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Abstract

We pose the problem of approximating optimally a given nonnega-
tive signal with the scalar autoconvolution of a nonnegative signal. The
I-divergence is chosen as the optimality criterion being well suited to in-
corporate nonnegativity constraints. After proving the existence of an
optimal approximation we derive an iterative descent algorithm of the al-
ternating minimization type to find a minimizer. The algorithm is based
on the lifting technique developed by Csiszár and Tusnádi and exploits the
optimality properties of the related minimization problems in the larger
space. We study the asymptotic behavior of the iterative algorithm and
prove, among other results, that its limit points are Kuhn-Tucker points
of the original minimization problem. Numerical experiments confirm the
asymptotic results and exhibit the fast convergence of the proposed algo-
rithm.

Keywords: autoconvolution, inverse problem, positive system, I-diver-
gence, alternating minimization

AMS subject classification: 93B30, 94A17

1 Introduction

Inverse problems in system modeling and identification have a long tradition
and have been the subject of a vast technical literature in applied mathematics,
engineering, and specialized applied fields. The classic book [28] surveys the
early contributions to the field. The focus of this paper is on the subclass of
inverse problems for which the models are of autoconvolution type. In linear
time invariant systems, inputs are transformed into outputs by convolution with
a kernel representing the system’s impulse response. Autoconvolution systems
produce the output by convolution of the input signal with itself.

A lot of work has been dedicated to the inverse problem of autoconvolu-
tion for functions on the real line, emphasizing the functional analytic aspects
and motivating its interest in a variety of applications in physics and engineer-
ing. Most of the contributions analyse special cases, where exact solutions to
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the inverse problem exist, and propose different theoretical approaches for their
construction. The paper [10], for example, focuses on inversion of autoconvolu-
tion integrals using spline functions, whereas [9] performs inversion by polygonal
approximation. In [21] inversion is studied based on the application of the FFT
algorithm and digital signal processing concepts. Special cases arise when deal-
ing with autoconvolution of probability density functions, as in [18]. In [11]
the autoconvolution has been introduded for continuous time processes as an
alternative to autocorrelation. Ill-posedness issues and Tykhonov regularization
are omnipresent, see for instance [3], [16].

The main differences between the cited literature and this paper are that we
consider approximation problems, rather than looking for exact solutions which
exist only exceptionally, and that our (time) domain is discrete rather than the
real line. Moreover, the nonnegativity constraint, that we impose on all signals,
is a crucial feature of the present work. Some earlier work shares, at least in
part, our point of view, e.g. the papers [4], [5] dealing with image processing
and 2D systems, contain an algorithm of the same type as ours and an analysis
of its behavior. In [25] an algorithm similar to ours is set up to solve a problem
of signal recovery using auto and cross correlations instead of autoconvolutions.

The purpose of this paper is threefold. First we pose the problem of a
time-domain approximation of a nonnegative input/output systems by finite
autoconvolutions when the output observations are available. Following the
choice made in other optimization problems for nonnegative system, we opt for
the I-divergence, which as argued in [8] (see also [27]), is the natural choice for
approximation problems under nonnegativity constraints. We provide a result
on the existence of the minimizer of the approximation criterion. Then we
propose an iterative algorithm to find the best approximation, and finally we
study the asymptotical behavior of the algorithm.

We employ techniques that have already been used in [13] to analyse a non-
negative matrix factorization problem and the approach is similar to the one in
[14], [15], but differs from the latter references as they treat linear convolutional
problems, whereas the autoconvolution is inherently nonlinear. The algorithm
that we propose is of the alternating minimization type, and the optimality
conditions (the Pythagorean relations) are satisfied at each step.

The inherent non convexity, and nonlinearity of the problem make the anal-
ysis of the asymptotic behavior challenging. The main result in this respect is
contained in Proposition 4.8 which states that all limit points of the algorithm
satisfy the Kuhn Tucker optimality conditions. This should be compared with
other known results on the convergence of alternating minimization algorithms.
In some cases it is possible to show convergence to a (unique) limit, which is also
the minimizer of the criterion. This happens, in particular, when dealing with
a convex criterion. Contributions in this direction are e.g. [6], [27], and [14],
[15], [29]. On the other hand for non convex, nonlinear problems, to the best
of our knowledge, there are no asymptotic results comparable with the present
Proposition 4.8.

It must be remarked that the nonparametric approach to the inverse prob-
lem, that we follow in this paper, is different from the one followed in identifi-
cation or realization of nonnegative and linear systems, see [2] for a survey, and
for instance [1], [12], [17], [23], [24], [26].

A brief summary of the paper follows. In Section 2 we state the problem and
show the existence of a solution and give some of its properties. In Section 3
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the original problem is lifted into a higher dimensional setting, thus making it
amenable to alternating minimization. The optimality properties (Pythagoras
rules) of the ensuing partial minimization problems are discussed here. After
that we derive in Section 4 the iterative minimization algorithm combining the
solutions of the partial minimizations, and analyse the convergence properties.
In particular we show that limit points of the algorithm are Kuhn-Tucker points
of the original optimization problem. In the concluding Section 5 we present
numerical experiments that show the quick convergence of the algorithm and
corroborate the theoretical results on its asymptotic behaviour.

2 Problem statement and initial results

In the paper we consider real valued signals x : Z → R, mapping i 7→ xi, that
vanish for i < 0, i.e., xi = 0 for i < 0. The support of x is the discrete time
interval [0, n], where n = inf{ k : xi = 0, for i > k }, if the infimum is finite
(and then a minimum), and [0,∞) otherwise. The autoconvolution of x is the
signal x ∗ x, vanishing for i < 0, and satisfying,

(x ∗ x)i =

∞∑
j=−∞

xi−jxj =

i∑
j=0

xi−jxj , i ≥ 0. (1)

Notice that if the support of x is finite [0, n], the support of x ∗ x is [0, 2n]. In
this case, when computing (x ∗ x)i for i > n, the summation in Equation (1)
has non zero addends only in the range i− n ≤ j ≤ n, as xi−j = 0 and xj = 0
for i − j > n and j > n respectively. If the signal x is nonnegative, i.e. xi ≥ 0
for all i ∈ Z, the autoconvolution (1) is too. Given a finite nonnegative data
sequence

y = (y0, . . . , yn),

the problem is finding a nonnegative signal x whose autoconvolution x ∗ x best
approximates y. Since the signals involved are nonnegative, the approximation
criterion is chosen to be the I-divergence, see [7, 8]. The I-divergence between
two nonnegative vectors u and v of equal length is

I(u, v) =
∑
i

ui log
ui
vi
− ui + vi ,

if ui = 0 whenever vi = 0, and I(u, v) =∞ if there exist an index i with ui > 0
and vi = 0. It is known that I(u, v) ≥ 0, with equality iff u = v.

Depending on the constraints imposed on the support of x the basic problem
splits into two different cases. The first case involves a full length signal x =
(x0, . . . , xn) and produces the approximation problem specified below, where we
write x ∗ x ∈ Rn+1 for the restriction to [0, n] of the convolution x ∗ x defined
in (1).

Problem 2.1 Given y ∈ Rn+1
+ minimize, over x ∈ Rn+1

+ = [0,∞)n+1,

I = I(x) := I(y||x ∗ x) =

n∑
i=0

(
yi log

yi
(x ∗ x)i

− yi + (x ∗ x)i

)
. (2)
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In alternative, recalling that, in the finite case, the support of x ∗ x is twice the
support of x, one can consider, when n = 2m, the problem of approximating the
given data y = (y0, . . . , y2m) with the autoconvolution x ∗ x of a signal of half
length, x = (x0, . . . , xm). This leads to the following approximation problem.

Problem 2.2 Given y ∈ R2m+1
+ minimize, over x ∈ Rm+1

+ = [0,∞)m+1,

I = I(x) := I(y||x ∗ x) =

2m∑
i=0

(
yi log

yi
(x ∗ x)i

− yi + (x ∗ x)i

)
. (3)

Notice that if the given data are y = (y0, . . . , yn) with n odd, i.e. n = 2m − 1
for some integer m ≥ 1, one can still pose Problem 2.2 with x ∈ Rm+1

+ , simply
introducing the fictitious data point y2m = 0. Hence in Problem 2.2, without
loss of generality, the number of data points will always be assumed odd, that
is we assume n even, n = 2m.

Note that Problem 2.1, under the constraint that the support of x is [0,m],
where m = bn+1

2 c, reduces to Problem 2.2. Although the latter is a constrained
version of the former problem and the approaches to their solutions are similar,
the analysis and the results are very different. In this paper we concentrate on
Problem 2.2 which is easier to analyse and produces an algorithm with a much
simpler structure. Problem 2.1 will be investigated in a future publication.

The objective function (3) is non convex and nonlinear in x, the existence
of a minimizer is therefore not immediately clear. Our first result settles in the
affirmative the question of the existence. The issue of uniqueness remains open,
but we have evidence of the existence of multiple local minima of I(x). See
Section 5 for numerical examples.

Proposition 2.3 Problem 2.2 admits a solution.

Proof Let x = x0 be an arbitrary vector in Rm+1
+ . Performing one step of

Algorithm 4.1, introduced below, yields the iterate x1 satisfying I(x1) ≤ I(x)

and (
∑m
i=0 x

1
i )

2 =
∑2m
i=0 yi, by virtue of Proposition 4.3. The search for a

minimizer can hence be limited to the compact subset K0 ⊂ Rm+1
+ of the x’s

satisfying (
∑m
i=0 x

1
i )

2 =
∑2m
i=0 yi. Noting that I(x) =

∑
i:yi>0(yi log yi

(x∗x)i −
yi) +

∑
i(x ∗ x)i, we can restrict attention even further to those x’s for which

(x ∗ x)i ≥ ε for all i such that yi > 0, by choosing ε sufficiently small and
positive. This implies that we restrict the finding of the minimizers to an even
smaller compact set K1 on which I is continuous. This proves the existence of
a minimizer. �

A basic ingredient for the minimization of the cost (3) is its gradient which is
computed below. As a preliminary step note that

∂

∂xj
(x ∗ x)i =

{
2xi−j , for 0 ≤ j ≤ m, j ≤ i ≤ j +m
0, otherwise ,

therefore

∇jI(x) :=
∂I(x)

∂xj
=

∂

∂xj

( 2m∑
i=0

−yi log(x ∗ x)i + (x ∗ x)i

)
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= 2

j+m∑
i=j

(
− xi−j

yi
(x ∗ x)i

+ xi−j

)
= 2

m∑
`=0

(
− x`

y`+j
(x ∗ x)`+j

+ x`

)
. (4)

Equations (4) are highly nonlinear in x and solving the first order optimality
conditions ∇I(x) = 0, where ∇ denotes the gradient vector, to find the sta-
tionary points of (3), will not result in analytic solutions except in trivial cases.
This observation calls for a numerical approach to the optimization, which we
will present in Section 4.

The following result shows a useful property of the minimizers of I(x).

Proposition 2.4 For any x ∈ Rm+1 it holds that

2m∑
i=0

(x ∗ x)i =
( 2m∑
i=0

xi

)2
. (5)

Moreover, if x? ∈ Rm+1
+ is a minimizer of Problem 2.2,

2m∑
i=0

(x? ∗ x?)i =
( 2m∑
i=0

x?i

)2
=

2m∑
i=0

yi . (6)

Proof The identity (5) is a general property, indeed for any x,

2m∑
i=0

(x ∗ x)i =

2m∑
i=0

i∑
j=0

xi−jxj =

2m∑
j=0

2m∑
i=j

xi−jxj

=

2m∑
j=0

xj

2m∑
i=j

xi−j =
( m∑
j=0

xj

)2
.

To prove identity (6), let x? be a minimizer of I(x) and define f(α) = I(αx?),
for α > 0. It follows that f ′(1) = 0. A direct computation of f ′(α) gives

f ′(α) = − 2
α

∑2m
i=0 yi + 2α

∑
i=0(x? ∗ x?)i, hence f ′(1) = 0 yields the wanted

identity. �

Remark 2.5 If y is strictly positive the I-divergence in (3) vanishes if and only
if yi = (x ∗ x)i for all i ∈ [0, 2m]. That is the (special) case where an exact
solution to the deautoconvolution problem exists. Notice that this is a non
generic case as the 2m + 1 equations yi = (x ∗ x)i in the m + 1 variables x
specify an (at most) (m+ 1)-dimensional submanifold in the data space R2m+1

+ .
See the example below for an illustration.

Example 2.6 For m = 1, let y = (y0, y1, y2) be the given data. Setting the
gradient ∇I(x) = 0 one gets the unique minimizer x? = (x?0, x

?
1) as

x?0 =
2y0 + y1

2
√
y0 + y1 + y2

, x?1 =
2y2 + y1

2
√
y0 + y1 + y2

.

One easily verifies that x? satisfies property (6). Note that this solution, in
general, does not give a perfect match; e.g. it should hold that (x? ∗ x?)0 =
(x?0)2 = y0. In fact, a necessary and sufficient condition on y that insures the
existence of the exact solution, i.e. I(y||x? ∗ x?) = 0, is y21 = 4y0y2.
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Remark 2.7 Problem 2.2 has an interesting probabilistic interpretation when∑2m
i=0 yi = 1. The yi can then be considered as the distribution of a random

variable Y taking on 2m + 1 different values. The problem is then to find the
optimal distribution of independent and identically distributed random variable
X1 and X2 (assuming m+ 1 values) such that Y = X1 +X2. Note that Propo-
sition 2.4 guarantees that the optimal vector x? indeed has the interpretation of
a distribution. In Example 2.6, with y0 + y1 + y2 = 1, the optimal distribution
is then (x0, x1) = (y0 + 1

2y1, y2 + 1
2y1). As now one has y1 = 1 − y0 − y2, it

follows that (x0, x1) = 1
2 (y0−y2+1, y2−y0+1) and the perfect match condition

reduces to
√
y0 +

√
y2 = 1, in which case of course X1 and X2 can be thought

of having a Bernoulli distribution and Y a binomial distribution.

3 Lifting and partial minimizations

In this section Problem 2.2 is recast as a double minimization problem by lifting
it into a larger space. The ambient spaces for the lifted problem are the subsets

Y and W , defined below, of the set of matrices R(2m+1)×(m+1)
+ ,

Y :=
{
Y : Yij = 0, for 0 ≤ i < j and i > j +m, and

∑
jYij = yi

}
,

with y = (y0, . . . , y2m) ∈ R2m+1
+ the given data vector, and

W :=
{
W : Wij = xi−jxj , if 0 ≤ j ≤ m, j ≤ i ≤ j+m; Wij = 0 otherwise

}
.

The structure of the matrices in Y and W is shown below for m = 3,

Y =



Y00 0 0 0
Y10 Y11 0 0
Y20 Y21 Y22 0
Y30 Y31 Y32 Y33

0 Y41 Y42 Y43

0 0 Y52 Y53

0 0 0 Y63


, W =



x0x0 0 0 0
x1x0 x0x1 0 0
x2x0 x1x1 x0x2 0
x3x0 x2x1 x1x2 x0x3

0 x3x1 x2x2 x1x3

0 0 x3x2 x2x3

0 0 0 x3x3


.

The interpretation is as follows. The matrices Y ∈ Y and W ∈W have common

support on the the diagonal and first m subdiagonals of R(2m+1)×(m+1)
+ . The

row marginal (i.e. the column vector of row sums) of any Y ∈ Y coincides with
the given data vector y. The elements of the W matrices factorize, equivalently
their row marginal is the autoconvolution of the column marginal rescaled by
1/
∑
i xi.

We introduce two partial minimization problems over the subsets Y and W .
Recall that the I-divergence between two nonnegative matrices of the same sizes
M,N ∈ Rp×q+ is defined as

I(M ||N) :=
∑
i,j

(
Mij log

Mij

Nij
−Mij +Nij

)
.

Problem 3.1 Given W ∈W , minimize I(Y||W) over Y ∈ Y .
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Problem 3.2 Given Y ∈ Y , minimize I(Y||W) over W ∈W .

The solutions to both problems can be given in closed form.

Lemma 3.3 Problem 3.1 has the explicit minimizer Y? = Y?(W) given by

Y?
ij =

Wij∑
jWij

yi =


xi−jxj
(x ∗ x)i

yi if 0 ≤ j ≤ i ≤ j +m,

0 otherwise.

(7)

Moreover the Pythagorean identity

I(Y||W) = I(Y||Y?) + I(Y?||W) , (8)

holds for any Y ∈ Y , and

I(Y?||W) = I(y||x ∗ x) . (9)

Proof Proceed by direct computation. The Lagrangian function is

L =
∑
ij

(
Yij logYij −Yij logWij −Yij + Wij

)
−
∑
i

λi
(∑

j

Yij − yi
)
,

therefore
∂L

∂Yij
= logYij − logWij − λi = 0 ,

yields Yij = Wije
λi and imposing the marginal constraint

∑
jYij = yi one

gets the asserted minimizer (7). Next, introducing the notation Wi · =
∑
jWij

and Yi · =
∑
jYij , substitution into the RHS of (8) gives

I(Y||Y?) + I(Y?||W)

=
∑
ij

(
Yij log

Yij

Y?
ij

−Yij + Y?
ij

)
+
(
Y?
ij log

Y?
ij

Wij
−Y?

ij + Wij

)
=
∑
ij

(
Yij log

Yij

Wij
−Yij log

yi
Wi ·

−Yij

)
+
( yi
Wi ·

Wij log
yi

Wi ·
+ Wij

)
= I(Y||W) ,

thus proving (8). As a byproduct of the Pythagorean identity one gets that
Y? is indeed a minimizer for Problem 3.1. Finally, using Wij = xi−jxj , and
Wi · = (x∗x)i one finds that the optimal value of Problem 3.1 coincides with (9).
Indeed,

I(Y?||W) =
∑
ij

(
Wij

yi
Wi ·

log
yi

Wi ·
−Wij

yi
Wi ·

+ Wij

)
=
∑
i

(
yi log

yi
Wi ·

− yi + Wi ·

)
=
∑
i

(
yi log

yi
(x ∗ x)i

− yi + (x ∗ x)i

)
= I(y||x ∗ x) .

�
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Remark 3.4 Note that the minimizer Y? in (7) exhibits always the following
symmetry

Y?
j+`,` = Y?

j+`,j , for all `, j = 0, . . . ,m , (10)

i.e., for all j = 0, . . . ,m, the j-th subdiagonal of Y? and the (Yj,j , . . . ,Yj+m,j)
>

subvector of its j-th column coincide.

Lemma 3.5 Problem 3.2 has explicit minimizer W? = W?(Y) corresponding
to x?j as follows,

x?j =
Ŷj

2
√∑2m

i=0 yi

, j = 0, . . . ,m , (11)

where

Ŷj :=

m∑
i=0

Yi+j,i +

j+m∑
i=j

Yij , j = 0, . . . ,m . (12)

Moreover the Pythagorean identity

I(Y||W) = I(Y||W?) + I(W?||W) , (13)

holds for any W ∈W .

Proof Minimizing the I-divergence

I(Y||W) =

m∑
j=0

j+m∑
i=j

(
Yij log

Yij

Wij
−Yij + Wij

)
,

with respect to W ∈W , is equivalent, since Wij = xi−jxj , to minimizing

F (x) :=

m∑
j=0

j+m∑
i=j

(
−Yij log(xi−jxj) + xi−jxj

)

=

m∑
j=0

j+m∑
i=j

(
−Yij log xi−j −Yij log xj + xi−jxj

)
. (14)

Applying to the first and third double sums in (14) the identity

m∑
j=0

j+m∑
i=j

a(i, j) =

m∑
j=0

m∑
`=0

a(`+ j, `) , (15)

and recalling the definition (12), one easily gets

F (x) = −
m∑
j=0

Ŷj log xj +
( m∑
j=0

xj

)2
. (16)

The partial derivatives of F immediately follow from Equation (16) as

∂F

∂xj
= −Ŷj

xj
+ 2

m∑
`=0

x` , j = 0, . . . ,m .
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Setting ∂F
∂xj

= 0 gives

x?j =
Ŷj

2
∑m
`=0 x

?
`

, j = 0, . . . ,m ,

and hence by summation( m∑
j=0

x?j

)2
=

1

2

m∑
j=0

Ŷj =

2m∑
i=0

yi . (17)

where, to prove the last identity, it is sufficient to observe that equation (12)

defines Ŷj as the sum of the j-th subdiagonal and j-th column of the matrix Y ∈
Y . This completes the proof of (11). To prove the Pythagorean identity (13)
it is convenient to prove that I(Y||W) − I(Y||W?) = I(W?||W), which is
equivalent to

m∑
j=0

j+m∑
i=j

Yij log
x?i−jx

?
j

xi−jxj
=

m∑
j=0

j+m∑
i=j

x?i−jx
?
j log

x?i−jx
?
j

xi−jxj
.

The last identity is easily verified by direct substitution of (11) and (12) to ex-
press x?j , and using the identity (15). Again, as a byproduct of the Pythagorean
identity one gets that W? is indeed a minimizer for Problem 3.2. �

Remark 3.6 Problem 3.2 admits an interesting interpretation as a symmetric
(constrained) rank one approximation of a given nonnegative matrix. We intro-
duce the square matrices Y ,W ∈ R(m+1)×(m+1), as ‘rectifications’ of the Y and
W matrices, defined as

Y ij = Yi+j,j , W ij = Wi+j,j = xixj .

Problem 3.2 can be rephrased as

min
x∈Rm+1

+

D(Y || xx>) ,

whose solution is attained at

x?i =
1

2

Y · i + Y i ·√∑
ij Y ij

.

In the probabilistic case (
∑
ij Y ij = 1), the interpretation is that the best

approximation of a two-dimensional distribution (Y ) by an i.i.d. product dis-
tribution (xx>) is attained at x? equal to the average of the row and column
marginals of Y .

Remark 3.7 In the next section, when considering Problem 3.2, the given
Y ∈ Y will always exhibit symmetry (10). When this is the case, Equation (11)
for the optimal x? simplifies considerably. Indeed, under symmetry (10), Equa-
tion (12) becomes

Ŷj =

m∑
`=0

Y`+j,` +

j+m∑
i=j

Yij = 2

j+m∑
i=j

Yij , j = 0, . . . ,m ,

9



Equation (11) then reduces to

x?j =
1

c

j+m∑
i=j

Yij =
1

c

m∑
`=0

Y`+j,j , (18)

where

c :=

√∑2m
i=0 yi =

m∑
j=0

x?j . (19)

The connection between the original Problem 2.2 and the two lifted minimiza-
tion problems is explained in the next proposition.

Proposition 3.8 The minimum of the original Problem 2.2 coincides with the
double minimization Problems 3.1 and 3.2, i.e.

min
x∈Rm+1

+

I(y||x ∗ x) = min
Y∈Y ,W∈W

I(Y||W).

Proof For given x ∈ Rm+1
+ , with corresponding W ∈W , and Y ∈ Y consider

the optimizers Y? and W? from Lemmas 3.3 and 3.5 and recall Equation (9).
Then I(Y||W) ≥ I(Y?||W) = I(y|x ∗ x) ≥ minx I(y||x ∗ x), where the use
of the minimum is justified by Proposition 2.3. Taking the joint minimum on
the left hand side over Y and W, justified by the just cited lemmas, leads to
minY,W I(Y||W) ≥ minx I(y||x ∗ x). Conversely, for given x ∈ Rm+1

+ with
corresponding W ∈W , recalling again (9), one obtains

I(y||x ∗ x) = I(Y?||W) = min
Y
I(Y||W) ≥ min

W
min
Y
I(Y||W) ,

which, taking the minimum x, shows that minx I(y||x∗x) ≥ minY,W I(Y||W),
thus concluding the proof. �

4 The algorithm

This section is the core of the paper. It contains an algorithm aiming at finding
a minimizer of Problem 2.2, which we know to exist in view of Proposition 2.3,
and an analysis of its behavior.

4.1 Construction of the algorithm, basic properties

Starting at an initial W0 ∈ W and combining the two partial minimization
problems, one produces a classic alternating minimization sequence,

· · ·Wt 1−→ Yt 2−→Wt+1 1−→ Yt+1 · · · , (20)

where the superscript t ∈ N denotes the iteration step. The arrow
1−→ denotes

the partial minimization Problem 3.1, the matrix at the tail of the arrow is the
given input, and the matrix at the head Yt = Y?(Wt), is the optimal solution.

The meaning of
2−→ is analogous, and represents the partial minimization Prob-

lem 3.2, and Wt+1 = W?(Yt). Note that, at each iteration, Wt is completely
specified by the fixed data y and by the vector xt = (xt0, . . . , x

t
m) ∈ Rm+1

+ .

10



An iterative algorithm for the minimization Problem 2.2, solely in terms of xt,
can be extracted from the sequence (20) as it immediately follows combining
Lemmas 3.3 and 3.5. The update equation, say xt+1 = I(xt), is given below.

Algorithm 4.1. Starting from an arbitrary vector x0 ∈ Rm+1
+ the update

equation xt+1 = I(xt) is given componentwise by

xt+1
j = xtj

1

c

m∑
`=0

xt` y`+j
(xt ∗ xt)`+j

, j = 0, . . . ,m . (21)

To verify Equation (21) it is enough to shunt the Yt step in the chain (20) and
concatenate directly Wt to Wt+1. Starting with Equation (18) and recalling
the expression of Yt given by Equation (7) one has

xt+1
j =

1

c

m∑
`=0

Yt
`+j,j =

1

c

m∑
`=0

xt`x
t
j

(xt ∗ xt)`+j
y`+j , (22)

which coincides with (21).

Remark 4.2 Application of Algorithm 4.1 to Example 2.6 gives the exact so-
lution in one step, starting from any initial x0j > 0, as is easily verified. This is
an exceptional case.

The portmanteau proposition below summarizes some useful properties of the
algorithm.

Proposition 4.3 The iterates xt, t ≥ 0, of Algorithm 4.1 satisfy the following
properties.

(i) If x0 > 0 componentwise, then xt > 0 componentwise, for all t > 0.

(ii) xt belongs to the simplex S = {x ∈ Rm+1
+ :

∑m
i=0 xi = c} for all t > 0.

(iii) I(y||xt ∗ xt) decreases at each iteration, in fact one has

I(y||xt ∗xt)−I(y||xt+1 ∗xt+1) = I(Yt||Yt+1)+I(Wt+1||Wt) ≥ 0 , (23)

and, as a corollary, I(Wt+1||Wt) vanishes asymptotically.

(iv) If y = xt ∗ xt then xt+1 = xt, i.e. perfect matches are fixed points of the
algorithm.

(v) The update equation (21) can be written in the form

xt+1
j = xtj

(
1− 1

2c
∇jI(xt)

)
. (24)

(vi) If ∇jI(xt) = 0 then xt+1
j = xtj , and if ∇I(x) = 0 then xt+1 = xt, i.e.

stationary points of I(x) are fixed points of the algorithm.

(vii) If I(xt) is increasing (decreasing) in xtj , then xt+1
j < xtj (xt+1

j > xtj).

Proof

(i) Obvious from (21).

11



(ii) Consider the first equality in (22). Summing over j gives

m∑
j=0

xt+1
j =

1

c

m∑
j=0

m∑
`=0

Yt
`+j,j = c ,

in view of the two equalities in (18) and (19).

(iii) Combining the Pythagorean identities (8), (13) for the chain (20) one gets

I(Yt||Wt) = I(Yt||Yt+1) + I(Yt+1||Wt+1) + I(Wt+1||Wt) ,

from which Equation (23) follows applying Equation (9). The corollary is proved
noting that the decreasing sequence I(y||xt ∗ xt) certainly has a limit therefore
the LHS of the equation vanishes asymptotically and so do the terms on the
RHS which are nonnegative for all t > 0.

(iv) Under the assumption, (21) reduces to xt+1
j = xtj

1
c

∑m
`=0 x

t
` = xtj in view

of (ii).

(v) From (4) one gets ∇jI(x) = −2
∑m
`=0

x` y`+j

(x∗x)`+j
+ 2

∑m
`=0 x`, and recalling

that xt ∈ S it follows ∇jI(xt) = −2
∑m
`=0

xt
` y`+j

(xt∗xt)`+j
+ 2 c. Hence, the update

equation (21) can be written as in (24).

(vi), (vii) follow immediately from (v). �

4.2 Convergence analysis

The aim of this section is to investigate the behaviour of Algorithm 4.1 for large
values of the iteration index t. We start with a technical lemma.

Lemma 4.4 For the iterates xt and their corresponding Wt it holds that

(i) I(Wt+1||Wt) = 2c I(xt+1||xt),

(ii)
∑
i |x

t+1
i − xti| ≤

(
I(Wt+1||Wt)

)1/2
,

(iii) limt→∞ I(xt+1||xt) = 0, and hence
∑
i |x

t+1
i − xti| → 0.

Proof To prove (i) a direct computation gives

I(Wt+1||Wt) =

m∑
j=0

j+m∑
i=j

(
Wt+1

ij log
Wt+1

ij

Wt
ij

−Wt+1
ij + Wt

ij

)

=

m∑
j=0

j+m∑
i=j

xt+1
i−jx

t+1
j log

xt+1
i−jx

t+1
j

xti−jx
t
j

=

m∑
j=0

m∑
`=0

xt+1
` xt+1

j log
xt+1
` xt+1

j

xt`x
t
j

= 2

( m∑
`=0

xt+1
`

) m∑
j=0

xt+1
j log

xt+1
j

xtj
= 2c I(xt+1||xt) , (25)

where the last identity follows from Equation (17).
To prove (ii) recall Pinsker’s inequality which states, for probability vectors

p, q, that
∑
i |pi − qi| ≤ (2I(p||q))1/2. The iterates xt and xt+1 are not prob-

ability vectors in general, but both belong to the simplex S therefore, by an

easy corollary to Pinsker’s inequality,
∑
i |x

t+1
i −xti| ≤

(
2c I(xt+1||xt)

)1/2
, from

which, by direct application of (i), one gets (ii).
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Finally, (iii) descends from the fact that I(Wt+1||Wt) vanishes asymptot-
ically, as proved by the corollary to Equation (23), and therefore, applying (i)
again, so does I(xt+1||xt) and by Pinsker’s inequality also

∑
i |x

t+1
i − xti|. �

The existence of limit points of the sequence (xt) of the iterates of the algorithm
is obvious as all xt belong to the simplex S, see Proposition 4.3, which is a
compact set. Note that the sequence (xt) depends on the initial point x0.
Changing x0 the sequence (xt) changes and so do, in general, its limit points.
To avoid a cluttered notation the dependence of the limit points on x0 will not
be evidenced. We continue with establishing some properties of the limit points
of xt.

Lemma 4.5 If x∞ is a limit point of the sequence (xt) then it is a fixed point
of the algorithm, i.e.

x∞ = I(x∞) .

Proof Let x∞ be a limit point of the xt. The map xt+1 = I(xt), given com-
ponentwise in (21), is continuous. Likewise the I-divergence I(u||v) is jointly
continuous in (u, v) for all v > 0. It follows that I(I(x∞)||x∞) is a limit point
of the I(xt+1||xt) which, by Lemma 4.4 (iii), vanishes asymptotically implying
that I(I(x∞)||x∞) = 0, which yields x∞ = I(x∞), i.e. x∞ is a fixed point of
the algorithm. �

Proposition 4.6 The I-divergence I(y||x∞ ∗x∞) is constant over the set of all
limit points x∞ of (xt).

Proof Iteration of (23) gives for t ≤ T

I(y||xt ∗ xt)− I(y||xT ∗ xT ) =

T−1∑
k=t

(
I(Yk+1||Yk) + I(Wk+1||Wk)

)
. (26)

Suppose that the xT converge along a subsequence to x∞. Then we also have

I(y||xt ∗ xt)− I(y||x∞ ∗ x∞) =

∞∑
k=t

(
I(Yk+1||Yk) + I(Wk+1||Wk)

)
. (27)

Suppose x′ is another limit point and xt converges to x′ along a suitable sub-
sequence indexed by t′. Taking the limit for t = t′ → ∞ in Equation (27), one
sees that the RHS vanishes, whereas the LHS gives I(y||x′ ∗x′)−I(y||x∞ ∗x∞),
which is thus zero. �

Remark 4.7 Proposition 4.6 makes it clear that all limit points of xt are equiv-
alent, in the sense that their autoconvolutions have the same informational dis-
tance to the target y in Problem 2.2. In particular, if one limit point is a
minimizer, so are all other limit points.

One can show that the set of limit points of the sequence (xt) is compact and
connected. Compactness follows from Proposition 4.6 (the set of limit points is
closed and contained in the simplex S, hence bounded), whereas connectedness
is essentially a consequence of Lemma 4.4. A similar statement can be found in
[6].
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Proposition 4.8 Limit points of the sequence (xt) are Kuhn-Tucker points of
the minimization Problem 2.2.

Proof Recall the version of the update equation of the algorithm as in (24).
By Lemma 4.5, if x∞ is a limit point of the xt then it is a fixed point of the
algorithm, and Equation (24) reduces to

x∞j = x∞j

(
1− 1

2c
∇jI(x∞)

)
,

showing that, if x∞j > 0 then ∇jI(x∞) = 0. To complete the verification
that x∞ satisfies the Kuhn-Tucker conditions for I(x) one has to check that
if x∞j = 0 then ∇jI(x∞) ≥ 0. So we proceed with investigating limit points

on the boundary. For a given initial condition x0, let (xt) be the sequence of
iterates of the algorithm and define O = {x ∈ Rm+1

+ : ∇jI(x) < 0}. Put
L0 = 0 and let U0 = inf{t > 0 : xt ∈ Oc}. If U0 = ∞, then all xt belong
to O and the xtj form an increasing sequence in view of Equation (24), so

certainly all xtj > x0j > 0 and a limit point with x∞j = 0 cannot occur. If U0

is finite, we put L1 = inf{t > U0 : xt ∈ O}. If L1 = ∞, then xt ∈ Oc for all
t ≥ U0, so the xtj form a decreasing sequence, converging to some x∞j ≥ 0. With
∇jI(xt) ≥ 0 for all t, then necessarily also ∇jI(x∞) ≥ 0, hence x∞ satisfies the
Kuhn-Tucker conditions. In case L1 < ∞ continue by alternating definitions,
U1 = inf{t > L1 : xt ∈ Oc}, L2 = inf{t > U1 : xt ∈ O}, etc. As soon as some
Lk or Uk is infinite, we are in either of the situations just described and in a
limit point one necessarily has x∞j > 0 or x∞j ≥ 0 and ∇jI(x∞) ≥ 0 satisfying
the Kuhn-Tucker conditions.

As a last case, we investigate what happens if all Lk and Uk are finite and the
interest is in possible boundary limit points x∞ with x∞j = 0. Observe that for t
between the Lk and Uk the xtj are increasing and for t between the Uk and Lk+1

the xtj are decreasing. More precisely, for Lk ≤ t < Uk it holds that xt+1
j ≤ xtj

and for Uk ≤ t < Lk+1 it holds that xt+1
j > xtj . In particular xLk

j ≤ xLk−1
j

and xLk
j < xLk+1

j , hence xLk
j is a local minimum of the xtj . Suppose that x∞

is a limit point, with x∞j = 0. Then we have to consider the liminf of the

xtj , which coincides with the liminf of the xLk
j . But, by Lemma 4.4, then also

xLk−1
j converges along a subsequence to the same liminf, and in these points

one has ∇jI(xLk−1) ≥ 0. Hence along any convergent subsequence of the xt

with lim inf xtj = 0, one necessarily has ∇jI(x∞) ≥ 0. As a side remark, in this

last case, since ∇jI(xLk) < 0 for all k one gets in fact ∇jI(x∞) = 0. �

4.3 Convergence properties, further considerations

All empirical examples suggest that the iterates of Algorithm 4.1 converge to a
limit. Although a full proof cannot be given, a number of considerations make
this result plausible, also from a theoretical point of view.

On a technical note, in order to prove that the algorithm converges, one
would need to show that I(x∞||xt) is decreasing in t, for any limit point x∞.
The proof of this property would go along the arguments of Lemma A.1 of [29]
or Lemma 24 in [14], if one could prove that, in our notation, I(W∞||Wt) ≤
c I(x∞||xt). Unfortunately it is only possible to prove the looser inequality
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I(W∞||Wt) ≤ 2c I(x∞||xt). The factor 2 essentially appears as a consequence
of the ‘quadratic nature in x’ of the autoconvolution terms (x ∗ x)i whereas
terms of type (u ∗ x)i, appearing in the context of e.g. [14] or [15], are linear in
x. Consequently one cannot conclude that the xt converge to a global minimizer.
For completeness we present, in Proposition 4.9, the proof of convergence of the
algorithm under the proviso, empirically satisfied in all cases, that I(x∞||xt)
decreases in t. In the simulations Section 5 we shall see an example where
convergence of the xt occurs, but not to a global minimizer of I(x).

Proposition 4.9 Let x∞ be a limit point of the sequence (xt) and assume that
I(x∞||xt) is decreasing in t. Then xt converges to x∞, which is the unique limit
point of xt.

Proof By Proposition 4.3(ii) the xt belong to S and therefore, along some sub-
sequence, xtk → x∞, for some limit point x∞ ∈ S. By continuity I(x∞||xtk)→
0. On the other hand, as the divergences I(x∞||xt) are decreasing, it must hold
that I(x∞||xt) → 0. Using Pinsker’s inequality as in the proof of Lemma 4.4,∑
i |x∞i − xti| ≤ (2c I(x∞||xt))1/2, one concludes that xt → x∞, and hence that

x∞ is the unique limit point. �

Next to the empirically observed behavior in Proposition 4.9, we present another
argument for convergence based on an element of Morse theory, for which we

need the Hessian of the criterion I(x). Differentiate ∂I(x)
∂xj

as given by (4) w.r.t.
xi to get

Hij(x) := −2
yi+j

(x ∗ x)i+j
+ 4

2m∑
l=0

yl+j
(x ∗ x)2l+j

xlxl+j−i + 2.

Note that effectively the index l in the summation runs from max{i − j, 0} to
m + min{i − j, 0}, because of our convention x` = 0 for ` < 0 or ` > m. The
expression for Hij(x) can be rewritten as

Hij(x) := −2
yi+j

(x ∗ x)i+j
+ 4

2m∑
k=0

yk
(x ∗ x)2k

xk−jxk−i + 2,

with the same conventions as for the previous display. Effectively the index k
in the summation runs from max{i, j} to m+ min{i, j}.

We introduce the matrices S(k) ∈ R(m+1)×(m+1), for k ∈ {0, . . . , 2m}, de-

fined by S
(k)
ij = δk,i+j for i, j ∈ {0, . . . ,m}, where the δ’s are the Kronecker

δ’s. Let furthermore x = (x0, . . . , xm)> and ξk = S(k)x. Define P (x) ∈
R(m+1)×(m+1) with elements Pij(x) = 4

∑2m
k=0

yk
(x∗x)2k

xk−jxk−i, then one can

write

P (x) = 4

2m∑
k=0

yk
(x ∗ x)2k

ξkξ
>
k .

Note that, if x0 > 0, the {ξk}mk=0 form a basis of Rm+1, therefore if yk > 0 for
k ∈ [0,m], the matrix P (x) is strictly positive definite. Alternatively, if xm > 0,
the {ξk}2mk=m also form a basis of Rm+1 and again, if yk > 0 for k ∈ [m, 2m], the
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matrix P (x) is strictly positive definite. Furthermore, let Q(x) ∈ R(m+1)×(m+1),
with elements Qij(x) = 2− 2

yi+j

(x∗x)i+j
. Hence the Hessian H(x) satisfies

H(x) = P (x) +Q(x).

Note that Q(x) vanishes if yi = (x ∗ x)i, for all i ∈ [0, 2m], i.e. in the exact
model case, making H(x) strictly positive definite. To find a useful expression
of the Hessian in the general case introduce the matrix R(x) ∈ R(m+1)×(m+1)

with elements Rij(x) =
yi+j

(x∗x)i+j
, and note that Q(x) = 2

(
11> −R(x)

)
, then

H(x) = P (x) + 2
(
11> −R(x)

)
,

moreover the gradient ∇I(x), written as a row vector, is

∇I(x) = x>Q(x) = 2x>
(
11> −R(x)

)
.

Except in the special case of an exact model, it is not obvious that in an
interior limit point x∞ of the algorithm the Hessian H(x∞) is strictly positive
definite. Even the weaker statement that H(x∞) is non-singular is hard to
prove, in spite of the rather explicit form of H(x∞) and the fact that the gra-
dient ∇I(x∞) vanishes. The relevance of non singularity stems from the Morse
lemma, Corollary 2.3 in [22], which states that, the interior critical points of a
function where the Hessian in is non singular are isolated.

Let us now look at a boundary (local) optimizer x? of I(x). By the Kuhn-
Tucker conditions if x?j = 0 then∇jI(x?) ≥ 0, while if x?j > 0 then∇jI(x?) = 0.
Write the boundary optimizer x? as x? = (x?, 0), possibly after a permutation
of the coordinates, with all elements of x? strictly positive. We now look at
optimization of I(x) under the constraint that x = (x, 0), so of I(x) := I(x, 0).
The optimizing x? is now an interior point of the restricted domain, hence the
gradient vanishes, ∇I(x?) = 0. The Hessian H(x?) of I(x), is strictly positive
definite, certainly non-singular and likely the same is true for H(x∞) for any
limit point (x∞, 0) of xt. The arguments underlying this are similar to the
above, although it is hard to give a proof. Again by the Morse lemma, the
critical points of I(x), which are now interior points of the restricted domain,
will then be isolated.

Proposition 4.10 Let x0 be a strictly positive starting point of the algorithm
and let L(x0) be the set of interior limit points produced by the algorithm and
assume that H(x) is non-singular for all x ∈ L(x0). Then L(x0) is a singleton
and thus the algorithm converges to a limit (possibly depending on the starting
value x0). The situation is analogous for boundary limit points. In both cases
the limit is a Kuhn-Tucker point.

Proof By Remark 4.7, the set L(x0) is connected. By the above discussion
the interior limit points are isolated and the same holds for the limit points on
the boundary. The combination of these two properties yields that L(x0) has
to be a singleton, and hence there is convergence of xt to the (unique) limit. Its
Kuhn-Tucker property follows from Proposition 4.8. �

Remark 4.11 In the literature it is not uncommon to see situations where the
limit points are isolated. For instance, along different lines, in [19] and [20] it is

16



shown that in their setting the set of limit points of the iterates is finite, which is
there a consequence of the maximization of a concave objective function. As the
objective function in our minimization problem is not convex, their arguments
cannot be taken over.

Remark 4.12 In principle, the algorithm may produce different limit points,
due to different initial values x0. This has been observed in various numerical
experiments. In fact, different starting values may either result in an interior
limit or in a limit on the boundary, some of its coordinates are zero. The
Kuhn-Tucker property was seen to be verified in these experiments.

To summarize the discussion of this section, it is very plausible that Algo-
rithm 4.1, given a starting value, converges to a limit. This conjecture is moti-
vated by two considerations, for both of them there is ample numerical evidence.
The first one is a decreasing criterion, of which Proposition 4.9 takes care, and
the second is non-singularity of the Hessian in limit points. Yet, a formal proof
of the conjecture is lacking and we have to content ourself with the Kuhn-Tucker
property of limit points as in Proposition 4.8.

5 Numerical experiments

In this section we review the results of numerical experiments for three different
data sets to illustrate the behaviour of Algorithm 4.1. For the first two data sets,
with m = 25 and m = 10 respectively, we investigated whether the algorithm is
capable of retrieving the true parameter vector x, when the data y are actually
generated by the autoconvolution y = x∗x. In the third data set, with m = 10,
the data y are randomly generated.

To evaluate the performance of the algorithm we have generated, for each
data set, one figure comprising three or four graphs. In all of the figures the top
graph shows, in distinct colors, the trajectories of the iterates of the components,
xti, plotted against the iteration number t ∈ [1, T ].

In the exact model case, Figures 1, 2, 3, the diamonds at the right end of the
top graph show the true xi values. The second graph shows the superimposed
plots of the data generating signal x, and of the reconstructed signal xT , at
the last iteration, both plotted against their component number i = 0, 1, . . . ,m.
The third graph shows the decreasing sequence I(y||xt∗xt). The fourth and last
graph shows the superimposed plots of the data vector y and of the reconstructed
convolution xT ∗ xT , at the last iteration, both against the component number
i = 0, 1, . . . 2m.

Figures 4 and 5, relative to the randomly generated data set, contain only
three graphs, as the graph of the data generating signal is meaningless in this
case.

We have observed experimentally that the iterative algorithm always con-
verges very fast. The precise features underlying the experiments are further
detailed below. All figures are collected at the end of the paper.

5.1 True autoconvolution systems

For the first data set we have taken m = 25. The components of the true vec-
tor x (the target values of the algorithm) have been randomly generated from a
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uniform distribution on the interval [1, 11], and the data computed as true auto-
convolutions y = x∗x. The algorithm has been initialized at a randomly chosen
strictly positive x0, with components generated from a uniform distribution in
the interval [0.1, 0.2] and run for T = 1000 iterations. Figures 1 and 2 show the
results for two different runs (i.e. with the same true vector but different initial
conditions) of the algorithm. In Figure 1 we see the desired behavior of the
algorithm, the iterates converge to the true values and the divergence decreases
to zero (because of the perfect match of y = x ∗ x). This is the behavior that
has been observed in a vast majority of numerical experiments of this kind.
In Figure 2 we observe a different behavior. The iterates do not converge to
the true values (see the second graph) and the divergence does not decrease to
zero. On the other hand the convolution xT ∗ xT is always close to y (see the
fourth graphs of both figures). In fact, the instance of running the algorithm
that produced Figure 2 produced iterates that converged to a non-optimal lo-
cal minimum of the objective function I(x). Indeed, we have verified that the
gradient of I(x) at the final iteration vanished, whereas the Hessian turned out
to be strictly positive definite. The conclusion of these two experiments is that
it is wise to run the algorithm for the same data y, and same x, with different
initial conditions and select the outcome with the lowest divergence. For the
present example, the lowest divergence is of course zero, but the conclusion is
also valid for any instance with any data vector y.

The data set used to generate Figure 3 is again of the exact type, y = x ∗ x,
with m = 10 and consequently a lower number of iterations, T = 100. We see
quick convergence of the algorithm, stabilization has already occurred at t = 30.
The general behavior is identical to that observed in Figure 1.

5.2 Approximation of arbitrary data

For the third data set there is no true input signal x such that y = x ∗ x,
rather the components of the data vector y, with m = 10, have been randomly
generated from a uniform distribution on the interval [0.1, 2]. Thus, here we deal
with a genuine approximation problem. Figures 4 and Figure 5 show the results
of two runs of the algorithm, for T = 100 iterations, and are relative to the same
y vector and different initial conditions x0, both with components randomly
generated from a uniform distribution in [0.1, 0.2]. The aim is to find the vector
x which yields the best autoconvolutional approximation to y. Inspecting the
figures we conclude that the algorithm quickly stabilises in both runs. The final
values xT of the iterates and the final divergences I(y||xT ∗ xT ) differ in the
two runs, indicating that (at least) in the second case (with divergence slightly
higher than in the first case) the algorithm is trapped in a non-optimal local
minimum. For the same y several other runs have produced results that were
nearly identical to those in Figure 4, so we infer that this figure represents the
optimal approximation of y. The observed behavior suggests again to run the
algorithm with different initial conditions, possibly in parallel, and to select the
best final approximation as the one with smallest divergence I(y||xT ∗ xT ).
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Figure 1: True model, m = 25 and T = 1000. Top panel: m+ 1 components xti
against iteration t; the diamonds at T = 1000 are the true values xi to which
the xti converge. Second panel: xTi (plusses) and true values xi (circles) against
i. Third panel: I(y||xt ∗ xt) against t. Fourth panel: yi (circles) and (xT ∗ xT )i
(plusses) against i.
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Figure 2: The same data as in Figure 1, with different initial conditions x0.
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Figure 3: A true model with m = 10 and T = 100. The panels are as in Figure 1
and the same conclusions can be drawn.
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Figure 4: Randomly generated y, with m = 10 and T = 100. Top panel:
components xti against iteration index t. Second panel: I(y||xt ∗ xt) against t.
Third panel: yi (circles) and final autoconvolutions (xT ∗ xT )i (plusses) against
i. Third panel: The values of the yi (circles) and the final autoconvolutions
(xT ∗ xT )i (plusses).
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Figure 5: The same data as in Figure 4, with different initial conditions x0.
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