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LINEAR MAXIMUM RANK DISTANCE CODES OF EXCEPTIONAL TYPE

DANIELE BARTOLI, GIOVANNI ZINI, AND FERDINANDO ZULLO

Abstract. Scattered polynomials of a given index over finite fields are intriguing rare objects
with many connections within mathematics. Of particular interest are the exceptional ones, as
defined in 2018 by the first author and Zhou, for which partial classification results are known. In
this paper we propose a unified algebraic description of Fqn -linear maximum rank distance codes,
introducing the notion of exceptional linear maximum rank distance codes of a given index. Such
a connection naturally extends the notion of exceptionality for a scattered polynomial in the rank
metric framework and provides a generalization of Moore sets in the monomial MRD context. We
move towards the classification of exceptional linear MRD codes, by showing that the ones of index
zero are generalized Gabidulin codes and proving that in the positive index case the code contains
an exceptional scattered polynomial of the same index.

1. Introduction

Let q be a prime power, n be a positive integer, and denote by Fqn the finite field with qn

elements. Rank metric codes can be seen as sets of Fq-linear endomorphisms of Fqn equipped with
the rank distance, that is the distance between two elements is defined as the (linear algebraic)
rank of their difference. Since the Fq-algebra of the Fq-linear endomorphisms of Fqn and the Fq-

algebra Ln,q =
{

∑n−1
i=0 aix

qi : ai ∈ Fqn

}

of Fq-linearized polynomials of q-degree smaller than n are

isomorphic, each rank metric code can be also seen as a subset of Ln,q. For any f(x) =
∑n−1

i=0 aix
qi ,

we define degq(f(x)) = max{i : ai 6= 0} and mindegq(f(x)) = min{i : ai 6= 0}. In this context, a
rank metric code C ⊆ Ln,q with minimum distance d achieving the equality in the Singleton-like
bound

(1) | C | ≤ qn(n−d+1)

is called maximum rank distance (MRD) code. Rank metric codes and in particular MRD codes have
been introduced several times [14, 17] and have been widely investigated in the last few years, due
to applications in network coding [37] and cryptography [23]. Two rank metric codes C1, C2 ⊆ Ln,q

are said to be equivalent if there exist two invertible Fq-linearized polynomials g(x), h(x) ∈ Ln,q and
a field automorphism ρ ∈ Aut(Fqn) such that

C1 = g ◦ Cρ
2 ◦h = {g ◦ fρ ◦ h : f ∈ C2},

where fρ(x) :=
∑n−1

i=0 ρ(ai)x
σi

if f(x) =
∑n−1

i=0 aix
σi

and the composition has to be considered

modulo xqn − x. In order to study the equivalence between two rank metric codes, one can make
use of the idealisers. They have been introduced in [22], where the left and right idealisers of a rank
metric code C ⊆ Ln,q are defined respectively as

L(C) = {ϕ(x) ∈ Ln,q : ϕ ◦ f ∈ C for all f ∈ C}, R(C) = {ϕ(x) ∈ Ln,q : f ◦ ϕ ∈ C for all f ∈ C}.

Such objects have also been investigated in [27], where they have been called respectively middle
and right nuclei.
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In this paper we are interested in Fqn-linear MRD codes, that is MRD codes C such that L(C)
is equivalent to Fn = {αx : α ∈ Fqn}; see [36, Definition 12]. Thus, every Fqn -linear MRD code
is equivalent to an Fqn -subspace of Ln,q and we will always consider MRD codes which are Fqn -
subspaces of Ln,q. The MRD condition for Fqn -linear rank metric codes reads as follows. By (1),
an Fqn -linear rank metric code C ⊆ Ln,q, with dimFqn

(C) = k and minimum distance d, is an MRD
code if and only if d = n− k + 1, or equivalently,

dimFq
(ker(f)) ≤ k − 1, for all f ∈ C \{0}.

This paper is devoted to the investigation of Fqn -linear MRD codes which are exceptional. An
Fqn -linear MRD code C ⊆ Ln,q is an exceptional MRD code if the rank metric code

Cm = 〈C〉Fqnm ⊆ Lnm,q

is an MRD code for infinitely many m. Only two families of exceptional Fqn -linear MRD codes are
known:

(G) Gk,s = 〈x, xqs , . . . , xqs(k−1)

〉Fqn
, with gcd(s, n) = 1, see [14, 17, 20];

(T) Hk,s(δ) = 〈xqs , . . . , xqs(k−1)

, x + δxqsk〉Fqn
, with gcd(s, n) = 1 and Nqn/q(δ) 6= (−1)nk, see

[28, 35].

The first family is known as generalized Gabidulin codes and the second one as generalized twisted
Gabidulin codes.

Although the definition of exceptional Fqn -linear MRD codes appears in this paper for the first
time, it has been already studied in particular subcases in different contexts.

In the case k = 2, exceptional MRD codes have been considered via so-called exceptional scattered
polynomials. Let f(x) ∈ Ln,q and t be a nonnegative integer t ≤ n−1. Then f is said to be scattered
of index t if for every x, y ∈ F∗

qn

f(x)

xqt
=

f(y)

yqt
⇔

y

x
∈ Fq,

or equivalently,

(2) dimFq
(ker(f(x)−mxqt)) ≤ 1, for every m ∈ Fqn .

The term scattered arises from a geometric framework; see [10]. Indeed, f is scattered of index t if
and only the Fq-subspace

Ut,f = {(xqt , f(x)) : x ∈ Fqn}

has the property that dimFq
(Ut,f ∩ 〈v〉Fqn

) ≤ 1 for every nonzero vector v ∈ F2
qn , that is Ut,f is

scattered with respect to the Desarguesian spread {〈v〉Fqn
: v ∈ F2

qn \ {(0, 0)}}. Sheekey in [35],
taking into account (2), pointed out the following connection between scattered polynomials and

Fqn -linear MRD codes: f is scattered of index t if and only if Cf,t = 〈xqt , f(x)〉Fqn
is an MRD

code with dimFqn
(C) = 2. The polynomial f is said to be exceptional scattered of index t if it is

scattered of index t as a polynomial in Lnm,q, for infinitely many m; see [8]. Taking into account
(2), a polynomial f is exceptional scattered of index t if and only if the corresponding MRD code
Cf,t is exceptional. While several families of scattered polynomials have been constructed in recent
years [7, 10, 11, 13, 24–26,28, 29, 31, 35, 39, 40], only two families of exceptional ones are known:

(Ps) f(x) = xqs of index 0, with gcd(s, n) = 1 (polynomials of so-called pseudoregulus type);

(LP) f(x) = x+δxq2s of index s, with gcd(s, n) = 1 and Nqn/q(δ) 6= 1 (so-called LP polynomials).

Such two families correspond to the known exceptional Fqn -linear MRD codes (G) and (T).
Several tools have already been proposed in the study of exceptional scattered polynomials, re-

lated to algebraic curves or Galois extensions of function fields; see [2, 4, 6, 8, 15]. However, their
classification is still unknown when the index is greater than 1.
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For k > 2, the only known families of Fqn -subspaces of Lq,n corresponding to MRD codes are (G)
and (T) as described above and Delsarte dual codes of the MRD codes associated with scattered
polynomials. In [9] it has been shown that the only exceptional Fqn -linear MRD codes spanned by
monomials are the codes (G), in connection with so-called Moore exponent sets.

It is therefore natural to investigate exceptional Fqn -linear MRD codes not generated by mono-
mials. To this aim, we generalize the notion of Moore exponent set; see Section 3.

Using a connection between the generators of Fqn -linear rank metric codes C and certain algebraic
hypersurfaces XC , we obtain a partial classification of exceptional Fqn -linear MRD codes. Tools from
intersection theory (see Section 2) yield sufficient conditions on the generators for C to be MRD, via
the existence of Fqn -rational absolutely irreducible components of XC .

Our main results can be summarized as follows.

Main Theorem. Let C ⊆ Ln,q be an exceptional k-dimensional Fqn-linear MRD code containing
at least a separable polynomial f(x) and a monomial. If k > 3, assume also that q > 5. Let t be the

minimum integer such that xqt ∈ C.

• If t = 0 and C = 〈xqt , g2(x), g3(x), . . . , gk(x)〉Fqn
, with degq(g2(x)) < · · · < degq(gk(x)) and

(q, degq(g2(x))) /∈ {(2, 2), (2, 4), (3, 2), (4, 2), (5, 2)}, then C is a generalized Gabidulin code.

• If t > 0 and C = 〈xqt , f(x), g3(x), . . . , gk(x)〉Fqn
, with deg(gi(x)) > max{qt, deg(f(x))} for

each i = 3, . . . , k, then f(x) is exceptional scattered of index t.

When C contains a separable polynomial and a monomial, we call the non-negative integer t of
Main Theorem the index of C.

2. Preliminaries on algebraic varieties

An algebraic hypersurface is an algebraic variety that can be defined by a single polynomial
equation. An algebraic hypersurface defined over a field K is absolutely irreducible if the associated
polynomial is irreducible over every algebraic extension of K. An absolutely irreducible K-rational
component of a hypersurface V , defined by the polynomial F , is simply an absolutely irreducible
hypersurface which is associated to a factor of F defined over K. For a finite field Fq, let Fq denote
its algebraic closure. Also, Pm(K) (resp. Am(K)) denotes the m-dimensional projective (resp. affine)
space over the field K.

We recall some known results on algebraic hypersurfaces of which our approach will make use.

Lemma 2.1. [1, Lemma 2.1] Let H be an absolutely irreducible hypersurface and X be an Fq-

rational hypersurface of Pm(Fq). If X ∩ H has a non-repeated Fq-rational absolutely irreducible
component, then X has a non-repeated Fq-rational absolutely irreducible component.

With the symbol I(P,A∩B) we denote the intersection multiplicity of two plane curves in A2(K)
at a point P ∈ A2(K). Classical results on such an integer can be found in most of the textbooks on
algebraic curves. For other concepts related to algebraic varieties we refer to [18]. For the special
case of curves, a good reference is [16].

Lemma 2.2. [19, Proposition 2] Let F ∈ Fq[X,Y ] be such that F = AB for some A,B ∈ Fq[X,Y ].

Let P = (u, v) be a point in the affine plane A2(Fq) and write

F (X + u, Y + v) = Fm(X,Y ) + Fm+1(X,Y ) + · · · ,

where Fi is zero or homogeneous of degree i and Fm 6= 0. Suppose that Fm = Lm for some linear
polynomial L ∈ Fq[X,Y ] such that L ∤ Fm+1. Then I(P,A ∩ B) = 0, where A and B are the curves
defined by A and B respectively.
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Lemma 2.3. [34, Lemma 4.3], [9, Lemma 2.5] Let F ∈ Fq[X,Y ] be such that F = AB for some

A,B ∈ Fq[X,Y ]. Let P = (u, v) be a point in the affine plane A2(Fq) and write

F (X + u, Y + v) = Fm(X,Y ) + Fm+1(X,Y ) + · · · ,

where Fi is zero or homogeneous of degree i and Fm 6= 0. Suppose that Fm = Lm for some linear
polynomial L ∈ Fq[X,Y ] such that L | Fm+1 and L2 ∤ Fm+1. Then I(P,A ∩ B) = 0 or m, where A
and B are the curves defined by A and B respectively.

Lemma 2.4. [16, Section 3.3] Let F ∈ Fq[X,Y ] be such that F = AB for some A,B ∈ Fq[X,Y ].

Let P = (u, v) be a point in the affine plane A2(Fq) and write

F (X + u, Y + v) = Fm(X,Y ) + Fm+1(X,Y ) + · · · ,

where Fi is zero or homogeneous of degree i and Fm 6= 0. Suppose that Fm factors into m distinct
linear factors in Fq[X,Y ]. Then I(P,A ∩ B) ≤ ⌊m2/2⌋.

Lemma 2.5. Let F (X1, . . . , Xn) ∈ Fq[X1, . . . , Xn] with

F (X1, . . . , Xn) = Fm(X1, . . . , Xn) + Fm+1(X1, . . . , Xn) + · · ·+ FM (X1, . . . , Xn),

where Fi is zero or homogeneous of degree i and FmFM 6= 0. If Fm or FM contains a non-repeated
absolutely irreducible Fq-rational factor, then F (X1, . . . , Xn) contains a non-repeated absolutely ir-
reducible Fq-rational factor.

Proof. Let G be the non-repeated absolutely irreducible Fq-rational factor in Fm (resp. FM ). Con-
sider the unique absolutely irreducible factor F ′ of F such that G | F ′

m (resp. G | F ′
M ). If F ′ were

not defined over Fq, then there would exist another absolutely irreducible factor F ′′ = σ(F ′) 6= F ′

of F satisfying G | F ′′
m (resp. G | F ′′

M ), where σ is the q-Frobenius automorphism of Fq[X1, . . . , Xn],
whence G2 | Fm (resp. G2 | FM ), a contradiction. �

In the sequel we will investigate hypersurfaces connected with Moore polynomial sets; see Def-
inition 3.3. In particular, we are interested in getting information on the existence of Fq-rational
absolutely irreducible components of curves contained in such hypersurfaces.

The approach that we follow has been used for the first time by Janwa, McGuire and Wilson [19]
to classify functions on Fpn that are almost perfect nonlinear for infinitely many n, in particular for
monomial functions. It can be summarized by the following theorem.

Theorem 2.6. [21, Lemma 2] Let C ⊂ P2(Fq) be a curve of degree d and let S be the set of its
singular points. Also, let i(P ) denote the maximum possible intersection multiplicity of two putative
components of C at P ∈ C. If

∑

P∈S

i(P ) <
2d2

9
,

then C possesses at least one absolutely irreducible component defined over Fq.

3. Moore polynomial sets and MRD codes

Let q be a prime power and n be a positive integer. Consider k Fqn -linearly independent polyno-
mials f1(x), f2(x), . . . , fk(x) ∈ Ln,q and denote by f the k-tuple (f1(x), . . . , fk(x)). Define

Mf(x1, . . . , xk) =











f1(x1) f2(x1) · · · fk(x1)
f1(x2) f2(x2) · · · fk(x2)

...
...

. . .
...

f1(xk) f2(xk) · · · fk(xk)











.

For any A = {α1, . . . , αk} ⊆ Fqn , define Mf,A = Mf (α1, . . . , αk).
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Lemma 3.1. If α1, . . . , αk are Fq-linearly dependent, then det(Mf,A) = 0.

Proof. Without loss of generality, suppose that k ≥ 2 and α1 =
∑k

i=2 biαi with ai ∈ Fq. Then

Mf,A =











∑k
i=2 bif1(αi)

∑k
i=2 bif2(αi) · · ·

∑k
i=2 bifk(αi)

f1(α2) f2(α2) · · · fk(α2)
...

...
. . .

...
f1(αk) f2(αk) · · · fk(αk)











,

so that the first row ofMf,A is a linear combination of the remaining rows. Then det(Mf,A) = 0. �

The converse of Lemma 3.1 is not true in general, the following being a counterexample.

Example 3.2. Let k and n be positive integers with n even and k ≤ n. Consider f = (x, xq2 , . . . , xq2(k−1)

).
Let A = {α1, . . . , αk} be a subset of Fqn . Then Mf,A is the Moore matrix

Mf,A =













α1 αq2

1 · · · αq2(k−1)

1

α2 αq2

2 · · · αq2(k−1)

2
...

...
. . .

...

αk αq2

k · · · αq2(k−1)

k













,

and det(Mf,A) = 0 if and only if the elements α1, . . . , αk are Fq2-linearly independent; see [30,

Corollary 2.1.95]. Therefore, if α1, . . . , αk−1 are Fq-linearly independent elements in Fqn and αk ∈
〈α1, . . . , αk−1〉F

q2
\ 〈α1, . . . , αk−1〉Fq

, then det(Mf,A) = 0 even though {α1, . . . , αk} are Fq-linearly

independent.

The following definition identifies the tuples f for which the converse of Lemma 3.1 holds and it
will be crucial in our investigation for exceptional MRD codes.

Definition 3.3. Let f = (f1(x), . . . , fk(x)), where k is a positive integer and f1(x), . . . , fk(x) ∈ Ln,q.
We say that f is a Moore polynomial set for q and n if, for any α1, . . . , αk ∈ Fqn ,

det











f1(α1) f2(α1) · · · fk(α1)
f1(α2) f2(α2) · · · fk(α2)

...
...

. . .
...

f1(αk) f2(αk) · · · fk(αk)











= 0 =⇒ dimFq
〈α1, . . . , αk〉Fq

< k.

If f is a Moore polynomial set for q and nm for infinitely many m, we say that f is an exceptional
Moore polynomial set for q and n.

Moore polynomial sets can be characterized in terms of MRD codes as follows.

Theorem 3.4. Let k and n be positive integers with k ≤ n, and denote by f the k-tuple (f1(x), . . . , fk(x)),
where f1(k), . . . , fk(x) ∈ Ln,q are Fqn-linearly independent. The Fqn-linear rank metric code

Cf = 〈f1(x), . . . , fk(x)〉Fqn

is an MRD code if and only if f is a Moore polynomial set for q and n.

Proof. Suppose that Mf,A is singular for some A = {α1, . . . , αk} ⊆ Fqn , that is, there exist

b1, . . . , bk ∈ Fqn such that
∑k

i=1 bifi(αj) = 0, for every j ∈ {1, . . . , k}. This means that A is

contained in the kernel of F (x) =
∑k

i=1 bifi(x) ∈ Cf . Since Cf is an MRD code, it follows that

dimFq
(ker(F )) ≤ k − 1, and hence α1, . . . , αk are Fq-linearly dependent.
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Conversely, suppose that f is a Moore polynomial set for q and n. Assume by contradiction that

there exists g(x) ∈ Cf with dimFq
(ker(g(x))) ≥ k and write g(x) =

∑k
i=1 bifi(x) with bi ∈ Fqn . Let

A = {α1, . . . , αk} ⊆ ker(g(x)) where α1, . . . , αk are Fq-linearly independent. Then Mf,A is singular

because its columns are Fqn -linearly dependent through
∑k

i=1 bifi(αj) = 0 for all j = 1, . . . , k.
Therefore, f is not a Moore polynomial set for q and n. �

As a natural consequence, a characterization of the exceptionality property is obtained.

Corollary 3.5. Let C ⊆ Ln,q be an Fqn-linear rank metric code. The following are equivalent:

• C is an exceptional MRD code.
• Every Fqn-basis {f1(x), . . . , fk(x)} of C defines an exceptional Moore polynomial set f =
(f1(x), . . . , fk(x)) for q and n.

• There exists an Fqn-basis {f1(x), . . . , fk(x)} of C for which f = (f1(x), . . . , fk(x)) is an
exceptional Moore polynomial set for q and n.

We will investigate exceptional MRD codes by means of exceptional Moore polynomial sets.

4. Moore polynomial sets and varieties over finite fields

In this section we study exceptional Fqn -linear MRD codes C ⊆ Ln,q of dimension k under the
assumption that C contains a monomial. Up to equivalence, we can assume that C contains a

separable polynomial. We denote by t the smallest non-negative integer such that xqt ∈ C.

Remark 4.1. If C is an Fqn-linear MRD code in Ln,q, then C contains an invertible map f(x)
(see [27, Lemma 2.1] and [33, Lemma 52]), and hence f−1 ◦ C contains the identity x. If C is
exceptional, then max{degq(g(x)) : g(x) ∈ 〈C〉Fqnm} does not depend on the infinitely many m’s for

which 〈C〉Fqnm is MRD. On the contrary, max{degq(g(x)) : g(x) ∈ 〈f−1 ◦C〉Fqnm} may depend on m,

so that f−1 ◦ C may not be exceptional.
On the other hand, the assumption that C contains a separable polynomial does not affect the

exceptionality of C, since max{degq(g(x)) : g(x) ∈ C} decreases by min{mindegq(g(x)) : g(x) ∈ C}.

Assumptions 4.2. Note that there exist f1(x), . . . , fk(x) ∈ C such that the following hold:

(1) f1(x), . . . , fk(x) are monic and Fqn -linearly independent;
(2) M1 := degq(f1(x)), . . . ,Mk := degq(fk(x)) are all distinct;
(3) m1 := mindegq(f1(x)), . . . ,mk := mindegq(fk(x)) are all distinct, and mi = 0 for some i;

(4) f1(x) = xqt ;
(5) for any i, if fi(x) is a monomial then mi = Mi ≥ t.

Therefore, by Corollary 3.5, we investigate Moore polynomial sets as in the following definition.

Definition 4.3. A Moore polynomial set f = (f1(x), . . . , fk(x)) ⊆ Lk
n,q satisfying Assumptions 4.2

is said to be a Moore polynomial set for q and n of index t.

A key tool in our approach is a link between Moore polynomial sets ans algebraic hypersurface.
To this aim, we introduce the following Fqn -rational hypersurfaces: U := Uf ⊂ Pk(Fqn) is the

hypersurface defined by the affine equation

Ff (X1, . . . , Xk) := det(Mf (X1, . . . , Xk)) = 0,

and V ⊂ Pk(Fqn) is the hypersurface U(x,xq,...,xqk−1). Note that

F(x,xq,...,xqk−1)(X1, . . . , Xk) =
∏

(a1:...:ak)∈Pk−1(Fq)

(a1X1 + · · ·+ akXk),
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with a suitable choice of the representative for the points (a1 : . . . : ak). Since f1(x), . . . , fk(x)
are Fq-linearized, the polynomial F(x,xq,...,xqk−1 )(X1, . . . , Xk) divides Ff (X1, . . . , Xk), so that V is a

component of U . Therefore we can define the Fqn -rational variety W ⊂ Pk(Fqn) with affine equation

W : Ff (X1, . . . , Xk)/F(x,xq,...,xqk−1)(X1, . . . , Xk) = 0.

The link between Moore polynomial sets and algebraic hypersurfaces W is straightforward.

Theorem 4.4. The k-tuple f is a Moore polynomial set for q and n if and only if all the affine
Fqn-rational points of W lie on V.

Proof. For any A = {α1, . . . , αk} ⊆ Fqn , the condition det(Mf,A) = 0 is equivalent to (α1, . . . , αk)

being an affine Fqn -rational point of W , while the condition dimFq
(〈α1, . . . , αk〉Fq

) < k is equivalent
to (α1, . . . , αk) being a point of V . The claim follows. �

In the case when f1(x), . . . , fk(x) are monomials, Theorem 4.4 was already noticed (using a
slightly different terminology) and used in [9] to prove the following result.

Theorem 4.5. [9, Theorems 1.1, 3.2, 4.1] Let I = {i1 = 0, i2, . . . , ik} be a set of non-negative
integers with 0 < i2 < . . . < ik such that I is not in arithmetic progression. Suppose that one of the
following holds:

• |I| = 3 and n > 4ik + 2;
• |I| > 3, q > 5 and n > 13

3 ik + logq(13 · 2
10/3).

Then (x, xqi2 , . . . , xqik ) is not a Moore polynomial set for q and n.

In the sequel, we will use the following notation: for any i = 1, . . . , k, write fi(x) =
∑Mi

j=mi
aijx

qj

and fi(x, z) :=
∑Mi

j=mi
aijx

qj zq
Mj−qj .

4.1. Moore polynomial sets of index 0. In this section we investigate Moore polynomial sets of
index 0, so that f1(x) = x. Without loss of restriction, we assume M1 = 0 < M2 < · · · < Mk.

Theorem 4.6. Suppose that one of the following holds:

• k = 3 and n > 4M3 + 2;
• k > 3, q > 5 and n > 13

3 Mk + logq(13 · 2
10/3).

If f is a Moore polynomial set for q and n of index 0, then (M1 = 0,M2, . . . ,Mk) is in arithmetic
progression and (mσ(1) = 0,mσ(2), . . . ,mσ(k)) is in arithmetic progression for some σ ∈ Sk with
σ(1) = 1.

Proof. In order to prove the claim on the Mi’s, consider the intersection W∞ = W ∩H∞ between
W and the hyperplane at infinity H∞ ⊂ Pk(Fqn). Note that W∞ ⊂ Pk−1(Fqn) is defined by

W∞ : F
(x,xqM2 ,...,xq

Mk )
(X1, . . . , Xk)/F(x,xq,...,xqk−1 )(X1, . . . , Xk) = 0.

Suppose that (M1, . . . ,Mk) is not in arithmetic progression. Then it has been shown in [9, Theorems
3.1 and 4.2] that U∞ contains an Fqn -rational non-repeated absolutely irreducible component X . It
follows by Lemma 2.5 that W has an Fqn -rational non-repeated absolutely irreducible component.
Then, as shown in [9] (in page 9 for k = 3, and in page 17 for k > 3), there exists an affine
Fqn -rational point in W \ V . Thus, f is not a Moore polynomial set for q and n by Theorem 4.4.

Now suppose that (mσ(1), . . . ,mσ(k)) is not in arithmetic progression for any σ ∈ Sk. Consider
the tangent variety T of W at the origin O. Then

T : F
(xq

mσ(1)
,xqmσ(2)

,...,xqmσ(k)
)
(X1, . . . , Xk)/F(x,xq,...,xqk−1 )(X1, . . . , Xk) = 0.
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Now the same arguments as above show that T has an Fqn -rational non-repeated absolutely irre-
ducible component. Then W has an Fqn -rational non-repeated absolutely irreducible component by
Lemma 2.5. Therefore, as in [9], W has an affine Fqn -rational point not in V , so that f is not a
Moore polynomial set for q and n. �

In the rest of this subsection, f is a Moore polynomial set for q and n of index 0, satisfying the
assumptions of Theorem 4.6, so that M1 = 0,M2 = M, . . . ,Mk = (k − 1)M .

Let λ3, . . . , λk be Fq-linearly independent elements of Fqn and defineHf (X1, X2) = Ff (X1, X2, λ3, . . . , λk) ∈

Fqn [X1, X2]. Since f is a Moore polynomial set, Hf (X1, X2) 6≡ 0. Let Df ⊂ P2(Fqn) be the curve

defined by Hf (X1, X2) = 0. We denote by Hf (X1, X2, T ) the homogeneization of Hf (X1, X2), i.e.

Hf (X1, X2, T ) := det















X1 f2(X1, T ) · · · fk(X1, T )
X2 f2(X2, T ) · · · fk(X2, T )

λ3T f2(λ3)T
qM · · · fk(λ3)T

q(k−1)M

...
...

. . .
...

λkT f2(λk)T
qM · · · fk(λk)T

q(k−1)M















/

T
q(k−2)M

−1

qM−1 .

Lemma 4.7. If Df has a non-repeated Fqn-rational absolutely irreducible component not contained in

Dx,xq,...,xqk−1 , then W has a non-repeated Fqn-rational absolutely irreducible component not contained

in V.

Proof. Consider the variety W3 ⊂ P3(Fqn) defined by

W3 : Ff (X1, X2, X3, λ4, . . . , λk)/F(x,xq,...,xqk−1 )(X1, X2, X3, λ4, . . . , λk) = 0.

Let Π3 ⊂ P3(Fqn) be the hyperplane with affine equation X3 = λ3. By the assumptions, W3∩Π3 has
a non-repeated Fqn -rational absolutely irreducible component. Hence, by Lemma 2.1, W3 has a non-
repeated Fqn -rational absolutely irreducible component. The claim follows by repeatedly applying
this argument to W3, . . . ,Wk = W . �

Remark 4.8. It is readily seen that (x, f(x)) is a Moore polynomial set for q and n if and only if
f(x) is scattered of index 0 over Fqn . By the results in [6, 8], if n > 4 degq(f(x)) and (x, f(x)) is
a Moore polynomial set for q and n, then f(x) is a monomial with gcd(n, degq(f(x))) = 1. Next
results deal with the case k > 2.

Theorem 4.9. Let f = (f1(x) = x, f2(x), f3(x)) be a Moore polynomial set for q and n of index 0
with 0 < M2 < M3. If n > 4M3 + 2, then f2(x) ∈ Ln,q is scattered of index 0.

Proof. By Theorem 4.6, M3 = 2M where M = M2. Suppose that f2(x) ∈ Ln,q is not scattered of
index 0, so that there exist λ, µ ∈ F∗

qn such that λ/µ /∈ Fq and f2(λ)/λ = f2(µ)/µ. By [5, Corollary
3.4], we can assume that µ /∈ Fq and f2(λ) 6= 0.

Let λ3 = λ and define Df as above. Let D′
f be the image of Df under the Fqn -rational projectivity

ϕ : (X1 : X2 : T ) 7→ (T : X2 −X1 : X1). Note that the point P = (1: 1 : 0) ∈ Df is mapped by ϕ to

O = (0: 0 : 1). The curve D′
f has affine equation H ′

f (X1, X2) = 0, where

H ′
f (X1, X2) = Hf (1, X2+1, X1) = det





1 f2(1, X1) f3(1, X1)
X2 + 1 f2(1, X1) + f2(X2, X1) f3(1, X1) + f3(X2, X1)

λ f2(λ)X
qM−1
1 f3(λ)X

q2M−1
1





= det





1 f2(1, X1) f3(1, X1)
X2 f2(X2, X1) f3(X2, X1)

λ f2(λ)X
qM−1
1 f3(λ)X

q2M−1
1



 = −λf2(X2, X1) + f2(λ)X2X
qM−1
1 +G(X1, X2),
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for some G(X1, X2) ∈ Fqn [X1, X2] of degree bigger than qM .

The homogeneous polynomial L(X1, X2) = −λf2(X2, X1) + f2(λ)X2X
qM−1
1 has X2 − µX1 as a

non-repeated factor in Fqn [X1, X2], since µ is a root of the separable polynomial L(1, X2) ∈ Fqn [X2].
Therefore D′

f has a non repeated Fqn -rational absolutely irreducible component, and the same holds

for Df . Since µ /∈ Fq, such a component of Df is not contained in D(x,xq,xq2).

By Lemma 4.7, W has a non-repeated Fqn -rational absolutely irreducible component Z not con-
tained in V . The degree of V is q2 + q + 1, and the degree of Z is at most q2M + qM − q2 − q.
Thus, by [38, Corollary 7], Z has an affine Fqn -rational point not on V , a contradiction to Theorem
4.4. �

Theorem 4.10. Let f = (f1(x) = x, f2(x), f3(x)) be a Moore polynomial set for q and n of index
0 such that 0 < M2 < M3, and (q,M) /∈ {(2, 2), (2, 4), (3, 2), (4, 2), (5, 2)}. If n > 4M3 + 2, then

f = (x, xqM , xq2M ) with gcd(M,n) = 1.

Proof. By Theorem 4.6, M3 = 2M and max{m2,m3} = 2min{m2,m3}. By Theorem 4.9, f2(x) is
scattered of index 0 over Fqn . Thus, by the numerical assumption on n, it follows that f2(x) = qM

and gcd(M,n) = 1; see [8, Section 3.1] for q > 5 and [6, Section 5] for q ≤ 5.

From m2 = M it follows that m3 ∈ {2M,M/2}. Suppose by contradiction that f3(x) 6= xq2M , so
that m3 = M/2 < M , and in particular M is even. Choose λ3 = λ ∈ F∗

qn such that f2(λ)f3(λ) 6= 0.
Via Theorem 2.6, we will prove that the variety W3 with affine equation

W3 : Ff (X1, X2, λ)/F(x,xq,xq2 )(X1, X2, λ) = 0

has a non-repeated Fqn -rational absolutely irreducible component not contained in V .
Suppose that W3 splits into two components A and B sharing no common absolutely irreducible

component. Let Ã and B̃ be two components of Df sharing no common absolutely irreducible

components and such that A ⊆ Ã, B ⊆ B̃. Singular points of W3 are also singular points of Df ,

and the intersection multiplicity of A and B at a point is at most the intersection multiplicity of
Ã and B̃ at that point. We start the inspection of singular points of W3 from affine ones. Let
P = (α, β) ∈ P2(Fqn) be an affine point of Df . The point P is singular for Df if and only if

f3(λ)f2(α)− f2(λ)f3(α) = 0 and f3(λ)f2(β) − f2(λ)f3(β) = 0, that is

f3(λ)α
qM − λqM f3(α) = f3(λ)β

qM − λqM f3(β) = 0.

Also, the intersection multiplicity of Ã and B̃ at P equals the intersection multiplicity of τ(Ã) and

τ(B̃) at τ(P ) = O = (0, 0), where τ is the translation (X1, X2) 7→ (X1 − α,X2 − α). The image D′
f

of Df under τ has affine equation H ′
f (X1, X2) = 0, with

H ′
f (X1, X2) = Hf (X1 + α,X2 + β) = det







X1 + α XqM

1 + αqM f3(X1) + f3(α)

X2 + β XqM

2 + βqM f3(X2) + g(β)

λ λqM f3(λ)







= a
(

(λαqM − αλqM )Xqm3

2 − (λβqM − βλqM )Xqm3

1 − λqM (X1X
qm3

2 −X2X
qm3

1 )
)

+G(X1, X2),

where a 6= 0 is the coefficient of xqm3
in f3(x), and G(X1, X2) ∈ Fqn [X1, X2] has degree bigger

than qm3 + 1. We denote respectively by (H ′
f )qm3 and (H ′

f )qm3+1 the homogeneous polynomials

(λαqM − αλqM )Xqm3

2 − (λβqM − βλqM )Xqm3

1 and X1X
qm3

2 −X2X
qm3

1 . If non-vanishing, they are,
up to a scalar multiple, the homogeneous parts of smallest degrees in H ′

f (X1, X2). Note that the

qm3 + 1 linear factors of (H ′
f )qm3+1 are all distinct.
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• There are at most q2M singular points (α, β) of Df which satisfy λαqM − αλqM = λβqM −

βλqM = 0. In this case, (H ′
f )qm3+1 is the non-zero homogeneous part of smallest degree

in H ′
f (X1, X2). Thus O is an ordinary (qm3 + 1)-fold point for D′

f , and by Lemma 2.4 the

intersection multiplicity of τ(Ã) and τ(B̃) at O is at most (qm3 + 1)2/4.
• There are at most 2(q2M−m3 − 1) · qM singular points (α, β) of Df which satisfy either

λαqM − αλqM 6= 0 = λβqM − βλqM or λαqM − αλqM = 0 6= λβqM − βλqM .

In this case, (H ′
f )qm3 = Xqm3

2 or (H ′
f )qm3 = Xqm3

1 up to a non-zero scalar multiple, and

hence gcd(H ′
f )qm3 , (H ′

f )qm3+1 = X2 or X1. By Lemma 2.3, the intersection multiplicity of

τ(Ã) and τ(B̃) at O is at most qm3 .
• There are at most (q2M−m3 − 1) · (qm3 − 1) · qM singular points (α, β) of Df which satisfy

λαqM − αλqM 6= 0, λβqM − βλqM 6= 0, and η(λαqM − αλqM ) = ξ(λβqM − βλqM ) for some
(ξ : η) ∈ P1(Fqm3 ) \ {(1 : 0), (0 : 1)}. In this case, (H ′

f )qm3 = (ξX2 − ηX1)
qm3

up to a

non-zero scalar multiple, and hence (H ′
f )qm3 and (H ′

f )qm3+1 are not coprime. By Lemma

2.3, the intersection multiplicity of τ(Ã) and τ(B̃) at O is at most qm3 .

• If a singular point (α, β) of Df satisfies η(λαqM − αλqM ) = ξ(λβqM − βλqM ) for some

(ξ : η) /∈ P1(Fqm3 ), then (H ′
f )qm3 and (H ′

f )qm3+1 are coprime. In this case, by Lemma 2.2,

the intersection multiplicity of τ(Ã) and τ(B̃) at O is 0.

Since the homogeneus part of largest degree in Hf (X1, X2) is

λ ·XqM

1 ·
∏

γ∈F
qM

(X2 − γX1)
qM ,

the points at infinity of Df are (0 : 1 : 0) and (1 : γ : 0) with γ ∈ FqM . As the map (X1 : X2 : T ) 7→

(X2 : X1 : T ) maps (0 : 1 : 0) to (1 : 0 : 0) and leaves invariant the curves Df and D(x,xq,xq2 ), it is

enough to consider the points Pγ = (1: γ : 0) with γ ∈ FqM . The intersection multiplicity of

Ã and B̃ at Pγ equals the intersection multiplicity of σ(Ã) and σγ(B̃) at σγ(P ) = O = (0, 0),
where σγ : (X1 : X2 : T ) 7→ (T : X2 − γT : X1). The image D′′

f of Df under σγ has affine equation

H ′′
f (X1, X2) = 0, where

H ′′

f (X1, X2) = Hf (1, X2 + α,X1) = det





1 f2(1, X1) f3(1, X1)
X2 + γ f2(X2 + γ,X1) f3(X2 + γ,X1)

λ f2(λ)X
qM−1
1 f3(λ)X

q2M−1
1



 =

det







1 1 f3(1, X1)

X2 XqM

2 f3(X2, X1) + f3(γ,X1)− γf3(1, X1)

λ λqMXqM−1
1 f3(λ)X

q2M−1
1






= λqMX2X

qM−1
1 − λXqM

2 +G(X1, X2),

for some G(X1, X2) of degree greater than qM (here, we used that the constant term in f3(γ,X1)

is the same as in γf3(1, X1)). Since λqMX2X
qM−1
1 − λXqM

2 is homogeneous and separable in each
variable, 0 is an ordinary qM -fold point for D′′

f , and by Lemma 2.4 the intersection multiplicity of

Ã and B̃ at Pα is at most q2M/4. The same holds at (0 : 1 : 0).
Summing up, the number of intersection points of two components of Hf (X1, X2, T ) = 0, counted

with multiplicity, satisfies

∑

P

I(P,A∩B) ≤ q2M
(qm3 + 1)2

4
+2(q2M−m3−1)qM+m3+(q2M−m3−1)(qm3−1)qM+m3+(qM+1)

q2M

4
.
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Since (q,M) /∈ {(2, 2), (2, 4), (3, 2), (4, 2), (5, 2)}, the above quantity is less than

2

9
deg(W3)

2 =
2

9
(q2M + qM − q2 − q)2.

By Theorem 2.6, W3 contains an Fqn -rational absolutely irreducible component X . Note that Df

has only finitely many singular points, and hence X is non-repeated and not contained in V . Arguing
as in the last paragraph of the proof of Theorem 4.9, a contradiction arises. This shows m3 = 2M ,

i.e. f3(x) = xq2M .
�

By means of an induction argument, we are able to extend the result of Theorem 4.10 to any
Moore polynomial set of index 0, as follows.

Theorem 4.11. Let f = (f1(x) = x, f2(x), . . . , fk(x)), with k > 3, be a Moore polynomial set for q

and n of index 0 such that 0 < M2 < · · · < Mk. Suppose also that q > 5 and n > 13
3 Mk + logq(13 ·

210/3). Then f = (x, xqM , . . . , xq(k−1)M

) with gcd(M,n) = 1.

Proof. By Theorem 4.6, Mi = (i − 1)M for every i, with gcd(M,n) = 1. Also, {0,m2, . . . ,mk} can
be ordered so that they are in arithmetic progression.

We prove by finite induction on i ∈ {3, . . . , k} the following fact: if h = (x, f2(x), . . . , fi(x)) satis-

fies h 6= (x, xqM , . . . , xq(i−1)M

), then the hypersurface Uh has a non-repeated Fqn -rational absolutely
irreducible component not contained in V . The base i = 3 has been worked out in the proof of
Theorem 4.10. For i > 3, define the map ϕ : (X1 : . . . : Xi : T ) 7→ (T : X2 − X1 : X3 : . . . Xi : X1),
which maps (1 : 1 : 0 : . . . : 0) ∈ Uf to O = (0: . . . : 0 . . . 1), and consider the image U ′

f of Uf under

ϕ, which has affine equation F ′
f (X1, . . . , Xi) = 0, where F ′

f (X1, X2, . . . , Xi) equals

det















1 f2(1, X1) . . . fi(1, X1)
X2 + 1 f2(1, X1) + f2(X2, X1) . . . fi(1, X1) + fi(X2, X1)
X3 f2(X3, X1) . . . fi(X3, X1)

.

.

.
.
.
.

. . .
.
.
.

Xi f2(Xi, X1) . . . fk(Xi, X1)















= det















1 f2(1, X1) . . . fi(1, X1)
X2 f2(X2, X1) . . . fi(X2, X1)
X3 f2(X3, X1) . . . fi(X3, X1)

.

.

.
.
.
.

. . .
.
.
.

Xi f2(Xi, X1) . . . fi(Xi, X1)















.

The tangent cone to U ′
f at O has equation

F ∗
g (X2, . . . , Xi, X1) = det











X2 f2(X2, X1) . . . fi−1(X2, X1)
X3 f2(X3, X1) . . . fi−1(X3, X1)
...

...
. . .

...
Xi f2(Xi, X1) . . . fi−1(Xi, X1)











= 0,

where g = (f1(x) = x, f2(x), . . . , fi−1(x)). Note that F ∗
g (X2, . . . , Xi, X1) is homogeneous, and its

dehomogenized polynomial with respect to X1 is Fg(X2, . . . , Xi).

If g 6= (x, xqM , . . . , xq(i−2)M

), then by induction hypothesis Ug has a non-repeated Fqn -rational

absolutely irreducible component not contained in V , and hence by Lemma 2.5 the same holds for

Uh. If g = (x, xqM , . . . , xq(i−2)M

) then fi(x) = xq(i−1)M

, because i ≥ 4 implies that the arithmetic
progressions of the Mj ’s and mj ’s both have ratio M .

For i = k, if f 6= (x, xqM , . . . , xq(k−2)M

), then W has a non-repeated Fqn -rational absolutely

irreducible component Z not contained in V . Thus, by [38, Corollary 7], Z has an affine Fqn -rational
point not on V , a contradiction to Theorem 4.4. �
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4.2. Moore polynomial sets of positive index. In this section we investigate Moore polynomial

sets of index t > 0, so that f1(x) = xqt .

Proposition 4.12. Suppose that one of the following holds:

• k = 3 and n > 4M3 + 2;
• k > 3, q > 5 and n > 13

3 Mk + logq(13 · 2
10/3).

If f is a Moore polynomial set for q and n of index t, then (mσ(1), . . . ,mσ(k)) is in arithmetic
progression for some σ ∈ Sn.

Proof. Since mi = 0 for some i, the proof is the same as in the proof of Theorem 4.6 for t = 0. �

Up to reordering, we can assume that the permutation σ in Proposition 4.12 satisfies σ(1) = 2,
that is, f2(x) is separable.

Proposition 4.13. Let f = (f1(x) = xqt , f2(x), f3(x)) be a Moore polynomial set for q and n of
index t > 0 such that f2(x) is separable. If max{t,M2} < M3 and n > 4M3 + 2, then f2(x) ∈ Ln,q

is scattered of index t.

Proof. The proof is similar to the one of Theorem 4.9. Suppose that f2(x) ∈ Ln,q is not scattered

of index t. Then there exist λ, µ ∈ F∗
qn such that µ /∈ Fq, λ/µ /∈ Fq and f2(λ)/λ

qt = f2(µ)/µ
qt 6= 0.

Let λ3 = λ and define Df as above. Then Df is PGL(3, qn)-equivalent to the curve D′
f with affine

equation H ′
f (X1, X2) = 0, where

H ′
f (X1, X2) = Hf (1, X2 + 1, X1) = −λqtf2(X2, X1)X

qt−1
1 + f2(λ)X

qt

2 XqM2−1
1 +G(X1, X2)

and G(X1, X2) has degree at least q
t+qM2 . The tangent cone to D′

f at (0, 0) has a non-repeated Fqn -

rational absolutely irreducible component with affine equation X2 − µX1 = 0, which corresponds
to a non-repeated Fqn -rational absolutely irreducible component of Df which is not contained in
D(x,xq,xq2 ). Arguing as in the proof of Theorem 4.9, the claim follows. �

We now use the known classification results on exceptional scattered polynomials.

Corollary 4.14. Let f = (f1(x) = xqt , f2(x), f3(x)) be a Moore polynomial set for q and n of index

t such that f2(x) is separable, max{t,M2} < M3, and n > 4M3 + 2. Then:

(1) t > 0 and max{t,M2} is not an odd prime;

(2) if either t = 1, or t = 2 and q is odd, then f = (xqt , ax+ xq2t , f3(x)) and m3 = 2t.

Proof. Since f2(x) is separable, the case t = 0 cannot occur by definition. Then f2(x) ∈ Ln,q is
exceptional scattered of positive index t.

(1) If max{t,M2} is an odd prime, then from [15, Theorem 1.4] it follows f2(x) = x, so that f
has index 0, a contradiction.

(2) If either t = 1, or t = 2 and q is odd, then the results in [8, Page 511] and [6, Theorem 1.4

and Corollary 1.5] imply f2(x) = ax+ xq2t with a 6= 0. The claim follows from Proposition
4.12.

�

Proposition 4.13 can be extended as follows.

Theorem 4.15. Let f = (f1(x) = xqt , f2(x), . . . , fk(x)), with k > 3, be a Moore polynomial set for

q and n of index t > 0 such that f2(x) is separable. Suppose also that q > 5, max{t,M2} < Mi for
any i ≥ 3, and n > 13

3 max{Mi : i ≥ 3}+ logq(13 · 2
10/3). Then f2(x) ∈ Ln,q is scattered of index t.
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Proof. It can be proved by finite induction on i ∈ {3, . . . , k} that, if h = (xqt , f2(x), . . . , fi(x)) and
f2(x) ∈ Ln,q is not scattered of index t, then the hypersurface Uh has a non-repeated Fqn -rational
absolutely irreducible component not contained in V . The base i = 3 is in the proof of Proposition
4.13. For i > 3, the argument is analogous to the one in the proof of Theorem 4.11. The claim then
follows again by using [38, Corollary 7]. �

Recalling the correspondence between Moore polynomial sets and MRD codes described in Corol-
lary 3.5, we finally obtain Main Theorem as a consequence of Theorem 4.10, Theorem 4.11, Propo-
sition 4.13 and Theorem 4.15.

Note that, if the hypothesis of n being large enough in the aforementioned results are incorporated
in the assumptions of Main Theorem, then the exceptionality of the MRD code C ⊂ Ln,q can be
dropped, as well as the exceptionality of the scattered property for f2(x) ∈ Ln,q.

5. Known examples of Moore polynomial sets

This section is devoted to the description of the known examples of Moore polynomial sets cor-
responding to inequivalent Fqn -linear MRD codes; see Table 1. The only known examples of excep-
tional Moore polynomial sets are the first two in Table 1.

Let b : Ln,q × Ln,q → Fq be the bilinear form given by b(f, g) = Trqn/q

(

∑n−1
i=0 aibi

)

, where

Trqn/q(x) =
∑n−1

i=0 xqi , f(x) =
∑n−1

i=0 aix
qi , g(x) =

∑n−1
i=0 bix

qi ∈ Ln,q. The Delsarte dual code of a
rank metric code C ⊆ Ln,q is

C⊥ = {f(x) ∈ Ln,q : b(f, g) = 0, for all g(x) ∈ C}.

Recall that the Delsarte dual code of an MRD code, having minimum distance greater than one,
is an MRD code; see e.g. [14, 17]. This yields new examples of Moore polynomial sets; see lines
4,6,8,10,12,14 in Table 1.

Table 1: Known examples of Moore polynomial sets

n k f1(x), . . . , fk(x) conditions references

x, xqs , . . . , xqs(k−1)

gcd(s, n) = 1 [14,17,20]

xqs , . . . , xqs(k−1)

, x+ δxqsk gcd(s, n) = 1,

Nqn/q(δ) 6= (−1)nk [28,35]

2t 2
x,

xqs + xqs(t−1)

+ δq
t+1xqs(t+1)

+ δ1−q2t−1

xqs(2t−1)

q odd,
Nq2t/qt(δ) = −1,
gcd(s, n) = 1

[7,24,25,31,40]

2t2t− 2

xqsi : i /∈ {0, 1, t− 1, t+ 1, 2t− 1},

h1(x) = xqs − xqs(t−1)

,

h2(x) = δq
t+1xqs − xqs(t+1),

h3(x) = δ1−q2t−1

xqs − xqs(2t−1)

q odd,
Nq2t(qt(δ) = −1,
gcd(s, n) = 1

[7,24,25,31,40]

6 2 x, xq + δxq4 q > 4,
certain choices of δ

[3, 11,32]

6 4 xq, xq2 , xq4 , x− δq
5

xq3 q > 4,
certain choices of δ

[3, 11,32]

6 2 x, xq + xq3 + δxq5 q odd, δ2 + δ = 1 [13,29]

6 4 xq, xq3 , x− xq2 , xq4 − δx q odd, δ2 + δ = 1 [13,29]

7 3 x, xqs , xq3s q odd, gcd(s, 7) = 1 [12]

7 4 x, xq2s , xq3s , xq4s q odd, gcd(s, n) = 1 [12]



14 D. BARTOLI, G. ZINI, AND F. ZULLO

n k f1(x), . . . , fk(x) conditions references

8 3 x, xqs , xq3s q ≡ 1 (mod 3),
gcd(s, 8) = 1

[12]

8 5 x, xq2s , xq3s , xq4s , xq5s q ≡ 1 (mod 3),
gcd(s, 8) = 1

[12]

8 2 x, xq + δxq5 q odd, δ2 = −1 [12]

8 6 xq, xq2 , xq3 , xq5 , xq6 , x− δxq4 q odd, δ2 = −1 [12]

6. Conclusions and open problems

In this paper we introduce the notion of exceptional linear maximum rank distance codes of a
given index, which naturally extends the notion of exceptionality for a scattered polynomial in the
rank metric framework. We then classify those of index 0, and prove that those of positive index
contain an exceptional scattered polynomial of the same index.

We list a couple of open problems related to the obtained results.

• Under the assumptions of Proposition 4.13 or Theorem 4.15, for n large enough, one may
conjecture that Moore polynomial sets of positive index do not exist. Whereas, relaxing the
assumption max{t,M2} < Mi for every i ≥ 3, one should include also the second example
listed in Table 1, that is the one corresponding to generalized twisted Gabidulin codes.
However, a new approach seems to be needed.

• A complete classification of exceptional scattered polynomials could yield to more precise
results on the asymptotics of Moore polynomial sets of positive index and hence of Fqn -linear
MRD codes in Ln,q.
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