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Abstract

One pervasive challenge in providing a high quality-of-service for live communication is to recover lost packets in real-time.
Streaming codes are a class of erasure codes that are designed for such strict, low-latency streaming communication settings.
Motivated by applications that transmit messages whose sizes vary over time, such as live video streaming, this paper considers
the setting of streaming codes under variable-size messages. In practice, streaming codes operate in an “online” setting where the
sizes of the future messages are unknown. “Offline” codes, in contrast, have access to the sizes of all messages, including future
ones. This paper introduces the first online rate-optimal streaming codes for communicating over a burst-only packet loss channel
for two broad parameter regimes. These two online codes match the rates of optimal offline codes for the two settings despite
the apparent advantage of the offline setting. This paper further establishes that online codes cannot attain the optimal rate for
offline codes for all remaining parameter settings.

I. INTRODUCTION

Real-time communication with a high quality-of-service is critical for many pervasive streaming applications, including
VoIP and videoconferencing. These live streaming applications rely on transmitting packets of information and contend with
packet losses during transmission. Although lost packets can be recovered via retransmission, this solution is often infeasible
due to strict latency constraints [3]. Therefore, real-time streaming applications often use forward error correction to provide
robustness to packet losses. However, using traditional coding schemes to comply with the real-time delay constraint penalizes
the rate.

Coding schemes explicitly designed for live streaming communication can attain significantly higher rates than traditional
ones, such as maximal distance separable block codes. This improved performance was demonstrated in [4], where the authors
proposed a new “streaming model” for real-time communication shown in Figure 1. Under this streaming model, at each time
slot i, a sender receives a “message packet” S[i] and transmits a “channel packet” X[i] over a packet loss channel to a receiver.
The message packet S[i] is to be decoded at the receiver within delay τ , i.e., by time slot (i+ τ). The authors established an
upper bound on the rate, and they introduced a rate-optimal construction for certain settings. Later, a rate-optimal construction
for all remaining settings was presented in [5]. Numerous subsequent works have also studied variants of the streaming model
(discussed in Section II) [1], [6]–[22], [22]–[28].

The streaming model proposed in [4] and studied further in several subsequent works [6]–[22], [22]–[27], [29] considers a
setting where all message packets comprise some fixed number of symbols. However, many applications must send a stream of
variable-size message packets. For example, video calls consist of compressed video frames of fluctuating sizes. Consequently,
a new streaming model incorporating variable-size message packets was introduced in [28].

The streaming model with variable-size message packets differs from that of fixed-size message packets in two key ways:
First, the sequence of sizes of message packets affects the optimal rate. In fact, the variability in the sizes of message packets
negatively impacts the optimal rate, which is never higher than that of the setting where message packets have fixed sizes [28].
Second, while there are rate-optimal schemes that send each message packet in the corresponding channel packet for the
setting of fixed-size message packets, spreading message symbols over multiple channel packets is advantageous in the setting
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Fig. 1: Overview of the streaming model.
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of variable-size message packets. This is because sending a large message packet within a single channel packet leads to
many lost symbols when that channel packet is lost. Spreading message symbols intelligently reduces the maximum number
of message symbols lost in a burst—a lower bound on how much redundancy is needed. In contrast, when all message packets
are the same size and are sent in the corresponding channel packets, all bursts drop the same number of message symbols. As
such, spreading message symbols over multiple channel packets does not offer an advantage.

When the transmission is lossless, sending message symbols over multiple channel packets increases the latency compared
to sending each message packet within the corresponding channel packet. In [28], the authors introduce a new delay constraint
that captures the trade-off between the rate and the decoding delay in lossless transmission, called the lossless-delay constraint.
Specifically, when there are no losses, the receiver must decode each message packet with a delay of τL time slots, where τL
is less than τ .1

One key challenge in realizing the benefits of spreading is determining how to best spread message symbols over one or
more channel packet(s) despite the fact that future message packets’ sizes are inherently variable and unknown. For example,
a large message packet should be sent in the corresponding channel packet when the next several message packets are even
larger to reduce the variability in the sizes of channel packets. In contrast, message symbols of a large message packet should
be spread over multiple channel packets when the subsequent several message packets are small. Thus, the optimal strategy
for encoding depends on the sizes of future message packets. To capture this dependency introduced by the variability in the
size of message packets, the coding schemes can be classified into two classes: (a)“offline” schemes and (b) “online” schemes.
Offline coding schemes have access to the sizes of message packets of future time slots, whereas online schemes do not have
access to such information. Online constructions are of practical interest, as the sizes of future message packets are typically
unknown in live streaming applications. By using future information, optimal offline constructions can always match, and
potentially significantly exceed, the rate of online ones. Therefore, a natural question is: “can online coding schemes match
the rate of offline coding schemes?”
Main contributions. In this paper, we design the first rate-optimal online coding schemes for two classes of parameter
settings. In “Regime 1,” b and τ may take any values while τL = 0, necessitating that all constructions recover each message
packet immediately under lossless conditions—a useful property exhibited by existing rate-optimal constructions [4], [5] for the
streaming model where all message packets have the same size. This broad regime is well-suited for applications that require
minimal latency during lossless conditions and can tolerate extra latency only during occasional losses. Our rate-optimal
construction is systematic, and it sends each message packet in the corresponding channel packet. During each time slot, i,
we combine two new methodologies to alleviate the variability. (a) We apply a greedy paradigm for delaying transmitting
the parity symbols associated with S[i] until the time slot (i+ τ). (b) We define the number of parity symbols to be sent in
X[i+ τ ] while deferring defining the parity symbols themselves until the time slot (i+ τ) to make use of the sizes of message
packets S[i + 1], . . . , S[i + τ − 1]. The construction is rate-optimal, even for the offline setting. To prove the construction’s
optimality, we show that it cumulatively sends no more symbols by each time slot than any offline rate-optimal construction
that satisfies the worst-case-delay and lossless-delay constraints. As such, the results show that non-systematic schemes provide
no advantage. In “Regime 2,” τL = (τ − b) and b|τ , so τL has its maximum value. Here, we show that a simple scheme
that encodes each message packet separately matches an upper bound on the rate. Thus, the above results together show that
online coding schemes can match the rate of optimal offline coding schemes for two broad parameter regimes even though
knowledge about the sizes of future message packets appears advantageous. In addition, we demonstrate that online coding
schemes necessarily have lower rates than optimal offline coding schemes for all remaining parameter regimes.

The organization of the paper is as follows. We begin by introducing the model and background in Section II. We then
present online constructions that match the optimal rate of offline constructions for two parameter regimes in Section III. Next,
we show that the rate of optimal online schemes cannot match that of offline schemes for all remaining settings in Section IV.
Finally, we end with a discussion on conclusions and future directions in Section V.

II. BACKGROUND, SYSTEM MODEL, AND RELATED WORK

We begin this section by discussing the background on streaming codes that led to the model considered in this work.
We then present the model in detail, as well as the notation used throughout this paper. Finally, we discuss related work on
streaming codes.

A. Background

Martinian and Sundberg proposed the streaming model in [4]. It captures the setting of real-time communication of a
sequence of message packets of a fixed size over a burst-only packet loss channel. At each time slot i, a sender receives
a message packet, S[i], comprising k symbols drawn uniformly at random from a finite field Fq . The sender then transmits
to a receiver a channel packet, X[i], consisting of n symbols from Fq over a burst-only channel. Due to real-time latency
constraints, the receiver must decode S[i] within a delay of τ time slots (that is, using the channel packets received by time

1The lossless-delay constraint was denoted as τG in [28].
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slot (i + τ)). The lossy channel is denoted C(b, τ) and introduces bursts of length at most b followed by guardspaces of
length at least τ . The authors showed an upper bound on the rate of streaming codes of τ

τ+b and introduced a class of code
constructions applicable to the streaming model, called “streaming codes,” meeting this bound for some settings of τ and b.
Later, a construction proposed in [5] met this bound, showing that τ

τ+b is the capacity for the remaining settings of τ and b.
In applications such as video communication, the sizes of messages fluctuate considerably. Consequently, in [28] a streaming

model was introduced that incorporates variable-size messages. The authors showed that τ
τ+b remains an upper bound on the

rate. The authors also present a streaming code for this new setting, and via an empirical evaluation, show that the construction
attains a rate of approximately 89.5% of the upper bound on rate of τ

τ+b for the settings considered in the empirical evaluation.
The authors also bounded the gap between the construction and τ

τ+b when the sizes of message packets are drawn independently
from a distribution. The smaller the variance of the distribution, the smaller the gap. However, the gap is nontrivial, and the
sizes of message packets for real-time streaming applications are typically not independent.

B. System model

We consider the streaming model from [28], which considers variable-size message packets (with a few minor changes in
how time slots are indexed). During each time slot i the message packet, S[i], comprises ki ∈ {0, . . . ,m} symbols for a
natural number m representing the maximum possible size of a message packet. The sender transmits a channel packet, X[i],
comprising ni symbols. The receiver obtains

Y [i] =

{
X[i] if X[i] is received
∗ if X[i] is lost.

Transmission occurs over a C(b, τ) channel. Each channel packet, X[i], depends only on the symbols of previous message
packets (i.e. S[0], . . . , S[i]). Similar to the model of fixed-size message packets, each S[i] must be decoded by time slot (i+τ);
this requirement is called the worst-case-delay constraint.

Recall from Section I that under the setting of variable-size message packets, spreading message symbols over multiple
channel packets can be advantageous. As such, there is an inherent tradeoff between the rate of a code and the decoding delay
under lossless transmission (i.e., the number of time slots needed to decode a message packet when all channel packets are
received). A new delay constraint capturing this trade-off, called the lossless-delay constraint, was introduced in [28]. When
there are no losses, the receiver must decode each message packet S[i] within a delay of τL (< τ ) time slots. The lossless-delay
constraint is relevant for applications that can infrequently tolerate a delay of τ in the worst case but require faster decoding
for most message packets.

The valid value ranges for the parameters b, τ, and τL are 1 ≤ b ≤ τ and 0 ≤ τL ≤ (τ − b). A maximum burst length of
0 is omitted because coding is unnecessary for lossless transmission. Furthermore, reliable transmission is impossible when b
exceeds τ , since S[i] cannot be decoded by time slot (i+τ) when X[i], . . . , X[i+τ ] are all lost in a burst. Intrinsically, τL cannot
be negative, and S[i] is decoded by time slot (i+τ−b) if there are no losses, since a burst can drop X[i+τ−b+1], . . . , X[i+τ ].
Since b > 0, this means that τL is without loss of generality strictly less than τ .

In the setting where message packets all have size k and channel packets all have size n [4], the rate is k
n . However, the

setting of varying sizes of message packets and channel packets, necessitates a new definition of rate. The rate is defined [28]
for a finite stream of (t+1) message packets for an arbitrary natural number t as the number of message symbols divided by
the number of transmitted symbols:

Rt =

∑t
i=0 ki∑t
i=0 ni

Recall that the rate is at most τ
τ+b . However, depending on the sizes of the message packets, the upper bound can be loose.

Constructions that during the time slot i ∈ {0, . . . , t} can access all future message packets’ sizes (i.e., ki+1, . . . , kt) are
called “offline.” Offline schemes have access to the sizes but not the symbols of the future message packets. In contrast, code
constructions that do not know the sizes of the future message packets are dubbed “online.” Specifically, during time slot i,
(ki+1, . . . , kt) are unknown for an online construction. We distinguish between the feasible rates for offline and online coding
schemes. The best possible rate for offline coding schemes is called the “offline-optimal-rate” and for online coding schemes
is called the “online-optimal-rate.”

Encoding during time slot i is defined as

X[i] = Enc (S[0], . . . , S[i]) . (1)

To distinguish between online and offline decoding, we use the following quantity to denote the last time slot for which the
size of message packets is available to the receiver

λi =

{
t if offline
argmaxl∈{i,...,i+τ} 1 [Y [l] == X[l]] if online.
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The decoding for message packet S[i] is then defined for two scenarios. First, in a lossless transmission, S[i] is decoded using
(a) the previously decoded message packets, (b) the (τL + 1) channel packets received within lossless-delay, and (c) the sizes
of the first (i+ τL + 1) message packets as follows:

S[i] = Dec(L)
(
S[0], . . . , S[i− 1], X[i], . . . , X[i+ τL], k0, . . . , ki+τL

)
. (2)

Second, when losses occur, S[i] is decoded using (a) the previously decoded message packets, (b) all received channel packets
among the (τ + 1) sent within the worst-case-delay, and (c) the sizes of the first (λi + 1) message packets as follows:

S[i] = Dec
(
S[0], . . . , S[i− 1], Y [i], . . . , Y [i+ τ ], k0, . . . , kλi+τ

)
. (3)

To ensure that the receiver knows the sizes of message packets, a small header containing ki−b, . . . , ki is added to X[i].2

Finally, we note that our work’s constructions do not need as much memory as is acceptable under the model. During any
time slot, i, the sizes and symbols of message packets and channel packets from before time slot (i− τ) are not used.

The capacity is defined for any given message size sequence, k0, . . . , kt, as the highest rate that can be attained while
satisfying Equations 1, 2, and 3.

This paper uses the following notation. The term [n] denotes {0, . . . , n}. All vectors are row vectors. A vector V has length
v and is indexed as V = (V0, . . . , Vv−1). For I = {i0, . . . , il} ⊆ [v − 1] where ij < ij′ for j < j′ ∈ [l], VI = (Vi0 , . . . , Vil).
Let A be an n×n matrix, and I ⊆ {0, . . . , n−1}. Then AI is A restricted to the columns in I . This work refers to k0, . . . , kt
as the “message size sequence.”

This work uses the following conventions. The sizes of the final τ message packets are each 0, and t is at least τ . Thus, the
coding schemes can encode the final message packet of non-zero size using τ extra channel packets. To satisfy this restriction,
one can append τ message packets of size 0 to the stream of messages, which will not change the optimal rate.

For i ∈ {1−b, . . . ,−1}∪{t+1, . . . , t+b+1}, ki is defined as 0. For i ∈ {1−b, . . . ,−1}, a burst loss of X[i], . . . , X[i+b−1]
denotes a burst loss of X[0], . . . , X[i+ b−1]. Similarly, for i ∈ {t− b+2, . . . , t} a burst loss of X[i], . . . , X[i+ b−1] denotes
a burst loss of X[i], . . . , X[t].

C. Other related works

Numerous existing works have examined different variations of the streaming model introduced by Martinian and Sundberg
in [4]. These streaming models involve fixing the sizes of message packets and channel packets in advance. Badr et al. [6]
introduced a new streaming model with fixed-size message packets and channel packets in which every sliding window of w
channel packets can include (a) a burst of length b or (b) up to a arbitrary losses. The authors also showed an upper bound
on the rate under this sliding window model of loss. Several later works [7]–[12] designed streaming codes that matched this
upper bound on the rate. Two previous works [13], [14] studied the setting of multiplexing two streams of message packets
with different delay constraints. A few works [15], [16], [23] have considered streaming codes where there are two different
decoding delay constraints based on two different types of packet loss. In [17], the authors studied the setting where all or
some symbols of message packets are recovered for short or long bursts, respectively. Badr et al. investigated [21] streaming
codes that recover only some message packets within the delay constraint, depending on the loss patterns. Another work [18]
studied streaming codes in terms of the average decoding delay rather than the maximum delay. In [26], the authors evaluate
the trade-off between memory, decoding delay, and decoding probability for random linear streaming codes with i.i.d. losses.
Several works [6], [19], [20] studied models of streaming codes where multiple channel packets are sent during each time slot.
In [24], the authors presented streaming codes to recover multiple bursts within (τ + 1) channel packets. Another work [25]
considered unequal error protection for a streaming model with high and low priority messages of two different fixed sizes
when the sequence of the priorities of the messages is periodic. Several recent works [22], [30], [31] have applied streaming
codes to multi-node relay networks. Future work could compare online and offline constructions for these variants of the
streaming model after incorporating message packets of varying sizes.

III. ONLINE CODE CONSTRUCTIONS WITH OPTIMAL RATE

In this section, we present the first rate-optimal online streaming codes, as well as show that they match the offline-optimal-
rate, for two broad parameter regimes: Regime 1: (τL = 0 and any b and τ ) and Regime 2: (τL = (τ − b) and b|τ ).

To begin, we consider Regime 1 (i.e., τL = 0 and any b and τ ). In this regime, the lossless-delay constraint, τL = 0,
eliminates the choice of distributing symbols corresponding to a message packet over multiple channel packets. We introduce
a systematic construction that sends each message packet within the corresponding channel packet. The construction employs
an online greedy paradigm for sending parity symbols. The approach involves (a) identifying during time slot i how many
parity symbols will be sent during time slot (i + τ) (i.e., in advance τ time slots), and (b) defining the parity symbols only
during time slot (i + τ) based on the sizes of S[i + 1], . . . , S[i + τ − 1]. To show that the construction is rate-optimal, we

2In the edge conditions, (i− τ) is set to 0 for i < τ and (i+ τ) is set to t for (i− τ) > (t− τ).
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Fig. 2: A toy example of the (τ = 4, b = 2)-Variable-sized Generalized MS Code. Each message packet, S[i] = (U [i], V [i]),
is transmitted in the corresponding channel packet, X[i], along with parity symbols, P [i], (when applicable). White boxes
with purple dots represent symbols of U [i], white boxes with an orange grid represent symbols of V [i], and solid red boxes
represent symbols of P [i]. The numbers under the lines at the bottom indicate the time slots.

demonstrate via induction that the cumulative number of symbols sent by each time slot i ∈ [t] is no more than that which is
sent under an arbitrary offline construction.

We next present the rate-optimal online coding scheme for any (τ, b) under Regime 1. The scheme builds on top of the
Generalized Maximally Short Codes presented in [6] in such a way so as to mitigate the adverse effects of the variability of
the message size sequence. We call the proposed scheme the (τ, b)-Variable-sized Generalized MS Code. The construction
is suitable for any field of size at least 2τm. We first provide a high-level description, then present a toy example, and finally
present the details of the code construction.

Encoding (high level description). During time slot i, each message packet S[i] is partitioned into two pieces: S[i] =
(U [i], V [i]). The channel packet X[i] = (S[i], P [i]) is then sent, where P [i] comprises parity symbols. The parity symbols
are defined as P [i] = (U [i − τ ] + P ′[i]) where P ′[i] consists of carefully designed linear combinations of the symbols of
(V [i − τ ], . . . , V [i − 1]). The linear equations are defined so that that for all i ∈ [t − τ − b + 1], P ′[i + b], . . . , P ′[i + τ −
1], V [0], . . . , V [i− 1] are sufficient to decode V [i], . . . , V [i+ b− 1], as will be fully explained in the detailed description.3

We set V [i] to contain as many symbols of S[i] as possible while meeting the following requirement. For any j ∈ {i −
b+ 1, . . . , i} and burst loss of X[j], . . . , X[j + b− 1], the sum of the sizes of V [j], . . . , V [i] is at most the number of parity
symbols in X[j + b], . . . , X[j + τ − 1] (i.e., the sum of the sizes of P [j + b], . . . , P [j + τ − 1]). The remaining symbols of
S[i] are allocated to U [i]. The size of P [i] is set to equal that of U [i− τ ].

Decoding (high level description). A burst loss of X[i], . . . , X[i + b − 1] is recovered in two steps. First, for j ∈ {i +
b, . . . , i + τ − 1}, U [j − τ ] is subtracted from P [j] to obtain P ′[j]. Then P ′[i + b], . . . , P ′[i + τ − 1] are used to recover
V [i], . . . , V [i+b−1] during the time slot (i+τ−1). Recovery is possible because (a) P ′[i+b], . . . , P ′[i+τ−1] contain at least
as many symbols as V [i], . . . , V [i+ b− 1] by definition, and (b) the linear equations used to define P ′[i+ b], . . . , P ′[i+ τ − 1]
are chosen to be linearly independent. Second, during time slot j ∈ {i+ τ, . . . , i+ τ + b− 1}, V [j− τ ], . . . , V [j− 1] are used
to compute P ′[j]. Subtracting P ′[j] from P [j] yields U [j − τ ].

Code construction (toy example). We now present a toy example of (τ = 4, b = 2)−Variable-sized Generalized MS Code
for message size sequence k0 = 3, k1 = 2, k2 = 1, k3 = 2, k4 = 1, and k5 = . . . = k8 = 0, shown in Figure 2. For i ∈ [4], S[i]
is sent in X[i]. This satisfies the lossless-delay constraint. For i ∈ {0, 1, 4}, U [i] is defined to equal S[i], and V [i] is defined to
be empty (i.e., of size 0). For i ∈ {2, 3}, V [i] is set as S[i], and U [i] is defined to be empty. Let P ′[4] = (S0[2], S0[3], S1[3])
and P ′[5] = (S0[3], S1[3]). Next, P [4] = (S[0] + P ′[4]) is transmitted in X[4], and P [5] = (S[1] + P ′[5]) is sent in X[5].
Finally, P0[8] = S0[4] is transmitted in X[8]. The lossless-delay constraint is met, since each message packet is sent within the
corresponding channel packet. If any symbols of V [2] and or V [3] are lost, they are recovered using P [4] and P [5] respectively.
Any lost symbols of U [0], U [1], and U [4] are each decoded with delay exactly 4 using P [4], P [5], and P [8] respectively (and
subtracting P ′[4] and P ′[5] from P [4] and P [5] respectively). Therefore, the worst-case-delay constraint is satisfied.

Before presenting the detailed description, we introduce some notation. For Z ∈ {S,X,U, V, P, P ′} and any i ≤ j ∈ [t],
Z[i] is a vector of length z[i], and Z[i : j] = (Z[i], . . . , Z[j]).

Code construction (detailed description). During each time slot i, the channel packet X[i] = (S[i], P [i]) is sent. The
scheme is formally described in three parts: initialization, partitioning S[i] into (U [i], V [i]), and defining P [i].

Initialization: For i ∈ [b− 1], we set U [i] = S[i] and v[i] = 0. For i ∈ [τ − 1] we set p[i] = 0. Let A be a τm× τm Cauchy
matrix, where m was defined in Section II-B as an upper bound on the sizes of message packets.

Partitioning S[i]: For any i ≥ b, we partition S[i] into S[i] = (U [i], V [i]) as follows.4 We define an auxiliary variable zi
encapsulating the minimum number of parity symbols available for recovering S[i] when X[i] is dropped in a burst:

zi = min
j∈{i−b+1,...,i}

i+τ−1∑
l=j+b

p[l]−
i−1∑
l=j

kl. (4)

3For i < τ , P [i] is empty.
4Recall that partitioning was defined for i < b in initialization.
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Fig. 3: Illustration for defining E[i], for time slot i ∈ [t], by placing V ∗[j] = (V [j], 0, . . . , 0), for j ∈ {i− τ, . . . , i− 1}, into
m consecutive positions of E[i] starting with position (j mod τ)m.

The first min(ki, zi) symbols of S[i] are set to V [i]:

V [i] =
(
S0[i], . . . , Smin(ki,zi)−1[i]

)
(5)

The remaining symbols of S[i] are set to U [i]:

U [i] =
(
Smin(ki,zi)[i], . . . , Ski−1[i]

)
. (6)

Finally,
p[i+ τ ] = u[i] = ki −min(ki, zi) = ki − v[i] (7)

parity symbols are assigned to be sent in the channel packet X[i+ τ ], although the actual symbols of P [i+ τ ] have not yet
been identified. The size of p[i+ τ ] is never greater than ki (that is, the maximum possible size of u[i]), therefore p[i+ τ ] is
at most m.

Defining P [i]: During time slot (i ≥ τ), we set

P [i] = (U [i− τ ] + P ′[i]) (8)

where the symbols of P ′[i] are linear combinations of the symbols of V [i − τ ], . . . , V [i − 1].5 The linear combinations are
chosen from a Cauchy matrix, as described below. Let V ∗[j] be the length m vector obtained by appending (m− v[j]) 0’s to
V [j] for j ∈ {i− τ, . . . , i− 1}. We define a vector of length τm, E[i], by placing V ∗[j], for j ∈ {i− τ, . . . , i− 1}, into m
consecutive positions of E[i] starting with position (j mod τ)m, as is detailed in Figure 3.6 We use the Cauchy matrix A to
define

P ′[i] = E[i]A{(i mod τ)m,...,(i mod τ)m+p[i]−1}. (9)

The field size requirement is dictated by the Cauchy matrix and is at most 2τm.
In Theorem 1 below, we verify that the Variable-sized Generalized MS Code meets the requirements of the model.
Theorem 1: For any parameters (τ, b) and message size sequence k0, . . . , kt, the (τ, b)-Variable-sized Generalized MS Code

satisfies the lossless-delay and worst-case-delay constraints over any C(b, τ) channel.
Proof: The lossless-delay constraint is satisfied for i ∈ [t] by sending X[i] = (S[i], P [i]).

We prove that the worst-case-delay constraint is satisfied by showing for any i ∈ [t− τ ] that each of S[i], . . . , S[i+ b− 1]
are recovered within delay τ when X[i], . . . , X[i+ b− 1] are lost.7 First, we show that V [i], . . . , V [i+ b− 1] are recovered
by time slot (i+ τ − 1). Second, we show that U [i], . . . , U [i+ b− 1] are recovered by time slots (i+ τ), . . . , (i+ τ + b− 1),
respectively.

5Recall that p[i] was defined during initialization for i < τ .
6For each l ∈ {i, . . . , i+ τ − 1}, V ∗[i] appears in the same positions of E[l] as in E[i].
7Each message packet S[i] for i > (t− τ) is of size 0 and is known by the receiver due to the termination of the message size sequence.
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First, for j ∈ {i+b, . . . , i+τ−1} subtracting U [j−τ ] from P [j] yields P ′[j] (by Equation 8). Combining Equations 5, 6, 7,
and 8 shows that the total number of symbols in P ′[i+ b], . . . , P ′[i+ τ − 1] is at least as many as V [i], . . . , V [i+ b− 1]:

i+τ+b−1∑
j=i+b

p′[j] ≥
i+b−1∑
j=i

kj

i+τ−1∑
j=i+b

p′[j] +

i+τ+b−1∑
j=i+τ

p′[j] ≥
i+b−1∑
j=i

v[j] +

i+b−1∑
j=i

u[j]

i+τ−1∑
j=i+b

p′[j] ≥
i+b−1∑
j=i

v[j].

Next, we show that P ′[i + b], . . . , P ′[i + τ − 1] suffices to decode V [i], . . . , V [i + b − 1]. For j ∈ {i + b, . . . , i + τ − 1},
recall from Equation 9 and Figure 3 that P ′[j] is the product of distinct columns of A with a vector consisting of (a) for
l ∈ {i, . . . , i + b − 1}, V [l] in positions (j mod τ)m, . . . , ((j mod τ)m+ v[l]− 1), (b) for l ∈ {i, . . . , i + b − 1}, zeros
in positions ((j mod τ)m+ v[l]) , . . . , ((j mod τ + 1)m− 1), and (c) a combination of symbols of V [j − τ ], . . . , V [i −
1], V [i + b], . . . , V [j − 1] and zero padding in the remaining positions. For l ∈ {i + b, . . . , i + τ − 1}, let E′[l] be defined
by first setting it equal to E[l] and second replacing the symbols corresponding to V [i], . . . , V [i + b − 1] with 0’s. We note
that for r ∈ {i + b, . . . , i + τ − 1}, the receiver can compute E′[r] during time slot (i + τ − 1). Let P ∗[r] correspond to
(P ′[r]− E′[r]A). Then for some l0, . . . , lb−1 which is a permutation of i, . . . , (i+ b− 1), P ∗[i+ b]T

...
P ∗[i+ τ − 1]T

 =

 V [l0]
T

...
V [lb−1]

T


T

A′

where T denotes transpose, and A′ is a submatrix of A with
(∑i+b−1

j=i v[j]
)

rows and at least
(∑i+b−1

j=i v[j]
)

columns. As
such, A′ is Cauchy and thus has full rank. Hence, P ′[i+ b], . . . , P ′[i+ τ − 1] suffices to decode V [i], . . . , V [i+ b− 1].

Second, for j ∈ {i, . . . , i+ b− 1}, V [j], . . . , V [j + τ − 1] are used to compute

P ′[j + τ ] = E[j + τ ]A{(j mod τ)m,...,(j mod τ)m+p[j+τ ]−1}.

During time slot (j + τ), U [j] = (P [j + τ ]− P ′[j + τ ]) is then decoded.8

The following lemma essentially shows that all parity symbols sent in any channel packet under the (τ, b)−Variable-sized
Generalized MS Code are needed to satisfy the worst-case-delay constraint. This property is later used to prove that the
(τ, b)−Variable-sized Generalized MS Code is rate-optimal in Theorem 2.

Lemma 1: Consider any parameters (τ, b), message size sequence k0, . . . , kt, and the (τ, b)-Variable-sized Generalized MS
Code. For all i ≥ τ where p[i] > 0, ∃j ∈ {i− τ − b+ 1, . . . , i− τ} such that

∑i−τ
l=j kl =

∑i
l=j+b p[l].

Proof: For i ∈ {τ, . . . , τ + b− 1}, consider j = 0. Then
i−τ∑
l=j

kl =

i−τ∑
l=0

u[l] =

i∑
l=τ

p[l] =

i∑
l=b

p[l]

due to Equation 7 as well as the initialization defining (a) p[0], . . . , p[τ − 1] to each be 0, and (b) u[0], . . . , u[b − 1] to be
k0, . . . , kb−1 respectively.

For (i ≥ τ + b), if (p[i] = u[i− τ ] > 0) then (v[i− τ ] < ki−τ ). By Equations 4 and 5 and the fact that (v[i− τ ] < ki−τ )
there is some j ∈ {i− τ − b+ 1, . . . , i− τ} for which for i′ = (i− τ)

v[i′] =

i′+τ−1∑
l=j+b

p[l]−
i′−1∑
l=j

kl

v[i− τ ] =
i−1∑
l=j+b

p[l]−
i−τ−1∑
l=j

kl

v[i− τ ] + u[i− τ ] +
i−τ−1∑
l=j

kl = p[i] +

i−1∑
l=j+b

p[l]

i−τ∑
l=j

kl =

i∑
l=j+b

p[l].

8In the edge case where i > (t− τ), S[i] is known by the decoder to have size 0 and this step is not needed.
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Next, we present Theorem 2, which shows that the (τ, b)-Variable-sized Generalized MS Code is rate-optimal for Regime
1.

The proof involves an inductive argument on the time slot. It will show that the cumulative number of symbols sent by
each time slot under any code construction, even an offline one, must be at least as many as under the (τ, b)-Variable-sized
Generalized MS Code to satisfy the lossless-delay and worst-case-delay constraints. The proof technique synergizes with the
greedy paradigm of the (τ, b)-Variable-sized Generalized MS Code sending for each message packet S[i]: (a) the minimal
number of parity symbols needed to recover S[i] given any burst assuming that no future message packets needs to be
recovered, and (b) deferring the transmission of the parity symbols until the decoding deadline for S[i] (i.e., X[i + τ ]). The
methodology for designing a streaming code using a greedy paradigm and inductively proving that it is rate-optimal form a
suitable template for designing new online coding schemes in other regimes, as discussed in Section V.

Theorem 2: For any parameters (τ, b, τL = 0), the (τ, b)-Variable-sized Generalized MS Code is rate-optimal for transmission
over a C(b, τ) channel.

Proof sketch: We present the full proof in Appendix A.
For an arbitrary message size sequence k0, k1, . . . , kt, consider any optimal offline construction O. We prove by induction on

time slot i = 0, 1, 2, . . . , t that the cumulative number of symbols sent by O is at least as many as that of the (τ, b)-Variable-sized
Generalized MS Code.

In the base case, for each i ∈ [τ − 1], the channel packet X[i] under O must contain at least ki symbols to meet the
lossless-delay constraint for message packet S[i]. Under the (τ, b)-Variable-sized Generalized MS Code, x[i] = ki.

The inductive step for i ∈ {τ, . . . , t} has two cases.
First, when no parity symbols are sent in X[i] (that is, X[i] = S[i]) under the (τ, b)-Variable-sized Generalized MS Code,

at least s[i] = ki symbols are sent in X[i] under O to meet the lossless-delay constraint.
Second, suppose that X[i] = (S[i], P [i]) is sent under the (τ, b)-Variable-sized Generalized MS Code where p[i] > 0.

Applying Lemma 1 shows that there is a burst loss starting at time slot j ∈ {i − τ − b + 1, . . . , i − τ} where the number
of parity symbols received under the (τ, b)-Variable-sized Generalized MS Code in X[j + b], . . . , X[i] is the smallest for
which it is possible to decode message packet S[j], . . . , S[i − τ ]. We combine this fact with the lossless-delay constraint
for S[j + b], . . . , S[i]. We then show that at least as many symbols are sent under O between time slots (j + b) and i as
are, respectively, sent under the (τ, b)-Variable-sized Generalized MS Code. Applying the inductive hypothesis for time slot
(j + b− 1) concludes the proof.

We note that for any values of τ and b, the (τ, b)-Variable-sized Generalized MS Code’s rate (i.e., the optimal rate) is highly
dependent on the precise sequence of the sizes of the messages. Hence, a closed-form expression is not viable.

Finally, we discuss Regime 2 (i.e., τL = (τ − b) and b|τ ). Under Regime 2, for any parameters (τ, b), we show that a
simple online coding scheme applied to each message packethas rate τ

τ+b .9 Recall that τ
τ+b is an upper bound on rate for the

streaming model with variable-size message packets [28]. Hence, the simple construction is rate-optimal.
Under this encoding scheme, each message packet S[i] is evenly partitioned into τ

b components that are transmitted in
channel packets X[i], X[i+ b], . . . , X[i+ τ − b], respectively. The parity symbols, in the form of the sum of these τ

b channel

packets, are sent as X[i+ τ ] =
∑ τ−b

b
j=0 X[i+ jb].10 Note that in this coding scheme, each transmission occurs exactly b channel

packets apart, which is only possible under Regime 2. As such, each burst over X[i], . . . , X[i + τ ] drops precisely one of
X[i], X[i+ b], . . . , X[i+ τ − b], and X[i+ τ ]. The remaining channel packets suffice to recover the missing one to meet the
worst-case-delay constraint. Finally, we note that sending S[i] over X[i], . . . , X[i+τ−b] satisfies the lossless-delay constraint,
as (i+ τL) = (i+ τ − b).

In this section, we presented rate-optimal online streaming codes for Regime 1 and Regime 2. We showed in the proof of
Theorem 2 that, for any (τ, b), the (τ, b)−Variable-sized Generalized MS Code matches the rate of the best offline construction
possible for Regime 1. The simple construction for Regime 2 matches the upper bound of the rate of τ

τ+b . Both of these
constructions match the best possible rates of the offline setting, establishing that the online-optimal-rate equals the offline-
optimal-rate in both parameter regimes. The construction for Regime 1 can be used for any value of τL, although it is not
necessarily rate-optimal for τL > 0. Next, in Section IV, we show that online codes cannot match the offline-optimal-rate for
all other parameter settings.

IV. INFEASIBLITY OF OFFLINE-OPTIMAL-RATE FOR ONLINE SCHEMES

In Section III, we presented online code constructions that matched the offline-optimal-rate under the two broad settings of
Regime 1 and Regime 2. A natural question is whether there are any other parameter settings where an online coding scheme can

9The construction applies when (τ/b)|ki for any i ∈ [t]. This condition can be satisfied by padding each message packet with up to (τ/b− 1) symbols.
For real-world live-streaming applications, the amount of padding is typically negligible (e.g., three orders of magnitude smaller than the average size of a
message packet).

10A generalized version of this construction appeared in [28] after the conference version [1] of our work included the construction presented here. A
recent work employed a similar interleaving approach in designing a low complexity streaming code with linear field size in the setting of fixed-size message
packets [29].
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attain the offline-optimal-rate. In this section, we show that the online-optimal-rate is strictly less than the offline-optimal-rate
for all other parameter settings.

At a high level, the optimal approach to spreading symbols from a message packet S[i] over channel packets X[i], . . . , X[i+
τL] depends on the sizes of future message packets (i.e., ki+1, . . . , kt). This dependency enables offline coding schemes to
have higher rates than online coding schemes in all settings besides Regime 1 and Regime 2, as we will show in Theorem 3.

Theorem 3: For any parameters (τ, b, τL) outside of Regime 1 and Regime 2, the online-optimal-rate is strictly less than
offline-optimal-rate.

Proof sketch: The proof consists of three mutually exclusive cases shown via illustrative examples in Sections IV-A, IV-B,
and IV-C and in detail in Appendix B, C, and D. In each case, we present two distinct message size sequences of length
(t+1), which match for the first several time slots. We show a lower bound on the offline-optimal-rate for the two message size
sequences by presenting an offline coding scheme with rates R(1)

t and R(2)
t on the first and second message size sequences,

respectively. To attain a rate of at least R(1)
t on the first message size sequence requires sending symbols in a manner that

leads to a lower rate than R(2)
t on the second.

Remark 1: Although Theorem 3 is proven for two specific message size sequences, a similar proof holds if the sizes of the
message packets were only approximately the sizes corresponding to the message size sequences. As such, the result establishes
a broad class of message size sequences for which there is a gap between the online-optimal-rate and the offline-optimal-rate.

A. Case τL ≥ b and τL = (τ − b)
This section presents the proof for parameters (b, τL, τ) = (3, 4, 7); the general case, which builds closely on this example,

is proven in Appendix B.
Consider the following two message size sequences:
1) k

(1)
0 = 2 and k(1)j = 0 for j > 0.

2) k
(2)
0 = 2, k

(2)
1 = 2, k

(2)
2 = 10, and k(1)j = 0 for j > 2.

An offline construction for the two message size sequences is shown in Figures 4 and 5 respectively, over Fq for any prime
q ≥ 83.

For message size sequence 1, the construction sends X[0] = S0[0], X[3] = S1[0], and X[6] = (S0[0] + S1[0]), as shown in
Figure 4. The lossless-delay constraint is trivially satisfied. The worst-case-delay constraint is met, as at most one of X[0], X[3],
and X[6] is lost.

For message size sequence 2, the construction sends X[0] = S[0], X[1] = S[1], for i ∈ {2, . . . , 6} sends X[i] =(
S2(i−2)[2], S2(i−2)+1[2]

)
, X[7] =

(
S[0] +

∑6
i=3X[i]

)
, X[8] =

(
S[1] +

∑6
i=4 2

i−2X[i]
)

, and X[9] =
∑6
i=2 3

i−2X[i], as
shown in Figure 5. The lossless-delay is clearly satisfied. The worst-case-delay constraint is met, as will be shown next through
a comprehensive case analysis. For any l ∈ {0, 1} suppose that X[l] is lost, then S[l] =

(
X[7 + l]−

∑6
j=3+l(l + 1)j−2X[j]

)
is obtained within 7 time slots. When X[2] is lost, S[0] and S[1] are decoded. Then one can decode

(S4[2], S5[2]) = 2−2
(
X[8]− S[1]− 23X[5]− 24X[6]

)
(S2[2], S3[2]) = (X[7]− S[0]−X[4]−X[5]−X[6])

(S0[2], S1[2]) =

X[9]−
6∑
j=3

3j−2X[j]

 .

When a burst starts with X[3], S[0], S[1], and S0[2] are decoded, and (S8[2], S9[2]) is received. Combining S[0], S[1], and
X[2], with X[6 : 9] yields

∑6
l=3X[i],

∑5
l=4 2

l−2X[l], and
∑5
l=3 3

l−2X[l]. These three equations are linearly independent
and yield X[3 : 5]. Thus, S[2] is decoded by time slot 9. When a burst starts with X[4], S[0], S[1], S0[2], S1[2], S2[2], and
S3[2] are received and combined with X[7], X[8], and X[9] to determine

∑6
j=4X[j],

∑6
j=4 2

j−2X[j], and
∑6
j=4 3

j−2X[j].
These three equations are linearly independent and yield X[4 : 6], which consist of S4[2], . . . , S9[2]. When a burst starts with
X[5], S[1], S0[2], . . . , S5[2] are received and combined with X[8] and X[9] to determine

∑6
j=5 2

j−2X[j], and
∑6
j=5 3

j−2X[j].
These two equations are linearly independent and yield X[5] and X[6], which include S6[2], . . . , S9[2]. When a burst starts
with X[6], S0[2], . . . , S7[2] are received, leading to (S8[2], S9[2]) = 3−4

(∑5
j=2 3

j−2X[j]
)

. When X[0 : 6] are received, the
message packets are received.

The rate of the offline construction for message size sequence 1 is 2/3, while its rate for message size sequence 2 is 0.7.
An online construction must send at most 1 symbol in X[0] to have a rate of 2/3 on message size sequence 1 because X[0]
can be lost. We next show that any such scheme cannot attain the rate of 0.7 on message size sequence 2. If message size
sequence 2 occurs, the online construction must send at least 13 symbols over X[1 : 6] due to the lossless-delay constraint. At
least one of X[1 : 3] and X[4 : 6] must contain at least 7 symbols and may be lost. At least 14 symbols must be received. So
the rate is at most 14/21 (i.e., less than 0.7). Therefore, any online construction with a rate of 2/3 on message size sequence
1 cannot attain the rate of 0.7 on message size sequence 2, unlike the proposed offline construction.
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Fig. 4: Offline construction for message size sequence 1 for parameters (b, τL, τ) = (3, 4, 7).

Fig. 5: Offline construction for message size sequence 2 for parameters (b, τL, τ) = (3, 4, 7).

B. Case τL < b and τL = (τ − b)
This section presents the proof for parameters (b, τL, τ) = (2, 1, 3); the general case, which builds closely on this example,

is proven in Appendix C.
Consider the following two message size sequences:
1) k

(1)
0 = 2, k

(1)
1 = 2, and k(1)j = 0 for j > 1.

2) k
(1)
0 = 2, k

(1)
1 = 2, k(1)2 = 2, and k(1)j = 0 for j > 2.

An offline construction for the two message size sequences is shown in Figures 6 and 7 respectively over any finite field, Fq .
For message size sequence 1, the construction sends X[0] = S[0], X[1] = S0[1], X[2] = S1[1], X[3] = (S[0] + (0, S1[1])) ,

and X[4] = (S0[1] + S1[1]), as shown in Figure 6. The lossless-delay constraint is trivially satisfied. The worst-case-delay
constraint is met for S[0] because either S[0] is received, or S1[1] and X[3] are received, yielding S[0]. When X[1] is lost,
(0, S1[1]) = (X[3]− S[0]) is obtained, leading to S0[1] = (X[4]− S1[1]). When X[2] is lost, S0[1] is decoded, leading to
S1[1] = (X[4]− S0[1]). As such, the worst-case-delay is satisfied for S[1].

For message size sequence 2, the construction sends X[0] = S[0], X[1] = S[1], X[2] = S[2], X[3] = (S[0] + S[2]) , and
X[4] = (S[1] + S[2]), as shown in Figure 7. The lossless-delay is clearly satisfied. The worst-case-delay constraint is met for
S[0] as either X[0] = S[0] is received, or S[0] = (X[3]−X[2]) is obtained. The worst-case-delay constraint is satisfied for
S[1] since either X[1] is received, or S[0] is decoded, leading to S[2] = (X[3]− S[0]), and S[1] = (X[4]− S[2]). The worst-
case-delay constraint is satisfied for S[2] because either X[2] is received, or S[1] is decoded, yielding S[2] = (X[4]− S[1]).

The offline construction’s rate for message size sequence 1 is 4/7, while its rate for message size sequence 2 is 0.6. An
online construction with a rate of 4/7 on message size sequence 1 must send at most 3 symbols in X[0 : 1], since at least 4
symbols are sent in X[2 : 4] in case X[0 : 1] is lost. Also, the construction sends at least 2 symbols over X[0 : 1] to recover
S[0] under lossless transmission. Next, we show that any such scheme cannot attain the rate of 0.6 on message size sequence 2

Fig. 6: Offline construction for message size sequence 1 for parameters (b, τL, τ) = (2, 1, 3).

Fig. 7: Offline construction for message size sequence 2 for parameters (b, τL, τ) = (2, 1, 3).
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Fig. 8: Offline construction for message size sequence 1 for parameters (b, τL, τ) = (1, 1, 3).

Fig. 9: Offline construction for message size sequence 2 for parameters (b, τL, τ) = (1, 1, 3).

due to sending fewer than 4 symbols over X[0 : 2]. Thus, any online construction with a rate of 4/7 on message size sequence
1 cannot attain the rate of 0.6 on message size sequence 2, unlike the proposed offline construction.

First, suppose that exactly 2 symbols are sent in X[0 : 1]. Then X[2 : 3] suffices to recover S[0]. Recall that the 2 symbols
in X[0 : 1] only contain information about S[0], as they suffice to recover S[0] under a lossless transmission. Thus, X[0 : 1]
are recovered as a function of S[0], leaving the transmission lossless, so S[1 : 2] are recovered. Thus, X[2 : 3] contains at
least 6 symbols. At least 6 symbols are sent outside of X[2 : 3] in case X[2 : 3] is lost, so the rate is at most 6/12.

Second, due to the upper bound on the rate of τ
τ+b =

3
5 and worst-case-delay, at least 10 = 6 ∗ 5

3 symbols must be sent by
time slot 5. Suppose exactly 3 symbols are sent in X[0 : 1]. Consider the 5 periodic erasure channels, C0, . . . , C4, where for
i ∈ [4], Ci drops packets X[j : j + 1] for all j ≡ i mod 5. Each packet is dropped by 2 of these channels, so the channels
drop at least 2

5 ∗ 10 ≥ 4 symbols on average. At least 6 symbols must be received to ensure recovery. If any channel dropped
5 or more symbols, the rate would be at most 6/11. Thus, each channel must drop exactly 4 symbols to attain a rate of 0.6.
Therefore, C0 drops exactly 4 symbols—3 over X[0 : 1] and 1 in X[5]. Each of C4, C3, and C2 must drop 4 symbols (i.e.,
n4 + n5 = 4, n3 + n4 = 4, n2 + n3 = 4). Hence, X[4] contains 3 symbols, X[3] contains 1 symbol, and X[2] contains 3
symbols. In total, (3 + 3 + 1 + 3 + 1) = 11 symbols are sent over X[0 : 1], X[2], X[3], X[4], and X[5], leading to a rate of
6/11, which is less than 0.6.

Therefore, any online construction that matches the rate of 4/7 on message size sequence 1 cannot attain the rate of 0.6 on
message size sequence 2, unlike the offline construction.

C. Case τL < (τ − b)
This section presents the proof for parameter (b, τL, τ) = (1, 1, 3); the general case, which builds closely on this example,

is proven in Appendix D.
Consider the following two message size sequences:
1) k

(1)
0 = 2 and k(1)j = 0 for j > 0.

2) k
(1)
0 = 2, k

(1)
1 = 4, and k(1)j = 0 for j > 1.

An offline construction for the two message size sequences is shown in Figures 8 and 9 respectively over any finite field, Fq .
For message size sequence 1, the construction sends X[0] = S0[0], X[1] = S1[0], and X[2] = (S0[0] + S1[0]), as is shown

in Figure 8. The lossless-delay constraint is trivially satisfied. The worst-case-delay constraint is met because at most one of
X[0], X[1], or X[2] is lost and X[2] = (X[0] +X[1]).

For message size sequence 2, the construction sends X[0] = S[0], X[1] = (S0[1], S1[1]), X[2] = (S2[1], S3[1]), and
X[3] = (S[0] + (S0[1], S1[1]) + (S2[1], S3[1])), as shown in Figure 9. The lossless-delay is clearly satisfied. The worst-case-
delay constraint is met, since at most one of X[0], X[1], X[2], or X[3] =

∑2
i=0X[i] is lost.

The offline construction’s rate for message size sequence 1 is 2/3, while its rate for message size sequence 2 is 0.75. For
an online construction to attain a rate of 2/3 on message size sequence 1, it must send exactly 1 symbol in each of X[0] and
X[1] due to (a) the lossless-delay constraint and (b) ensuring at most 1 symbol is lost—a necessity to attain the rate of 2/3.
Next, we show that any such scheme cannot attain the rate of 0.75 on message size sequence 2. If message size sequence
2 occurs, at least 6 symbols are sent over X[0 : 2] due to the lossless-delay constraint. The average number of symbols per
packet is at least 2. If X[0] contains one symbol, at least one of X[1] or X[2] contains at least 3 symbols. At least 6 symbols
must be received to satisfy the worst-case-delay constraint. Since at least 3 symbols may be lost, at least 9 symbols must be
sent in total. As such, the rate is at most 2/3, which is less than 0.75. Therefore, any online construction that matches the rate
of 2/3 on message size sequence 1 cannot attain the rate of 0.75 on message size sequence 2, unlike the offline construction.
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V. CONCLUSION

Real-time streaming applications, such as videoconferencing, transmit a sequence of messages of varying sizes. These
applications operate in an online setting without access to future message sizes. However, previously studied upper bounds on
the rate apply to an offline setting with advance access to the sizes of all messages, leaving the best possible rate of the online
setting an open question. We introduce the first rate-optimal online coding schemes for two broad parameter regimes (that
is, Regime 1 and Regime 2) which are optimal even for the offline setting. To do so, we propose a framework for designing
online constructions using a greedy paradigm for sending parity symbols and inductively analyzing the rate that is suitable for
future works for message packets of varying sizes. We also show for all other parameter regimes that the best way to spread
the symbols of messages over multiple transmissions depends on the sizes of future messages. Consequently, no online coding
scheme can match the optimal rate of offline coding schemes.

The gap between the online-optimal-rate and offline-optimal-rate prompts three directions of further study for the parameter
settings outside of Regime 1 and Regime 2. First, how can one design rate-optimal offline code constructions? Second, what
does it mean to be rate-optimal in the online setting, given that the rate depends on the specific sequence of sizes of future
messages? Third, can one use the proposed methodology to design and analyze online constructions to design rate-optimal or
approximately rate-optimal online streaming codes? These questions have been partially answered for the smallest lossless-
delay where spreading message symbols can alleviate the variability of the sizes of message packets (i.e., τL = 1) in [32]; the
questions remain open for large values of τL.

APPENDIX

A. Proof of Theorem 2

In this section, we will prove Theorem 2. At a high level, the proof is inductive and shows that the cumulative number of
symbols sent by each time slot under the (τ, b)-Variable-sized Generalized MS Code is the minimum possible. For time slots
where no parity symbols are sent, it follows immediately by the lossless-delay constraint. Otherwise, there is some burst for
which every parity symbol in the received channel packets is needed to recover the burst within the worst-case-delay.

We begin by introducing the preliminary notation for the proof. We then include a few auxiliary Lemmas used throughout
the proof. Finally, we present the full proof itself.

Let t be an arbitrary natural number, and consider any length (t + 1) message size sequence k0, . . . , kt. Let O be an
arbitrary offline code construction that satisfies the lossless-delay and worst-case-delay constraints over a C(b, τ) channel for
the message size sequence. Let the channel packet transmitted during time slot j ∈ [t] under construction O and under the
(τ, b)-Variable-sized Generalized MS Code be labeled as XO[j] and XV [j], respectively. Let the cumulative number of symbols
transmitted through time slot j under construction O and under the (τ, b)-Variable-sized Generalized MS Code be denoted
n+O,j =

∑j
i=0 xO[i] and n+V,j =

∑j
i=0 xV [i], respectively. Recall from Section II that each message packet comprises symbols

drawn independently and uniformly at random from the finite field Fq . Let S be a random variable representing a uniformly
random element of Fq .

Next, we show that the lossless-delay constraint necessitates transmitting at least as many symbols as the size of the message
packet for each time slot.

Lemma 2: Consider any parameters (τ, b, τL = 0), an arbitrary message size sequence k0, k1, . . . , kt, and any code
construction which satisfies the lossless-delay and worst-case-delay constraints over a C(b, τ) channel. For any j ∈ [t],
nj ≥ kj .

Proof: Follows directly from (a) the independence of message packets, and (b) the lossless-delay constraint for τL = 0.

Next, we establish that whenever a burst of length b occurs, all message packets from time slots before the burst must be
decoded before the burst to satisfy both the lossless-delay and worst-case-delay constraints.

Lemma 3: Consider any parameters (τ, b, τL = 0), an arbitrary message size sequence k0, k1, . . . , kt, j ∈ [t], and any code
construction which satisfies the lossless-delay and worst-case-delay constraints over a C(b, τ) channel. When X[j], . . . , X[j+
b− 1] are lost in a burst, S[0 : j − 1] are decoded by time slot (j − 1).

Proof: By the worst-case-delay constraint, S[0 : j−τ−1] are all decoded by time slot (j−1). Under the C(b, τ) channel,
when X[j], . . . , X[j + b − 1] are lost, X[j − τ ], . . . , X[j − 1] are necessarily received.11 By the lossless-delay constraint,
S[0 : j − τ − 1] and X[j − τ : j − 1] suffice to decode S[j − τ : j − 1].

Finally, we prove Theorem 2 below.
Proof of Theorem 2: Let k0, k1, . . . , kt be an arbitrary message size sequence. We will show by induction that the

cumulative number of symbols sent through time slot i ∈ [t] under an arbitrary offline construction, O, is at least as many as
that of the (τ, b)−Variable-sized Generalized MS Code (i.e., n+O,i ≥ n

+
V,i). Consequently, the (τ, b)-Variable-sized Generalized

MS Code matches the offline-optimal-rate.
In the base case, we consider j ∈ [τ − 1]. Applying Lemma 2 determines that xO[j] ≥ kj = xV [j] ∀j ∈ [τ − 1].

11When j < τ, X[0 : j − 1] are received.
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For the inductive hypothesis, we assume that for some (i∗ ≥ τ − 1), for all l ∈ [i∗], n+O,l ≥ n
+
V,l.

For the inductive step, consider the time slot (i = i∗+1 ≥ τ). By the inductive hypothesis, n+O,i−1 ≥ n
+
V,i−1. We will show

that n+O,i ≥ n
+
V,i using two cases.

Case xV [i] = ki:
Applying Lemma 2 determines that xO[i] ≥ ki. Therefore, (n+O,i = n+O,i−1 + ki ≥ n+V,i−1 + ki = n+V,i).
Case xV [i] > ki: We first provide a high-level intuition of the proof and then the detailed derivation.

High-level summary: Applying Lemma 1 shows that there is a burst starting in time slot j ∈ {i − τ − b + 1, . . . , i − τ} for
which the (τ, b)-Variable-sized Generalized MS Code receives minimum required number of parity symbols to decode message
packets S[j : i− τ ] by time slot i. Combining this fact with meeting the lossless-delay constraint for S[j + b : i] shows that
the number of symbols sent under O between time slots (j + b) and i is at least as many as that of the (τ, b)-Variable-sized
Generalized MS Code.

Detailed derivation: By Lemma 1, there is some j ∈ {i− τ − b+1, . . . , i− τ} such that
∑i
l=j+b p[l] =

∑i−τ
l=j kl. Therefore,

i∑
l=j+b

xV [l] =

i−τ∑
l=j

kl +

i∑
l=j+b

kl. (10)

Next, we show that at least as many symbols are sent over XO[j + b : i] as are sent over XV [j + b : i]. Consider a burst
loss of X[j], . . . , X[j + b− 1]. Applying Lemma 3 shows that S[0 : j − 1] are known by the receiver by time slot (j − 1). By
the worst-case-delay constraint,

H
(
S[j : i− τ ]

∣∣XO[j + b : i], S[0 : j − 1]
)
= 0. (11)

We next bound the number of symbols sent over XO[j + b : i] ass

H (S[j : i− τ ]) +H
(
XO[j + b : i]

∣∣S[0 : i− τ ]
)
=H

(
XO[j + b : i], S[j : i− τ ]

∣∣S[0 : j − 1]
)

(12)

=H
(
XO[j + b : i]

∣∣S[0 : j − 1]
)

(13)

+H
(
S[j : i− τ ]

∣∣S[0 : j − 1], XO[j + b : i]
)

=H
(
XO[j + b : i]

∣∣S[0 : j − 1]
)
, (14)

where Equation 12 follows from the chain rule and independence of message packets, Equation 13 follows from the chain
rule, and Equation 14 follows from Equation 11.

Combining Equations 12 and 14 with the fact that conditioning reduces entropy yields

H (XO[j + b : i]) ≥ H
(
XO[j + b : i]

∣∣S[0 : j − 1]
)
≥ H (S[j : i− τ ]) +H

(
XO[j + b : i]

∣∣S[0 : j + b− 1]
)
. (15)

Next, we evaluate the size of H
(
XO[j + b : i]

∣∣S[0 : j + b− 1]
)

as

H
(
S[j + b : i], XO[j + b : i]

∣∣S[0 : j + b− 1]
)
=H (S[j + b : i]) +H

(
XO[j + b : i]

∣∣S[0 : i]
)

(16)
=H (S[j + b : i]) (17)

=H
(
XO[j + b : i]

∣∣S[0 : j + b− 1]
)
+ (18)

H
(
S[j + b : i]

∣∣S[0 : j + b− 1], XO[j + b : i]
)

=H
(
XO[j + b : i]

∣∣S[0 : j + b− 1]
)
, (19)

where Equation 16 follows from conditioning and independence of message packets, Equation 17 follows from the fact that for
l ∈ [t], XO[l] is a function of S[0 : l], Equation 18 follows from conditioning, and Equation 19 follows from the lossless-delay
constraint.

For any i ∈ [t],
H(S[i]) = H(S)ki (20)

H(X[i]) ≤ H(S)ni (21)

where S was defined as a random variable drawn uniformly at random from the underlying field, Fq . This follows from the
definition of message packets, and the fact that the maximum possible entropy of ni symbols is niH(S). Applying Equation 19
and 17 to Equations 15, 20, and 21 yields

H(S)
i∑

l=j+b

∣∣XO[l]
∣∣ ≥ H (XO[j + b : i]) ≥ H (S[j : i− τ ]) +H (S[j + b : i]) = H(S)

( i−τ∑
l=j

kl +

i∑
l=j+b

kl
)
. (22)
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Fig. 10: The offline scheme for message size sequence 1 for case τL ≤ b and τL = (τ − b). Blue channel packets consist of
message symbols, and red channel packets consist of parity symbols. The numbers under the lines at the bottom indicate the
time slots. The offline scheme sends d

a+1 symbols in each of the first e channel packets.

Fig. 11: The offline scheme for message size sequence 2 for case τL ≤ b and τL = (τ − b). Blue channel packets consist of
message symbols and red channel packets consist of parity symbols. The numbers under the lines at the bottom indicate the
time slots. The offline scheme sends d symbols in each of the first e channel packets.

Combining Equations 22 and 10 determines that

H (S)
i∑

l=j+b

xO[l] ≥ H (S)
i∑

l=j+b

xV [l]. (23)

By definition, (n+O,i = n+O,j+b−1+
∑i
l=j+b xO[l]) and (n+V,i = n+V,j+b−1+

∑i
l=j+b xV [l]). Applying the inductive hypothesis

to (j + b − 1 < i) shows that (n+V,j+b−1 ≤ n+O,j+b−1). Combining the above equations with Equation 23 determines that
n+V,i ≤ n

+
O,i. The inductive hypothesis is proven, and the result follows immediately.

B. Proof of Theorem 3 case τL ≥ b and τL = (τ − b)
Let (a = b τLb c) and (e ≡ τL mod b). Theorem 3 does not apply when τ = (τL − b) and b|τ , necessitating that (e > 0).

Let d be an arbitrary multiple of (a+ 1).
Consider the following two message size sequences for which the offline construction will be shown below in Figures 10

and 11 respectively:
1) k

(1)
0 = . . . = k

(1)
e−1 = d, and k(1)e = . . . = k

(1)
t = 0.

2) k
(2)
0 = . . . = k

(2)
b−2 = d, k(2)b−1 = d(τL + 1), and k(2)b = . . . = k

(2)
t = 0.

Before going into the details of the proof, we note that the proof applies for any value of d. When d is sufficiently large, the
proof could also be extended to message size sequences where the message packets’ sizes may only approximately equal the
ones in the message size sequence. More generally, the proof also applies for any message size sequences for which there is
a subsequence of (a) τ message packets whose sizes are � d, then (b) one of the two above message size sequences, then (c)
another τ message packets whose sizes are � d.

We present an offline coding scheme for message size sequences 1 and 2, which has rates

R
(1)
t =

a+ 1

a+ 2
, R

(2)
t =

τ

τ + b
(24)

on the two message size sequences, respectively. We describe and then validate the scheme for each message size sequence.
Offline scheme for message size sequence 1: Each message packet is encoded separately with parameters (τ ′ = b τb cb, b

′ =
b, τ ′L = τ ′ − b) as described in Section III, shown in Figure 10, and detailed below.
• For i ∈ [e−1], S[i] is evenly divided into (a+1) components of size d each: S(0)[i], . . . , S(a)[i]. For j ∈ [a], X[i+ jb] =
S(j)[i].

• For i ∈ [e− 1], X[i+ (a+ 1)b] =
∑a
z=0X[i+ zb].

Decoding: For i ∈ [e− 1], S[i] is sent evenly over X[i], X[i+ b], . . . , X[i+ ab] where (i+ ab) ≤ (i+ τL) and at most one
of X[i], X[i+ b], . . . , X[i+ ab], or X[i+ (a+ 1)b] =

∑a
j=0X[i+ jb] is lost. Each message packet is decoded within delay
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τL when the transmission is lossless and using a linear combination of the relevant (a + 1) channel packets within delay τ
otherwise.
Offline scheme for message size sequence 2: The first (b − 1) message packets are sent with no delay and the symbols
of the next message packet are transmitted evenly over X[b − 1], . . . , X[τ − 1]. The symbols of X[0 : τ − 1] are used to
create d blocks of the rate τ

τ+b systematic block code from [9]. Each of the d blocks includes b parity symbols that are sent
in X[τ ], . . . , X[τ + b − 1] respectively. The block code maps τ input symbols (s0, . . . , sτ−1) to (τ + b) codeword symbols
(s0, . . . , sτ−1, p0, . . . , pb−1). For each j ∈ [τ − 1] and any burst erasing up to b codeword symbols, the non-erased symbols
of (s0, . . . , sτ−1, p0, . . . , pmin(b−1,j)) are sufficient to decode sj . Therefore, each symbol is recovered within τ symbols. We
note that although we use the block code from [9], any other block code from [7], [8], [10], [12] also works. The scheme is
described in detail below and shown in Figure 11:
• For j ∈ [b− 2], X[j] = S[j].
• S[b− 1] is divided evenly into (τL + 1) components of size d: S(0)[b− 1], . . . , S(τL)[b− 1].
• For j ∈ {b− 1, . . . , b− 1 + τL}, X[j] = S(j−b+1)[b− 1].
• For each z ∈ [d − 1], an instance of the block code from [9] is created which maps (Xz[0], . . . , Xz[τ − 1]) to

(Xz[0], . . . , Xz[τ − 1], p
(z)
0 , . . . , p

(z)
b−1).

• For j ∈ [b− 1], X[τ + j] = (p
(0)
j , . . . , p

(d−1)
j ).

Decoding: Each message packet is transmitted within the current and next τL channel packets and is, thus, decoded when the
transmission is lossless. Each symbol Xz[i] for z ∈ [d − 1] and i ∈ [τ − 1] is decoded within the delay τ or by time slot
(τ + b− 1) using the block code (Xz[0], . . . , Xz[τ − 1], p

(z)
0 , . . . , p

(z)
b−1). Hence, the worst-case-delay constraint is met.

Proof of the converse result : The offline-optimal-rate is at least R(1)
t and R(2)

t (that is, the rate of the offline scheme from
Equation 24) for message size sequences 1 and 2, respectively. Next, we show mutually exclusive conditions for the sum of
the sizes of X[0], . . . , X[e−1] to have rates at least R(1)

t and R(2)
t on message size sequences 1 and 2 respectively. All online

coding schemes, thus, fail the condition for at least one message size sequence since they are identical until time slot e.

Condition for rate R(1)
t on message size sequence 1 : Consider any coding scheme for message size sequence 1. At least

de symbols are sent over X[b], . . . , X[t] since X[0], . . . , X[b − 1] could be lost. At most d e
a+1 symbols can be sent over

X[0], . . . , X[b− 1] if the rate is at least R(1)
t .

Condition for rate R(2)
t on message size sequence 2 : Consider an arbitrary coding scheme for message size sequence 2.

At least dτ symbols are sent in X[0], . . . , X[τ − 1] to meet the lossless-delay constraint. For each i ∈ [a], at least dτ symbols
are sent outside of X[e+ ib : e+ (i+ 1)b− 1] in case X[e+ ib : e+ (i+ 1)b− 1] is lost. Since the rate is R(2)

t , at most db
symbols are sent in X[e+ ib : e+ (i+ 1)b− 1]. As such, at least (dτ − d(a+ 1)b = de) symbols are sent in X[0 : e− 1].

Summary : Any online scheme whose rate is at least R(1)
t on message size sequence 1 sends at most d e

a+1 symbols in
X[0 : b− 1]. As such, its rate is lower than R(2)

t on message size sequence 2.

C. Proof of Theorem 3 case τL < b and τL = (τ − b)
Let d be an arbitrary positive even integer. Consider the following two message size sequences for which the offline

construction will be shown below in Figures 12 and 13 respectively:
1) k

(1)
0 = . . . = k

(1)
b−τL = d, and k(1)b−τL+1 = . . . = k

(1)
t = 0.

2) k
(2)
0 = . . . = k

(2)
b−τL = d, k(2)b−τL+1 = . . . = k

(2)
b−1 = 0, k(2)b = d, and k(2)b+1 = . . . = k

(2)
t = 0.

Before presenting the proof in detail, we observe that the proof could also be extended to similar message size sequences
where the sizes of each message packet is perturbed by a small amount as long as d is large. More generally, the proof also
applies to any message size sequence that contains one of the two above message size sequences proceeded and followed by
τ message packets sufficiently small relative to d.

We will present an offline coding scheme for the two message size sequences with rates

R
(1)
t =

b− τL + 1

2b− 2τL + 1.5
, R

(2)
t =

b− τL + 2

2b− 2τL + 3
(25)

on message size sequence 1 and 2, respectively. After presenting the scheme for each message size sequence, we verify that
it satisfies the lossless-delay and worst-case-delay constraints.
Offline scheme for message size sequence 1: The first (b−τL) message packets are sent in the corresponding channel packets.
The message packet S[b− τL] is divided in half to be evenly transmitted over X[b− τL] and X[b]. Each of the next (b− τL)
channel packets comprises d parity symbols used to decode (a) the first (b− τL) message packets if the corresponding channel
packets are lost and (b) X[b] if X[b− τL] and X[b] are both lost. The summation of X[b− τL] and X[b] is later sent in X[2b]
to ensure decoding of S[b− τL] within delay τ . The scheme is detailed below and shown in Figure 12:
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Fig. 12: The offline scheme for message size sequence 1 for case τL < b and τL = (τ − b). Blue channel packets consist of
message symbols, and red channel packets consist of parity symbols. The numbers under the lines at the bottom indicate the
time slots. The offline scheme sends d

2 symbols in X[b− τL].

Fig. 13: The offline scheme for message size sequence 2 for case τL < b and τL = (τ − b). Blue channel packets consist of
message symbols and red channel packets consist of parity symbols. The numbers under the lines at the bottom indicate the
time slots. The offline scheme sends d symbols in X[b− τL]

• S[0] and S[b − τL] are each evenly divided into two components of d/2 symbols each: S[0] = (S(0)[0], S(1)[0]) and
S[b− τL] = (S(0)[b− τL], S(1)[b− τL]).

• For i ∈ [b− τL − 1], X[i] = S[i].
• X[b− τL] = S(0)[b− τL].
• X[b] = S(1)[b− τL].
• X[b+ 1] = (S(0)[0], S(1)[0] + S(1)[b− τL]).
• For i ∈ {1, . . . , b− τL − 1}, X[i+ b+ 1] = (X[i+ b] + S[i]).
• X[b− τL + τ ] = X[2b] = (S(0)[b− τL] + S(1)[b− τL]).

Decoding: Each message packet is sent within the current and perhaps next τL channel packets and is decoded when the
transmission is lossless. We now discuss how message packets are recovered within a delay of τ under lossy conditions. Either
X[0] = S[0] is received, or X[0] is lost. In the latter case, both X[b] = S(1)[b−1] and X[b+1] = (S(0)[0], S(1)[0]+S(1)[b−1])
are received. Therefore, S[0] is decoded within the delay of τ . Next, for i ∈ {1, . . . , b−τL−1}, either X[i] = S[i] is received,
or both X[i+ b] and X[i+ b+ 1] = (X[i+ b] + S[i]) are received. Thus, S[i] is recovered within delay (b+ 1 ≤ τ). Either
X[b− τL] = S(0)[b− τL] is received, or X[2b− τL] =

(
(S(0)[0], S(1)[0] + S(1)[b− τL]) +

∑b−τL−1
i=1 S[i]

)
is received. In the

latter case, S[0], . . . , S[b− τL − 1] are decoded by time slot (2b− 1) and combined with X[2b− τL] to decode S(1)[b− τL].
S(1)[b−τL] is then combined with X[2b] = (S(0)[b−τL]+S(1)[b−τL]) to recover S(0)[b−τL] within a delay of τ . Therefore,
S(0)[b − τL] is decoded within delay τ . Either X[b] = S(1)[b − τL] is received, or X[2b] = (S(0)[b − τL] + S(1)[b − τL]) is
received. Recall that S(0)[b− τL] is decoded by time slot 2b. Thus, S(1)[b− τL] is recovered within delay τ .
Offline scheme for message size sequence 2: Each message packet S[i] is transmitted in the corresponding channel packet
X[i]. The next τL channel packets each comprise d parity symbols. These dτL symbols are used to decode (a) the first
(b − τL) message packets when the corresponding channel packets are lost, and (b) S[b] when both X[b − τL] = S[b − τL]
and X[b] = S[b] are lost. The sum of S[b− τL] and S[b] is sent in X[2b] to ensure that S[b− τL] is recovered if X[b− τL] is
dropped. The scheme is described in full detail below and shown in Figure 13 :
• For i ∈ [b− τL] ∪ {b}, S[i] = X[i].
• X[b+ 1] = (S[0] + S[b]).
• For i ∈ {1, . . . , b− τL − 1}, X[i+ b+ 1] = (X[b+ i] + S[i]).
• X[2b] = (S[b] + S[b− τL]).

Decoding: Each message packet is transmitted within the corresponding channel packet and is decoded when the transmission is
lossless. We now discuss how each message packet is decoded within a delay of τ under lossy conditions. Either X[0] = S[0]
is received or both X[b] = S[b] and X[b + 1] = (S[0] + X[b]) are received. Consequently, S[0] is decoded within delay
(b+1 ≤ τ). For i ∈ {1, . . . , b− τL− 1}, either X[i] = S[i] is received, or both X[i+ b] and X[i+ b+1] = (X[i+ b] +S[i])
is received. Therefore, each S[i] is recovered within delay (b + 1 ≤ τ). Either X[b − τL] = S[b − τL] is received, or
X[2b−τL] = (S[b]+

∑b−τL−1
i=0 S[i]) is received. In the latter case, S[0], . . . , S[b−τL−1] are decoded by time slot (b−τL+τ)
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and combined with X[2b−τL] to decode S[b]. Then, S[b] and X[2b] = (S[b]+S[b−τL]) used to recover S[b−τL]. Therefore,
S[b − τL] is decoded within delay τ . Either X[b] = S[b] is received, or X[2b] = (S[b] + S[b − τL]) is received. In the latter
case, subtracting S[b− τL] yields S[b]. Hence, S[b] is recovered within a delay of τ .

Proof of the converse result : The offline-optimal-rate is at least R(1)
t and R(2)

t on message size sequences 1 and 2, respectively
(i.e., the rate of the offline scheme from Equation 25). Next, we present necessary and mutually exclusive conditions on the
total number of symbols sent in X[0], . . . , X[b − 1] for a code construction to attain rates at least R(1)

t and R(2)
t on the two

respective message size sequences. The two message size sequences are the same until time slot b. Therefore, no online coding
scheme can satisfy the condition for both message size sequences.

Condition for rate R(1)
t on message size sequence 1 : Consider an arbitrary coding scheme for message size sequence 1. At

least d(b− τL + 1) symbols are transmitted in X[b], . . . , X[t] since X[0], . . . , X[b− 1] could be dropped in a burst. At most,
an additional d(b− τL + .5) symbols can be sent over X[0], . . . , X[b− 1] if the rate is at least R(1)

t .

Condition for rate R(2)
t on message size sequence 2 : Consider any coding scheme for message size sequence 2. We will

show that if

d′ =

b−1∑
i=0

ni ≤ d(b− τL + .5) (26)

then the rate is strictly less than R(2)
t . At a high level, at least d(b−τL+2) symbols are sent in X[0], . . . , X[b−1], X[2b], . . . , X[t]

to satisfy the worst-case-delay constraint when X[b], . . . , X[2b− 1] are lost. At least d(b− τL +1.5) symbols must be sent in
X[b], . . . , X[2b − 1] for the lossless-delay and worst-case-delay constraints to be satisfied, as will be shown shortly. In total,
d(2b− 2τL+3.5) symbols are sent, whereas at most d(2b− 2τL+3) symbols are transmitted as part of a scheme with a rate
of at least R(2)

t .
Next, the fact that sending at most d(b − τL + .5) symbols over X[0], . . . , X[b − 1] leads to a rate of less than R

(2)
t on

message size sequence 2 is proven in detail. Let S be a random variable drawn uniformly at random from the finite field Fq .
Recall from Appendix A that for any i ∈ [t], (a) H(S[i]) = H(S)ki, and (b) H(X[i]) ≤ H(S)ni (Equations 20 and 21).

We provide an upper bound on the sizes of the channel packets as follows

d(b− τL + 2)H (S) =H (S[0 : b]) (27)
≤H (S[0 : b], X[0 : b− 1], X[2b : b+ τ ]) (28)

=H (X[0 : b− 1], X[2b : b+ τ ]) +H
(
S[0 : b]

∣∣X[0 : b− 1], X[2b : b+ τ ]
)

(29)
=H (X[0 : b− 1], X[2b : b+ τ ]) (30)

≤H (S)

(
b−1∑
i=0

ni +

b+τ∑
i=2b

ni

)
. (31)

Equation 27 follows from Equation 20, Equation 28 follows from the definition of entropy, Equation 29 follows from the chain
rule, Equation 30 follows from the worst-case-delay constraint, and Equation 31 follows from Equation 21.

Next, we will prove that H (X[b : 2b− 1]) ≥ d(b− τL + 1.5)H (S) as follows

H (X[0 : b− 1], S[0 : b− τL − 1]) =H (X[0 : b− 1]) +H
(
S[0 : b− τL − 1]

∣∣X[0 : b− 1]
)

(32)
=H (X[0 : b− 1]) ≤ d′H (S) (33)

H (X[0 : b− 1], S[0 : b− τL − 1]) =H (S[0 : b− τL − 1]) +H
(
X[0 : b− 1]

∣∣S[0 : b− τL − 1]
)

(34)

=d(b− τL)H (S) +H
(
X[0 : b− 1]

∣∣S[0 : b− τL − 1]
)

(35)

where Equation 32 follows from the chain rule, Equation 33 follows from the lossless-delay constraint and Equation 26,
Equation 34 follows from the chain rule, and Equation 35 follows from applying Equation 20 to S[0], . . . , S[b− τ − 1].

Rearranging terms yields

H
(
X[0 : b− 1]

∣∣S[0 : b− τL − 1]
)
≤ (d′ − d(b− τL))H (S) (36)

Next, we bound the sizes of X[b], . . . , X[2b− 1] using

d(b− τL + 2)H (S) ≤H (S[0 : b]) (37)
≤H (S[0 : b], X[0 : 2b− 1]) (38)

≤H (X[b : 2b− 1]) +H
(
S[0 : b− τL − 1]

∣∣X[b : 2b− 1]
)

+H
(
X[0 : b− 1]

∣∣S[0 : b− τL − 1]
)
+H

(
S[b− τL : b]

∣∣X[0 : 2b− 1]
) (39)

=H (X[b : 2b− 1]) +H
(
X[0 : b− 1]

∣∣S[0 : b− τL − 1]
)

(40)
≤H (X[b : 2b− 1]) + (d′ − d(b− τL))H (S) , (41)
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Fig. 14: The offline scheme for message size sequence 1 for case τL < (τ − b). Blue channel packets consist of message
symbols, and red channel packets consist of parity symbols. The numbers under the lines at the bottom indicate the time slots.
The offline scheme sends d

2 symbols in X[b− 1].

Fig. 15: The offline scheme for message size sequence 2 for case τL < (τ − b). Blue channel packets consist of message
symbols and red channel packets consist of parity symbols. The numbers under the lines at the bottom indicate the time slots.
The offline scheme sends d symbols in X[b− 1]

where Equation 37 follows from Equation 20, Equation 38 follows from the definition of entropy, Equation 39 follows from the
definition of conditioning, Equation 40 follows from the worst-case-delay constraint (i.e., τ = (τL+ b)) and the lossless-delay
(i.e., τL < b), and Equation 41 follows from Equation 36.

Rearranging terms yields
(d(2b− 2τL + 2)− d′)H (S) ≤ H (X[b : 2b− 1])

≤ H (S)
2b−1∑
i=b

ni.
(42)

The total number of symbols sent in X[0 : b− 1] and X[2b : b+ τ ] is at least d(b− τL + 2) by Equations 27 through 31.
At least (d(2b− 2τL + 2)− d′) symbols are sent in X[b : 2b− 1] by Equation 42. In total, at least

d(3b− 3τL + 4)− d′ ≥
(
d(3b− 3τL + 4)− d(b− τL + .5)

)
= d(2b− 2τL + 3.5)

symbols are sent. Thus, the rate is strictly lower than R(2)
t .

Summary : Any online scheme with rate at least R(1)
t on message size sequence 1 sends at most d(b− τL+ .5) symbols over

X[0], . . . , X[b− 1]. Consequently, its rate is strictly less than R(2)
t on message size sequence 2.

D. Proof of Theorem 3 case τL < (τ − b)
Let d be an arbitrary positive even integer. Consider the following two message size sequences for which the offline

construction will be shown below in Figures 14 and 15 respectively:
1) k

(1)
0 = . . . = k

(1)
b−1 = d, and k(1)b = . . . = k

(1)
t = 0.

2) k
(2)
0 = . . . = k

(2)
τ−τL−2 = d, k(2)τ−τL−1 = d(τL + 1), and k(2)τ−τL = . . . = k

(2)
t = 0.

Before we present the details of the proof, we point out that a similar proof applies to when the sizes of the message packets
are approximately equal to those of the message size sequences, as long as the deviation is small relative to d. In addition,
the proof extends to scenarios where one of the two above message size sequence occurs at some point in the transmission
proceeded and followed by τ message packets whose sizes are much less than d.

We will describe an offline coding scheme for message size sequences 1 and 2 with rates

R
(1)
t =

b

2b− .5
, R

(2)
t =

τ

τ + b
(43)

on the two respective message size sequences. We also verify that the lossless-delay and worst-case-delay constraints are
satisfied.
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Offline scheme for message size sequence 1: Each of S[0], . . . , S[b−2] is transmitted immediately as part of the corresponding
channel packet. Then S[b−1] is divided in half and evenly sent over X[b−1] and X[b]. The next (b−1) channel packets each
comprise d parity symbols. These d(b − 1) parity symbols are used to decode (a) message packets S[0], . . . , S[b − 2] when
the corresponding channel packets are lost, and (b) X[b] when both X[b− 1] and X[b] are lost. The summation of X[b− 1]
and X[b] is sent in X[2b] to ensure that S[b− 1] is decoded within a delay of τ . The scheme is described in detail below and
shown in Figure 14 :
• The message packets S[0] and S[b − 1] are divided in half into S[0] = (S(0)[0], S(1)[0]) and S[b − 1] = (S(0)[b −

1], S(1)[b− 1]) .
• For j ∈ [b− 2], X[j] = S[j].
• X[b− 1] = S(0)[b− 1].
• X[b] = S(1)[b− 1].
• X[b+ 1] = (S(0)[0], S(1)[0] + S(1)[b− 1]).
• For i ∈ {1, . . . , b− 2}, X[i+ b+ 1] = (X[i+ b] + S[i]).
• X[2b] = (S(0)[b− 1] + S(1)[b− 1]).

Decoding: Each message packet is sent within the current and perhaps next channel packets and is decoded when the
transmission is lossless. We now discuss how each message packet is decoded within delay τ under lossy conditions. Either
X[0] = S[0] is received, or both X[b] = S1[b − 1] and X[b + 1] = (S(0)[0], S(1)[0] + S(1)[b − 1]) are received. Thus,
S[0] is decoded within a delay of (b + 1 ≤ τ). For j ∈ {1, . . . , b − 2}, either X[j] = S[j] is received, or both X[j + b] and
X[j+b+1] = (X[j+b]+S[j]) are received. Therefore, S[j] is decoded within delay (b+1 ≤ τ). Either X[b−1] = S(0)[b−1]
is received, or X[2b− 1] is received. In the latter case, S[0], . . . , S[b− 2] are decoded by time slot (2b− 1) and are combined
with X[2b−1] =

(
(S(0)[0], S(1)[0] + S(1)[b− 1]) +

∑b−2
i=1 S[i]

)
to recover S(1)[b−1]. The receiver then decodes S(0)[b−1] =

(X[2b]− S(1)[b− 1]) within delay (b+ 1 ≤ τ). Either X[b] = S(1)[b− 1] is received, or X[2b] = (S(0)[b− 1] + S(1)[b− 1])
is received and combined with S(0)[b− 1] to recover S(1)[b− 1] within delay τ .
Offline scheme for message size sequence 2: Each of S[0], . . . , S[τ − τL−2] is transmitted within the corresponding channel
packet. The symbols of S[τ − τL − 1] are evenly divided into (τL + 1) components sent over X[τ − τL − 1], . . . , X[τ − 1]
respectively. Each of X[τ ], . . . , X[τ + b− 1] comprises d symbols, which creates d blocks of the [τ + b, τ ] systematic block
codes (described in Section B). The scheme is presented in detail below and shown in Figure 15 :
• For j ∈ [τ − τL − 2], X[j] = S[j].
• The message packet S[τ − τL− 1] is evenly divided into (τL+1) components of size d: (S(0)[τ − τL− 1], . . . , S(τL)[τ −
τL − 1]).

• For j ∈ {τ − τL − 1, . . . , τ − 1}, X[j] = S(j−τ+τL+1)[τ − τL − 1].
• For each z ∈ [d − 1], an instance of the block code from [9] is created wherein (Xz[0], . . . , Xz[τ − 1]) is mapped to

(Xz[0], . . . , Xz[τ − 1], p
(z)
0 , . . . , p

(z)
b−1).

• For j ∈ [b− 1], X[τ + j] = (p
(0)
j , . . . , p

(d−1)
j ).

Decoding: Each message packet is sent over the current and perhaps next τL channel packets and is decoded when the
transmission is lossless. Under lossy conditions, the block code (Xz[0], . . . , Xz[τ − 1], p

(z)
0 , . . . , p

(z)
b−1) is used for decoding.

For z ∈ [d − 1]: (a) Each symbol Xz[i], for i ∈ [b − 1], is decoded within a delay of τ . (b) Each symbol Xz[i], for
i ∈ [τ − 1] \ [b− 1], is decoded by time slot (τ + b− 1). Thus, the worst-case-delay constraint is satisfied.

Proof of the converse result : The rates R(1)
t and R(2)

t of the above construction (Equation 43) for message size sequences 1
and 2, respectively, serve as a lower bound on the offline-optimal-rate for the two message size sequences. Next, we present
mutually exclusive conditions on the number of symbols transmitted in the first b channel packets to have rates at least R(1)

t or
R

(2)
t on message size sequences 1 or 2, respectively. The online coding schemes cannot differentiate between the two message

size sequences before the time slot b. Hence, the number of symbols sent in X[0], . . . , X[b− 1] by any online scheme violates
the condition for at least one message size sequence.

Condition for rate R(1)
t on message size sequence 1 : Consider any coding scheme for message size sequence 1. At least

db symbols are transmitted in X[b], . . . , X[t] in case there is a burst loss of X[0], . . . , X[b− 1]. The rate is at least R(1)
t , so

at most d(b− .5) additional symbols are sent in X[0], . . . , X[b− 1].

Condition for rate R(2)
t on message size sequence 2 : Consider any coding scheme for message size sequence 2. We will

demonstrate that if
b−1∑
i=0

ni ≤ d(b− .5) (44)

then the rate is strictly less than R(2)
t = τ

τ+b in two steps. First, we will show that all symbols are transmitted by X[τ + b−1]
without loss of generality. Second, we prove that strictly more than db symbols may be lost. At least dτ additional symbols
are sent to meet the worst-case-delay constraint, leading to a lower rate than R(2)

t .
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Step 1: If X[τ + b− 1] is lost, then X[0 : τ − 1] are received, which yields S[0 : τ − τL− 1] by the lossless-delay constraint.
Thus, all symbols sent after the time slot (τ + b) can instead be sent in X[τ + b− 1].
Step 2: Consider the following erasure channels Ci for i ∈ [τ + b − 1]. Each Ci introduces bursts of packet losses in
{X[j], . . . , X[j + b− 1] | j ≡ i mod (τ + b)} and results in li lost (dropped) symbols.12 At least d(τ + b) symbols are sent
in total due to the upper bound on the rate of τ

τ+b , leading to

τ+b−1∑
i=0

li ≥ db(τ + b) (45)

τ+b−1∑
i=1

li ≥ db(τ + b− 1) + .5d (46)

1

τ + b− 1

τ+b−1∑
i=1

li ≥ db+
.5d

τ + b− 1
, (47)

where Equation 45 follows from each packet (and hence each symbol) being dropped by exactly b channels, and Equation 46
follows from Equation 44.

Hence, there is some i ∈ {1, . . . , τ + b− 1} for which li ≥ (db+ .5d
τ+b−1 ). In order to satisfy the worst-case-delay constraint

over channel Ci, at least dτ symbols are received outside of the channel packets dropped by Ci. Thus, the total number of
symbols sent is at least d(τ + b+ .5

τ+b−1 ). In contrast, at most d(τ + b) symbols are sent if the rate is at least R(2)
t .

Summary : Any online coding scheme with a rate of at least R(1)
t on message size sequence 1 sends at most d(b− .5) symbols

in X[0], . . . , X[b− 1]. Consequently, its rate is strictly lower than R(2)
t on message size sequence 2.
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