
2664 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

Computationally Efficient Worst-Case Analysis of
Flow-Controlled Networks With Network Calculus

Raffaele Zippo and Giovanni Stea

Abstract— Networks with hop-by-hop flow control occur in
several contexts, from data centers to systems architectures (e.g.,
wormhole-routing networks on chip). A worst-case end-to-end
delay in such networks can be computed using Network Calculus
(NC), an algebraic theory where traffic and service guarantees
are represented as curves in a Cartesian plane. NC uses transfor-
mation operations, e.g., the min-plus convolution, to model how
the traffic profile changes with the traversal of network nodes.
NC allows one to model flow-controlled systems, hence one can
compute the end-to-end service curve describing the minimum
service guaranteed to a flow traversing a tandem of flow-
controlled nodes. However, while the algebraic expression of such
an end-to-end service curve is quite compact, its computation is
often intractable from an algorithmic standpoint: data structures
tend to grow quickly to unfeasibly large sizes, making operations
intractable, even with as few as three hops. In this paper,
we propose computational and algebraic techniques to mitigate
the above problem. We show that existing techniques (such as
reduction to compact domains) cannot be used in this case,
and propose an arsenal of solutions, which include methods
to mitigate the data representation space explosion as well as
computationally efficient algorithms for the min-plus convolution
operation. We show that our solutions allow a significant speedup,
enable analysis of previously unfeasible case studies, and - since
they do not rely on any approximation - still provide exact results.

Index Terms— Network Calculus, worst-case delay bounds,
computer networks.

I. INTRODUCTION

THE last few years have witnessed a surge in real-time
networked applications, such as factory automation or

collaborative robotics, within the Industry 4.0 paradigm,
or self-driving / teleoperated cars. This has sparked a renewed
industrial interest for methods that allow one to compute
performance bounds, especially worst-case ones, since the
above applications are clearly safety critical. Several systems
supporting these applications communicate through networks

Manuscript received 24 December 2021; revised 27 September 2022;
accepted 31 January 2023. Date of publication 13 February 2023; date of
current version 17 March 2023. This work was supported in part by the
Italian Ministry of Education and Research (MIUR) in the framework of the
FoReLab Project, Departments of Excellence; and in part by the University
of Pisa, through Analisi di reti complesse: dalla teoria alle applicazioni under
Grant PRA 2020. (Corresponding author: Giovanni Stea.)

Raffaele Zippo is with the Dipartimento di Ingegneria dell’Informazione,
Università di Firenze, 50139 Firenze, Italy, and also with the Dipartimento
di Ingegneria dell’Informazione, Università di Pisa, 56122 Pisa, Italy (e-mail:
raffaele.zippo@ing.unipi.it).

Giovanni Stea is with the Dipartimento di Ingegneria dell’Informazione,
Università di Pisa, 56122 Pisa, Italy (e-mail: giovanni.stea@unipi.it).

Communicated by A. Eryilmaz, Associate Editor for Networking and
Computation.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2023.3244276.

Digital Object Identifier 10.1109/TIT.2023.3244276

with hop-by-hop window flow control. This occurs whenever
a receiver has limited buffer space and wants to prevent
the sender from overflowing it – because the loss of data
is undesirable or too costly. This mechanism is used, for
instance, in data center networks [1], [2], [3], or wormhole-
routing networks on chip [4], [5]. Multi-hop networks with
flow control have often been analyzed via classical queueing
theory (see, e.g., [6]), that allows one to find probabilistic
performance metrics using stochastic models of traffic and
service. A worst-case analysis of such networks can be done
via Network Calculus (NC). The latter is a theory for deter-
ministic network evaluation, which dates back to the early
1990s, and it is mainly due to the work of Cruz [7], [8],
Le Boudec and Thiran [9], and Chang [10]. Originally devised
for the Internet, where it was used to engineer models of
service [11], [12], [13], [14], it has found applications in
several other contexts, from sensor networks [15] to avionic
networks [16], [17], industrial networks [18], [19], [20], auto-
motive systems [21] and systems architecture [22], [23]. Its
main strength is that it allows one to compute worst-case delay
bounds in systems with multi-hop traversal. It characterizes
constraints on traffic arrivals (due to traffic shaping) and on
minimum received service (due to scheduling) as curves, i.e.,
functions of time, and uses min-plus algebra to combine the
above in order to compute bounds on the traffic at any point
in a network traversal. More in detail, a network node is
characterized by its service curve, a characteristic function that
yields the worst-case response to an infinite burst (similarly
to the transfer function in systems theory). When a flow
traverses two nodes in tandem, its worst-case end-to-end
service can be found by combining the service curves of
the two nodes via their min-plus convolution. This opera-
tion yields a network-wide service curve, hence multi-node
traversal can always be collapsed to single-node traversal via
repeated convolutions. Most network nodes have simple ser-
vice curves, called rate-latency, that can be represented by two
segments: an initial horizontal segment – modeling the node’s
latency – followed by an infinite line whose slope is the
node’s rate. The convolution of two rate-latency curves is a
rate-latency curve itself.

Window flow control can be modeled in NC. The algebraic
operator that is required to do this is called sub-additive clo-
sure (SAC), which – as the name suggests – yields sub-additive
curves. A flow-controlled node can thus be represented via
an equivalent service curve, obtained via a SAC operation.
Analysis of networks with hop-by-hop flow-control is made
difficult by computational aspects. An equivalent service curve

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9111-7471
https://orcid.org/0000-0001-5310-6763

ZIPPO AND STEA: COMPUTATIONALLY EFFICIENT WORST-CASE ANALYSIS OF FLOW-CONTROLLED NETWORKS WITH NC 2665

obtained via a SAC is unavoidably a staircase-based ulti-
mately pseudo-periodic (UPP) function [24], [25], even when
the node has a service curve as simple as a rate-latency
one. UPP functions have an initial transient and a periodic
part. Computing the worst-case delay of a flow traversing
a tandem of flow-controlled hops requires one to compute
an end-to-end equivalent service curve for the tandem first.
However, this requires one to compute nested SACs, starting
from per-node service curves. The algorithm to compute the
SAC of a UPP curve is very complex, to the point that
this analysis may be computationally unfeasible already with
few hops (e.g., three). The SAC algorithm, in fact, requires
performing a very large number of elementary convolutions.
Work [26] introduces a different method, which dispenses
with nested SACs. That method computes per-node equivalent
service curves first, using SAC, and then computes the end-
to-end equivalent service curve by convolution of per-node
equivalent service curves. This second method yields an end-
to-end equivalent service curve that lower bounds the one
found with the former method. It is also less costly, since
convolution of UPP curves is polynomial. However, chained
convolutions of UPP curves may still be unfeasibly costly,
due to a well-known phenomenon called state explosion
([27], [28]). It is observed therein that convolutions of UPP
functions are often intractable, because the period of the result
is tied to the least common multiple (lcm) of the periods of
the operands. Thus, computing the end-to-end service curve
of a tandem of n nodes traversed by a flow by chaining
n− 1 convolutions – although algebraically simple – is often
computationally intractable.

In [28], authors propose a method to mitigate this problem
by observing that one may limit convolutions to a compact
(i.e., finite) domain, without sacrificing accuracy. That finite
domain is computed (at negligible cost) based on upper/lower
approximations of UPP service curves and/or arrival curves.
Using finite domains allows one to avoid the state explosion
due to the lcm and the associated time complexity, making
analysis faster – often by orders of magnitude. However, this
method cannot be applied to our problem, since it relies on
service curves being super-additive. The equivalent service
curves that form the operands of the chained convolutions in
our problem are instead sub-additive (having being computed
via a SAC operation).

In this paper, we present computational and algebraic tech-
niques to enable the analysis of flow-controlled networks
on a larger scale, by reducing the number and time cost
of the involved convolutions, often by orders of magnitude.
We achieve this by performing two computationally simple
tasks: first, minimizing the number of segments with which a
UPP service curve is represented. This is particularly impor-
tant, since – on one hand – the complexity of algorithms for
basic min-plus operations (including convolution) depends on
the number of segments of their operands, often in a superlin-
ear way. On the other hand, the number of convolutions to be
performed in a SAC depends on the number of segments of
the operand. We show that representation minimization may
reduce the number of segments by orders of magnitude. This
makes operations generally faster – especially when several

convolutions are chained together, and is of paramount impor-
tance to enable efficient SAC computation. Second, we prove
algebraic properties of sub-additive functions that can be
leveraged to drastically reduce the number of computations
involved in the convolution. We prove that convolution of
sub-additive UPP functions is in fact quite simple, unless the
two operands intersect infinitely many times, and we prove a
significantly faster algorithm for that case as well. We assess
the gain in efficiency by measuring the achieved speedup of
our findings on a desktop PC. As we show, the improvements
are substantial, ranging from two-digit percentages to several
orders of magnitude in most cases. Moreover, the speedups
warranted by representation minimization and algebraic prop-
erties are cumulative. This not only makes computations more
efficient: rather, it allows one to compute end-to-end service
curves in cases where this was considered to be beyond the
borders of tractability using the current NC methods and
off-the-shelf hardware. Moreover, it allows one to compare
the two methods discussed above, hence to benchmark the
lower-bound approximation explained in [26] by efficiency and
accuracy. Our findings in that respect are that the approximate
method seems to be as accurate as the exact one, while
considerably more efficient. Last, but not least, we remark
that our techniques are exact, i.e., they do not entail any loss
of accuracy in the end result. To the best of our knowledge,
our results are novel and are not used in existing NC tools.

The rest of the paper is organized as follows: Section II
introduces NC notation and basic results. We introduce the
problem formally in Section III, and explain our techniques
in Section IV. We report numerical evaluations in Section V.
Section VI discusses the related works. Finally, Section VII
concludes the paper and highlights directions for future work.

II. NETWORK CALCULUS BASICS

We report here a necessarily concise introduction to NC,
borrowing the notation used in [9], to which we refer the
interested reader for more details.

A NC flow is represented as a wide-sense increasing and
left-continuous cumulative function R : R+ → R+ ∪ {+∞}.
Function R represents the number of bits of the flow observed
in [0, t[. In particular, R(0) = 0.

Flows can be constrained by arrival curves. A wide-sense
increasing function α is an arrival curve for a flow A if:

∀s ≤ t, A(t)−A(s) ≤ α(t− s).

For instance, a leaky-bucket shaper, with a rate ρ and a burst
size σ, enforces a concave affine arrival curve γσ,ρ(t), defined
as follows:

γσ,ρ(t) =

{
σ + ρt, if t > 0,

0, otherwise.
(1)

This means, among other things, that the long-term arrival
rate of the flow cannot exceed ρ.

Let A and D be the functions that describe the same data
flow at the input and output of a lossless network element (or
node), respectively. If that node does not create data internally
(which is often the case), causality requires that A ≥ D.

2666 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

We say that the node behavior can be modeled via a service
curve β if:

∀t ≥ 0, D(t) ≥ inf
0≤s≤t

{A(s) + β(t− s)} . (2)

In that case, the flow is guaranteed the (minimum) service
curve β. The infimum on the right side of (2), as a function
of t, is called the (min-plus) convolution of A and β, and is
denoted by A⊗β. The alert reader can check that convolution
is commutative and associative. Computing the above convo-
lution entails sliding β along A and taking the lower envelope
of the result (i.e., the infimum for each time instant).

Several network elements, such as delay elements, sched-
ulers or links, can be modeled through service curves. A very
frequent case is the one of rate-latency service curves, defined
as:

βR,θ(t) = R[t− θ]+,

for some θ ≥ 0 (the latency) and R > 0 (the rate). Notation
(.)+ denotes max(., 0). For instance, a constant-rate server
(e.g., a wired link) can be modeled as a rate-latency curve
with zero latency.

A point of strength of NC is that service curves are
composable: the end-to-end service curve of a tandem of nodes
traversed by the same flow can be computed as the convolution
of the service curves of each node.

For a flow that traverses a service curve (be it the one of
a single node, or the end-to-end service curve of a tandem
computed as discussed above), a tight upper bound on the
delay can be computed by combining its arrival curve α and
the service curve β itself, as follows:

h(α, β) = sup
t≥0

{inf {d ≥ 0 | α(t− d) ≤ β(t)}} . (3)

The quantity h(α, β) is in fact the maximum horizontal
distance between α and β. Therefore, computing the end-to-
end service curve of a flow in a tandem traversal is the crucial
step towards obtaining its worst-case delay bound.

In NC, the sub-additive closure (SAC) of a wide-sense
increasing function f is defined as:

f(t) = inf
n≥0

{
f (n)(t)

}
, (4)

where f (n) denotes the n-fold self-convolution of f , i.e.,
f (0) = δ0, f (1) = f , and f (n) =

⊗n
i=1 f for n ≥ 1.

Function δ0 is an infinite step in t = 0+, i.e., δ(0)(0) = 0 and
∀t > 0, δ(0)(t) = +∞. Note that f is sub-additive, as the
name suggests [9, Theorem 3.1.10]. The formal definition of
sub-additivity is the following:

Definition 1 (Sub-Additive Function): f is sub-additive if
and only if ∀u, s, f(u) + f(s) ≥ f(u + s).

Moreover, given a function f such that f(0) = 0, if f is
sub-additive then f = f . Otherwise, it is f ≤ f . Convolution
does preserve sub-additivity, as per the following property:

Property 1 (Convolution of Sub-Additive Functions):
If f and g are sub-additive functions, so is f ⊗ g
[9, Theorem 3.1.9].

Moreover, the SAC of a minimum is the convolution of the
SACs of the operands, i.e.:

Property 2 (SAC of a Minimum): f ∧ g = f ⊗ g [9, Theo-
rem 3.1.11].

We spend a few words to clarify a relevant issue. The two
theorems from [9] that we cite in the above two properties
assume that functions f and g are wide-sense increasing.
However, as already observed in [24], the proof of these
theorems still holds even without that hypothesis.

A. Computational Representation of NC Functions and
Algorithms

NC computations can be implemented in software. In order
to do so, one needs to provide computational representations of
NC functions (e.g., a cumulative function of a flow or a service
curve) and well-formed algorithms for its operations, e.g., min-
imum and convolution. We therefore describe a general data
structure that represents NC functions, and the algorithms to
compute the main NC operations used in this paper. We adopt
the widely accepted approach described in [24] and [25].

To represent NC functions, we focus on the set U of
ultimately pseudo-periodic (UPP), piecewise affine Q+ →
Q∪{+∞,−∞} functions, as in [24]. It is shown therein that
this class of functions is stable w.r.t. all min-plus operations,1

while functions R+ → R∪{+∞,−∞} are not. An alternative
class of functions with such stability is N0 → R∪{+∞,−∞},
however this is only feasible for models where time is discrete.
We remark that functions in U are not necessarily wide-sense
increasing. While NC functions are usually assumed to be
so, in order to implement min-plus operations it is sometimes
useful to include non-monotonic functions as well. Similarly,
functions in U can assume infinite values. This is also useful
for algebraic manipulations, e.g., to express a function as a
minimum of two or more functions.

A function in U has an initial transient of length T ≥ 0,
and a period of length d > 0 and height c ∈ Q∪{+∞,−∞}.
Ultimately pseudo-periodic means that:

∀t ≥ T, f(t + d) = f(t) + c. (5)

We denote with ρ the pseudo-periodic slope of a function
f , i.e., ρ = c

d . Functions in U are piecewise affine. This
means that they can be represented as sequences of points
and segments. The above terms are defined as follows:

Definition 2 (Point): We define a point as a tuple

pi := (ti, f(ti)), i ∈ {1, . . . , n} .

Definition 3 (Segment): We define a segment as a tuple

si :=
(
ti, ti+1, f(t+i), f(t−i+1)

)
, i ∈ {1, . . . , n} ,

which describes f in the open interval]ti, ti+1[in which it is
affine, i.e., for all t ∈]ti, ti+1[,

f(t) = f(t+i) +
f(t−i+1)− f(t+i)

ti+1 − ti
· (t− ti) =: b + r · (t− ti)

1To be precise, the fact that an operation is well defined and stable in U may
require additional properties, such as operands being plain or ultimately plain,
as sufficient (but not necessary) conditions. We refer the reader to [24] for a
thorough discussion. All the operations discussed in this paper are well-defined
and stable in U .

ZIPPO AND STEA: COMPUTATIONALLY EFFICIENT WORST-CASE ANALYSIS OF FLOW-CONTROLLED NETWORKS WITH NC 2667

Fig. 1. Example of a continuous ultimately pseudo-periodic piecewise affine function f and its representation Rf .

Fig. 2. Example of a left-continuous ultimately pseudo-periodic piecewise affine function f and its representation Rf .

where we used the following shorthand notation for one-sided
limits:

f
(
t+i
)

= lim
t→t+i

f (t) , f
(
t−i
)

= lim
t→t−i

f (t) .

We use both points and open segments in order to easily
model discontinuities. We will use the umbrella term elements
to encompass both, when convenient.

Definition 4 (Sequence): Let a sequence SD
f be defined as

on ordered set of elements e1, . . . , en that alternate between
points and segments and describe f in finite interval D.
Moreover, we define its cardinality N

(
SD

f

)
as the number

of elements it contains.
For a function in U , it is enough to store a representation

of the initial transient part, i.e., interval T = [0, T [, and of
one period, i.e., interval P = [T, T +d[. This entails storing a
sequence describing the function in interval [0, T +d[. This is
a finite amount of information. Figures 1 to 3 show examples
of such functions. Accordingly, we call a representation Rf of
a function f the tuple (S, T, d, c), where T, d, c are the values
described above, and S is the sequence defined in interval
[0, T + d[.2

For example, for a rate-latency curve βR,θ we have T = θ, d
and c can be arbitrary positive numbers such that c/d = R, and

2Whenever a sequence is defined over interval [0, T+d[, we omit to indicate
the interval as a superscript for ease of notation.

S is a list of four elements: point (0, 0), segment (0, θ, 0, 0),
point (θ, 0), segment (θ, θ + d, 0, c).

Note that, given Rf , one can compute f(t) for any
t ≥ 0, and also SD

f for any interval D. Furthermore,
being finite, Rf can be used as the data structure to rep-
resent f in code. We remark that computing SD

f , i.e.,
a sequence of f over an arbitrary interval D, is a required
step in most algorithms, for instance, to compare in the
same interval two functions having different transients and/or
periods.

As outlined in the Introduction, the aim of this paper is to
present new techniques to reduce the computation times of
NC computations. We therefore need to introduce the basic
algorithms for NC operations, i.e., minimum, convolution and
SAC, as well as determining the equivalence of two repre-
sentations. A complete description of the algorithms for the
above operations would be cumbersome, and would distract
the reader from the main focus of this work. For this reason,
we sketch here the basic results required for the understanding
of the rest of the paper, and refer the interested reader to
Appendix A for more details.

Given two representations Rf and Rg we can estab-
lish if f = g through a linear comparison (element-
by-element pairwise comparison) of sequences SD

f , SD
g ,

with D = [0, max(Tf , Tg) + lcm(df , dg)[. The alert
reader can check that, if f(t) = g(t) ∀t ∈ D, then

2668 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

Fig. 3. Example of a right-continuous ultimately pseudo-periodic piecewise affine function f and its representation Rf .

f(t) = g(t) ∀t ≥ 0. The complexity of such comparison is
then O

(
N
(
SD

f

)
+ N

(
SD

g

))
.

Binary NC operations (such as minimum and convolution)
take as input the representations of operands and produce as
an output the representation of the result. Given two functions
f and g and a generic operator ∗, in order to compute f ∗ g
we need an algorithm that computes Rf∗g from Rf , Rg , i.e.,
(Rf , Rg) → Rf∗g . This is generally done via the following
steps:

1) compute valid parameters Tf∗g, df∗g and cf∗g;
2) compute intervals Df and Dg , and the sequences S

Df

f

and S
Dg
g , for the next step;

3) compute (SDf

f , S
Dg
g) → Sf∗g , i.e., provide an algorithm

that computes the resulting sequence from the sequences
of the operands (which we call by-sequence implementa-
tion of operator ∗);

4) return Rf∗g = (Sf∗g, Tf∗g, df∗g, cf∗g).
For the minimum operator, i.e., m = f ∧g, the by-sequence

algorithm is a linear comparison of sequences S
Df

f , S
Dg
g ,

hence its complexity is O
(
N
(
S

Df

f

)
+ N

(
S

Dg
g

))
. However,

intervals Df and Dg (whose exact computation is reported
in Appendix A) depend on numerical properties of f and
g. For instance, when f and g have different slopes ρf , ρg ,
and intersect at t ≫ Tf + df , Tg + dg , these intervals are
much larger than [0, Tf + df [and [0, Tg + dg[, respectively.
Accordingly, it may well be that N

(
S

Df

f

)
≫ N(Sf) and/or

N
(
S

Dg
g

)
≫ N(Sg). This means that the computations

involved in an operation may vary considerably based on
the numerical properties of the operands. This issue will be
recalled time and again throughout this paper.

For what concerns the convolution operation, we observe
that in the general case it is not possible to compute the
parameters and intervals of steps 1 and 2 a priori. To cir-
cumvent this, [24] proposes to decompose each operand f
into its transient and periodic parts, ft and fp, each assuming
value +∞ outside their support (the set of t ∈ Q+ such that
|f(t)| < +∞ [24, p. 7]), so that f = ft ∧ fp. Therefore,
convolution f ⊗ g can be decomposed as:

f⊗g=(ft ∧ fp)⊗(gt∧gp) = ft⊗gt∧ft⊗gp∧fp⊗gt∧fp⊗gp.

(6)

Section II-A highlights three types of partial convolutions:
transient part with transient part; transient part with periodic
part; periodic part with periodic part. For these partial con-
volutions, parameters and intervals can instead be computed.
After all the partial convolutions in Section II-A have been
computed, the end result can be obtained by taking the
minimum of all partial results. A notable exception, which
will be useful for this work, is when ρf = ρg = ρ. In this
case, in fact, parameters and intervals can be computed a priori
as follows:

T ′ = Tf + Tg + d′; d′ = lcm(df , dg); c′ = ρ · d′;
Df = [0, Tf + 2 · d′[; Dg = [0, Tg + 2 · d′[.

The by-sequence algorithm consists in computing the convolu-
tions of all the elements in the two sequences S

Df

f , S
Dg
g , i.e.,

all ef ⊗ eg where ef ∈ S
Df

f , eg ∈ S
Dg
g , and taking the lower

envelope of the result. The complexity of this operation is
O
(
N
(
S

Df

f

)
·N
(
S

Dg
g

)
· log

(
N
(
S

Df

f

)
·N
(
S

Dg
g

)))
. This

complexity is heavily affected by the cardinalities of the
sequences, which in turn are tied to lcm(df , dg). Once again,
it is possible that N

(
S

Df

f

)
≫ N(Sf), N

(
S

Dg
g

)
≫ N(Sg),

for instance when df , dg are coprime.
The algorithm for computing SAC is based on Property 2.

Consider the elements of Sf ei, i = 1 . . . n, defined in
Di = {ti} (if ei is a point in ti), or in Di =]ti, ti+1[(if ei

is a segment). Then, we can write a decomposition of f into
transient and periodic elements, f = et

1∧· · ·∧et
l∧ep

l+1 · · ·∧ep
n,

where3

et
i(t) =

{
f(t) if t ∈ Di,

+∞ otherwise,

ep
i (t) =

{
f(t + k · d) if t ∈ Di + k · d, k ∈ N0,

+∞ otherwise.
.

Then, we have

f = et
1 ⊗ · · · ⊗ et

l ⊗ ep
l+1 · · · ⊗ ep

n. (7)

Thus, the SAC of f is decomposed into SACs of points,
open segments, periodic points and periodic open segments,
for which algorithms are known [24]. This SAC computation

3Throughout the paper, we use N to denote the set {1, 2, . . . } and N0 to
denote the set {0, 1, . . . }.

ZIPPO AND STEA: COMPUTATIONALLY EFFICIENT WORST-CASE ANALYSIS OF FLOW-CONTROLLED NETWORKS WITH NC 2669

Fig. 4. SAC β + W (right) when β is rate-latency and W is the ordinate of a constant function (both shown on the left).

Fig. 5. Network with static window flow-control.

is NP-hard: the complexity grows exponentially with the
number of elements in the representation. We remark that
the above algorithm makes extensive use of the convolution
operation.

An exception is when β is a rate-latency curve. In this case,
given a constant function, i.e., a function f such that f(0) =
0 and ∀t > 0, f(t) = W , SAC β + f can be computed in
closed form [9]. Typically, W is a buffer dimension. From now
on, we will use shorthand β + W , i.e., with the ordinate of
the constant function rather than the function name itself, for
better readability. As shown in Figure 4, the resulting function
is not a rate-latency, but a staircase UPP function.

B. Flow-Controlled Networks

NC can be used to model network elements having flow
control [9, Chapter 4]. Consider the network in Figure 5,
in which a flow traverses nodes 1 and 2, which have static
flow-control due to the limited buffer in 2. Let β1, β2 be the
service curves offered by nodes 1 and 2 to the flow that we
are observing. Node 1 will thus serve that flow’s traffic, with
service curve β1, only if there is already buffer space available
in 2; in turn, the available part of this buffer space, whose
size is W , depends on the ability of 2 to serve that flow’s
traffic with its own service curve β2. We also assume that 1 is
instantaneously aware of the current state of the buffer of 2.
Thus, we can model the network as in Figure 6.

In order to compute an end-to-end service curve for a flow
traversing the above system, we must first get rid of the
feedback arc in the NC model, transforming it into a tandem.
This is done by computing first the equivalent service curve
of node 1, βeq

1 , such that

B(t) ≥ (A⊗ βeq
1)(t).

Fig. 6. NC model for network with static window flow-control. Circles
represent service curve elements, whereas rectangles represent flow-control
windows.

The latter takes into account the reduction in the service
brought on by the presence of the subsequent flow control.
It is [9, Chapter 4]:

βeq
1 = β1 ⊗ βfc,

βfc = β1 ⊗ β2 + W.

Then, the system offers to the flow an end-to-end service
curve βeq , so that

C(t) ≥ (A⊗ βeq)(t).

βeq is equal to:

βeq = βeq
1 ⊗ β2 (8)

= β1 ⊗ β2 ⊗ βfc.

The extension of the above method to longer tandems is
straightforward: consider for instance the tandem in Figure 7.
Nodes 2 and 3 have limited buffers, of size W2 and W3. The
resulting NC model is shown in the figure. To find the end-
to-end service curve of the system, βeq , we iterate the above
methodology – starting from the rightmost node – and compute
the following:

βeq
2 = β2 ⊗ (β2 ⊗ β3 + W3),

βeq
1 = β1 ⊗ (β1 ⊗ βeq

2 + W2),
βeq = βeq

1 ⊗ βeq
2 ⊗ β3.

The above method is also illustrated in Figure 8. By expand-
ing the expression of βeq

1 we obtain the following:

βeq
1 = β1 ⊗ (β1 ⊗ β2 ⊗ (β2 ⊗ β3 + W3) + W2). (9)

2670 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

Fig. 7. A tandem of three flow-controlled nodes and its NC model.

Fig. 8. Transformation of the NC model to an equivalent tandem.

Equation (9) includes a nested SAC. Even assuming the
simplest case, i.e., that service curves βi are all rate-latency
curves, the innermost SAC yields a staircase UPP function.
The outer SAC must then be computed on a curve of this
type, which is NP-hard.

This method can be generalized to a tandem of n nodes, as:

βeq
n−1 = βn−1 ⊗ βn−1 ⊗ βn + Wn,

βeq
i = βi ⊗ βi ⊗ βeq

i+1 + Wi+1,

βeq =

(⊗
i=1...n−1

βeq
i

)
⊗ βn. (10)

This method of analysis (henceforth: the exact method)
therefore requires O (n) nested SACs for a tandem of n nodes.
All (except possibly one) are SACs of UPP curves which
are non-trivial to compute (see (7)). Therefore, despite the
apparent conciseness of (10), computing βeq via this method
is computationally infeasible.

In [26], a property was proved that lower bounds βeq
i with

a convolution of SACs:

βeq′

i = βi

n−1⊗
j=i

(βj ⊗ βj+1 + Wj+1). (11)

Then, an end-to-end service curve can be computed as:

βeq′ =
n−1⊗
i=1

βeq′

i ⊗ βn

= βeq′

1 ⊗ βeq′

2 ⊗ · · · ⊗ βeq′

n−1 ⊗ βn

=

(
β1 ⊗

⊗
i=1...n−1

βi ⊗ βi+1 + Wi+1

)

⊗

(
β2 ⊗

⊗
i=2...n−1

βi ⊗ βi+1 + Wi+1

)
⊗ · · · ⊗ βn

=

(⊗
i=1...n

βi

)
⊗

⊗
i=1...n−1

βi ⊗ βi+1 + Wi+1. (12)

The above is a consequence of each βi ⊗ βi+1 + Wi+1

being sub-additive, thus f ⊗ f = f .
Authors of [26] prove that:

∀i = 1 . . . n− 1, βeq
i ≥ βeq′

i . (13)

From the above, since convolution is isotonic, it follows
that:

βeq ≥ βeq′ . (14)

Computing βeq′ via (12) (henceforth: the approximate
method) is computationally more tractable – if all the SCs
βi are rate-latency – because it does away with nested SACs.
However, it still requires one to compute O (n) convolutions
of UPP curves.

An exact expression for the service curve of the first node in
a tandem of flow-controlled nodes has been derived in [29]. Its
computation requires a chain of convolutions of sub-additive
UPP curves, i.e., the same type whose computation we opti-
mize in this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a flow traversing a tandem network of n flow-
controlled nodes. Each node i offers to that flow a service
curve βi. After node i, i < n, there is a flow control
window Wi+1. We initially assume that the flow-control is
instantaneous, and implemented as described in Section II-B.
We will come back to this issue at the end of this section. Our

ZIPPO AND STEA: COMPUTATIONALLY EFFICIENT WORST-CASE ANALYSIS OF FLOW-CONTROLLED NETWORKS WITH NC 2671

TABLE I
PARAMETERS OF THE EXAMPLE TANDEM NETWORK

TABLE II
COMPUTATIONAL RESULTS, EXACT METHOD

TABLE III
COMPUTATIONAL RESULTS, APPROXIMATE METHOD

goal is to compute an end-to-end service curve of the above
tandem network. This will allow one to compute a bound on
the end-to-end delay and backlog, if the flow itself has an
arrival curve. We want to be able to do this efficiently.

We first show that computing an end-to-end service curve,
whether the exact or the approximate one, incurs state explo-
sion and may require very long computation times, even when
n is small (e.g, three nodes).

We do this using a four-hop tandem of flow-controlled
nodes as an example. We assume that nodes have rate-latency
service curves, βi = βRi,θi , and their parameters are those
in Table I. We need to use two different sets of parameter
values to better highlight the issues – and, later, the impact of
the optimizations. In fact, the length and/or feasibility of the
computations do depend on the parameter values. We found
that a setting that can be solved with the exact method is often
trivial with the approximate one, and a setting that is hard with
the approximate method is often computationally intractable
with the exact one.

We attempt to compute the end-to-end equivalent service
curves, via the exact and approximate methods, using the
algorithms described in [24], on a desktop PC equipped
with an Intel Core i9-9900, 16 GB of DRAM @3200 MHz,
Windows 10 (the above system, included the software we run,
is described in more detail in Section V).

We report computational results in, respectively, Table II
and Table III, where we highlight both the representation size
of the results and the time it takes to compute them. The alert
reader will notice that the results reported in the tables are
intermediate results towards the equivalent end-to-end service
curves via (10) and (12), respectively. We cap computation
times at 24 hours.

The above results show that computation times are non-
trivial, and that state explosion does occur, even with the
approximate method. As already outlined, we cannot abate
these computation times by working on compact domains,
as suggested in [28]. In fact, that method requires that the
service curves involved are super-additive. In our model, the
operands of these tough convolutions are instead sub-additive,
because they are the result of SACs. We are not aware of any
method that allows one to limit the domains in this case.

A simple, but crude approach to compute an approximated
end-to-end service curve would be to lower bound each result-
ing UPP curve with a rate-latency curve. This approximation
would have to be used after each SAC in (10), or for each term
in (12). This would certainly make computations considerably
faster, but may entail a considerable loss of accuracy.

We exemplify this using a simple UPP curve β = βR,θ ⊗
βR,θ + h, with R · θ > h. In this case, such lower bound
⌊β⌋rl would have θlb = θ,Rlb = h

θ , and the error introduced
by it is upper bounded by θ − h

R . As shown in Figure 9,
the impact of such error on the end-to-end delay depends on
the characteristic of the input traffic. Notably, small messages
would incur relatively larger penalty than large messages, and
the loss in accuracy would be non-negligible.

Our approach to gaining efficiency is to abate both the
number and the computation time of the convolutions of UPP
curves. This operation, in fact, lies at the core of both the
exact and the approximate methods (recall that the SAC of a
UPP curve can be computed as a convolution of elements,
as explained in Section II-A). Reducing their number and
making them as fast as possible is therefore going to make
both methods more efficient. We do this without introducing
approximations: our computations are always exact. In the next
section, we show how we accomplish this, leveraging both
representation minimization and algebraic tools: first, we show
that minimizing the representation Rf of the functions f
involved in the operations may provide remarkable benefits.
Then, we present three theorems that can be used to reduce the
computation time of convolutions, leveraging sub-additivity of
the operands.

Before introducing our contribution, we spend a few
words discussing the generality of our model. With flow-
controlled networks, different models can be envisaged as far
as:

1) the exact place where flow-control stops traffic when the
flow control window is closed, w.r.t. to the service curve
modelling the sending node. For example, this may be
an input buffer of the sending node, or an output buffer
instead. The alert reader can check that using one or
the other will lead to slightly different expressions for
both the exact and the approximate end-to-end service
curves. However, they will still be of the same type
as (10) and (12), respectively, i.e., with either nested
SACs or convolutions of sub-additive UPPs. Therefore,
any computation issue that we address throughout this
paper will still be present;

2) whether or not the return path, i.e., the flow-control
credit feedback, is instantaneous. Depending on how such
feedback is implemented, other models may, for instance,

2672 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

Fig. 9. Delay overestimation introduced by lower-bounding a staircase UPP curve with a rate-latency curve.

include a service curve on the return path as well. Again,
this does not change the structure of the expressions that
we seek to compute efficiently.

Thus, only the model of Figure 6 will be considered henceforth
for simplicity.

IV. CONTRIBUTION

We present our two contributions separately. First, we show
how to minimize the representation of a function, using an
inexpensive algorithm. Then, we show theorems that reduce
the cost of convolutions.

A. Representation Minimization

As discussed, given a representation Rf = (S, T, d, c) of
function f , its cardinality N(S) and parameters d and T are
the main factors for the algorithmic complexity of operations
involving it. A first way to abate computation times is therefore
to find the minimal representation of f .

We say that two representations Rf and Rg are equivalent
if they represent the same function, i.e., ∀t ≥ 0, f(t) = g(t).
A minimal representation R̃ is such that, given any equivalent
representation R, then N

(
S̃
)
≤ N(S).

Unfortunately, the generic algorithms for operations on UPP
curves (described in [24], [25] and recalled in Section II-A
and Appendix A) do not yield minimal representations, even
when the representations of their operands are minimal. The
steps described in Section II-A, in fact, compute the smallest
values that can be formally proved to be valid a priori, with
no knowledge of the shape of the result. These values can be
much larger than those of a minimal representation.

A simple example is given in Figure 10. Starting from the
parameters of the operands f and g, the algorithm computes
T = 7 for the result f ∧ g. However, we can see that the
result is actually a rate-latency curve that can be described
with T = 5. This phenomenon – that we have just exemplified
using a minimum operation – affects convolution as well, and

it is especially impactful when many convolutions are required,
such as in a SAC or in (11), where the result of one is in fact
the operand of the next. In fact, we recall that the cost of the
convolution is superquadratic with the size of the extended
representations of the operands (Section II-A).

Note that there is no efficient way – that we know
of – to predict the minimum representation a priori, i.e.,
before the operation is computed. This is basically because
the result depends on unpredictable numerical properties of the
operands (e.g., the segment endpoints). We therefore introduce
an algorithm to minimize the representation a posteriori, i.e.,
after the result of the operation has been computed. We will
show later that minimization is computationally cheap, and
may yield considerable speedups.

We say that tb is a breakpoint of f if f is non-differentiable
in tb, i.e., either of the following is true:
• f has a discontinuity at tb;
• the rates of f in t−b and t+b are different.
A first thing to do is to ensure that the sequence in a

representation is well-formed. We say that S is a well-formed
sequence if the abscissa of any point in S is a breakpoint of
f . In other words, in a well-formed sequence there are no
unnecessary points.4

As we anticipated, the generic algorithms for minimum and
convolution may not yield well-formed sequences, even when
the sequences of their operands are well-formed. However,
recovering well-formedness only takes a simple O (N(S))
check of the resulting sequence S, to find segment-point-
segment triplet that can be merged, i.e., replaced with a
single segment. From now on, we will therefore assume that
sequences are well-formed, without loss of generality.

We describe below a minimization algorithm consisting of
two phases:

4An exception must be made at T , where a point has to be inserted
regardless, marking the end of the transient and the beginning of the periodic
part, because this simplifies the implementation. Such an exception has no
impact on the rest of our discussion.

ZIPPO AND STEA: COMPUTATIONALLY EFFICIENT WORST-CASE ANALYSIS OF FLOW-CONTROLLED NETWORKS WITH NC 2673

Fig. 10. Example of non-minimal result of a minimum operation.

• minimization of the period;
• minimization of the transient.
Hereafter, we denote with ST the transient part of a

sequence S (i.e., in interval T = [0, T [) and with SP its
periodic part (i.e., in interval P = [T, T + d[).

1) Minimization of the Period: We set to finding the mini-
mal period d̃, defined as follows:

Definition 5: A minimal period d̃ for f is such that Rf =
(S, T, d̃, c̃) is a representation of f , and there exists no q ∈
(0, 1) ⊂ Q such that

f(t + q · d̃) = f(t) + q · c̃ for all t ≥ T.

Period minimization is only relevant if the function is not
Ultimately Affine (UA). Graphically, a UA function ends with
a half-line. More formally:

Definition 6: A function f ∈ U is UA if

∀t ≥ T, ∀δ ≥ 0, f(t + δ) = f(t) + ρf · δ.

The above definition is equivalent to saying that f has no
breakpoint for any t > T . Conversely, any f ∈ U having a
breakpoint tb > T is not UA.

Note that it is important that inequality t > T is strict.
In fact, whether T itself is a breakpoint or not may depend on
the transient behavior. On the other hand, we are interested
in the periodic behavior. Therefore, we check if T + d is a
breakpoint, i.e., if point (T, f(T)), repeated after a period in
(T + d, f(T) + c), breaks the linear behavior between one
pseudo-period and the next. Figure 11 shows two examples to
illustrate the above. For this reason, in the following we will
focus on the breakpoints in]T, T + d].

A UA function has no minimal period. In fact, its period has
an arbitrary length d > 0. Accordingly, its SP only consists of
point (T, f(T)) and a segment of length d and slope ρf , hence
c = ρf ·d. For UA functions, then, there is just nothing to do.
Conversely, any f which is not UA has a minimal period.
In fact, call tb the leftmost breakpoint such that tb > T (we
know that there is at least one): then, the interval]T, T + d]
must include tb, since it must include at least one breakpoint
if f is not UA. Then, d ≥ tb−T > 0.

The next question, then, is what characterizes non-minimal
periods and how we can find the minimal one, given a
representation. It is fairly obvious that non-minimal periods are

integer multiples of the minimal one (this can also be proved
formally, see Appendix B). Given Rf = (S, T, d, c), if f also
admits a smaller period d′, it must hold that d/d′ = c/c′ = p,
where p ∈ N. Such p also divides SP in p matching parts,
i.e., such that ∀t ∈ [T, T + d

p [and k ∈ N it holds that
f(t + k · d

p) = f(t) + k · c
p . Hence, we call p a divisor of

SP . We exemplify this in Figure 12. Figure 12a shows f and
its representation, with breakpoints in]T, T +d] highlighted as
circles. Figure 12b shows that d/3 is also a (minimal) period,
and that – accordingly – SP consists of p = 3 consecutive
replicas of a smaller periodic part SP

′
, which is highlighted

in red in the figure. Thus, in order to minimize the period of a
non-UA function, we need to find the possible divisors of SP ,
i.e., to test if the latter is in fact the juxtaposition of matching
parts. This can be done efficiently by observing the following.

Lemma 1: Let f ∈ U be non UA, and let b be the number
of its breakpoints in]T, T + d]. Then, if p ∈ N, p > 1, is a
divisor of SP , it is also a divisor of b.

Proof: Let d̃ be the minimal period for f , and let b̃ be
the number of breakpoints in]T, T + d̃]. Now, by definition,
d = p · d̃ for some p ∈ N. By construction, then, if p > 1, SP

consists of p matching parts, hence p is a divisor of SP . By
Equation (5), if tb ∈]T, T + d̃] is a breakpoint, then tb + d̃ is
also a breakpoint. Then, it is b = p · b̃, i.e., p is also a divisor
of b.

For instance, in Figure 12b, p = 3 is a divisor of SP , and
there are in fact 6 breakpoints in]T, T + d].

Lemma 1 states that, in order to minimize the period, we can
limit ourselves to testing if the divisors of b are also divisors
of SP .

This allows us to formulate an efficient algorithm that
minimizes the period d of a representation Rf :
• Count b as the number of breakpoints of f in]T, T + d];
• Find the prime factorization of b;
• Exhaustively test if the prime factors of b are also divisors

of SP : if they are, update SP , d and c accordingly.
We exemplify this algorithm on the function in Figure 12.

From Figure 12a we observe that b = 6, whose prime
factorization is 2 · 3. Therefore, we test these two primes as
possible divisors of SP , as shown in Figure 13. Testing a
factor p consists, in general, in dividing the sequence in p
parts, defined in [T + i · d

p , T + (i + 1) · d
p [for i = 0 . . . p− 1,

2674 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

Fig. 11. Breakpoints in T vs. T + d.

Fig. 12. Example of factorization of the pseudo-periodic part. We can replace d, c and SP , defined in [T, T +d[, with, respectively, d
3

, c
3

, and SP
′
, defined

in [T, T + d
3
[and highlighted in red. The latter is an equivalent, but more compact, representation of f .

and checking whether, after shifting them down by d
p and left

by c
p , they all match. Figure 13a shows that the test with

p = 2 fails, whereas Figure 13b shows that the test with
p = 3 succeeds. After a division succeeds, it is convenient to
immediately replace SP , d and c with their smaller equivalents
SP

′
, d

p and c
p , so that the upcoming tests with other factors

of b are more efficient. In particular, N(SP
′
) < N(SP). The

test is run exhaustively for all prime factors of b. If a prime
factor p has multiplicity m > 1, it is tested as a divisor of SP

up to m times.
Obtaining number b requires counting breakpoints of f in

]T, T + d], which is a simple O
(
N
(
SP
))

check. To find the
prime factorization of b, we will need the prime numbers in
2 . . .

√
b. Computing primes until a given x is something that

can be done offline – we use an offline list of 1000 primes
in our implementation, which is enough for periods exceeding
62 millions. Lastly, testing if a prime factor p is a divisor of
SP entails a linear comparison between its parts. Let np be the
number of prime divisors of b. In the worst-case, the algorithm
will test, unsuccessfully, all np divisors, thus the complexity
of this last step is O

(
np ·N

(
SP
))

.

2) Minimization of the Transient: In a non-minimal repre-
sentation, the period start T can be overestimated, making the
transient part longer than strictly necessary. This algorithm
aims at removing this excess transient by bringing forward
the period start. We exemplify this process starting from the
representation in Figure 14.

As a first step, which we call by-period, we check if the
rightmost end of the transient part contains sequences that

match with the (already minimized) periodic part itself – and
remove them, in case. In the example of Figure 14 we can see
that the representation is equivalent to the one in Figure 15.

We can obtain this result algorithmically by comparing the
sequence in [T, T +d̃[with the transient sequence immediately
before, i.e., in [T − d̃, T [. If the two are matching, then the
period start can be brought forward to T ′ = T − d̃, while
the other parameters stay the same. This operation removes a
period’s worth of elements from ST . We repeat this process
iteratively until the comparison fails. The end result is a
reduction of the representation by a number of periods k ∈ N0,
and an earlier period start T ′ = T−k · d̃.

As a second step, which we call by-segment, we test if parts
of a period, instead of whole periods, can be found at the
right end of the transient part. In the example we can see
that the representation of Figure 15 is equivalent to the one in
Figure 16.

We can algorithmically obtain this result by comparing
the last pair (point, segment) of the periodic part, say in
[T + d̃− l, T + d̃[, thus of length l, with the transient part of
the same length immediately before the period start, thus in
[T − l, T [. If the two are matching, then the period start is
brought forward to T ′ = T − l, while the other parameters
stay the same.

While this appears close to the by-period step, an important
difference is that SP needs also be altered as a result (although
d̃ will remain the same).

The above steps are repeated until no further changes can be
made. Transient minimization can also be applied to UA func-
tions. For these, one should just check if the tail of the transient

ZIPPO AND STEA: COMPUTATIONALLY EFFICIENT WORST-CASE ANALYSIS OF FLOW-CONTROLLED NETWORKS WITH NC 2675

Fig. 13. Example of the factorization algorithm.

TABLE IV
COMPUTATIONAL RESULTS, EXACT METHOD

TABLE V
COMPUTATIONAL RESULTS, APPROXIMATE METHOD

Fig. 14. Example of a non-minimal representation.

is aligned with the period half-line. Our transient minimiza-
tion algorithm always achieves the minimum T , if one exists.
In fact, some functions do not admit a minimum T . Figure 17
shows a function which is not right-continuous in TL, and

Fig. 15. Representation reduced by a whole number of periods.

whose periodic part must start after TL (recall that Equa-
tion (5) includes a weak inequality), hence admits no minimum
T . In this particular case, our by-segment step yields the
representation in Figure 17. We observe that using any T ′

in]TL, T], by removing a fragment of the rightmost segment
in the periodic part, would yield an equivalent representation
with the same N(S) anyway.

2676 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

Fig. 16. Representation reduced by a segment, altering the pseudo-period
sequence.

Fig. 17. Example of function with a right-discontinuity before the period
start: TL is an infimum for T , but not its minimum.

As the linear comparisons involve, at most, the entire ST ,
the cost of this algorithm is O

(
N
(
ST
))

. Thus the
cost of the entire representation minimization algorithm is
O
(
N
(
ST
)

+ np ·N
(
SP
))

.
With reference to the example presented in Section III,

we repeated the same computations, this time adding represen-
tation minimization in between each operation (both minima
and convolutions).

The new results are in Table IV and Table V, which
highlight both speedups and reductions in representation size
up to three orders of magnitude.

An important aspect that links both is that a larger represen-
tation size translates directly to a higher memory occupancy
during computations. As the occupied memory approaches the
maximum allowed by the computer system, the performance is
also affected. We do believe that the reason why some SACs
do not terminate with the exact method is that they end up
occupying all the available memory, hence disk swaps start
kicking in.

B. Efficient Convolutions of Sub-Additive Functions

In a convolution the resulting period grows like the lcm
of the period of the operands, and the complexity of the

by-sequence algorithm is superquadratic with the length of
the sequences. Thus, it is possible to find instances where a
single convolution may take very long.

It is however possible to leverage sub-additivity to reduce
the complexity of the convolution. To the best of our knowl-
edge, this has never been observed before. We recall that the
convolutions we aim to optimize involve functions ∈ U which
are sub-additive and such that f(0) = 0 by construction (they
are in fact the result of SAC operations). In the following the-
orems and properties, however, we will reduce to a minimum
the set of required hypotheses, in the interest of generality.

We first observe that dominance can be leveraged to abate
the complexity of convolutions. We say that g dominates f if
∀t ≥ 0, g(t) ≥ f(t). In this case:

Theorem 1 (Convolution of Sub-Additive Functions With
Dominance): Let f and g be functions ∈ U such that
g(0) = 0, ∀t, g(t) ≥ f(t), f is sub-additive, and f ⊗ g is
well-defined.5 Then,

f ⊗ g = f. (15)

Proof: Since f is sub-additive, ∀u, s, f(u)+f(s) ≥ f(u+
s). Then, for any t = u+s, f(u)+g(s) ≥ f(u)+f(s) ≥ f(t).
Thus, (f ⊗ g)(t) = infu+s=t{f(u) + g(s)} = f(t) + g(0) =
f(t).

In order to apply this theorem algorithmically, we first
need to compare f and g. Dominance can be verified by
checking statements f = f ∧ g and g = f ∧ g, using the
equivalence algorithm. Both the minimum and the equivalence
check have linear costs as discussed in Section II-A. When
either is true, Theorem 1 allows us to bypass the convolution
altogether, which is instead superquadratic. Note that this
theorem (as well as the following one) requires only the
dominated function f to be sub-additive, whereas the dominant
function g can have any shape, as long as g(0) = 0.

When dominance does not hold, we can test a weaker
property, asymptotic dominance. We say that g dominates f
asymptotically if ∃ t∗ > 0 such that ∀t ≥ t∗, g(t) ≥ f(t). Note
that ρg > ρf is a sufficient condition for this to occur, but not
a necessary one. In this case, we can resort to a “simpler”
convolution as follows:

Theorem 2 (Convolution of Sub-Additive Functions With
Asymptotic Dominance): Let f and g be functions ∈ U such
that f(0) = g(0) = 0, ∀t ≥ t∗, g(t) ≥ f(t), f is sub-additive
and ∀t ≥ 0, f(t) > −∞.

Let g = ga ∧ gb be a decomposition of g where:

ga(t) =

{
g(t) if t ∈ [0, t∗[
+∞ if t ≥ t∗

, gb(t) =

0 if t = 0
+∞ if t ∈]0, t∗[
g(t) if t ≥ t∗

.

Then
f ⊗ g = f ⊗ ga ∧ f.

Proof: Decompose g as per the hypothesis. Then:

f ⊗ g = f ⊗ (ga ∧ gb)
= f ⊗ ga ∧ f ⊗ gb.

5As mentioned in [24, p. 7], convolution f⊗g, with f, g ∈ U , is not defined
if there exist t1, t2 such that f(t1) = +∞ and g(t2) = −∞, or vice versa
(i.e., both are infinite, with opposite signs).

ZIPPO AND STEA: COMPUTATIONALLY EFFICIENT WORST-CASE ANALYSIS OF FLOW-CONTROLLED NETWORKS WITH NC 2677

For the latter part, we observe that ∀t, gb(t) ≥ f(t), and
that gb(0) = 0. We can therefore apply Theorem 1, for which
f ⊗ gb = f . Thus:

f ⊗ g = f ⊗ ga ∧ f ⊗ gb

(15)
= f ⊗ ga ∧ f.

If g dominates f only asymptotically, then f is above g at
some point, but will eventually fall below it. Accordingly, there
exists t∗ such that ∀t ≥ t∗, f(t) ≤ g(t), and by algorithmic
construction of f ∧g we can say that Tf∧g is in fact such t∗.6

Therefore, we can apply Theorem 2, and compute f⊗g by:
• Computing h = f ⊗ ga. Since ∀t ≥ t∗, ga(t) = +∞,

computing this convolution will involve d = df rather
than d = lcm(df , dg), thus smaller D and SD

f , reducing
the cost of computation.

• Computing f ⊗ g = h ∧ f . Being a minimum, it has a
linear cost, but again d = lcm(dh, df) = lcm(df , df) =
df , hence the number of operations is greatly reduced.

The main benefit of applying Theorem 2 lies in dispensing
with computing the representation of f and g over a possibly
very long period d = lcm(df , dg).

If neither of the above theorems can be applied, we can
resort to the following property:

Theorem 3 (Convolution of Sub-Additive Functions as Self-
Convolution of the Minimum): Let f and g be sub-additive
functions ∈ U such that f(0) = g(0) = 0, and f ⊗ g is well
defined. Then,

f ⊗ g = (f ∧ g)⊗ (f ∧ g).

Proof: We recall that if f is sub-additive with f(0) = 0,
then [9, Corollary 3.1.1]7;

f ⊗ f = f ; (16)

if f(0) = g(0) = 0, then [9, page 113]8

f ∧ g ≥ f ⊗ g. (17)

Then

(f ∧ g)⊗ (f ∧ g) = (f ⊗ f) ∧ (f ⊗ g) ∧ (g ⊗ f) ∧ (g ⊗ g)
(16)
= f ∧ (f ⊗ g) ∧ (f ⊗ g) ∧ g

= f ∧ g ∧ (f ⊗ g)
= (f ∧ g) ∧ (f ⊗ g)

(17)
= f ⊗ g.

To exploit this theorem, we would first need to compute
f ∧ g. However, this computation is also a prerequisite for
testing Theorem 1, which one would try first anyway. Theo-
rem 3 transforms a convolution into a self-convolution. Self-
convolutions can be computed more efficiently than standard

6The alert reader may note that this is not true if minimization of the
transient is applied to f ∧ g – we indeed backup Tf∧g beforehand.

7Once again, [9, Corollary 3.1.1] assumes wide-sense increasing functions.
We leave to the interested reader the straightforward task to check that this
hypothesis is not necessary to the correctness of the proof.

8See the previous footnote.

convolutions. In fact, we can bypass more than half of the
elementary convolutions within the by-sequence algorithm,
as per the following properties:

Property 3 (Avoiding Duplicates in Self-Convolutions): A
self-convolution h ⊗ h, h ∈ U , can be computed through
a single by-sequence convolution with SD

h ⊗ SD
h , with

D = [0, 2 · Th + 2 · dh[.
Since this by-sequence convolution is symmetric, we can

reduce the number of its elementary convolutions to

n2 − n

2
< n2,

where n = N
(
SD

h

)
.

Proof: Since the two operands of the convolution have
the same ρh, from [24] we know that:
• T = Th + Th + d = 2 · Th + d9;
• d = lcm(dh, dh) = dh;
• c = ρ · d = ch.

Consider then SD
h , D = [0, T + d[= [0, 2 · Th + 2 · dh[, and

its composing elements ei, 1 ≤ i ≤ n. It is:

SD
h = e0 ∧ e1 ∧ · · · ∧ en;

SD
h ⊗ SD

h =
∧

ei,ej

ei ⊗ ej .

The by-sequence convolution entails n2 elementary convo-
lutions. However, convolution being commutative, many of
these are computed twice, e.g., e1 ⊗ e2 and e2 ⊗ e1. This
can be avoided by computing instead:

SD
h ⊗ SD

h =
∧

ei,ej :i,j∈[0..n−1]

ei ⊗ ej

=

 ∧
ei,ej :i,j∈[0..n−1],i<j

ei ⊗ ej

 ∧

 ∧
ei:i∈[0..n−1]

ei ⊗ ei

 ,

which results in n + (n − 1) + · · · + 1 = n2−n
2 elementary

convolutions.
Therefore, in a self-convolution (such as the one of Theo-

rem 3) one can halve the number of elementary convolutions.
On top of that, a further improvement is warranted by the
following property:

Property 4 (Reducing the Number of Convolutions by Ele-
ment Coloring): Let f and g be sub-additive functions ∈ U
such that f(0) = g(0) = 0, and h = f ∧ g (thus, h(0) = 0).
Let SD

h be the sequence necessary to compute h ⊗ h. Given
colors {f, g}, for an element ek ∈ SD

h defined in interval Dk,
we define its color as

color(ek) =

{
f if ∀t ∈ Dk, ek(t) = f(t)
g otherwise.

9When combined with Theorem 3, we can use T = min(2·Tf∧g , Tf+Tg).

2678 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

An element’s color is thus the function (f or g) it belongs to.
Then, we can compute SD

h ⊗ SD
h as:

SD
h ⊗ SD

h =

 ∧
ei,ej∈SD

h

color(ei) ̸=color(ej)

ei ⊗ ej

 ∧ SD
h , (18)

i.e., we can omit computing elementary convolutions of ele-
ments of the same color.

Proof:
Since h(0) + h(t) = h(t), we can write the convolution as

(h⊗ h)(t) = inf
0≤s≤t

{h(s) + h(t− s)}

= inf
0<s<t

{h(s) + h(t− s)} ∧ h(t).

Thus, we can ignore in the computation any pair (ti, tj), such
that ti + tj = t, for which h(ti)+h(tj) ≥ h(t). We show that
elements of the same color fall in such category.

Let ei, ej be elements of SD
h defined, respectively, on inter-

vals Dei , Dej and such that color(ei) = color(ej) = f . Let
Dei⊗ej =

{
t = ti + tj | ti ∈ Dei , tj ∈ Dej

}
.

Then, for any t ∈ Dei⊗ej
and ti ∈ Dei

, tj ∈ Dej
such that

t = ti + tj , we have that:

(h⊗ h)(t) ≤ h(ti) + h(tj)
= f(ti) + f(tj),

since color(ei) = color(ej) = f . On the other hand, due to
sub-additivity of f ,

f(ti) + f(tj) ≥ f(t) ≥ h(t).

Thus, (ei ⊗ ej)(t) ≥ h(t). Obviously, the same holds if
color(ei) = color(ej) = g.

Therefore, in order to compute SD
h ⊗ SD

h , we only need to
include in the computation of the lower envelope the sequence
SD

h and the convolutions of elements with different colors,
hence Equation (18).

The idea behind Property 4 can be visualized through the
example in Figure 18. Take f and g (Figure 18a), which inter-
sect infinitely many times – hence their convolution cannot be
simplified leveraging dominance. Figure 18b and Figure 18c
report SD

f∧g against elementary convolutions ei ⊗ ej , where
ei and ej have the same color (f and g, respectively). These
figures show that the results of these elementary convolutions
are always above f ∧ g. Instead, in Figure 18d we see
how convolutions of elements of different colors may yield
elements below f ∧ g.

The above two properties allow one to make the compu-
tation of (f ∧ g) ⊗ (f ∧ g) as efficient as possible, skipping
many elementary convolutions. However, it remains to be seen
whether computing the above is faster than computing f ⊗ g
directly. Our results, reported in Section V-A4, show that this
is indeed the case in the vast majority of cases: the ensuing
time reduction ranges from sizeable percentages to 10 times.
Counterintuitively, this is not due to a reduction in the number
of elementary convolutions (which is instead of the same order
of magnitude in the two cases, despite the optimizations of

Property 3 and Property 4). Rather, it is due to the different
topological properties of the ensuing elements. A thorough
discussion of this phenomenon is reported in Section V-A4.

With reference to the example presented in Section III,
we repeated the same computations, this time exploiting also
the theorems proved in this section.

The new results are in Table VI and Table VII, which
highlight further reductions in computation time.

V. PERFORMANCE EVALUATION

In this section, we first evaluate the impact of our findings
by measuring the speedup that they yield with respect to the
standard algorithms described in Section II-A, taken from [25].
Then, we show how our method allows one to analyze
long tandems of flow-controlled nodes, and we compare the
exact and approximate analysis methods as for efficiency and
accuracy.

A. Computational Results

We run our experiments on a desktop PC equipped with
an Intel Core i9-9900, 16 GB of DRAM @3200 MHz,
Windows 10. Our publicly available NC library, called Nancy
[30], [31] is written in C# (.NET 6), and can exploit the PLINQ
framework to easily parallelize and scale the algorithms in
multicore processors. However, to minimize the perturbations
and improve the fairness of comparisons, our experiments are
run in single-thread mode. This allows us to obtain consistent
time measurements: we verified that the execution times of
independent replicas of the same experiment differ by fractions
of percentage points. For this reason, confidence intervals are
omitted. As numerical base type we introduce a Rational type,
in which both numerator and denominator are represented
using System.Numerics.BigInteger, which is an integer type
with no upper or lower bounds. This comes at a performance
cost over using 64-bit integers, but has the distinctive advan-
tage of removing all issues with arithmetic overflow. Execution
times are measured using the System.Diagnostic.Stopwatch
class. When applying our optimizations, the execution times
we measure also include those spent testing our hypotheses
(e.g., dominance or asymptotic dominance).

In the experiments, we focus on convolutions between UPP
curves in the form βR,θ,h = βR,θ + h, where βR,θ is a rate-
latency curve, with latency θ and rate R, and h is the ordinate
of a constant function.

Parameters R, θ, h are generated using a pseudo-random
generator (System.Random) that produces integers between
1 and 1000. The resulting curves are further filtered in
order to match the properties required by the theorems being
tested. We analyze separately the speedup obtained with
representation minimization and with the Theorems described
in Section IV.

1) Representation Minimization: We now test the impact
of representation minimization, described in Section IV-A.
We compute (βa ⊗ βb) ⊗ βc, where the three operands are
randomly generated as described above. First, we computed
the convolutions without any improvement. Then, we com-
puted the same convolutions using representation minimization
both on the results and in between any intermediate step: for

ZIPPO AND STEA: COMPUTATIONALLY EFFICIENT WORST-CASE ANALYSIS OF FLOW-CONTROLLED NETWORKS WITH NC 2679

Fig. 18. Coloring example.

TABLE VI
COMPUTATIONAL RESULTS, EXACT METHOD

TABLE VII
COMPUTATIONAL RESULTS, APPROXIMATE METHOD

instance, when we compute Section II-A, we minimize the
result of each of the four partial convolutions. Note that the

algebraic properties of Theorems 1 to 3 were not used in this
study.

2680 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

Fig. 19. Cardinality of the results of the convolution of three sub-additive functions, with and without minimization.

Fig. 20. Convolution of three sub-additive functions: reduction of the
cardinality of the result due to minimization.

We first report in Figure 19 the reduction in the number of
elements of the result. Each experiment is reported as a point
on a Cartesian plane (with logarithmic scales): its ordinate
is the number of elements of the minimized result, and its
abscissa is the number of elements of the unoptimized one.
The dashed line is the bisector, below which the representation
reduction factor is larger than 1. This makes it easier to
visualize the order of magnitude of the reduction, which is
in fact the horizontal (or vertical) distance between a point
and the bisector. Figure 19 highlights representation reductions
of one to three orders of magnitude. A box plot of the
representation reduction is shown in Figure 20.

We have presented in Section IV-A an example where
representation minimization also yielded a speedup of orders
of magnitude. We therefore evaluate the cost of the above
operations in Figure 21, which compares the optimized and
unoptimized running times, and in Figure 22, which reports a
box plot of the reduction in computation times.

Our results show that – while some gains are certainly there
in most cases – a high reduction in the state occupancy does
not always yield a similar reduction in computation times.
The median time reduction is in the order of 10%. This can be
explained by observing that the impact of period minimization
on the lcm is variable. Consider for example two curves, f
and g, and their respective representations with df = 30 and
dg = 30, such that by performing period minimization on

these representations we obtain d̃f = 5, d̃g = 6. While the
reduction in size is noticeable, the same cannot be said about
computing f ⊗ g, since lcm(30, 30) = lcm(5, 6). Thus, the
more substantial speedups are obtained when minimization
succeeds in removing a common factor from both operands
(e.g., factor 5 from both f and g). Note that these cases
(to which the example of Section IV-A belongs) depend on
numerical properties of the operands, hence are hard to obtain
using random generation of the input (but not impossible –
check the outliers at the bottom of Figure 22).

We stress that the most remarkable benefits of representation
minimization lie in enabling the computation of SACs, hence
the analysis of networks via the exact method. In this case,
representation minimization is indispensable, since the com-
plexity of the SAC algorithm is exponential with the number of
elements. Unfortunately, we are not able to produce a speedup
figure for the SACs, since unoptimized SACs with random
parameters hardly ever terminate at all.

On the other hand, the above experiments highlight that
applying minimization always yields a significant size reduc-
tion, which helps with memory management; it yields at least
a moderate time reduction, most of the times, and – even in
the rare cases when it fails to provide a speedup – the time
spent on applying it is negligible.

2) Convolution of Sub-Additive Functions With Dominance:
We now test the impact of Theorem 1. We compute βR1,θ1,h1⊗
βR2,θ2,h2 , where the operands are randomly generated and
matching the hypotheses of Theorem 1. To make the compar-
ison more insightful, in these and the following experiments
we apply representation minimization to all intermediate com-
putations in the baseline unoptimized algorithm.

The benefits of using Theorem 1 can be seen in Figure 23,
which clearly shows that most speedups are in the region
of 105 times. In many cases the unoptimized convolution
lasted more than 10 minutes, while the optimized version
seldom lasted more than 1 ms. This means that dominance
is a property worth checking.

3) Convolution of Sub-Additive Functions With Asymptotic
Dominance: We compute βR1,θ1,h1 ⊗ βR2,θ2,h2 , where the

ZIPPO AND STEA: COMPUTATIONALLY EFFICIENT WORST-CASE ANALYSIS OF FLOW-CONTROLLED NETWORKS WITH NC 2681

Fig. 21. Computation times of the convolution of three sub-additive functions, with and without minimization.

Fig. 22. Convolution of three sub-additive functions: reduction of computa-
tion times due to minimization.

operands are randomly generated and matching the hypotheses
of Theorem 2. The impact of Theorem 2 is shown in Figure 24,
which still highlights speedups in the order of 105 times:
unoptimized convolutions taking several minutes are often
reduced to fractions of a second. However, some of the
lengthy computations still take a sizable time even after the
optimization. This is because the effect of Theorem 2 is
to use the time of last intersection, rather than lcm(df , dg),
to determine the sequences to be convolved. In few cases, the
former may exceed the latter, hence Theorem 2 may instead
increase the cost (see the point above the bisector in the
bottom-left corner of Figure 24). However, such cases are rare
– and easy to avoid. In fact, we can compare the extremes
of the extended intervals of the operands computed with the
standard algorithm and Theorem 2 and then run the algorithm
that will involve fewer elementary convolutions.

4) Convolution of Sub-Additive Functions as Self-
Convolution of the Minimum: A first assessment of the
impact of Theorem 3 (coupled with Properties 3 and 4) is
reported in Figure 25. It is evident from the figure that the
speedup is less prominent in this case – the maximum that we
get is 30 times. Note that the higher speedups are obtained
when the unoptimized computations take more time (see the
top-right cluster of points). However, there is a speedup in
almost all cases – we only found one outlier at 0.99 times,
meaning that using our theorem takes a little more time
than using the basic convolution algorithm. The obtained
speedup is mostly within one order of magnitude. For this

reason, we report in Figure 26 a box plot of the reduction
of computation times (which is the inverse of the speedup).
With our method, computation times can be expected to be
30% to 80% of the unoptimized times.

Intuitively, one might expect the above speedup to be related
to the number of elementary convolutions. However, Figure 27
shows that this is not the case: the number of elementary
convolutions is roughly the same, regardless of the achieved
speedup. In more than a few cases, applying Theorem 3 entails
computing more elementary convolutions (i.e., all the points
having abscissa smaller than 1), yet the optimized version
yields a nonnegligible speedup nonetheless.

The root cause of the speedups lies elsewhere. To explain
it, we first need to give some details about the by-sequence
convolution algorithm, namely its final step, i.e., computing
the lower envelope of the elementary convolutions.

In a convolution f ⊗ g, one must compute the elementary
convolution of each element in SD

f with each element of SD
g

(D being the extended interval, as shown in Theorem 8 in
Appendix A). This yields a set E of points and segments,
whose lower envelope represents the resulting sequence. The
topological relationship between any two elements x, y ∈ E
is unknown a priori. They may or may not intersect, they may
belong to disjoint time intervals, one may dominate the other.
This is exemplified in Figure 28.

In order to compute the lower envelope of E, the first step
is to determine the intervals of overlap, henceforth intervals
for short. An interval I consists of a domain DI , equal either
to [tI , tI] (point-sized) or]tsI , t

e
I [(segment-sized), and a set

of elements EI ⊆ E which are all the elements of E that
are defined ∀t ∈ DI . The lower envelope is computed as
the juxtaposition of the lower envelopes interval by interval.
To compute and populate intervals, we:
• collect the start and end times of all the elements in E

and order them. Let the result be t0, t1, . . . , tN ;
• derive point- and segment-sized domains for and between

each of these times, i.e., [t0, t0],]t0, t1[, [t1, t1], . . .;
• from the above domains, derive the set of intervals,

initialized with empty lists of elements;
• for each element e ∈ E, find all the intervals e belongs

to, and add e to their lists.

2682 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

Fig. 23. Results of the convolution of sub-additive functions with dominance.

Fig. 24. Results of the convolution between sub-additive functions with asymptotic dominance.

Fig. 25. Results of the convolution between sub-additive functions without asymptotic dominance.

We underline that the element-interval relationship is many-
to-many: the same element may span multiple intervals,
and an interval may include several elements. Afterwards,

we compute the lower envelope of each interval I , and
we concatenate them to obtain the overall lower envelope
of E.

ZIPPO AND STEA: COMPUTATIONALLY EFFICIENT WORST-CASE ANALYSIS OF FLOW-CONTROLLED NETWORKS WITH NC 2683

Fig. 26. Reduction of computation times of the convolution between
sub-additive functions without asymptotic dominance.

TABLE VIII
PARAMETERS OF THE EXAMPLE CONVOLUTION

As for the algorithm costs, we note that:
1) finding which intervals an element belongs to is
O (n · log(n)), where n is the number of intervals, if one
uses an interval tree;

2) inserting an element in the lists of all the intervals it
belongs to, instead, depends on the number of intervals
an element belongs to (something which we show to be
highly variable in a few lines), and is O (n) in a worst
case;

3) computing the per-interval lower envelope of I costs
O (m) if I is point-sized, O (m · log(m)) if segment-
sized, where m is the cardinality of EI ;

4) the concatenation of the per-interval results is O (n).
Of the above steps, we note that steps 2 and 3 are indepen-

dent of the number of elements, but instead depend on how
much overlap there is between them. In fact, the more overlap
there is between the elements of E, the higher the cost of this
algorithm is. Some of the overlaps – actually, most – will not
yield segments that end up being part of the lower envelope.

We show through a relevant example that computing (f ∧
g)⊗ (f ∧ g) yields considerably less populated intervals than
computing f ⊗ g. The parameters are as in Table VIII.

In the non-optimized convolution algorithm, we need to
compute the lower envelope of 810k elements, for which 220k
intervals are used. In the optimized algorithm, we find instead
910k elements and 320k intervals. However, as Figure 29
highlights, there is a significant difference in how many
intervals each element spans. This affects the cost of step 2,
which takes 180s in the non-optimized algorithm vs. 42s in
the optimized one. Moreover, as Figure 30 highlights, there
is also a significant difference in how many elements a given
interval list includes, which affects the cost of computing the
per-interval lower-envelope. In fact, step 3 takes 370s in the
non-optimized algorithm, against 70s in the optimized one.

Overall, applying the optimizations discussed produces,
in this example, a fivefold speedup – which is counter-intuitive
if one considers only the number of convolutions.

B. A Case Study
We now show how our method allows one to analyze flow-

controlled networks. We consider a tandem of n nodes, n =
2 . . . 10, where all nodes are described by the same rate-latency
service curve β16,2, and with input buffers of increasing
size W = 13, 15, . . . , 29. In Figure 31 we compare the
running times of the exact method (10) and the approximate
method (12), with and without the optimizations described in
this paper. We observe that the exact method can only be run
with our optimizations: without them, the computations for
a three-node tandem had not completed after 24 hours. The
graph clearly shows that the approximate method is orders of
magnitude faster than even the optimized exact one. However,
our optimizations still take away one order of magnitude of
computations in that as well. The experiments were run five
times in independent conditions, and 95% confidence intervals
were always within 1% of the average. For that reason, they
are not reported in the graph.

We found that the computation times (whichever the
method) are very sensitive to the actual parameters of the
network: changing the numbers in the above example is likely
to change the vertical scale of the above graph consider-
ably. However, the same pattern still emerges: the unopti-
mized exact method is just unfeasible most of the times;
the optimized exact method comes second; the approximate
method is considerably faster, and even faster with our
optimizations.

To support the above claim, we present another scenario in
Figure 32, where the computation times for the approximate
method are sensibly higher. To obtain such a difference, all
it took was to modify rates to R = 1600, latencies to θ =
200, and buffer sizes to W = 1300, 1305, . . . , 1340. In this
case, the approximate method takes up to hundreds of seconds,
whereas our optimizations curb the computations at fractions
of a second. It is interesting to observe that our optimization
yield times that are non monotonic with the tandem length
(see, e.g., around n = 8). This is because a more favorable
optimization kicks in at n = 8 and further abates computation
times.

What our optimizations allow – for the first time, to the
best of our knowledge – is an assessment of the accuracy
of the approximate method. In fact, this requires being able
to complete exact computations, which just cannot be done
without these very optimizations (unless one handpicks very
trivial scenarios and parameter values, with the obvious risk of
undermining generality). Our results here are quite surprising.
They show that the end-to-end service curves obtained via the
approximate method are always equal to the exact ones. This
occurs not only in the tandems described in this paper, but in
all the cases we analyzed, including many (several tens) with
randomized configurations.

One may legitimately wonder if this is due to the fact that
equality should hold in Equation (13), but so far no one was
able to prove it. We show that this is not the case, i.e., there
are cases when βeq

i > βeq′

i . Consider the three-node tandem
in Figure 7, and assume that nodes have the same rate-latency
service curve β16,2, and with input buffers W2 = 20 and
W3 = 13.

2684 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

Fig. 27. Ratio of elementary convolutions vs. speedup.

Fig. 28. Example of intervals for a set of elements (a) and their lower envelope (b).

Fig. 29. Number of intervals per element.

When computing the equivalent service curve at the first
node, i.e., βeq

1 , βeq′

1 , we obtain different results using the
exact and approximate method, as shown in Figure 33a. It is
βeq

1 > βeq′

1 . The difference can be explained by observing that,
since W2 > W3, it is expected that the worst-case performance
will be initially constrained by the larger buffer W2 (see the
first step in Figure 33a), then by the smaller buffer downstream
(see the second step onwards in the same figure). The exact

Fig. 30. Number of elements per interval.

computation reflects this phenomenon, while the approximate
method does not. However, despite this, Figure 33b shows
that this difference is irrelevant when computing the equivalent
service curve for the whole tandem. It is in fact βeq = βeq′ .
A similar phenomenon was observed in all our experiments.

The above observations cast the approximate method in
a new – and more favorable light. They suggest that the
latter is as performing as the exact one, in an end-to-end

ZIPPO AND STEA: COMPUTATIONALLY EFFICIENT WORST-CASE ANALYSIS OF FLOW-CONTROLLED NETWORKS WITH NC 2685

Fig. 31. Performance comparison of the exact and approximate methods.

Fig. 32. Performance comparison of the optimized/unoptimized approximate method.

context. This is important, because one can always find cases
where – despite our optimizations – the exact method will just
be too costly.

VI. RELATED WORKS

The theory of Network Calculus dates back to the early
1990s, and it is mainly due to the work of Cruz [7], [8],
Le Boudec and Thiran [9], and Chang [10]. Since then,
a considerable number of papers have extended it to include
different scheduling algorithms and flow multiplexing schemes
[32], [33], [34], [35], extensions to stochastic characterizations
of service and traffic [36], [37], [38], specific network archi-
tectures [4], [5], [15], [19], [26], [39].

The computational aspects of NC implementations have
been the subject of several papers in the past. Problems
such as efficient data structures to represent arrival/service
curves or functions, or the complexity of NC operators (e.g.,

convolution or sub-additive closure) have been tackled in the
works of Bouillard et al. [24], and find a thorough exposition
in book [25], which also reviews the implementations of
several existing tools. The idea of UPP curves as a class
closed with respect to NC operations is in fact reported in
these works. We use the NC algorithms described therein as a
baseline. A related research field is that of Real-time Calculus
(RTC), developed for real-time systems [40]. RTC is based
on min-plus and max-plus operators that work on Variability
Characterization Curves, which appear to be very similar to
UPP functions (although [24] observes that the two classes
treat discontinuities in a different way, and [41] remarks
that they were never formally compared). RTC uses min-plus
convolution to obtain the output of a system given its input,
similarly to NC. For this reason, the two methodologies have
often evolved via cross-fertilization, with solutions devised in
one context often being ported to the other. In fact, RTC

2686 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

Fig. 33. Comparison of the results of the exact and approximate method.

work [27] first observed that multi-hop traversal – which
entails chained convolutions – is subject to state explosion,
and that the latter makes convolutions exponentially complex.
They proposed a way to mitigate this problem, which relies
on inferring the maximum time beyond which the shape
of the resulting functions is immaterial, which turns out to
be considerably smaller than the lcm of the periods, thus
leading to more efficient operations. This idea of a compact
domain is transferred to NC in [28] – allowing it to be used
in conjunction with NC service curves. Work [42] further
generalizes it to more operations and more general RTC
settings. NC analysis limited to compact domains [28] consists
in finding finite upper bounds to the time where operations
should be computed. This allows by-sequence operations to
be computed between two finite sets of elements – which one
can imagine as transient parts – disregarding periodicity and
the lcm explosion that comes with it. The upper bound is
chosen so that the end-to-end delay and backlog analysis is
not affected. This is done by working with lower/upper approx-
imations of both the arrival curve and the service curves,
using concave/convex piecewise linear (CPL) curves, which
is computationally inexpensive. As already explained, this
method cannot be applied to our problem, since it leverages
super-additivity of service curves, a property that does not hold
in our settings.

As far as NC tools are concerned, a critical review of
the available software packages is reported in [43]. However,
the latter only reports functional comparisons (i.e., discusses
the capabilities of each tool), and does not address perfor-
mance issues. To the best of our knowledge, there seems
to be no other open NC tool that is able to deal with UPP
functions, beside ours [30], [31]. Most of the existing public
tools, e.g., CyNC [44], NC-Maude [45], DiscoDNC [46],
DEBORAH [47], [48], CATS [49] restrict the implementation
of NC operators to the case of CPL functions. This means that
they cannot be used to run the computations described in this
paper. The COINC library [50] did address UPP (implement-
ing the algorithms in [24]), but it appears that it is no longer

available. Commercial tool Real-Time-at-Work (RTaW) can
perform min-plus computations on UPP functions, and is also
available via a browser-based interpreter [51]. However, its
license explicitly prohibits using it for benchmarking purposes.
The RTC algorithmic toolbox [52] is a Java-based tool for RTC
analysis, available also as a Matlab toolbox, which implements
a general-purpose convolution operator, that should be able
to run – in theory – the examples of Section V. To the
best of our knowledge, RTC’s source code is not available
at the time of writing this paper. We have no indication
that it uses our findings in its computations. However, RTC
uses floating-point arithmetics, which means that it may be
subject to numerical errors whose impact is difficult to assess.
Our arithmetics is based instead on rational numbers, hence
computations are always exact. Moreover, it seems that RTC
loops infinitely in several cases – which are not challenging,
performance-wise [30].

Systems with flow control have traditionally been analyzed
using Markov Chains [6], under the name of “queueing
systems with blocking”. That method allows one to find mean
performance indexes (and, possibly, distributions), starting
from a stochastic characterization of input traffic and service.
The first works analyzing flow control in the framework of
NC have been [53], [54]. The exact method – i.e., the one
using nested SACs – is a direct application of these results.
The approximate method – i.e., the one using convolution of
SACs – is instead shown in [26]. This paper, however, does
not assess the gain in efficiency warranted by the approximate
method, nor it acknowledges the fact that it seems to preserve
accuracy. We argue that this may be due to the fact that
the computational problems addressed in this paper were in
the way of such an evaluation. A different use case with
hop-by-hop flow control is studied in [29], which focuses on
Stream Processing Systems in Real-Time Calculus. It is shown
therein [29, Theorem 3] that an effective service curve for
the first node in a tandem can be computed via a chain of
convolutions of sub-additive expressions, i.e., the same type
whose computation we optimize in this paper. Paper [55]

ZIPPO AND STEA: COMPUTATIONALLY EFFICIENT WORST-CASE ANALYSIS OF FLOW-CONTROLLED NETWORKS WITH NC 2687

uses a NC model with flow control to model Denial-of-Service
(DOS) attacks. Flow control is also addressed in [56], in the
framework of stochastic NC.

VII. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of analyzing
tandems of flow-controlled network elements. We reviewed
the available methods, both exact and approximate, and high-
lighted that both can be onerous from a computation stand-
point. The exact method, in particular, scales rather poorly
with the tandem length, virtually making analysis infeasible
if the tandem has three or more hops. We showed that
the approximate method – although computationally more
affordable – may still scale poorly. We traced back the
problem to the explosion of hyper-periods in the convolution of
ultimately pseudo-periodic curves, a problem which cannot be
mitigated using known techniques (which rely on hypotheses
that our equivalent service curves fail to verify). We then
presented novel computational and algebraic techniques to
reduce the computation time of convolutions. Our first tech-
nique consists in minimizing the representation of a function
after every operation. In fact, the existing algorithms for
NC operations yield non-minimal representations, and the
length of a representation is the dominating factor in the
complexity of the algorithms. We showed that minimization
is computationally cheap. It may yield reductions in the
representation size of orders of magnitude. This translates to
a similar reduction in the number of elementary convolutions
involved in a SAC, hence acting as an enabler for exact
analysis. Moreover, by reducing the length of the periods,
it may also reduce the lcm of the periods of the operands
in a convolution, thus making it more efficient. On top of
that, we presented novel algebraic properties of sub-additive
functions that lead to optimized convolution algorithms. More
specifically, we showed that the convolution of sub-additive
functions can be greatly simplified if a dominance relationship
exists between the two: it is either a simple minimum, or a
convolution of generally shorter sequences, hence much faster.
Moreover, even when dominance cannot be leveraged, we can
always transform the convolution of sub-additive functions
into a self-convolution of their minimum. Self-convolution
of a minimum is a rather efficient operation, since – on
one hand – it allows one to filter away several elementary
convolutions, thus reducing the computation time, and – on the
other – it yields sequence elements that have better topological
properties, making the final computation of a lower envelope
considerably more efficient. We have showed that the speedup
brought by our algebraic properties ranges from two-digit
percentages (especially in the case of self-convolution of the
minimum) to several orders of magnitude (in the other cases),
even factoring in the time required to check the properties
themselves. The cases when little or nothing is gained in
the way of efficiency are a small minority, and can often be
identified a priori. Our optimizations allowed us to compare
the exact and approximate analysis methods, as for efficiency
and accuracy, something that could not be done before due to
the prohibitive times involved in the computations. Our results
are that – rather surprisingly – the approximate method seems

to be as accurate as the exact one, because differences in the
per-node equivalent service curves get erased in an end-to-end
context. This is particularly important, since the approximate
method scales considerably better than the exact one.

We observe that the techniques outlined in this paper may
lend themselves to other applications. For instance, represen-
tation minimization can always be applied when performing
NC operations on UPP curves. Sub-additive UPP curves,
moreover, may come up for other reasons than the curve being
the result of a SAC.

There are several directions in which our work can be
expanded. On the algebraic side, looking for other classes
of functions (beside sub-additive ones) for which similar
properties as those shown in this paper hold, possibly leading
to similar simplifications. Moreover, the fact that – in all
the experiments we performed – the exact and approximate
method end up computing the same end-to-end service curve
from different per-node service curves, clearly calls for further
investigation. On the computational side, we can observe that
several of the complex tasks to be performed with operations
(e.g., finding the lower envelope interval by interval) are
amenable to parallel implementation. Our NC library already
supports parallelization, thus our next endeavor is to investi-
gate this avenue further, to understand what can be gained by
distributing what tasks among parallel threads.

APPENDIX A
MIN-PLUS OPERATIONS ON UPP CURVES

We report below the proofs of the algorithms to compute
the results of min-plus operations for functions in U , i.e.,
ultimately pseudo-periodic piecewise affine Q+ → Q ∪
{+∞,−∞} functions. Proofs are adapted from those in [24],
with a few clarifications of our own. The stability of min-plus
operators for the above class of functions is discussed in [24].
For the sake of conciseness, we will not discuss here how to
compute elementary operations, i.e., between points, segments
and limited piecewise sequences.

We recall that, for functions in U ,
• ∀t ≥ T, f(t + k · d) = f(t) + k · c, k ∈ N;
• ρ = c/d.

Minimum

For the minimum f1 ∧ f2, we need to treat the following
two cases separately:
• ρ1 = ρ2;
• ρ1 < ρ2 (without loss of generality, minimum being

commutative).
Theorem 4 (Minimum of Pseudo-Periodic Functions With

the Same Rate): If ρ1 = ρ2 := ρ, f1 ∧ f2 is pseudo-periodic
with T = max(T1, T2), d = lcm(d1, d2), c = ρ · d.

Proof:

∀t ≥ max(T1, T2)
(f1 ∧ f2)(t + d) = f1(t + d) ∧ f2(t + d)

=
(

f1(t) +
d

d1
· c1

)
∧
(

f2(t) +
d

d2
· c2

)
= (f1(t) + ρ · d) ∧ (f2(t) + ρ · d)
= f1(t) ∧ f2(t) + ρ · d.

2688 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

We observe that, in order to be able to leverage the
pseudo-periodicity property for both f1 and f2 in this proof:
• it is enough that t is the largest between T1 and T2, i.e.,

t = max(T1, T2);
• it is necessary that d = lcm(d1, d2), as both d

d1
and d

d2
need to be ∈ N.

Theorem 5 (Minimum of Pseudo-Periodic Functions With
Different Rates): If ρ1 < ρ2, ∃ t : ∀t ≥ t, f1(t) ≤ f2(t).
In particular, we can compute t as follows:
• define the upper boundary of the pseudo-periodic behav-

ior of f1 as the line U1(t) such that ∀t ≥ T1, f1(t) ≤
U1(t). We can compute this as U1(t) = ρ1 ·t+M1 where
M1 = supT1≤t<T1+d1

(f1(t)− ρ1 · t);
• define the lower boundary of the pseudo-periodic behav-

ior of f2 as the line L2(t) such that ∀t ≥ T2, f2(t) ≥
L2(t). We can compute this as L2(t) = ρ2 · t+m2 where
m2 = infT2≤t<T2+d2(f2(t)− ρ2 · t);

• then, we can bound t through U1(t) ≤ L2(t), i.e., t ≥
M1−m2
ρ2−ρ1

. Note that, by construction, this bound is valid
only if t ≥ max(T1, T2).

Then, f1 ∧ f2 is pseudo-periodic with T = max(T1, T2, t),
d = d1, c = c1.

Proof: We distinguish two cases, i.e., when the last
intersection between f1 and f2 occurs before or after the start
of their pseudo-periodic behaviors.

If before, it is enough to consider T = max(T1, T2) to
have all the information for f1 ∧ f2. Otherwise, we can use
the bound t ≥ max(T1, T2) as T for the same purpose.

Both cases are represented by the expression T =
max(T1, T2, t), which guarantees that (f1 ∧ f2)(t) =
f1(t) ∀t ≥ T . Then:

∀t ≥ max(T1, T2, t)
(f1 ∧ f2)(t + d1) = f1(t + d1) ∧ f2(t + d1)

= f1(t + d1)
= f1(t) + c1

= f1(t) ∧ f2(t) + c1.

The above theorems allow us to compute Tf∧g, df∧g and
cf∧g for any pair of operands f, g. We will then need to
compute the minimum in interval Df∧g = [0, Tf∧g + df∧g[.
In order to do this, we will need sequences S

Df

f , S
Dg
g , with

Df = Dg = Df∧g .

Convolution

First, we decompose both functions, f and g, in their
transient and periodic parts: f = ft ∧ fp, where
• ft(t) = f(t) ∀t ∈ [0, Tf [; ft(t) = +∞ otherwise;
• fp(t) = f(t) ∀t ∈ [Tf , +∞[; ft(t) = +∞ otherwise.
Then, we can decompose the convolution as:

f ⊗ g = ft ∧ fp ⊗ gt ∧ gp

= (ft ⊗ gt) ∧ (ft ⊗ gp) ∧ (fp ⊗ gt) ∧ (fp ⊗ gp).

We discuss first how the above partial convolutions are
computed, and then what are the properties of the final result.

For the first term, we observe that ft ⊗ gt is defined in
[0, Tf + Tg[and is equal to +∞ for t ≥ Tf + Tg .

For the second and third terms, we have the following result:
Theorem 6 (Convolution of Transient and Periodic Part):

ft ⊗ gp is pseudo-periodic from Tf + Tg with period dg and
increment cg . The symmetric result holds for fp ⊗ gt.

Proof: Since ft(t) = +∞ for all t ≥ Tf , we can write –
for all t ≥ 0:

(ft ⊗ gp)(t) = inf
0≤s<Tf

(ft(s) + gp(t− s)).

Then, for t ≥ Tf + Tg , 0 ≤ s < Tf =⇒ t−s ≥ T2. Thus,

(ft ⊗ gp)(t + dp) = inf
0≤s<Tf

(ft(s) + gp(t + dp − s))

= inf
0≤s<Tf

(ft(s) + gp(t− s)) + cg

= (ft ⊗ gp)(t) + cg.

Finally, for the fourth and last term:
Theorem 7 (Convolution of Periodic Parts): fp ⊗ gp is

pseudo-periodic from T = Tf + Tg + d, with length
d = lcm(df , dg) and increment c = d ·min(ρf , ρg).

To compute the convolution, we need sequences
• Sfp

with Dfp
= [Tf , Tf + 2d[;

• Sgp with Dgp = [Tg, Tg + 2d[.
Their convolution Sfp⊗gp

is then computed over interval:

Dfp⊗gp = [Tf + Tg, Tf + Tg + 2d[.

Proof: Since fp and gp are defined as above, we can write:

(fp ⊗ gp)(t) = inf
0≤s≤t

fp(s) + gp(t− s)

= inf
Tf≤s≤t−Tg

fp(s) + gp(t− s)

= inf
a≥Tf ,b≥Tg,a+b=t

fp(a) + gp(b).

Then, for t ≥ Tf + Tg + d:

(fp⊗gp)(t+d) = inf
a≥Tf ,b≥Tg,a+b=t+d

fp(a) + gp(b)

=
(

inf
a′≥Tf ,b′≥Tg,a′+b′=t

fp(a′+d)+gp(b′)
)
∧(

inf
a′≥Tf ,b′≥Tg,a′+b′=t

fp(a′)+gp(b′+d)
)

.

Here, we split the infimum in the min of two expressions,
where term d appears as an argument of fp and gp, respec-
tively, so that later on we can leverage the pseudo-periodic
property for either function. To a closer inspection, the first
case is equivalent to limiting a ∈ [Tf + d, t + d], b ∈
[Tg, t], whereas the second term is equivalent to limiting
a ∈ [Tf , t], b ∈ [Tg + d, t + d]. One can verify that this covers
all the possible cases, thus the split is valid.

Furthermore, having a ∈ [Tf +d, t+d] (in the first term) and
b ∈ [Tg +d, t+d] (in the second term) means that we are, for
all values in the range, to the right of the first pseudo-period
of size d for that function, and we can thus apply the pseudo-
periodic property.

Since d = lcm(df , dg), it is a multiple of both df and dg .
We can compute kf = d/df and kg = d/dg , kf , kg ∈ N.

ZIPPO AND STEA: COMPUTATIONALLY EFFICIENT WORST-CASE ANALYSIS OF FLOW-CONTROLLED NETWORKS WITH NC 2689

Thus, the two terms can be written as:

(fp ⊗ gp)(t + d) =

=
(

inf
a≥Tf ,b≥Tg,a+b=t

fp(a) + gp(b) + kf · cf

)
∧
(

inf
a≥Tf ,b≥Tg,a+b=t

fp(a) + gp(b) + kg · cg

)
= inf

a≥Tf ,b≥Tg,a+b=t
fp(a) + gp(b) + min(kf · cf , kg · cg)

= (fp ⊗ gp)(t) + min(kf · cf , kg · cg)
= (fp ⊗ gp)(t) + d ·min(ρf , ρg).

Minimum of the four terms: It is important to observe that –
in the general case – we cannot compute a priori the value of T
for the minimum of the four terms. This is relevant, since it is
what forces one to implement convolution by decomposing
it into the four partial convolutions – plus a minimum –
described above.

In fact we have that:
• the first term, ft ⊗ gt, has no pseudo-periodic behavior,

so it does not affect this discussion;
• the second term, C2 := ft ⊗ gp, has ρ2 = ρg;
• the third term, C3 := fp ⊗ gt, has ρ3 = ρf ;
• the fourth term, C4 := fp ⊗ gp, has ρ4 = min(ρf , ρg).
Consider the case of ρf > ρg . We can compute

min(C2, C4) to have T = max(T2, T4) = Tf + Tg +
d and d = lcm(d2, d4) = lcm(df , dg). However, for
min(C3, min(C2, C4)) we have T = max(Tf + Tg + d, t),
where t is the bound for the intersection of the two curves,
which we cannot determine a priori as we do not know the
shape of the partial convolutions.

This is not true if ρf = ρg , however, in which case we
can determine that the minimum of the partial convolution has
T = Tf+Tg+d. In fact, under this hypothesis, we can compute
the entire convolution in a single by-sequence convolution.
We thus obtain the following:

Theorem 8 (Convolution of Curves With the Same Slope):
If ρf = ρg (= ρ), then f ⊗ g has:
• T = Tf + Tg + d;
• d = lcm(df , dg);
• c = ρ · d.
The entire convolution can be computed using sequences

S
Df

f , S
Dg
g with Df = [0, Tf +2d[, Dg = [0, Tg +2d[, and then

computing the convolution of these sequences, SD
f⊗g , over the

interval D = [0, Tf + Tg + 2d[.
Proof: See the above discussion.

APPENDIX B
FORMAL PROOF FOR PERIOD MINIMIZATION

We prove formally that periods are integer multiples of the
minimal period, as discussed informally in Section IV-A1.

Theorem 9: Let f ∈ U be a non-UA function, and let d̃ be
its minimal period. Then, for any period d, it holds that

d/d̃ ∈ N.

Proof: We define the integer part of d/d̃ as
k := ⌊d/d̃⌋ and the fractional part of d/d̃ as

q := d/d̃− ⌊d/d̃⌋ ∈ [0, 1[, thus d/d̃ = k + q. Then, it holds
that

f(t + d) = f(t + (k + q)d̃)
= f(t + qd + k · d̃)
(5)
= f(t + qd̃ + (k − 1) · d̃) + c
(5)
= . . .
(5)
= f(t + qd̃) + k · c.

As the period d̃ is assumed to be minimal, if 0 < q < 1 then
we observe f(t+ qd̃) = f(t)+ qc̃ cannot apply, thus the UPP
property does not hold for d. Thus, d cannot be an equivalent
representation unless q = 0.

ACKNOWLEDGMENT

The authors would like to thank Paul Nikolaus of the
DISCO Laboratory, Technische Universität Kaiserslautern, for
useful discussions on the formal aspects of the article, and
the anonymous reviewers, whose suggestions considerably
improved this article.

REFERENCES

[1] P. Goyal, P. Shah, N. K. Sharma, M. Alizadeh, and T. E. Anderson,
“Backpressure flow control,” in Proc. Workshop Buffer Sizing. New
York, NY, USA: Association for Computing Machinery, Dec. 2019,
pp. 1–3, doi: 10.1145/3375235.3375239.

[2] S.-Y. Wang, Y.-R. Chen, H.-C. Hsieh, R.-S. Lai, and Y.-B. Lin, “A flow
control scheme based on per hop and per flow in commodity switches
for lossless networks,” IEEE Access, vol. 9, pp. 156013–156029, 2021.

[3] L. Guo and P. Congdon. Nendica Report: Intelligent Lossless Data
Center Networks, Standard 802, pp. 1–44, 2021.

[4] Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds for
best-effort communication in wormhole networks on chip,” in Proc. 3rd
ACM/IEEE Int. Symp. Netw.-Chip, May 2009, pp. 44–53.

[5] Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds for
on-chip packet-switching networks,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 29, no. 5, pp. 802–815, May 2010.

[6] S. Balsamo, Queueing Networks With Blocking: Analysis, Solution Algo-
rithms and Properties. Berlin, Germany: Springer, 2011, pp. 233–257,
doi: 10.1007/978-3-642-02742-0_11.

[7] R. L. Cruz, “A calculus for network delay, Part I: Network elements
in isolation,” IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 114–131,
Jan. 1991.

[8] R. L. Cruz, “A calculus for network delay, Part II: Network analysis,”
IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 132–141, Jan. 1991.

[9] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet, vol. 2050. Berlin, Germany:
Springer, 2001.

[10] C.-S. Chang, Performance Guarantees in Communication Networks.
Berlin, Germany: Springer, 2000.

[11] J.-Y. Le Boudec, “Application of network calculus to guaranteed service
networks,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1087–1096,
May 1998.

[12] V. Firoiu, J. Y. L. Boudec, D. Towsley, and Z.-L. Zhang, “Theories
and models for internet quality of service,” Proc. IEEE, vol. 90, no. 9,
pp. 1565–1591, Sep. 2002.

[13] J. C. R. Bennett, K. Benson, A. Charny, W. F. Courtney, and
J. Y. L. Boudec, “Delay jitter bounds and packet scale rate guarantee
for expedited forwarding,” IEEE/ACM Trans. Netw., vol. 10, no. 4,
pp. 529–540, Aug. 2002.

[14] M. Fidler and V. Sander, “A parameter based admission control
for differentiated services networks,” Comput. Netw., vol. 44, no. 4,
pp. 463–479, Mar. 2004.

[15] J. B. Schmitt and U. Roedig, “Sensor network calculus—A framework
for worst case analysis,” in Proc. Int. Conf. Distrib. Comput. Sensor
Syst., V. K. Prasanna, S. S. Iyengar, P. G. Spirakis, and M. Welsh, Eds.
Berlin, Germany: Springer, 2005, pp. 141–154.

[16] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul, “Methods
for bounding end-to-end delays on an AFDX network,” in Proc. 18th
Euromicro Conf. Real-Time Syst. (ECRTS), 2006, p. 10.

http://dx.doi.org/10.1145/3375235.3375239
http://dx.doi.org/10.1007/978-3-642-02742-0_11

2690 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

[17] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Worst-case end-to-end delay
analysis of an avionics AFDX network,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2010, pp. 1220–1224.

[18] J. Zhang, L. Chen, T. Wang, and X. Wang, “Analysis of TSN for indus-
trial automation based on network calculus,” in Proc. 24th IEEE Int.
Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2019, pp. 240–247.

[19] L. Maile, K.-S. Hielscher, and R. German, “Network calculus results for
TSN: An introduction,” in Proc. Inf. Commun. Technol. Conf. (ICTC),
May 2020, pp. 131–140.

[20] L. Zhao, P. Pop, Z. Zheng, H. Daigmorte, and M. Boyer, “Latency
analysis of multiple classes of AVB traffic in TSN with standard credit
behavior using network calculus,” IEEE Trans. Ind. Electron., vol. 68,
no. 10, pp. 10291–10302, Sep. 2020.

[21] F. Rehm et al., “The road towards predictable automotive high-
performance platforms,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Feb. 2021, pp. 1915–1924.

[22] M. Andreozzi, F. Conboy, G. Stea, and R. Zippo, “Heterogeneous
systems modelling with adaptive traffic profiles and its application to
worst-case analysis of a DRAM controller,” in Proc. IEEE 44th Annu.
Comput., Softw., Appl. Conf. (COMPSAC), Jul. 2020, pp. 79–86.

[23] M. Boyer, A. Graillat, B. D. D. Dinechin, and J. Migge, “Bounding the
delays of the MPPA network-on-chip with network calculus: Models and
benchmarks,” Perform. Eval., vol. 143, Nov. 2020, Art. no. 102124.

[24] A. Bouillard and É. Thierry, “An algorithmic toolbox for network
calculus,” Discrete Event Dyn. Syst., vol. 18, no. 1, pp. 3–49, Mar. 2008.

[25] A. Bouillard, M. Boyer, and E. Le Corronc, Deterministic Network
Calculus: From Theory to Practical Implementation. Hoboken, NJ,
USA: Wiley, 2018.

[26] A. Bose, X. Jiang, B. Liu, and G. Li, “Analysis of manufacturing
blocking systems with network calculus,” Perform. Eval., vol. 63, no. 12,
pp. 1216–1234, Dec. 2006.

[27] N. Guan and W. Yi, “Finitary real-time calculus: Efficient performance
analysis of distributed embedded systems,” in Proc. IEEE 34th Real-
Time Syst. Symp., Dec. 2013, pp. 330–339.

[28] K. Lampka, S. Bondorf, and J. Schmitt, “Achieving efficiency without
sacrificing model accuracy: Network calculus on compact domains,” in
Proc. IEEE 24th Int. Symp. Model., Anal. Simul. Comput. Telecommun.
Syst. (MASCOTS), Sep. 2016, pp. 313–318.

[29] A. Bouillard, L. T. X. Phan, and S. Chakraborty, “Lightweight modeling
of complex state dependencies in stream processing systems,” in Proc.
15th IEEE Real-Time Embedded Technol. Appl. Symp., Apr. 2009,
pp. 195–204, doi: 10.1109/RTAS.2009.27.

[30] R. Zippo and G. Stea, “Nancy: An efficient parallel network calculus
library,” SoftwareX, vol. 19, Jul. 2022, Art. no. 101178.

[31] R. Zippo and G. Stea. Nancy Library for Network Calculus. Accessed:
Sep. 27, 2022. [Online]. Available: http://nancy.unipi.it/

[32] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea, “Tight end-to-
end per-flow delay bounds in FIFO multiplexing sink-tree networks,”
Perform. Eval., vol. 63, no. 9, pp. 956–987, 2006.

[33] A. Bouillard and G. Stea, “Exact worst-case delay in FIFO-multiplexing
feed-forward networks,” IEEE/ACM Trans. Netw., vol. 23, no. 5,
pp. 1387–1400, Oct. 2015.

[34] S. M. Tabatabaee and J.-Y. L. Boudec, “Deficit round-robin: A second
network calculus analysis,” in Proc. IEEE 27th Real-Time Embedded
Technol. Appl. Symp. (RTAS), Apr. 2021, pp. 171–183.

[35] A. Bouillard, “Individual service curves for bandwidth-sharing policies
using network calculus,” IEEE Netw. Lett., vol. 3, no. 2, pp. 80–83,
Jun. 2021.

[36] Y. Jiang, “A basic stochastic network calculus,” in Proc. Conf. Appl.,
Technol., Architectures, Protocols Comput. Commun. New York, NY,
USA: Association for Computing Machinery, Aug. 2006, pp. 123–134,
doi: 10.1145/1159913.1159929.

[37] M. Fidler, “Survey of deterministic and stochastic service curve models
in the network calculus,” IEEE Commun. Surveys Tuts., vol. 12, no. 1,
pp. 59–86, 1st Quart., 2010.

[38] M. Fidler and A. Rizk, “A guide to the stochastic network cal-
culus,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 92–105,
1st Quart., 2015.

[39] A. Soni, X. Li, J.-L. Scharbarg, and C. Fraboul, “Optimizing network
calculus for switched Ethernet network with deficit round Robin,” in
Proc. IEEE Real-Time Syst. Symp. (RTSS), Dec. 2018, pp. 300–311.

[40] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proc. 21st IEEE Int. Symp.
Circuits Syst. Emerg. Technol., vol. 4, May 2000, pp. 101–104.

[41] L. Rakotomalala, P. Roux, and M. Boyer, “Verifying min-plus compu-
tations with Coq,” in NASA Formal Methods, A. Dutle, M. M. Moscato,
L. Titolo, C. A. Muñoz, and I. Perez, Eds. Cham, Switzerland: Springer,
2021, pp. 287–303.

[42] K. Lampka, S. Bondorf, J. B. Schmitt, N. Guan, and W. Yi, “Generalized
finitary real-time calculus,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., May 2017, pp. 1–9.

[43] B. Zhou, I. Howenstine, S. Limprapaipong, and L. Cheng, “A survey on
network calculus tools for network infrastructure in real-time systems,”
IEEE Access, vol. 8, pp. 223588–223605, 2020.

[44] H. Schioeler, H.-P. Schwefel, and M. B. Hansen, “CyNC: A MAT-
LAB/simulink toolbox for network calculus,” in Proc. ValueTools, 2007,
p. 60.

[45] M. Boyer, “NC-Maude: A rewriting tool to play with network calcu-
lus,” in Leveraging Applications of Formal Methods, Verification, and
Validation (Lecture Notes in Computer Science), vol. 6415, T. Margaria
and B. Steffen, Eds. Crete, Greece: Springer, 2010, pp. 137–151, doi:
10.1007/978-3-642-16558-0_14.

[46] S. Bondorf and J. B. Schmitt, “The DiscoDNC v2: A comprehensive
tool for deterministic network calculus,” in Proc. 8th Int. Conf. Perform.
Eval. Methodologies Tools. Brussels, Belgium: ICST, 2014, pp. 44–49,
doi: 10.4108/icst.Valuetools.2014.258167.

[47] L. Bisti, L. Lenzini, E. Mingozzi, and G. Stea, “Deborah: A tool for
worst-case analysis of FIFO tandems,” in Proc. Int. Symp. Leveraging
Appl. Formal Methods, Verification Validation. Cham, Switzerland:
Springer, 2010, pp. 152–168.

[48] L. Bisti, L. Lenzini, E. Mingozzi, and G. Stea, “Numerical analysis of
worst-case end-to-end delay bounds in FIFO tandem networks,” Real-
Time Syst., vol. 48, no. 5, pp. 527–569, Sep. 2012.

[49] P. Krcál, L. Mokrushin, and W. Yi, “A tool for compositional analysis of
timed systems by abstraction,” in Proc. 19th Nordic Workshop Program.
Theory (NWPT), 2007, pp. 1–4.

[50] A. Bouillard, B. Cottenceau, B. Gaujal, L. Hardouin, S. Lagrange, and
M. Lhommeau, “COINC library: A toolbox for the network calculus:
Invited presentation, extended abstract,” in Proc. 4th Int. ICST Conf.
Perform. Eval. Methodologies Tools. Brussels, Belgium: ICST, 2009.

[51] RealTime-at-Work. Online Min-Plus Interpreter for Network
Calculus. Accessed: Dec. 24, 2021. [Online]. Available:
http://realtimeatwork.com/minplus-playground

[52] E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Toolbox. [Online].
Available: http://www.mpa.ethz.ch/Rtctoolbox

[53] C. S. Chang, “On deterministic traffic regulation and service guarantees:
A systematic approach by filtering,” IEEE Trans. Inf. Theory, vol. 44,
no. 3, pp. 1096–1107, May 1998.

[54] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan, “Performance bounds
for flow control protocols,” IEEE/ACM Trans. Netw., vol. 7, no. 3,
pp. 310–323, Jun. 1999.

[55] V. G. Promyslov and K. V. Semenkov, “Assessment of deterministic
delay bounds for a DoS-attack prevention device with a static window
flow control,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 11089–11093,
2020. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2405896320305280

[56] M. Beck and J. Schmitt, “Generalizing window flow control in
bivariate network calculus to enable leftover service in the loop,”
Perform. Eval., vol. 114, pp. 45–55, Sep. 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0166531616301808

Raffaele Zippo is currently pursuing the Ph.D. degree with the Universities
of Pisa and Florence. He has coauthored several papers appeared in journals
and conferences in his research areas. He is the primary author of Nancy,
an open-source Network Calculus library. He has been involved in industrial
research projects, and is the coauthor of one patent. His research interests
include worst-case analysis of heterogeneous systems and algorithms for NC
computations.

Giovanni Stea received the Ph.D. degree from the University of Pisa,
Italy, in 2003. He is a Full Professor with the Department of Information
Engineering, University of Pisa. He has coauthored more than 120 peer-
reviewed articles and 17 patents in his research areas. He has been involved in
national and EU research projects, and he has led joint research projects with
industrial partners. His current research interests include quality of service
and resource allocation in networks, performance evaluation, and multi-access
edge computing. He was a member of the technical and/or organization
committees for several international conferences, including SIGCOMM and
VTC. He has served on the Editorial Board of the Wireless Networks journal.

Open Access funding provided by ‘Università di Pisa’ within the CRUI CARE Agreement

http://dx.doi.org/10.1109/RTAS.2009.27
http://dx.doi.org/10.1145/1159913.1159929
http://dx.doi.org/10.1007/978-3-642-16558-0_14
http://dx.doi.org/10.4108/icst.Valuetools.2014.258167

