
ar
X

iv
:2

11
2.

04
96

8v
1 

 [
cs

.I
T

] 
 9

 D
ec

 2
02

1

Tradeoff between Diversity and Multiplexing Gains in

Block Fading Optical Wireless Channels

Sufang Yang, Longguang Li†, Haoyue Tang, Jintao Wang

Abstract

The diversity-multiplexing tradeoff (DMT) provides a fundamental performance
metric for different multiple-input multiple-output (MIMO) schemes in wireless
communications. In this paper, we explore the block fading optical wireless com-
munication (OWC) channels and characterize the DMT in the presence of both
optical peak- and average-power constraints. Three different fading distributions
are considered, which reflect different channel conditions. In each channel condi-
tion, we obtain the optimal DMT when the block length is sufficiently large, and we
also derive the lower and upper bounds of the DMT curve when the block length
is small. These results are dramatically different from the existing DMT results
in radio-frequency (RF) channels. These differences may be due to the fact that
the optical input signal is real and bounded, while its RF counterpart is usually
complex and unbounded.

Index terms — Peak- and average-power constraints, outage probability, aver-
age error probability, optical wireless communication, diversity-multiplexing trade-
off.

1 Introduction

As an important complement to conventional RF communication, OWC [1], [2] sig-
nificantly improves the rate performance and offers an ideal solution to the spectrum
scarcity in existing wireless communication systems. Recently it has been considered as
a promising technique in future 6G [3]–[5]. Most current OWC systems adopt the so-
called intensity-modulation and direct-detection (IM-DD) transmission scheme because
of its simplicity and low-cost deployment. In such a scheme, the transmitter modu-
lates the intensity of optical signals coming from light-emitting diodes (LEDs), and the
receiver measures incoming optical intensities by photodetectors [6], [7]. As a conse-
quence, transmit signals are proportional to optical intensities, and hence are real and
nonnegative, fundamentally different from their RF counterparts. Furthermore, consid-
ering safety reasons and hardware limitations, the peak and average optical powers of
transmitting signals typically have to be restricted.

The OWC channels are more sensitive to environment fluctuations than the tradi-
tional RF channels due to the IM-DD transmission scheme. Particularly in the medium-
and long-range OWC, the fluctuations caused by atmospheric turbulence degrade the
quality of the communication links severely. They change the temperature and pressure
of the atmosphere, and eventually lead to the refractive index variations of the path links
[8]–[10]. To combat the channel fading induced by atmospheric fluctuations in the OWC
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systems, the widely adopted MIMO technique plays a pivotal role [11]–[14]. It provides
many independent transmission paths available at the transmitting or receiving ends to
effectively alleviate the atmospheric turbulence path loss [15]. Another benefit provided
by utilizing MIMO techniques is the significant improvement on spectral efficiency when
compared with single-antenna systems [16].

In this paper, we investigate the OWC-MIMO system from a DMT perspective [17]–
[19]. The optimal DMT characterizes the maximal achievable diversity gain at a fixed
multiplexing gain, which provides a fundamental metric for comparison between different
MIMO transmission schemes, and has triggered extensive research, such as deriving the
optimal DMT curves in different channel models [20]–[22], designing various optimal
DMT-approaching coding schemes [23]–[25].

Most of the existing DMT results focus on the traditional RF systems [17]–[22],
among which Zheng and Tse presented the classic optimal tradeoff curve for Rayleigh
fading channels [17]. They showed that when the channel block length satisfies l ≥ lZT

th =
nT + nR − 1, the optimal DMT curve can be exactly characterized as

d⋆ZT(r) = (nT − r)(nR − r), (1)

where d⋆ZT(r) represents the maximum diversity gain achieved at the given multiplexing
gain r, and nT and nR represent the number of transmit and receive antennas, respec-
tively. Moreover, they proposed the bounds on DMT curve at the small block length
regime (l < lZT

th ), if r ≤ r1, with r1 = nR − ⌈ l−|nT−nR|−1
2 ⌉, the maximum diversity gain

is bounded by

d⋆ZT(r) ≤ (nT − r)(nR − r), (2)

d⋆ZT(r) ≥ −l(r − r1) + (nT − r1)(nR − r1), (3)

otherwise the optimal DMT curve agrees with (1). This work established the theoretical
framework for the DMT characterizations, and many similar results in other channels,
such as Rician, Nakagami and log-normal channels are also obtained afterward [19], [21],
[26], [27].

Although there has been extensive research on the DMT in RF systems, few studies
tap into characterizing the optimal DMT for the OWC systems. Some recent results
have shown that many derivations in RF systems are not applicable for OWC systems
due to the unique IM-DD transmission scheme [27]–[29]. The existing work closely
related to ours was done by Jaiswal and Bhatnagar [28]. They considered the real-
valued requirements for the input, and then proposed that if the channel block length
satisfies l ≥ lJB

th = nT+nR−1, the optimal DMT curve for negative exponential channel
is given by

d⋆JB(r) =
1

2
d⋆ZT(r). (4)

Also, under a small block length, they found analogous DMT bounds as in (2), (3).
The one-half factor in (4) reflects the loss of half of the degree of freedom compared

with RF channels, which is due to the fact that optical inputs need to be real-valued.
However, as mentioned before, inputs in OWC channels represent optical intensities,
and hence their values must also be nonnegative. In fact, it is the nonnegativity of the
optical inputs that significantly complicates the analysis of performance limits in OWC
channels. Hence, directly applying half of the traditional RF MIMO capacity formula
to calculate diversity gain in OWC channels cannot be theoretically justified. Also,
the nonnegativity of optical inputs implies that the commonly used two-sided Gaussian
random codes in RF channels are no longer admissible in OWC channels. Furthermore,
due to the optical intensity inputs, the power constraints imposed on the inputs need
to be described differently. All the above issues indicate the existing DMT results in
RF channels cannot be directly extended here. Hence, how to characterize the optimal
DMT in practical OWC channels still remains an open problem.
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In this paper, we first investigate the optimal DMT by fully considering practical
optical input constraints in three different fading channels. We first restrict the optical
inputs to be real-valued and nonnegative. Also, a peak- and an average-power con-
straints are imposed on the inputs. Then we use negative exponential, gamma-gamma,
and log-normal distributions to model the channel with atmospheric turbulence fluctu-
ation from strong to weak intensities. For each channel condition, we establish optimal
DMT in different block length regimes. It turns out that our derived results are funda-
mentally different from the above existing results, which may more precisely reflect the
fundamental limits of practical OWC systems.

Specifically, the main contributions in this paper are as follows.

• Bounds on Instantaneous Capacity: By using a truncated exponential random
coding argument and further applying the generalized entropy power inequality
(GEPI) [30], we first derive a lower bound on instantaneous capacity. Then, an
upper bound is established by some algebraic manipulations on the asymptotic
capacity in [31, Theorem 21]. These bounds are closed-form and proved to be
optimal in terms of outage diversity gain.

• Exact Characterization of Outage Diversity Gain: With the above new instanta-
neous capacity bounds, we establish lower and upper bounds on outage diversity
gain in general fading channels. Applying these bounds into our considered chan-
nels, we precisely characterize the outage diversity gain.

• Error Probability Bounds on Truncated Exponential Random Coding: We propose
a truncated exponential random coding scheme, which helps to derive a new upper
bound on average error probability. Based on this bound, we derive a tight lower
bound on the optimal diversity gain in different fading channels.

• Characterization of Optimal DMT: We characterize the optimal DMT curves in
different block length regimes for considered channels. Specifically, if the block
length l ≥ nT − nR + 1, the optimal diversity gain d⋆(r) can be characterized as

d⋆(r) = (nT − nR + 1)(nR − r). (5)

Otherwise under a small block length (l < nT−nR+1), the optimal diversity gain
can be upper- and lower-bounded by:

d⋆(r) ≤ (nT − nR + 1)(nR − r), (6)

d⋆(r) ≥ l(nR − r). (7)

See Theorems 7, 10, and 12 in detail.

The paper is organized as follows. We end the introduction with a few notational
conventions. Section 2 describes in detail the investigated channel model. In Section 3,
we present new upper and lower bounds on outage diversity gain. Section 4 character-
izes the average error probability with the truncated exponential random coding. The
optimal DMTs of negative exponential, gamma-gamma, and log-normal channels are
characterized in Sections 5, 6 and 7. Numerical examples are included in Section 8.
Most of the proofs are in the appendices.

Notation: Random variables and matrices are boldfaced, e.g., h and X, while their
realizations are typeset in h and X, respectively. Xj denotes the jth column of matrix
X, and xij or [X]ij denotes the ith row and jth entry of X. Sets are typeset in a
special font, e.g., A. Differential Entropy is denoted by h(·), and mutual information by
I(·; ·). ‖ · ‖1 and ‖ · ‖F denote the L1- and Frobenius-norm, respectively. log(·) denotes
the logarithm to the base of e. The expectation of a random variable is denoted by
E[·], and variance by Var[·]. Rm×n (Rm×n

+ ) denotes real (nonnegative) valued set. We

denote x+ , max{0, x}, and use symbol
.
= to denote exponential equality, i.e., g(x)

.
= xb

indicates limx→∞
log g(x)
log x

= b, and >̇, 6̇ are similarly defined.
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2 Channel Model

Consider a MIMO channel with nT LEDs and nR photodetectors. The channel output
is given by1

Y = HX+ Z, (8)

where X ∈ RnT×l
+ denotes the channel input, with l being the block length; where

Z ∈ RnR×l denotes the channel noise, whose entries are independent and identically
distributed (i.i.d.) inside and across blocks; and where H ∈ RnR×nT

+ denotes the channel
matrix, and its entries remain constant inside one block, and i.i.d. across blocks.

The entry hij in H represents the nonnegative and real-valued gain from jth transmit
antenna to ith receive antenna, and it depends on two factors: deterministic distance
attenuation and random atmospheric turbulence loss. Hence, hij can be formulated as

hij = hd
ijh

r
ij , (9)

where hd
ij = e−νdij represents the deterministic part with parameter ν characterizing

the transmission environment and dij being the transmission distance; and where hr
ij

represents the random part characterizing the atmospheric turbulence intensity. In this
paper, we consider three different distributions of the random atmospheric turbulence
hr
ij , which cover the turbulence fluctuation regimes from strong to weak intensities, and

they are

• Negative exponential distribution:

f(hr
ij) = e−hr

ij ; (10)

• Gamma-gamma distribution:

f(hr
ij) =

2(ρ1ρ2)
ρ1+ρ2

2

Γ(ρ1)Γ(ρ2)
(hr

ij)
ρ1+ρ2

2 −1Kρ1−ρ2(2
√

ρ1ρ2hr
ij), (11)

where ρ1 and ρ2 denote the irradiance fluctuation parameters with ρ2 < ρ1; where
Γ(·) denotes the Gamma function with Γ(z) =

∫∞

0
xz−1e−xdx; and where Kτ (·)

denotes the modified Bessel function of the second kind with τ being the order
[32], [33];

• Log-normal distribution:

f(hr
ij) =

1

hr
ij

√

2πσ2
l

exp

(

−
(log(hr

ij)− µl)
2

2σ2
l

)

, (12)

where µl and σl denote the expectation and variance of log(hr
ij), respectively.

Considering the limited dynamic working range of the light emitters and practical
illumination requirements for the modulated optical sources, both peak- and average-
power constraints are imposed on the channel input, i.e.,

P
[

xij > A

]

= 0, ∀i ∈ {1, . . . , nT}, ∀j ∈ {1, . . . , l}, (13a)

1

l
E

[

l
∑

j=1

‖ Xj ‖1

]

≤ E, (13b)

where Xj denotes the jth column input vector; where A represents the allowed maximum
optical power by each antenna; and where E denotes the total average optical power

1For simplicity, we assume the photoelectric coefficient for the photodetector is 1.
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allowed across all antennas. The ratio between the allowed average power and the
allowed peak power is denoted by

α ,
E

A
, (14)

where α ∈ (0, nT

2 ], and is fixed in the paper.
Since information is carried on the intensity of the optical signal, we adopt the

definition of optical signal-to-noise ratio (OSNR) [34]–[36] as follows:

OSNR =
E

σn

. (15)

We further present some useful concepts and definitions in terms of OSNR. More
details can be seen in [17].

Given a transmission scheme, an outage occurs when the mutual information of this
channel can not support the target rate R, and we denote

C , {H : I(Xj ;Yj |H = H) < R} (16)

as the outage event in terms of H.
Among all possible transmission schemes, the outage probability at time index j is

defined as [17]

Pout(OSNR) , min
f(Xj) satisfying (13)

P
[

I(Xj ;Yj |H) ≤ R
]

, (17)

where Xj and Yj denote the transmit and receive vectors at time j, respectively; and
where f(Xj) denotes the input distribution of Xj . In the existing literature [21], [37],
the mutual information term in (17) is also called instantaneous capacity.

Now we briefly define the following diversity and multiplexing gains in terms of OSNR
that will be used in the rest of the paper.

Definition 1. A transmission scheme is said to achieve multiplexing gain r, outage
diversity gain dout(r), and diversity gain d(r) if the rate R(OSNR) satisfies

lim
OSNR→∞

R(OSNR)

log(OSNR)
= r, (18)

the outage probability Pout(OSNR) satisfies

− lim
OSNR→∞

log Pout(OSNR)

log(OSNR)
= dout(r), (19)

and average error probability Pe(OSNR) satisfies

− lim
OSNR→∞

log Pe(OSNR)

log(OSNR)
= d(r). (20)

For each r, we define d⋆(r) as the supremum of the diversity gain achieved over all
schemes at the data rate R(OSNR).

3 Outage Probability Analysis

This section presents the new outage probability bounds, which are crucial in the fol-
lowing derivations of the optimal DMTs.

To estimate the outage probability in (17), we first need to characterize the instan-
taneous capacity. In the presence of the peak- and average-power constraints in (13a)
and (13b), there are no existing results in current literature applicable here. We present
new lower and upper bounds, which are closed-form and sufficiently tight at high OSNR.
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The lower bound is derived by using a truncated exponential random coding argu-
ment. For any time index j ∈ {1, 2, . . . , l}, denote Xj = [Xj1,Xj2, . . . ,XjnT

]T, and let
the entries of Xj be i.i.d. according to the following truncated exponential distribution:

f(Xji) =
1

A
·

µ

1− e−µ
· e−

µXji
A , ∀i ∈ {1, 2, . . . , nT}, (21)

where µ is a parameter satisfying

1

µ
−

e−µ

1− e−µ
=

α

nT
. (22)

The achievable rate by this truncated exponential distribution can serve as a natural
lower bound on the instantaneous capacity. Applying the GEPI in [30] we derive the
following lower bound, whose rigorous proof is shown in Appendix A.

Proposition 2 (Lower Bound). Given a MIMO-OWC channel in (8), we have

I(Xj ;Yj |H) ≥
1

2
log
(

1 + Ll(OSNR)
2nR |HHT|

)

, (23)

where

Ll =

(

2σ2
n

πα2e

)nR
(

1− e−µ

µ
2
− µe−µ

1−e−µ

)2nR

(24)

with µ satisfying (22).

The following upper bound is derived by first assuming the channel state information
available at the transmitter, and then by some algebraic manipulations on the existing
asymptotic capacity in [31, Theorem 21].

Proposition 3 (Upper Bound). Given a MIMO-OWC channel in (8), we have

I(Xj ;Yj |H) ≤
1

2
log
(

Lu(OSNR)
2nR |HHT|

)

, (25)

where

Lu =

(

nT

nR

)(

σ2
n

2πα2e

)nR

. (26)

Remark 4. Note that Lu and Ll in Proposition 2 and 3 are constants independent of
parameters OSNR and H, which play no role in the following derivations related to the
OSNR exponent. △

For a given channel realization H, we denote λi, ∀i = {1, . . . , nR}, as eigenvalues of
HHT with λi arranged in an increasing order. It is obvious they are real and nonnegative.
We further express λi = (OSNR)−ai for i ∈ {1, · · · , nR}. For the notational convenience,
we denote vector a , [a1, · · · , anR

] and vector λ , [λ1, · · · , λnR
].2

Decompose H as UDQ, where U ∈ RnR×nR and Q ∈ RnR×nT are orthogonal matrices,

and D is a diagonal matrix with D = diag[(OSNR)−
a1
2 , . . . , (OSNR)−

anR

2 ]. More details
about the matrix decomposition can be found in Appendix B.1.

For a given distribution of H, by [38] we prove in Appendix B.1 that the distribution
of vector a can be estimated as

f(a)
.
= (OSNR)−

∑nR

i=1

nT−nR+2i−1

2 ai ×

∫∫

f(UDQ)dQdU, (27)

with f(UDQ) being the distribution of H.
Now we are ready to present the main theorem with proof in Appendix B.2.

2It should be noted that the random forms corresponding to a and λ are denoted as a and λ.
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Theorem 5 (Outage Probability Bounds). Given a channel in (8), we have
∫

B

f(a)da 6̇ Pout(OSNR) 6̇

∫

A

f(a)da, (28)

where set A is defined as

A =

{

a : (2nR −

nR
∑

i=1

ai)
+ ≤ 2r

}

, (29)

and set B as

B =

{

a : 2nR −

nR
∑

i=1

ai ≤ 2r

}

; (30)

where f(a) is defined as in (27).

4 Random Coding Error Analysis

This section presents the diversity order of truncated exponential random coding, which
serves as a lower bound on the optimal diversity order.

Consider a random code with codewords i.i.d. as in (21), and the code rate is R =
r log(OSNR). The decoder applies the maximum-likelihood (ML) method to detect the
sent message. Now consider a channel realization H = H, then the conditional error
probability can be upper bounded by the following inequality, whose proof is postponed
to Appendix C.

P(error|H = H) ≤ (OSNR)lr
nR
∏

i=1

(

1 +
g(α, nT)

2
(OSNR)2λi

)− l
2

, (31)

where

g(α, nT) =
1

µ2
−

e−µ

(1 − e−µ)2
(32)

with µ satisfying (22).
Now we present the main theorem on the error probability Pe(OSNR) of this random

coding scheme.

Theorem 6. Given a channel in (8), we have

Pe(OSNR) 6̇ (OSNR)−dout(r) + (OSNR)−dte(r), (33)

where

(OSNR)−dte(r) .
=

∫

Cc

f(a)(OSNR)−
l
2 (
∑nR

i=1(2−ai)
+−2r)da, (34)

with Cc denoting the complement of outage set C.

Proof: We consider the error event conditioned on the channel outage event.
Specifically, we bound the error probability by

Pe(OSNR) = Pout(OSNR)Pe|out(OSNR) + Pe,nout(OSNR) (35)

≤ Pout(OSNR) + Pe,nout(OSNR). (36)

where Pe|out(OSNR) denotes the error probability conditioned on outage event; where
Pe,nout(OSNR) denotes the joint probability of error and no outage events.
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By the definition of outage diversity, the first term in the RHS of (36) is

Pout(OSNR)
.
= (OSNR)−dout(r). (37)

Substitute λi = (OSNR)−ai into (31), we have

P(error|a) 6̇ (OSNR)−
l
2 (
∑nR

i=1(2−ai)
+−2r). (38)

Multiplying with the distribution of a, and integrating over set Cc, the second term in
the RHS of (36) is

Pe,nout(OSNR)
.
= (OSNR)−dte(r). (39)

The proof is concluded.

5 DMT Analysis on Negative Exponential Channel

In this section we consider the OWC channel with atmospheric turbulence according
to negative exponential distribution. This distribution is commonly used to model the
channel with relatively high atmospheric turbulence intensity. We first present results
on the outage diversity order, and based on this, we further characterize the optimal
DMT.

5.1 Outage Diversity Gain Characterization

To distinguish parameters from different fading channels, here we denote lNE
th , dNE

out(r),
dNE
te (r) and d⋆NE(r) as the parameters for negative exponential channel. Similar notations

will also be used in the following gamma-gamma and log-normal channels.
As shown in Theorem 5, to estimate the outage diversity order, we first need to

calculate the distribution of vector a in (27). To do this, we first analyze the distribution
of H. Since the entries in H are assumed i.i.d., and by (10) we expand the distribution
of H as

f(H) =

nR
∏

i=1

nT
∏

j=1

f(hij) (40)

=

nR
∏

i=1

nT
∏

j=1

exp
(

−eνdijhij + νdij
)

. (41)

Now we decompose H = UDQ, and then for any entry hij = [H]ij , we have

hij =

nR
∑

k=1

uik × (OSNR)−
ak
2 × qkj , (42)

where uik = [U]ik and qik = [Q]ik. Since ais are arranged in a decreasing order, at high

OSNR, the last term uinR
× (OSNR)−

anR

2 × qnRj dominates other terms. By the fact
that the entries of H are nonnegative, we have uinR

qnRj ≥ 0. Hence f(H) can be further
simplified as

f(H)
.
=

nR
∏

i=1

nT
∏

j=1

exp
(

−(OSNR)−
anR

2

)

. (43)

Substituting (43) into (27), we get

f(a)
.
= (OSNR)−

∑nR

i=1

nT−nR+2i−1

2 ai ×

nR
∏

i=1

nT
∏

j=1

exp
(

−(OSNR)−
anR

2

)

. (44)
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Now we apply Theorem 5 to bound the outage probability. Note that when anR
< 0,

in (44) the exponential term exp
(

−(OSNR)−
anR

2

)

→ 0, and hence f(a) → 0. With

this observation, we can further reduce the integral domain A in (28) to be A′ = A ∩
{a : anR

≥ 0} and B in (28) to be B′ = B ∩ {a : anR
≥ 0}. Furthermore, when anR

≥ 0,

exp
(

−(OSNR)−
anR

2

)

→ 1 or e−1, and then we can further simplify f(a) in (44) as

f(a)
.
= (OSNR)−

∑nR

i=1

nT−nR+2i−1

2 ai . (45)

Now by definition (17), substituting (45) into (28), the outage diversity gain dNE
out(r) at

multiplexing order r is bounded by

inf
a∈A′

dNE
out(r, a) ≤ dNE

out(r) ≤ inf
a∈B′

dNE
out(r, a), (46)

where function dNE
out(r, a) is defined as

dNE
out(r, a) =

nR
∑

i=1

nT − nR + 2i− 1

2
ai; (47)

and where A′ is given by

A′ =

{

a : a1 ≥ · · · ≥ anR
≥ 0, and (2nR −

nR
∑

i=1

ai)
+ ≤ 2r

}

, (48)

and B′ by

B′ =

{

a : a1 ≥ · · · ≥ anR
≥ 0, and 2nR −

nR
∑

i=1

ai ≤ 2r

}

. (49)

5.2 Optimal DMT Characterization

We now characterize the optimal DMT of negative exponential channel. In fact, our
derived outage probability can serve as a lower bound on average error probability. By
Fano’s inequality [39], we can show

Pe(OSNR) >̇ (OSNR)−dout(r). (50)

Furthermore, note that the error probability bound on truncated exponential coding
established in Section 4 can serve as an upper bound on average error probability. Hence

Pe(OSNR) 6̇ (OSNR)−dout(r) + (OSNR)−dte(r). (51)

Comparing the bounds in (50) and (51), we have the following observations:

• If dte(r) ≥ dout(r), dout(r) becomes the dominant term in the RHS of (51). Com-
bined with (50), the optimal diversity gain d⋆(r) is equal to the outage diversity
gain, i.e.,

d⋆(r) = dout(r). (52)

• If dte(r) < dout(r), dte(r) turns to be the dominant term in the RHS of (51). In
this case, we can simply bound d⋆(r) as

dte(r) ≤ d⋆(r) ≤ dout(r). (53)

With the above two observations, we only need to calculate dout(r) and dte(r). The
optimal DMT of negative exponential channel is characterized in the following theorem.
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Theorem 7 (DMT of Negative Exponential Channel). Given a channel with
distribution in (41), if l ≥ lNE

th = nT − nR + 1, the optimal diversity order is given by

d⋆NE(r) = (nT − nR + 1)(nR − r), (54)

otherwise,

l(nR − r) ≤ d⋆NE(r) ≤ (nT − nR + 1)(nR − r). (55)

Proof: We first calculate dNE
out(r) and dNE

te (r), and then characterize the optimal
diversity order d⋆NE(r).

By linear optimization, it is straightforward to get that the infimums of dNE
out(r, a)

over feasible regimes A′ and B′ are both achieved at a⋆out = [2(nR − r), 0, . . . , 0] in (46),
and the infimums match. Hence the outage diversity gain is given by

dNE
out(r) = (nT − nR + 1)(nR − r). (56)

Now we calculate dNE
te (r). By reducing the integral domain Cc in (34) to Ac, and

enlarging the integral domain Cc in (34) to Bc, we bound dNE
te (r) as

inf
(Bc)′

dNE
te (r, a) ≤ dNE

te (r) ≤ inf
(Ac)′

dNE
te (r, a), (57)

where function dNE
te (r, a) is given by

dNE
te (r, a) =

nR
∑

i=1

nT − nR + 2i− 1

2
ai +

l

2

( nR
∑

i=1

(2− ai)
+
− 2r

)

; (58)

and where (Ac)′ is given by

(Ac)′ =

{

a : a1 ≥ · · · ≥ anR
≥ 0, and (2nR −

nR
∑

i=1

ai)
+ ≥ 2r

}

, (59)

and (Bc)′ by

(Bc)′ =

{

a : a1 ≥ · · · ≥ anR
≥ 0, and 2nR −

nR
∑

i=1

ai ≥ 2r

}

. (60)

Compared with (47), we can see dNE
te (r, a) in (58) is also linear with respect to vector

a, but with an extra term l
2

(
∑nR

i=1(2− ai)
+ − 2r

)

. Given a block length l, we can
still analyze the infimum of dNE

te (r, a) over (Ac)′ or (Bc)′ through linear optimization.
Here, we show that the infimums in (57) also match the same optimal point a⋆te. In the
following, we characterize a⋆te under different block length l:

• when l < nT − nR + 1, the optimal a⋆te is given by

a⋆i = 0, for i = 1, · · · , nR; (61)

• when nT − nR + 2k − 1 ≤ l < nT − nR + 2(k + 1)− 1, ∀k ∈ {1, · · · , nR − r}, the
optimal a⋆te is given by

a⋆i = 2, for i = 1, · · · , k, (62a)

a⋆i = 0, for i = k + 1, · · · , nR; (62b)

• when l ≥ nT − nR + 2((nR − r) + 1)− 1, the optimal a⋆te is given by

a⋆i = 2, for i = 1, · · · , nR − r, (63a)

a⋆i = 0, for i = nR − r + 1, · · · , nR. (63b)
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Substituting a⋆te into (57), we obtain that if l < nT − nR + 1, then

dNE
te (r) = l(nR − r). (64)

Otherwise if l ≥ nT − nR + 1, we have

dNE
te (r) =

k
∑

i=1

(nT − nR + 2i− 1) + l(nR − k − r), k ∈ {1, · · · , nR − r}, (65)

where the choice of k depends on the channel block length l (see (61), (62), and (63)).
Last, we characterize d⋆NE(r). If l ≥ nT −nR +1 and at any k in set {1, · · · , nR − r},

dNE
te (r) ≥

k
∑

i=1

(nT − nR + 2− 1) + (nT − nR + 1)(nR − k − r)

= (nT − nR + 1)(nR − r)

= dNE
out(r). (66)

The proof in this case is concluded by combining (52) with (56) and (66).
If l < nT − nR + 1, by (61) and (56), we have

dNE
te (r) < (nT − nR + 1)(nR − r)

= dNE
out(r). (67)

Combing (53) with (56), (64) and (67), the proof is concluded in this case.

Remark 8. Notice that in (46), the difference in the upper and lower bounds on dNE
out(r)

lies in the optimization domain. It is easily verified that set A represents a larger set
compared with the original outage set C, while set B is a smaller set, i.e.,

B ⊆ C ⊆ A. (68)

The results above show that the infimums over different optimization domains are
achieved at the same point, revealing that the bounds derived in Proposition 2 are
sufficiently tight in terms of diversity gain. △

Remark 9. Observing (61) and (63), we can find that a⋆te has at most (nR − r) entries
equal to 2. Intuitively, note that (Bc)′ denotes the feasible regime in (57), thus any point
a in it satisfies 2nR −

∑nR

i=1 ai ≥ 2r. This indicates that any a has at most (nR − r)
entries equal to 2. △

6 DMT Analysis on Gamma-Gamma Channel

In this section, we consider the OWC channel with atmospheric turbulence according to
gamma-gamma distribution. This distribution is commonly used to model the channel
with moderate-to-strong atmospheric turbulence intensity. The outage diversity and the
optimal DMT are characterized in the following.

6.1 Outage Diversity Gain Characterization

Due to the presence of Kτ (·) in (11), it is difficult to analyze original gamma-gamma
distribution directly. Instead, we choose an alternative expression in terms of power
series, i.e.,

f(hr
ij) =

∞
∑

n=0

dn(ρ1, ρ2)(h
r
ij)

n+ρ2−1 +
∞
∑

n=0

dn(ρ2, ρ1)(h
r
ij)

n+ρ1−1, (69)
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where

dn(ρ1, ρ2) =
(ρ1ρ2)

ρ2+nΓ(ρ1 − ρ2)

Γ(ρ1)Γ(ρ2)(1 + ρ2 − ρ1)nn!
. (70)

Combined with (9) and (40), we obtain the distribution of gamma-gamma channel as

f(H) =

nR
∏

i=1

nT
∏

j=1

{

∞
∑

n=0

dn(ρ1, ρ2)
(

eνdijhij

)n+ρ2−1
eνdij

+
∞
∑

n=0

dn(ρ2, ρ1)
(

eνdijhij

)n+ρ1−1
eνdij

}

. (71)

After some algebraic manipulations, we can rewrite (71) as

f(H)
.
=

nR
∏

i=1

nT
∏

j=1

{

∞
∑

n=0

dn(ρ1, ρ2)
(

eνdij
)n+ρ2

(OSNR)−
n+ρ2−1

2 anR

+

∞
∑

n=0

dn(ρ2, ρ1)
(

eνdij
)n+ρ1

(OSNR)−
n+ρ1−1

2 anR

}

(72)

.
= (OSNR)−

nRnTanR

2 (ρ−1), (73)

where ρ denotes min{ρ1, ρ2}.
Substituting (73) into (27) and (28), the outage diversity order dGG

out (r) at multiplex-
ing order r is bounded by

inf
a∈A′

dGG
out (r, a) ≤ dGG

out (r) ≤ inf
a∈B′

dGG
out (r, a), (74)

where function dGG
out (r, a) is defined as

dGG
out (r, a) =

nR
∑

i=1

(nT − nR + 2i− 1)

2
ai +

nRnTanR

2
(ρ− 1); (75)

and where sets A′ and B′ are defined as in (48) and (49), respectively.

6.2 Optimal DMT Characterization

We present the main results in the following theorem.

Theorem 10 (DMT of Gamma-Gamma Channel). Given a channel with distri-
bution in (71), when nR = 1, if l ≥ lGG

th = ρnT, the optimal diversity order is

d⋆GG(r) = ρnT(1− r), (76)

otherwise,

l(1− r) ≤ d⋆GG(r) ≤ ρnT(1− r); (77)

when nR > 1, if l ≥ lGG
th = nT − nR + 1, then

d⋆GG(r) = (nT − nR + 1)(nR − r), (78)

otherwise,

l(nR − r) ≤ d⋆GG(r) ≤ (nT − nR + 1)(nR − r). (79)
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Proof: We follow the similar arguments as in the proof of Theorem 7. Here we
mainly emphasize the differences.

Compared with the function in (47), dGG
out (r, a) in (75) contains an extra term nRnT(ρ−

1)anR
/2. We consider the cases nR = 1 and nR > 1 separately to show the differences

when a1 = anR
and a1 6= anR

.
When nR = 1, the infimums in (74) are both achieved at point a⋆out = 2(nR − r).

Hence, the outage diversity gain is given by

dGG
out (r) = (nT − nR + 1 + nRnT(ρ− 1))(nR − r)

= ρnT(1− r). (80)

When nR > 1, the infimums in (74) are both achieved at point a⋆out = [2(nR −
r), 0, . . . , 0], and we have

dGG
out (r) = (nT − nR + 1)(nR − r). (81)

Now we calculate dGG
te (r). Modifying the optimization domain in (34) with Ac or

Bc, we have

inf
(Bc)′

dGG
te (r, a) ≤ dGG

te (r) ≤ inf
(Ac)′

dGG
te (r, a), (82)

where function dGG
te (r, a) is defined as

dGG
te (r, a) =

nR
∑

i=1

nT − nR + 2i− 1

2
ai +

nRnTanR

2
(ρ− 1) +

l

2

(

nR
∑

i=1

(2− ai)
+ − 2r

)

;

(83)

and where sets (Ac)′ and (Bc)′ are defined as in (59) and (60), respectively.
Compared with the function in (58), dGG

te (r, a) also has an extra term nRnT(ρ −
1)anR

/2. We still separately consider the cases when nR = 1 and nR > 1.
When nR = 1, if l < nT − nR + 1 + nRnT(ρ − 1) = ρnT, the infimums in (82) are

both achieved at a⋆te = 0, which yields

dGG
te (r) = l(nR − r), (84)

otherwise the infimums in (82) are both achieved at a⋆te = 2(nR − r), thus

dGG
te (r) = (nT − nR + 1 + nRnT(ρ− 1))(nR − r)

= ρnT(1− r). (85)

When nR > 1, since sets (A)′ and (B)′ in (82) are the same as the corresponding sets
in the negative exponential channel in (57), here we just need to show dGG

te (r) = dNE
te (r).

On the one hand, as nRnT(ρ − 1)anR
/2 ≥ 0 for any anR

≥ 0, we can obtain that
dGG
te (r, a) ≥ dNE

te (r, a) at any a with anR
≥ 0. On the other hand, at the point a⋆te defined

in (61), (62), and (63), we have dGG
te (r, a⋆te) = dNE

te (r, a⋆te). The proof is concluded.

Remark 11. Notice that when nR > 1, the nRth entry of a⋆out or a⋆te is always 0, which
indicates the extra term nRnT(ρ − 1)anR

/2 plays no role on dGG
out (r, a) and dGG

te (r, a).
Hence when nR > 1, we always have dGG

out (r) = dNE
out(r) and dGG

te (r) = dNE
te (r). △

7 DMT Analysis on Log-Normal Channel

In this section, we consider the OWC channel with atmospheric turbulence according
to log-normal distribution. This distribution is commonly used to model the channel
with weak atmospheric turbulence intensity. The outage diversity order and the optimal
DMT are characterized in the following.
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7.1 Outage Diversity Gain Characterization

Substituting (9) and (12) into (40), we have

f(H) =

nR
∏

i=1

nT
∏

j=1











1

hij

√

2πσ2
l

exp






−

(

log(exp(νdij)hij)− µl

)2

2σ2
l

















. (86)

Following similar arguments as in Section 5.1, we simplify f(H) as

f(H)
.
= (OSNR)

nRnTanR

2 ×

nR
∏

i=1

nT
∏

j=1



















exp











−

(

log
(

exp(νdij)(OSNR)
−

anR

2

)

− µl

)2

2σ2
l





























= (OSNR)
nRnTanR

2 ×

nR
∏

i=1

nT
∏

j=1











exp






−

(

log
(

OSNR
)−

anR

2 −
(

µl − νdij
)

)2

2σ2
l

















= (OSNR)
nRnTanR

2 × exp

(

− log(OSNR)×
nRnT

2σ2
l

(

a2nR

4
log(OSNR) + anR

β1 +
β2

log(OSNR)

)

)

= (OSNR)
nRnTanR

2 × (OSNR)
log

OSNR
exp

(

− log(OSNR)×
nRnT

2σ2
l

(

a2
nR

4 log(OSNR)+anR
β1+

β2
log(OSNR)

)
)

= (OSNR)

nRnTanR

2 −
nRnT

2σ2
l

(

a2
nR

4 log(OSNR)+anR
β1+

β2
log(OSNR)

)

(87)

.
= (OSNR)

nRnTanR

2 −
nRnT

2σ2
l

(

a2
nR

4 log(OSNR)+anR
β1

)

, (88)

where logOSNR(·) denotes the logarithm to the base of OSNR; where β1 and β2 are defined
as

β1 =

∑nR

i=1

∑nT

j=1(µl − νdij)

nRnT
, (89)

β2 =

∑nR

i=1

∑nT

j=1(µl − νdij)
2

nRnT
; (90)

and where (87) follows by

(OSNR)logOSNR eb·log(OSNR)

= (OSNR)b·logOSNR elog(OSNR)

(91)

= (OSNR)b. (92)

Substituting (88) into (27) and (28), we bound the outage diversity gain as

inf
a∈A′

dLN
out(r, a) ≤ dLN

out(r) ≤ inf
a∈B′

dLN
out(r, a), (93)

where function dLN
out(r, a) is defined as

dLN
out(r, a) =

nR
∑

i=1

(nT − nR + 2i− 1)

2
ai −

nRnTanR

2
+

nRnT

2σ2
l

(

a2nR

4
log(OSNR) + anR

β1

)

;

(94)

and where sets A′ and B′ are defined as in (48) and (49), respectively.
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7.2 Optimal DMT Characterization

We present the main results in the following theorem.

Theorem 12 (DMT of Log-Normal Channel). Given a channel with distribution

in (86), and denote θ ,
(

log(OSNR)/2 + β1

)

/σ2
l . When nR = 1, if l ≥ lLN

th = θnT, the

optimal diversity order is

d⋆LN(r) = θnT(1− r), (95)

otherwise,

l(1− r) ≤ d⋆LN(r) ≤ θnT(1− r); (96)

when nR > 1, if l ≥ lLN
th = nT − nR + 1, then

d⋆LN(r) = (nT − nR + 1)(nR − r), (97)

otherwise,

l(nR − r) ≤ d⋆LN(r) ≤ (nT − nR + 1)(nR − r). (98)

Proof: We first calculate dLN
out(r). In (94), dLN

out(r, a) is a nonlinear function to
vector a due to the extra term

u(anR
) ,

nRnT

2σ2
l

(

a2nR

4
log(OSNR) + anR

β1

)

. (99)

Notice that at high OSNR, u(anR
) tends to be infinite, and dominates the sum of rest

terms. For this reason, we prioritize small anR
to optimize dLN

out(r, a) over A′ and B′

in (93). Since this extra term u(anR
) only relates to anR

, we still separately consider
nR = 1 and nR > 1 to distinguish a1 = anR

and a1 6= anR
.

When nR = 1, the integral domains A′ and B′ in (28) coincide as {a ≥ 2(nR − r)}.
We can obtain the optimal point a⋆out = 2(nR − r), and we have

dLN
out(r) =

(

nT − nR + 1− nRnT +
nRnT

2σ2
l

(

log(OSNR) + 2β1

)

)

(nR − r)

= θnT(1− r). (100)

When nR > 1, a necessary condition to have finite infimums in (93) is the nRth
entry of a to be zero, i.e., anR

= 0. Then the rest of entries in optimal point a⋆out

can be computed by linear optimization, and we obtain a⋆out = [2(nR − r), 0, · · · , 0].
Substituting a⋆out into (93), the outage diversity gain is given by

dLN
out(r) = (nT − nR + 1)(nR − r). (101)

Now we calculate dLN
te (r). Modifying the integral domain in (34) as Ac or Bc, we

have

inf
(Bc)′

dLN
te (r, a) ≤ dLN

te (r) ≤ inf
(Ac)′

dLN
te (r, a), (102)

where function dLN
te (r, a) is defined as

dLN
te (r, a) =

nR
∑

i=1

nT − nR + 2i− 1

2
ai −

nRnT

2
anR

+
nRnT

2σ2
l

(

a2nR

4
log(OSNR) + anR

β1

)

+
l

2

( nR
∑

i=1

(2− ai)
+ − 2r

)

; (103)
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and where sets (Ac)′ and (Bc)′ are defined as in (59) and (60), respectively.
It is direct to see that dLN

te (r, a) is also a nonlinear function due to the extra term
u(anR

). Using similar method argued above, we can directly show that when nR = 1, if
l < θnT, both infimums of dLN

te (r, a) over (Ac)′ and (Bc)′ are achieved at a⋆te = 0, which
yields

dLN
te (r) = l(nR − r), (104)

otherwise, a⋆te = 2(nR − r), and we have

dLN
te (r) =

(

nT − nR + 1− nRnT +
nRnT

2σ2
l

(

log(OSNR) + 2β1

)

)

(nR − r)

= θnT(1− r). (105)

When nR > 1, following similar arguments as in the derivation of dLN
out(r), we obtain

the optimal point a⋆te has the same expressions as in (61), (62), and (63), and dLN
te (r)

has the same expressions as in (64) and (65). Then the proof is concluded.

Remark 13. The term u(anR
) causes the non-linearity of dLN

out(r, a) in (94). When
nR > 1, a necessary condition to have a finite dLN

out(r) is anR
= 0, and hence u(anR

) =
0. Eliminating the influence of anR

, the optimization problems in (93) are essentially
equivalent to the linear problems in (46). △

One issue in Theorem 12 is when nR = 1, at high OSNR, the optimal diversity gain
d⋆LN(r) tends to be infinite, which fails to reflect the performance limits of practical
OWC systems. In fact, similar phenomena are also observed in the existing literature
[21], [27], [40]. This issue is due to the fact that d⋆LN(r) contains the OSNR related
term, while the diversity gain essentially measures the system performance under high
OSNR. To deal with this problem, we adopt the definition of asymptotically relative
diversity order (ARDO) proposed in [27], and then analyze the optimal diversity gain
of log-normal channel. The ARDO of a transmission scheme is given by

d̂⋆(r) = lim
OSNR→∞

d⋆(r)

d⋆BM(r)
, (106)

where d⋆(r) denotes the optimal diversity order, and where d⋆BM(r) denotes the optimal
diversity order of a benchmark scheme. In the following, we use the outage diversity
order at r = 0 of the SISO system as the benchmark3, such that

d̂⋆LN(r) =
d⋆LN(r)

dLN
out(0)

. (107)

Substituting d⋆LN(r) in (96) and (97) into (107), we have the following proposition:

Proposition 14. Given a channel with distribution in (86), when nR = 1, the ARDO
under a large block length is given by

d̂⋆LN(r) = nT(1− r); (108)

under a small block length we have

0 ≤ d̂⋆LN(r) ≤ nT(1− r). (109)

3The benchmark is chosen by considering the fact that outage diversity order at r = 0 is the maximal
achievable diversity order for any transmission scheme.
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Figure 1: Outage diversity gain for SISO channel.

8 Numerical Results and Discussions

8.1 Optimal DMT Analysis

In this section, we present numerical examples of the derived DMT results. For the
notational convenience, a channel with nR receive, nT transmit antennas, and l block
length is simply denoted by nT × nR × l.

Figures 1, 2, and 3 depict the outage diversity gain dout(r) at the multiplexing
gain r under different channel conditions for SISO, MISO, and MIMO channels. These
curves can also represent the optimal spatial diversity gain d⋆(r) when l ≥ lth, where lth
represents the block length threshold of corresponding channels, such as lNE

th , lGG
th , lLN

th

(see Theorems 7, 10, and 12).
Figure 1 shows the derived outage diversity gain dout(r) under three different chan-

nel distributions, i.e., negative exponential, gamma-gamma, and log-normal channels.
Besides, we choose two different values of ρ given in [41] to show their influence on the
gamma-gamma channel, i.e., (1) ρ = 10.1614, (2) ρ = 17.4369. For negative exponential
and gamma-gamma channels, dout(r) linearly decreases with the increasing r. For the
log-normal channel, dout(r) tends to be infinite when r = 0 and returns to 0 when r takes
the maximum value of 1. Since log-normal, gamma-gamma, and negative exponential
distributions model the channel with weak, moderate, and strong atmospheric turbu-
lence intensities, respectively, this figure also reflects the fact that increasing turbulence
intensity may hamper the diversity gain. As shown in Figure 2, the above conclusions
also hold in the MISO channels.

From Figure 3, we observe that the maximum outage and multiplexing gains are
given by d⋆max = (nT − nR + 1)nR and r⋆max = nR, and the outage diversity gains are
equal under these three different fading MIMO channels.

Remark 15. Although different distributions may lead to different outage probabilities,
the result in Figure 3 reveals that the exponents of outage probabilities are identical
regardless of the fading properties. In fact, this phenomenon has been explained in
[19, Theorem 21]. Specifically, as long as some relevant attributes by different channels
are identical, the derived outage diversity gain will be the same. Therefore, we could

Yang, Li, Tang, Wang, 10 December 2021 17



Figure 2: Outage diversity gain for nT × 1 MISO channel.

Figure 3: Outage diversity gain for nT × nR MIMO channel.
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Figure 4: Bounds on optimal diversity gain for 16× 4 MIMO channel.

infer that the result shown in Figure 3 is also caused by some internal attributes which
behave the same among these three fading channels. △

When l < lth, Figure 4 depicts the bounds on optimal d⋆(r) for a 16 × 4 MIMO
channel with l = 7, and l = 10, respectively. Here, lth = 13. It is direct to see d⋆(r) is
upper-bounded by dout(r) and lower-bounded by dte(r) for the above channels. For any
l < lth and r < nR, the lower bound on diversity gain is strictly below the upper bound,
implying that there is always uncertainty on the characterization of optimal DMT curve.
The uncertainty tends to decrease as the block length or the multiplexing gain increases.

We also depict the optimal d⋆(r) as a function of the number of transmit antenna
nT or receive antenna nR in Figure 5. The left curve of Figure 5 depicts the optimal
diversity gain d⋆(r) as a function of nT with fixed parameters nR = 4 and r = 2, while
the right curve depicts d⋆(r) as a function of nR with fixed parameters nT = 16 and
r = 2. We observe that d⋆(r) monotonically increases as nT increases, while increasing
nR does not always guarantee larger diversity gain. In fact, our derived d⋆(r) is a linear
function with nT, but a second-order function of nR, which is fundamentally different
from the RF DMT result established before [17].

Remark 16. Since the optimal diversity order d⋆(r) is a second-order function of nR,
hence, installing nR

⋆ = ⌊nT+1+r
2 ⌋ antennas at the receiving end may achieve the best

performance. △

8.2 DMT Comparison with Existing Results

Table 1 compares our derived DMT results with existing results in RF and OWC chan-
nels. Note that the slope of dout(r) or dte(r) in [17] is two times large as in [28], and
the threshold of block length in [17] is the same as in [28], which are different from our
derived results. In the following, to avoid ambiguity, we denote lth in [17] or [28] as lZJ

th .
To numerically compare the optimal DMT curves for different channels in Table 1,

Figures 6 and 7 depict these DMT curves of 16 × 4 and 16 × 11 MIMO channels when
l ≥ lth. For any multiplexing gain r, we can see that d⋆ZT(r) is always large than d⋆JB(r)
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Figure 5: Optimal diversity gain at fixed nR or nT.

Table 1: Results of different MIMO channels

dout(r) dte(r) (l ≤ lth) lth
Rayleigh [17] (nT − r)(nR − r) −l(r − r1) + (nT − r1)(nR − r1) nT + nR − 1

Negative Exponential [28] 1
2 (nT − r)(nR − r) − l

2 (r − r1) +
1
2 (nT − r1)(nR − r1) nT + nR − 1

Negative Exponential (us) (nT − nR + 1)(nR − r) l(nR − r) nT − nR + 1

where r1 = nR − ⌈(l − |nT − nR| − 1)/2⌉.
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Figure 6: Comparisons of the optimal DMT curve for 16× 4×∞ MIMO channel.
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Figure 7: Comparisons of the optimal DMT curve for 16× 11×∞ MIMO channel.

and d⋆NE(r). This implies that the optical signals usually suffer more severe fading than
their traditional RF counterparts.

In Figures 6 and 7 we also observe that, even though d⋆NE(r) and d⋆JB(r) both char-
acterize optimal diversity gain, these two curves are fundamentally different. d⋆JB(r) is
derived by only considering the fact that input signal is real, and then simply putting
a half factor into the traditional RF capacity expression. Here, our derived d⋆NE(r) is
obtained by taking the unique inputs constraints into consideration. Comparing these
two figures, d⋆NE(r) tends to match d⋆ZT(r) as nR decreases, which is caused by the fact
that d⋆NE(r) approaches (nT − r)(nR − r) as nR decreases. For specific nR, d⋆NE(r) may
intersect with d⋆JB(r) at some point (r2, d2), and when r < r2, d

⋆
NE(r) is strictly less than

d⋆JB(r), while d⋆NE(r) is strictly larger than d⋆JB(r) when r > r2.
Moreover, we numerically study the variation of d⋆(r) when l decreases for a 16× 4

MIMO channel. Recall that lZJ
th denotes the block length threshold for the previous

literature [17], [28]. Hence, we have lNE
th = 13 and lZJ

th = 19. We select three different
block lengths: (1) l = ∞, (2) l = 15, (3) l = 10, as shown in Figures 6, 8 and 9. Note
that as l decreases, the gap between the upper and lower bounds on d⋆(r) increases.
However, our derived d⋆NE(r) has the slowest uncertainty growth rate compared with the
existing results. Since when l decreases from ∞ to 15, the bounds d⋆ZT(r) and d⋆JB(r)
become very loose. In contrast, our derived d⋆NE(r) is still tight until l = 10.

9 Conclusion Remarks

This paper investigates three different block fading optical wireless communication chan-
nels and derives the optimal DMT under both optical peak- and average-power input
constraints. We first establish an upper bound on the optimal diversity gain by charac-
terizing the outage diversity gain. Then by analyzing the error probability of a random
coding scheme, we establish a new lower bound. It turns out that these two bounds
are close, hence give good approximations on the optimal diversity gain. In fact, at a
large block length regime, these bounds match, thus we can precisely characterize the
optimal diversity gain. Our derived DMT results are fundamentally different from their
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Figure 8: Comparisons of the optimal DMT curve for 16× 4× 15 MIMO channel.
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Figure 9: Comparisons of the optimal DMT curve for 16× 4× 10 MIMO channel.
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counterparts in traditional RF channels. These differences are due to the unique input
constraints in the optical wireless channels. From the perspective of a practical nT ×nR

OWC system design, our results imply at a specific multiplexing order r, letting the
numbers of transmit and receive antennas satisfy ⌊nT + 1 + r⌋ = 2nR may achieve the
best performance in terms of diversity gain.

A Derivation of Instantaneous Capacity Bounds

A.1 Proof of Proposition 2

Recall Xj = [Xj1,Xj2, . . . ,XjnT
]T, it is straightforward to get

E[Xji] = A

(

1

µ
−

e−µ

1− e−µ

)

, ∀i ∈ {1, 2, . . . , nT} (110)

and

h(Xji) = logA+ 1−
µe−µ

1− e−µ
− log

µ

1− e−µ
. (111)

Next, we define a new random vector rXj = [rXj1, rXj2, . . . , rXjnT
]T, whose entries are

i.i.d. according to Gaussian distribution with expectation 0, and variance

Var

[

rXji

]

=
1

2πe
22h(Xji). (112)

By the Gaussian differential entropy formula, we can immediately show

h(rXji) = h(Xji), ∀i ∈ {1, . . . , nT}. (113)

For a given channel realization H = H, apply the generalized EPI in [30], and we have

h(HXj) ≥ h(HrXj) (114)

=
nR

2
log

(

2πe
∣

∣

∣HK rXj
rXj
HT

∣

∣

∣

1
nR

)

, (115)

where K rXj
rXj

denotes the covariance matrix of rXj which is diagonal with its ith entry

[

K rXj
rXj

]

ii
= Var

[

rXji

]

, ∀i ∈ {1, 2, . . . , nT}. (116)

Substituting (111) into (112), (116) and (115), we have

h(HXj) ≥
nR

2
log

(

2πe

∣

∣

∣

∣

σ2
n

2πα2e
T(α, nT)

2(OSNR)2HHT

∣

∣

∣

∣

1
nR

)

, (117)

where

T(α, nT) = 2
1− e−µ

µ
2
− µe−µ

1−e−µ , (118)

with µ satisfying (22).
Now we lower-bound the instantaneous capacity as

I(Xj ;Yj |H) = h(HXj + Zj |H)− h(Zj) (119)

≥
1

2
log
(

22h(HXj) + 22h(Zj)
)

− h(Zj) (120)

=
1

2
log

(

1 +
22h(HXj)

(2πeσn)
nR

)

(121)

≥
1

2
log
(

1 + Ll(OSNR)
2nR |HHT|

)

, (122)

where (119) follows by the independence between H and Zj , (120) by applying the EPI
[42], and (122) by substituting (117) into (121). The proof is concluded.
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A.2 Proof of Proposition 3

At high OSNR, by the asymptotic upper bound in [31, Theorem 21], we have

I(Xj ;Yj |H) ≤ nR logA+
1

2
log

(

V2
H

(2πeσn)nR

)

, (123)

where VH =
∑

U |detHU | with HU denoting the nR × nR submatrix of H indexed by set
U .

We further upper bound the RHS of (123) as

nR logA+
1

2
log

(

V2
H

(2πeσn)nR

)

≤ nR logA+
1

2
log

(
(

nT

nR

)(
∑

U |HU |
2
)

(2πeσn)nR

)

(124)

= nR logA+
1

2
log

(
(

nT

nR

)

|HHT|

(2πeσn)nR

)

, (125)

where (124) holds by Cauchy–Schwarz inequality, and (125) by Cauchy–Binet formula:
∑

U |HU |
2 = |HHT|. The proof is concluded.

B Derivation of Outage Probability Bounds

B.1 Preliminary

B.1.1 Decomposition on Channel Matrix

Given the channel matrix H ∈ RnR×nT

+ , we first decompose it by LQ factorization

H = LQ, (126)

where L ∈ RnR×nR is lower-triangular and Q ∈ RnR×nT is orthogonal satisfying QQT =
InR×nR

. Combined with (126), we can rewrite HHT as

HHT = LLT. (127)

Then perform eigenvalue decomposition on HHT, we obtain

HHT = UΛUT, (128)

where U ∈ RnR×nR is orthogonal satisfying UUT = InR×nR
and Λ ∈ RnR×nR is diagonal

with [Λ]ii = λi, ∀i = {1, · · · , nR}. Combining (127) with (128), we can decompose LLT

as

LLT =
(

UΛ
1
2

)(

UΛ
1
2

)

T

. (129)

Then we have L = UΛ
1
2 . Further substitute L into (126), and we have

H = UΛ
1
2Q. (130)

Denote D , Λ
1
2 , and rewrite λi in terms of ai, ∀i = {1, · · · , nR}, then we get

D = diag[(OSNR)−
a1
2 , . . . , (OSNR)−

anR

2 ]. (131)

B.1.2 Derivation of Ep. (27)

By [38], we have

f(a) = ξ [log(OSNR)]nR ×

(

nR
∏

i=1

(OSNR)−
(nT−nR+1)

2 ai

)
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×
∏

i<j

∣

∣(OSNR)−ai − (OSNR)−aj
∣

∣×

∫

VnR,nR

∫

VnR,nT

f(UDQ)dQdU, (132)

where ξ is a normalization constant.
Form the definition in (19), we observe that the outage diversity order dout(r) is fully

determined by the corresponding OSNR exponent of outage probability. Note that

lim
OSNR→∞

log(ξ[log(OSNR)]nR)

log(OSNR)
= 0. (133)

Thus, at high OSNR, we have

ξ[log(OSNR)]nR
.
= OSNR0. (134)

Second, note that the term |(OSNR)−ai − (OSNR)−aj | is only determined by the
smaller exponent at high OSNR, and thus we can simplify the following product term as

∏

i<j

∣

∣(OSNR)−ai − (OSNR)−aj
∣

∣

.
=

nR
∏

i=1

(OSNR)−(i−1)ai . (135)

Substituting (133) and (135) into (132), the proof is concluded.

B.2 Proof of Theorem 5

B.2.1 Upper Bound

To prove the new bounds on outage probability in Theorem 5, we employ the bounds
obtained in Proposition 2. We first prove the upper bound on outage probability, and
then prove the lower bound.

Denote R = r logOSNR. Substitute (23) into the RHS of (17), and we obtain

Pout(OSNR) ≤ P

[

1

2
log
(

1 + Ll(OSNR)
2nR |HHT|

)

≤ r log(OSNR)

]

(136)

= P

[

1 + Ll(OSNR)
2nR |HHT| ≤ OSNR

2r

]

. (137)

Since λi = (OSNR)−ai , ∀i ∈ {1, . . . , nR}, are the the eigenvalues of HHT, we have

|HHT| =

nR
∏

i=1

λi = OSNR
−
∑nR

i=1 ai . (138)

Substituting (138) into (137), we get

Pout(OSNR) ≤ P

[

1 + Ll(OSNR)
2nR−

∑nR

i=1 ai ≤ (OSNR)2r

]

(139)

.
= P

[

(OSNR)(2nR−
∑nR

i=1 ai)
+

≤ (OSNR)2r

]

(140)

= P

[

(2nR −

nR
∑

i=1

ai)
+ ≤ 2r

]

(141)

=

∫

A

f(a)da, (142)

where (140) follows by the fact that 1+c ·OSNRb .
= OSNR

b+ , and (142) by the definition
in (29). The proof is concluded.
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B.2.2 Lower Bound

Substituting (25) into the RHS of (17), and following the similar arguments as in Sec-
tion B.2.1, we have

Pout(OSNR) ≥ P

[

1

2
log
(

Lu(OSNR)
2nR |HHT|

)

≤ r log(OSNR)

]

(143)

= P

[

Lu(OSNR)
2nR−

∑nR

i=1 ai ≤ (OSNR)2r

]

(144)

.
= P

[

(OSNR)(2nR−
∑nR

i=1 ai) ≤ (OSNR)2r

]

(145)

.
= P

[

2nR −

nR
∑

i=1

ai ≤ 2r

]

(146)

=

∫

B

f(a)da. (147)

The proof is concluded.

C Proof of Eq. (31)

Denote the codebook as {X(0),X(1), . . . ,X(OSNRlr − 1)}. Suppose the sent codeword
is X(0), and we consider the event when the ML decoder decides erroneously in favor of
X(1). This event occurs only if the projection distance of Y(0)−HX(0) on the direction
of HX(1)−HX(0) is larger than d01/2, where d01 =‖ HX(1)−HX(0) ‖F is the distance
between HX(1) and HX(0). The probability on the occurrence of this event is4

P(X(0) → X(1)|H = H)

= P

(

〈Y(0)− HX(0),HX(1)−HX(0)〉

‖ HX(1)−HX(0) ‖F
≥

1

2
‖ HX(1)−HX(0) ‖F

)

. (148)

Since X(0) is sent, and Z(0) = Y(0) − HX(0), then the projection of Y(0) − HX(0)
on HX(1) − HX(0) is still a Gaussian variable. In the following, we use the term

z
‖HX(1)−HX(0)‖F

to denote the projection, where z is a Gaussian variable with expec-

tation 0 and variance ‖ HX(1)−HX(0) ‖2
F
σn

2. Thus we further upper-bound the error
probability as

P(X(0) → X(1)|H = H) = P

(

z

‖ HX(1)−HX(0) ‖F
≥

1

2
‖ HX(1)−HX(0) ‖F

)

(149)

= Q





√

‖ HX(1)−HX(0) ‖2
F

4σn
2



 (150)

≤ exp

(

−
‖ HX(1)−HX(0) ‖2

F

8σn
2

)

, (151)

where (151) holds because Q(t) ≤ 1/2 exp(−t2/2).
Note that

‖ HX(1) −HX(0) ‖2F=

nR
∑

k=1

l
∑

j=1

|

nT
∑

i=1

[Xij(1)−Xij(0)]hki|
2, (152)

4Without loss of generality, for any X ∈ Rm×n and Y ∈ Rm×n, 〈X,Y〉 =
∑m

i=1

∑n
j=1

xijyij .
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where Xij(·) = [X(·)]ij , and hki = [H]ki. Setting Ωj = [X1j(1)− X1j(0), · · · ,XnTj(1)−
XnTj(0)]

T, we rewrite (152) as

‖ HX(1)−HX(0) ‖2F=

l
∑

j=1

ΩT

jH
THΩj . (153)

By SVD, we decompose HTH = VΛVT, where Λ = diag[λ1, ..., λnT
]. Define βj =

[βj1, · · · , βjnT
], and let βj = ΩT

jV. We can rewrite (153) as

‖ HX(1)−HX(0) ‖2F=

l
∑

j=1

nT
∑

i=1

λiβ
2
ji. (154)

Substituting (154) into (151), we have

P(X(0) → X(1)|H = H) ≤ exp



−
1

8σn
2

l
∑

j=1

nT
∑

i=1

λiβ
2
ji



. (155)

Averaging over the ensemble of truncated exponential random codes, we get

P(X(0) → X(1)|H = H) ≤ Eβji



exp

(

−
1

8σn
2

l
∑

j=1

nT
∑

i=1

λiβ
2
ji

)



 (156)

=

l
∏

j=1

Eβj

[

exp(−
1

8σn
2

nT
∑

i=1

λiβ
2
ji)

]

(157)

= det

(

I+
g(α, nT)

2
(OSNR)2HHT

)− l
2

, (158)

where (157) follows by the independence between vectors βp and βq, ∀p 6= q, and (158)
by the derivation in the following Appendix C.0.1.

Note that at transmit rate R = r log(OSNR), we have in total (OSNR)lr codewords.
Then applying the union bound, the decoded error probability can be upper-bounded
as

P(error|H = H) ≤ (OSNR)lrdet

(

I+
g(α, nT)

2
(OSNR)2HHT

)− l
2

(159)

= (OSNR)lr
nR
∏

i=1

(

1 +
g(α, nT)

2
(OSNR)2λi

)− l
2

. (160)

C.0.1 Proof of Eq. (158)

Denote the matrix V = [V1, · · · ,VnT
], where Vp = [v1p, · · · , vnTp]

T is the pth column of
V. Recall that V is an orthogonal matrix, i.e.,

nT
∑

i=1

vipvip = 1, ∀p ∈ {1, · · · , nT}, (161)

nT
∑

i=1

vipviq = 0, ∀p 6= q. (162)

Note that

βjp = ∆X1jv1p + · · ·+∆XnTjvnTp (163)

βjq = ∆X1jv1q + · · ·+∆XnTjvnTq, (164)

Yang, Li, Tang, Wang, 10 December 2021 27



where ∆Xij = Xij(1)−Xij(0).
Recall that Xij , ∀i ∈ {1, · · · , nT} and j ∈ {1, · · · , l}, follows i.i.d. truncated expo-

nential distribution in (21), and hence it is directly to verify

E[βji] = 0, (165)

Var[βji] = 2A2

(

1

µ2
−

e−µ

(1 − e−µ)2

)

(166)

, 2A2g(α, nT). (167)

By the central limit theorem, we can approximate βji as a Gaussian random variable
with expectation (165) and variance (167), and hence by averaging over the distribution
of βji in (157), we have

l
∏

j=1

Eβj

[

exp(−
1

8σn
2

nT
∑

i=1

λiβ
2
ji)

]

= det

(

I+
g(α, nT)

2
(OSNR)2HHT

)− l
2

. (168)

The proof is concluded.
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