
ar
X

iv
:2

20
1.

08
61

2v
2

 [
cs

.I
T

]
 2

4
Ja

n
20

22

Insertion and Deletion Correction in

Polymer-based Data Storage

Anisha Banerjee, Antonia Wachter-Zeh and Eitan Yaakobi

Abstract—Synthetic polymer-based storage seems to be a
particularly promising candidate that could help to cope with
the ever-increasing demand for archival storage requirements. It
involves designing molecules of distinct masses to represent the
respective bits {0, 1}, followed by the synthesis of a polymer of
molecular units that reflects the order of bits in the information
string. Reading out the stored data requires the use of a
tandem mass spectrometer, that fragments the polymer into
shorter substrings and provides their corresponding masses, from
which the composition, i.e. the number of 1s and 0s in the
concerned substring can be inferred. Prior works have dealt
with the problem of unique string reconstruction from the set of
all possible compositions, called composition multiset. This was
accomplished either by determining which string lengths always
allow unique reconstruction, or by formulating coding constraints
to facilitate the same for all string lengths. Additionally, error-
correcting schemes to deal with substitution errors caused by
imprecise fragmentation during the readout process, have also
been suggested. This work builds on this research by generalizing
previously considered error models, mainly confined to substitu-
tion of compositions. To this end, we define new error models
that consider insertions of spurious compositions and deletions
of existing ones, thereby corrupting the composition multiset. We
analyze if the reconstruction codebook proposed by Pattabiraman
et al. is indeed robust to such errors, and if not, propose new
coding constraints to remedy this.

Index Terms—Polymer-based data storage, string reconstruc-
tion, Composition errors, insertions, deletions

I. INTRODUCTION

As we progress through this digital age, our rate of data

generation continues to rise unhindered, and with it, so do

our storage requirements. Since current data storage media

are not particularly advantageous in regard to longevity or

density, several molecular storage techniques [1]–[9] have

been proposed. The work in [1] involving synthetic polymer-

based storage systems appears to be especially favorable, given

its promise of efficient synthesis, low read latency and cost.

Under this paradigm, a string of information bits is encoded

into a chain of molecules linked by means of phosphate

bonds, such that the component molecules may only assume

one of two significantly differing masses, which represent the

bits 0 and 1 respectively. The stored data can be read out

by employing a tandem mass (MS/MS) spectrometer, which

A. Banerjee and A. Wachter-Zeh are with the Institute for Communications
Engineering, Technical University of Munich, DE-80333, Munich, Germany.
E-mails: {anisha.banerjee,antonia.wachter-zeh}@tum.de.

E. Yaakobi is with the Computer Science Department, Technion–Israel In-
stitute of Technology, Haifa 32000, Israel. E-mail: yaakobi@cs.technion.ac.il.

This work has been supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(Grant Agreement No. 801434).

essentially splits the synthesized polymer at the phosphate

linkages and outputs the masses of the resulting fragments.

In this manner, the user is given access to the masses of all

substrings in the encoded string.

The previous work [10] dealt with the problem of recon-

structing a binary string from such an MS/MS readout, under

the following modeling assumptions:

Assumption 1. Masses of the component molecules are cho-

sen such that one can always uniquely infer the composition,

i.e., the number of 0s and 1s forming a certain fragment, from

its mass.

Assumption 2. While fragmenting a polymer for the purpose

of mass spectrometry analysis, the masses of all constituent

substrings are observed with identical frequency.

This proposed setting simplifies the recovery of the original

information string into the problem of binary string recon-

struction from its composition multiset. More specifically, the

reconstruction process now involves determining the binary

string from a set of compositions of all of its substrings of

each possible length. It is worth noting that this setup does

not allow for differentiation between a string and its reversal,

since their sets of substring compositions would be identical.

While the authors of [10] primarily focused on string

lengths that ensured unique reconstruction from a composition

multiset, subsequent works [11]–[13] extended this research

by building a code that allows for unique reconstruction of

each member codeword from its composition multiset alone,

regardless of the string length. It was found that a redundancy

proportional to the logarithm of the information length is

sufficient to guarantee unique reconstruction. Similar coding

constraints were also proposed to also cope with possible er-

rors in the composition multiset. The work in [14] takes a step

further by dealing with the recovery of multiple strings from

the mass spectrometry readout of a mixture of synthesized

polymers.

Since the errors introduced during an MS/MS readout

are often context-dependent, we devote this work to the

generalization of the error model considered in [11], [12].

Specifically, we investigate the impact of inserting and deleting

one or more compositions on the reconstructability of the

encoded strings. In addition to this, new coding constraints

are proposed to enable the correction of such errors. We

also consider a special kind of substitution error, namely a

skewed substitution error. This category of errors is motivated

by imperfect fragmentations of a given polymer during the

MS/MS readout process, as a result of which the observed

molecular mass of a shorter monomer chain is lower than what

1

http://arxiv.org/abs/2201.08612v2

the true mass of its perfectly fragmented version would have

been. In this scenario, errors occur only in one direction, i.e.,

the the measured mass can only be lower than the true mass,

not higher. An error-correcting scheme is also suggested for

this setting.

The organization of this work is as follows. Section II

introduces relevant terminology, notations and some prelimi-

nary results to be exploited subsequently. Section III discusses

coding constructions proposed in earlier works [11]–[13],

while Section IV describes the error models pertaining to

insertions, deletions and skewed substitutions of one or multi-

ple compositions and also briefly summarizes error-correcting

codes to deal with the same. We demonstrate the equivalence

between codes correcting deletions and insertions of multisets

in Section V. Sections VI and VII delve deeper into the con-

structions capable of correcting deletions of multiple multisets.

We also talk about skewed substitution errors and related

coding constructions in Section VIII. Finally, we conclude

with Section IX, where a few open problems are discussed.

II. PRELIMINARIES

Let s = s1s2 . . . sn denote a binary string of n bits. Any

substring si . . . sj where i ≤ j, may be indicated by s
j
i . The

composition of this substring, denoted by c(sji), is said to be

0z1w, where z and w refer to the number of 0s and 1s in

s
j
i respectively, such that z + w = j − i + 1. We also define

Ck(s) as the set of compositions of all length-k substrings in

s. Evidently, Ck(s) should contain n− k + 1 compositions.

Example 1. Consider s = 001010111. Then, the multiset of

compositions for substrings of length 7 is given by: C7(s) =
{0413, 0314, 0215}.

Upon combining the multisets for all 1 ≤ k ≤ n, we obtain

the composition multiset of s:

C(s) =
⋃

k∈[n]

Ck(s).

where [n] = {1, . . . , n}. As stated earlier, [10] determined

string lengths for which unique reconstruction (up to reversal)

from such sets is possible. For the remaining string lengths,

the authors exploited a bivariate generating polynomial repre-

sentation, to find strings that are equicomposable with a given

string. Here, two distinct strings s, t ∈ {0, 1}n are said to be

equicomposable if a common composition multiset is shared,

i.e., C(s) = C(t).
A code C is called a composition-reconstructable code if for

all s, t ∈ C, it holds that C(s) 6= C(t). For all n, denote by

A(n) the size of the largest composition reconstructable code.

Since composition multisets are identical for a binary string

and its reversal, it holds that

A(n) ≤ 2⌈
n
2
⌉ +

1

2
(2n − 2⌈

n
2
⌉) = 2n−1 + 2⌈

n
2
⌉−1,

where the term 2⌈
n
2
⌉ describes the number of palindromic

strings of length n, and [10] determined string lengths n where

it is possible to achieve this bound with equality. Specifically,

it was shown that binary strings of length ≤ 7, one less

than a prime, or one less than twice a prime, are uniquely

reconstructable up to reversal.

A. Unique Reconstruction Codes

For values of n where it is not possible to achieve the

aforementioned bound, it is necessary to formulate a code,

as done in [11], [12].

The first major coding-theoretic problem concerning

polymer-based storage involved designing constraints in or-

der to guarantee unique reconstruction for codewords of a

fixed length, i.e., to formulate a composition-reconstructable

code. To this end, [12] introduced the following composition-

reconstructable code for even codeword lengths.

Construction 1 [12]:

SR(n) = {s ∈ {0, 1}n, s1 = 0, sn = 1, and

∃I ⊂ {2, . . . , n− 1} such that

for all i ∈ I, si 6= sn+1−i,

for all i /∈ I, si = sn+1−i,

s[n/2]∩I is a Catalan-Bertrand string.}

(1)

In this context, a Catalan-Bertrand string refers to any binary

vector wherein each prefix contains strictly more 0s than 1s.

When n is odd, the codebook SR(n) is defined as:

SR(n) =
⋃

s∈SR(n−1)

{s
(n−1)/2
1 0s(n+1)/2}

n, s
(n−1)/2
1 1sn(n+1)/2}.

(2)

The number of redundant bits can thus be upper-bounded

in terms of n as 1/2 log(n) + 5 [11]. Alternatively, we obtain

the following statement from [12].

Theorem 1. [12, pg. 3] There exist efficiently encodable and

decodable reconstruction codes with k information bits and

redundancy at most 1
2 log(k) + 6.

From the definition of A(n), we can also deduce that,

|SR(n)| ≤ A(n).

This construction sets s1 = 0 and sn = 1 to avoid confusion

among reversals, while the remaining bits are chosen such that

the weight of a prefix and a suffix of equal length are unequal

if the said prefix includes a Catalan-Bertrand string, i.e.,

wt(si2)

{
= wt(sn−1

n−i+1), if [i] ∩ I = ∅,

< wt(sn−1
n−i+1), otherwise,

(3)

where i < ⌈n
2 ⌉ and wt(·) denotes the Hamming weight of

the argument. The latter inequality stems from the fact that if

s[i]∩I has strictly more 0s than 1s, then s{n−i+1,...,n−1}∩I

contains strictly more 1s than 0s, thus causing a weight

mismatch. Here, we note that the embedded Catalan-Bertrand

string may begin from index 2 at the earliest.

2

B. Reconstruction from Error-Free Composition Multisets

The decoder of the composition-reconstructable code SR(n)
recovers a string from its composition multiset by employing

the approach outlined in [10], [11]. Since the underlying

principles of this process help us in formulating coding

constructions for the more general error models involving

insertions and deletions, we briefly discuss it in this subsection.

For further details, the reader is referred to [10], [11].

The algorithm begins by deducing the following sequence

that characterizes the string to be recovered, say s ∈ SR(n),

σs = (σ1, . . . , σ⌈n/2⌉),

where σi = wt(sisn−i+1) for i ∈ {1, . . . , ⌊n/2⌋}. When n is

odd, we set σ⌈n
2
⌉ = wt(s⌈n

2
⌉), i.e., the weight of the central

element.

Example 2. For s = 001010111. the sequence of σi’s is σs =
(1, 1, 2, 0, 1).

These values can be computed by exploiting some inherent

properties of composition multisets. In particular, we make

use of cumulative weights, which are defined for each multiset

Ck(s) as:

wk(s) =
∑

0z1w∈Ck(s)

w.

Example 3. For instance, the multiset C7(s) =
{0413, 0314, 0215} has a cumulative weight w7(s) = 12.

It is easy to see that for all k ≤ ⌈n
2 ⌉, these weights obey

the following relations:

w1(s) =

⌈n
2
⌉∑

i=1

σi, (4)

wk(s) =

k∑

i=1

iσi + k

⌈n/2⌉∑

i=k+1

σi (5)

= kw1(s)−
k−1∑

i=1

iσk−i. (6)

We also observe a symmetry relation for any given set of

cumulative weights:

wk(s) = wn−k+1(s), ∀ k ∈ [n]. (7)

In light of this, the multisets Ci and Cn−i+1 are henceforth

said to be symmetric. For notational convenience, we also

define:

C̃i(s) = Ci(s) ∪ Cn−i+1(s)

Now to demonstrate the functioning of the reconstruction

algorithm, we consider the following example.

Example 4. In this example, we reconstruct the string s =
001010111 from its composition multiset C(s), which is stated

below:

C(s) = {0, 0, 1, 0, 1, 0, 1, 1, 1, 02, 0111, 0111, 0111, 0111,

0111, 12, 12, 0211, 0211, 0112, 0211, 0112, 0112,

13, 0311, 0212, 0212, 0212, 0113, 0113, 0312,

0312, 0213, 0213, 0114, 0412, 0313, 0214, 0214,

0413, 0314, 0215, 0414, 0315, 0415}.

(8)

The reconstruction process involves the following steps:

1) Firstly, we deduce its σs sequence from (4) and (6):

σs = (1, 1, 2, 0, 1).

2) We create a multiset T to include all compositions that

can be determined from σs. More explicitly, one can

infer the compositions c(s5), c(s
6
4), . . . , c(s

9
1) by noting

that for any i < ⌈n/2⌉,

c(sisn−i+1) =






02, if σi = 0.

0111, if σi = 1.

12, if σi = 2.

T = {1, 021, 0213, 0314, 0415}.

3) The process now assigns the bits of s pairwise, in an

inward manner, starting with bit pair (s1, s9). Since

σ1 = 1, we could set s1 = 0 and s9 = 1 or vice-versa.

Due to (1), we opt for the former, i.e. (s1, s9) = (0, 1).
4) Using the reconstructed prefix and suffix, we update T :

T = {0, 1, 1, 021, 0213, 0314, 0415, 0315, 0414}.

5) The two longest compositions in the multiset C(s)\T
are {0413, 0215}. These denote the compositions of

substrings s
7
1 and s

9
3. Conversely, their complements

{12, 02} correspond to substrings s21 and s
9
8. Combining

this with the knowledge of bits s1 and s9, we reconstruct

s up to its prefix-suffix pair of length 2, i.e. (s21, s
9
8) =

(00, 11).
6) To recover the remaining bits, we simply repeat steps 4

and 5.

III. SUBSTITUTION-CORRECTING CONSTRUCTIONS

We now turn our attention to the problem of reconstruc-

tion from erroneous composition multisets. Substitution errors

were considered in [11] under the asymmetric and symmetric

setting. In this error model, some compositions in C(s) are

arbitrarily altered. If the errors occur such that each multiset

C̃i includes at most one substituted composition, then they

are said to be asymmetric. On the contrary, a pair of sym-

metric substitution errors would occur in the multisets Ci and

Cn−i+1, for any i ∈ [n].

Definition 1. A composition multiset C(s) of the string s ∈
{0, 1, }n is said to have suffered an asymmetric substitution

error, if for some i ∈ [n], a single composition of the multiset

3

Ci(s) is modified, but its symmetric counterpart Cn−i+1(s)
remains unaffected.

Definition 2. If a composition multiset C(s) is corrupted by

having one composition substituted in each of the multisets

Ci(s) and Cn−i+1(s), then two symmetric substitution errors

are said to have occurred.

To exemplify this, we consider the following.

Example 5. Let s = 001010111. The symmetric multiset pair

C3(s) and C7(s) is given by

C3(s) = {021, 021, 012, 021, 012, 012, 13},

C7(s) = {0413, 0314, 0215}.

For instance, an asymmetric substitution error is said to have

occurred if C7(s) is corrupted to

C′
7(s) = {0413, 0314, 0314}.

On the contrary, if C3(s) is also corrupted in addition to

C7(s) as follows,

C′
3(s) = {13, 021, 012, 021, 012, 012, 13},

then two symmetric substitution errors are said to have oc-

curred.

We recall an important construction from [11] that corrects

such composition substitution errors. In the following, we

designate a code S
(t)
CA as a t-asymmetric composition code,

if for all s, v ∈ S
(t)
CA, there exists no I ⊆ [⌈n

2 ⌉] with |I| ≤ t
such that

|C̃i(s) \ C̃i(v| = 1 ∀ i ∈ I,

C̃i(s) = C̃i(v) ∀ i ∈
[⌈n

2

⌉]
\ I.

Construction 2 [11], [12]: A single (asymmetric or sym-

metric) composition code for odd values of n is stated below.

S
(1)
CA(n) ={s = s1s

∗
1s2 . . . s⌈n−2

2
⌉ . . . sn−3s

∗
nsn−2 ∈ {0, 1}n :

s1 . . . sn−2 ∈ SR(n− 2),wt(s) mod 2 = 0,

⌈n
2
⌉∑

i=1

wi(s) = 0 mod 3, where s∗1 ≤ s∗n}.

A similar construction exists for even n. The size of this code

equals
|SR(n−2)|

2 . However, subsequently in Section VII we

conclude by means of Lemma 7, that the code SR(n) is also

capable of correcting a single composition error.

Construction 3 [11]: A codebook S
(t)
CA(n) that is capable

of rectifying t-asymmetric substitution errors is proposed in

[11], and for the sake of brevity, we henceforth call it a t-

asymmetric composition code. S
(t)
CA(n) constitutes all code-

words s = (s̃
m/2
1 b

n−m
1 s̃

m
m/2+1), such that the components

s̃
m
1 and b

n−m
1 are constructed as follows:

• We choose s̃ = (s̃
m/2
1 s̃

m
m/2+1) ∈ S

(t)
R (m), described by

the sequence σs̃.

S
(t)
R (m) ={s ∈ {0, 1}m, st1 = 0, smm−t+1 = 1, and

∃I ⊂ {t+ 1, . . . ,m− t} such that

for all i ∈ I, si 6= sm+1−i,

for all i /∈ I, si = sm+1−i,

s[m/2]∩I is a Catalan-Bertrand string.}

(9)

• A systematic Reed-Solomon code over the alphabet

{0, 1, 2} is used to map σs̃ to a sequence σs by ap-

pending the values (σm/2+1, . . . , σn/2), which help to

construct b = b
n−m
1 as follows:

bkbn−k+1 =






00, if σm/2+k = 0.

01, if σm/2+k = 1.

11, if σm/2+k = 2.

where k ∈ [(n−m)/2].

The upcoming construction, designed to correct substitution

errors in symmetric multiset pairs, exploits a bivariate generat-

ing polynomial representation Ps(x, y) of string s, that works

as follows. Let the first term always be
(
Ps(x, y)

)
0
= 1. Now

by representing bits 0 and 1 as y and x respectively, we define

the subsequent terms as:

(
Ps(x, y)

)
i
=

{
y
(
Ps(x, y)

)
i−1

, if si = 0

x
(
Ps(x, y)

)
i−1

, if si = 1.

Example 6. For s = 001010111, the bivariate generating

polynomial is given by Ps(x, y) = 1 + y+ y2 + xy2 + xy3 +
x2y3 + x2y4 + x3y4 + x4y4 + x5y4.

The corresponding construction can be defined more ex-

plicitly as follows. A code S
(t)
CS is called a t-symmetric

composition code, if for all s, v ∈ S
(t)
CS , there exists no

I ⊆ [⌈n
2 ⌉] with |I| ≤ t such that

∣∣ ⋃

i∈I

(C̃i(s) \ C̃i(v)
∣∣ ≤ t,

C̃i(s) = C̃i(v) ∀ i ∈
[⌈n

2

⌉]
\ I.

Construction 4 [11]: The authors of [11] also suggest

a construction that corrects any t symmetric composition

substitutions in an entire composition multiset as follows.

S
(t)
CS(n) ={s ∈ {0, 1}n, s.t. Ps(α

ℓ1 , αℓ2) = aℓ1,ℓ2 ,

wt(s) ≡ a mod (2t+ 1)}
(10)

for all ℓ1, ℓ2 ∈ {0, 1, . . . , 4t}, a ∈ {0, 1, . . . , 2t} and where

(aℓ1,ℓ2)
4t
ℓ1,ℓ2=0 denotes a random vector from F

(4t+1)2

q .

IV. NEW ERROR MODELS

The subsequent sections explore error models that involve

corrupting a valid composition multiset via the insertion or

deletion of one or more multisets.

Definition 3. An asymmetric multiset deletion is said to have

occurred in the composition multiset C(s) of a string s ∈

4

{0, 1}n, if for some i ∈ [n], the multiset Ci(s) is entirely

missing, while Cn−i+1(s) is uncorrupted.

Definition 4. A pair of symmetric multiset deletions is said

to have occurred if the composition multiset C(s) of a string

s ∈ {0, 1}n, if for some i ∈ [n] such that i 6= n− i + 1, the

multisets Ci(s) and Cn−i+1(s) are entirely eliminated.

Example 7. Let s = 001010111. If the composition multiset

C(s) is corrupted to

C′(s) =
⋃

i∈[n]\{3}

Ci(s),

= {0, 0, 1, 0, 1, 0, 1, 1, 1, 02, 0111, 0111, 0111, 0111,

0111, 12, 12, 0311, 0212, 0212, 0212, 0113, 0113,

0312, 0312, 0213, 0213, 0114, 0412, 0313, 0214,

0214, 0413, 0314, 0215, 0414, 0315, 0415}.

then an asymmetric multiset deletion is said to

have occurred. More specifically, the multiset

C3(s) = {0211, 0211, 0112, 0211, 0112, 0112, 13} has been

deleted. On the other hand, if

C′(s) =
⋃

i∈[n]\{3,7}

Ci(s),

= {0, 0, 1, 0, 1, 0, 1, 1, 1, 02, 0111, 0111, 0111, 0111,

0111, 12, 12, 0311, 0212, 0212, 0212, 0113, 0113,

0312, 0312, 0213, 0213, 0114, 0412, 0313, 0214,

0214, 0414, 0315, 0415}.

we say that a pair of symmetric multiset deletions has oc-

curred. Here compared to C(s), we are missing the mul-

tisets C3(s) = {0211, 0211, 0112, 0211, 0112, 0112, 13} and

C7(s) = {0413, 0314, 0215}.

Definition 5. A composition multiset C(s) of a string s ∈
{0, 1}n is said to have suffered a composition insertion error,

if for some i ∈ [n] the multiset Ci(s) contains n − i + 2
compositions, i.e. an unknown and invalid composition has

been registered.

Example 8. Once again, let s = 001010111. If C7(s) has

been altered as follows,

C′
7(s) = {0413, 0314, 0215, 0116}.

we say that a composition insertion error has taken place.

The main contribution of this work consists of studying

the aforementioned error models and proposing new coding

constraints to combat the same. We also establish an equiv-

alence between codes that correct composition insertions and

composition deletions. Consequently, we restrict our attention

to the latter for the remainder of this paper.

To this end, we first propose the following composition

reconstruction code that allows for the correction of t asym-

metric multiset deletions. Specifically, a code S
(t)
DA is termed

as a t-asymmetric multiset deletion composition code, if for

all s, v ∈ S
(t)
DA, there exists no I ⊆ [n] with |I| ≤ t such that

for all i ∈ I,

Ci(s) 6= Ci(v),

Cn−i+1(s) = Cn−i+1(v),

Cj(s) = Cj(v) ∀ j ∈ [n] \ I.

Construction 5:

S
(t)
DA(n) ={s ∈ {0, 1}n, s1 = 0, sn = 1, and

∃I ⊂ {2, . . . ,
n

2
}, |I| ≥ t, such that

∀ i ∈ I, si 6= sn+1−i,

and ∀i /∈ I, si = sn+1−i,

s[n/2]∩I is a string wherein each

prefix has at least t more 0s than 1s.}

(11)

The corresponding proof follows behind Theorem 2. Evi-

dently, this construction is inspired from (9), in that it requires

at least t 0s in s
n/2
1 and at least t 1s in s

n
n/2+1, however their

locations are not necessarily restricted as in (9). The extension

to odd codeword lengths is similar to (2).

Following this, we investigate the case of symmetric multi-

set deletions, and discover that when two or more symmetric

multiset pairs are missing, additional constraints are needed

to bolster the code SR(n) so as to guarantee unique recon-

structability. In this context, a code S
(t)
DS is termed as a t-

symmetric multiset deletion composition code, if for all s,

v ∈ S
(t)
DS , there exists no I ⊆

[⌈
n
2

⌉]
with |I| ≤ t such

that

C̃i(s) 6= C̃i(v), ∀ i ∈ I

Ci(s) = Ci(v) ∀ i ∈
[⌈n

2

⌉]
\ I.

For the elementary case of two deleted symmetric multiset

pairs, we propose the following code.

Construction 6:

S
(2)
DS(n) ={s ∈ SR(n),

⌈n
2
⌉∑

i=1

wi(s) mod 7 = a, 0 ≤ a ≤ 6}.
(12)

Theorem 8 proves that this code can indeed correct the

deletion of two symmetric multiset pairs. We also generalize

this construction to accommodate for the deletion of any t
consecutive symmetric multiset pairs, where t ≥ 2. More

explicitly, a code S
′(t)
DS is termed as a t-symmetric consecutive

multiset deletion composition code, if for all s, v ∈ S
′(t)
DS , there

exists no I = {i, i + 1, . . . i + p − 1} ⊆
[⌈

n
2

⌉]
with p ≤ t

such that

C̃j(s) 6= C̃j(v), ∀ j ∈ I

Cj(s) = Cj(v) ∀ j ∈
[⌈n

2

⌉]
\ I.

5

Construction 7:

S
′(t)
DS (n) ={s ∈ SR(n),

m
2∑

i=1

wi(s) mod A = a,

0 ≤ a ≤ A− 1}

(13)

where t ≥ 2 and

A =
⌈4t3

3
+

2t

3
−

31

4

⌉
.

Theorem 11 proves that S
′(t)
DS (n) is capable of correcting the

deletion of t consecutive symmetric multiset pairs.

Definition 6. A composition multiset C(s) of the string

s ∈ {0, 1, }n is said to have suffered an asymmetric skewed

substitution error, if for some i ∈ [n], a single composition

of multiset Ci(s) is replaced with one of a lower Hamming

weight, such that the symmetric counterpart Cn−i+1(s) re-

mains unaffected.

Example 9. For instance, if an erroneous measurement cor-

rupts the composition 0214, the measured compositions could

be 0313 or 0412, but not 0115.

Formally, a code C′(t) is referred to as a t-asymmetric

skewed composition code, if for all s, v ∈ C′(t), there exists

no I ⊆ [n] with |I| ≤ t such that for all i ∈ I,

Ci(s) 6= Ci(v),

Cn−i+1(s) = Cn−i+1(v),

Cj(s) = Cj(v) ∀ j ∈ [n] \ I

We subsequently prove in Lemma 7 of Section VIII that the

code S
(t)
DA(n) (Construction 5) is sufficiently robust to allow

the correction of t skewed asymmetric substitution errors in

its composition set.

These results, along with the earlier constructions proposed

in [11]–[13], have been summarized in Table I.

V. CODE EQUIVALENCE: INSERTION AND DELETION OF

MULTISETS

In this section, we demonstrate how codes which can correct

the deletion of a group of t multisets, can also correct the

occurrence of insertion errors in those t multisets.

Lemma 1. A code can correct the deletion of t composition

multisets, if and only if it can correct any number of compo-

sition insertion errors in those t multisets.

Proof. We prove this by contradiction. Let there be two binary

strings s,v ∈ SR(n), such that:

Dt(s) ∩Dt(v) 6= ∅. (14)

where Dt(s) constitutes all codewords in SR(n) that s be-

comes equicomposable with upon the deletion of at most t
multisets, i.e.,

Dt(s) ={u ∈ SR(n) such that ∃ I ⊆ [n], |I| ≤ t,
⋃

i∈[n]\I

Ci(s) =
⋃

i∈[n]\I

Ci(u)}.

Equation (14) implies that at least n− t composition multisets

of s and v are identical. In other words, when a specific group

of t multisets disappears from the multiset information of

s and v, they become indistinguishable. Let these differing

multisets correspond to substring lengths i1, i2, . . . it. This

allows us to write that:
⋃

j∈[n]\{i1,...it}

Cj(s) =
⋃

j∈[n]\{i1,...it}

Cj(v).

If we perform a set union operation on both sides of the

previous equation with
⋃

i∈{i1,...it}
Ci(s) ∪ Ci(v), then we

get:
⋃

i∈{i1,...it}

(Cj(v)\Cj(s)) ∪
⋃

j∈[n]

Cj(s)

=
⋃

i∈{i1,...it}

(Cj(s)\Cj(v)) ∪
⋃

j∈[n]

Cj(v).

This effectively means that if the multisets Ci1(s), . . . Cit(s)
are corrupted by the insertion of some specific erroneous

compositions, then the multiset information may correspond to

both s and v, and vice-versa. This lets us write the following:

It(s) ∩ It(v) 6= ∅. (15)

where It(s) denotes the set of all codewords u ∈ SR(n)
whose composition multisets, upon suffering any number of

insertion errors in at most t distinct multisets, resemble C(s)
after corruption by certain composition insertions in those

affected multisets. In other words, at least n − t distinct

multisets of s and u are identical. Consequently, we can write

It(s) =Dt(s)

={u ∈ SR(n) such that ∃ I ⊆ [n], |I| ≤ t,

∀ i ∈ [n] \ I, Ci(s) = Ci(u)}

Owing to this result, we deem it sufficient to focus on

multiset deletion-correcting codes. The subsequent sections

examine how multiset deletions affect the reconstructability

of an encoded string drawn from SR(n). Similar to [11], we

categorize such deletion errors into two major settings.

VI. ASYMMETRIC MULTISET DELETION-CORRECTING

COMPOSITION-RECONSTRUCTION CODES

We begin by considering an error model where a complete

multiset Ck(s) can be deleted from the composition multiset

C(s). This is formally referred to as a single asymmetric

multiset deletion [see Definition 3]. We investigate whether

the reconstruction codebook [see Construction 1] guarantees

unique recoverability under this model. To proceed in this

direction, we first take note of the following lemma, which

results from a specific case of [11, Lemma 4].

Lemma 2. Let s,v ∈ SR(m) share the same σ sequence

and satisfy |Cj(s)\Cj(v)| ≤ 2 for all j ∈ [m]. If the longest

prefix-suffix pair shared by s and v is of length i, then their

6

Code Symbol
Upper bound

on redundancy
Proof

Composition-

reconstructable code
SR(n)

1
2 log2 n+ 5 [11], [12]

Single composition

error-correcting code
S
(1)
CA(n)

1
2 log2(n− 2) + 8 [11], [12]

t-asymmetric

composition code
S
(t)
CA(n)

(
1
2 + 3t

)
log2 n+ 2t+ 5 [11]

t-composition code S
(t)
CS(n) 156t2 log2 n [11], [13]

t-asymmetric multiset

deletion composition code
S
(t)
DA(n)

1
2 log2 (n− 2t) + 2t+ 3 Th. 2

2-symmetric multiset

deletion composition code
S
(2)
DS(n)

1
2 log2 (n− 2) + 8 Th. 8

t-symmetric consecutive

multiset deletion composition code
S
′(t)
DS (n)

1
2 log2(n− 2)

+ log2

⌈
4t3

3 + 2t
3 − 31

4

⌉
+ 5

Th. 11

Table I: Summary of constructions

corresponding composition multisets Cm−i−1 and Cm−i−2

each differ in at least 2 compositions.

To shortly highlight the implications of this lemma, we

consider the strings s = 001011101 and v = 001110101.

Clearly, they are both specified by σ = (1, 0, 2, 1, 1). Since

the longest prefix-suffix pair shared by them is (001, 101), i.e.,

of length 3, their respective multisets C4 and C5 differ by at

least 2 compositions.

Lemma 3. Consider a string s ∈ SR(n). Given C′(s) =⋃
i∈[n]\{k} Ci(s) for any k ∈ [n], s can be fully recovered.

Proof. Case 1. n is even

From the steps of the reconstruction algorithm as described

in Section II-B, it is evident that we only require the com-

position multisets Cn(s), . . . , Cn
2
(s). Hence, if k < n

2 , the

reconstruction of s is straightforward. On the contrary, if

k ≥ n
2 , one can still infer the cumulative weight of the missing

multiset Ck(s) from (7). Consequently, σs can be obtained

accurately.

In the absence of Ck(s), the prefix and suffix can be

constructed upto s
n−k−1
1 and s

n
k+2. When σk = σn−k+1 ∈

{0, 2}, there remains no ambiguity concerning the bits sn−k

and sk+1. However, when σk = 1, one can either have

(sn−k, sk+1) = (0, 1) or (sn−k, sk+1) = (1, 0) if both of

these possibilities guarantee weight mismatch between s
n−k
1

and s
n
k+1. Now since s ∈ SR(n), Lemma 2 tells us that

choosing the bits sn−k and sk+1 incorrectly, will lead to an

incompatibility with the multiset Ck−1(s). Thus there exists

only one valid choice for these bits, implying that s is uniquely

recoverable.

Case 2. n is odd

Similar to the previous case, it can be argued that for any

missing composition multiset Ck(s), where k 6= ⌈n
2 ⌉, s can

be easily and uniquely determined. The more interesting case

occurs when k = ⌈n
2 ⌉, since the absence of C⌈n

2
⌉(s), and

thus w⌈n
2
⌉(s), prevents us from computing σ⌈n

2
⌉−1 and σ⌈n

2
⌉.

However, their sum is known from (4), i.e.

σ⌈n
2
⌉−1 + σ⌈n

2
⌉ = w1(s)−

⌈n
2
⌉−2∑

i=1

σi. (16)

Since σ⌈n
2
⌉−1 = wt(s⌈n

2
⌉−1s⌈n

2
⌉+1) ∈ {0, 1, 2} and σ⌈n

2
⌉ =

wt(s⌈n
2
⌉) ∈ {0, 1}, these values can be inferred directly when

σ⌈n
2
⌉−1 + σ⌈n

2
⌉ ∈ {0, 3}. However, an ambiguity arises when

σ⌈n
2
⌉−1 + σ⌈n

2
⌉ ∈ {1, 2}.

Let v ∈ SR(n) be a string with which s becomes equicom-

posable when the multiset C⌈n/2⌉ is deleted, i.e.,

⋃

i∈[n]\{⌈n
2
⌉}

Ci(s) =
⋃

i∈[n]\{⌈n
2
⌉}

Ci(v). (17)

Also, let v be specified by σv = (σ′
1, . . . , σ

′
⌈n/2⌉). As a

consequence of (17), we can write:

σi = σ′
i, ∀ 1 ≤ i ≤ ⌈

n

2
⌉ − 2

σ⌈n
2
⌉−1 + σ⌈n

2
⌉ = σ′

⌈n
2
⌉−1 + σ′

⌈n
2
⌉.

(18)

To verify whether the reconstructability of s is affected, we

simply check if there exists a suitable v that satisfies (17) and

(18). We also note that (17) directly implies the equality of

the prefix-suffix pairs (s
⌈n

2
⌉−2

1 , sn⌈n
2
⌉+2) = (v

⌈n
2
⌉−2

1 ,vn
⌈n

2
⌉+2).

7

s
⌈n

2
⌉−2

1
1− b b 1− b s

n
⌈n

2
⌉+2

v
⌈n

2
⌉−2

1
v+ 1− b v− v

n
⌈n

2
⌉+2

Figure 1: Strings s and v are such that (s
⌈n

2
⌉−2

1 , sn⌈n
2
⌉+2) =

(v
⌈n

2
⌉−2

1 ,vn
⌈n

2
⌉+2), where v+ = 1− v−.

We jointly depict the specific subcases in Fig. 1, wherein

we allow for σ⌈n
2
⌉−1 + σ⌈n

2
⌉ ∈ {1, 2} since for both s and v,

we have:

σ⌈n
2
⌉−1 + σ⌈n

2
⌉ = 2− b.

where b ∈ F2. To proceed with the proof, we try to determine

the conditions under which C⌈n
2
⌉−1(s) = C⌈n

2
⌉−1(v) holds.

This would require the following set equality:





{c(s
⌈n

2
⌉−2

1), 1− b}

{c(s
⌈n

2
⌉−2

2), b, 1− b}

{c(sn⌈n
2
⌉+2), 1− b}

{c(sn−1
⌈n

2
⌉+2), b, 1− b}






=






{c(v
⌈n

2
⌉−2

1), v+}

{c(v
⌈n

2
⌉−2

2), v+, 1− b}

{c(vn
⌈n

2
⌉+2), 1− v+}

{c(vn−1
⌈n

2
⌉+2), 1− v+, 1− b}.






.

By checking the above relation exhaustively for all possi-

bilities of (b, v+) ∈ {0, 1}2, we conclude that the multisets

C⌈n/2⌉−1(s) and C⌈n/2⌉−1(s) can never match. Therefore, v

does not exist and s retains its unique reconstructability.

It follows directly from the preceding lemma that

Lemma 4. The code SR(n) is a single asymmetric multiset

deletion composition code.

As a second step, SR(n) is now generalized to S
(t)
DA(n)

[see Construction 5] to allow correcting the deletion of t
asymmetric multisets. To prove why this construction works,

we first consider the following lemma.

Lemma 5. Let s,v ∈ S
(t)
DA(n) be specified by an identical

σ sequence, such that the longest prefix-suffix pair shared

by them is of length k. Then their corresponding multisets

Cn−i−1, . . . , Cn−i−t−1 differ by at least two compositions.

Proof. Since s and v bear the same σ sequence and their

prefix-suffix pair of length k + 1 do not match, we conclude

that σk+1 = 1 and sk+1 6= vk+1. Without loss of gen-

erality, we assume sk+1 = 0 and it becomes obvious that

|Cn−k−1(s)\Cn−k−1(v)| = 2.

s
k
1 0 s+ s

n−k−2
k+3

s− 1 s
n
n−k+1

v
k
1 1 v+ v

n−k−2
k+3

v− 0 v
n
n−k+1

Figure 2: Strings s and v are related such that (sk1 , s
n
n−k+1) =

(vk
1 ,v

n
n−k+1) and c(sn−k−1

k+2) = c(vn−k−1
k+2)

As for the remaining multisets, we undertake the approach

used in [11, Lemma 4], i.e., we design a set of strings Vs,

such that for each v ∈ Vs, s and v are specified by the same

σ sequence, and satisfy:

(sk1 , s
n
n−k+1) = (vk

1 ,v
n
n−k+1),

c(sn−t−1
t+2) = c(vn−t−1

t+2), (19)

|Cn−k−j(s)\Cn−k−j(v)| ≤ 2, ∀ j ∈ [t+ 1].

Equation (19) follows directly from the premise of a

common σ sequence. Similar to [11, Lemma 4], we

note that |Cn−k−2(s)\Cn−k−2(v)| is minimized when

σk+2 = 1 and (s+, v+) = (1, 0), thereby leading to

|Cn−k−2(s)\Cn−k−2(v)| = 2. Now, if an additional condition

is upheld:

(st+1
k+3, s

n−k−2
n−t) = (vt+1

k+3,v
n−k−2
n−t). (20)

we can show that |Cn−k−j(s)\Cn−k−j(v)| = 2 for any j ∈
[t+ 1], by examining the following set equality:





{c(sk1), 01, c(s
n−k−j
k+3)}

{c(sk2), 01, c(s
n−k−j+1
k+3)}

...

{c(skj−1), 01, c(s
n−k−2
k+3)}

{c(skj), 0
21, c(sn−k−2

k+3)}

{c(snn−k+1), 01, c(s
n−k−2
k+j+1)}

{c(sn−1
n−k+1), 01, c(s

n−k−2
k+j)}

...

{c(sn−j+2
n−k+1), 01, c(v

n−k−2
k+3)}

{c(sn−j+1
n−k+1), 01

2, c(vn−k−2
k+3)}





=






{c(vk
1), 01, c(v

n−k−j
k+3)}

{c(vk
2), 01, c(v

n−k−j+1
k+3)}

...

{c(vk
j−1), 01, c(v

n−k−2
k+3)}

{c(vk
j), 01

2, c(vn−k−2
k+3)}

{c(vn
n−k+1), 01, c(v

n−k−2
k+j+1)}

{c(vn−1
n−k+1), 01, c(v

n−k−2
k+j)}

...

{c(vn−j+2
n−k+1), 01, c(v

n−k−2
k+3)}

{c(vn−j+1
n−k+1), 0

21, c(vn−k−2
k+3)}






. (21)

By exploiting (19) and (20), one can simplify this to:
{
{c(skj), 0

21, c(sn−k−2
k+3)}

{c(sn−j+1
n−k+1), 01

2, c(sn−k−2
k+3)}

}

=

{
{c(skj), 01

2, c(sn−k−2
k+3)}

{c(sn−j+1
n−k+1), 0

21, c(sn−k−2
k+3)}

}
.

Upon combining (19) and (20), further reduction is possible:
{
{c(skj), 0

21}

{c(sn−j+1
n−k+1), 01

2}

}
=

{
{c(skj), 01

2}

{c(sn−j+1
n−k+1), 0

21}

}
. (22)

8

We note that the preceding equality only holds if:

c(skj) = c(sn−j+1
n−k+1)

However from Fig. 2 and the definition of S
∗(t)
R (n) in (11),

we observe that:

wt(vk+1
2) + t ≤ wt(vn−1

n−k+1)

=⇒ wt(vk
1) + t+ 2 ≤ wt(vn

n−k+1).

This inequality allows us to conclude that (22) never holds

for any j ∈ [t+1], consequently proving the statement of this

lemma.

The preceding lemma now helps us establish that the code

S
(t)
DA(n) is robust to the deletion of any t asymmetric multisets.

Theorem 2. Given the composition multisets Ci(s) for

i ∈ [n]\{i1, . . . it}, where s ∈ S
(t)
DA(n) [see Construction 5],

such that no two of the deleted multisets are mutually symmet-

ric, s can be uniquely recovered.

Proof. Case 1. The deleted multisets are consecutive. This

case is directly implied by Lemma 5.

Case 2. All of the deleted multisets are not consecutive.

Since the reconstruction algorithm functions in an outside-in

manner, the missing multiset encountered first, corresponds to

that of highest substring length. In the following analysis, we

assume that it > it−1 > . . . > i1.

If it = n, we can directly infer Cn(s) from the cu-

mulative weight of C1(s). Alternatively when it < n and

additionally it, . . . , it−j+1 are consecutive, the prefix-suffix

pair (sn−it−1
1 , snit+2) an incorrect assignment of the bit pair

(sn−it , sit+1) will certainly cause an incompatibility with the

multiset Cit−j+1−1(s) = Cit−j(s), as Lemma 5 suggests.

Thus, the backtracking algorithm can detect the mistake and

accurately reconstruct the string upto (sn−it+j
1 , snit−j+1). Ab-

sence of the other missing multisets Cit−j
, . . . , Ci1 can be

dealt with similarly.

The previous theorem implies the following.

Theorem 3. S
(t)
DA(n) is a t-asymmetric multiset deletion

composition code.

We also bound the number of redundant bits required by

S
(t)
DA as follows.

Lemma 6. The code S
(t)
DA requires at most 1

2 log(n − 2t) +
2t+ 3 bits of redundancy.

Proof. We refer to (11) and additionally recount from [11]

that 1
2

(
2h
h

)
indicates the number of all strings of length 2h

wherein every prefix of which contains strictly more 0s than

1s. For odd lengths 2h+1, this term serves as a lower bound.

Similarly, to count all strings s ∈ {0, 1}p wherein each prefix

(of length exceeding t) contains at least t more 0s than 1s, we

simply note that such strings satisfy s
t−1
1 = 0 and s

p
t should

be a standard Catalan-Bertrand string. By virtue of this, we

derive a lower bound on dimension of the codebook:

|S
(t)
DA(n)| ≥

n/2−1∑

i=t

2n/2−2−i

(
n/2− 1

i

)(
i− t+ 1

⌊(i− t+ 1)/2⌋

)
.

After some algebraic manipulation of this expression, we con-

clude that the maximum number of redundant bits necessary

is 1
2 log(n− 2t) + 2t+ 3.

VII. SYMMETRIC MULTISET DELETION-CORRECTING

COMPOSITION-RECONSTRUCTION CODES

As mentioned in Section IV, errors under this category occur

in such a way that the affected multisets occur in pairs. We

begin directly with the case when two symmetric multisets are

inaccessible.

Lemma 7. Consider a string s ∈ SR(n). Assume that

for any 1 ≤ k ≤ ⌈n−1
2 ⌉, one is given C′(s) =⋃

i∈[n]\{k,n−k+1} Ci(s). Then, s can be fully recovered.

Proof. Case 1. n is odd.

Since the deleted multisets Ck(s) and Cn−k+1(s) can never

be consecutive when n is odd, we can infer from [11, Lemma

4] that any attempt to substitute Cn−k+1(s) with another

multiset, say C′
n−k+1, that may or may not preserve the value

of σk−1(s), will surely cause a disagreement with Cn−k(s).
Hence, there exists no valid alternative choices for the multiset

pair {Ck(s), Cn−k+1(s)}, thus implying that s is uniquely

reconstructable.

Case 2. n is even.

As in the previous case, we can argue that for any

k 6= {n
2 ,

n
2 + 1}, i.e., when the missing multisets are non-

consecutive, s remains unique reconstructable by virtue of

[11, Lemma 4]. The only case left to be analyzed is when the

deleted multisets are adjacent, i.e Cn
2
(s) and Cn

2
+1(s). More

specifically, we examine the existence of any v ∈ SR(n), such

that ⋃

i∈[n]\{n
2
,n
2
+1}

Ci(v) =
⋃

i∈[n]\{n
2
,n
2
+1}

Ci(s).

This directly leads to the following relations:

(s
n/2−2
1 , snn/2+3) = (v

n/2−2
1 ,vn

n/2+3),

σi = σ′
i, ∀ 1 ≤ i ≤

n

2
− 2

σn
2
−1 + σn

2
= σ′

n
2
−1 + σ′

n
2
.

where the sequence σv = (σ′
1, . . . , σ

′
n/2) describes v.

Subcase (i): σs = σv

We only study this subcase for when σn
2
−1 = σ′

n
2
−1 = 1 and

(sn
2
−1, sn

2
+2) 6= (vn

2
−1, vn

2
+2), since the alternative involves

Cn/2+1(s) = Cn/2+1(v) and as a result of this, Lemma 3

precludes the existence of v, since C(s) and C(v) cannot

differ by a single multiset alone. This situation is illustrated

in Fig. 3.

9

We now proceed to ascertain if there exists some v for

which Cn/2−1(s) = Cn/2−1(v) holds. Alternatively, we need

the following set equality relation to hold:




{c(s
n
2
−2

1), 0}

{c(s
n
2
−2

2), 0, s+}

{c(s
n
2
−2

3), 0, s+, s−}

{c(snn
2
+3), 1}

{c(sn−1
n
2
+3), 1, s−}

{c(sn−2
n
2
+3), 1, s+, s−}





=





{c(v
n
2
−2

1), 1}

{c(v
n
2
−2

2), 1, v+}

{c(v
n
2
−2

3), 1, v+, v−}

{c(vn
n
2
+3), 0}

{c(vn−1
n
2
+3), 0, v−}

{c(vn−2
n
2
+3), 0, v+, v−}





.

(23)

Due to the weight mismatch property between prefix and suffix

of equal lengths, we note from Fig. 3 that if v must uphold:

wt(s
n/2−2
2) + 1 < wt(sn−1

n/2+3)

=⇒ wt(s
n/2−2
1) + 3 ≤ wt(snn/2+3). (24)

Now to prove that (23) never holds, it suffices to show that

the composition {c(snn
2
+3), 1} can never be matched to any

two elements on the RHS in (23), even when (24) holds

with equality. It is easy to see this when v+ + v− < 2.

On the contrary when v+ + v− = 2, the compositions

{c(v
n
2
−2

1), 1} and {c(v
n
2
−2

2), 1, v+} become identical, and

cannot be matched simultaneously to the components of RHS

in (23). Therefore, v does not exist.

s
n
2
−2

1 0 s+ s− 1 s
n
n
2
+3

v
n
2
−2

1 1 v+ v− 0 v
n
n
2
+3

Figure 3: Strings s and v are such that (s
n
2
−2

1 , snn
2
+3) =

(v
n
2
−2

1 ,vn
n
2
+3), where v+ + v− = s+ + s−.

Subcase (ii): σs 6= σv

All of the possible combinations of (σn
2
−1, σn

2
) and

(σ′
n
2
−1, σ

′
n
2

) that comprehensively cover this subcase are:

• (σn
2
−1, σn

2
) = (1, 2b) and (σ′

n
2
−1, σ

′
n
2
) = (2b, 1).

• (σn
2
−1, σn

2
) = (2, 0) and (σ′

n
2
−1, σ

′
n
2
) = (1, 1).

• (σn
2
−1, σn

2
) = (0, 2) and (σ′

n
2
−1, σ

′
n
2
) = (1, 1).

where b ∈ F2. For the sake of brevity, we only prove the first

instance. The remaining proofs run in a similar fashion.

To reiterate our objective, we check for the existence of a string

v ∈ SR(n), for a given s ∈ SR(n), which are characterized

as per the depiction in Fig. 4. Since s and v may only differ

s
n
2
−2

1
s+ b b s− s

n
n
2
+3

v
n
2
−2

1 b v+ v− b v
n
n
2
+3

Figure 4: Strings s and v are such that (s
n
2
−2

1 , snn
2
+3) =

(v
n
2
−2

1 ,vn
n
2
+3), where s+ + s− = v+ + v− = 1.

in their respective composition multisets of substring lengths

n
2 and n

2 + 1 alone, we endeavor to find the conditions that

allow for the set equality of Cn
2
−1(s) and Cn

2
−1(v). More

explicitly, we require:






{c(s
n
2
−2

1), s+}

{c(s
n
2
−2

2), s+, b}

{c(s
n
2
−2

3), s+, b
2}

{c(snn
2
+3), 1− s+}

{c(sn−1
n
2
+3), 1− s+, b}

{c(sn−2
n
2
+3), 1− s+, b

2}






=






{c(v
n
2
−2

1), b}

{c(v
n
2
−2

2), b, v+}

{c(v
n
2
−2

3), b, 01}

{c(vn
n
2
+3), b}

{c(vn−1
n
2
+3), b, 1− v+}

{c(vn−2
n
2
+3), b, 01}






.

When s+ = v+ = 0, we may proceed under the assumption

that wt(s
n/2−2
2) = wt(sn−1

n/2+3) to account for the worst case.

In this situation, either {c(s
n
2
−2

1), s+} or {c(snn
2
+3), 1 − s+}

fails to be matched, depending on the chosen value of b.
Else when either s+ or v+ equals 1, we infer that (24) holds

true. Again, we choose to proceed with the worst case, i.e.

wt(s
n/2−2
2)+3 = wt(sn−1

n/2+3), and an exhaustive examination

of each possibility reveals that the previous set equality cannot

be satisfied. Thus, we conclude that v does not exist.

The previous result reveals that the codebook SR(n) is

sufficiently robust to correct the deletion of a single pair of

symmetric multisets,i.e.,

Theorem 4. The code SR(n) is a single symmetric multiset

deletion correcting code.

Consequently, if a single composition is substituted in C(s)
where s ∈ SR(n), then there occurs a mismatch between the

cumulative weights of the specific multiset affected, say Ci(s),
and its symmetric counterpart Cn−i+1(s). Now if both Ci(s)
and Cn−i+1(s) are deleted, Lemma 7 tells us that s is still

uniquely recoverable. Thus, we conclude that SR(n) is capable

of correcting a single composition error just like S
(1)
CA(n), as

pointed out previously in Section III.

We now investigate further along this direction and seek to

determine if the absence of multiple pairs of such multisets

impacts reconstructability. The deletion of two or more pairs

of symmetric multisets, as shown in Lemma 14 (Appendix), no

longer guarantees unique reconstruction of codewords drawn

from SR(n). To remedy this, we propose the code S
(2)
DS(n)

[see Construction 6], capable of correcting deletions of two

pairs of symmetric sets.

Lemma 8. Consider a string s ∈ S
(2)
DS(n). Given only the

composition multisets
⋃

i∈[n]\{k−1,k,n−k+1,n−k+2} Ci(s), one

can uniquely recover s.

Proof. Case 1. n is even and the deleted multisets are

neighboring, i.e. {Cn/2−1(s), . . . , Cn/2+2(s)}

We recall from the proof of Lemma 14, that for some s ∈
SR(n) characterized by σs = (σ1, . . . σn/2), there may exist

10

some v ∈ SR(n) with σv = (σ′
1, . . . , σ

′
n/2), such that:

σi = σ′
i, ∀ 1 ≤ i ≤

n

2
− 3

σn
2
−2 + σn

2
−1 + σn

2
= σ′

n
2
−2 + σ′

n
2
−1 + σ′

n
2
.

(25)

The difference of the sum of their respective cumulative

weights for composition multisets containing substrings of

lengths from 1 to n
2 , can be simplified to:

n/2∑

i=1

wi(s)−

n/2∑

i=1

wi(v)

=

n/2∑

i=n/2−1

wi(s)−

n/2∑

i=n/2−1

wi(v)

= 3(σ′
n/2−2 − σn/2−2) + (σ′

n/2−1 − σn/2−1). (26)

The above difference is maximized when either:

(σn
2
−2, σn

2
−1, σn

2
) = (0, 1, 2),

(σ′
n
2
−2, σ

′
n
2
−1, σ

′
n
2
) = (2, 1, 0).

or:

(σn
2
−2, σn

2
−1, σn

2
) = (0, 2, 2),

(σ′
n
2
−2, σ

′
n
2
−1, σ

′
n
2
) = (2, 2, 0).

In either case, (25) is upheld. Hence we can write that:

n/2∑

i=1

wi(s)−

n/2∑

i=1

wi(v) ≤ 6.

Case 2. n may be odd/even and the deleted multisets are not

all consecutive, i.e. k + 1 < n− k + 1
From the proof of Lemma 14, we note that when the multisets

{Ck−1(s), Ck(s), Cn−k+1(s), Cn−k+2(s)} are deleted, there

may exist an alternate v ∈ SR(n) such that:

s
k−3
1 = v

k−3
1 ,

s
n
n−k+4 = v

n
n−k+4,

σi = σ′
i, ∀ i ∈ I

σk + 2σk−1 + 3σk−2 = σ′
k + 2σ′

k−1 + 3σ′
k−2,

σk+1 + σk + σk−1 + σk−2 = σ′
k+1 + σ′

k + σ′
k−1 + σ′

k−2.

where I =
[
⌈n
2 ⌉

]
\{k − 2, . . . , k + 1}. As before, we bound

the difference of the sum of cumulative weights of s and v:

⌈n/2⌉∑

i=1

wi(s)−

⌈n/2⌉∑

i=1

wi(v) =
k∑

i=k−1

wi(s)−
k∑

i=k−1

wi(v)

= (σ′
k−1 − σk−1)

+3(σ′
k−2 − σk−2). (27)

We find through numerical verification that this quantity

cannot exceed 5, and it precisely occurs when:

(σk−2, σk−1, σk, σk+1) = (0, 2, 0, 0),

(σ′
k−2, σ

′
k−1, σ

′
k, σ

′
k+1) = (1, 0, 1, 0).

As a result, in both cases the additional constraint∑⌈n
2
⌉

i=1 wi(s) mod 7 = a in (12) ensures unique reconstruction

when the aforementioned multisets are lost.

The previous result permits us to conclude that

Theorem 5. The code S
(2)
DS(n) is a 2-symmetric multiset

deletion correcting code.

We now seek to generalize the coding constraints in

S
(2)
DS(m) in (12) by examining how the required redundancy

scales as more consecutive multiset pairs go missing. This is

accomplished by S
′(t)
DS(n) [see Construction 7]. Theorem 11

demonstrates that S
′(t)
DS (n) is a t-symmetric consecutive mul-

tiset deletion composition code. The proof commences with

the following lemma.

Lemma 9. Consider a string s ∈ S
′(t)
DS (n), where t ≥ 2 and

n ≥ 2t+ 4. If one is given a corrupted composition multiset

C′(s) =
⋃

i∈[⌈n/2⌉]\{k−t,...,k−1} Ci(s) ∪ Cn−i+1(s) for any

t < k−1 ≤ ⌊n/2⌋, i.e. t consecutive symmetric multiset pairs

are missing, s can be uniquely reconstructed.

Proof. Case 1. n may be odd/even and the 2t deleted multisets

are not adjacent, i.e. k < n− k + 2.

Since the multiset pairs (Ci(s), Cn−i+1(s)) have been elimi-

nated, for k−t ≤ i ≤ k−1, we also do not know their respec-

tive cumulative weights. Thus, the values of σk−t−1, . . . σk−2

are also unknown. Furthermore, we note from (6) that σk−1

and σk are also not deducible. However, the sum of these

missing values can be inferred from

wk+1 − wk = (k + 1)w1 −
k∑

i=1

iσk+1−i − kw1 +

k−1∑

i=1

iσk−i

= w1 − σk . . .− σ1.

To test if s is uniquely recoverable, we attempt to find a

suitable v ∈ SR(n), characterized by σ′
1, . . . , σ

′
⌈n/2⌉, such that

C̃i(s) = C̃i(v). ∀ i ∈
[⌈n

2

⌉]
\{k − t, . . . , k − 1}

These equations also imply that:

(sk−t−2
1 , snn−k+t+3) = (vk−t−2

1 ,vn
n−k+t+3),

σi = σ′
i, ∀ i ∈

[⌈n
2

⌉]
\I

∑

j∈I

σj =
∑

j∈I

σ′
j .

where I = {k− t− 1, . . . , k}. Alike the approach undertaken

in prior proofs, we now attempt to compute the maximum

difference between the sum of cumulative weights of s and v:

⌈n/2⌉∑

i=1

wi(s)− wi(v) =

k−1∑

i=k−t

wi(s)− wi(v)

=

k−1∑

i=k−t

(
iw1(s)−

i−1∑

j=1

jσi−j

)

11

−
k−1∑

i=k−t

(
iw1(v)−

i−1∑

j=1

jσ′
i−j

)

=
t(t+ 1)

2
(σ′

k−t−1 − σk−t−1)

+ . . .+ 3(σ′
k−3 − σk−3)

+ (σ′
k−2 − σk−2). (28)

The final equality follows from w1(s) = w1(v), which always

holds since the premise of this error model states that k−t > 1,

suggesting that the multisets C1 and Cn are always preserved.

Subcase (i): t is even.

In this case, the quantity in (28) is maximized when we have:

(σ′
k−t−1, . . . , σ

′
k) = (

t
2
+1︷ ︸︸ ︷

2, . . . 2,

t
2
+1︷ ︸︸ ︷

0, . . . 0),

(σk−t−1, . . . , σk) = (

t
2
+1︷ ︸︸ ︷

0, . . . 0,

t
2
+1︷ ︸︸ ︷

2, . . . 2).

It is worth pointing out that these configurations may not

always be valid, since the available multisets may not allow for

them. However, they certainly embody the worst possible case.

Now applying this to (28), we obtain the following bound:

n/2∑

i=1

wi(s)− wi(v) ≤
t(t+ 2)2

4
. (29)

Subcase (ii): t is odd.

When t is odd, the difference between the cumulative weights

of s and v is maximized when:

(σ′
n/2−t, . . . , σ

′
n/2) = (

t−1

2︷ ︸︸ ︷
2, . . . 2, p,

t−1

2︷ ︸︸ ︷
0, . . . 0),

(σn/2−t, . . . , σn/2) = (

t−1

2︷ ︸︸ ︷
0, . . . 0, p,

t−1

2︷ ︸︸ ︷
2, . . . 2).

where p ∈ {0, 1, 2}. By further manipulating (28), we get

n/2∑

i=1

wi(s)− wi(v) ≤
t(t+ 1)(t+ 3)

4
. (30)

Case 2. n is even and all of the deleted multisets are

consecutive, i.e. Cn/2−t+1(s), . . . , Cn/2+t(s).
Much like the previous case, we attempt to find a v ∈ SR(n),
characterized by σ′

1, . . . σ
′
n
2

, such that for 1 ≤ i ≤ n/2− t:

C̃i(s) = C̃i(v),

As a consequence, the following equalities also hold:

(s
n/2−t−1
1 , snn/2+t+2) = (v

n/2−t−1
1 ,vn

n/2+t+2)

σi = σ′
i, ∀ i ∈ [n/2− t− 1]

n/2∑

j=n/2−t

σj =

n/2∑

j=n/2−t

σ′
j .

Corresponding to (28), we arrive at:

n/2∑

i=1

wi(s)− wi(v) =
t(t+ 1)

2
(σ′

n
2
−t − σn

2
−t) + . . .

+ 3(σ′
n
2
−2 − σn

2
−2) + (σ′

n
2
−1 − σn

2
−1).

By appropriately assigning the vectors (σn/2−t, . . . , σn/2)
and (σ′

n/2−t, . . . , σ
′
n/2), we can upper-bound the preceding

quantity as follows:

n/2∑

i=1

wi(s)− wi(v) ≤

{
(t+1)3

4 , if t is even.
t(t+1)(t+2)

4 , otherwise.
(31)

The definition of S
′(t)
DS (n) in (13) along with the bounds

provided in (29), (30) and (31) directly imply the statement.

Lemma 10. Consider a string s ∈ S
′(t)
DS(n), where t ≥ 2 and

n ≥ 2t+ 4. If one is given a corrupted composition multiset

C′(s) =
⋃

i∈[⌈n/2⌉]\[t] Ci(s) ∪ Cn−i+1(s), s can be uniquely

reconstructed.

Proof. Unlike Lemma 9, this proof is dedicated to the specific

case where the multisets C1∪Cn, . . . , Ct∪Cn−t+1 have been

deleted. Since multisets Ct+1(s) and Ct+2(s) are available,

we can obtain:

wt+2(s)− wt+1(s) = w1(s)− σt+1 − . . .− σ1. (32)

Similar to the prior analyses, we check for the existence of

some v ∈ SR(n), specified by σv = (σ′
1, . . . , σ

′
⌈n/2⌉), that

satisfies:

C̃i(s) = C̃i(v). (33)

where t < i ≤ ⌈n/2⌉. From (32) and (33), we infer that for

1 ≤ i ≤ ⌈n/2⌉ − t− 1:

wt+i+1(s)− wt+i(s) = wt+i+1(v)− wt+i(v)

=⇒ w1(s)− σt+i − . . .− σ1 = w1(v)− σ′
t+i − . . .− σ′

1.

The preceding relation now allows us to deduce that:

σj = σ′
j . ∀ t+ 2 ≤ j ≤ ⌈n/2⌉

Also by construction of SR(n), we observe that σ1 = σ′
1. As

before, we inspect the difference of the sum of cumulative

weights of s and v:

(sk−t−2
1 , snn−k+t+3) = (vk−t−2

1 ,vn
n−k+t+3),

σi = σ′
i, ∀ i ∈

[
⌈n/2⌉

]
\I

∑

j∈I

σj =
∑

j∈I

σ′
j .

where I = {k− t−1, . . . , k}. The sum of cumulative weights

of s and v differ by:

⌈n/2⌉∑

i=1

wi(s)− wi(v) =

t∑

i=1

wi(s)− wi(v)

=

t∑

i=1

(
iw1(s)−

i−1∑

j=1

jσi−j

)

−
t∑

i=1

(
iw1(v)−

i−1∑

j=1

jσ′
i−j

)

12

=
t(t+ 1)

2
(w1(s)− w1(v))

+
(t− 2)(t− 1)

2
(σ′

2 − σ2)

+ . . .+ 3(σ′
t−2 − σt−2)

+(σ′
t−1 − σt−1). (34)

Since wt+1(s) = wt+1(v) and wt+2(s) = wt+2(v), we

rewrite (32) as:

w1(s)− w1(v) = (σt+1 − σ′
t+1) + . . .+ (σ1 − σ′

1)

= (σt+1 − σ′
t+1) + . . .+ (σ2 − σ′

2)

≤ 2t. (35)

We now attempt to design the vectors σs and σv such that

for a fixed value of w1(s)−w1(v), the following quantity is

maximized:

(t− 2)(t− 1)

2
(σ′

2 − σ2) + . . .+ (σ′
t−1 − σt−1).

while bearing in mind that:

w1(s)− w1(v) =

t+1∑

i=2

(σi − σ′
i).

Clearly, we must set σ′
i − σi = 2 for i = 2, . . ., due to the

higher weights of these terms, and σ′
i − σi = −2 for i =

t−1, t−2, . . . on account of the minor influence of these terms

on (34). Additionally, we set (σt, σ
′
t) = (σt+1, σ

′
t+1) = (2, 0),

thus allowing us to reduce the quantity
∑t−1

i=2(σi − σ′
i), i.e.

t−1∑

i=2

(σi − σ′
i) = a− 4.

where a = w1(s) − w1(v). Hence, to proceed with the

maximization of (34), we perform the following assignment

when a is odd:

(σ′
2, . . . , σ

′
t−1) = (2, . . . 2, p′, 0, . . . , 0),

(σ2, . . . , σt−1) = (0, . . . 0, p, 2, . . . , 2).
(36)

where p+p′ = 1. Here p and p′ may be assigned interchange-

ably, depending on t. In a similar fashion, when a is even, we

again reuse this assignment while setting either (p, p′) = (0, 2)
or p = p′ = 0. Further noting that the term w1(s)−w1(v) has

the highest weight in (34), we combine (34), (35) and (36) to

arrive at the following upper bound:

⌈n/2⌉∑

i=1

wi(s)− wi(v) ≤
⌈4t3

3
+

2t

3
−

35

4

⌉
. (37)

Upon combining Lemmas 9 and 10, we arrive at:

Lemma 11. Consider a string s ∈ S
′(t)
DS (n) [see Construc-

tion 7], where t ≥ 2 and n ≥ 2t+4. If one is given a corrupted

composition multiset C′(s) =
⋃

i∈[⌈n/2⌉]\{k−t,...,k−1} Ci(s)∪
Cn−i+1(s) for any t ≤ k − 1 ≤ ⌊n/2⌋, i.e. t consecutive

symmetric multiset pairs are missing, s can be uniquely

reconstructed.

Theorem 6. S
′(t)
DS (n) is a t-symmetric consecutive multiset

deletion composition code.

Remark: Experimentally, it is found that an appropriate

modulo constraint corresponding to (31) is sufficient to allow

the correction of deletion of any t symmetric multiset pairs,

consecutive or otherwise. An intuitive interpretation for this

result follows from the fact that when the missing multiset

pairs are consecutive, the least number of constraints are

imposed on σ. A rigorous proof for the same is yet to be

found. It is also worth mentioning that though the constraint

in (37) is stricter than that of (31), the order of the required

redundancy remains identical.

VIII. SKEWED SUBSTITUTION-CORRECTING CODES

In this section, we confine our focus to the correction of

skewed substitution errors [see Definition 6].

Lemma 12. Consider any s ∈ SR(n). Given that there occurs

a single skewed substitution error in its composition set, one

can uniquely recover s.

Proof. In the following, we let the corrupted composition set

be denoted by C′(s) =
⋃

i∈[n] C
′
i(s).

Case 1. n is even.

Given C′(s), it is easy to identify the corrupted composition

multiset C′
k(s), since the following relation only holds for k:

w′
k < w′

n−k+1. (38)

If we now delete all elements of C′
k(s) from C′(s), Lemma 4

tells us that s is still uniquely recoverable.

Case 2. n is odd.

Using the arguments of the preceding case, we can reach the

same conclusion for an odd n, when the affected multiset is

C′
k(s), where ⌈n/2⌉ < k ≤ n, because in these cases, there

exists an uncorrupted distinct symmetric multiset C′
n−k+1(s),

which gives us the true cumulative weight and thus allows us

to accurately recover σs.

If k = ⌈n/2⌉, this is no longer true since the multiset

C⌈n/2⌉(s) is its own symmetric counterpart. Noting that this

normally helps us determine the bits (s⌈n/2⌉−1, s⌈n/2⌉+1),
we recall from Lemma 2 that when these bits are assigned

incorrectly, inconsistencies with the multiset C⌈n/2⌉−1 would

arise, which are not permitted under the considered error

model. Hence, we conclude that s can be recovered uniquely.

We now consider a more general error model involving

multiple asymmetric skewed substitution errors, wherein each

multiset pair C̃i, for any i ∈ [n], may contain at most one

skewed substitution and the total number of errors does not

exceed t. It is found that the asymmetric t-multiset deletion-

correcting code S
(t)
DA(n) is also robust to t asymmetric skewed

substitutions and in the following, we prove the same.

Lemma 13. Consider any s ∈ S
(t)
DA(n). Given that there oc-

curs t skewed asymmetric substitution errors in its composition

set, such that for all 1 ≤ i ≤ n, C̃i(s) contains at most one

skewed substitution error, then one can uniquely recover s.

13

Proof. Since the error model only allows at most one skewed

substitution in a pair of symmetric multisets, the cumulative

weights of all sets can be determined accurately. This is due

to the fact that if multiset Ck(s) has been corrupted, we may

write:

wk < wn−k+1. (39)

As a consequence, all cumulative weights can be correctly

re-assigned and in turn the σs sequence can be recovered.

The preceding inequality also allows to identify the affected

multisets, the deletion of which would transform our prob-

lem of correcting t asymmetric skewed substitutions into

reconstruction under the absence of t multisets. According to

Theorem 2, unique reconstruction of s is perfectly possible,

thus concluding our proof.

The aforementioned result naturally leads to the following

theorem.

Theorem 7. S
(t)
DA(n) is a t-asymmetric skewed composition

code.

IX. CONCLUSION

In this work, we propose and investigate error models

involving insertion and deletion of substring compositions

in the context of polymer-based data storage. In particular,

we examine the robustness of the composition-reconstructable

code introduced in [11], [12], and identify the situations which

do not guarantee unique reconstruction of codewords from

this construction. For these cases, new codes are proposed.

Notably, an equivalence between codes correcting multiset

deletions and insertions is established. We also examine a spe-

cial asymmetric variant of substitution errors, namely skewed

substitution errors, which manifest in polymer-based storage.

Several problems pertaining to string construction under this

data storage paradigm still remain open:

• The error model involving skewed substitutions under a

symmetric setting is yet to be investigated. It would be

interesting to know if there exists a suitable codebook

offering a lower redundancy than that designed to correct

standard substitution errors under the symmetric setting,

as stated in [11].

• The problem of reconstructing strings from composition

multisets, error-free or otherwise, could be extended to

larger alphabets.

• Though some bounds on the maximum number of mutu-

ally equicomposable strings were stated in [10], bounds

on the error ball sizes under the error models involving

substitutions, insertions or deletions are still unknown.

These could allow us to infer if the proposed code

constructions are indeed optimal.

• One could also extend this research to the construct

wherein bits are arranged in a circular fashion, on a ring.

• As pointed out in [10], a polynomial-time algorithm for

the string reconstruction problem is yet to be found.

REFERENCES

[1] A. Al Ouahabi, J.-A. Amalian, L. Charles, and J.-F. Lutz, “Mass spec-
trometry sequencing of long digital polymers facilitated by programmed
inter-byte fragmentation,” Nature communications, vol. 8, no. 1, p. 967,
2017.

[2] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, vol. 494,
no. 7435, p. 77, 2013.

[3] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angewandte Chemie International Edition, vol. 54,
no. 8, pp. 2552–2555, 2015.

[4] R. Heckel, G. Mikutis and R. N. Grass, “A characterization of the DNA
data storage channel,” Scientific Reports, vol. 9, no. 1, pp. 9663, 2019.

[5] C.N. Takahashi, B.H. Nguyen, K. Strauss and L. Ceze, “Demonstration
of End-to-End Automation of DNA Data Storage,” Scientific Reports,
vol. 9, no. 1, pp. 4998, 2019.

[6] S. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A
rewritable, random-access DNA-based storage system,” Scientific re-

ports, vol. 5, p. 14138, 2015.

[7] S. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-free
DNA-based data storage,” Scientific reports, vol. 7, no. 1, p. 5011, 2017.

[8] S. K. Tabatabaei, B. Wang, N. B. M. Athreya, B. Enghiad, A. G. Hernan-
dez, J.-P. Leburton, D. Soloveichik, H. Zhao, and O. Milenkovic, “DNA
punch cards: Encoding data on native dna sequences via topological
modifications,” bioRxiv, p. 672394, 2019.

[9] S. Tabatabaei, B. Wang, N. Athreya, B. Enghiad, A. Hernandez, C.
Fields, J.-P. Leburton, D. Soloveichik, H. Zhao, and O. Milenkovic,
“DNA punch cards for storing data on native DNA sequences via
enzymatic nicking,” Nature Communications, vol. 11, 12, 2020.

[10] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “String
reconstruction from substring compositions,” SIAM Journal on Discrete

Mathematics, vol. 29, no. 3, pp. 1340–1371, 2015.
[11] S. Pattabiraman, R. Gabrys and O. Milenkovic, “Coding for polymer-

based data storage”, arXiv:2003.02121, 2020.

[12] S. Pattabiraman, R. Gabrys, and O. Milenkovic, “Reconstruction and
error-correction codes for polymer-based data storage,” in IEEE Infor-

mation Theory Workshop, Visby, Sweden, pp. 1–5, Aug. 2019.
[13] R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Mass error-correction

codes for polymer-based data storage,” IEEE International Symposium

on Information Theory, Los Angeles, CA, USA, pp. 25–30, Jun. 2020.
[14] R. Gabrys, S. Pattabiraman and O. Milenkovic, “Reconstructing mix-

tures of coded strings from prefix and suffix compositions,” 2020 IEEE

Information Theory Workshop (ITW), pp. 1–5, 2021.

APPENDIX

Lemma 14. Consider a string s ∈ SR(n). Given C′(s) =⋃
i∈[n]\{k−1,k,n−k+1,n−k+2} Ci(s) for any 1 ≤ k < ⌈n−1

2 ⌉, s

may no longer be uniquely determined.

Proof. Case 1. n is even and deleted sets are:

{Cn
2
−1(s), . . . , Cn

2
+2(s)}.

To demonstrate that SR(n) does not necessarily

preserve unique reconstructability when the multisets

{Cn
2
−1, . . . , Cn

2
+2} go missing, we consider two codewords

s,v ∈ SR(n), such that:
⋃

i∈{n,...,n
2
+3}

Ci(s) =
⋃

i∈{n,...,n
2
+3}

Ci(v). (40)

From our knowledge of the reconstruction algorithm [Section

II], we can also infer the following:

(s
n/2−3
1 , snn/2+4) = (v

n/2−3
1 ,vn

n/2+4),

σi = σ′
i. 1 ≤ i ≤

n

2
− 3,

σn
2
−2 + σn

2
−1 + σn

2
= σ′

n
2
−2 + σ′

n
2
−1 + σ′

n
2
.

(41)

14

where σs = (σ1, . . . , σn/2) and σv = (σ′
1, . . . , σ

′
n/2) corre-

spond to s and v respectively. Additionally, we set:

(σn
2
−2, σn

2
−1, σn

2
) = (0, 0, 1),

(σ′
n
2
−2, σ

′
n
2
−1, σ

′
n
2
) = (1, 0, 0),

vn/2−2 = 1,

sn/2 = 1,

sn−3 = 0,

wt(s
n/2−3
2) = wt(sn−4

n/2+4).

(42)

The relations between s and v as described by (41) and (42)

are depicted in Fig. 5. Evidently, s and v differ in their

respective multisets Cn/2+2 and Cn/2+1 according Lemma 2.

Additionally, since their cumulative weights wn/2+2 and wn/2

also differ, as one may verify from (6) and (42), we deduce that

the multisets Cn/2 and Cn/2−1 also do not match for s and

v. We now proceed to examine if Cn/2−2(s) = Cn/2−2(v)
holds:





{c(s
n
2
−3

1), 0}

{c(s
n
2
−3

2), 02}

{c(s
n
2
−3

3), 021}

{c(s
n
2
−3

4), 031}

{c(s
n
2
−3

5), 041}

{c(snn
2
+4), 0}

{c(sn−1
n
2
+4), 0

2}

{c(sn−2
n
2
+4), 0

3}

{c(sn−3
n
2
+4), 0

31}

{c(sn−4
n
2
+4), 0

41}





=





{c(v
n
2
−3

1), 1}

{c(v
n
2
−3

2), 01}

{c(v
n
2
−3

3), 021}

{c(v
n
2
−3

4), 031}

{c(v
n
2
−3

5), 041}

{c(vn
n
2
+4), 0}

{c(vn−1
n
2
+4), 0

2}

{c(vn−2
n
2
+4), 0

3}

{c(vn−3
n
2
+4), 0

4}

{c(vn−4
n
2
+4), 0

5}





. (43)

Using (42) to simplify this set equality relation, we arrive at:






{c(s
n
2
−3

1), 0}

{c(s
n
2
−3

2), 02}

{c(sn−3
n
2
+4), 0

31}

{c(sn−4
n
2
+4), 0

41}






=






{c(v
n
2
−3

1), 1}

{c(v
n
2
−3

2), 01}

{c(vn−3
n
2
+4), 0

4}

{c(vn−4
n
2
+4), 0

5}






. (44)

Since the construction of SR(n) in () requires s1 = 0 and

(42) mandates that sn−3 = 0 and wt(s
n/2−3
2) = wt(sn−4

n/2+4),
we are led to the following relation:

wt(s
n/2−3
1) = wt(s

n/2−3
2) = wt(sn−3

n
2
+4) = wt(sn−4

n
2
+4). (45)

This allows us to conclude that (43) indeed holds, and further

bit specifications in s and v can lead us to similar set

equality relations for the multisets Cn/2−3, . . . , C1. Hence,

s and v become confusable under the deletion of multisets

{Cn
2
−1(s), . . . , Cn

2
+2(s)}.

Case 2. n may be odd/even and the four deleted sets are

not consecutive: {Ck−1(s), Ck(s), Cn−k+1(s), Cn−k+2(s)},

where k + 1 < n− k + 1.

s
n
2
−3

1 0 0 1 0 0 0 s
n
n
2
+4

v
n
2
−3

1 1 0 0 0 0 0 v
n
n
2
+4

Figure 5: Strings s and v are specified by (41) and (42).

In the following, we once again proceed by checking if

s is uniquely recoverable, by probing the existence of some

v ∈ SR(n), characterized by σ′
1, . . . , σ

′
⌈n

2
⌉ such that for all

i ∈ [n]\{k − 1, k − n− k + 1, n− k + 2}:

Ci(s) = Ci(v). (46)

Subcase (i): k = 2
This situation corresponds to the deletion of multisets

C1(s), C2(s), Cn−1(s) and Cn(s). When this happens, for

any 3 ≤ i ≤ ⌈n/2⌉ − 1, the following values are recoverable:

wi+1(s)− wi(s) = σi+1 + . . .+ σ⌈n/2⌉.

This can be used to recover the values of σ4, . . . , σ⌈n/2⌉. In

other words,

σi = σ′
i. ∀ 4 ≤ i ≤ ⌈n/2⌉ (47)

Furthermore, since w3(s) = w3(v), we can infer from (5) and

(47) that:

σ1 + 2σ2 + 3σ3 = σ′
1 + 2σ′

2 + 3σ′
3

=⇒ 2σ2 + 3σ3 = 2σ′
2 + 3σ′

3.

The second equality follows from the construction of SR(n).
Given the above relation, we conclude that (47) also holds for

i ∈ {2, 3}. Moreover, we cannot have (s2, sn−1) 6= (v2, vn−1)
even when σ2 = σ′

2 = 1, since the Catalan-Bertrand structure

would automatically imply that (s2, sn−1) = (v2, vn−1) =
(0, 1). This inference combined with Lemma 2, lead us to the

conclusion that no suitable v exists.

Subcase (ii): k = 3
When multisets C2(s), C3(s), Cn−2(s) and Cn−1(s)

have been deleted, the availability of cumulative weights

w1, w4, . . . w⌈n/2⌉ allow us to retrieve σ1, σ5, . . . , σ⌈n/2⌉ as

in the previous subcase, i.e.

σi = σ′
i. ∀ i ∈

[
⌈n/2⌉

]
\{2, 3, 4} (48)

We also observe from (6) and (46) that:

w4(s)− w1(s) = w4(v)− w1(v)

= 3w1(s)− σ3 − 2σ2 − 3σ1,

=⇒ σ2 + 2σ3 = σ′
2 + 2σ′

3. (49)

Similarly, since w5(s) = w5(v), we obtain:

σ2 + 2σ3 + 3σ4 = σ′
2 + 2σ′

3 + 3σ4.

As a consequence, (48) also holds for i = 4. This, along with

(4) hint that:

σ2 + σ3 = σ′
2 + σ′

3. (50)

Equations (49) and (50) together insinuate that

(σ2, σ3) = (σ′
2, σ

′
3). Hence, we may argue as before,

15

that no suitable v distinct from s actually exists.

Subcase (iii): k ≥ 4
Similar to the approach used in Case 1, we attempt to show

that there exist two codewords s,v ∈ SR(n), such that for all

i ∈ [n]\{k − 1, k, n− k + 1, n− k + 2}:

Ci(s) = Ci(v). (51)

To this end, we construct a specific pair of strings s and v as

follows:

(sk−3
1 , snn−k+4) = (vk−3

1 ,vn
n−k+4),

(σk−2, σk−1, σk, σk+1) = (1, 1, 1, 0),

(σ′
k−2, σ

′
k−1, σ

′
k, σ

′
k+1) = (2, 0, 0, 1),

σi = σ′
i, ∀ k + 2 ≤ i ≤ ⌈

n

2
⌉

(sk−1, sk, sk+1, sk+2) = (0, 0, 1),

s2 = 1,

vk−2 = 0.

(52)

s
k−3
1 0 0 0 1 s

n−k−1
k+2 0 1 1 0 s

n
n−k+4

v
k−3
1 0 0 0 1 v

n−k−1
k+2 1 0 0 1 v

n
n−k+4

Figure 6: Strings s and v are related such that

(sk−3
1 , snn−k+4) = (vk−3

1 ,vn
n−k+4) and c(sn−k−1

k+2) =

c(vn−k−1
k+2)

These relations have been illustrated in Fig. 6. The preced-

ing equalities also imply that:

σi = σ′
i, ∀ 1 ≤ i ≤ k − 3

k+1∑

i=k−2

σi =

k+1∑

i=k−2

σ′
i,

σk + 2σk−1 + 3σk−2 = σ′
k + 2σ′

k−1 + 3σ′
k−2,

c(sn−k−1
k+2) = c(vn−k−1

k+2).

(53)

In turn, these relations help ensure that:

wi(s) = wi(v), ∀ 1 ≤ i ≤ k − 2

wk+1(s)− wk−2(s) = wk+1(v)− wk−2(v),

wk+i+1(s)− wk+i(s) = wk+i+1(v)− wk+i(v).

(54)

for 1 ≤ i ≤ n−k−1. One may verify this with the assistance

of (4) and (6).

From Fig. 6, it is fairly evident that s and v do not match in

their corresponding multisets Cn−k+2 and Cn−k+1. Now as

done in case 1, we check if multisets Cn−k(s) and Cn−k(v)
match:





{c(sk−3
1), 041, c}

{c(sk−3
2), 0412, c}

{c(sk−3
3), 0413, c}

{c(snn−k+4), 0
213, c}

{c(sn−1
n−k+4), 0

313, c}

{c(sn−2
n−k+4), 0

413, c}






=






{c(vk−3
1), 0312, c}

{c(vk−3
2), 0412, c}

{c(vk−3
3), 0512, c}

{c(vn
n−k+4), 0

213, c}

{c(vn−1
n−k+4), 0

313, c}

{c(vn−2
n−k+4), 0

413, c}






.

(55)

where c = c(sn−k−1
k+2) = c(vn−k−1

k+2). By applying (52) to this,

we deduce that this equality is indeed upheld, thus implying

that s and v are confusable under the absence of multisets

Ck−1, Ck, Cn−k+1, Cn−k+2.

16

	I Introduction
	II Preliminaries
	II-A Unique Reconstruction Codes
	II-B Reconstruction from Error-Free Composition Multisets

	III Substitution-Correcting Constructions
	IV New Error Models
	V Code Equivalence: Insertion and Deletion of Multisets
	VI Asymmetric Multiset Deletion-correcting Composition-Reconstruction Codes
	VII Symmetric Multiset Deletion-correcting Composition-Reconstruction Codes
	VIII Skewed substitution-correcting codes
	IX Conclusion
	References
	Appendix

