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LINEAR MAXIMUM RANK DISTANCE CODES OF EXCEPTIONAL TYPE

DANIELE BARTOLI, GIOVANNI ZINI, AND FERDINANDO ZULLO

ABSTRACT. Scattered polynomials of a given index over finite fields are intriguing rare objects
with many connections within mathematics. Of particular interest are the exceptional ones, as
defined in 2018 by the first author and Zhou, for which partial classification results are known. In
this paper we propose a unified algebraic description of Fyn-linear maximum rank distance codes,
introducing the notion of exceptional linear maximum rank distance codes of a given index. Such
a connection naturally extends the notion of exceptionality for a scattered polynomial in the rank
metric framework and provides a generalization of Moore sets in the monomial MRD context. We
move towards the classification of exceptional linear MRD codes, by showing that the ones of index
zero are generalized Gabidulin codes and proving that in the positive index case the code contains
an exceptional scattered polynomial of the same index.

1. INTRODUCTION

Let ¢ be a prime power, n be a positive integer, and denote by F,» the finite field with ¢"
elements. Rank metric codes can be seen as sets of Fg-linear endomorphisms of Fy» equipped with
the rank distance, that is the distance between two elements is defined as the (linear algebraic)
rank of their difference. Since the IFy-algebra of the IF4-linear endomorphisms of Fy» and the IFy-

algebra L, , = {Z?:_Ol aiacqi ta; € Fqn} of F,-linearized polynomials of g-degree smaller than n are

isomorphic, each rank metric code can be also seen as a subset of £, 4. For any f(z) = Z;:Ol aizqi,
we define deg,(f(z)) = max{i: a; # 0} and mindeg,(f(r)) = min{i: a; # 0}. In this context, a
rank metric code C C L, , with minimum distance d achieving the equality in the Singleton-like
bound

(1) |C| < qn(n—d+1)

is called maximum rank distance (MRD) code. Rank metric codes and in particular MRD codes have
been introduced several times [14}[17] and have been widely investigated in the last few years, due
to applications in network coding [37] and cryptography [23]. Two rank metric codes C1,C2 C Ly, 4
are said to be equivalent if there exist two invertible [Fy-linearized polynomials g(z), h(z) € L, 4 and
a field automorphism p € Aut(Fg») such that

Ci=goChoh={go fPoh: f e},

where f7(z) == Y0 plai)a® if f(z) = Y77 a2 and the composition has to be considered
modulo z¢" — z. In order to study the equivalence between two rank metric codes, one can make
use of the idealisers. They have been introduced in [22], where the left and right idealisers of a rank
metric code C C L,, ;, are defined respectively as

L(C) = {p(x) € Lng: pofeClorallf €C}, R(C)={p(x) € Lpy: fopeCforallfeCl
Such objects have also been investigated in [27], where they have been called respectively middle

and right nuclei.
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In this paper we are interested in Fgn-linear MRD codes, that is MRD codes C such that L(C)
is equivalent to F,, = {ax: a € Fgn}; see [36, Definition 12]. Thus, every Fgn-linear MRD code
is equivalent to an Fgn-subspace of L, 4 and we will always consider MRD codes which are Fyn-
subspaces of L, 4. The MRD condition for Fy»-linear rank metric codes reads as follows. By (1),
an [Fyn-linear rank metric code C C L, 4, with dimp ,, (C) = k and minimum distance d, is an MRD
code if and only if d =n — k + 1, or equivalently,

dimp, (ker(f)) < k—1, for all f e C\{0}.

This paper is devoted to the investigation of Fyn-linear MRD codes which are exzceptional. An
Fgn-linear MRD code C C L,, 4 is an exceptional MRD code if the rank metric code

Cm = <C>]Fqnm, g £nm,q

is an MRD code for infinitely many m. Only two families of exceptional Fy»-linear MRD codes are
known:

(G) Grs = (z,27 ... wq“’“*“mn, with ged(s,n) = 1, see [T4,[17,20];

(T) Hps(8) = (@@, 29" " o + 627" )g ., with ged(s,n) = 1 and Nga(8) # (—1)"*, see

[2835].

The first family is known as generalized Gabidulin codes and the second one as generalized twisted
Gabidulin codes.

Although the definition of exceptional Fyn-linear MRD codes appears in this paper for the first
time, it has been already studied in particular subcases in different contexts.

In the case k = 2, exceptional MRD codes have been considered via so-called exceptional scattered
polynomials. Let f(z) € £, 4 and ¢t be a nonnegative integer ¢t < n—1. Then f is said to be scattered
of index t if for every z,y € Fy.

f(ff) _ f(g) o Yew,
x4 yq
or equivalently,
(2) dimp, (ker(f(z) — mzqt)) <1, for every m € Fyn.

The term scattered arises from a geometric framework; see [I0]. Indeed, f is scattered of index ¢ if
and only the F,-subspace

Uy = {(@", f(2): ¢ € Fyr}

has the property that dimg, (Ut y N (v)F,.) < 1 for every nonzero vector v & Fﬁn, that is Uy is
scattered with respect to the Desarguesian spread {(v)r,.: v € F2. \ {(0,0)}}. Sheekey in [35],
taking into account (2)), pointed out the following connection between scattered polynomials and
Fyn-linear MRD codes: f is scattered of index t if and only if Cy: = (mqt,f(x))]}vqn is an MRD
code with dimg,, (C) = 2. The polynomial f is said to be ewceptional scattered of index t if it is
scattered of index ¢ as a polynomial in L, 4, for infinitely many m; see [§]. Taking into account
@), a polynomial f is exceptional scattered of index ¢ if and only if the corresponding MRD code
Cy¢ is exceptional. While several families of scattered polynomials have been constructed in recent
years [7L[T0L1TL1324H261 28,2931, 35, B9,[40], only two families of exceptional ones are known:

(Ps) f(z) =29 of index 0, with ged(s,n) = 1 (polynomials of so-called pseudoregulus type);

(LP) f(z) = z+0627" of index s, with ged(s,n) = 1 and Ngn /4(0) # 1 (so-called LP polynomials).
Such two families correspond to the known exceptional Fyn-linear MRD codes (G) and (T).

Several tools have already been proposed in the study of exceptional scattered polynomials, re-

lated to algebraic curves or Galois extensions of function fields; see [21[4L[6,8[15]. However, their
classification is still unknown when the index is greater than 1.
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For k > 2, the only known families of Fyn-subspaces of £, ,, corresponding to MRD codes are (G)
and (T) as described above and Delsarte dual codes of the MRD codes associated with scattered
polynomials. In [9] it has been shown that the only exceptional Fyn-linear MRD codes spanned by
monomials are the codes (G), in connection with so-called Moore exponent sets.

It is therefore natural to investigate exceptional Fyn-linear MRD codes not generated by mono-
mials. To this aim, we generalize the notion of Moore exponent set; see Section [Bl

Using a connection between the generators of [Fy»-linear rank metric codes C and certain algebraic
hypersurfaces X¢, we obtain a partial classification of exceptional IFy»-linear MRD codes. Tools from
intersection theory (see Section [2)) yield sufficient conditions on the generators for C to be MRD, via
the existence of Fyn-rational absolutely irreducible components of X¢.

Our main results can be summarized as follows.

Main Theorem. Let C C L, 4 be an exceptional k-dimensional Fyn-linear MRD code containing
at least a separable polynomial f(x) and a monomial. If k > 3, assume also that ¢ > 5. Let t be the
minimum integer such that 24 €C.

b Ift =0andC = <xqt592(x)7g3(x)7 cee 7gk(z)>]Fqn s with degq(f]?(x)) << degq(gk(x)) and
(q,deg,(92(7))) & {(2,2),(2,4),(3,2),(4,2),(5,2)}, then C is a generalized Gabidulin code.

e Ift>0andC = (zqt,f(x),gg(z), oy G (2))F g, with deg(gi(x)) > max{qt, deg(f(z))} for

each i =3,...,k, then f(x) is exceptional scattered of index t.

When C contains a separable polynomial and a monomial, we call the non-negative integer ¢ of
Main Theorem the indez of C.

2. PRELIMINARIES ON ALGEBRAIC VARIETIES

An algebraic hypersurface is an algebraic variety that can be defined by a single polynomial
equation. An algebraic hypersurface defined over a field K is absolutely irreducible if the associated
polynomial is irreducible over every algebraic extension of K. An absolutely irreducible K-rational
component of a hypersurface V, defined by the polynomial F'| is simply an absolutely irreducible
hypersurface which is associated to a factor of F' defined over K. For a finite field Fy, let Fq denote
its algebraic closure. Also, P"™(K) (resp. A™(K)) denotes the m-dimensional projective (resp. affine)
space over the field K.

We recall some known results on algebraic hypersurfaces of which our approach will make use.
Lemma 2.1. [I, Lemma 2.1] Let H be an absolutely irreducible hypersurface and X be an F,-
rational hypersurface of IP’"(FQ). If X N"'H has a non-repeated Fy-rational absolutely irreducible
component, then X has a non-repeated Fy-rational absolutely irreducible component.

With the symbol I(P, ANB) we denote the intersection multiplicity of two plane curves in A%(K)
at a point P € A?(K). Classical results on such an integer can be found in most of the textbooks on
algebraic curves. For other concepts related to algebraic varieties we refer to [I8]. For the special
case of curves, a good reference is [16].

Lemma 2.2. [19, Proposition 2] Let F' € Fy[X,Y] be such that F = AB for some A, B € F,[X,Y].
Let P = (u,v) be a point in the affine plane A%(F,) and write

FX4+u,Y+0v)=F,(X,Y)+ Fr1(X,Y)+---,
where F; is zero or homogeneous of degree i and F,, # 0. Suppose that F,, = L™ for some linear

polynomial L € Fy[X,Y] such that L{ Fy41. Then I(P,ANB) =0, where A and B are the curves
defined by A and B respectively.
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Lemma 2.3. [3], Lemma 4.5/, [9, Lemma 2.5] Let F' € F,[X,Y] be such that F = AB for some

A, B € Fy[X,Y]. Let P = (u,v) be a point in the affine plane A%(F,) and write
FX4+u,Y+v)=F,(X,Y)+ F1(X,Y)+---,

where F; is zero or homogeneous of degree i and F,, # 0. Suppose that F,, = L™ for some linear

polynomial L € Fy[X,Y] such that L | Fyyi1 and L? { Fyyqq. Then I(P, AN B) =0 or m, where A
and B are the curves defined by A and B respectively.

Lemma 2.4. [16, Section 3.3] Let F € Fy[X,Y] be such that F = AB for some A, B € F,[X,Y].
Let P = (u,v) be a point in the affine plane A%(F,) and write

F(X +u,Y 40) = Fp(X,Y) + Frupa (X, Y) 4+,

where F; is zero or homogeneous of degree i and F,,, # 0. Suppose that Fy, factors into m distinct
linear factors in Fy[X,Y]. Then I(P, AN B) < |m?/2].

Lemma 2.5. Let F(X1,...,X,) € Fo[X1,..., X,] with
F(X1,. s X0) = Fn (X1 oo s X)) 4+ st (X ooy X)) + o+ Far(X1s o, Xo),s

where F; is zero or homogeneous of degree i and Fy, Fay # 0. If Fy, or Fyp contains a non-repeated
absolutely irreducible F-rational factor, then F(Xq,...,X,) contains a non-repeated absolutely ir-
reducible F,-rational factor.

Proof. Let G be the non-repeated absolutely irreducible Fy-rational factor in F, (resp. Fas). Con-
sider the unique absolutely irreducible factor F’ of F' such that G | F}, (resp. G | Fy,). If F' were
not defined over F,, then there would exist another absolutely irreducible factor F” = o(F") # F’
of F satisfying G | F! (resp. G | F}l;), where o is the g-Frobenius automorphism of F,[X71,..., X,],
whence G? | F,,, (resp. G? | Fir), a contradiction. O

In the sequel we will investigate hypersurfaces connected with Moore polynomial sets; see Def-
inition In particular, we are interested in getting information on the existence of F,-rational
absolutely irreducible components of curves contained in such hypersurfaces.

The approach that we follow has been used for the first time by Janwa, McGuire and Wilson [19]
to classify functions on IF» that are almost perfect nonlinear for infinitely many n, in particular for
monomial functions. It can be summarized by the following theorem.

Theorem 2.6. [21, Lemma 2] Let C C P*(F,) be a curve of degree d and let S be the set of its
singular points. Also, let i(P) denote the maximum possible intersection multiplicity of two putative

components of C at P € C. If
, 2d>
e

PeS
then C possesses at least one absolutely irreducible component defined over IFy.

3. MOORE POLYNOMIAL SETS AND MRD CODES

Let ¢ be a prime power and n be a positive integer. Consider k Fg»-linearly independent polyno-
mials f1(x), f2(),..., fr(z) € Ln,q and denote by f the k-tuple (fi(z),..., fr(z)). Define

filx)  fo(@1) o filan)

Mo, .. zx) = fl(-@) f2(-952) fk(:TQ)

filze)  foloe) - frlar)
For any A = {a1,...,ar} C Fyn, define MLAZMi(Ch,---,Oék)-
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Lemma 3.1. If o, ...,ay are Fy-linearly dependent, then det(My a) = 0.
Proof. Without loss of generality, suppose that &k > 2 and oy = Zf:z bja; with a; € Fg. Then
k k k
Ylima bifi(en) Yoo bifalas) - 3o, bifr(on)
fl(a2) f2(042) fk(Oéz)
My a= ) i ) ) )
fi(ow) fa(aw) fr(ow)
so that the first row of My 4 is a linear combination of the remaining rows. Then det(My 4) =0. O
The converse of Lemma [B.1] is not true in general, the following being a counterexample.
Example 3.2. Let k andn be positive integers withn even and k < n. Consider f = (x, xqz, e ,xqz(kil) ).
Let A= {ai,...,ai} be a subset of Fgn. Then My 4 is the Moore matriz
(k=1)
al al{2 o a({Z(k 1)
2 2(k—1
a aq DY aq
Mya=| "0 % : :
(e=1)
ak QZQ L aZZ k—1
and det(MLA) = 0 if and only if the elements a1, ...,ar are Fyp-linearly independent; see [30,
Corollary 2.1.95]. Therefore, if ax,...,ar—1 are Fy-linearly independent elements in Fyn and oy, €
(aq,. .., ak_l)]qu \ (o1,...,5-1)F,, then det(MLA) = 0 even though {a1,...,ax} are Fy-linearly

independent.

The following definition identifies the tuples f for which the converse of Lemma B holds and it

will be crucial in our investigation for exceptional MRD codes.

Definition 3.3. Let f = (fi(x),..., fx(x)), where k is a positive integer and fi(z), ..., fr(z) € Ly q.

We say that f is a Moore polynomial set for g and n if, for any a1,...,ax € Fyn,

filar)  falan) -+ filar)
filaz)  falaz) -+ filaz)

det X . . X =0 = diqu<a1;-~-7ak>Fq < k.

filaw) falaw) - fulor)

If f is a Moore polynomial set for q and nm for infinitely many m, we say that f is an exceptional

Moore polynomial set for q and n.

Moore polynomial sets can be characterized in terms of MRD codes as follows.

Theorem 3.4. Let k andn be positive integers with k < n, and denote by f the k-tuple (f1(x), ...

where fi(k),..., fv(z) € Ly, q are Fgn-linearly independent. The Fyn-linear rank metric code

Cr=1{(fi(@), s fi(¥))Fn
is an MRD code if and only if f is a Moore polynomial set for q and n.

Proof. Suppose that M 4 is singular for some A = {o,...,ax} C Fyn, that is, there
bi,...,by € Fgn such that Zle bifi(ej) = 0, for every j € {1,...,k}. This means that
contained in the kernel of F(z) = Zle bifi(x) € Cy. Since Cy is an MRD code, it follows
dimp, (ker(F)) < k — 1, and hence oy, ..., oy are Fy-linearly dependent.

7fk('r))7

exist
A is
that
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Conversely, suppose that f is a Moore polynomial set for ¢ and n. Assume by contradiction that
there exists g(z) € C; with dimg, (ker(g())) > k and write g(x) = Zi-c:l bifi(x) with b; € Fyn. Let
A={a1,...,ar} Cker(g(x)) where ay, ..., ap are Fy-linearly independent. Then My 4 is singular

because its columns are Fgn-linearly dependent through Zle bifi(a;) = 0 for all j = 1,... k.
Therefore, f is not a Moore polynomial set for ¢ and n. (I

As a natural consequence, a characterization of the exceptionality property is obtained.

Corollary 3.5. Let C C L,, 4 be an Fyn-linear rank metric code. The following are equivalent:
e C is an exceptional MRD code.
o Lvery Fyn-basis {fi(x),..., fu(x)} of C defines an exceptional Moore polynomial set [ =
(f1(x),..., fx(x)) for ¢ and n.
o There exists an Fyn-basis {f1(x),..., fe(x)} of C for which f = (fi(x),..., fu(x)) is an

exceptional Moore polynomial set for q and n.

We will investigate exceptional MRD codes by means of exceptional Moore polynomial sets.

4. MOORE POLYNOMIAL SETS AND VARIETIES OVER FINITE FIELDS

In this section we study exceptional Fyn-linear MRD codes C C L,, ; of dimension k& under the
assumption that C contains a monomial. Up to equivalence, we can assume that C contains a
separable polynomial. We denote by ¢ the smallest non-negative integer such that 24 €C.

Remark 4.1. If C is an Fyn-linear MRD code in L, 4, then C contains an invertible map f(x)
(see [27, Lemma 2.1] and [33, Lemma 52]), and hence f~! o C contains the identity x. If C is
exceptional, then max{deg,(g9(z)): g(z) € (C)p nm } does not depend on the infinitely many m’s for
which (C)F um is MRD. On the contrary, max{deg,(g(x)): g(x) € (f 7' 0C)p nm } may depend on m,
so that f~' o C may not be exceptional.

On the other hand, the assumption that C contains a separable polynomial does not affect the
exceptionality of C, since max{deg,(g(x)): g(x) € C} decreases by min{mindeg,(g()): g(x) € C}.
Assumptions 4.2. Note that there exist f1(x),..., fr(z) € C such that the following hold:

(1) fi(z),..., fu(z) are monic and Fyn -linearly independent;

(2) My = deg,(f1(x)),..., My = deg,(fi(z)) are all distinct;

(8) mi1 := mindeg,(fi(x)), ..., my := mindeg,(fr(z)) are all distinct, and m; = 0 for some i;
(4) filw) =a7;

(5) for any i, if fi(x) is a monomial then m; = M; > t.

Therefore, by Corollary 3.5 we investigate Moore polynomial sets as in the following definition.

Definition 4.3. A Moore polynomial set f = (fi(z),..., fr(x)) C Lk

n.q Satisfying Assumptions[{.2
is said to be a Moore polynomial set for q and n of index t.

A key tool in our approach is a link between Moore polynomial sets ans algebraic hypersurface.
To this aim, we introduce the following F,»-rational hypersurfaces: U := Uy C ]P)k(]Fqn) is the
hypersurface defined by the affine equation

Fy(X1,..., Xg) = det(My(X1, ..., Xz)) = 0,

and V C P¥(F,x) is the hypersurface U( x—1,. Note that

@29,z )

Flypo gty X1y, Xp) = H (a1 X1 + -+ arXp),

(ay:...;ap)EPF—1(Fq)
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with a suitable choice of the representative for the points (a; : ... : ag). Since fi(x),..., fi(z)
are [ -linearized, the polynomial F( qk—l)(Xl, ooy X)) divides Fy(Xy,..., Xj), so that Vis a

component of Y. Therefore we can define the F,»-rational variety W C P* (Fqn) with affine equation

W: Fi(Xl,,Xk)/F( qu71)(X1,,__7Xk):O,

x,x4,...,x

x,x9,...,

The link between Moore polynomial sets and algebraic hypersurfaces W is straightforward.

Theorem 4.4. The k-tuple f is a Moore polynomial set for q and n if and only if all the affine
Fyn-rational points of W lie on V.

Proof. For any A = {aq,...,a,} C Fyn, the condition det(My 4) = 0 is equivalent to (a1, ..., o)

being an affine F»-rational point of W, while the condition dﬂnFq ({o1,...,ar)r,) <k is equivalent
to (a1, ..., ax) being a point of V. The claim follows. O
In the case when fi(x),..., fx(z) are monomials, Theorem [L4] was already noticed (using a

slightly different terminology) and used in [9] to prove the following result.

Theorem 4.5. [J, Theorems 1.1, 3.2, 4.1] Let I = {iy = 0,ia,...,ix} be a set of non-negative
integers with 0 < iy < ... < i such that I is not in arithmetic progression. Suppose that one of the
following holds:

o |I| =3 and n > 4iy +2;

o |I| >3, q>5 and n > iy +log, (13 - 210/3).

Then (z, 29" yeen ,:I:qik) s mot a Moore polynomial set for q and n.

J

M.
§ aijxq

In the sequel, we will use the following notation: for any ¢ = 1,..., k, write f;(z) = Zj:mi

and f;(x,z2) = Z;Viml ayz? 21" =7

4.1. Moore polynomial sets of index 0. In this section we investigate Moore polynomial sets of
index 0, so that fi(x) = x. Without loss of restriction, we assume M7 =0 < My < --- < Mj,.

Theorem 4.6. Suppose that one of the following holds:

e k=3 andn>4Ms+2;

e k>3, q>5andn > M, +log, (13- 21/3),
If f is a Moore polynomial set for q and n of index 0, then (My = 0, My, ..., My) is in arithmetic
progression and (M) = 0,Mg(2y, ..., Mer)) @5 in arithmetic progression for some o € Sy with

o(l) =1.

Proof. In order to prove the claim on the M;’s, consider the intersection We = W N Heo between
W and the hyperplane at infinity Hoo C P*(Fyn). Note that Weo C PF=1(Fyn) is defined by
Wooi F M quk)(Xl,...,Xk)/F( k—l)(Xl,...,Xk):O.

2
(z,xa™ 2., z,x9,...,x9

Suppose that (M, ..., M) is not in arithmetic progression. Then it has been shown in [9, Theorems
3.1 and 4.2] that Us, contains an Fyn-rational non-repeated absolutely irreducible component X. It
follows by Lemma that W has an Fg»-rational non-repeated absolutely irreducible component.
Then, as shown in [9] (in page 9 for £k = 3, and in page 17 for k > 3), there exists an affine
Fgn-rational point in W\ V. Thus, f is not a Moore polynomial set for ¢ and n by Theorem [£.4]

Now suppose that (m,(1), ..., Mg(x)) is not in arithmetic progression for any o € Si. Consider
the tangent variety 7 of W at the origin O. Then
T: F(zqm"(l) qug@) VVVVV zqma(k))(Xla-'-7Xk)/F(m,mq,___@qk‘*l)(Xla-'-an) = 0.
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Now the same arguments as above show that 7 has an [Fg»-rational non-repeated absolutely irre-
ducible component. Then W has an Fy»-rational non-repeated absolutely irreducible component by
Lemma Therefore, as in [9], W has an affine Fyn-rational point not in V, so that f is not a
Moore polynomial set for ¢ and n. B (I

In the rest of this subsection, f is a Moore polynomial set for ¢ and n of index 0, satisfying the

assumptions of Theorem [£.6] so that M7 =0, Ma = M,..., M, = (k—1)M.

Let Az, ..., Ag be Fy-linearly independent elements of Fg» and define Hy (X1, Xo) = Fy (X1, X2, A3, ...

Fgn[X1, X2]. Since f is a Moore polynomial set, Hy (X1, X2) # 0. Let Dy C P2(F,») be the curve
defined by Hy(X1,X2) = 0. We denote by Hy(X1, X2,T) the homogeneization of Hy (X1, X2), i.e.

X1 fo(Xy, 1) - fu(X1,T)
Xy fo(Xo, 1) .- fk(XQa(T>) P
M k—1)M g\ "~ -1
Hy(X1,X2,T) := det Ml QTT o fila)T / S
MT 20T o ) Ta

Lemma 4.7. If D has a non-repeated IF » -rational absolutely irreducible component not contained in
owa . gak—1, then W has a non-repeated F g -rational absolutely irreducible component not contained

mn V.
Proof. Consider the variety W5 C P?(Fyn) defined by
Wg: Fi(Xl,XQ,XB,)\LL,...,)\k)/F

ey (X1, X2, X5, Mgy, M) = 0.

Let I3 C P3 (Fqn) be the hyperplane with affine equation X3 = A3. By the assumptions, W3 NIl3 has
a non-repeated F»-rational absolutely irreducible component. Hence, by Lemma 2.1l W; has a non-
repeated [Fyn-rational absolutely irreducible component. The claim follows by repeatedly applying
this argument to Ws, ..., Wy = W. (I

Remark 4.8. It is readily seen that (x, f(x)) is a Moore polynomial set for g and n if and only if
f(x) is scattered of index 0 over Fyn. By the results in [6,[8], if n > 4deg,(f(z)) and (=, f(x)) is
a Moore polynomial set for q and n, then f(x) is a monomial with ged(n,deg,(f(r))) = 1. Next
results deal with the case k > 2.

Theorem 4.9. Let f = (fi(z) = =, fo(x), f3(x)) be a Moore polynomial set for q and n of index 0
with 0 < My < Ms. Ifn > 4M3 + 2, then fo(x) € L, 4 is scattered of index 0.

Proof. By Theorem 6] M3 = 2M where M = M,. Suppose that fa(z) € L4 is not scattered of
index 0, so that there exist A, u € Fy. such that \/u ¢ Fy and f2(A)/A = fa(p)/p. By [5, Corollary
3.4], we can assume that u ¢ F, and fo(\) # 0.

Let A3 = A and define Dy as above. Let D} be the image of Dy under the Fgn-rational projectivity
©:(X1: Xo: T) — (T: Xy — X1: X;). Note that the point P = (1: 1: 0) € Dy is mapped by ¢ to
O = (0: 0: 1). The curve D/ has affine equation H}(X1, X») = 0, where

1 f2(1, X1) f3(1, X1)
Hp(X1,Xp) = Hp(1, Xo+1, X1) = det | X241 fo(1, X1) + fo(Xo, X1) - f(1,X0) + f(Xa, X1)
B A foNX{ fsX{ !

1 fa(1,X1) f3(1, X1) M
=det | Xo (X2, X1) (X2, X1) | = Afo(Xo, Xa) + oV XX T4 G(X1, Xa),

A LNXE T )X

7)\k) S
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for some G(X1, X3) € Fyn[X1, Xo] of degree bigger than ¢™.

The homogeneous polynomial L(X7, X2) = —Afa(Xa, X1) + fQ(A)XQXf]Mil has Xo — uX; as a
non-repeated factor in Fy»[X7, X3], since p is a root of the separable polynomial L(1, X5) € Fyn[X].
Therefore ’D} has a non repeated IFy»-rational absolutely irreducible component, and the same holds

for Dy. Since p ¢ IF,, such a component of Dy is not contained in D(m,wq@qz).

By Lemma[L.7] W has a non-repeated Fgn-rational absolutely irreducible component Z not con-
tained in V. The degree of V is ¢ + ¢ + 1, and the degree of Z is at most ¢*™ 4+ ¢™ — ¢* — q.
Thus, by [38, Corollary 7], Z has an affine Fy»-rational point not on V, a contradiction to Theorem

44 O

Theorem 4.10. Let f = (fi(z) = z, fa(2), f3(x)) be a Moore polynomial set for q and n of index
0 such that 0 < My < Ms, and (¢, M) ¢ {(2,2),(2,4),(3,2),(4,2),(5,2)}. If n > 4Ms + 2, then
f= (2, 29", 27" with ged(M,n) = 1.

Proof. By Theorem [£8] M3 = 2M and max{ms, mz} = 2min{ms, m3}. By Theorem 9 fo(x
scattered of index 0 over Fgn. Thus, by the numerical assumption on n, it follows that fa(z) =
and ged(M,n) = 1; see [8, Section 3.1] for ¢ > 5 and [6, Section 5] for ¢ < 5.

From my = M it follows that mgs € {2M, M/2}. Suppose by contradiction that fs5(z) # 27" so
that mz = M/2 < M, and in particular M is even. Choose A3 = A € ;. such that fa())f3(A) # 0.
Via Theorem [2.6] we will prove that the variety W3 with affine equation

W3Z Fi(Xl,XQ,)\)/F( (Xl,XQ,)\):O

) is
™M

1,10,1‘12)

has a non-repeated [Fy»-rational absolutely irreducible component not contained in V.
Suppose that Ws splits into two components A and B sharing no common absolutely irreducible

component. Let A and B be two components of Dy sharing no common absolutely irreducible

components and such that A C A, BCB. Singular points of Ws are also singular points of Dy,
and the intersection multiplicity of A and B at a point is at most the intersection multiplicity of
A and B at that point. We start the inspection of singular points of W from affine ones. Let
P = (a,8) € P*(F,n) be an affine point of Dy. The point P is singular for Dy if and only if

fs(N) fa(@) = fo(A) fs(a) = 0 and f3(N) f2(8) — f2(A) f3(B) = 0, that is
Fs(Na®" = AT f(a) = fs(V)BT = X7 f5(8) = 0.
Also, the intersection multiplicity of Aand B at P equals the intersection multiplicity of T(A) and

7(B) at 7(P) = O = (0,0), where 7 is the translation (X1, X2) — (X1 — o, X2 — «). The image D}
of Dy under 7 has affine equation H}(Xl, X5) =0, with a

X1 +Oé X{]M +OéqM fg(X1)+f3(Oé>
M
Hy(X1,Xo) = Hp (X1 + 0, X0+ ) =det | Xo+8 XI +89"  f3(Xy) +g(B)

- M

A A1 f3(A)
- a(()\aqM — Xt XI™ - g = At x I (X x g™ - XQXfmS)) + G(X1, Xy),

where a # 0 is the coefficient of 29" in f3(x), and G(X1,Xs) € Fyn[X1, Xo] has degree bigger
than ¢ + 1. We denote respectively by (H})qmg and (H})anngl the homogeneous polynomials

()\oﬂM - a/\qM)Xgms - (/\ﬂqM - ﬁ/\qM)Xfms and Xngm3 - XQXfmS. If non-vanishing, they are,
up to a scalar multiple, the homogeneous parts of smallest degrees in H} (X1, X2). Note that the

q™* + 1 linear factors of (H})gms 41 are all distinct.
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e There are at most ¢?* singular points (o, 3) of Dy which satisfy A" —axd™ = )\ﬁqM —
BAQM = 0. In this case, (H})qm3+1 is the non-zero homogeneous part of smallest degree
in H}(X1,X>). Thus O is an ordinary (¢™* + 1)-fold point for D, and by Lemma [2.4] the
intersection multiplicity of 7(A) and 7(B) at O is at most (¢™3 +_1)2 /4.

e There are at most 2(¢?M=m2 — 1) . ¢™ singular points («, ) of Dy which satisfy either
Aa?" — o £0=237" — BAT" or Ma?" — X =0 £ 237" — AT

In this case, (H})gms = X4 or (Hf)gms = X7 up to a non-zero scalar multiple, and
hence ng(H})q’mg , (H}-)qmg 11 = X5 or X;. By Lemma 23] the intersection multiplicity of

7(A) and 7(B) at O is at most ¢™.

e There are at most (¢ ™2 — 1) - (¢™* — 1) - ¢ singular points (o, 5) of Dy which satisfy
A" —axd” # 0, )\ﬁqM - BAqM # 0, and n()\aqM - a)\qM) = E(AB‘ZM - BAqM) for some
(€:m) € PL(Fyms) \ {(1:0),(0:1)}. In this case, (Hf)gms = (EX2 — nX1)?" up to a
non-zero scalar multiple, and hence (H})qms and (H})gms 41 are not coprime. By Lemma
23] the intersection multiplicity of 7(.A) and 7(B) at O is at most ¢".

e If a singular point («,3) of Dy satisfies n()\aqM — o) = E(AB‘ZM — B for some
(&:m) ¢ P (Fygms ), then (H})gms and (Hj)gms 11 are coprime. In this case, by Lemma 22

the intersection multiplicity of 7(.A) and 7(B) at O is 0.
Since the homogeneus part of largest degree in Hy (X1, X2) is

M M
A X H (X2 =y X)),
vEF M
the points at infinity of Dy are (0: 1: 0) and (1: v: 0) with v € Fyar. As the map (X1: X2: T) =
(X2: X1: T) maps (0:1: 0) to (1: 0: 0) and leaves invariant the curves Dy and D, ., .2, it is
enough to consider the points P, = (1:~:0) with v € Fya. The intersection multiplicity of
A and B at P, equals the intersection multiplicity of o(A) and o, (B) at o,(P) = O = (0,0),
where oyt (X1: Xo: T) = (T': Xo —+T': X3). The image D} of Dy under o, has affine equation
HY(X1,X3) =0, where -

1 f2(1, X1) f3(1, X1)
Hf(X1,X2) = He(L, Xo+ 0, X1) = det [ Xo+7 fo(X2+7,X1) fs(X2+7,X1) | =

AU C1OND S (CYD S
1 1 f3(17X1)
q]W qM q]\/f_l qM
det XQ X2 fg(XQ,Xl)—l—fg(’y,Xl)—"yfg(l,Xl) :)\ X2X1 —)\XQ +G(X1,X2),
A )\qung471 fg(A)XiIQM?I

for some G(X1, X2) of degree greater than ¢™ (here, we used that the constant term in f3(v, X1)

is the same as in yf3(1, X1)). Since aa XngM_l — )\XSM is homogeneous and separable in each
variable, 0 is an ordinary ¢™-fold point for D/, and by Lemma 24 the intersection multiplicity of

A and B at P, is at most ¢*M /4. The same holds at (0: 1: 0).
Summing up, the number of intersection points of two components of H (X1, X2,T) = 0, counted
with multiplicity, satisfies

(g™ +1)°

> I(P, ANB) < ¢*M I

oM
+2(q2]\/1—m3_1)qM+m3+(q2]\/I—m3_1)(qm3_1)qM+m3+(qM+1)qT.
P
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Since (¢, M) ¢ {(2,2),(2,4),(3,2),(4,2),(5,2)}, the above quantity is less than

gdeg(W@Q - g(qw +q" —¢® =g
By Theorem 2.6, W5 contains an Fgn-rational absolutely irreducible component X. Note that Dy
has only finitely many singular points, and hence X is non-repeated and not contained in V. Arguing
as in the last paragraph of the proof of Theorem 1.9 a contradiction arises. This shows m3 = 2M,
ie. fy(z) =27

O

By means of an induction argument, we are able to extend the result of Theorem .10 to any
Moore polynomial set of index 0, as follows.

Theorem 4.11. Let f = (fi(z) = =, fo(x),..., fr(x)), with k > 3, be a Moore polynomial set for q
and n of index 0 such that 0 < My < --- < My. Suppose also that ¢ > 5 and n > %Mk + logq(13~

210/3). Then, i — (.T, qu’ o xq(kﬂ)M) with ng(M, n)=1.
Proof. By Theorem L6l M; = (i — 1)M for every i, with ged(M,n) = 1. Also, {0, ms,...,my} can
be ordered so that they are in arithmetic progression.

We prove by finite induction on ¢ € {3,..., k} the following fact: if h = (x, fa(x),. .., fi(z)) satis-

fies h # (z, :I:qM, . ,:I:q(ifl)M ), then the hypersurface U, has a non-repeated F,»-rational absolutely
irreducible component not contained in V. The base ¢ = 3 has been worked out in the proof of
Theorem IOl For i > 3, define the map ¢: (X1: ...: X;: T) = (T: Xo — X7: X3: ... X;: Xy),
which maps (1: 1: 0: ...:0) €Uy to O = (0: ...:0...1), and consider the image U} of Uy under
©, which has affine equation F}(Xl, ..., X;) =0, where F}(Xl,Xg, ..., X;) equals B
1 f2(1, X1) fi(1, X1) 1 f2(1,X1) ... fi(1,X1)
Xo+1  fo(1, X1) + fo(X2,X1) ... fi(1, X1) + fi(X2, X1) X2 fa(X2,X1) ... fi(X2,X1)
det X3 f2(X3, X1) fi(Xs, X1) — det X3 fo(X3,X1) ... fi(Xs,X1)
X@' fz(X;7X1) fk(X;7X1) X@' f2(X;7X1) fi(Xi-,X1)

The tangent cone to L{]’c at O has equation

Xy fo(X2, X1) ... fio1(X2, X1)

X3 fo(X3,X1) ... fio1(X3,X1)
F;(XQ,...,Xi,X1>:det . . . . :07

Xi fa(Xi, X1) .o fioa(XG, X))

where g = (f1(z) = z, fa(z), ..., fi—1(z)). Note that Fy(Xz,...,X;, X1) is homogeneous, and its
dehomogenized polynomial with respect to Xi is Fy(Xa, ..., X;).

If g # (x, qu, e ,zq(ifz)M), then by induction hypothesis U, has a non-repeated [Fy»-rational
absolutely irreducible component not contained in V, and hence by Lemma the same holds for
U, It g= (x,qu, e ,zq(lfz)M) then fi(z) = 297" because i > 4 implies that the arithmetic

progressions of the M;’s and m;’s both have ratio M.

For i = k, if [ # (z,qu, .. ,:cq(FZ)M), then W has a non-repeated Fg»-rational absolutely
irreducible component Z not contained in V. Thus, by [38, Corollary 7], Z has an affine F»-rational
point not on V, a contradiction to Theorem [4.41 O
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4.2. Moore polynomial sets of positive index. In this section we investigate Moore polynomial
sets of index ¢ > 0, so that fi(z) = 2.

Proposition 4.12. Suppose that one of the following holds:

o k=3 andn>4Ms+ 2;

e k>3,q>5 and n> BM, +log, (13 -2'0/3).
If f is a Moore polynomial set for q and n of index t, then (Mmyy,...,Me)) is in arithmetic
progression for some o € Sy,.

Proof. Since m; = 0 for some i, the proof is the same as in the proof of Theorem fort=0. O

Up to reordering, we can assume that the permutation o in Proposition 12 satisfies o(1) = 2,
that is, fo(x) is separable.

Proposition 4.13. Let f = (fi(z) = $qt,f2($),f3($)) be a Moore polynomial set for q and n of
index t > 0 such that fo(zx) is separable. If max{t, Mo} < Ms and n > 4Ms + 2, then fo(x) € Ly 4
is scattered of indezx t.

Proof. The proof is similar to the one of Theorem [0 Suppose that fa(z) € L, 4 is not scattered
of index ¢. Then there exist A, u € Fy.. such that p ¢ Fy, A/ ¢ F, and F2N)/AT = fo(p)/p? # 0.
Let A3 = A and define Dy as above. Then Dy is PGL(3, ¢")-equivalent to the curve D} with affine

equation H}(Xl, Xs) = 07, where

t t_ t Moy
Hp(X1, Xo) = Hy(1, Xo + 1, X1) = =7 fo(Xo, X)X ' + o(N)XS X771+ G(X1, X2)

and G (X1, X2) has degree at least ¢* +¢™2. The tangent cone to D} at (0,0) has a non-repeated Fgn-
rational absolutely irreducible component with affine equation X5 — uX; = 0, which corresponds
to a non-repeated [F »-rational absolutely irreducible component of Dy which is not contained in

Arguing as in the proof of Theorem 9] the claim follows. O

(z,z4,29%)"

We now use the known classification results on exceptional scattered polynomials.

Corollary 4.14. Let f = (fi(x) = 27, fa(x), f3(x)) be a Moore polynomial set for q and n of index
t such that fo(x) is separable, max{t, My} < Ms, and n > 4Ms + 2. Then:

(1) t > 0 and max{t, Mz} is not an odd prime;

(2) if either t = 1, ort =2 and q is odd, then f = (27, az + 29", f3(x)) and ms = 2t.

Proof. Since fo(x) is separable, the case t = 0 cannot occur by definition. Then fa(z) € L4 is
exceptional scattered of positive index ¢.
(1) If max{t, M} is an odd prime, then from [I5] Theorem 1.4] it follows fa(x) = , so that f
has index 0, a contradiction.
(2) If either t = 1, or t = 2 and ¢ is odd, then the results in [8, Page 511] and [6, Theorem 1.4
and Corollary 1.5] imply fo(z) = ax + 29" with a # 0. The claim follows from Proposition
(I

Proposition [4.13] can be extended as follows.

Theorem 4.15. Let f = (fi(z) = xqt,fg(ac), ooy fr(x)), with k > 3, be a Moore polynomial set for
q and n of index t > 0 such that fa(x) is separable. Suppose also that ¢ > 5, max{t, Ma} < M; for
any i >3, and n > 2 max{M;: i > 3} +log, (13- 2'%3). Then fy(x) € Ly q is scattered of index t.
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Proof. It can be proved by finite induction on i € {3,...,k} that, if h = (xqt,fg(x), ...y fi(x)) and
fa(z) € L, 4 is not scattered of index ¢, then the hypersurface U, has a non-repeated Fyn-rational
absolutely irreducible component not contained in V. The base ¢ = 3 is in the proof of Proposition
(4T3l For i > 3, the argument is analogous to the one in the proof of Theorem AT1l The claim then
follows again by using [38, Corollary 7]. O

Recalling the correspondence between Moore polynomial sets and MRD codes described in Corol-
lary B.5, we finally obtain Main Theorem as a consequence of Theorem .10, Theorem [£.17] Propo-
sition .13 and Theorem

Note that, if the hypothesis of n being large enough in the aforementioned results are incorporated
in the assumptions of Main Theorem, then the exceptionality of the MRD code C C L, 4 can be
dropped, as well as the exceptionality of the scattered property for fo(x) € L, 4.

5. KNOWN EXAMPLES OF MOORE POLYNOMIAL SETS

This section is devoted to the description of the known examples of Moore polynomial sets cor-
responding to inequivalent F,»-linear MRD codes; see Table[Il The only known examples of excep-
tional Moore polynomial sets are the first two in Table [Tl

Let b: Ly g % Lng — Fy be the bilinear form given by b(f,g) = Trgn /g (z;’;ol aibi) . where
Tron/q(z) = S0y 20, f(z) = S0y a?, g(x) = S0y bia? € L, 4. The Delsarte dual code of a
rank metric code C C £,, ; is

CH = {f(x) € Lng: b(f,g) =0, for all g(z) € C}.

Recall that the Delsarte dual code of an MRD code, having minimum distance greater than one,

is an MRD code; see e.g. [T4L[17]. This yields new examples of Moore polynomial sets; see lines
4,6,8,10,12,14 in Table [Tl

Table 1: Known examples of Moore polynomial sets

n| k fi(x),..., fu(x) conditions references
2,2t .zt D ged(s,n) = 1 [14,17.20]
s s(k—1) sk ged(s,n) =1,
z? ...,z , T+ 0x? " 281135
N8 £ (-0t | B
- q odd,
2t 2 | . s(t=1) tiq os(t4D) _2t1 gaieny|  Ngae,gr(8) = —1,  |[7,24125,31140]
q q q"+1,.q 1—q q q2%t/q ) 5 5 5 5
! +x +46 x +6 x ged(s,n) = 1

20 i ¢ 0,1, —1,t 41,2t — 1},

s s(t—1) q odd,
21t — 2 . g;l)(f”:) ;}tixzﬁf o, Nyor (e () = —1,  |[724,25,31,40]
ho(z) = 51" ga” _ go" Y edls ) =1
4
6] 2 z, 2 + 0 certainqcioies of § B3I
6 4 =%, mq27xq47 r= 07" certainqcioies of § B3I
6] 2 z, 27+ 29 + 62T qodd, 52 +5=1 [13,29]
6| 4 xq7xq37x—xq27xq4 — oz godd, 2 +6=1 [13129]
7l 3 a@xqs,xqzs q odd, ged(s,7) =1 [12]
7| 4 T G T q odd, ged(s,n) =1 [12]
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n| k fi(@), ..., fu(x) conditions references
g3 g=1 (mod 3),
3 z, 2%z ged(s, 8) = 1 [12]
I LR L g=1 (mod 3),
8| 5 z,x? L,z 2? gcd(s,8) = 1 [12]
8] 2 x,z7 4+ 5z godd, 6% = -1 12]
8 6 xq7xq2,xq3,xqo7xq67x — oz godd, 6% = —1 12]

6. CONCLUSIONS AND OPEN PROBLEMS

In this paper we introduce the notion of exceptional linear maximum rank distance codes of a

given index, which naturally extends the notion of exceptionality for a scattered polynomial in the
rank metric framework. We then classify those of index 0, and prove that those of positive index
contain an exceptional scattered polynomial of the same index.

We list a couple of open problems related to the obtained results.

e Under the assumptions of Proposition E.13] or Theorem [LI5 for n large enough, one may
conjecture that Moore polynomial sets of positive index do not exist. Whereas, relaxing the
assumption max{t, Mo} < M; for every i > 3, one should include also the second example
listed in Table [II that is the one corresponding to generalized twisted Gabidulin codes.
However, a new approach seems to be needed.

e A complete classification of exceptional scattered polynomials could yield to more precise
results on the asymptotics of Moore polynomial sets of positive index and hence of F»-linear
MRD codes in £,, 4.
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