follows. Step (a) follows from the definition of Z,. Steps (b) and (c) follow
from Pythagorean theorem (Proposition 1)) for D¥(6()]|6,, _)) and D (6(*2)||§(=)), respectively. Step (d)
follows from (25T).
Step 4: The aim of this step is showing Eq. (109). Eq. (109) is shown as follows;
e ,F 1 *
DR (0| T (05) — D (07 l6.)

=DF (™| T (61)) - DE(e"6.)

(a)
<D"(0"))|01,-1)) — D"(67]/6.)
(®)
<

0.]|01)) + €1 + DT (612)]]9(2)), (258)
(1)
where Step (a) follows from the definition of I'y (©-F(9(2)) and Step (b) follows from (256)).

APPENDIX G
PROOFS OF THEOREMS [0}, [7], AND[§]

Proof of Theorem |6} Theorem [2] is shown by application of Phythagorean theorem (Proposition [I) to
m-projection to M. We can show Theorem [0 in the same way as the proof of Theorem 2] by replacing
the role of Proposition [I] by Lemma [§] In this case, the proof of Theorem [ is completed by replacing the
equations at (a) of and (a) of by the inequality <. [

Proof of Theorem [/} In the proof of Theorem [3] Phythagorean theorem is applied to m-projection to
M. However, this theorem is used only in the derivation for (227)), which is essentially given in (217).
In the current setting, the step (a) of is derived by Lemma (8| instead of Proposition |1} Hence, the
proof of Theorem (/| is completed. |

Proof of Theorem [8} We can show Theorem [§] in the same way as the proof of Theorem [ by replacing
the role of Proposition [I] by Lemma [§] for Phythagorean theorem to the projeciton to m-projection to M.
In this case, the proof of Theorem [8|is completed by replacing the equations at (a) of 233), (a) of 237),
and (b) of (239) by the inequality <.

APPENDIX H
PROOF OF THEOREM [9]

Step 1: To show Theorem [9, we prepare the following lemma.
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Lemma 22: Assume the same assumption as Algorithm [Bl Also, we assume Conditions (BO) and (B1)
for £. When the relation Ci,s(M,y,E) = Clnf(./\/l)\, &) holds for A € A,, for 6, € M, \ M, we have

min Cint(Mo, €) < DT (0] TE (60)). (259)

Proof of Lemma Lemma [2] guarantees that there is no local minimum for the minimization

minge g, DY (0] F ( )). Hence, there exists a one-parameter continuous curve 6(s) € M, such that
9(0) = 90,

lim DT (8(s)|| TEF (8(s))) = Cint(M,, E), (260)

s—1

and DT (0(s)|| F(ge)’F(Q(s))) is monotonically increasing for s. Then, there exits so € (0,1) such that
0(sg) € OM,. We choose \” € A, such that 0(sg) € M. Then, we obtain

min Ciar (M, €) <cinf<MA~,s> < D" (0(s0)|| T (8(50)))

<D"(6y]| Fg 0)) (261)

|

In the following, we show Theorem [9] by using Lemma 22] and Eq. (256) in the proof of Theorem [3
Step 2: The aim of this step is showing the following relation by induction for D(\);

HliIl DF(Q(t2()\/))’X He(tz()\/)_l)’)\/) — Cinf(M)\y 5)
NeRNU{A}:02(A)) N e p

1 p—
DF@*(M/\,g)H@(l)) + €1 4+ DF (2D glt2(A) 1)
1
& 1
Z ( DY (0.(My, E)|0)) + &1 + D («9“2()‘/))9‘/Hg_(tz(x)))\'))‘ (262)
L= EA)\ D()\’ tl — 1

Eq. (256) in the proof of Theorem [5| implies (262) with the condition D(0) = 0. In the following, we
show (262)) with the condition D()\) = k by assuming (262)) with the condition D(\) < k — 1.
When the relation
Ciut(Ma, ) = Ciat(M,, €) (263)
does not hold, there exists \' € Ay such that Ciy(My,E) = Cint(My, E). Since D(N\) < k — 1, the
assumption of induction implies (262)). When the relation
DA e My \ My (264)

dos not hold, i.e., 0> € My, Theorem |5|implies ([262). Hence, it is sufficient to show (262)) when (263)
and (264) hold.

Due to these two conditions, Lemma 22] implies that

min Ciug(My, €) < DF (920D b F (g2(0)A)), (265)

Thus,
mln Cmf(./\/l)\’ ) — Cint(M,, )

A/

<DF( ’\H F ( (D)) — Cp(May, E)

(a)
<DF(0RD100, 09 -1y0) — Cint (M, E)

® 1 _

< DY (0.(My, )]|01y) + €1 + DF (6120022004 (266)

-1
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where (a) follows from the definition of the e-projection Fée)’F and (b) follows from Eq. (256) in the
proof of Theorem E} Hence, we have

B min DF<9(t2(X))’X "(9(152()\/)_1)7)\/) - Cinf(M)\a S)
NeRU{A}:0®N eM,,

(a) . . " "

= NEA ()\”EA u{AI’I}l.lel}t) M eM D (B sty a0) = Cine( M, 5))
>\l . ’ )\ll

:/\'HélAHA (,\”eA u{/\r’?.iel(lt) NeMm DF(G(Q(A ) ”9@2(/\”)*1),)\”) — Cint(My, €)
>\l . ’ >\II

+ (Cur( My, €) = Ciat( M, €)))

< max ( min DF(OCCDAG oy an) = Cing(Mor, € )
TONEAN N\ WeA UV 10N e My ( ” (=¥ 1)’/\) f( g )

+ )\I’Igj\n)\ (Cinf(M)\’y g) - Cinf(M)n 5)>

D(\)—1
(b) 1 " "y = " "
< max max ( DY (0, (M, E)||01) + €1 + DT (DA glE2(A7)A )
~ NeEA, ( Z XX, D)=k t, — 1 ( ( A )H (1)) 1 ( H )

1
t1 —1

+ DF(H*(M)\/,g)lw(l)) T+ DF(O(t2(>\’))’>\'||9_(t2(>\'))’>\’)>

+ DY (0.( My, E)[|01)) + €1 + DF (92002 g(=(0):A)

ty —1

(0 P X

< ma. ( DF 0.(My,E)||6 + +DF 0(@(}()),)\/ é(fa()\’)),)\’ )

S0 (D O M ) s D00
1

t1 —1

where Step (a) follows from the definition of A,. The second line of (b) follows from (266). The first
line of (b) follows from the substitution of A" into A in the relation (262)) as the assumption of induction.
Step (c) follows from the following fact. For X € A,, we have the relations Ay C Ay and D()\) — 1 >
D(X) > D(XN) — 1. Hence, we obtain in the general case.

Step 3: The aim of this step is showing (123) by using ([262). We apply (262) to the case with A = 0.

+ DY (0.( My, E)||01)) + €1 + DF (920D glt=(0)A) (267)
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We have
e),F
DEOPITE (0F)) = Cuur(M, £)
LD T (B0 ) — Ca(M.E)

—
=
=

<DF (01200216, 301 -1)70) — Cint(M, E)
(2 min l)F(@(t2 X XH@(tQ()\/ ))\/) — Cmf(./\/l, 5)
Ne:9E2(M)N e My,
0) , Fpt2(V) N
= min D" (6\*2 Ot ixn—1n ) — Cint(M, E
NeRgU{0}:0(2 DN At ( 6200-1.x) f )
© 1 _
=3 D (0. (Mo, E)]11)) + €1 + DT (6=0]g=(00.0)
1 —
D(0)—1 )
DF (9, (M, 8)|6 DF (92NN | glt2(V)). N )
+ Z e (G DO (Mi, E)]160) + 1 + DT H )
1
—=(D(0) + 1) max (t D" (0.(My, E)[16) + €1 + DT (60260 )), (268)
* 1 -

where each step is shown as follows. (a) follows from the definition of 9?). (b) follows from the definition

of the e-projection nge)’F. (c) follows from the definition of \g. (d) follows from the relation AgU{0} = A.,.
(e) follows from the application of (262) to the case with A = 0.

APPENDIX [
PROOFS OF LEMMAS [I8] AND

Proof of Lemma ' The assumption implies 7y > n. It is sufficient to show that the matrix ((P2Jy 7931 )i ;)i=1,...n
has at least rank n, — 1 under the given condition. For + = 1,...,ny — 1,5 = 1,...,ny — 1, we choose
c1; and cy; as
Z Px(2)Woo(y) fi(y) = 1, (269)
ZPX YWou(y)0ia = C2, (270)

where f;(y) is defined in Subsection [[II-Al m Then, we have
(PQJ@T 3P1 Z PX Wex <5z,w - CQ,i)(f](y) - ClJ)

:Z Px () (00 — Cw)(z W (y)(fi(y) — cl,j)). (271)

When (f;(y) — c1,;)y,; is considered as a matrix, its rank is ny — 1. Also, (Wj,(y))., can be regarded
as a rank-ny — 1 matrix. Hence, (Zy Wo.(y)(fi(y) — ch))Ij can be regarded as a rank-ny — 1 matrix.

Also, (Px(2)(6ix — €2,i))s,; can be regarded as a rank-n; — 1 matrix. Since ny > ng, (PaJp r(0),3F1)i,; is
a rank-n; — 1 matrix. |

Proof of Lemma [I9; To show Lemma [I9] we prepare the following lemma;
Lemma 23: We consider a one-parameterized family of channels {W,},cg We denote the Fisher
information of {W, x Px}, by J,;. We denote the Fisher information of {W, - Px}, by Jio. Then,
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EWalylo)| _, .
0 can be written as a

Js1 = Js2- The equality hold if and only if the function (z,y) S AN R
S0

function of y.
We denote the mixture parameter of the exponential family {Pxyg.r}or by (11 (6,7),12(0,7)). The
condition (I64) implies

772,0(97 7(6)) =D, (272)

and the construction of P)((t;l)

implies
12.2(0,7(0)) = Px(x) (273)

for r € X\ {n1}. We choose a one-parameter family c(¢t) € R">~! such that ¢(0) = 6y and v; :=
2Le(t)]i=o # 0. Then, we have

m(elt), 7(680)) + B, (1)) = 0. @m4)
We denote 47(c(t))|i—o by va. The condition is equivalent to the condition;
PsJpy (80) 3101 + Padoy 7 (0) 3202 = 0. (275)
That is,
—(P2J90,T(90),3P2)71P2J90,T(00),3P1’U1- (276)

Hence, the vector vy is not zero for any v; # 0 if and only if Ker P,Jp 79y 3P1 = {0}.
In addition,

d (m)u
P P
dt 1—‘/\/l ( 0,y X X)<x7y) o
no—1 ni—1
=T (P x Px)(z,9) (D vifily) + Z vig; (2, y)) (277)

=1

£ TS (Poy x Px) (@)
Therefore,

R =0 cannot be written as a function of y for any v; # 0 if and only if
(Pay,y x Px)(x,y)

Ker PQJ@ 7(0), 3P1 {0}
We define Wy as Wy x Px = F(M) (Py,y x Px). Applying Lemma 23| with substitution of W, into

W,, we obtain the desired statement of Lemma u 9| from the above equivalence relation. [ |
Proof of Lemma 23
_50,1
d 1
=3 (S Walyl)lmss ) Wenlyhe) ™ Pe(a)
$7y

S_SO>2<ZPX_($)WSO (ylw)x/)yl' 278)
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Hence,

= > Wyl i) (“ o - PR T
(Zx/ (2, )W, (y|x/)PX(:v’)> >2

z,y Zx’ V_VSO (y’x,)PX('I/)
> Wy yle) P () (U )(Eumwmgmw&uﬂQ 279
=3~ Wi (yle) P () (1, ) — - ) 279)
z,y ’ Zz’ Wi (y’x/>PX (:L")
LW, (yle) ) )
where [(z,y) := W Hence, we have J,, 1 — Js, 2 > 0. The equality holds if and only if I(z, y)
50
depends only on y. The desired statement is obtained. |
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