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Abstract

The problem of learning a channel decoder is considered for two channel models. The first model is an additive

noise channel whose noise distribution is unknown and nonparametric. The learner is provided with a fixed codebook

and a dataset comprised of independent samples of the noise, and is required to select a precision matrix for a nearest

neighbor decoder in terms of the Mahalanobis distance. The second model is a non-linear channel with additive

white Gaussian noise and unknown channel transformation. The learner is provided with a fixed codebook and a

dataset comprised of independent input-output samples of the channel, and is required to select a matrix for a nearest

neighbor decoder with a linear kernel. For both models, the objective of maximizing the margin of the decoder is

addressed. Accordingly, for each channel model, a regularized loss minimization problem with a codebook-related

regularization term and hinge-like loss function is developed, which is inspired by the support vector machine

paradigm for classification problems. Expected generalization error bounds for the error probability loss function

are provided for both models, under optimal choice of the regularization parameter. For the additive noise channel, a

theoretical guidance for choosing the training signal-to-noise ratio is proposed based on this bound. In addition, for

the non-linear channel, a high probability uniform generalization error bound is provided for the hypothesis class.

For each channel, a stochastic sub-gradient descent algorithm for solving the regularized loss minimization problem

is proposed, and an optimization error bound is stated. The performance of the proposed algorithms is demonstrated

through several examples.

Index Terms

additive noise channels, algorithmic stability, decoder learning, generalization error bounds, hinge loss, max-

imum margin, minimal distance decoding, minimum norm separation, mismatch decoding, non-linear channels,

optimization error bounds, regularized loss minimization, statistical learning, stochastic gradient descent.

I. INTRODUCTION

The success of machine learning (ML) based methods in various domains have spurred a great contemporary

interest in the application of ML algorithms to communication problems [1–15]. However, state-of-the art communi-

cation systems heavily rely on expert-based design, and so obtaining a significantly improved performance with ML
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algorithms typically necessitates the use of the most advanced ML algorithms, most notably, deep neural networks

(DNN). In accordance, this also typically prevents a theoretical justification for the developed algorithm or theoretical

performance guarantees. For instance, despite a considerable effort from the statistical-learning community, the

generalization properties of DNN are still considered a theoretical puzzle [16, Sec. 2].

In order to address the theoretical aspects of learning in communication systems, we take an alternative route in

this paper, and focus on two basic channel models: 1) An additive noise channel model, whose noise distribution

is unknown and does not even known to belong to a parametric family; and 2) A non-linear channel model with

additive white Gaussian noise, whose deterministic channel transformation is unknown. Both of these models can

be seen as extreme points of a general model which contains both non-linearity and additive noise from a general

distribution. We focus on these two extreme cases because they represent prior knowledge on the structure of the

communication problem, which is prevalent in various scenarios. More importantly, this prior knowledge leads

to learning problems which are markedly different from standard classification problems in ML. Previously, in

[17], empirical risk minimization (ERM) algorithms for the the additive noise channel model were considered. In

this work, we focus on a different learning approach – maximum margin. Our choice of channel models and the

maximum margin approach enables us to develop learning algorithms from first principles, as well as theoretical

performance bounds. We thus next review the problem of learning channel decoders, and then justify the maximum

margin approach.

A. Decoder Learning

The choice of a proper channel decoder is a key element in the design of a communication system, and is typically

based on rich expert knowledge. This knowledge is reflected in a statistical model of the channel operation, which

then leads to optimal decoder selection and theoretical performance guarantees. The approach considered here

follows the common practice of partitioning the communication epoch to a training phase – in which no data is

transmitted, and the received signal is used to properly select a decoder, and a data phase – in which the decoder

is fixed to its chosen value (or only tracks slight changes in the channel statistics). However, our approach here

deviates from the common one to the training phase. For models with unknown noise distribution a parametric

model for the noise distribution is typically assumed, the training phase is used to estimate the parameter, and an

optimal decoder matched to the estimated parameter is used in the data phase. In various scenarios of interest –

such as massive multiple-input multiple-output (MIMO) systems [18] or in ultra low-latency [19] communication –

parameter estimation, or even the parametric modeling itself, may be inaccurate. Thus, parameter estimation during

the training phase is excluded. In the same spirit, for the non-linear channel, estimation of the transformation value

for each codeword may suffice. However, we target the regime in which the codebook is too large with respect to

(w.r.t.) the training phase, i.e., there are not enough training samples for each codeword in order to estimate its

channel-transformed value. This is similar to the common practice in linear frequency-selective channels, in which

an equalizer is learned to roughly invert the channel (while accounting for noise enhancement) [20, Ch. 8 and 9].
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These settings naturally motivate the use of ML methods, as they are typically distribution-free, that is, do not

make any assumptions on the data statistics. In ML methods, assumptions are made, instead, on the structure of

the hypothesis class. We thus follow here the typical setting in ML, in which the hypothesis class is more restricted

than the true data. The choice of hypothesis class results an inductive bias and its use is then justified by its low

variance, compared to richer classes of decoders. For example, a linear binary classifier can be learned even when

the optimal separator between the two classes is not an hyperplane [21, Ch. 9], because it is assumed to have a

proper bias-variance tradeoff. The learning process we propose, however, does not ignore the channel model, and

is strongly based on both the given codebook and the structure of the channel.

For the additive noise channel, we consider the class of nearest neighbor (NN) decoders, w.r.t. the Mahalanobis

distance, that are parameterized by a precision matrix. A decoder from this hypothesis class is optimal in the sense

of minimizing the error probability only if the additive noise is Gaussian. The learner is provided with a fixed

codebook and a dataset comprised of independent samples of the noise, and is required to select a precision matrix

for a NN decoder in terms of the Mahalanobis distance. For the non-linear channel, we consider the class of NN

decoders with a linear kernel, that is, decoders parameterized by a matrix. Similarly, here, a decoder based on linear

kernel is optimal only if the channel transformation itself is linear. The learner is provided with a fixed codebook

and a dataset comprised of independent input-output samples of the channel, and is required to select a matrix for

a NN decoder with a linear kernel.

B. Maximum Margin Learning

At first glance, the decoder learning problem is akin to multiclass classification problem, in which the class

represents the index of the codeword. However these problems are different due to the prior knowledge about the

channel model and the codebook. Therefore, [17] considered an ERM approach to the decoder learning problem for

the additive noise channel model. However, in general, the ERM might be difficult to find, and more importantly,

the ERM approach does not fully capture the structure of the codebook. For example, there could be many ERM

rules which achieve zero empirical error. One of the consequences of this, is that the generalization bounds derived

in [17] scale as O(m/
√
n), where m is the number of codewords in the codebook, and n is the number of noise

samples provided to the learner. Therefore, in this paper we take a different approach, and derive learning rules

which attempt to maximize the margin of the decoder.

The maximum margin approach is common in ML, and naturally matches the communication problem. Indeed,

a NN decoder partitions the output space Rdy into m decision regions, where the boundaries of each such decision

region (also called a Voronoi region) are d-dimensional hyperplanes. In the additive noise channel, this NN decoding

rule maximizes the minimal Mahalanobis distance between each pair of codewords, w.r.t. the noise covariance matrix.

In the non-linear Gaussian channel, the NN decoding rule maximizes the minimal Euclidean distance dmin between

each pair of transformed codewords, w.r.t. the linear kernel. As is well known, for Gaussian channels at high

signal-to-noise ratio (SNR), this minimal distance is the dominant parameter in determining the error probability,
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or more specifically, its decay rate w.r.t. the SNR. Specifically, a union bound (over all pairs of codewords), and

a Bhattacharyya-based pairwise error bound, leads to the upper bound (m − 1) · exp(−d2
min/8σ

2) on the error

probability [22, Sec. 5.2] (σ2 is the noise variance). Naturally, such a bound does not necessarily hold for non-

Gaussian noise distributions. However, we adopt this criterion here for general noise distributions since in the lack

of any other knowledge, maximizing the minimum distance appears to be a plausible criterion for the quality of

the decoder. This approach is again common in ML. In classification, support vector machines (SVM) learn linear

separating hyperplanes which aim to maximize the margin between the classes, even if the true probabilistic law

results a non-linear decision boundary between the classes.

The resulting learned decoder is codebook-dependent, in the sense that it is chosen to maximize the margin,

or minimal distance, between the codewords. For the non-linear channel, ideally the margin would correspond to

the non-linearly transformed codewords, but as we make no assumptions on this non-linearity, the best that can be

hoped for is to maximize the margin of a linear transformation of the codewords – as follows from the perspective

of the assumed class of decoders.

In binary classification, the maximum margin problem is solved by transforming it to an equivalent regularized

loss minimization (RLM) problem with a surrogate convex loss function, known as the hinge loss [21, Sec. 15.2].

However, in multiclass classification, the transformation from maximum margin to RLM is not immediate and

requires heuristics for choosing the regularization function [23, Sec. 7], reductions to binary classification [21, Sec.

17.1], or other approximations. The maximum margin decoder learning problem studied here naturally resembles

multiclass classification (when there are more than two codewords in the codebook), and accordingly, it also

necessitates several steps of approximation in order to transform it to an RLM problem. Nonetheless, following

these steps, the result is an RLM problem that uses a convex surrogate loss function that is specifically tailored to

the decoder learning problem.

We conclude by further illuminating the difference between the decoder learning problem and standard multiclass

classification. As we shall see, for the additive noise channel model, the dataset for our learning algorithm is

synthesized by adding n measured noise samples to each of the m codewords in the codebook. This results

a dataset of size mn, but one which has specific structure. In this synthesis of the dataset, the scaling of the

codebook (henceforth referred to as “training SNR”) is a design parameter that can be chosen by the learner. One

consequence of this possibility is that unlike standard classification problems, in which the margin prevailing in

the dataset determines the sample complexity of the problem [21, Th. 15.4], the margin in the decoder-learning

problem for the additive noise channel is a parameter to be tuned. This can be used in order to achieve the best

generalization possible.1 Due to these differences, standard SVM learning algorithms cannot be applied, and we

develop learning algorithms specifically designed for the decoder learning problem.

1See also a discussion in [17, Sec. II].



5

C. Contributions

Our contributions and the outline of the rest of the paper are as follows. In Sec. II we establish notation

conventions, formulate the learning problem for the general channel, and then specify it for the two discussed

extreme special cases. In Sec. III, we formulate a maximum margin optimization problem for the decoder learning

problem, and relax it in several principled steps to obtain a tractable optimization problem in the form of an RLM

rule. It should be stressed, however, that the resulting optimization problem is directly designed for the decoder

learning problem, and does not involve a reduction or a modification of a multiclass classification problem. In Sec.

IV, we prove that the expected error probability of the learned decoder in the additive noise channel model is

bounded by m times the expected empirical hinge loss of the decoder plus an estimation error term of Õ(m/(λn)),

where m is the number of codewords in the codebook, λ is the regularization parameter, and n is the number

of available samples. Then, we constrain the precision matrix of the learned decoder to a properly chosen set

and optimize the regularization parameter. The resulting generalization bound is m times the optimal hinge loss

plus an estimation error term of Õ(m/
√
n)). The proof of this generalization bound is based on establishing an

on-average-replace-one-stability property. We then use this generalization bound to offer a theoretical guideline for

choosing the training SNR. We then prove analogous expected generalization bounds for the non-linear channel. In

addition, we prove a O(1/
√
n) uniform high-probability generalization error bound for the hinge-type loss function,

for any decoder from the chosen decoder class for the non-linear channel.

The RLM mentioned above is tractable, yet still suffers from large complexity, mainly due to a O(n2) depen-

dence on the number of samples n, similarly to the computational cost associated with SVM problems [24]. For

classification SVM, this problem was addressed in [25], which proposed a stochastic sub-gradient descent algorithm

for solving the RLM problem called PEGASOS (primal estimated sub-gradient solver for SVM). In Sec. V, we

develop an algorithm in that spirit for the decoder learning problem, and prove that Õ(1/ε) iterations suffice in

order to obtain a solution of accuracy ε. We stress that this bound does not depend on the problem’s dimension

or the number of samples, which can be large in many communication problems. On top of that, each iteration

of the algorithm requires low computational power, and thus suitable to learning on low-complexity devices. In

Sec. VI, we exemplify the operation of the algorithm through simulation for several noise distributions, channel

transformations, and codebooks. In Sec. VII, we summarize the paper and propose several directions for further

research. All the proofs are deferred to the appendixes.

D. Other Related Work

As said, the recent success of ML algorithms (most notably DNNs) in various problem domains [26] has spurred

interest in applying machine-learning algorithms as a part of a communication system [1,27]. These applications can

be roughly divided to several approaches, and here we briefly mention a sample of them. One approach is to use a

machine-learning algorithm as a replacement to one or more components of the system. Examples include [28] for

channel equalization, [15] for channel encoder and decoder, [7,8,14] for channel decoder, and [29–31] for channel
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estimation. A second approach is to modify an existing algorithm by incorporating DNNs. In [3] DNNs are used

in the belief propagation algorithm, in [6] for the Viterbi algorithm, in [32] for iterative decoding algorithms, such

as bit-flipping and residual belief propagation. Among the classical ML algorithms, SVMs gained high popularity

and enjoy strong theoretical guarantees. A SVM based receiver that combines the pilot-based channel estimation,

data demodulation and decoding processes in one joint operation was proposed in [33]. They considered first-order

Gauss-Markov fading process and additive Gaussian noise with N dimensional encoding vector. The system was

composed from N classifiers, one per bit, or 2N classifiers in the one-vs.-one or one-vs.-rest techniques. SVM

regression (SVR) was used in [34,35] for channel estimation. We note in passing, that similar theoretical studies

have been performed for the source coding problem of learning vector quantizers [36–40].

Channel decoding in non-linear channels was studied earlier in [41,42]. The non-linear channel can practically

model the nonlinear effects in wireless communication systems, the Kerr non-linearity in optical fibers, and the

saturation non-linearity of amplifies [43,44]. Information theoretic limits on the capacity of non-linear fiber-optic

channels were studied in [45–47], and the shaping gain in these channels was studied in [48].

II. PROBLEM FORMULATION

A. Notation Conventions

Random variables or vectors are denoted by capital letters and specific values they take are denoted by the

corresponding lower case letters. The expectation operator is denoted by Eµ[·] where µ is the underlying probability

measure, which is omitted if understood from context. The tail function of the standard normal distribution is denoted

by Q(x). The indicator of an event A is denoted by I{A}. The probability simplex is denoted by ∆d , {v ∈ Rd+ :∑
i∈[d] vi = 1}. All vectors are taken as column vectors. The standard Euclidean norm for x ∈ Rd is denoted by

‖x‖ and the inner product by either 〈x1, x2〉 or xT1 x2, interchangeably. The Frobenius norm for a matrix A ∈ Rd×d

is denoted by ‖A‖F . The operator norm for a matrix A ∈ Rdy×dx is denoted by ‖A‖op , supv∈Rdx : ‖v‖≤1 ‖Av‖.

The positive semidefinite (PSD) cone is denoted by S+. The minimal (resp. maximal) eigenvalue of a symmetric

matrix A is denoted by λmin(A) (resp. λmax(A)) . For n ∈ N+, the set {1, 2, . . . , n} is denoted by [n]. Standard

Bachmann-Landau asymptotic notation will be used, where specifically, Õ(·) is such that the logarithmic factors

are hidden, namely, f(n) ∈ Õ(h(n)) ⇐⇒ ∃k : f(n) ∈ O(h(n) logk(h(n))).

B. Channel Models

Consider the problem of communication over a general channel

Y = f(X) + Z, (1)

where, Y ∈ Rdy is the channel output, X ∈ Rdx is a codeword that is chosen from a fixed given codebook

C = {xj}j∈[m] with a uniform probability, f : Rdx → Rdy is a deterministic channel transformation, and Z ∈ Rdy

is a noise statistically independent of the input X . The unknown channel operation (1), is denoted by µ and is
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thus comprised of the deterministic f and the distribution of Z, both which are unknown to the designer of the

decoder. It is further assumed that the decoder is chosen from the class of NN decoders with Mahalanobis distance

and linear kernel given by

ĵ (y) ∈ arg min
j∈[m]

‖Hxj − y‖S , arg min
j∈[m]

√
(Hxj − y)T S (Hxj − y), (2)

where S ∈ Sdx+ is a precision matrix (the inverse of the covariance matrix) and H ∈ Rdy×dx is a linear kernel. As

well known, this class is optimal if the channel transformation is linear f(x) = Hx and the noise is Gaussian with

inverse covariance matrix S, but it is not assumed here that the channel model obeys this model.

For a decoder (H,S), the expected error probability conditioned that the jth codeword was transmitted is given

by

pµ (H,S | j) = Eµ
[
I
{

min
j′∈[m]\{j}

‖Hxj′ − Y ‖S < ‖Hxj − Y ‖S

} ∣∣∣∣ Y = f (xj) + Z

]
, (3)

and the expected error probability, averaged over all codewords, is given by

pµ (H,S) =
1

m

∑
j∈[m]

pµ (H,S|j) . (4)

A learner, which does not know µ, is provided with n input-output samples D = {Xi, Yi}i∈[n] where Xi ∈ C, and

Yi is the corresponding channel output (1) for input Xi, i ∈ [n]. Based on this dataset, and the given codebook C,

the learner is required to find (H,S) which minimize the expected error probability. A common learning approach

is ERM, which aims to minimize the empirical average error probability of the noise samples, given by

pD (H,S) =
1

n

∑
i∈[n]

I
{

min
x′∈C\{xi}

∥∥Hx′ − yi∥∥S < ‖Hxi − yi‖S} . (5)

In this paper, we focus on two structured extremes of this model, which both result decoder classes which are

substantially different from multiclass classifiers, and are also relevant in practical communication scenarios in

which further prior knowledge on the model exists. The first one is an additive noise channel model that assumes

that f is the identity transformation, and the second one is a non-linear channel model that assumes that the noise

is Gaussian. These models best illuminate the affect of the structure of the communication channel model on the

decoder learning problem. The general model (1) is not more challenging than these two extreme models, and

bounds and algorithms can be easily obtained for the general model by combining the results obtained in this paper

for the two extreme models.

1) The Additive Noise Channel: In the first specified channel model that we consider, the channel transformation

is assumed to be the identity function, and so (1) becomes Y = X +Z. We thus henceforth denote for this model

d , dx = dy. For this channel model, we restrict the general class (2) to have H = I , and this results a class of
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NN decoders with Mahalanobis distance, given by

ĵ (y) ∈ arg min
j∈[m]

‖xj − y‖S , arg min
j∈[m]

√
(xj − y)T S (xj − y), (6)

parameterized by a precision matrix S ∈ Sd+. In what follows, we will identify a decoder from this class by its

precision matrix S. Since the channel law only depends on the noise distribution, learning the noise distribution

can be made with arbitrary inputs, which we take for simplicity to be X ≡ 0. Thus, we assume that the learner

is equipped with n noise samples Z = {Zi}i∈[n] drawn independent and identically distributed (i.i.d.) from the

distribution of Z. The learner synthesize a new dataset from these noise samples comprised of mn labeled samples,

in which each of the scaled codewords in the codebook is perturbed by one of the noise samples {Zi}i∈[n], namely

D (Z) , {Yk, lk}mnk=1 =
⋃
j∈[m]

Dj (Z) , (7)

where Dj(Z) , {Γ · xj + Zi, j}i∈[n], and where Γ > 0 is a scaling constant which determines the training SNR.

We note that this dataset has nm points, but it is based only on n random noise samples. For the sake of brevity,

we will omit from now the explicit dependence of D in Z. Henceforth, we refer to this model as the additive noise

channel model. A learner is then required to find S which minimizes the expected error probability based on D.

2) The Non-linear White Gaussian Noise Channel: In the second specified channel model that we consider, the

noise is assumed to be white and Gaussian, and so (1) becomes Y = f(X) + W , where W ∈ Rdy is a white

Gaussian noise, statistically independent of the input X . For this channel model, we restrict the general class (2)

to have S = I , and this results a class of NN decoders, given by

ĵ(y) ∈ arg min
j∈[m]

‖y −Hxj‖ , (8)

parameterized by a linear-kernel matrix H ∈ H , Rdy×dx . In what follows, we will identify a decoder from this

class by its matrix H . We assume that the learner is equipped with n input-output samples D = {Ji, Yi}i∈[n], where

Ji is chosen i.i.d. and uniformly over [m], and Yi is the corresponding channel output for input XJi
. Henceforth,

we refer to this model as the non-linear channel model. A learner is then required to find H which minimizes the

expected error probability based on D.

The matrix H serves as a linear approximation of f(·), which is non-linear in general. Note that knowing f(xj)

for any xj ∈ C suffices for optimal decoding, but we target the regime in which the codebook is large w.r.t. the

dataset, and so there are not enough training samples for each codeword xj in order to accurately estimate f(xj).

In addition, although this class does not have optimality guarantees for a non-linear channel, it is possible to enrich

its expressive power by first mapping the codewords into a high dimensional feature space [21, Ch. 16].
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III. MAXIMUM MARGIN BY RLM

In this section, we develop RLM problems for the decoder learning problem that are strongly connected to the

original maximum margin objective. In Sec. III-A we present the corresponding RLM problem for the additive

noise channel model. We then state the steps required for its development, with proofs appearing in Appendix A-A.

Then, in Sec. III-B, we present the RLM problem for the non-linear channel model. The steps required for its

development and the corresponding proofs both appear in Appendix A-B.

For brevity, we will henceforth denote δpq , xp − xq as the difference between a pair of codewords in the

codebook. For notational convenience, we will henceforth also use a single index in the set [1
2m(m−1)] to specify

a pair of codewords (instead of double indices {(p, q)}1≤p<q≤m ). In addition, we define the following property of

a partition of the codeword-pairs.

Definition 1. A partition P =
⋃d+1
j=1 Pj of {(p, q)}1≤p<q≤m is called proper if Span[{δpj ,qj}d+1

j=1 ] = Rd for any set

of representatives {δpj ,qj}d+1
j=1 , such that (pj , qj) ∈ Pj for all j ∈ [d+ 1].

The RLM problems that we will next present will use proper partitions for their regularization terms. We assume,

without loss of generality (w.l.o.g.),2 that Span{δpq}1≤p<q≤m = Rd. Then, a simple way of finding a proper partition

is by first finding a basis of Rd: {δpj ,qj}dj=1 ⊂ {δpq}1≤p<q≤m and then setting Pj = {δpj ,qj} for all j ∈ [d] and

Pd+1 = {δpq}1≤p<q≤m \{δpj ,qj}dj=1. Nonetheless, the RLM problem (and subsequent results in what follows) holds

for any arbitrary proper partition.

A. The Additive Noise Channel RLM

The RLM problem for the additive noise channel model requires a few additional definitions, as follows. For a

given ordered pair of codeword indices (p, q), and a sample yi ∈Dp
⋃

Dp, we denote the following transformation

of the sample and codewords apqi , (−1)I(i∈Dq)(yi− 1
2(xp+xq)). Then, we denote by ˚̀hinge(S, p, q, i) , max{0, 1−

aTpqiSδpq}, a hinge-type surrogate loss function, and by

L̊hinge
D (S) ,

2

m (m− 1)

∑
1≤p<q<m

1

2n

∑
i∈Dp

⋃
Dq

˚̀hinge (S, p, q, i) (9)

the average hinge loss of the induced binary linear classifiers {Sδpq}, over the transformed noise samples {apqi}.

Let P =
⋃d+1
i=1 Pi be a proper partition according to Definition 1, let {ηi}i∈[d+1] be positive parameters which sum

to 1, and let λ > 0 be a regularization parameter that controls the tradeoff between the loss and the regularization.

We show in this section that the RLM learning rule

min
S∈S+

L̊hinge
D (S) + λ

d+1∑
i=1

ηi max
j∈Pi

‖Sδj‖2 , (10)

learns a precision matrix which maximizes a lower bound on the margin among all codeword-pairs.

2If it is not the case we can project the codebook and samples to a lower dimension spanned by the codebook.
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At this point, we may compare the surrogate loss function obtained here to a different surrogate hinge-type upper

bound for the average error probability loss over Z proposed in [17]. There, the hinge-type surrogate loss function

was defined as

L̄hinge
Z (S) ,

1

n

∑
i∈[n]

1

m

∑
p∈[m]

max

{
0, 1− min

q∈[m]\{p}
‖xp + zi − xq‖S − ‖zi‖S

}
. (11)

The hinge loss functions (9) and (11) are rather different, and are the result of different types of relaxations.

We review these differences in light of two possible ways in which the optimization problem of SVM for binary

classification is typically interpreted. The first interpretation is that the SVM objective function is a convex and

continuous upper bound to the non-convex and discontinuous zero-one loss function. The regularization term can be

interpreted as a standard Tikhonov regularization term. The motivation of changing the zero-one loss to a hinge-type

loss function is that the resulting ERM problem can be more efficiently solved compared to the ERM problem

for the zero-one loss. With this interpretation, the choice of hinge loss function is arbitrary, and, in principle, any

convex upper bound on the zero-one loss is also appropriate. The second interpretation of the optimization problem

of SVM is in terms of margin maximization. For inseparable datasets, the objective function of SVM is interpreted

as a balance between increasing the margin and increasing the classification errors. As well known, for binary

classification, both interpretations lead to exactly the same optimization problem [21, Ch. 15]. This is, however,

not the case for the decoder learning problem. The hinge loss function in [17] follows the first interpretation for

minimizing the error probability of the channel decoder. This approach leads to an ERM problem with the hinge

loss over the noise samples, and an implicit regularization in the form of maximal eigenvalue constraint. However,

this hinge loss is not directly related to the margin. In this paper, we follow the second interpretation for maximizing

the margin induced by the channel decoder. This approach leads to an RLM problem with the hinge loss over the

transformed noise samples and a codebook related regularization in (10). Hence, unlike SVM, the two approaches

lead to different optimization problems for the channel decoding problem, where the main source of difference is in

fact due to the lower bound taken in step 2. We argue that for the channel decoding problem the second approach

is better since error probability is strongly related to margin, as discussed above.

The development of the optimization problem (10) will be made in several steps, which we next describe in

detail.

Step 1 – maximization of the minimum margin: We begin with the assumption that the dataset D is separable,

i.e., there exists a precision matrix S that achieves zero loss over D. While this is a rather strong assumption for

a general dataset, it is only a staring point which will be relaxed in the following steps. It is also analogous to

the linear separability assumption made for hard SVM, which is also used as a starting point to soft SVM [21,

Ch. 15]. In fact, in our setting, separability can always be achieved by setting the training-SNR parameter Γ to be

large enough. The margin of a hyperplane w.r.t. a dataset is defined to be the minimal distance between a point

in the dataset and the hyperplane [21, Ch. 15]. The learner’s goal is to find a precision matrix S that maximizes
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the minimum margin, over all codeword-pairs xp, xq ∈ C, according to the Mahalanobis distance w.r.t. S. This

learning problem is formulated as the following margin-maximization problem, given as follows:

Claim 2. The maximum margin induced by a Mahalanobis distance NN decoder with precision matrix S is

max
S∈S+

min
1≤p<q≤m

min
i∈Dp∪Dq

aTpqiSδpq

‖Sδpq‖
. (12)

Step 2 – a convex lower bound: The previous problem is not necessarily convex, and therefore we proceed to

maximize the following convex lower bound on its value.

Claim 3. The problem

maxS∈S+
min1≤p<q≤m mini∈Dp∪Dq

aTpqiSδpq

subject to max1≤p<q≤m ‖Sδpq‖ ≤ 1
(13)

is a convex optimization problem, whose value is a lower bound on the value of (12).

Step 3 – minimum norm formulation: With the prospect removal of the separability assumption, we next derive

a minimum norm optimization problem, so that every solution to it is a solution to (13). This step is analogous to

the equivalent formulation of hard SVM as a quadratic optimization problem [21, Ch. 15.1].

Lemma 4. Every solution to the following minimum norm problem

minS∈S+
max1≤p<q≤m ‖Sδpq‖2

subject to min1≤p<q≤m mini∈Dp∪Dq
aTpqiSδpq ≥ 1

, (14)

is a solution to (13).

Step 4 – relaxation of the separability assumption: Next, we introduce slack variables in order to relax the

assumption that the dataset D is separable. This step is analogous to the relaxation made for soft SVM [21, Ch.

15.2]. A short derivation in Appendix A-A results the RLM problem

min
S∈S+

L̊hinge
D (S) + λ · max

1≤p<q≤m
‖Sδpq‖2 . (15)

Step 5 – inducing stability by a generalization of the regularization: Some of the generalization bounds for

SVM are based on the stability of its learning rule. However, the problem (15) is, in general, not stable, due to

the fact that the regularization term max1≤p<q≤m ‖Sδpq‖2 is indifferent to changes in directions orthogonal to

the maximizer δpq. Nonetheless, we next assume, w.l.o.g., that Span{δpq}1≤p<q≤m = Rd, and slightly modify the

learning rule to a stable one. The final RLM rule for finding a maximum minimum margin decoder is defined for

given positive parameters {ηi}i∈[d+1] which satisfy
∑d+1

i=1 ηi = 1, and a proper partition {Pj}j∈[d+1], as

A (D) = arg min
S∈S+

L̊hinge
D (S) + λ

d+1∑
i=1

ηi max
j∈Pi

‖Sδj‖2 . (16)
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The stability of this learning rule will be used in Sec. IV to derive generalization bounds.

B. The Non-linear Gaussian Noise Channel RLM

The RLM problem for the non-linear Gaussian noise channel uses the following definitions. Let K ∈ K , Sdx+

be an auxiliary matrix variable. We denote by

˚̀hinge(H,K, i) ,
1

m− 1

∑
j′∈[m]\{ji}

max

{
0, 1−

[
yTi Hδjij′ −

1

2
(xji + xj′)

T Kδjij′

]}
(17)

a hinge-type surrogate loss function, and by

L̊hinge
D (H,K) ,

1

n

∑
i∈[n]

˚̀hinge (H,K, i) (18)

the average hinge loss over the dataset. As before, let P =
⋃d+1
i=1 Pi be a proper partition, let {ηi}i∈[d+1] be positive

parameters which sum to 1, and let λ > 0 be a regularization parameter. We show in Appendix A-B that the RLM

learning rule

min(H,K)∈H×K L̊hinge
D (H,K) + λ

∑d+1
i=1 ηi

[
maxj∈Pi

‖Hδj‖2 + maxj′∈Pi
‖Kδj′‖2

]
subject to HTH � K

, (19)

learns a linear kernel H which approximately maximizes a lower bound on the margin among all codeword-pairs.

The derivation is similar to the one for the additive noise channel. In what follows we will describe only the main

differences, and the full derivation can be found in Appendix A-B.

The key difference between the two derivations is that while the decoder class for the additive noise channel is

linear in its parameter S, the decoder class for the non-linear Gaussian noise channel is quadratic in its parameter

H . The first consequence of this difference is that even after taking the lower bound in step 2, the problem is still

not necessarily convex. The second consequence of this difference is in establishing a minimum norm problem, in

step 3. The technique which we use (following SVM-type analysis) is only suitable for linear classifiers. Therefore,

we proceed by a linearization of the decoder, replacing HTH with an auxiliary PSD matrix K ∈ K , Sdx+ .

Nonetheless, we note that the learned decoder will be parameterized only by H . Therefore, at the next step we

add a constraint that links the auxiliary matrix K to H as HTH = K, and then further take a convex relaxation,

namely HTH � K.

IV. GENERALIZATION ERROR BOUNDS

In this section, we state average generalization error bounds on the expected error probability, for the RLM

learning rules (10) and (19). Additionally, we show an optimal choice for λ, the regularization parameter. Finally,

we state a uniform high-probability generalization error bound for the decoder class of the non-linear channel model

(8), which complements a similar bound from [17, Th. 3] for the additive noise channel model. We say that the

random vector Z is sub-Gaussian with variance proxy σ2
Z if P[‖Z‖2 ≥ t] ≤ 2 exp(−t2/(2σ2

Z)) for all t ≥ 0.
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Theorem 5. Let A be the RLM rule (10), and let µ be the distribution of the noise Z. If rx , maxx∈C ‖x‖, ηmin ,

mini∈[d+1]{ηi}, the noise Z is sub-Gaussian with variance proxy σ2
Z , and ζ , 32r2

x

√
6
(
128r2

xσ
2
Z + 1024σ4

Z + r4
x

)
,

then,

ED∼µ
[
pµ (A (D))

]
≤ (m− 1)ED∼µ

[
L̊hinge
D (A (D))

]
+

(m− 1) log (n)

λn
· ζ

ηmin min1≤p<q≤m ‖δpq‖2
. (20)

Let SB , {S ∈ S+ : maxj∈[ 1
2
m(m−1)] ‖Sδj‖ ≤ B}, and let λ =

√
ζ log(n)

B2nηmin min1≤p<q≤m‖δpq‖2
. Then, the RLM rule

(16) with S+ replaced with SB satisfies

ED∼µ
[
pµ (A (D))

]
≤ (m− 1) min

S∈SB
L̊hinge
µ (S) + (m− 1)B

√
4ζ log (n)

nηmin min1≤p<q≤m ‖δpq‖2
. (21)

Proof outline: The proof is based on an on-average-replace-one-stability argument. We begin by proving that

the regularization function in (10) is 2ηmin min1≤p<q≤m ‖δpq‖2-strongly convex, and the loss function in (10) is

convex and Lipschitz with seminorm

max
1≤p<q≤m

max
i∈[n]

√
4 |〈zi, δpq〉| ‖δpq‖2 + 2 〈zi, δpq〉2 + 2 ‖zi‖2 ‖δpq‖2 + ‖δpq‖4. (22)

Next, we apply [21, Cor. 13.6], where we replace the 2-strong-convexity of the Tikhonov regularization with the

appropriate constant for the regularization function of (10). Then, we get from [21, Cor. 13.6] that the RLM problem

(10) is on-average-replace-one-stable with a rate that depends on the expected value of maxi∈[n] ‖Zi‖2. We then

decompose the expected rate to an expectation conditioned on a “good” event, where all the samples are bounded

by some constant, and an expectation conditioned on a “bad” event, where not all samples are bounded. Next, we

use the sub-Gaussian assumption to bound the expected rate conditioned on each event. Finally, we follow [21,

Cor. 13.9] to derive an optimal choice for the regularization parameter λ.

Comparison to [17]: In [17], a Õ(m
√

d
n +

√
log(1/δ)

n ) high-probability generalization error bound for the error

probability loss function, as well as a Õ(

√
d(d+m)

n +

√
log(1/δ)

n ) high probability generalization error bound for the

surrogate hinge-type upper bound (11) was proved. In comparison, here we prove a Õ(m/n) generalization error

bound on the error probability. The convergence rate of this bound is much faster, however, this is only an average

error bound, and does not have a high probability guarantee.

Theoretical guidance for the choice of training SNR: In classification problems, the generalization bound is

typically used to bound the expected error of the learned classifier, given the empirical error. Here, the generalization

bound has an additional and important role in providing a theoretical guidance for the choice of training SNR.

For the decoder learning problem, the dataset D can be generated for any arbitrary training SNR parameter Γ of

the input codebook C. As discussed in various previous works (e.g., [1,8,15]), this raises the question of how to

optimize the training SNR. Intuitively, on one hand, training with a sufficiently high SNR leads to zero empirical

error for many decoders in the class, not necessarily the one with the lowest expected error. On the other hand,

training with SNR too low may produce a decoder which has high error probability (as most evident from the



14

extreme case of zero SNR), and may be too pessimistic in assessing the error probability. In [15], a rule-of-thumb

for choosing the training SNR was proposed, based on the capacity of the Gaussian channel. This rule, however,

did not take into account generalization error aspects. The generalization error bound of Theorem 5 hints a different

rule for choosing the training SNR. Specifically, we propose to choose the training SNR so that the empirical error

L̊hinge
D (A(D)) roughly equals to the generalization bound on the hinge-type loss (the right-hand side of (20) divided

by m − 1). With this training SNR, it is guaranteed that the expected error is on the same order as the empirical

error. In practice, this can be accomplished by tuning the training SNR as a hyperparameter by cross validation.

The following theorem states the generalization error bound for the learning rule (19), with a similar proof

outline.

Theorem 6. Let A be the RLM rule (19), and let µ be the distribution of the channel output for the channel

transformation f . If rx , maxx∈C ‖x‖, Rx , maxx∈C ‖f(x)‖, ηmin , mini∈[d+1]{ηi}, the noise W is sub-Gaussian

with variance proxy σ2
W , and ζ , 24r2

x

√
25r4

x + 16R4
x + 64σ4

W , then,

ED∼µ
[
pµ (A (D))

]
≤ (m− 1)ED∼µ

[
L̊hinge
D (A (D))

]
+

(m− 1) log (n)

λn
· ζ

ηmin min1≤p<q≤m ‖δpq‖2
. (23)

Let HB , {H ∈ H : maxj∈[ 1
2
m(m−1)] ‖Hδj‖ ≤ BH},KB , {K ∈ K : maxj∈[ 1

2
m(m−1)] ‖Kδj‖ ≤ BK}, such

that B = BH + BK , and let λ =
√

ζ log(n)

B2nηmin min1≤p<q≤m‖δpq‖2
. Then, the RLM rule (19) with H×K replaced with

HB ×KB satisfies

ED∼µ
[
pµ (A (D))

]
≤ (m− 1) min

(H,K)∈HB×KB

L̊hinge
µ (H,K) + (m− 1)B

√
4ζ log (n)

nηmin min1≤p<q≤m ‖δpq‖2
. (24)

Note that Theorem 6 holds for general sub-Gaussian noise, and specifically under our Gaussian noise assumption

(used here to justify the structure of the decoder). Finally, we state a uniform high-probability generalization error

bound for the decoder class of the non-linear Gaussian noise channel (8). This uniform bound can be used to bound

the generalization error of any learning algorithm for the problem, e.g., ERM.

Theorem 7. Assume that H = {H ∈ Rdy×dx : maxi∈[min{dx,dy}] σ
2
i (H) ≤ r2

H} and denote dm , min{dx, dy}.

Then, with probability 1− δ, for all H ∈ H

∣∣∣L̊hinge
µ (H)− L̊hinge

D (H)
∣∣∣

≤ 24

√
d2
x + d2

y + dm

n log (12dmrH)

[
2 log (12dmrH) + 1− exp

(
2 log (12dmrH)− 2

3

√
n log (12dmrH)

d2
x + d2

y + dm

)]

+

√
2
[
2 (Rx + rz) rHrx + r2

xr
2
H

]2
log (2/δ)

n
. (25)

The proof is based on bounding the generalization error using the Rademacher complexity of the loss class, i.e.,

the hinge loss class for a decoder from the decoder class (8). In turn, the Rademacher complexity is bounded via
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Algorithm 1 RLM Sub-gradient Descent Algorithm

1: input D ∈ Rd×n × Nn, λ ∈ R+, {η}d+1
i=1 ∈ ∆d, T ∈ N+, c ∈ N+

2: begin
3: Set Γ1 = 0
4: for t = 1, 2, . . . , T
5: Choose c samples from the dataset D, uniformly at random
6: Perform a sub-gradient step Γt+1 ← Γt − 1

λt∇t . Update
7: Project to the set of admissible solutions Γt+1 ← Π(Γt+1) . Project
8: end for
9: end

10: output ΓT+1

Dudley’s entropy integral. This bound complements the uniform high-probability generalization error bound for the

decoder class of the additive noise channel (6), which was proved in [17, Th. 3]

V. STOCHASTIC SUB-GRADIENT DESCENT ALGORITHMS

In this section, we propose a stochastic sub-gradient descent algorithms for solving (10) and (19), inspired by

an algorithm for classification called PEGASOS [25]. These algorithms achieve an ε-accurate solution in Õ(1/ε)

iterations. The run-time is independent of the dataset size n, which makes the algorithms especially suited for

learning from large datasets. This is the case, in an offline design of the decoder (i.e., prior to data communication),

in which noise samples are readily available. Moreover, even if the decoder is learned online, during a training

phase, and so the number of samples is relatively small, low-complexity of each iteration is typically of importance

due to limited computational power of the communication device (as, for example, motivates learning equalizers by

the least mean squares (LMS) algorithm [20, Ch. 9]). In comparison, and as discussed in [24], the computational

cost of solving a standard SVM problem grows at least like O(n2). Moreover, it was shown in [49] that even if the

solver is efficient in the data-laden regime, in which data is virtually unlimited, it has a worse dependence on ε,

compared to the sub-gradient descent algorithm. The pseudo code of our proposed algorithm is given in Algorithm

1, where Γ denotes the hypothesis (either S or (H,K)). Next, we describe the Update and Project steps for each

model.

Notice that all matrix derivatives are w.r.t. symmetric matrices. The derivative of a matrix function f(S) w.r.t.

to a symmetric matrix S [50, Cor. 1] is

df

dS
= dsym

(
∂f

∂S

)
,
∂f

∂S
+
∂f

∂S

T

− diag
∂f

∂S
, (26)

where df/dS denotes the symmetric derivative and ∂f/∂S denotes the general matrix derivative.

For the additive noise channel model we denote the following. Denote the RLM objective by f(S), the set of c

samples from round t by At, and the RLM objective with D replaced by At by ft(S). Let pa, qa be the codeword-

pair related to a transformed sample a, δa , δpa,qa , and let jt,k , arg maxj∈Pk
‖Stδj‖2. Then, the sub-gradient of
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ft(S) is

∇t , λ

d+1∑
k=1

ηk dsym
(

2Stδjt,kδ
T
jt,k

)
− 1

|At|
∑
i∈At

I
[
aTi Stδai

< 1
]

dsym
(
aiδ

T
ai

)
. (27)

In general, a gradient step may result in St+1 /∈ S+ hence we include a projection step to circumvent this problem.

We note in passing that in [25, Sec. 2.2] the projection step was optional and used to limit the set of admissible

solutions to the ball of 1/
√
λ radius. This lead to two separate cases in the analysis. In our problem the projection is

obligatory due to the definition of the Mahalanobis distance. According to [51, Ch. 8], the projection of a symmetric

matrix to the positive semidefinite cone w.r.t. the Frobenius norm is

ΠS+
(S) ,

d∑
i=1

max {λi, 0} vivTi , (28)

and this is the projection used here.

For the non-linear channel model we denote the following. Denote the RLM rule objective by f(H,K), the

set of c samples from round t by At, and the RLM objective with D replaced by At by ft(H,K). Let j(1)
t,k ,

arg maxj∈Pk
‖Htδj‖2 and j(2)

t,k , arg maxj∈Pk
‖Ktδj‖2 . Then, the sub-gradients of ft(H,K) are

∇(1)
t ft (Ht,Kt) ,

∂ft
∂H

(Ht,Kt)

= 2λ

d+1∑
k=1

ηkHtδj(1)t,k
δT
j
(1)
t,k

− 1

|At|
∑
i∈At

1

m− 1

∑
j′∈[m]\{ji}

I
[
yTi Htδjij′ −

1

2
(xji + xj′)

T Ktδjij′ < 1

]
yiδ

T
jij′ (29)

and

∇(2)
t ft (Ht,Kt) ,

∂ft
∂K

(Ht,Kt)

= λ

d+1∑
k=1

ηk dsym
(

2Ktδj(2)t,k
δT
j
(2)
t,k

)
+

1

|At|
∑
i∈At

1

m− 1

×
∑

j′∈[m]\{ji}

I
[
yTi Htδjij′ −

1

2
(xji + xj′)

T Ktδjij′ < 1

]
dsym

(
1

2
(xji + xj′) δ

T
jij′

)
. (30)

In general, a gradient step may result in Ht+1,Kt+1 : HTH � K, or even K ≺ 0, hence we include a projection

step, w.r.t. the Frobenius norm, to circumvent this problem. We formulate this projection as a convex optimization

problem, which does not depend on the sample size.

Claim 8. The projection of (Ht,Kt) ∈ H × K to the set {(H,K) ∈ H × K : HTH � K}, w.r.t. the Frobenius

norm, is a convex optimization problem

min(H,K)∈H×K ‖H −Ht‖2F + ‖K −Kt‖2F
subject to HTH � K

. (31)
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We prove the following optimization error bound for the two algorithms.

Theorem 9. Let Γ∗ be the solution of the RLM ((10) or (19)), and Γt be the hypothesis generated by Algorithm 1

at a random round t ∈ [T ]. Denote the objective of the RLM by f(Γ). Assume that for all t, each element in At

is sampled uniformly at random from the dataset (with or without replacement). Then,

f (Γt)− f (Γ∗) = O

(
ln3 (T ) · ln (1/δ)

λT

)
(32)

with probability larger than 1−4δ ln(T )
2 .

Thus, as discussed in [25], roughly two validation attempts are required to obtain a good solution. Using this

result combined with the expected generalization error bounds, stated in Sec. IV, we can describe the total error

bound, which is comprised of three terms. First, the choice of the class of decoders, which do not necessarily

contain the optimal, maximum likelihood decoder, inflicts an approximation error. Second, learning the decoder

based on samples instead of the unknown channel’s distribution, inflicts a generalization error, which was bounded

in Theorems 5 and 6, that established an expected generalization error of rate Õ(m/(n)). Third, solving the opti-

mization problem only approximately, using a finite number T of iterations of Algorithm 1, inflicts an optimization

error, which is bounded in Theorem 9.

VI. EXPERIMENTS FOR THE SUB-GRADIENT DESCENT ALGORITHMS

In this section, we exemplify the empirical performance of the proposed algorithm for different codebooks and

noise distributions. In each experiment, the learner was provided with the codebook of m codewords in Rd and

ntrain i.i.d. training samples in SNRtrain. Then, the proposed Algorithm 1 has run for T iterations with a batch size

of nbatch and a regularization parameter λ. Finally, test sets for various SNR values were used, each one with ntest

noise samples.

A. Stochastic Sub-gradient Descent Algorithm for the Additive Noise Channel

The algorithm’s performance for the additive noise channel, is compared with the real precision matrix Σ−1,

the estimated precision matrix Σ̂−1 and the identity matrix I . We denote by ST the hypothesis chosen during

the training phase, whether it is the hypothesis generated at iteration T or at another iteration, guided by cross

validation over the training samples.

1) Two-dimensional noise with a Gaussian component and a uniform component: Assume d = 2, a codebook

of m = 2 codewords C = {(1, 1), (−1,−1)}, and let Z ∈ R2 be a zero-mean noise with two independent

components of equal variance. Specifically, Z1 is a uniform random variable and Z2 is a Gaussian random

variable. In this simple example, in high SNR the optimal matrix is obviously S =

 1 0

0 0

 which induces

the linear separator Sδ12 = (2, 0)T , a vertical separator. The proposed algorithm indeed learns such a decoder,
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d m ntrain nbatch T ntest λ SNRtrain

2 2 104 50 600 104 4.8 · 10−4 4.8
Table I

ADDITIVE NOISE CHANNEL WITH A TWO-DIMENSIONAL NOISE COMPRISED OF A GAUSSIAN COMPONENT AND A UNIFORM
COMPONENT. EXPERIMENT PARAMETERS.

Figure 1. Additive noise channel with a two-dimensional noise comprised of a Gaussian component and a uniform component. Classification
in high SNR. Left: ST classification of test samples. Right: Σ−1 classification of test samples.

and its classification of the test samples is shown in the left panel of Fig. 1. The classification of the test

samples by the decoder using Σ−1 is shown in the right panel of Fig. 1. The performance of Σ−1 is worse,

even though this decoder reflects some knowledge on the noise distribution. Nonetheless, in low SNR there

is a change of trends due to the uniform noise being bounded. In low SNR values the optimal decoder is no

longer a vertical separator, as is evident in Fig. 2. Fig. 3 displays the error probability of the final hypothesis

decoder, under various SNR values. The experiment parameters are listed in Table I.

2) Two-dimensional Gaussian mixture noise: We perform a simulation similar to the previous example, where

Figure 2. Additive noise channel with a two-dimensional noise comprised of a Gaussian component and a uniform component. Classification
in low SNR. Left: ST classification of test samples. Right: Σ−1 classification of test samples.
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Figure 3. Additive noise channel with a two-dimensional noise comprised of a Gaussian component and a uniform component. Error
probability vs. various SNRs [dB].

d m ntrain nbatch T ntest λ SNRtrain

2 64 220 5 103 104 10−7 22.34
Table II

ADDITIVE NOISE CHANNEL WITH A TWO-DIMENSIONAL GAUSSIAN MIXTURE NOISE. EXPERIMENT PARAMETERS.

now the codebook is a 64-QAM constellation in 2D [52, Fig. 2, (c)], and Z ∈ R2 is a zero-mean Gaussian

Mixture noise of l = 2 components Zi ∼ N (0,Ki), and mixture weights {ωi}li=1. The right panel of Fig. 4

displays the error probability of the final hypothesis decoder, under various SNR values. In Fig. 4, we observe

that the error probability scales similarly for both ST and Σ−1 =
(

1
l

∑l
i=1 ωiKi

)−1
, even for SNR values

that are significantly smaller than the training SNR. This shows the generalization of the learned decoder,

which is a desired trait for systems where the SNR at operation time is unknown durning training.

Figure 4. Additive noise channel with a two-dimensional Gaussian mixture noise. Left: the test samples in SNR 27 [dB]. Right: error
probability vs. various SNRs [dB].
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d m ntrain nbatch T ntest λ SNRtrain

2 8 1.6 · 103 10 1.4 · 103 104 (10−3, 10−4) 3.74
Table III

TWO-DIMENSIONAL LINEAR WHITE GAUSSIAN NOISE CHANNEL. EXPERIMENT PARAMETERS.

Figure 5. Two-dimensional linear white Gaussian noise channel. Left: codewords (circles) and output samples (X’s). Right: error probability
vs. various SNRs [dB].

B. Stochastic Sub-gradient Descent Algorithm for the Non-Linear White Gaussian Noise Channel

The algorithm’s performance, for the non-linear channel, is compared with a NN decoder using the real trans-

formation f(·), which is the maximum likelihood decoder, and a NN decoder using the mean of the transformed

samples of each codeword as the transformed value of the codeword, denoted µX . We denote by HT the hypothesis

chosen during the training phase, whether it is the hypothesis generated at iteration T or at another iteration, guided

by cross validation over the training samples.

1) Two-dimensional linear channel: Assume d = 2, a codebook of m = 8 codewords as proposed in [52, Fig.

2, (a)], and a linear and invertible channel transformation

f

x1

x2

 =

 1.04 0.19

0.19 1.96

x1

x2

 . (33)

In this simple example, the optimal matrix is obviously H =

 1.04 0.19

0.19 1.96

. The training samples are

shown in the left panel of Fig. 5, and the right panel displays the error probability of the final hypothesis

decoder, under various SNR values. The right panel shows that the learned decoder’s performance is practically

the same as that of the optimal decoder. The experiment parameters are listed in Table III.

2) Two-dimensional non-linear channel: We perform a simulation similar to the previous example, where now
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d m ntrain nbatch T ntest λ SNRtrain

2 8 1.6 · 103 10 3 · 103 104 (10−2, 10−3) 11.7
Table IV

TWO-DIMENSIONAL NON-LINEAR WHITE GAUSSIAN NOISE CHANNEL. EXPERIMENT PARAMETERS.

Figure 6. Two-dimensional non-linear white Gaussian noise channel. Left: codewords (circles) and output samples (X’s). Right: error
probability vs. various SNRs [dB].

the channel transformation is non-linear

f

x1

x2

 =

 0.94 0.07 0.15

0.46 0.72 0.4




x1

x2

x1x2

 . (34)

In this example, the learner is required to learn a linear transformation which approximates the non-linear

channel transformation. The training samples are shown in the left panel of Fig. 6, and the right panel displays

the error probability of the final hypothesis decoder, under various SNR values. The right panel shows that the

learned decoder’s performance is close to that of the optimal decoder, however the performance gap increases

with the SNR. This shows the difficulty of learning a decoder for a non-linear channel, compared to the linear

channel from the previous experiment. The experiment parameters are listed in Table IV.

VII. SUMMARY AND FUTURE RESEARCH

In this section, we summarize the main results of the paper, point out some open problems and propose ideas

for future research.

In Sec. III we have derived an RLM problem for learning a maximum margin NN decoder. We have developed

a convex lower bound to the maximum margin problem which can be efficiently solved. Specifically, in step 2 we

used a lower bound in order to simplify the difficult, non-convex in general, problem. A goal for future research

is to consider methods to tighten this lower bound. For example, such a method can be based on elimination of

irrelevant codeword-pairs, e.g., far apart pairs connected with a line in the same direction as the line connecting a
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closer pair. In the derivation for the non-linear Gaussian noise channel, a linearization of the decoder was proposed

as a part of the derivation of the minimum norm problem. Future research could study other derivations of minimum

norm formulations, which are suitable for non-linear classifiers.

Next, in Sec. IV, we have proved an expected generalization error bound for the error probability loss. The stated

generalization error bound holds only on average, and a goal for future research is to prove a generalization bound

which holds with high probability. Such generalization bounds were recently proved for SVM in [53], possibly the

same methods could be used for this problem. Another possibility for improving the generalization bound is by

making assumptions on the noise distribution, similar to what was established for vector quantizers in [37–40].

For channels with complicated non-linear transformations, a linear kernel might perform poorly. Nonetheless, it is

possible to enrich the expressive power of the NN decoder, by first mapping the codewords into a high-dimensional

feature space [21, Ch. 16]. If such a mapping is applied to the codebook, then the matrices dimensions will increase

accordingly, H = Rdy×Dx and K = SDx×Dx . Therefore, a hypothesis will be determined by O
(
dyDx +D2

x

)
parameters. Furthermore, the complexity of every operation involving codewords would increase significantly. These

computations become infeasible when the mapping is to an infinite dimension feature space. As well known, in

order to alleviate this dimensionality problem, one can use the kernel trick [21, Ch. 16.2] for the non-linear channel

model. In this regard, it can be shown that the RLM and its solution, the decoder, can be expressed solely by the

kernel function and the samples. However, the constraint HTH 4 K cannot be easily expressed in terms of the

kernel. It is a goal for future research to solve this problem and enable the use of a kernel trick in this problem.

In Sec. V, we proposed a stochastic sub-gradient descent algorithm for solving the RLM problem. This algorithm

involves a projection step in each iteration. While the complexity of the projection is independent of the sample

size, it still poses a hard computational requirement for high-dimensional problems. The projection step in the

non-linear channel model stems from the linearization of the decoder, and therefore it might be unnecessary for

alternative variants of minimum norm problems.

Finally, a different direction for future research is exploring the margin properties of DNNs in the context of the

decoder learning problem. For classification problems, it was recently identified that the large margin principle is

beneficial to the generalization ability of DNNs (see, e.g., the survey [54] and references therein). It is of interest

to identify similar properties for the decoder learning problem.

APPENDIX A

DERIVATIONS FOR SECTION III

In this appendix, we provide the proofs for the derivation of the RLM for the additive noise channel (Appendix

A-A), and provide the development steps and proofs for the non-linear channel (Appendix A-B).

A. Proofs for the Additive Noise Channel RLM problem

We start by justifying the margin based objective (step 1) by proving claim 2.
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Proof of Claim 2: Consider the decision regions of a given codeword-pair xp, xq ∈ C

‖xp − y‖S
q

≷
p
‖xq − y‖S ⇐⇒

(
y − 1

2
(xp + xq)

)T
Sδpq

p

≷
q

0. (35)

Note that the factor −1
2(xp + xq) centers the codebook and accordingly the subset Dp

⋃
Dq of that dataset. We

remain with a linear classifier ȳSδpq
p

≷
q

0 for the centered samples ȳ , y− 1
2(xp + xq). By using [21, Claim 15.1]

we get that the distance between a point v and the hyperplane with normal vector Sδpq is∣∣vTSδpq∣∣
‖Sδpq‖

. (36)

Therefore, the margin induced by S for the codeword-pair p, q is

min
i∈Dp∪Dq

∣∣∣(yi − 1
2 (xp + xq)

)T
Sδpq

∣∣∣
‖Sδpq‖

. (37)

Taking the minimum over all codeword-pairs and maximizing over S gives

max
S∈S+

min
1≤p<q≤m

min
i∈Dp∪Dq

∣∣∣(yi − 1
2 (xp + xq)

)T
Sδpq

∣∣∣
‖Sδpq‖

. (38)

Under the assumption of separability we can equivalently write

max
S∈S+

min
1≤p<q≤m

min
i∈Dp∪Dq

(−1)I(i∈Dq)

(
yi − 1

2 (xp + xq)
)T
Sδpq

‖Sδpq‖
. (39)

We proceed to show the lower bound validity (step 2) by proving claim 3.

Proof of Claim 3: Due to invariance to scaling of S in (12), we can add the constraint max1≤p<q≤m ‖Sδpq‖ ≤ 1

(from (13)), and get an equivalent problem. Under this constraint

max
S∈S+

min
1≤p<q≤m

min
i∈Dp∪Dq

(−1)I(i∈Dq)

(
yi −

1

2
(xp + xq)

)T
Sδpq

≤ max
S∈S+

min
1≤p<q≤m

min
i∈Dp∪Dq

(−1)I(i∈Dq)

(
yi − 1

2 (xp + xq)
)T
Sδpq

‖Sδpq‖
, (40)

which directly leads to the claim.

Now we turn to prove the equivalent minimum norm formulation (step 3). This is done by proving Lemma 4.

Proof of Lemma 4: Let S∗ be a solution of (13) and γ∗ be its margin value, i.e.,

γ∗ = min
1≤p<q≤m

min
i∈Dp∪Dq

aTpqiS
∗δpq. (41)

Let S# be the solution to (14) and denote

Ŝ ,
S#

max1≤p<q<m ‖S#δpq‖
. (42)
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We will show that Ŝ is a solution to (13).

First, we show that Ŝ achieves a margin value of at least γ∗. By definition of γ∗ we have that for all 1 ≤ p <

q ≤ m, i ∈ Dp ∪Dq it holds that aTpqi
S∗

γ∗ δpq ≥ 1. Hence, S∗

γ∗ satisfies the constraint in (14), combined with S#

being a minimizer for (14) it yields

max
1≤p<q≤m

∥∥∥S#δpq

∥∥∥2
≤ max

1≤p<q≤m

∥∥∥∥S∗γ∗ δpq
∥∥∥∥2

. (43)

Using this, we can bound

max
1≤p<q≤m

∥∥∥S#δpq

∥∥∥ (43)
≤ max

1≤p<q≤m

∥∥∥∥S∗γ∗ δpq
∥∥∥∥ =

1

γ∗
max

1≤p<q≤m
‖S∗δpq‖ ≤

1

γ∗
, (44)

where the last inequality is due to S∗ satisfying the constraint ‖S∗δpq‖ ≤ 1 for all 1 ≤ p < q ≤ m, i ∈ Dp ∪Dq.

It follows that for all 1 ≤ p < q ≤ m, i ∈Dp ∪Dq

aTpqiŜδpq =
1

max1≤p<q≤m ‖S#δpq‖
aTpqiS

#δpq
(a)

≥ 1

max1≤p<q≤m ‖S#δpq‖
(b)

≥ γ∗, (45)

where (a) is due to S# satisfying the constraint aTpqiSδpq ≥ 1 for all 1 ≤ p < q ≤ m, i ∈Dp∪Dq, and (b) follows

from (44).

Second, Ŝ complies with the constraints of (13), since, by definition

max
1≤p<q≤m

∥∥∥Ŝδpq∥∥∥ = max
1≤p<q<m

∥∥∥∥ S#

max0≤p<q≤m ‖S#δpq‖
δpq

∥∥∥∥ = 1. (46)

Notice that due to invariance to scaling, in a NN decoder, using S# is equivalent to using Ŝ. Maximizing ‖Sδpq‖

is equivalent to maximizing ‖Sδpq‖2. This argument completes the proof.

We next consider step 4, and show that relaxing the separability assumption of a minimum norm problem leads

to an RLM problem. To this end, we allow the constraints in the minimum norm problem (14) to be violated by

adding non-negative slack variables {ξpqi}, one for each sample. We penalize for violations by minimizing over

the slack variables and add λ as a regularization parameter that controls the tradeoff between the two terms. This

leads to the following optimization problem

minS∈S+
min{ξpqi} λmax0≤p<q<m ‖Sδpq‖2 +

∑
1≤p<q≤m
i∈Dp∪Dq

ξpqi

subject to aTpqiSδpq ≥ 1− ξpqi ∀ 1 ≤ p < q ≤ m, i ∈Dp ∪Dq.

ξpqi ≥ 0 ∀ 1 ≤ p < q ≤ m, i ∈Dp ∪Dq

(47)

For any 1 ≤ p < q ≤ m, i ∈ Dp ∪ Dq either aTpqiSδpq ≥ 1 and then ξpqi = 0, or aTpqiSδpq < 1 and then

ξpqi = 1− aTpqiSδpq. Substituting ξpqi = max{0, 1− aTpqiSδpq} in (47) gives (15).
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B. Development Steps and Proofs for The Non-linear White Gaussian Channel

We next develop an RLM problem from a maximum margin approach for the non-linear white Gaussian noise

channel. The derivation follows the same general steps as the ones for the additive noise channel in Sec. III-A, and

so we omit details whenever they are similar to that of Sec. III-A. Nonetheless, we highlight the step of developing

a minimum norm formulation (Step 3), since it is delicate due to the quadratic form of the decoder, and so requires

an additional approximation step.

Step 1 – maximization of the minimum margin: As before, we begin with the assumption that the dataset D is

separable, which means here that there exists a decoder H that achieves zero loss over D, and this assumption will

be relaxed in the following steps. Now, the learner’s goal is to find a decoder H that maximizes the minimum margin,

over all transformed codeword-pairs Hxp, Hxq ∈ C. This margin-maximization problem is given as follows:

Claim 10. The maximum margin induced by a decoder H is

max
H∈H

min
i∈[n]

min
j′∈[m]\{ji}

yTi Hδjij′ − 1
2 (xji + xj′)

T HTHδjij′

‖Hδjij′‖
. (48)

Proof: For every codeword-pair xp, xq ∈ C the decision regions are

‖y −Hxp‖
q

≷
p
‖y −Hxq‖ ⇐⇒ yTHδpq −

1

2
(xp + xq)

T HTHδpq
p

≷
q

0. (49)

Using analogous arguments to those used in the proof of Claim 2 completes the proof.

Step 2 – a lower bound: The problem (48) is not necessarily convex and is hard to solve directly. Therefore,

we proceed to maximize the following lower bound on its value. Unlike the analogous lower bound in Sec. III-A,

finding this lower bound is not a convex optimization problem, but it still serves as a useful step for next derivations.

We denote rx = maxj∈[m] ‖xj‖ and Rx = maxj∈[m] ‖f(xj)‖.

Claim 11. The value of the problem

maxH∈Hmini∈[n] minj′∈[m]\{ji} yTi Hδjij′ − 1
2 (xji + xj′)

T HTHδjij′

subject to max1≤p<q≤m ‖Hδpq‖ ≤
√

r2x
r2x+R2

x

(50)

is a lower bound on the value of (48).

The proof is similar to the proof for claim 3. We note, however, that since the current considered class of decoders

is not scale-invariant, we suspect that this lower bound might be less tight in general. So tightening of this bound

is an interesting open problem.

Proof: By adding the constraint

max
1≤p<q≤m

‖Hδpq‖ ≤

√
r2
x

r2
x +R2

x

, (51)

we effectively restrict the hypothesis class without increasing the value of the problem. This is since
√

r2x
r2x+R2

x
< 1
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and so under this additional constraint

max
(H,K)∈H×K

min
i∈[n]

min
j′∈[m]\{ji}

yTi Hδjij′ −
1

2
(xji + xj′)

T HTHδjij′

≤ max
(H,K)∈H×K

min
i∈[n]

min
j′∈[m]\{ji}

yTi Hδjij′ − 1
2 (xji + xj′)

T HTHδjij′

‖Hδjij′‖
. (52)

This directly leads to the claim.

Step 3 – minimum norm formulation: As we have seen, obtaining an RLM problem and the removal of the

separability assumption is done via a minimum norm formulation. In order to obtain a minimum norm formulation,

the objective function should be linear in the parameter determining the decoder, yet (50) violates this requirement.

We therefore resort to the the following approximation strategy. First, we write K = HTH ∈ K , Sdx+ and

thus linearize the decoder’s parametrization. We then drop this constraint, yet add a judicious constraint on

max1≤p<q≤m ‖Hδpq‖2 +max1≤p′<q′≤m ‖Kδp′q′‖2, which replaces the constraint max1≤p<q≤m ‖Hδpq‖ ≤
√

r2x
r2x+R2

x

in (50). With this approximation, we then convert the problem (50) to a minimum norm problem. Then, since the

learned decoder will eventually use a learned linear kernel H and will (implicitly) set K = HTH , we re-introduce

the constraint K = HTH , but in a convex-relaxed form HTH � K.

Specifically, we choose the constraint on max1≤p<q≤m ‖Hδpq‖2 + max1≤p′<q′≤m ‖Kδp′q′‖2 as follows: Since

the channel transformation f increases the norm of x by a factor of at most Rx/rx it is reasonable to bound

λmax(H) ≤ Rx

rx
.3 Now, the constraint on H in (50) implies that

max
1≤p<q≤m

δTpqKδpq = max
1≤p<q≤m

‖Hδpq‖2 ≤
r2
x

r2
x +R2

x

. (53)

Then,

max
1≤p<q≤m

‖Kδpq‖2 ≤ λmax(K) · max
1≤p<q≤m

δTpqKδpq ≤
R2
x

r2
x +R2

x

, (54)

which holds since K ∈ K is symmetric. By replacing the constraint in (50), we get the following problem

max(H,K)∈H×Kmini∈[n] minj′∈[m]\{ji} yTi Hδjij′ − 1
2 (xji + xj′)

T Kδjij′

subject to max1≤p<q≤m ‖Hδpq‖2 + max1≤p′<q′≤m ‖Kδp′q′‖2 ≤ 1.
(55)

The formulation (55) then leads to a minimum norm problem, as desired.

Lemma 12. Every solution to the following minimum norm problem

min(H,K)∈H×K max 1≤p<q≤m
1≤p′<q′≤m

‖Hδpq‖2 + ‖Kδp′q′‖2

subject to mini∈[n] minj′∈[m]\{ji} y
T
i Hδjij′ − 1

2 (xji + xj′)
T Kδjij′ ≥ 1,

(56)

is a solution to (55).

The proof of Lemma 12 shares similar structure to the proof of Lemma 4 but it is more delicate, due to the

3We however do not explicitly add this constraint on H , but rather use it to develop a constraint on K.
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more complicated parametrization of the linearized decoder.

Proof: Let (H∗,K∗) be a solution of (55) and γ∗ its margin value, i.e.,

γ∗ = min
i∈[n]

min
j′∈[m]\{ji}

yTi Hδjij′ −
1

2
(xji + xj′)

T Kδjij′ . (57)

Let (H#,K#) be a solution to (56) and denote the corresponding normalized solution

Ĥ ,
H#√

max1≤p<q≤m ‖H#δpq‖2 + max1≤p′<q′≤m ‖K#δp′q′‖2
, (58)

and

K̂ ,
K#√

max1≤p<q≤m ‖H#δpq‖2 + max1≤p′<q′≤m ‖K#δp′q′‖2
. (59)

We will show that (Ĥ, K̂) is a solution to (55).

First, we show that (Ĥ, K̂) achieves a margin value of at least γ∗. By definition of γ∗ we have that for all

i ∈ [n], j′ ∈ [m]\{ji}:

yTi
H∗

γ∗
δjij′ −

1

2
(xji + xj′)

T K
∗

γ∗
δjij′ ≥ 1. (60)

Hence, (H
∗

γ∗ ,
K∗

γ∗ ) satisfies the constraint in (56). Combined with (H#,K#) being a minimizer for (56), it yields

max
1≤p<q≤m

∥∥∥H#δpq

∥∥∥2
+ max

1≤p′<q′≤m

∥∥∥K#δp′q′
∥∥∥2
≤ max

1≤p<q≤m

∥∥∥∥H∗γ∗ δpq
∥∥∥∥2

+ max
1≤p′<q′≤m

∥∥∥∥K∗γ∗ δp′q′
∥∥∥∥2

. (61)

Using this we can bound

max
1≤p<q≤m

∥∥∥H#δpq

∥∥∥2
+ max

1≤p′<q′≤m

∥∥∥K#δp′q′
∥∥∥2 (61)
≤ max

1≤p<q≤m

∥∥∥∥H∗γ∗ δpq
∥∥∥∥2

+ max
1≤p′<q′≤m

∥∥∥∥K∗γ∗ δp′q′
∥∥∥∥2

(62)

=

(
1

γ∗

)2

max
1≤p<q≤m

‖H∗δpq‖2 +

(
1

γ∗

)2

max
1≤p′<q′≤m

‖K∗δp′q′‖2

(63)

≤
(

1

γ∗

)2

, (64)

where the last inequality is due to (H∗,K∗) satisfying the constraints of (55). It follows that for all i ∈ [n], j′ ∈

[m]\{ji}:

yTi Ĥδjij′ −
1

2
(xji + xj′)

T K̂δjij′ =
yTi H

#δjij′ − 1
2 (xji + xj′)

T K#δjij′√
max1≤p<q≤m ‖H#δpq‖2 + max1≤p′<q′≤m ‖K#δp′q′‖2

(65)

(a)

≥ 1√
max1≤p<q≤m ‖H#δpq‖2 + max1≤p′<q′≤m ‖K#δp′q′‖2

(66)

(b)

≥ γ∗, (67)
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where (a) is due to (H#,K#) satisfying the constraint

yTi H
#δjij′ −

1

2
(xji + xj′)

T K#δjij′ ≥ 1 (68)

for all i ∈ [n], j′ ∈ [m]\{ji}, and (b) follows from (62).

Second, we show that (Ĥ, K̂) complies with the constraints of (55). By definition

max
1≤p<q≤m

∥∥∥Ĥδpq∥∥∥2
+ max

1≤p′<q′≤m

∥∥∥K̂δp′q′∥∥∥2
=

max1≤p<q≤m
∥∥H#δpq

∥∥2
+ max1≤p′<q′≤m

∥∥K#δp′q′
∥∥2

max1≤p<q≤m ‖H#δpq‖2 + max1≤p′<q′≤m ‖K#δp′q′‖2
= 1. (69)

As evident from (48) with HTH replaced by K, the problem is scale invariant and so using (H#,K#) is equivalent

to using (Ĥ, K̂).

As said, after obtaining a minimum norm formulation (56) we add the convex constraint HTH � K.

Step 4 – relaxation of the separability assumption: Next, we introduce slack variables in order to relax the

assumption that the dataset D is separable. To this end, we allow the constraints in the minimum norm problem

to be violated by adding non-negative slack variables {ξij′}, one for each sample. We penalize for violations by

minimizing over the slack variables and add λ as a regularization parameter. This leads to the following optimization

problem

min(H,K)∈H×Kmin{ξ} λ
[
max1≤p<q≤m ‖Hδpq‖2 + max1≤p′<q′≤m ‖Kδp′q′‖2

]
+
∑

i∈[n]

∑
j′∈[m]\{ji} ξij′

subject to yTi Hδjij′ − 1
2 (xji + xj′)

T Kδjij′ ≥ 1− ξij′

ξij′ ≥ 0

.

(70)

For any i ∈ [n], j′ ∈ [m]\{ji} either yTi Hδjij′ − 1
2(xji +xj′)

TKδjij′ ≥ 1 and then ξij′ = 0, or yTi Hδjij′ − 1
2(xji +

xj′)
TKδjij′ < 1 and then ξij′ = 1− [yTi Hδjij′ − 1

2(xji + xj′)
TKδjij′ ]. By substituting

ξij′ = max

{
0, 1−

[
yTi Hδjij′ −

1

2
(xji + xj′)

T Kδjij′

]}
(71)

in (70), the problem (70) is equivalent to the RLM problem for the hinge loss function ˚̀hinge(H,K, i) in (17). The

RLM problem is then given by

min(H,K)∈H×K L̊hinge
D (H,K) + λ

[
max1≤p<q≤m ‖Hδpq‖2 + max1≤p′<q′≤m ‖Kδp′q′‖2

]
subject to HTH � K,

(72)

where L̊hinge
D (H,K) is as in (18), and λ > 0 is a regularization parameter.

Step 5 – inducing stability by a generalization of the regularization: The regularization function is similar to

the one from Sec. III-A. In the same manner we modify the learning rule to a stable one by considering a proper

partition. The final RLM rule for finding a maximum minimum margin decoder is defined for a given set of positive
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parameters {ηi}i∈[d+1] which satisfy
∑d+1

i=1 ηi = 1, and a proper partition {Pj}j∈[d+1], as

A (D) = arg min(H,K)∈H×K L̊
hinge
D (H,K) + λ

∑d+1
i=1 ηi

[
maxj∈Pi

‖Hδj‖2 + maxj′∈Pi
‖Kδj′‖2

]
subject to HTH � K

. (73)

APPENDIX B

PROOFS FOR SECTION IV

Throughout this section we will use only Euclidean norms. For two matrices H and K we will let

‖(H,K)‖F ,
√
‖H‖2F + ‖K‖2F . (74)

A. Proof of Theorem 5

The proof will use the strong convexity of the regularization function and the convexity and Lipschitzness of the

loss function. The following lemma establishes the strong convexity constant of the regularization function for the

additive noise channel model.

Lemma 13. Assume that Span{δpq}1≤p≤q≤m = Rd, and let {Pi}i∈[d+1] be a proper partition. Then, g(S) ,∑d+1
i=1 ηi maxj∈Pi

‖Sδj‖2 is 2γ-strongly convex w.r.t. the Frobenius norm, where

γ , min
S∈S+

d+1∑
i=1

ηi ·min
j∈Pi

‖Sδj‖2

‖S‖2F
, (75)

and the lower bound

γ = min
{ji∈Pi}d+1

i=1

λmin

(
d+1∑
i=1

ηiδjiδ
T
ji

)
≥ ηmin min

1≤p<q≤m
‖δpq‖2 (76)

holds with ηmin , mini∈[d+1]{ηi}.

We prove Lemma 13 for an arbitrary matrix H ∈ Rdy×dx , and specifically, the result is applicable to any PSD

matrix S.

Proof: We prove the claim by verifying strong convexity directly from its definition (e.g., [21, Definition

13.4]). Let α ∈ [0, 1] be given. Then,

g (αH1 + (1− α)H2)− αg (H1)− (1− α) g (H2)

=

d+1∑
i=1

ηi ·max
j∈Pi

‖(αH1 + (1− α)H2) δj‖2

− α
d+1∑
i=1

ηi ·max
j′∈Pi

‖H1δj′‖2 − (1− α)

d+1∑
i=1

ηi · max
j′′∈Pi

‖H2δj′′‖2 (77)

=

d+1∑
i=1

ηi ·max
j∈Pi

[
α2 ‖H1δj‖2 + 2α (1− α) 〈H1δj , H2δj〉+ (1− α)2 ‖H2δj‖2

]
− α

d+1∑
i=1

ηi ·max
j′∈Pi

‖H1δj′‖2 − (1− α)

d+1∑
i=1

ηi · max
j′′∈Pi

‖H2δj′′‖2 (78)
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≤
d+1∑
i=1

ηi ·max
j∈Pi

[
α2 ‖H1δj‖2 + 2α (1− α) 〈H1δj , H2δj〉+ (1− α)2 ‖H2δj‖2

−α ‖H1δj‖2 − (1− α) ‖H2δj‖2
]

(79)

=

d+1∑
i=1

ηi ·max
j∈Pi

[
α (α− 1) ‖H1δj‖2 + α (α− 1) ‖H2δj‖2 − 2α (α− 1) 〈H1δj , H2δj〉

]
(80)

=

d+1∑
i=1

ηi ·max
j∈Pi

α (α− 1)
[
‖H1δj‖2 − 2 〈H1δj , H2δj〉+ ‖H2δj‖2

]
(81)

= −α (1− α)

d+1∑
i=1

ηi ·min
j∈Pi

‖(H1 −H2) δj‖2

≤ −α (1− α) γ ‖H1 −H2‖2F , (82)

where the first inequality is by decreasing the absolute value of the negative element, and where γ is as defined in

(75) (Lemma 13).

Denote the singular value decomposition (SVD) of H by H , UΛV T , where U ∈ Rdy×dy , V ∈ Rdx×dx

are unitary matrices and their columns are the left-singular vectors and right-singular vectors respectively, and

Λ ∈ Rdy×dx is a diagonal matrix whose elements are the corresponding singular values. Denote the main diagonal

of Λ2 by α. Further denote δ(V )
j , V T δj and its element-wise squaring by d

(V )
j . With these definitions we can

establish the following relation:

‖Hδ‖2 = δTV ΛUTUΛV T δ =
∥∥∥Λδ(V )

∥∥∥2
= d(V )Tα. (83)

Using the above, we bound γ as follows

γ = min
H∈H

d+1∑
i=1

ηi min
j∈Pi

‖Hδj‖2

‖H‖2F
= min

H∈H:‖H‖F =1

d+1∑
i=1

ηi min
j∈Pi

‖Hδj‖2 (84)

= min
{ji∈Pi}d+1

i=1

min
H∈H:‖H‖F =1

d+1∑
i=1

ηi ‖Hδji‖
2 (85)

(a)
= min
{ji∈Pi}d+1

i=1

min
Λ∈diag(∆d),V :V T =V −1

d+1∑
i=1

ηi

∥∥∥Λδ
(V )
ji

∥∥∥2
(86)

(b)
= min
{ji∈Pi}d+1

i=1

min
α∈∆d,V :V T =V −1

d+1∑
i=1

ηid
(V )T

ji
α (87)

= min
{ji∈Pi}d+1

i=1

min
α∈∆d,V :V T =V −1

(
d+1∑
i=1

ηid
(V )
ji

)T
α (88)

(c)
= min
{ji∈Pi}d+1

i=1

min
α∈∆d,V :V T =V −1


∑d+1

i=1 ηi
(
vT1 δji

)2
...∑d+1

i=1 ηi
(
vTd δji

)2

T

α (89)
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= min
{ji∈Pi}d+1

i=1

min
V :V T =V −1

min

{
d+1∑
i=1

ηi
(
vTk δji

)2}d
k=1

(90)

(d)
= min
{ji∈Pi}d+1

i=1

min
v1∈Rd:‖v1‖=1

(
d+1∑
i=1

ηi
(
vT1 δji

)2)
(91)

= min
{ji∈Pi}d+1

i=1

min
v1∈Rd:‖v1‖=1

(
d+1∑
i=1

ηiv
T
1 δjiδ

T
jiv1

)
(92)

= min
{ji∈Pi}d+1

i=1

min
v1∈Rd:‖v1‖=1

(
vT1

(
d+1∑
i=1

ηiδjiδ
T
ji

)
v1

)
(93)

(e)
= min
{ji∈Pi}d+1

i=1

λmin

(
d+1∑
i=1

ηiδjiδ
T
ji

)
(94)

≥ min
{ji∈Pi}d+1

i=1

ηminλmin

(
d+1∑
i=1

δjiδ
T
ji

)
(95)

≥ ηmin · min
1≤p<q≤m

‖δpq‖2 , (96)

where (a) follows from 83, (b) follows since
∑d

k=1 α(k) = ‖H‖2F = 1 implies that α ∈ ∆d, in (c) {vk}k∈[d] are

the columns of V , and (d) is due to V T and Λ being decided up to row permutations, so we can always choose

them such that the maximal index k ∈ [d] will be k = 1. At (d), we note that due to the partition being proper,

there is no v1 for which vT1 δji = 0 for all i ∈ [d + 1], so the bound is positive. Otherwise, one could choose

representatives {ji ∈ Pi}d+1
i=1 such that they are all perpendicular to some singular vector and the bound will be

zero. Finally, (e) is due to the Rayleigh quotient bounds R(M,x) = xTMx/‖x‖2 ∈ [λmin(M), λmax(M)] for all

x ∈ Rd.

The next lemma establishes the convexity and Lipschitz constant of the loss function for the additive noise

channel model. The proof of this lemma will use the following claim.

Claim 14. Let a, b ∈ Rd then ∥∥dsym
(
abT
)∥∥2

F
≤ 2‖a‖2‖b‖2 + 2 〈a, b〉2 . (97)

Proof: Denote A , abT . Then, using the properties of the trace operation,

‖dsym (A)‖2F =
∥∥A+AT − diag (A)

∥∥2

F
(98)

= 〈A,A〉+
〈
A,AT

〉
+
〈
AT , A

〉
+
〈
AT , AT

〉
− 〈A,diag (A)〉 −

〈
AT , diag (A)

〉
+ 〈diag (A) , diag (A)〉 (99)

= 2 ‖A‖2F + 2
〈
A,AT

〉
+ ‖diag (A)‖2F − 2 〈A,diag (A)〉 (100)

= 2 ‖A‖2F + 2
〈
A,AT

〉
− ‖diag (A)‖2F (101)

≤ 2 ‖A‖2F + 2
〈
A,AT

〉
, (102)
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and substituting back we get ∥∥dsym
(
abT
)∥∥2

F
≤ 2‖a‖2‖b‖2 + 2 〈a, b〉2 . (103)

Lemma 15. S → max{0, 1− aTpqiSδpq} is convex and L-Lipschitz, w.r.t. the Frobenius norm, with

L , max
1≤p<q≤m

max
i∈[n]

√
4 |〈zi, δpq〉| ‖δpq‖2 + 2 〈zi, δpq〉2 + 2 ‖zi‖2 ‖δpq‖2 + ‖δpq‖4, (104)

where zi ∈ Rd is the noise sample that was transformed to apqi , (−1)I(i∈Dq) (yi − 1
2(xp + xq)) .

Proof: ˚̀hinge(S, p, q, i) is a pointwise maximization of convex (linear) functions of S therefore it is convex. We

prove that it is L-Lipschitz by bounding its sub-gradient [21, Lemma 14.7]. The Frobenius norm of any sub-gradient

V is bounded by

‖V ‖2F ≤
∥∥dsym

(
apqiδ

T
pq

)∥∥2

F
≤ 2‖apqi‖2‖δpq‖2 + 2 〈apqi, δpq〉2 , (105)

where the second inequality is due to Claim 14. We thus get that L =
√

2(〈apqi, δpq〉2 + ‖δpq‖2‖apqi‖2). We next

further simplify this expression. Note that,

〈apqi, δpq〉2 =

[
(−1)I(i∈Dq) (xp − xq)T

(
yi −

1

2
(xp + xq)

)]2

(106)

=

[
δpqyi −

1

2

(
‖xp‖2 − ‖xq‖2

)]2

(107)

= (δpqyi)
2 − δpqyi

(
‖xp‖2 − ‖xq‖2

)
+

1

4

(
‖xp‖4 − 2 ‖xp‖2 ‖xq‖2 + ‖xq‖4

)
(108)

= (〈yi, xp〉 − 〈yi, xq〉)2 − (〈yi, xp〉 − 〈yi, xq〉)
(
‖xp‖2 − ‖xq‖2

)
+

1

4

(
‖xp‖4 − 2 ‖xp‖2 ‖xq‖2 + ‖xq‖4

)
, (109)

and,

‖δpq‖2 = (xp − xq)T (xp − xq) = ‖xp‖2 − 2 〈xp, xq〉+ ‖xq‖2 , (110)

as well as

‖apqi‖2 =

(
yi −

1

2
(xp + xq)

)T (
yi −

1

2
(xp + xq)

)
(111)

= ‖yi‖2 − 〈yi, xp〉 − 〈yi, xq〉+
1

4
‖xp‖2 +

1

2
〈xp, xq〉+

1

4
‖xq‖2 . (112)

Using the above three identities (109), (110) and (112), we get after some tedious algebra that the upper bound on

‖V ‖2F in (105) is

〈apqi, δpq〉2 + ‖δpq‖2 ‖apqi‖2 = (〈yi, xp〉 − 〈yi, xq〉)2 + ‖yi‖2 〈xp − xq, xp − xq〉

+ 2 〈yi, xp〉
(
〈xp, xq〉 − ‖xp‖2

)
+ 2 〈yi, xq〉

(
〈xp, xq〉 − ‖xq‖2

)
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+
1

2
‖xp‖4 − 〈xp, xq〉2 +

1

2
‖xq‖4 . (113)

Notice that the above expression is symmetric in switching the roles of p and q. Therefore, we can continue with

yi = xp + zi and the result for yi = xq + zi will be immediate by switching p ←→ q. After some more algebra,

we get that for yi = xp + zi

〈apqi, δpq〉2 + ‖δpq‖2 ‖apqi‖2 = 2 〈zi, δpq〉 ‖δpq‖2 + 〈zi, δpq〉2 + ‖zi‖2 ‖δpq‖2 +
1

2
‖δpq‖4 . (114)

Therefore,

yi = xp + zi ⇒ ‖V ‖ ≤
√

4 〈zi, δpq〉 ‖δpq‖2 + 2 〈zi, δpq〉2 + 2 ‖zi‖2 ‖δpq‖2 + ‖δpq‖4, (115)

and

yi = xq + zi ⇒ ‖V ‖ ≤
√
−4 〈zi, δpq〉 ‖δpq‖2 + 2 〈zi, δpq〉2 + 2 ‖zi‖2 ‖δpq‖2 + ‖δpq‖4. (116)

We thus conclude that

L ≤
√

4 |〈zi, δpq〉| ‖δpq‖2 + 2 〈zi, δpq〉2 + 2 ‖zi‖2 ‖δpq‖2 + ‖δpq‖4, (117)

and this bound completes the proof.

Now we are ready to prove Theorem 5 using the above Lemmas.

Proof of Th. 5: We begin by applying [21, Cor. 13.6], where we replace the 2λ-strong-convexity of the Tikhonov

regularization with the 2λγ-strong-convexity of the regularization function from Lemma 13. Additionally, we take

the Lipschitzness constant from Lemma 15. Then, we get from [21, Cor. 13.6] that the RLM problem (19) is

on-average-replace-one-stable with rate 2L2/(λγn) and this implies the expected generalization bound

ED∼µ

[
L̊hinge
µ (A (D))− L̊hinge

D (A (D))
]

≤ ED∼µ

[
max1≤p<q≤m maxi∈[n] 8 |〈Zi, δpq〉| ‖δpq‖2 + 4 〈Zi, δpq〉2 + 4 ‖Zi‖2 ‖δpq‖2 + 2 ‖δpq‖4

λnηmin min1≤p<q≤m ‖δpq‖2

]
(118)

≤ ED∼µ

[
32r3

x maxi∈[n] ‖Zi‖+ 16r2
x maxi∈[n] ‖Zi‖2 + 8r4

x

λnηmin min1≤p<q≤m ‖δpq‖2

]
, (119)

where the last inequality is by Cauchy-Schwartz. Now, we use the sub-Gaussian assumption in order to bound this

expected value. Denote the event where all {Zi}i∈[n] are bounded by
√

2σ2
Z log

(
2n
δ

)
, for δ > 0, i.e.,

E =

n⋂
i=1

{
‖Zi‖ ≤

√
2σ2

Z log

(
2n

δ

)}
. (120)

Now, since {Zi}i∈[n] are i.i.d. sub-Gaussian random variables with variance proxy σ2
Z , then under the sub-Gaussian
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assumption and using the union bound,

P (Ec) = P

(
n⋃
i=1

{
‖Zi‖ ≥

√
2σ2

Z log

(
2n

δ

)})
≤ 2n exp

(
−

2σ2
Z log

(
2n
δ

)
2σ2

Z

)
= δ. (121)

By conditioning the expectation on this event, we get

ED∼µ

[
32r3

x maxi∈[n] ‖Zi‖+ 16r2
x maxi∈[n] ‖Zi‖2 + 8r4

x

λnηmin min1≤p<q≤m ‖δpq‖2

]

= ED∼µ

[
32r3

x maxi∈[n] ‖Zi‖+ 16r2
x maxi∈[n] ‖Zi‖2 + 8r4

x

λnηmin min1≤p<q≤m ‖δpq‖2
(I (E) + I (Ec))

]
(122)

= ED∼µ

[
32r3

x maxi∈[n] ‖Zi‖+ 16r2
x maxi∈[n] ‖Zi‖2 + 8r4

x

λnηmin min1≤p<q≤m ‖δpq‖2
I (E)

]

+ ED∼µ

[
32r3

x maxi∈[n] ‖Zi‖+ 16r2
x maxi∈[n] ‖Zi‖2 + 8r4

x

λnηmin min1≤p<q≤m ‖δpq‖2
I (Ec)

]
. (123)

Next we will bound each term.

The first term is bounded as follows

ED∼µ

[
32r3

x maxi∈[n] ‖Zi‖+ 16r2
x maxi∈[n] ‖Zi‖2 + 8r4

x

λnηmin min1≤p<q≤m ‖δpq‖2
I (E)

]

= P (E)ED∼µ

[
32r3

x maxi∈[n] ‖Zi‖+ 16r2
x maxi∈[n] ‖Zi‖2 + 8r4

x

λnηmin min1≤p<q≤m ‖δpq‖2

∣∣∣∣∣ E
]

(124)

≤ ED∼µ

[
32r3

x maxi∈[n] ‖Zi‖+ 16r2
x maxi∈[n] ‖Zi‖2 + 8r4

x

λnηmin min1≤p<q≤m ‖δpq‖2

∣∣∣∣∣ E
]

(125)

≤
32r3

x

√
2σ2

Z log
(

2n
δ

)
+ 32r2

xσ
2
Z log

(
2n
δ

)
+ 8r4

x

λnηmin min1≤p<q≤m ‖δpq‖2
(126)

≤
log
(

2n
δ

)√(
32r3

x

√
2σ2

Z + 32r2
xσ

2
Z + 8r4

x

)2

λnηmin min1≤p<q≤m ‖δpq‖2
(127)

(a)

≤
log
(

2n
δ

)√
3
(
2048r6

xσ
2
Z + 1024r4

xσ
4
Z + 64r8

x

)
λnηmin min1≤p<q≤m ‖δpq‖2

, (128)

where (a) is due to (a+ b+ c)q = 3q
(

1
3a+ 1

3b+ 1
3c
)q ≤ 3q

(
1
3a

q + 1
3b
q + 1

3c
q
)

= 3q−1 (aq + bq + cq) .

The second term is bounded by

ED∼µ

[
32r3

x maxi∈[n] ‖Zi‖+ 16r2
x maxi∈[n] ‖Zi‖2 + 8r4

x

λnηmin min1≤p<q≤m ‖δpq‖2
I (Ec)

]
(a)

≤

√√√√ED∼µ

[
32r3

x maxi∈[n] ‖Zi‖+ 16r2
x maxi∈[n] ‖Zi‖2 + 8r4

x

λnηmin min1≤p<q≤m ‖δpq‖2

]2

ED∼µ [I2 (Ec)] (129)

=

√
P (Ec)

λnηmin min1≤p<q≤m ‖δpq‖2

√
ED∼µ

[
32r3

x max
i∈[n]
‖Zi‖+ 16r2

x max
i∈[n]
‖Zi‖2 + 8r4

x

]2

(130)
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(b)

≤ 1

λnηmin min1≤p<q≤m ‖δpq‖2

√
3δED∼µ

[
1024r6

x max
i∈[n]
‖Zi‖2 + 256r4

x max
i∈[n]
‖Zi‖4 + 64r8

x

]
(131)

≤ 1

λnηmin min1≤p<q≤m ‖δpq‖2

√√√√√3δED∼µ

1024r6
x

∑
i∈[n]

‖Zi‖2 + 256r4
x

∑
i∈[n]

‖Zi‖4 + 64r8
x

 (132)

(c)

≤ 1

λnηmin min1≤p<q≤m ‖δpq‖2
√

3δ
(
8192r6

xnσ
2
Z + 65536r4

xnσ
4
Z + 64r8

x

)
(133)

≤ 1

λnηmin min1≤p<q≤m ‖δpq‖2
√

3δn
(
8192r6

xσ
2
Z + 65536r4

xσ
4
Z + 64r8

x

)
, (134)

where (a) follows from the Cauchy-Schwartz inequality, (b) follows again from (a+ b+ c)q ≤ 3q−1(aq + bq + cq),

and (c) follows from standard bounds on the absolute moments of sub-Gaussian random variables (e.g., [55, Lemma

1.4]). Taking δ = 2/n, we get

ED∼µ

[
L̊hinge
µ (A (D))− L̊hinge

D (A (D))
]
≤ log (n)

n
·

32r2
x

√
6
(
128r2

xσ
2
Z + 1024σ4

Z + r4
x

)
ληmin min1≤p<q≤m ‖δpq‖2

. (135)

The above bound is on the expected hinge-type loss, next, we bound the expected error probability by this loss

pµ (A (D)) =
1

m

m∑
j=1

Eµ
[
I
{

min
j′∈[m]\{j}

‖xj′ − Y ‖2S < ‖xj − Y ‖
2
S

} ∣∣∣∣ Y = xj + Z

]
(136)

=
1

m

m∑
j=1

Eµ
[
I
{

min
j′∈[m]\{j}

2Y TSxj − 2Y TSxj′ + xTj′Sxj′ − xTj Sxj < 0

} ∣∣∣∣ Y = xj + Z

]
(137)

=
1

m

m∑
j=1

Eµ

[
I

{
min

j′∈[m]\{j}

(
Y − 1

2
(xj + xj′)

)T
Sδjj′ < 0

} ∣∣∣∣∣ Y = xj + Z

]
(138)

≤ 1

m

m∑
j=1

Eµ

 ∑
j′∈[m]\{j}

max

{
0, 1−

(
Y − 1

2
(xj + xj′)

)T
Sδjj′

} ∣∣∣∣∣∣ Y = xj + Z

 (139)

≤ m− 1

m

m∑
j=1

Eµ

 1

m− 1

∑
j′∈[m]\{j}

max

{
0, 1−

(
Y − 1

2
(xj + xj′)

)T
Sδjj′

} ∣∣∣∣∣∣ Y = xj + Z


(140)

= (m− 1) L̊hinge
µ (A (D)) . (141)

Therefore,

ED∼µ
[
pµ (A (D))

]
≤ (m− 1)ED∼µ

[
L̊hinge
D (A (D))

]
+

(m− 1) log (n)

n
·

32r2
x

√
6
(
128r2

xσ
2
Z + 1024σ4

Z + r4
x

)
ληmin min1≤p<q≤m ‖δpq‖2

. (142)

Now, following the proof of [21, Cor. 13.9], for any S ∈ SB ,

ED∼µ

[
L̊hinge
D (A (D))

]
≤ ED∼µ

[
L̊hinge
D (A (D)) + λ

d+1∑
i=1

ηi max
j∈Pi

‖A (D) δj‖2
]

(143)
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≤ ED∼µ

[
L̊hinge
D (S) + λ

d+1∑
i=1

ηi max
j∈Pi

‖Sδj‖2
]

(144)

≤ L̊hinge
µ (S) + λB2. (145)

With that and the upper bound on the expected error probability by hinge (141), we conclude that

ED∼µ
[
pµ (A (D))

]
≤ (m− 1) min

S∈SB
L̊hinge
µ (S)+(m− 1)λB2+

(m− 1) log (n)

n
·
32r2

x

√
6
(
128r2

xσ
2
Z + 1024σ4

Z + r4
x

)
ληmin min1≤p<q≤m ‖δpq‖2

.

(146)

Optimizing this bound w.r.t. the choice of λ yields

λ =

√√√√32r2
x log (n)

√
6
(
128r2

xσ
2
Z + 1024σ4

Z + r4
x

)
B2nηmin min1≤p<q≤m ‖δpq‖2

, (147)

and the bound

ED∼µ
[
pµ (A (D))

]
≤ (m− 1) min

S∈SB
L̊hinge
µ (S) + (m− 1)B

√√√√128r2
x log (n)

√
6
(
128r2

xσ
2
Z + 1024σ4

Z + r4
x

)
nηmin min1≤p<q≤m ‖δpq‖2

.

(148)

B. Proof of Theorem 6

Similarly to the proof of Theorem 5, the proof will use the strong convexity of the regularization function and

the convexity and Lipschitzness of the loss function. The following lemma establishes the strong convexity constant

of the regularization function for the non-linear channel model.

Lemma 16. Assume that Span{δpq}1≤p≤q≤m = Rd, and let {Pi}i∈[d+1] be a proper partition. Then, g(H) ,∑d+1
i=1 ηi[maxj∈Pi

‖Hδj‖2 + maxj′∈Pi
‖Kδj′‖2] is 2γ-strongly convex w.r.t. the Frobenius norm, where

γ , min

[
min
H∈H

d+1∑
i=1

ηi ·min
j∈Pi

‖Hδj‖2

‖H‖2F
, min
K∈K

d+1∑
i=1

ηi ·min
j∈Pi

‖Kδj‖2

‖K‖2F

]
(149)

and the lower bound

γ = min
{ji∈Pi}d+1

i=1

λmin

(
d+1∑
i=1

ηiδjiδ
T
ji

)
≥ ηmin min

1≤p<q≤m
‖δpq‖2 (150)

holds with ηmin , mini∈[d+1]{ηi}.

Lemma 16 follows directly from Lemma 13 and the following claim:

Claim 17. If f(H) is βf -strongly convex and g(K) is βg-strongly convex. Then, h(H,K) , f(H) + g(K) is

min{βf , βg}-strongly convex.
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Proof: We validate this property directly from the definition of strong convexity (e.g., [21, Definition 13.4]),

h (α (H1,K1) + (1− α) (H2,K2)) = f (αH1 + (1− α)H2) + g (αK1 + (1− α)K2) (151)

≤ αf (H1) + (1− α) f (H2)−
βf
2
α (1− α) ‖H1 −H2‖2

+ αg (K1) + (1− α) g (K2)− βg
2
α (1− α) ‖K1 −K2‖2 (152)

= αh (H1,K1) + (1− α)h (H2,K2)

−
βf
2
α (1− α) ‖H1 −H2‖2 −

βg
2
α (1− α) ‖K1 −K2‖2 (153)

≤ αh (H1,K1) + (1− α)h (H2,K2)

− 1

2
α (1− α) min {βf , βg}

(
‖H1 −H2‖2 + ‖K1 −K2‖2

)
(154)

= αh (H1,K1) + (1− α)h (H2,K2)

− 1

2
α (1− α) min {βf , βg} ‖(H1,K1)− (H2,K2)‖2 . (155)

The next lemma establishes the convexity and Lipschitz constant of the loss function for the non-linear Gaussian

noise channel model.

Lemma 18. (H,K)→ max{0, 1−[yTi Hδjij′− 1
2(xji +xj′)

TKδjij′ ]} is convex and L-Lipschitz, w.r.t. the Frobenius

norm, with

L , max
i∈[n]

√
5r2
x + 2rx (Rx + ‖wi‖) , (156)

where wi ∈ Rd is the noise sample that was added to f(xji), to create yi, rx , maxx∈C ‖x‖ and Rx ,

maxx∈C ‖f(x)‖.

The proof requires the following claim:

Claim 19. If g(H,K) is LH -Lipschitz w.r.t H and LK-Lipschitz w.r.t K then it is L-Lipschitz w.r.t. (H,K) for

L , LH + LK .

Proof: We prove by definition

|g (H1,K1)− g (H2,K2)| = |g (H1,K1)− g (H2,K1) + g (H2,K1)− g (H2,K2)| (157)

≤ |g (H1,K1)− g (H2,K1)|+ |g (H2,K1)− g (H2,K2)| (158)

≤ LH ‖H1 −H2‖+ LK ‖K1 −K2‖ (159)

≤ LH ‖(H1,K1)− (H2,K2)‖+ LK ‖(H1,K1)− (H2,K2)‖ (160)

≤ L ‖(H1,K1)− (H2,K2)‖ . (161)
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The proof of Lemma 18 is then as follows:

Proof: We prove Lipschitzness by bounding the Frobenius norm of the sub-gradient ( [21, Lemma 14.7]). If

V ∈ ∂Hg then

‖V ‖F ≤
∥∥∥∥ ∂

∂H
1−

[
yTi Hδjij′ −

1

2
(xji + xj′)

T Kδjij′

]∥∥∥∥
F

(162)

=

∥∥∥∥ ∂

∂H
yTi Hδjij′

∥∥∥∥
F

(163)

=
∥∥yiδTjij′∥∥F (164)

=

√
Tr
(
δjij′y

T
i yiδ

T
jij′

)
(165)

= ‖yi‖ ‖δjij′‖ (166)

= ‖f(xji) + wi‖ ‖δjij′‖ (167)

≤ 2rx (‖f(xji)‖+ ‖wi‖) (168)

≤ 2rx (Rx + ‖wi‖) . (169)

If V ∈ ∂Kg then, using Claim 14,

‖V ‖2F ≤
∥∥∥∥dsym

(
1

2
(xji + xj′) δ

T
jij′

)∥∥∥∥2

F

(170)

≤ 1

4

(
2 ‖xji + xj′‖2 ‖δjij′‖

2 + 2 〈xji + xj′ , δjij′〉
2
)

(171)

=
1

2
‖xji + xj′‖2 ‖δjij′‖

2 +
1

2

(
‖xji‖

2 − ‖xj′‖2
)2

(172)

≤ 1

2
· 4r2

x · 2r2
x +

1

2
· 2r4

x (173)

= 5r4
x. (174)

Now we are ready to prove Theorem 6 using the above Lemmas.

Proof of Th. 6: The proof is similar to the proof of Theorem 5, with only a few technical differences. We begin

by applying [21, Cor. 13.6], where we replace the 2λ-strong-convexity of the Tikhonov regularization with the 2λγ-

strong-convexity of the regularization function from Lemma 16. Additionally, we take the Lipschitzness constant

from Lemma 18. Then, we get from [21, Cor. 13.6] that the RLM problem (19) is on-average-replace-one-stable

with rate 2L2/(λγn), and the following generalization bound holds

ED∼µ

[
L̊hinge
µ (A (D))− L̊hinge

D (A (D))
]
≤ ED∼µ

[
2
[√

5r2
x + 2rx

(
Rx + maxi∈[n] ‖Wi‖

)]2
λnηmin min1≤p<q≤m ‖δpq‖2

]
. (175)

Now, we use the sub-Gaussian assumption in the same way as in the proof Theorem 5 to get the following bound:

ED∼µ

[
L̊hinge
µ (A (D))− L̊hinge

D (A (D))
]
≤ log (n)

n
·

24
√

25r8
x + 16r4

xR
4
x + 64r4

xσ
4
W

ληmin min1≤p<q≤m ‖δpq‖2
. (176)
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The above bound is on the expected hinge-type loss, next, we bound the expected error probability by this loss

pµ (A (D))

=
1

m

m∑
j=1

Eµ
[
I
{

min
j′∈[m]\{j}

‖Y ‖2 − 2Y THxj′ + xTj′Kxj′ < ‖Y ‖
2 − 2Y THxj + xTj Kxj

} ∣∣∣∣ Y = f (xj) +W

]
(177)

=
1

m

m∑
j=1

Eµ
[
I
{

min
j′∈[m]\{j}

Y THδjj′ −
1

2
(xj + xj′)

T Kδjj′ < 0

} ∣∣∣∣ Y = f (xj) +W

]
(178)

≤ 1

m

m∑
j=1

Eµ

 ∑
j′∈[m]\{j}

max

{
0, 1−

[
Y THδjj′ −

1

2
(xj + xj′)

T Kδjj′

]} ∣∣∣∣∣∣ Y = f (xj) +W

 (179)

= (m− 1)
1

m

m∑
j=1

Eµ

 1

m− 1

∑
j′∈[m]\{j}

max

{
0, 1−

[
Y THδjj′ −

1

2
(xj + xj′)

T Kδjj′

]} ∣∣∣∣∣∣ Y = f (xj) +W


(180)

= (m− 1) L̊hinge
µ (A (D)) . (181)

Therefore,

ED∼µ
[
pµ (A (D))

]
≤ (m− 1)ED∼µ

[
L̊hinge
D (A (D))

]
+

(m− 1) log (n)

n
·
24
√

25r8
x + 16r4

xR
4
x + 64r4

xσ
4
W

ληmin min1≤p<q≤m ‖δpq‖2
. (182)

The optimal choice of λ then follows as in the proof of Theorem 5.

C. Proof of Theorem 7

We will need several lemmas. The first lemma characterizes the continuity of the surrogate loss function w.r.t.

(H,K).

Lemma 20. Suppose that H, H̃ ∈ H such that ‖H − H̃‖op ≤ γH . Then,∣∣∣̊`hinge (H, i)− ˚̀hinge
(
H̃, i

)∣∣∣ ≤ 2rx (Rx + rz) γH + r2
xγ

2
H . (183)

Proof: Denote f(t) = max{0, 1− t}, which is a 1-Lipschitz function. Then,∣∣∣̊`hinge (H, i, j′)− ˚̀hinge
(
H̃, i, j′

)∣∣∣
≤
∣∣∣∣(yTi Hδjij′ − 1

2
(xji + xj′)

T HTHδjij′

)
−
(
yTi H̃δjij′ −

1

2
(xji + xj′)

T H̃T H̃δjij′

)∣∣∣∣ (184)

=

∣∣∣∣(yTi Hδjij′ − 1

2
xTj H

THxj +
1

2
xTj′H

THxj′

)
−
(
yTi H̃δjij′ −

1

2
xTj H̃

T H̃xj +
1

2
xTj′H̃

T H̃xj′

)∣∣∣∣ (185)

=

∣∣∣∣yTi (H − H̃) δjij′ − 1

2
xTj

(
HTH − H̃T H̃

)
xj +

1

2
xTj′
(
HTH − H̃T H̃

)
xj′

∣∣∣∣ (186)

≤ (Rx + rz) γH · 2rx + rxγ
2
Hrx (187)
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= 2rx (Rx + rz) γH + r2
xγ

2
H , (188)

and by the triangle inequality

∣∣∣̊`hinge (H, i)− ˚̀hinge
(
H̃, i

)∣∣∣ =

∣∣∣∣∣∣ 1

m− 1

∑
j′∈[m]\{ji}

˚̀hinge (H, i, j′)− ˚̀hinge
(
H̃, i, j′

)∣∣∣∣∣∣ (189)

≤ max
j′∈[m]\{ji}

∣∣∣̊`hinge (H, i, j′)− ˚̀hinge
(
H̃, i, j′

)∣∣∣ . (190)

We denote by N(H, ‖ · ‖op, γH) the covering number (e.g. [56, Definition 4.2.2]) of H, for the operator norm

and covering radius γH .

Lemma 21. It holds that

N
(
H, ‖·‖op , γH

)
≤
(

12dmrH
γH

)d2y (12dmrH
γH

)d2x (4rH
γH

)dm
≤
(

12dmrH
γH

)d2x+d2y+dm

. (191)

Proof: Denote the SVD of H = UΣV T and dm = min{dy, dx}. Then,∥∥∥H − H̃∥∥∥
op

=
∥∥∥UΣV T − Ũ Σ̃Ṽ T

∥∥∥
op

(192)

≤
∥∥∥UΣV T − U Σ̃V T

∥∥∥
op

+
∥∥∥U Σ̃V T − Ũ Σ̃Ṽ T

∥∥∥
op
, (193)

where the inequality is the triangle inequality. Let us bound the two terms. The first is bounded as follows:∥∥∥UΣV T − U Σ̃V T
∥∥∥

op
=
∥∥∥U (Σ− Σ̃

)
V T
∥∥∥

op
≤ ‖U‖op

∥∥∥Σ− Σ̃
∥∥∥

op

∥∥V T
∥∥

op

(a)
=
∥∥∥Σ− Σ̃

∥∥∥
op

= max
i∈[d]
|σi − σ̃i| ,

(194)

where (a) is due to U and V being orthonormal matrices. The second is bounded by

∥∥∥U Σ̃V T − Ũ Σ̃Ṽ T
∥∥∥

op
=

∥∥∥∥∥
dm∑
i=1

σ̃i
(
uiv

T
i − ũiṽTi

)∥∥∥∥∥
op

≤
dm∑
i=1

σ̃i
∥∥uivTi − ũiṽTi ∥∥op ≤

dm∑
i=1

σ̃i (‖vi − ṽi‖+ ‖ui − ũi‖) ,

(195)

since for any w ∈ Sd−1

∣∣wT (uivTi − ũiṽTi )w∣∣ =
∣∣vTi wwTui − ṽTi wwT ũi∣∣ (196)

=
∣∣vTi wwTui − ṽTi wwTui + ṽTi ww

Tui − ṽTi wwT ũi
∣∣ (197)

≤
∣∣(vTi − ṽTi )wwTui∣∣+

∣∣ṽTi wwT (ui − ũi)
∣∣ (198)

≤ ‖vi − ṽi‖
∥∥wwT∥∥ ‖ui‖+ ‖ṽi‖

∥∥wwT∥∥ ‖ui − ũi‖ (199)

≤ ‖vi − ṽi‖+ ‖ui − ũi‖ . (200)
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Plugging this back into (193), we get that∥∥∥H − H̃∥∥∥
op
≤ max

i∈[dm]
|σi − σ̃i|+ dm max

i∈[dm]
σ̃i (‖vi − ṽi‖+ ‖ui − ũi‖) . (201)

Let εu = γH
4dmrH

and let U be an εu-net in the Euclidean distance for the unit sphere Sdy−1 whose size is less than

|U| ≤ ( 3
εu

)dy (the existence of such net is assured from [56, Cor. 4.2.13]). Let εv = γH
4dmrH

and let V be an εv-net

in the Euclidean distance for the unit sphere Sdx−1 whose size is less than |V| ≤ ( 3
εv

)dx , let ε0 = γH
2 , and let L be

a proper ε0-net in the `1 norm for [−rH , rH ] whose size is |L| ≤ 2rH
ε0

. Then, the set

{
UΣV T : UTU = Idy , V

TV = Idx , U =
[
u1, . . . , udy

]
,Σ, V = [v1, . . . , vdx ] , ui ∈ U , vi ∈ V, σi ∈ L

}
(202)

is a γH -cover of H whose size is (|U| · |V| · |L|)d.

We denote the empirical Rademacher complexity of a set Ln ⊂ Rn by

Rad (Ln) ,
1

n
E

[
sup
ln∈Ln

n∑
i=1

Rili

]
, (203)

where ln , (l1, . . . ln) ∈ Rn and Rn , (R1, . . . Rn) ∈ {±1}n are Rademacher random variables (i.e., Ri ∼

Uniform{−1, 1}, i.i.d.). We are now ready to prove Theorem 7.

Proof: Let D be given, and consider the loss class

LD ,
{

˚̀hinge (H,D) ∈ Rn+ : H ∈ H
}

(204)

where

˚̀hinge (H,D) =
(
˚̀hinge (H, y1) , . . . ,˚̀hinge (H, yn)

)
. (205)

Let H̃ be a γH -net of H in the operator norm whose size is less than
(

12dmrH
γH

)d2x+d2y+dm
according to Lemma 21.

Then, by Lemma 20, the set

L̃D ,
{

˚̀hinge (H,D) ∈ Rn+ : H ∈ H̃
}

(206)

is a γ-cover of LD with

γ = 2rx (Rx + rz) γH + r2
xγ

2
H . (207)

The logarithm of the cover’s size is bounded by

(
d2
x + d2

y + dm
)

log

(
12dmrH
γH

)
, a (log b− log γH) . (208)

By Dudley’s entropy integral (e.g., [57, Th. 12.4]),

Rad (LD) ≤ inf
α≥0

{
4α+

12√
n

∫ 1

α

√
logN2 (γH ,LD)dγH

}
(209)

= inf
α≥0

{
4α+

12√
n

∫ 1

α

√
a (log b− log γH)dγH

}
(210)
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= inf
α≥0

{
4α+ 12

√
a log b

n

∫ 1

α

√
1− log γH

log b
dγH

}
(211)

(a)

≤ inf
α≥0

{
4α+ 12

√
a log b

n

∫ 1

α
1− 1

2

log γH
log b

dγH

}
(212)

= inf
α≥0

{
4α+ 12

√
a log b

n

[
(1− α) +

1

2 log b
(α (logα− 1)− 1 (log 1− 1))

]}
(213)

= inf
α≥0

{
4α+ 12

√
a log b

n

[
1− α+

1

2 log b
(α logα− α+ 1)

]}
(214)

= 12

√
a log b

n
+ 6

√
a

n log b
+ inf
α≥0

{
α

(
4− 12

√
a log b

n
+ 6

√
a

n log b
log a− 6

√
a

n log b

)}
(215)

(b)
= 12

√
a log b

n
+ 6

√
a

n log b

+ exp

(
2 log b− 2

3

√
n log b

a

)(
4− 12

√
a log b

n
+ 6

√
a

n log b

(
2 log b− 2

3

√
n log b

a

)
− 6

√
a

n log b

)
(216)

= 12

√
a log b

n
+ 6

√
a

n log b
− 6

√
a

n log b
exp

(
2 log b− 2

3

√
n log b

a

)
(217)

= 6

√
a

n log b

[
2 log b+ 1− exp

(
2 log b− 2

3

√
n log b

a

)]
(218)

= 6

√
d2
x + d2

y + dm

n log (12dmrH)

[
2 log (12dmrH) + 1− exp

(
2 log (12dmrH)− 2

3

√
n log (12dmrH)

d2
x + d2

y + dm

)]
,

(219)

where (a) is due to
√

1− t ≤ 1− t/2 and (b) is due to

d

dx
(x (k1 + k2 log x)) = k1 + k2 log x+ k2 = 0 ⇐⇒ log x = −k1 + k2

k2
⇐⇒ x = exp

(
−k1 + k2

k2

)
. (220)

It is well-established that Rademacher complexity uniformly bounds the deviation of empirical averages from the

statistical average [58]. We use the version from [17, Prop. 8] with the above empirical Rademacher complexity

bound, and note that ∣∣∣̊`hinge (H, i, j′)∣∣∣ ≤ ∣∣∣∣yTi Hδjij′ − 1

2
(xji + xj′)

T HTHδjij′

∣∣∣∣ (221)

≤ (Rx + rz) rH · 2rx + r2
xr

2
H , (222)

to complete the proof.



43

APPENDIX C

PROOFS FOR SECTION V

In order to prove Theorem 9 we will need several lemmas. We begin by bounding the Frobenius norm of each

of the sub-gradients of the approximate objectives. To this end, we begin with the following Lemma.

Lemma 22. Consider the update rule St+1 = Π(St − 1
λt∇t), and a sub-gradient of the form

∇t = λ

d+1∑
k=1

ηk · dsym
(

2Stδj(t)k
δT
j
(t)
k

)
− Vt, (223)

where ‖Vt‖F ≤ B for all t ∈ N+ and Π is such that ‖Π(S)‖F ≤ ‖S‖F for all S ∈ S. Then,

‖∇t‖F ≤ 32Br2
x

(
ln (t) + e224r4x

)
. (224)

Proof: First note that

‖St+1‖F =

∥∥∥∥ΠS+

(
St −

1

λt
∇t
)∥∥∥∥

F

≤
∥∥∥∥St − 1

λt
∇t
∥∥∥∥
F

. (225)

Now, denoting for readability

Dt ,
d+1∑
k=1

ηkδj(t)k
δT
j
(t)
k

, (226)

it holds that

St −
1

λt
∇t = St −

1

t
dsym (2StDt) +

1

λt
Vt. (227)

Consequently, using the triangle inequality,

‖St+1‖F ≤
∥∥∥∥St − 2

t
StDt −

2

t
DtSt −

2

t
diag (StDt)

∥∥∥∥
F

+
1

λt
‖Vt‖F . (228)

We bound the first term by∥∥∥∥St − 1

t
dsym (2StDt)

∥∥∥∥
F

=

√√√√Tr

[(
St −

2

t
StDt −

2

t
DtSt −

2

t
diag (StDt)

)T (
St −

2

t
StDt −

2

t
DtSt −

2

t
diag (StDt)

)]
(229)

=

√√√√√ ‖St‖2F −
8
t Tr (StStDt) + 8

t2 Tr (StDtStDt) + 8
t2 ‖StDt‖2F

−2
t Tr (St diag (StDt)) + 8

t2 Tr (StDt diag (StDt)) + 4
t2 ‖diag (StDt)‖2F

(230)

=

√√√√√ ‖St‖2F −
8
t Tr (StStDt) + 8

t2 Tr (StDtStDt) + 8
t2 ‖StDt‖2F

−2
t Tr (diag (St) diag (StDt)) + 12

t2 ‖diag (StDt)‖2F
(231)

(a)

≤
√
‖St‖2F +

16

t2
‖St‖2F ‖Dt‖2F +

12

t2
‖diag (StDt)‖2F (232)
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≤
√
‖St‖2F +

16

t2
‖St‖2F ‖Dt‖2F +

12

t2
‖StDt‖2F (233)

≤ ‖St‖F

√√√√1 +
28

t2

d+1∑
l=1

d+1∑
r=1

ηlηr

∥∥∥δj(t)l

∥∥∥2 ∥∥∥δj(t)r

∥∥∥2
(234)

(b)

≤ ‖St‖F

√√√√1 +
448r4

x

t2

d+1∑
l=1

d+1∑
r=1

ηlηr (235)

= ‖St‖F

√
1 +

448r4
x

t2
, (236)

where (a) follows from Tr(StStDt) =
∑d+1

k=1 ηk Tr(δT
j
(t)
k

StStδj(t)k
) ≥ 0, (b) follows from ‖δ‖ ≤ 2rx, and (c) follows

since
∑d+1

l=1 ηl = 1.

Therefore, we can bound recursively,

‖St+1‖F ≤
∥∥∥∥St − 1

t
dsym (2StDt)

∥∥∥∥
F

+
1

λt
‖Vt‖F (237)

≤ ‖St‖F

√
1 +

448r4
x

t2
+

1

λt
‖Vt‖F (238)

≤
(∥∥∥∥St−1 −

1

t− 1
dsym (2St−1Dt−1)

∥∥∥∥
F

+
1

λ (t− 1)
‖Vt−1‖F

)√
1 +

448r4
x

t2
+

1

λt
‖Vt‖F (239)

≤
t∑
i=1

1

λi
‖Vi‖F

t∏
j=i+1

√
1 +

448r4
x

j2
(240)

≤ B

λ

t∑
i=1

1

i

t∏
j=i+1

√
1 +

448r4
x

j2
. (241)

We bound the product by √√√√ t∏
j=i+1

1 +
448r4

x

j2
=

√√√√ t∏
j=i+1

((
1 +

448r4
x

j2

)j2)j−2

(242)

≤

√√√√ t∏
j=i+1

(e448r4x)
j−2

(243)

=

t∏
j=i+1

e
448r4x
2j2 (244)

= e
∑t

j=i+1

224r4x
j2 (245)

≤ e224r4x
∫ t

j=i+1
1

x2 dx (246)

= e224r4x( 1

i+1
− 1

t ), (247)

where the first inequality is due to 1 + x ≤ ex, and get

‖St+1‖F ≤
B

λ

t∑
i=1

1

i
e224r4x( 1

i+1
− 1

t ). (248)
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The sum is bounded as follows

t∑
i=1

1

i
e

224r4x
i+1

(a)

≤
t∑
i=1

1

i

[
1

i+ 1

(
e224r4x − 1

)
+ 1

]
(249)

= Ht +
(
e224r4x − 1

) t∑
i=1

1

i (i+ 1)
(250)

≤ Ht +
(
e224r4x − 1

) ∞∑
i=1

1

i2
(251)

≤ 2 ln (t) + 2
(
e224r4x − 1

)
(252)

≤ 2 ln (t) + 2e224r4x , (253)

where (a) is due to exp(x) ≤ x
x0

(exp(x0) − 1) + 1 for all x ∈ (0, x0) and where Ht ,
∑t

i=1
1
i is the harmonic

series. With this bound we conclude from (248) that

‖St+1‖F ≤
B

λ

(
2 ln (t) + 2e224r4x

)
e−

224r4x
t . (254)

Finally, we bound the sub-gradient by

‖∇t‖ ≤ ‖λ dsym (StDt)− Vt‖F (255)

≤ λ

∥∥∥∥∥dsym

(
d+1∑
k=1

ηkStδj(t)k
δT
j
(t)
k

)∥∥∥∥∥
F

+B (256)

≤ λ
d+1∑
k=1

ηk

∥∥∥dsym
(
Stδj(t)k

δT
j
(t)
k

)∥∥∥
F

+B (257)

(a)

≤ λ

d+1∑
k=1

2ηk

∥∥∥Stδj(t)k

∥∥∥∥∥∥δj(t)k

∥∥∥+B (258)

≤ 2λ · 4r2
x ·

B

λ

(
2 ln (t) + 2e224r4x

)
e−

224r4x
t +B (259)

≤ 16Br2
x

(
ln (t) + e224r4x

)
+B (260)

≤ 32Br2
x

(
ln (t) + e224r4x

)
, (261)

where (a) follows from Claim 14. This is the claimed bound.

Next, we use the above lemma to bound the sub-gradient of additive noise channel RLM (10).

Corollary 23. The Frobenius norm of the sub-gradient (27) is bounded by

‖∇t‖F ≤ G , 64r3
x

√
r2
x + 4rxrz + 3r2

z

(
ln (t) + e224r4x

)
. (262)

Proof: We identify Vt in the sub-gradient with

Vt ,
1

c

∑
i∈At

I
[
aTi Stδai

< 1
]

dsym
(
aiδ

T
ai

)
, (263)
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and bound its Frobenius norm by

‖Vt‖2F ≤ max
i∈At

2‖ai‖2‖δai
‖2 + 2 〈ai, δai

〉2 (264)

≤ 4 (2rxrz)
(
2r2
x

)
+ 2 (2rxrz)

2 + 2r2
z · 2r2

x + 4r4
x (265)

= 16r3
xrz + 12r2

xr
2
z + 4r4

x (266)

= 4r2
x

(
r2
x + 4rxrz + 3r2

z

)
, (267)

where the first inequality follows from Claim 14 and the second from (113). Note that for a symmetric matrix‖S‖F =√∑d
i=1 λ

2
i , therefore, the projection (28) satisfies for condition from Lemma (22). Using this Lemma concludes

the proof.

Now we turn to bound the Frobenius norm of the sub-gradient of (19). In order to do so, we will need to establish

some results first. The following is a well known result on the projection on convex sets in a Hilbert space (e.g.,

[59, Prop. 2.2.1] for a proof in the Euclidean space). We provide here a short proof for completeness.

Proposition 24. Consider a Hilbert space H and a closed convex set S. Let f ∈ H be given, and let f0 be its

projection on S that is

f0 = arg min
h∈S

‖f − h‖2. (268)

Let h ∈ S be arbitrary. Then, the angle between f − f0 and h− f0 is obtuse, that is

〈f − f0, h− f0〉 ≤ 0. (269)

Thus, the following Pythagorean identity holds

‖f − h‖2 ≥ ‖f − f0‖2 + ‖f0 − h‖2. (270)

Proof: By the definition of projection, for any α ∈ (0, 1] it holds that

0 ≤ ‖f − (1− α)f0 − αh‖2 − ‖f − f0‖2 (271)

= ‖f − f0 + α(f0 − h)‖2 − ‖f − f0‖2 (272)

= 2α〈f − f0, f0 − h〉+ α2‖f0 − h‖2. (273)

Dividing by α we get

〈f − f0, f0 − h〉+ α‖f0 − h‖2 ≥ 0 (274)

and taking α ↓ 0 implies the required claim. Arranging the terms of the Pythagorean identity, it is seen to be

equivalent to (269).

Next, we show that the solution set of the non-linear channel RLM, is indeed convex, and by this also prove

Claim 8.
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Claim 25. The set {(H,S) : HTH − S � 0} is convex.

Proof: Let (H1, S1), (H2, S2) ∈ {(H,S) : HTH − S � 0} and λ ∈ [0, 1]. Then, for any x ∈ Rdx it holds that

xT
(
HT

1 H1 − S1

)
x ≤ 0, (275)

and

xT
(
HT

2 H2 − S2

)
x ≤ 0. (276)

Then,

xT
[
(λH1 + (1− λ)H2)T (λH1 + (1− λ)H2)− (λS1 + (1− λ)S2)

]
x

= xT
[
λ2HT

1 H1 + λ (1− λ)HT
1 H2 + λ (1− λ)HT

2 H1 + (1− λ)2HT
2 H2

]
x

− λxTS1x− (1− λ)xTS2x (277)

= λxT
(
λHT

1 H1 − S1

)
x+ (1− λ)xT

(
(1− λ)HT

2 H2 − S2

)
x

+ λ (1− λ) (H1x)T (H2x) + λ (1− λ) (H2x)T (H1x) (278)

= λxT
(
HT

1 H1 − S1

)
x− λ (1− λ)xTHT

1 H1x

+ (1− λ)xT
(
HT

2 H2 − S2

)
x− λ (1− λ)xTHT

2 H2x

+ 2λ (1− λ)xTHT
1 H2x (279)

≤ 2λ (1− λ)xTHT
1 H2x− λ (1− λ)xTHT

1 H1x− λ (1− λ)xTHT
2 H2x (280)

= −λ (1− λ) ‖H1x−H2x‖22 (281)

≤ 0. (282)

Now we are ready to bound the sub-gradient with components (29) and (30).

Lemma 26. The Frobenius norm of the sub-gradient with components (29) and (30) is bounded by

‖∇t‖F = O (max {1, λ} · ln (t)) . (283)

Proof: First,

‖Ht+1‖2F + ‖Kt+1‖2F = ‖(Ht+1,Kt+1)‖2 (284)

=

∥∥∥∥ΠHTH�K

(
Ht −

1

λt
∇(1)
t ,Kt +

1

λt
∇(2)
t

)∥∥∥∥2

(285)

≤
∥∥∥∥(Ht −

1

λt
∇(1)
t ,Kt +

1

λt
∇(2)
t

)∥∥∥∥2

(286)

=

∥∥∥∥Ht −
1

λt
∇(1)
t

∥∥∥∥2

F

+

∥∥∥∥Kt +
1

λt
∇(2)
t

∥∥∥∥2

F

, (287)



48

where the first inequality is due to Prop. 24, when taking into account that the set {(H,S) : HTH − S � 0} is

convex, by Claim 25, and that the zero point is in the set. Now, denote for readability the following:

D
(i)
t ,

d+1∑
k=1

ηkδj(i)t,k
δT
j
(i)
t,k

, (288)

and

V
(1)
t =

1

|At|
∑
i∈At

1

m− 1

∑
j′∈[m]\{ji}

I
[
yTi Hδjij′ −

1

2
(xji + xj′)

T Kδjij′ < 1

]
yiδ

T
jij′ , (289)

as well as

V
(2)
t =

1

|At|
∑
i∈At

1

m− 1

∑
j′∈[m]\{ji}

I
[
yTi Htδjij′ −

1

2
(xji + xj′)

T Ktδjij′ < 1

]
dsym

(
1

2
(xji + xj′) δ

T
jij′

)
. (290)

With these notations the update rule is written as

Ht −
1

λt
∇(1)
t = Ht −

2

t
HtD

(1)
t +

1

λt
V

(1)
t , (291)

Kt −
1

λt
∇(2)
t = Kt −

1

t
dsym

(
2KtD

(2)
t

)
− 1

λt
V

(2)
t . (292)

Consequently, using the triangle inequality,

‖Ht+1‖2F + ‖Kt+1‖2F =

∥∥∥∥Ht −
2

t
HtD

(1)
t +

1

λt
V

(1)
t

∥∥∥∥2

F

+

∥∥∥∥Kt −
1

t
dsym

(
2KtD

(2)
t

)
− 1

λt
V

(2)
t

∥∥∥∥2

F

(293)

=

∥∥∥∥Ht −
2

t
HtD

(1)
t

∥∥∥∥2

F

+
2

λt

〈
Ht −

2

t
HtD

(1)
t , V

(1)
t

〉
+

1

λ2t2

∥∥∥V (1)
t

∥∥∥2

F
+

1

λ2t2

∥∥∥V (2)
t

∥∥∥2

F

+

∥∥∥∥Kt −
2

t
dsym

(
KtD

(2)
t

)∥∥∥∥2

F

− 2

λt

〈
Kt −

2

t
dsym

(
KtD

(2)
t

)
, V

(2)
t

〉
(294)

≤
∥∥∥∥Ht −

2

t
HtD

(1)
t

∥∥∥∥2

F

+

∥∥∥∥Kt −
2

t
dsym

(
KtD

(2)
t

)∥∥∥∥2

F

+
1

λ2t2

∥∥∥V (1)
t

∥∥∥2

F
+

1

λ2t2

∥∥∥V (2)
t

∥∥∥2

F
+

2

λt

(〈
Ht, V

(1)
t

〉
−
〈
Kt, V

(2)
t

〉)
− 4

λt2

(
‖Ht‖F

∥∥∥D(1)
t

∥∥∥
F

∥∥∥V (1)
t

∥∥∥
F
−
∥∥∥dsym

(
KtD

(2)
t

)∥∥∥
F

∥∥∥V (2)
t

∥∥∥
F

)
. (295)

Now, regarding the fifth term〈
Ht, V

(1)
t

〉
−
〈
Kt, V

(2)
t

〉
=

1

|At|
∑
i∈At

1

m− 1

∑
j′∈[m]\{ji}

I
[
yTi Hδjij′ −

1

2
(xji + xj′)

T Kδjij′ < 1

]

×
[〈
Ht, yiδ

T
jij′
〉
−
〈
Kt,

1

4

(
(xji + xj′) δ

T
jij′ + δjij′ (xji + xj′)

T
)〉]

(296)

=
1

|At|
∑
i∈At

1

m− 1

∑
j′∈[m]\{ji}

I
[
yTi Hδjij′ −

1

2
(xji + xj′)

T Kδjij′ < 1

]

×
[
yTi Htδjij′ −

1

2
(xji + xj′)

T Ktδjij′

]
(297)
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≤ 1. (298)

Plugging this back gives

‖Ht+1‖2F + ‖Kt+1‖2F ≤
∥∥∥∥Ht −

2

t
HtD

(1)
t

∥∥∥∥2

F

+
1

λ2t2

∥∥∥V (1)
t

∥∥∥2

F
+

∥∥∥∥Kt −
2

t
dsym

(
KtD

(2)
t

)∥∥∥∥2

F

+
1

λ2t2

∥∥∥V (2)
t

∥∥∥2

F

+
2

λt
− 4

λt2

(
‖Ht‖F

∥∥∥D(1)
t

∥∥∥
F

∥∥∥V (1)
t

∥∥∥
F
−
∥∥∥dsym

(
KtD

(2)
t

)∥∥∥
F

∥∥∥V (2)
t

∥∥∥
F

)
. (299)

Similarly to (236) from Lemma 22 we get that∥∥∥∥Ht −
2

t
HtD

(1)
t

∥∥∥∥
F

≤ ‖Ht‖F

√
1 +

448r4
x

t2
, (300)

and ∥∥∥∥Kt −
2

t
dsym

(
KtD

(2)
t

)∥∥∥∥
F

≤ ‖Kt‖F

√
1 +

448r4
x

t2
. (301)

Therefore, we can bound,

‖Ht+1‖2F + ‖Kt+1‖2F ≤
(
‖Ht‖2F + ‖Kt‖2F

)(
1 +

448r4
x

t2

)
+

(2rx (Rx + rz))
2

λ2t2
+

5r4
x

λ2t2

+
2

λt
+

32r3
x

λt2

(
2Rx + 2rz +

√
5rx

)
(‖Ht‖F + ‖Kt‖F ) (302)

≤
(
‖Ht‖2F + ‖Kt‖2F

)(
1 +

448r4
x

t2
+

32r3
x

λt2

(
2Rx + 2rz +

√
5rx

))
+

(2rx (Rx + rz))
2

λ2t2
+

5r4
x

λ2t2
+

2

λt
+

64r3
x

λt2

(
2Rx + 2rz +

√
5rx

)
(303)

≤
(
‖Ht‖2F + ‖Kt‖2F

)(
1 +

448r4
x

t2
+

32r3
x

λt2

(
2Rx + 2rz +

√
5rx

))

+
1

t


[
4r2
x (Rx + rz)

2 + 5r4
x

]
λ2

+

[
64r3

x

(
2Rx + 2rz +

√
5rx
)

+ 2
]

λ

 . (304)

Denote for readability,

C1 ,

[
4r2
x (Rx + rz)

2 + 5r4
x

]
λ2

+

[
64r3

x

(
2Rx + 2rz +

√
5rx
)

+ 2
]

λ
(305)

and

C2 , 448r4
x +

32r3
x

λ

(
2Rx + 2rz +

√
5rx

)
. (306)

Applying this bound recursively we get

‖Ht+1‖2F + ‖Kt+1‖2F ≤ C1

t∑
i=1

1

i

t∏
j=i+1

(
1 +

C2

j2

)
. (307)
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We bound this product, similarly to (247) from the proof of Lemma 22, by

t∏
j=i+1

(
1 +

C2

j2

)
≤ e

C2
i+1 . (308)

Then, we remain with

‖Ht+1‖2F + ‖Kt+1‖2F ≤ C1

t∑
i=1

1

i
e

C2
i+1 . (309)

The sum is bounded, similarly to (253) from the proof of Lemma 22, by

t∑
i=1

1

i
e

C2
i+1 ≤ 2 ln (t) + 2eC2 . (310)

With this we conclude that

‖Ht+1‖2F + ‖Kt+1‖2F ≤ 2C1

(
ln (t) + eC2

)
. (311)

Finally, we bound the sub-gradient by

‖∇t‖2 ≤
∥∥∥∇(1)

t

∥∥∥2
+
∥∥∥∇(1)

t

∥∥∥2
(312)

=
∥∥∥2λHtD

(1)
t − V

(1)
t

∥∥∥2

F
+
∥∥∥λ dsym

(
2KtD

(2)
t

)
+ V

(2)
t

∥∥∥2

F
(313)

≤ 4λ2 ‖Ht‖2F
∥∥∥D(1)

t

∥∥∥2

F
+ 4λ ‖Ht‖F

∥∥∥D(1)
t

∥∥∥
F

∥∥∥V (1)
t

∥∥∥
F

+
∥∥∥V (1)

t

∥∥∥2

F

+ 4λ2
∥∥∥dsym

(
KtD

(2)
t

)∥∥∥2

F
+ 4λ

∥∥∥dsym
(
KtD

(2)
t

)∥∥∥
F

∥∥∥V (2)
t

∥∥∥
F

+
∥∥∥V (2)

t

∥∥∥2

F
(314)

≤ 4λ2 · 16r4
x ‖Ht‖2F + 4λ · 4r2

x · 2rx (Rx + rz) ‖Ht‖F + 4r2
x (Rx + rz)

2

+ 4λ2 · 64r4
x ‖Kt‖2F + 4λ · 8r2

x ·
√

5r2
x ‖Kt‖F + 5r4

x (315)

≤ 320λ2r4
x

(
‖Ht‖2F + ‖Kt‖2F

)
+ 32λr3

x

(
Rx + rz +

√
5rx

)
(‖Ht‖F + ‖Kt‖F ) + 4r2

x (Rx + rz)
2 + 5r4

x,

(316)

which leads to the claimed bound.

Finally, we prove Theorem 9.

Proof of Th. 9: First, note that the PSD cone is convex, as well as {(H,S) : HTH − S � 0}, by Claim 25.

Denote by Γt the hypothesis from round t of Algorithm 1, i.e., St for the additive noise channel and (Ht,Kt) for

the non-linear channel. Now, by using [25, Lemma 1] we get that for every Γ ∈ Γ

RegT ,
T∑
t=1

f (Γt;At)−
T∑
t=1

f (Γ;At) ≤
G2 (1 + lnT )

4λγ
, (317)

where γ is the strong convexity constant either from Lemma 13 or from Lemma 16, respectively, λ is the

regularization parameter, and G is the bound for the Frobenius norm of the sub-gradient from either Corollary

23 or Lemma 26, respectively. Combining this with [60, Th. 2], we get, with probability of at least 1− 4δ ln(T ),
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that

f
(
Γ̄
)
− f (Γ∗) ≤ RegT

T
+ 4

√
G2 ln (1/δ)

2λγ

√
RegT
T

+ max

{
16G2

2λγ
, 6B

}
ln (1/δ)

T
(318)

≤ G2 lnT

2λγT
+

4G2
√

lnT

λγT

√
ln

(
1

δ

)
+ max

{
16G2

2λγ
, 6B

}
ln (1/δ)

T
, (319)

where Γ̄ , 1
T

∑T
t=1 Γt. The objective of (10) is bounded by

B = max
S∈S+

f (S) (320)

≤ 1 + max
S∈S+

max
1≤p<q≤m

max
i∈Dp

⋃
Dq

∣∣aTpqiSδpq∣∣+ λmax
S∈S+

max
1≤p<q≤m

‖Sδpq‖2F (321)

≤ 1 + 2rx ‖S‖F (rx + rz) + 4λr2
x ‖S‖

2
F (322)

= O

(
1

λ
ln2 (T )

)
, (323)

and the objective of (19) is bounded by

B = max
(H,K)∈H×K

f (H,K) (324)

≤ 1 + max
i∈[n]

max
j′∈[m]\{ji}

∣∣∣∣yTi Hδjij′ − 1

2
(xji + xj′)

T Kδjij′

∣∣∣∣
+ λ

(
max
H∈H

max
1≤p<q≤m

‖Hδpq‖2F + max
K∈K

max
1≤p<q≤m

‖Kδpq‖2F

)
(325)

≤ 1 + 2rx (Rx + rz) ‖H‖F + r2
x ‖K‖F + 4λr2

x

(
‖H‖2F + ‖K‖2F

)
(326)

= O

(
max

{
1,

1

λ

}
· ln (T )

)
. (327)

Plugging G = O(ln(T )) from Corollary 23 or G = O(max{1, λ} · ln(T )) from Lemma 26 we conclude that

f
(
Γ̄
)
− f (Γ∗) = O

(
ln3 (T ) ln (1/δ)

λT

)
. (328)

At least half of the hypothesis satisfy the previous bound (as argued in [25, Lemma 3]). We conclude that the

previous result holds for St, with probability of at least 1−4δ ln(T )
2 .
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