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Abstract

We consider zero-error communication over a two-transmitter deterministic adversarial multiple access channel (MAC)
governed by an adversary who has access to the transmissions of both senders (hence called omniscient) and aims to maliciously
corrupt the communication. None of the encoders, jammer and decoder is allowed to randomize using private or public randomness.
This enforces a combinatorial nature of the problem. Our model covers a large family of channels studied in the literature, including
all deterministic discrete memoryless noisy or noiseless MACs. In this work, given an arbitrary two-transmitter deterministic
omniscient adversarial MAC, we characterize when the capacity region

1) has nonempty interior (in particular, is two-dimensional);
2) consists of two line segments (in particular, has empty interior);
3) consists of one line segment (in particular, is one-dimensional);
4) or only contains p0, 0q (in particular, is zero-dimensional).
This extends a recent result by Wang, Budkuley, Bogdanov and Jaggi (2019) from the point-to-point setting to the multiple access
setting. Indeed, our converse arguments build upon their generalized Plotkin bound and involve delicate case analysis. One of
the technical challenges is to take care of both “joint confusability” and “marginal confusability”. In particular, the treatment of
marginal confusability does not follow from the point-to-point results by Wang et al. Our achievability results follow from random
coding with expurgation.

I. INTRODUCTION

The multiple access channel (MAC) model was first (implicitly) considered by Shannon [Sha61]. This model is arguably one
of the simplest communication models beyond the point-to-point setting. The problem concerns information transmission over
a three-node network. Two1 independent senders simultaneously send signals to the channel; a single receiver aims to recover
both senders’ transmitted messages given the channel-distorted signal. The goal for the parties in such a communication scenario
is to reliably deliver as much information from the senders to the receiver. The fundamental limits (i.e., capacity region, see
Definition 7) of discrete memoryless MACs under the average error criterion was derived independently by Ahlswede [Ahl73],
[Ahl74] and Liao [Lia72]2. The Gaussian counterpart3 was solved by Cover [Cov75] and Wyner [Wyn74]. MACs are so far
the essentially only multiuser channel whose fundamental limits are well-understood in full generality.

In the classical Shannon’s setup of the MAC problem, it is assumed that the channel is given by a fixed (i.e., time-invariant)
law4 Wy|x1,x2 that maps a given pair of input symbols5 px1, x2q P X1 ˆ X2 to an output symbol y P Y with probability
Wy|x1,x2

`

y
ˇ

ˇx1, x2
˘

. Such a channel well models white noise between the senders and the receiver, while it fails to model
adversarial noise that is potentially injected by a malicious adversary. In this paper, we take a coding-theoretic perspective
on multiple access. A general omniscient adversarial MAC model is introduced and studied. We assume that the channel is
governed by an adversary who has full access to the transmitted signals from both senders (hence called omniscient). The
adversary aims to prevent communication from happening by transmitting a carefully designed noise sequence to the channel.
We therefore at times also call the adversary the jammer. None of the encoders, the jammer and the decoder is allowed to
randomize. To enforce a combinatorial nature of the problem, it is further assumed that the channel obeys a zero-one law,
i.e., the distribution Wy|x1,x2,s (where s denotes the symbol sent by the jammer) only takes values in t0, 1u and can be
realized by a deterministic function y “ W px1, x2, sq (with a slight abuse of notation). The main contribution of this paper
is a zero-th order (see the next paragraph) characterization of the capacity region of an arbitrary omniscient adversarial MAC
with maximum error probability. In fact, since nothing in the system is stochastic, it is not hard to see that maximum error
criterion is equivalent to zero error criterion. Our results can be appreciated through different lenses, e.g., arbitrarily varying
channels, zero-error information theory, coding theory, etc. Elaboration on various connections is deferred to Section II.

Classical Shannon theory and combinatorial coding theory provide systematic ways of studying the first-order asymptotics,
i.e., capacity, of (stochastic and adversarial respectively) communication channels. By first-order we mean the number of bits

1In this paper, we only consider MACs with two transmitters. Generalizations to more transmitters are left as an open question (see Item 3 in Section XVI).
2The capacity region given by Ahlswede [Ahl73], [Ahl74] and Liao [Lia72] is written in terms of the convex hull of the union of multiple regions. An

alternative form involving an auxiliary time-sharing variable was given by Slepian and Wolf [SW73]. A cardinality bound on the alphabet of the auxiliary
variable was given in [CK11].

3This paper only concerns MACs with finite-sized alphabets and will not deal with the Euclidean case.
4We use lowercase boldface letters to denote (scalar) random variables.
5Throughout this paper, we use superscripts to denote the indices of the transmitter. E.g., x1 (resp. x2) denotes a symbol transmitted by the first (resp.

second) transmitter.
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that can be reliably transmitted through the channel. The first-order asymptotics of discrete memoryless channels (DMCs) are
well-established in the seminal paper by Shannon [Sha48] which laid the foundation of information theory. The first-order
asymptotics of most multiuser channels remain open, except for MAC as mentioned before and a handful of other special
cases. On the other hand, in the theory of error-correcting codes which deals with worst-case errors, essentially no capacity
is characterized for any nontrivial channel. Indeed, even the capacity of adversarial bitflip channels – one of the simplest
nontrivial channels remains a holy grail problem in coding theory. This problem is well known to be equivalent to the sphere
packing problem in binary Hamming space. Our work can be viewed as a first step towards pushing the existing wisdom of
classical coding theory to the general multiuser setting. For one thing, we consider very general channel models, not just the
bitflip channel which is the most studied one in coding theory. For another thing, we go beyond the point-to-point setting and
consider MACs. Due to the lack of techniques for characterizing the capacity, this work only aims to characterize the “shape”
of the capacity region of any given adversarial MAC. More specifically, we determine the dimension of the capacity region –
when it has nonempty interior; when it only consists of (one or two) line segment(s); and when it only contains p0, 0q. We
call such positivity conditions a characterization of the zero-th order asymptotics of the channel. See Section XI for the formal
statements of our results. Finally, we remark that there has been a stream of work on high-order (second-/third-/fourth-order)
asymptotics of channels [PPV10], [TT13], [TT15], [SMiF14], [YKE20], [Kos20].
Remark 1. The capacity region of a (non-adversarial) MAC under average error criterion can be achieved using deterministic
encoding and the region is invariant even if stochastic encoding is allowed. However, unlike the point-to-point case, under
maximum error criterion and deterministic encoding, the capacity region of a MAC is strictly smaller than that under average
error criterion [Due78]. To the best of our knowledge, the exact capacity region in this case is still open. Furthermore, under
maximum error criterion, stochastic encoding can achieve the capacity region with average probability of error. This shows
that randomization at the encoders can boost the capacity under maximum error criterion – a phenomenon absent in the
point-to-point setting.

II. RELATED WORK

Our model and results are connected to various facets of information theory and adjacent fields. We list non-exhaustively
several connections below and compare, when proper, our results with existing ones.

A. Arbitrarily varying channels

Our model of general omniscient adversarial MAC is intimately related to a classical model studied in the literature known
as the arbitrarily varying channel (AVC). An AVC is a channel with a state s that does not follow any fixed distribution, i.e.,
is arbitrarily varying. A noticeable difference between the classical AVC model and our model is that the bulk of the literature
on AVC deals with channels with an oblivious adversary who does not know anything about the transmitted sequence. Under
average error criterion, this problem is significantly easier (though not trivial) than the omniscient counterpart. Indeed, the
fundamental limits of point-to-point AVCs [CN88b], [CN91] and arbitrarily varying MACs (AVMACs) [AC99], [PS19] (and
several other channels which we do not spell out here) are well-understood.

In fact, an oblivious AVMAC with maximum probability of error is equivalent to our model of omniscient adversarial MAC.
However, the maximum error criterion is much less studied in the AVC literature. Obtaining a tight first-order characterization
of the capacity remains an formidable challenge even for very simple channels. The main focus of this work is a zero-th order
characterization of the capacity region of general omniscient adversarial MACs. Though we do present nontrivial inner and
outer bounds, there is no reason to expect any of them to be optimal. Item 1 in Section XVI contains more discussions and
open problems regarding error criterion. See also Section XI-B for an in-depth comparison between our work and [PS19] on
AVMACs.

B. Zero-error information theory

Since randomization in the encoding/jamming/decoding strategies are ruled out from our model and only deterministic
channels are considered, there is no probability anywhere in the system and maximum error criterion is equivalent to zero
error criterion. For this reason, it is worth mentioning the connections between our work and zero-error information theory – a
combinatorial facet of information theory. The basic deviation of zero-error information theory from ordinary Shannon theory
is to insist on zero error criterion which changes the nature of the problem in a fundamental way. Despite of years of research,
there is essentially no capacity result for any general channel model except for sporadic special channels [Lov79]. Usually
channels studied in zero-error information theory do not consist of an adversarial noise (a.k.a. an arbitrarily varying state in
AVC jargon). It turns out that if the adversarial noise in our model is unconstrained (i.e., the state vector6 s can take any value
in Sn), then the channel is equivalent to a non-adversarial channel under zero error criterion. On the other hand, the presence
of state constraints brings significant effect on the behaviour of the channel. Such a phenomenon already shows up in the

6We use underlines to denote vectors of length n – the number of channel uses. See Section V for notational conventions of this paper.
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point-to-point setting [CN88b]. Classical zero-error information theory approaches the problem of zero-error communication
via the notion of Shannon capacity of graphs [Sha56] – getting rid of channel probabilities.7 Recently, the positivity of zero-
error capacity of MACs (and several other multiuser channels) was characterized by Devroye [Dev16]. However, she only dealt
with non-adversarial channels, or equivalently, adversarial channels without state constraints. Several other general multiuser
channels with zero error such as two-way channels [GS19] and relay channels [CSD14], [CD15], [CD17], [APBD18] were
also studied in the literature. Many other works on zero-error multiuser channels concentrate around specific channels such as
binary adder MAC [AKKN17], AND-OR interference channel [NY20], etc. See Section II-F for more related work on special
MACs.

C. Kolmogorov complexity

Besides Shannon’s notion of graph capacity, Kolmogorov [Kol56], [Tik93] introduced the ε-entropy and ε-capacity (which
are the normalized covering and packing number (using balls of radius ε) of a space) as another non-stochastic approach to
zero-error source and channel coding, respectively. However, there was no coding theorems companying these notions. The
results in [WBBJ19] which we build upon can be cast as packing general shapes (not necessarily balls) without overlap in a
general space. For MACs, the geometric interpretation of packing and covering does not seem to be as obvious/clean as in the
point-to-point case.

D. Non-stochastic information theory

Recently, Nair [Nai11], [Nai13] proposed yet another alternative framework towards understanding zero-error communication
known as non-stochastic information theory. He introduced non-stochastic analogs of information measures and proved coding
theorems for worst-case error models. Extensions to MACs (see [ZNE19] for the two-transmitter case and [ZN20] for the
multi-transmitter case), channels with feedback [Nai12], [SFN18], [SFN20b], channels with memory [SFN20a], [SFN19] and
function evaluation [FN20] are presented in followup works by Nair and his coauthors. In most cases, Nair’s framework only
gives n-letter expressions for capacity, similar to the graph-theoretic approach mentioned in Section II-B. More recently, Lim–
Franceschetti [LF17] and Rangi–Franceschetti [RF19] refined Nair’s framework by introducing new non-stochastic information
measures to incorporate decoding errors while retaining the worst-case nature of the error model. The latter work [RF19] also
studied the possibility of obtaining single-letter expressions for the capacity of a certain family of channels.

As a comparison, our approach does not even yield n-letter capacity expressions. However, we can handle general adversarial
channels with potentially constrained adversarial noise. In [RF19], following Nair’s framework, such channels are treated as
nonstationary channels with memory for which no n-letter capacity expression was obtained. More words on n-letter expressions
can be found in Item 5 of Section XVI.

E. Coding theory and generalized Plotkin bound

Since our problem inherently exhibits a combinatorial nature, one can view our contributions as Shannon-theoretic results
for a coding-theoretic model. We borrow insights and techniques from both information theory and coding theory and try to
build a bridge between them in the particular MAC setting. At a technical level, the principal tool that we use is inspired
by a recent Plotkin-type bound for general point-to-point omniscient adversarial channels [WBBJ19]. Our contribution is to
generalize it to the MAC setting and use it, along with delicate case analysis, to characterize the “dimension” of the capacity
region. The results in both [WBBJ19] and this paper are in turn generalizations of the Plotkin bound in classical coding theory.
This bound (together with a standard probabilistic construction) pins down the exact threshold of the noise level of a bitflip
channel8 such that positive rates are achievable (see Definition 7 for the formal definition of achievable rates).

F. Specific channels

Our model covers a large family of channels studied in the literature, including the OR MAC, the collision MAC, the adder
MAC [Gu18], [AKKN17], the disjunctive MAC [DPSV19], the multiple access hyperchannel [Shc16], etc. Indeed, our model
incorporates all deterministic channel models. Interested readers are encouraged to refer to the lecture notes [GGLR] and
[PW14, Chapter 29, 30].

7Unfortunately, Shannon capacity is not computable since it is defined as a limit as n, the blocklength, goes to infinity. See Section II-D and Item 5 in
Section XVI for remarks on n-letter capacity expressions.

8A bitflip channel takes a binary sequence as input and arbitrarily flips a fixed fraction of bits.
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III. OVERVIEW OF OUR RESULTS

This work initiates a systematic study of memoryless MACs in the presence of an omniscient adversary (who may not behave
memorylessly) under the maximum probability of error criterion. In particular, the main attention of this paper is focused on
the capacity threshold. In what follows, we summarize the contributions of this paper.

1) We introduce in Section VII the model of omniscient adversarial MACs which covers a large family of channels of interests.
In particular, all component-wise deterministic memoryless channels with finite alphabets fall into our framework. In this
work we focus on the maximum probability of error criterion. For technical reasons, we make additional assumptions that
are listed in Section VII-B.

2) We introduce in Section IX the notion of confusability, both the operational version (Claim 12) and the distributional
version (Definition 11) which turn out to be equivalent (Claim 14, Remark 5). Specifically, we define the joint confusability
set and the (first and second) marginal confusability sets (for both transmitters separately) to capture the disability to
reliably transmit both (for the joint case) or exactly one (for the marginal cases) of the sequences. One can think of the
confusability sets as the sets of “bad” distributions that (the types9 of) any good code should avoid. The significance of
the notion of confusability is that it precisely captures all information one needs for understanding the capacity region
of any adversarial MAC. In fact, adversarial MACs with the same confusability sets share a common capacity region
(Claim 16), though they may appear different at the first glance. Various properties of the confusability sets are presented
in Proposition 15.

3) Towards understanding capacity thresholds, we find a class of distributions that we call good (Definition 15). Again, they
are separately tailored for the joint case and two marginal cases. While being of independent interest on their own, the
sets of good distributions are particularly useful in our context of determining the capacity threshold. One should think
of these classes of distributions as the only types of distributions that one needs to consider for the purpose of achieving
positive rates (though in this way one may not be able to achieve the capacity which is anyway unknown given the current
techniques). We also define a cone of tensors referred to as co-good tensors (Definition 16) and show that the cones of
good and co-good tensors are dual to each other (Theorem 18), which will be critical to the proofs in the proceeding
sections. Various properties of good distributions and co-good tensors are presented. We expect these distributions/tensors
and the associated duality to be useful elsewhere.

4) We completely characterize, for any given omniscient adversarial MAC, the “shape” of the capacity region, that is, when
the capacity region

a) has nonempty interior (in particular, is two-dimensional);
b) consists of two line segments (in particular, has empty interior);
c) consists of one line segment (in particular, is one-dimensional);
d) or only contains p0, 0q (in particular, is zero-dimensional).
The proof comprises of the direct part and the converse part. The technically most challenging case is to handle the
(non-)achievability of rate pairs both components of which are strictly positive. For the marginal cases, we emphasize
that they do not follow from the point-to-point results in [WBBJ19] in a black-box manner.

We then briefly discuss separately our achievability and converse results and the techniques for proving them. For a more
detailed discussion on the proof techniques, see Section XII.

1) For the achievability part, one could use good non-confusable distributions (whenever they exist) to sample good codes
of positive rates (Lemma 23). This follows from the standard random coding argument which in turn is proved using
Chernoff-union bounds. We also strengthen the above positivity results by giving inner bounds on the capacity region
(Lemma 24). This follows by carefully expurgating the codes and analyzing the large deviation exponents of the error
events using the Sanov’s theorem (Lemma 3). The most challenging case is where both transmitters are able to achieve
positive rates.

2) On the other hand, for the converse part, if one cannot construct positive rate good codes using good distributions, then
she/he cannot construct them using any other types of distributions (Theorem 20). This part is much less obvious and
forms the bulk of the technically most challenging portion of this work. As alluded to above, the crux of the proof is to
leverage the duality between the cone of good distributions and the cone of co-good tensors defined before and to apply
a double counting trick that is reminiscent of the one used in the classical Plotkin bound in coding theory. Technically,
to make the trick actually work, we have to preprocess the code by applying a standard constant composition reduction
and an equicoupled subcode extraction (using Ramsey’s theorems Theorems 26 and 35). The hardest case is to show
that two transmitters cannot simultaneously achieve positive rates as long as there does not exist a distribution that is
simultaneously jointly good and (first and second) marginally good.

IV. ORGANIZATION OF THIS PAPER

The rest of the paper is organized as follows. Notational conventions of this paper are listed in Section V, followed by
preliminaries in Section VI. We formally introduce the omniscient adversarial MAC model in Section VII. Before proceeding,

9The type of a (collection of) vector(s) is the empirical distribution/histogram. See Definition 3 for a formal definition.
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we first study the special case of binary noisy XOR MACs in Section VIII with proofs deferred to Appendix B. Then in
Sections IX and X respectively, we introduce two important notions of (sets of) distributions, viz.: the confusability sets and
the sets of good distributions, and prove properties of them. Building on the machinery we have developed in the previous
sections, the main result (Theorem 19) of this paper, i.e., a characterization of the “shape” of capacity region, is formally stated
in Section XI. Before presenting the detailed proofs, we outline a roadmap with underlying ideas of the proofs in Section XII.
Section XIII contains a full proof of the achievability part of our main theorem. Sections XIV and XV prove the “joint” case
and the “marginal” cases of the converse part, respectively. We conclude the paper with a list of remarks and open questions
in Section XVI. A table of frequently used notation can be found in Section A.

V. NOTATION

Sets are denoted by capital letters in calligraphic typeface, e.g., X ,S,Y , etc. All alphabets in this paper are finite sized. For
a positive integer M , we use rM s to denote t1, ¨ ¨ ¨ ,Mu. Let X be a finite set. For an integer 0 ď k ď |X |, we use

`X
k

˘

to
denote tX 1 Ď X : |X 1| “ ku.

Random variables are denoted by lowercase letters in boldface, e.g., x, s,y, etc. Their realizations are denoted by corre-
sponding lowercase letters in plain typeface, e.g., x, s, y, etc. Vectors (random or fixed) of length n, where n is the blocklength
of the code without further specification, are denoted by lowercase letters with underlines, e.g., x, s,y, x, s, y, etc. The i-th
entry of a vector x P Xn (resp. x P Xn) is denoted by xpiq (resp. xpiq).

For vectors and random variables/vectors, we use superscripts to denote the indices of the transmitters, e.g., x1,x1,x1 (resp.
x2,x2,x2) correspond to the first (resp. second) transmitter.

We use the standard Bachmann–Landau (Big-Oh) notation. For two real-valued functions fpnq, gpnq of positive integers, we
say that fpnq asymptotically equals gpnq, denoted by fpnq — gpnq, if limnÑ8 fpnq{gpnq “ 1. We write fpnq .“ gpnq (read
fpnq dot equals gpnq) if limnÑ8plog fpnqq{plog gpnqq “ 1. Note that fpnq — gpnq implies fpnq .“ gpnq, but the converse is
not true. For any A Ď X , the indicator function of A is defined as, for any x P X ,

1Apxq :“

#

1, x P A
0, x R A

.

At times, we will slightly abuse notation by saying that 1tAu is 1 when event A happens and 0 otherwise. Note that 1Ap¨q “

1t¨ P Au. In this paper, all logarithms are to the base 2.
We use ∆pX q to denote the probability simplex on X . Related notations such as ∆pX ˆ Yq and ∆pY|X q are similarly

defined. For a distribution Px,y|u P ∆pX ˆ Y|Uq, we use
“

Px,y|u

‰

x|u
P ∆pX |Uq to denote the marginal distribution onto x

given u, i.e., for every x P X , u P U ,
“

Px,y|u

‰

x|u
px|uq “

ř

yPY Px,y|upx, y|uq. We use ∆pnqpX q to denote the set of types
(i.e., empirical distributions/histograms, see Definition 3 for formal definitions) of length-n vectors over alphabet X . That is,
∆pnqpX q consists of all distributions Px P ∆pX q that are induced by Xn-valued vectors. Other notations such as ∆pnqpX ˆYq
and ∆pnqpY|X q are similarly defined. The notation x „ Px (resp. x „ Px) means that the p.m.f. of a random variable (resp.
vector) x (resp. x) is Px (resp. Px). If x is uniformly distributed in X , then we write x „ X . Throughout this paper, we use
d8p¨, ¨q and d1p¨, ¨q to respectively denote the `8 and `1 distances between two distributions which are defined as follows

d8pP,Qq :“
ÿ

xPX
|P pxq ´Qpxq|, d1pP,Qq :“ max

xPX
|P pxq ´Qpxq|,

for any P,Q P ∆pX q. For a distribution P P ∆pX q and a subset A Ď ∆pX q, the distance (w.r.t. some metric distp¨, ¨q)
between P and A is defined as distpP,Aq :“ infQPA distpP,Qq. For B Ď ∆pX q, the distance between A and B is defined
as distpA,Bq :“ infpP,QqPAˆB distpP,Qq. The inner product between P and Q is defined as xP,Qy :“

ř

xPX P pxqQpxq. The
`p-norm of a vector is denoted by }¨}p. Note that d8p¨, ¨q “ }¨ ´ ¨}8 and d1p¨, ¨q “ }¨ ´ ¨}1.

VI. PRELIMINARIES

Let Px P ∆pX q. We always assume supppPxq “ X . Otherwise, we can properly reduce X to X 1 and again assume
Px P ∆pX 1q, supppPxq “ X 1. Define the polynomial νpPx, nq as

νpPx, nq :“

d

p2πnq|X |
ź

xPX
Pxpxq. (1)

Note that νpPx, nq ‰ 0.

Lemma 1. If x „ Pbnx , then for any x of type Px, we have Prrx “ xs “ 2´HpPxq. Moreover, Pr
“

τx “ Px

‰

— 1{νpPx, nq.

Lemma 2 (Chernoff bound). Let x1, ¨ ¨ ¨ ,xN be independent t0, 1u-valued random variables. Let x :“
řN
i“1 xi. Then for any

σ P r0, 1s,

Prrx ě p1` δqErxss ď exp

ˆ

´
δ2

3
Erxs

˙

,
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Prrx ď p1´ δqErxss ď exp

ˆ

´
δ2

2
Erxs

˙

,

Prrx R p1˘ δqErxss ď2 exp

ˆ

´
δ2

3
Erxs

˙

.

Lemma 3 (Sanov’s theorem). Let Q Ď ∆pX q be a subset of distributions which equals the closure of its interior. Let x „ Pbnx

for some Px P ∆pX q. Then

lim
nÑ8

1

n
log Pr

“

τx P A
‰

“´ inf
QxPQ

DpQx}Pxq,

where the Kullback–Leibler (KL) divergence Dp¨}¨q between two distributions is defined in Definition 2.

Fact 4. Let x “ pxp1q, xp2qq P Xn where xp1q P Xαn and xp2q P X p1´αqn for some α P r0, 1s. Then we have τx “
ατxp1q ` p1´ αqτxp2q .

Definition 1 (Net). Let pX ,distq be a metric space and η ą 0 be a constant. A subset N Ď X is an η-net if for all x P X ,
there exists x1 P N such that distpx, x1q ď η.

The following lemma can be proved by taking a simple coordinate quantization. A proof can be found in, e.g., [ZBJ20].

Lemma 5 (Bound on size of a net). Let X be a finite alphabet. For any constant η ą 0, there exists an η-net of p∆pX q, d8q
of size at most

Q

|X |
2η

U|X |
ď

´

|X |
2η ` 1

¯|X |
.

Fact 6. For any x, y P Rk, we have d8
`

x, y
˘

ď d1

`

x, y
˘

ď k ¨ d8
`

x, y
˘

.

Definition 2 (Kullback–Leibler (KL) divergence). Let X be a finite set and let P,Q P ∆pX q. Assume that P is absolutely
continuous w.r.t. Q (i.e., supppP q Ď supppQq). The Kullback–Leibler (KL) divergence between P and Q is defined as
DpP }Qq :“

ř

xPX P pxq log P pxq
Qpxq .

Definition 3 (Types). Let X be a finite set and n P Zě1. The type of a vector x P Xn, denoted by τx P ∆pX q, is the empirical
distribution/histogram of x defined as: for every x P X , τxpxq “ 1

n |ti P rns : xpiq “ xu|. The set of all types of Xn-valued
vectors is denoted by ∆pnqpX q. Let Y be another finite set and y P Yn. The joint type τx,y (and ∆pnqpX ˆYq correspondingly)
and the conditional type τx|y (and ∆pnqpX |Yq correspondingly) are defined in a similar manner. Furthermore, these definitions
can be extended to tuples of vectors in the canonical way. The set of vectors of the same type is called a type class.

Fact 7 (Types are dense in distributions). Let X be a finite set. The set
Ť

nPZě1
∆pnqpX q of types induced by vectors of all

possible lengths is dense in the corresponding set ∆pX q of distributions.

The number of types of length-n vectors is polynomial in n.

Lemma 8 (Number of types [Csi98]). The number of types corresponding to Xn-valued vectors equals
`

n´|X |´1
|X |´1

˘

ď pn `

|X | ´ 1q|X |´1.

Lemma 9 (Marginalization does not increase distance). Let Pa,b, Qa,b P ∆pAˆBq. Then d1

`

rPa,bsa, rQa,bsa

˘

ď d1pPa,b, Qa,bq.

Proof. The lemma follows from triangle inequality.

d1

`

rPa,bsa, rQa,bsa

˘

ď
ÿ

aPA

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

bPB
Pa,bpa, bq ´

ÿ

bPB
Qa,bpa, bq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

pa,bqPAˆB

|Pa,bpa, bq ´Qa,bpa, bq| “ d1pPa,b, Qa,bq.

VII. BASIC DEFINITIONS

A. Channel and coding

Definition 4 (Omniscient adversarial MACs). An omniscient adversarial two-user multiple access channel (MAC) MAC2 “
`

X1,X2,S,Y,Γ1,Γ2,Λ,Wy|x,s

˘

is comprised of
1) three alphabets X1,X2,S,Y for the input sequence from the first user, the input sequence from the second user, the

jamming sequence and the output sequence, respectively;
2) input constraints Γ1 Ď ∆pX1q and Γ2 Ď ∆pX2q for the first and second users, respectively;
3) state constraints Λ Ď ∆pSq for the jammer;
4) and the adversarial channel transition law Wy|x1,x2,s that is governed by the adversary.

Suppose that the first (resp. second) transmitter wishes to send a message m1 P rM1s (resp. m2 P rM2s) to the receiver. They
are allowed to encode10 pm1,m2q into two sequences (called codewords) Enc1pm

1q “ x1 P Xn
1 and Enc2pm

2q “ x2 P Xn
2

10Importantly, the encoding process must be completed locally by two individual encoders without cooperation.
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respectively such that τx1 P Γ1, τx2 P Γ2. These two codewords are transmitted into the channel. Knowing the transmitted
x1, x2 and the codebooks pC1, C2q P XM1ˆn

1 ˆ XM2ˆn
2 (i.e., the collection of codeword pairs that encode the messages in

rM1s ˆ rM2s; see Definition 5), the adversary injects an adversarial noise (a.k.a. the state vector or jamming vector) s P Sn
such that τs P Λ. The channel acts on the inputs x1, x2, s and generates an output y memorylessly, i.e., for any y P Yn,

Wy|x1,x2,s

`

y
ˇ

ˇx1, x2, s
˘

“Wbn
y|x1,x2,s

`

y
ˇ

ˇx1, x2, s
˘

“

n
ź

j“1

Wy|x1,x2,s

`

ypjq
ˇ

ˇx1pjq, x2pjq, spjq
˘

.

Receiving y, the decoder is required to output an estimate Decpyq “
´

xm1, xm2
¯

of the transmitted messages pm1,m2q. See
Figure 1 for a system diagram of MAC2.

Fig. 1: A system diagram of a general two-user omniscient adversarial MAC.

Remark 2. Though the channel from the transmitters to the receiver is memoryless, the state vector s is not necessarily generated
memorylessly by the jammer given x1,x2. That is, Ps|x1,x2 may not factor. Indeed, the adversary can put probability mass
one on a single sequence s.

Definition 5 (Codes). A code pair pC1, C2q for an omniscient adversarial MAC MAC2 “
`

X1,X2,S,Y,Γ1,Γ2,Λ,Wy|x,s

˘

consists of
1) two encoders Enc1 : rM1s Ñ Xn

1 and Enc2 : rM2s Ñ Xn
2 for the first and the second users which map m1 P rM1s and

m2 P rM2s to Enc1pm
1q “ x1

m1 and Enc2pm
2q “ x2

m2 respectively; and
2) a decoder Dec: Yn Ñ rM1s ˆ rM2s that maps y to Decpyq “

´

xm1, xm2
¯

.
We call the images of Enc1 and Enc2 a codebook pair (or simply a code pair, overloading the terminology), denoted, with a
slight abuse of notation, by pC1, C2q P XM1ˆn

1 ˆ XM2ˆn
2 . The length n of each codeword is called the blocklength. The rate

pair of pC1, C2q is defined as R1 “ RpC1q :“ logM1

n log|X1|
and R2 “ RpC2q :“ logM2

n log|X2|
.

We assume that the code pair pC1, C2q is known to Enc1,Enc2, Jam (see Definition 6 below) and is fixed before commu-
nication is instantiated.

Remark 3. When we talk about “a” code (pair), we always mean an infinite sequence of codes of increasing blocklengths, i.e.,
!´

Cpiq1 , Cpiq2

¯)

iě1
each of blocklength ni where n1 ă n2 ă ¨ ¨ ¨ P Zě1.

Definition 6 (Maximum probability of error). A code pair pC1, C2q P XM1ˆn
1 ˆXM2ˆn

2 (equipped with encoders Enc1,Enc2

and a decoder Dec) is said to attain maximum probability of error ε for an omniscient adversarial MAC

MAC2 “
`

X1,X2,S,Y,Γ1,Γ2,Λ,Wy|x,s

˘

if

max
pm1,m2qPrM1sˆrM2s

max
JampEnc1pm

1
q,Enc2pm

2
qqPSn

τJampEnc1pm
1q,Enc2pm

2qqPΛ

Pr
y„Wbn

y|x1,x2,s
p¨|Enc1pm1q,Enc2pm2q,JampEnc1pm1q,Enc2pm2qqq

“

Dec
`

y
˘

‰
`

m1,m2
˘‰

“ max
pm1,m2qPrM1sˆrM2s

max
JampEnc1pm

1
q,Enc2pm

2
qqPSn

τJampEnc1pm
1q,Enc2pm

2qqPΛ

ÿ

yPYn:Decpyq‰pm1,m2q

Wbn
y|x1,x2,s

`

y
ˇ

ˇEnc1

`

m1
˘

,Enc2

`

m2
˘

, JampEnc1pm
1q,Enc2pm

2qq
˘

ďε. (2)

The second maximization is over all legitimate jamming functions Jam: Xn
1 ˆXn

2 Ñ Sn such that τJampEnc1pm1q,Enc2pm2qq P Λ.

Remark 4. We emphasize that this paper is focused on the maximum probability of error as defined in Definition 6. One can
instead place different bounds on the constituent error probabilities [TK13]

max
pm1,m2qPrM1sˆrM2s

max
s:τsPΛ

Pr
”!

xm1 ‰ m1
)

Y

!

xm2 ‰ m2
)ı

,
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max
pm1,m2qPrM1sˆrM2s

max
s:τsPΛ

Pr
”

xm1 ‰ m1
ı

,

max
pm1,m2qPrM1sˆrM2s

max
s:τsPΛ

Pr
”

xm2 ‰ m2
ı

.

This may create wacky behaviours of the capacity region [ZVJ20] and is a more challenging question.

Definition 7 (Achievable rate pairs and capacity region). A rate pair pR1, R2q is said to be achievable for an omniscient
adversarial MAC MAC2 under the maximum error criterion if there exists a code pC1, C2q for MAC2 of rates RpC1q ě R1 and
RpC2q ě R2 with op1q maximum probability of error. The closure of all achievable rate pairs is called the capacity region of
MAC2.

Definition 8 (Constant composition codes). A code C Ď Xn is called P -constant composition for some distribution P P ∆pX q
if all codewords in C have type P .

A simple application of Markov’s inequality and Lemma 8 yields the following reduction from general codes to constant
composition codes.

Lemma 10 (Constant composition reduction). For any code C Ď Xn, there exists a constant composition subcode C1 Ď C of
size at least |C|{pn` |X | ´ 1q|X |´1. In particular, RpC1q is the same as RpCq (asymptotically in n).

Lemma 10 shows that for the purpose of understanding the capacity (region), it suffices to study constant composition codes.
Throughout this paper, we focus on constant composition code pairs by fixing two feasible input distributions pP1, P2q P Γ1ˆΓ2.

B. Additional technical assumptions

For technical reasons, we make further assumptions on the model considered throughout this paper.
1) All alphabets X1,X2,S,Y are finite. In particular, our proof will heavily rely on the assumption of the finiteness of X1

and X2. It is unclear how to extend our results to the large alphabet regime, e.g., the case where |X1|, |X2| are increasing
in n. In fact, we believe that the behaviour of adversarial MACs is considerably different when the alphabet sizes are
sufficiently large. See Item 11 in Section XVI.

2) In this work we only focus on state deterministic channels, i.e., channels for which Wy|x1,x2,s is a zero-one law.
Alternatively, the channel transition law can be written as a (deterministic) function W : X1 ˆ X2 ˆ S Ñ Y such that
y “W px1, x2, sq.

3) To avoid peculiar behaviours, we assume that Γ1,Γ2,Λ are all convex sets.
4) We do not assume the availability of common randomness between the encoders and the decoder (while kept secret from

the jammer). In the AVC literature, the capacity in the presence of shared randomness is known as the random code
capacity [Ahl78], [CN88a].

5) No party in the system is allowed to use private randomness. That is, the encoding/jamming/decoding functions are
all deterministic. In the case of point-to-point omniscient adversarial channels [WBBJ19], there are reductions showing
that the capacity remains the same under stochastic/deterministic encoding/jamming/decoding. Furthermore, average error
criterion is equivalent to maximum error criterion which is further equivalent to zero error criterion when the channel is
deterministic. Therefore, the omniscient point-to-point channel problem is combinatorial in nature. However, for our model
of omniscient MACs, as alluded to in Remark 1, we expect neither the equivalence between stochastic and deterministic
encoding nor the equivalence between average/maximum probability of error. For simplicity, we choose to work with
deterministic encoding/jamming/decoding and maximum/zero error criterion in this paper. The average probability of
error counterpart is left for future study (see Item 1 in Section XVI).

Under the above assumptions of deterministic encoding/jamming/decoding/channel law and maximum error criterion, the
probability in Equation (2) is either zero or one. Therefore, vanishing maximum probability of error implies zero error. This
enforces a combinatorial nature of the problem in hand. Our results serve as a first step towards understanding omniscient
adversarial MACs.

VIII. WARMUP EXAMPLE: BINARY NOISY XOR MAC
In this section, we study a warmup example of binary noisy XOR MAC defined as follows.

Definition 9 (Binary noisy XOR MAC). A two-user binary noisy XOR MAC XOR-MAC2ppq takes as input two binary
transmissions px1, x2q P pt0, 1unq

2 and a binary noise sequence s P t0, 1un with (relative) Hamming weight at most p and
outputs y “ x1 ‘ x1 ‘ s where the addition is modulo two.

The following theorem generalizes the classical Plotkin bound in coding theory to the multiuser setting.

Theorem 11. If p ą 1{4, then there exists no rate pairs pR1, R2q such that R1 ą 0, R2 ą 0.

Proof. See Appendix B.
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IX. CONFUSABILITY SETS AND THEIR PROPERTIES

In this section, we introduce one of the core definitions of this paper: the confusability sets associated to an adversarial
MAC. They are the sets of bad distributions that any good code should avoid. As the name suggests, they precisely characterize
the “confusability” of a given channel. In fact, they determine the capacity region of the channel and therefore are arguably
the most important statistics associated to the channel. Some properties of confusability sets are proved.

We first present an obvious-looking claim which relates the the zero error criterion with operational non-confusability.

Claim 12 (Equivalence between zero error and operational non-confusability). Let MAC2 “
`

X1,X2,S,Y,Γ1,Γ2,Λ,Wy|x,s

˘

be a two-user omniscient adversarial MAC. A code pair pC1, C2q P XM1ˆn
1 ˆXM2ˆn

2 attains zero error for MAC2 if and only
if all of the following conditions (which we call operational non-confusability conditions) are satisfied:

1) for all 1 ď i1 ‰ i2 ď M1 and 1 ď j1 ‰ j2 ď M2, there do not exist s1, s2 P Sn with τs1 , τs2 P Λ such that
W px1

i1
, x2
j1
, s1q “W px1

i2
, x2
j2
, s2q; in this case we say that px1

i1
, x2
j1
q and px1

i2
, x2
j2
q are non-confusable;

2) for all 1 ď i1 ‰ i2 ď M1 and 1 ď j ď M2, there do not exist s1, s2 P Sn with τs1 , τs2 P Λ such that W px1
i1
, x2
j , s

1q “

W px1
i2
, x2
j , s

2q; in this case we say that px1
i1
, x2
j q and px1

i2
, x2
j q are non-confusable;

3) for all 1 ď i ď M1 and 1 ď j1 ‰ j2 ď M2, there do not exist s1, s2 P Sn with τs1 , τs2 P Λ such that W px1
i , x

2
j1
, s1q “

W px1
i , x

2
j2
, s2q; in this case we say that px1

i , x
2
j1
q and px1

i , x
2
j2
q are non-confusable.

Proof. Intuitively, a violation of the zero error criterion must be the case where a received vector y can be explained by (at
least) two distinct pairs of codewords via admissible jamming vectors. In this case, the decoder is confused by (at least) two
candidate pairs of codewords and is forced to make a decoding error with nonzero probability. Formally, the claim follows
from the following simple arguments.

We first prove the contrapositive of the direct part. If pC1, C2q has nonzero error, then there must exist a pair of codewords
px1, x2q P pC1, C2q which leads to a decoding error. In particular, at least one of x1 and x2 cannot be correctly decoded. Then
at least one of Conditions 1 to 3 must be satisfied. Indeed,

1) Condition 1 corresponds to the case where neither x1 nor x2 can be correctly decoded. More specifically, there must
exist another pair of codewords Ăx1 ‰ x1 and Ăx2 ‰ x2 such that W px1, x2, sq “ W pĂx1,Ăx2,rsq for some s,rs P Sn with
τs, τrs P Λ. In this case, the decoder could not decide to output px1, x2q or pĂx1,Ăx2q.

2) Condition 2 corresponds to the case where x1 is confusable with another codeword. More specifically, there must exist
another codeword Ăx1 ‰ x1 such that W px1, x2, sq “ W pĂx1, x2,rsq for some s,rs P Sn with τs, τrs P Λ. In this case, the
decoder could not decide to output px1, x2q or pĂx1, x2q.

3) Condition 3 corresponds to the case where x2 is confusable with another codeword. More specifically, there must exist
another codeword Ăx2 ‰ x2 such that W px1, x2, sq “ W px1,Ăx2,rsq for some s,rs P Sn with τs, τrs P Λ. In this case, the
decoder could not decide to output px1, x2q or px1,Ăx2q.

The converse part is straightforward. If a code pair pC1, C2q attains zero error, then none of Conditions 1 to 3 is satisfied.
Otherwise, (at least) one of Conditions 1 to 3 above holds which results in a decoding error, violating the zero-error assumption.

Claim 13 (Permutation invariance of operational (non-)confusability). If two pairs of codewords px1, x2q and pĂx1,Ăx2q (resp.
pĂx1, x2q or px1,Ăx2q) are confusable/non-confusable (in the sense of Claim 12), then any other pairs px1

˚, x
2
˚q and pĂx1

˚,
Ăx2
˚q

(resp. pĂx1
˚, x

2
˚q or px1

˚,
Ăx2
˚q) of the same joint type τ

x1
˚,

Ăx1
˚,x

2
˚,

Ăx2
˚

“ τ
x1,Ăx1,x2,Ăx2 (resp. τ

x1
˚,

Ăx1
˚,x

2
˚

“ τ
x1,Ăx1,x2 or τ

x1
˚,x

2
˚,

Ăx2
˚

“

τ
x1,x2,Ăx2 ) are also confusable/non-confusable.

Proof. Since the channel is component-wise and memoryless, the confusability conditions (Conditions 1 to 3 in Claim 12) are
invariant under coordinate permutations. That is, px1, x2q is confusable with pĂx1,Ăx2q (resp. pĂx1, x2q or px1,Ăx2q) if and only if
pπpx1q, πpx2qq is confusable with pπpĂx1q, πpĂx2qq (resp. pπpĂx1q, πpx2qq or pπpx1q, πpĂx2qq) for any π P Sn. Here for a vector
v “ pvp1q, ¨ ¨ ¨ , vpnqq P Vn, we use the notation πpvq :“ pvpπp1qq, ¨ ¨ ¨ , vpπpnqqq. Indeed, one simply takes πpsq, πprsq of type
τπpsq “ τs P Λ and τπprsq “ τ

rs P Λ. Then for any j P rns,

W pπpx1q, πpx2q, πpsqqpjq “W pπpx1qpjq, πpx2qpjq, πpsqpjqq (3)

“W px1pπpjqq, x2pπpjqq, spπpjqqq

“W px1, x2, sqpπpjqq

“πpW px1, x2, sqqpjq.

Equation (3) is because the channel acts on the inputs component-wise. That is, W pπpx1q, πpx2q, πpsqq “ πpW px1, x2, sqq. Sim-
ilarly, W pπpĂx1q, πpĂx2q, πprsqq “ πpW pĂx1,Ăx2,rsqq (resp. W pπpĂx1q, πpx2q, πprsqq “ πpW pĂx1, x2,rsqq or W pπpx1q, πpĂx2q, πprsqq “

πpW px1,Ăx2,rsqq). Since W px1, x2, sq “W pĂx1,Ăx2,rsq (resp. W px1, x2, sq “W pĂx1, x2,rsq or W px1, x2, sq “W px1,Ăx2,rsq) and
π is bijective, we have W pπpx1q, πpx2q, πpsqq “W pπpĂx1q, πpĂx2q, πprsqq (resp. W pπpx1q, πpx2q, πpsqq “W pπpĂx1q, πpx2q, πprsqq

or W pπpx1q, πpx2q, πpsqq “W pπpx1q, πpĂx2q, πprsqq).
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Finally, permutation invariance of confusability follows from the observation that all vectors of the same type can be obtained
by properly permuting the coordinates. Since permutations are bijections, non-confusability is also invariant under coordinate
permutation.

We are ready to give the definition of confusability sets. Before doing so, we first define self-couplings as distributions with
prescribed marginals in accordance with the use of constant composition code pairs.

Definition 10 (Self-couplings).

J1,2pP1, P2q :“

$

’

&

’

%

Px1
1,x

1
2,x

2
1,x

2
2
P ∆pX 2

1 ˆ X 2
2 q :

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1

“

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
2

“ P1,
”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x2
1

“

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x2
2

“ P2

,

/

.

/

-

,

J1pP1, P2q :“

"

Px1
1,x

1
2,x

2 P ∆pX 2
1 ˆ X2q :

”

Px1
1,x

1
2,x

2

ı

x1
1

“

”

Px1
1,x

1
2,x

2

ı

x1
2

“ P1,
”

Px1
1,x

1
2,x

2

ı

x2
“ P2

*

,

J2pP1, P2q :“

"

Px1,x2
1,x

2
2
P ∆pX1 ˆ X 2

2 q :
”

Px1,x2
1,x

2
2

ı

x1
“ P1,

”

Px1,x2
1,x

2
2

ı

x2
1

“

”

Px1,x2
1,x

2
2

ı

x2
2

“ P2

*

.

The previous two claims (Claim 12, Claim 13) motivate us to make the following definition of confusability sets. One should
think of the conditions in the definition below as the distributional version of operational confusability in Claim 12.

Definition 11 (Confusability sets). Let MAC2 “
`

X1,X2,S,Y,Γ1,Γ2,Λ,Wy|x,s

˘

be a 2-user adversarial MAC. Let P1 P

∆pX1q and P2 P ∆pX2q. The joint confusability set K1,2pP1, P2q, the first marginal confusability set K1pP1, P2q and the
second marginal confusability set K2pP1, P2q of MAC2 w.r.t. input distributions P1 and P2 are defined as follows:

K1,2pP1, P2q :“

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Px1
1,x

1
2,x

2
1,x

2
2
P J1,2pP1, P2q :

D Px1
1,x

1
2,x

2
1,x

2
2,s1,s2,y

P ∆
`

X 2
1 ˆ X 2

2 ˆ S2 ˆ Y
˘

s.t.
”

Px1
1,x

1
2,x

2
1,x

2
2,s1,s2,y

ı

x1
1,x

1
2,x

2
1,x

2
2

“ Px1
1,x

1
2,x

2
1,x

2
2
;

@
`

x1
1, x

1
2, x

2
1, x

2
2, s1, s2, y

˘

P X 2
1 ˆ X 2

2 ˆ S2 ˆ Y,
Px1

1,x
1
2,x

2
1,x

2
2,s1,s2,y

`

x1
1, x

1
2, x

2
1, x

2
2, s1, s2, y

˘

“ Px1
1,x

1
2,x

2
1,x

2
2

`

x1
1, x

1
2, x

2
1, x

2
2

˘

Ps1,s2|x1
1,x

1
2,x

2
1,x

2
2

`

s1, s2

ˇ

ˇx1
1, x

1
2, x

2
1, x

2
2

˘

Wy|x1,x2,s

`

y
ˇ

ˇx1
1, x

2
1, s1

˘

“ Px1
1,x

1
2,x

2
1,x

2
2

`

x1
1, x

1
2, x

2
1, x

2
2

˘

Ps1,s2|x1
1,x

1
2,x

2
1,x

2
2

`

s1, s2

ˇ

ˇx1
1, x

1
2, x

2
1, x

2
2

˘

Wy|x1,x2,s

`

y
ˇ

ˇx1
2, x

2
2, s2

˘

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

,

K1pP1, P2q :“

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Px1
1,x

1
2,x

2 P J1pP1, P2q :

D Px1
1,x

1
2,x

2,s1,s2,y P ∆
`

X 2
1 ˆ X2 ˆ S2 ˆ Y

˘

s.t.
”

Px1
1,x

1
2,x

2,s1,s2,y

ı

x1
1,x

1
2,x

2
“ Px1

1,x
1
2,x

2 ;

@
`

x1
1, x

1
2, x

2, s1, s2, y
˘

P X 2
1 ˆ X2 ˆ S2 ˆ Y,

Px1
1,x

1
2,x

2,s1,s2,y

`

x1
1, x

1
2, x

2, s1, s2, y
˘

“ Px1
1,x

1
2,x

2

`

x1
1, x

1
2, x

2
˘

Ps1,s2|x1
1,x

1
2,x

2

`

s1, s2

ˇ

ˇx1
1, x

1
2, x

2
˘

Wy|x1,x2,s

`

y
ˇ

ˇx1
1, x

2, s1

˘

“ Px1
1,x

1
2,x

2px1
1, x

1
2, x

2qPs1,s2|x1
1,x

1
2,x

2

`

s1, s2

ˇ

ˇx1
1, x

1
2, x

2
˘

Wy|x1,x2,s

`

y
ˇ

ˇx1
2, x

2, s2

˘

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

,

K2pP1, P2q :“

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Px1,x2
1,x

2
2
P J2pP1, P2q :

D Px1,x2
1,x

2
2,s1,s2,y

P ∆
`

X1 ˆ X 2
2 ˆ S2 ˆ Y

˘

s.t.
”

Px1,x2
1,x

2
2,s1,s2,y

ı

x1,x2
1,x

2
2

“ Px1,x2
1,x

2
2
;

@
`

x1, x2
1, x

2
2, s1, s2, y

˘

P X1 ˆ X 2
2 ˆ S2 ˆ Y,

Px1,x2
1,x

2
2,s1,s2,y

`

x1, x2
1, x

2
2, s1, s2, y

˘

“ Px1,x2
1,x

2
2

`

x1, x2
1, x

2
2

˘

Ps1,s2|x1,x2
1,x

2
2

`

s1, s2

ˇ

ˇx1, x2
1, x

2
2

˘

Wy|x1,x2,s

`

y
ˇ

ˇx1, x2
1, s1

˘

“ Px1,x2
1,x

2
2

`

x1, x2
1, x

2
2

˘

Ps1,s2|x1,x2
1,x

2
2

`

s1, s2

ˇ

ˇx1, x2
1, x

2
2

˘

Wy|x1,x2,s

`

y
ˇ

ˇx1, x2
2, s2

˘

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

.

One should think of confusability sets as the sets of bad distributions/types that any (sequence of) good codes should avoid.
Indeed, one has the following claim.

Claim 14. Let MAC2 “
`

X1,X2,S,Y,Γ1,Γ2,Λ,Wy|x,s

˘

be a 2-user adversarial MAC and let pP1, P2q P Γ1 ˆ Γ2 be a pair
of feasible input distributions. Let tpC1,i, C2,iqui Ď Xni

1 ˆ Xni
2 be a sequence of pairs of P1- and P2-constant composition

codes of increasing blocklengths ni’s. Then tpC1,i, C2,iqui achieves zero error for MAC2 if an only if for every i, there is
no

`

x1
1, x

2
1

˘

,
`

x1
2, x

2
2

˘

P C1,i ˆ C2,i and x1 P C1,i, x2 P C2,i, such that at least one of the following happens: τx1
1,x

1
2,x

2
1x

2
2
P

K1,2pP1, P2q, τx1
1,x

1
2,x

2 P K1pP1, P2q, τx1,x2
1,x

2
2
P K2pP1, P2q.
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Proof. Claim 13 implies that the non-confusability properties (Conditions 1 to 3 in Claim 12) depend only on the type of
vectors rather than the order of coordinates. We can therefore quotient out type classes (Definition 3) and work with types
instead of vectors.11 The above conditions are equivalent to

1) for all 1 ď i1 ‰ i2 ď |C1| and 1 ď j1 ‰ j2 ď |C2|, there do not exist s1, s2 P Sn with τs1 , τs2 P Λ and y P Yn such that

τx1
i1
,x2

j1
,x1

i2
,x2

j2
,s1,s2,ypx

1
1, x

2
1, x

1
2, x

2
2, s1, s2, yq

“τx1
i1
,x2

j1
,x1

i2
,x2

j2
px1

1, x
2
1, x

1
2, x

2
2qτs1,s2|x1

i1
,x2

j1
,x1

i2
,x2

j2
ps1, s2|x

1
1, x

2
1, x

1
2, x

2
2qWy|x1,x2,spy|x

1
1, x

2
1, s1q

“τx1
i1
,x2

j1
,x1

i2
,x2

j2
px1

1, x
2
1, x

1
2, x

2
2qτs1,s2|x1

i1
,x2

j1
,x1

i2
,x2

j2
ps1, s2|x

1
1, x

2
1, x

1
2, x

2
2qWy|x1,x2,spy|x

1
2, x

2
2, s2q

for all px1
1, x

1
2, x

2
1, x

2
2, s1, s2, yq P X 2

1 ˆ X 2
2 ˆ S2 ˆ Y;

2) for all 1 ď i1 ‰ i2 ď |C1| and 1 ď j ď |C2|, there do not exist s1, s2 P Sn with τs1 , τs2 P Λ and y P Yn such that

τx1
i1
,x1

i2
,x2

j ,s
1,s2,ypx

1
1, x

1
2, x

2, s1, s2, yq

“τx1
i1
,x1

i2
,x2

j
px1

1, x
1
2, x

2qτs1,s2|x1
i1
,x1

i2
,x2

j
ps1, s2|x

1
1, x

1
2, x

2qWy|x1,x2,spy|x
1
1, x

2, s1q

“τx1
i1
,x1

i2
,x2

j
px1

1, x
1
2, x

2qτs1,s2|x1
i1
,x1

i2
,x2

j
ps1, s2|x

1
1, x

1
2, x

2qWy|x1,x2,spy|x
1
2, x

2, s2q

for all px1
1, x

1
2, x

2, s1, s2, yq P X 2
1 ˆ X2 ˆ S2 ˆ Y;

3) for all 1 ď i ď |C1| and 1 ď j1 ‰ j2 ď |C2|, there do not exist s1, s2 P Sn with τs1 , τs2 P Λ and y P Yn such that

τx1
i ,x

2
j1
,x2

j2
,s1,s2,ypx

1, x2
1, x

2
2, s1, s2, yq

“τx1
i ,x

2
j1
,x2

j2
px1, x2

1, x
2
2qτs1,s2|x1

i ,x
2
j1
,x2

j2
ps1, s2|x

1, x2
1, x

2
2qWy|x1,x2,spy|x

1, x2
1, s1q

“τx1
i ,x

2
j1
,x2

j2
px1, x2

1, x
2
2qτs1,s2|x1

i ,x
2
j1
,x2

j2
ps1, s2|x

1, x2
1, x

2
2qWy|x1,x2,spy|x

1, x2
2, s2q

for all px1, x2
1, x

2
2, s1, s2, yq P X1 ˆ X 2

2 ˆ S2 ˆ Y .
We now get that pC1, C2q P Xn

1 ˆ Xn
2 attains zero error for MAC2 if and only if the above conditions hold. Since these

conditions should be satisfied for every n, by Fact 7, we pass from types to distributions. According to Definition 11, we
finally get that an infinite sequence of codes

!´

Cpnq1 , Cpnq2

¯)

ně1
attains zero error for MAC2 if and only if for every n,

1) for all 1 ď i1 ‰ i2 ď |Cpnq1 | and 1 ď j1 ‰ j2 ď |Cpnq2 |, τx1
i1
,x1

i2
,x2

j1
,x2

j2
R K1,2pP1, P2q;

2) for all 1 ď i1 ‰ i2 ď |Cpnq1 | and 1 ď j ď |Cpnq2 |, τx1
i1
,x1

i2
,x2

j
R K1pP1, P2q;

3) for all 1 ď i ď |Cpnq1 | and 1 ď j1 ‰ j2 ď |Cpnq2 |, τx1
i ,x

2
j1
,x2

j2
R K2pP1, P2q.

This finishes the proof.

Remark 5. Claim 12 and Claim 14 actually imply that operational confusability and distributional confusability are equivalent,
both of which are characterizations of zero error.
Remark 6. Using operational confusability, one can instead define the confusability sets in terms of types rather than distribu-
tions.

Kpnq1,2 pP1, P2q :“

"

τx1
1,x

1
2,x

2
1,x

2
2
P J1,2pP1, P2q :

px1
1, x

1
2, x

2
1, x

2
2q P pXn

1 q
2 ˆ pXn

2 q
2

px1
1, x

2
1q and px1

2, x
2
2q satisfy Condition 1 in the proof of Claim 12

*

,

Kpnq1 pP1, P2q :“

"

τx1
1,x

1
2,x

2 P J1pP1, P2q :
px1

1, x
1
2, x

2q P pXn
1 q

2 ˆ Xn
2

px1
1, x

2q and px1
2, x

2q satisfy Condition 2 in the proof of Claim 12

*

Kpnq2 pP1, P2q :“

"

τx1,x2
1,x

2
2
P J2pP1, P2q :

px1, x2
1, x

2
2q P Xn

1 ˆ pXn
2 q

2

px1, x2
1q and px1, x2

2q satisfy Condition 3 in the proof of Claim 12

*

.

By Fact 7 and Remark 5, the above definition is (almost) the same as Definition 11. Indeed,

K1,2pP1, P2q “ cl

˜

8
ď

n“1

Kpnq1,2 pP1, P2q

¸

,

K1pP1, P2q “ cl

˜

8
ď

n“1

Kpnq1 pP1, P2q

¸

,

K2pP1, P2q “ cl

˜

8
ď

n“1

Kpnq2 pP1, P2q

¸

,

11Formally, let „perm be a relation on vectors defined as v „perm v1 iff there is π P Sn such that v1 “ πpvq. It is easy to check that „perm is an
equivalence relation. As Claim 13 suggests, the confusability property is a class invariant under „perm, i.e., it is invariant in each equivalence class by
„perm. For the purpose of studying confusability, one can without loss of generality focus on equivalence classes (i.e., types) rather than vectors.
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where clp¨q denotes the closure of a set. We stick with the distribution version of the definition rather than type version.

Proposition 15. Fix any pP1, P2q P Γ1 ˆ Γ2. The confusability sets enjoy the following properties.
1) Nontriviality. Any distributions Px1,x1,x2,x2 P J1,2pP1, P2q, Px1,x1,x2 P J1pP1, P2q and Px1,x2,x2 P J2pP1, P2q are in

K1,2pP1, P2q,K1pP1, P2q and K2pP1, P2q, respectively.
2) Transpositional invariance. If Px1

1,x
1
2,x

2
1,x

2
2

is in K1,2pP1, P2q, then Px1
2,x

1
1,x

2
2,x

2
1

is also in K1pP1, P2q; if Px1
1,x

1
2,x

2 is in
K1pP1, P2q, then Px1

2,x
1
1,x

2 is also in K1pP1, P2q; if Px1,x2
1,x

2
2

is in K2pP1, P2q, then Px1,x2
2,x

2
1

is also in K2pP1, P2q.
3) Convexity. All of K1,2pP1, P2q,K1pP1, P2q,K2pP1, P2q are convex.

Proof. By Remark 5, it is convenient to prove the properties via operational confusability.
To prove the first property, one simply observes that a pair of codewords px1, x2q is apparently confusable with itself. In

Condition 1 (of Claim 12), one takes s “ rs.
To prove the second property, one notes that if px1, x2q is confusable with pĂx1,Ăx2q (resp. pĂx1, x2q or px1,Ăx2q), then pĂx1,Ăx2q

(resp. pĂx1, x2q or px1,Ăx2q) is also confusable with px1, x2q. In the conditions of Claim 12, one interchanges the corresponding
s and rs.

To prove the third property, we note that for any α P r0, 1s, if p~x1
1, ~x

2
1q P Xαn

1 ˆXαn
2 and p~x1

2, ~x
2
2q P Xαn

1 ˆXαn
2 are confusable

(via ~s1 P Sαn and ~s2 P Sαn), p~x1
3, ~x

2
3q P X p1´αqn1 ˆ X p1´αqn2 and p~x1

4, ~x
2
4q P X p1´αqn1 ˆ X p1´αqn2 are also confusable (via

~s3 P Sp1´αqn and ~s4 P Sp1´αqn), then pp~x1
1, ~x

1
3q, p~x

2
1, ~x

2
3qq P Xn

1 ˆXn
2 and pp~x1

2, ~x
1
4q, p~x

2
2, ~x

2
4qq P Xn

1 ˆXn
2 are confusable (via

p~s1, ~s3q P Sn and p~s2, ~s4q P Sn). Here for two vectors ~v1 P Vn1 and ~v2 P Vn2 , we use the notation p~v1, ~v2q P Vn1`n2 to
denote the concatenation of ~v1 and ~v2. Therefore, by Fact 4, if Px1

1,x
1
2,x

2
1,x

2
2
P K1,2pP1, P2q and P

Ăx1
1,
Ăx1
2,
Ăx2
1,
Ăx2
2

P K1,2pP1, P2q

then αPx1
1,x

1
2,x

2
1,x

2
2
` p1´ αqP

Ăx1
1,
Ăx1
2,
Ăx2
1,
Ăx2
2

P K1,2pP1, P2q for any α P r0, 1s.

Remark 7. If we define the relation „conf on the set of feasible input sequences as px1, x2q „conf p
Ăx1,Ăx2q (resp. px1, x2q „conf

pĂx1, x2q or px1, x2q „conf px
1,Ăx2q) iff τ

x1,Ăx1,x2,Ăx2 P K1pP1, P2q (resp. τ
x1,Ăx1,x2 P K1pP1, P2q or τ

x1,x2,Ăx2 P K2pP1, P2q), then
Proposition 15 implies that „conf is reflective and symmetric. However, „conf is not necessarily transitive. Therefore, it is not
in general an equivalence relation.

Claim 16. Channels with the same confusability sets have the same capacity region.

Proof. Let MAC2 and MAC12 be two adversarial MACs with the same input constraints Γ1,Γ2 and the same confusability sets
K1,2pP1, P2q,K1pP1, P2q,K2pP1, P2q for all pP1, P2q P Γ1 ˆ Γ2. Note that MAC2 and MAC12 may have different state/output
alphabets and channel laws. By Claim 14, any code pC1, C2q that attains zero error for MAC2 also attains zero error for MAC12.
Therefore, any achievable rate pair pR1, R2q for MAC2 is also achievable for MAC12.

X. THE SETS OF GOOD DISTRIBUTIONS AND THEIR PROPERTIES

The geometry of various sets of distributions/tensors is depicted in Figure 2.

Definition 12 (Generalized self-couplings).

∆1,2pP1, P2q :“

$

’

&

’

%

Tx1
1,x

1
2,x

2
1,x

2
2
P R|X1|

2
ˆ|X2|

2

:
›

›

›
Tx1

1,x
1
2,x

2
1,x

2
2

›

›

›

1
“ 1,

”

Tx1
1,x

1
2,x

2
1,x

2
2

ı

x1
1

“

”

Tx1
1,x

1
2,x

2
1,x

2
2

ı

x1
2

“ P1,
”

Tx1
1,x

1
2,x

2
1,x

2
2

ı

x2
1

“

”

Tx1
1,x

1
2,x

2
1,x

2
2

ı

x2
2

“ P2

,

/

.

/

-

,

∆1pP1, P2q :“

"

Tx1
1,x

1
2,x

2 P R|X1|
2
ˆ|X2| :

›

›

›
Tx1

1,x
1
2,x

2

›

›

›

2
“ 1,

”

Tx1
1,x

1
2,x

2

ı

x1
1

“

”

Tx1
1,x

1
2,x

2

ı

x1
2

“ P1,
”

Tx1
1,x

1
2,x

2

ı

x2
“ P2

*

∆2pP1, P2q :“

"

Tx1,x2
1,x

2
2
P R|X1|ˆ|X2|

2

:
›

›

›
Tx1,x2

1,x
2
2

›

›

›

2
“ 1,

”

Tx1,x2
1,x

2
2

ı

x1
“ P1,

”

Tx1,x2
1,x

2
2

ı

x2
1

“

”

Tx1,x2
1,x

2
2

ı

x2
2

“ P2

*

.

Remark 8. For a general tensor (not necessarily a distribution) Ta,b P R|A|ˆ|B|, the marginalization of Ta,b onto the first
variable a is defined as rTa,bsapaq :“

ř

bPB|Ta,bpa, bq| for any a P A.
Remark 9. For the convenience of discussion, the above sets should be thought of as generalizations of distributions (Defini-
tion 10).

Definition 13 (Symmetric tensors).

Sym1,2pP1, P2q :“
!

Tx1
1,x

1
2,x

2
1,x

2
2
P ∆1,2pP1, P2q : Tx1

1,x
1
2,x

2
1,x

2
2
“ Tx1

2,x
1
1,x

2
2,x

2
1
“ Tx1

2,x
1
1,x

2
1,x

2
2
“ Tx1

1,x
1
2,x

2
2,x

2
1

)

,

Sym1pP1, P2q :“
!

Tx1
1,x

1
2,x

2 P ∆1pP1, P2q : Tx1
1,x

1
2,x

2 “ Tx1
2,x

1
1,x

2

)

,

Sym2pP1, P2q :“
!

Tx1,x2
1,x

2
2
P ∆2pP1, P2q : Tx1,x2

1,x
2
2
“ Tx1,x2

2,x
2
1

)

.
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Fig. 2: The geometry of various sets of distributions/tensors. We only draw sets of joint distributions/tensors. The geometry of
the corresponding marginal distributions/tensors is similar. The ambient space is ∆1,2pP1, P2q which is defined in Definition 12.
The set J1,2pP1, P2q of self-couplings is defined in Definition 10. The set Sym1,2pP1, P2q of symmetric tensors is defined
in Definition 13. Inside Sym1,2pP1, P2q, there is a pair of dual cones, viz.: G1,2pP1, P2q (Definition 15) and co-G1,2pP1, P2q

(Definition 16). The blue region denotes the set S1,2pP1, P2q of symmetric distributions (Definition 14) which is the intersection
of Sym1,2pP1, P2q and J1,2pP1, P2q.

Definition 14 (Symmetric distributions).

S1,2pP1, P2q :“J1,2pP1, P2q X Sym1,2pP1, P2q,

S1pP1, P2q :“J1pP1, P2q X Sym1pP1, P2q,

S2pP1, P2q :“J2pP1, P2q X Sym2pP1, P2q.

Definition 15 (Good distributions). Let pP1, P2q P Γ1 ˆ Γ2. The set of jointly good distributions G1,2pP1, P2q, the set of first
marginally good distributions G1pP1, P2q and the set of second marginally good distributions G2pP1, P2q w.r.t. P1 and P2 are
defined as follows:

G1,2pP1, P2q :“

$

’

&

’

%

Px1
1,x

1
2,x

2
1,x

2
2
P J1,2pP1, P2q :

Dk P Zě1, tλiu
k
i“1 Ď r0, 1s, tP1,iu

k
i“1 Ď ∆pX1q, tP2,iu

k
i“1 Ď ∆pX2q, s.t.

k
ÿ

i“1

λi “ 1, Px1
1,x

1
2,x

2
1,x

2
2
“

k
ÿ

i“1

λiP
b2
1,i b P

b2
2,i

,

/

.

/

-

,

G1pP1, P2q :“

$

’

&

’

%

Px1
1,x

1
2,x

2 P J1pP1, P2q :

Dk P Zě1, tλiu
k
i“1 Ď r0, 1s, tP1,iu

k
i“1 Ď ∆pX1q, tP2,iu

k
i“1 Ď ∆pX2q, s.t.

k
ÿ

i“1

λi “ 1, Px1
1,x

1
2,x

2 “

k
ÿ

i“1

λiP
b2
1,i b P2,i

,

/

.

/

-

,

G2pP1, P2q :“

$

’

&

’

%

Px1,x2
1,x

2
2
P J2pP1, P2q :

Dk P Zě1, tλiu
k
i“1 Ď r0, 1s, tP1,iu

k
i“1 Ď ∆pX1q, tP2,iu

k
i“1 Ď ∆pX2q, s.t.

k
ÿ

i“1

λi “ 1, Px1,x2
1,x

2
2
“

k
ÿ

i“1

λiP1,i b P
b2
2,i

,

/

.

/

-

.

In addition, we define the set of simultaneously good distributions GpP1, P2q w.r.t. P1 and P2 as

GpP1, P2q :“

$

’

’

’

&

’

’

’

%

Px1
1,x

1
2,x

2
1,x

2
2
P G1,2pP1, P2qzK1,2pP1, P2q :

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

1
2,x

2
1

“

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

1
2,x

2
2

P G1pP1, P2qzK1pP1, P2q
”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

2
1,x

2
2

“

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
2,x

2
1,x

2
2

P G2pP1, P2qzK2pP1, P2q

,

/

/

/

.

/

/

/

-

.

Proposition 17 (Properties of good distributions). The sets G1pP1, P2q,G2pP1, P2q and G1,2pP1, P2q enjoy the following
properties.

1) Good distributions are symmetric.

G1,2pP1, P2q Ă S1,2pP1, P2q, G1pP1, P2q Ă S1pP1, P2q, G2pP1, P2q Ă S2pP1, P2q.

2) For any Px1
1,x

1
2,x

2
1,x

2
2
P G1,2pP1, P2q,

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

1
2,x

2
1

“

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

1
2,x

2
2

,
”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

2
1,x

2
2

“

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
2,x

2
1,x

2
2

.
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3) The sets G1pP1, P2q and G2pP1, P2q are projections of the set G1,2pP1, P2q.

G1pP1, P2q “

"

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

1
2,x

2
1

: Px1
1,x

1
2,x

2
1,x

2
2
P G1,2pP1, P2q

*

,

G2pP1, P2q “

"

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

2
1,x

2
2

: Px1
1,x

1
2,x

2
1,x

2
2
P G1,2pP1, P2q

*

.

Remark 10. Though the good sets G1,2pP1, P2q,G1pP1, P2q,G2pP1, P2q are consistent under projections (the third property of
Proposition 17), the confusability sets K1,2pP1, P2q,K1pP1, P2q,K2pP1, P2q are not. Operationally, this is because px1

i1
, x1
j1
q

(or px1
i1
, x2
j2
q) and px1

i2
, x2
j1
q (or px1

i2
, x2
j2
q) are not necessarily confusable even if px1

i1
, x2
j1
q and px1

i2
, x2
j2
q are (for i1 ‰ i2

and j1 ‰ j2). Therefore, even the second property of Proposition 17 is guaranteed to hold for Px1
1,x

1
2,x

2
1,x

2
2
P K1,2pP1, P2q, let

alone the third one.

Definition 16 (Co-good tensors).

co-G1,2pP1, P2q :“
!

Px1
1,x

1
2,x

2
1,x

2
2
P Sym1,2pP1, P2q : @Px1 P ∆pX1q,@Px2 P ∆pX2q,

A

Pb2
x1 b P

b2
x2 , Px1

1,x
1
2,x

2
1,x

2
2

E

ě 0
)

,

co-G1pP1, P2q :“
!

Px1
1,x

1
2,x

2 P Sym1pP1, P2q : @Px1 P ∆pX1q,@Px2 P ∆pX2q,
A

Pb2
x1 b Px2 , Px1

1,x
1
2,x

2

E

ě 0
)

,

co-G2pP1, P2q :“
!

Px1,x2
1,x

2
2
P Sym2pP1, P2q : @Px1 P ∆pX1q,@Px2 P ∆pX2q,

A

Px1 b Pb2
x2 , Px1,x2

1,x
2
2

E

ě 0
)

.

Remark 11. Note that co-good tensors are not necessarily distributions. They may have negative entries.
Remark 12. It follows from definition that the sets of good distributions are subsets of the corresponding co-good distributions,
i.e.,

G1,2pP1, P2q Ă co-G1,2pP1, P2q, G1pP1, P2q Ă co-G1pP1, P2q, G2pP1, P2q Ă co-G2pP1, P2q.

Definition 17 (Dual cone). The dual cone B˚ of a cone B in a Hilbert space H is defined as B˚ :“ tb1 P H : @b P B, xb, b1y ě 0u.

Theorem 18 (Duality). The sets G1,2pP1, P2q, G1pP1, P2q and G2pP1, P2q are all closed convex pointed cones with non-empty
interior. Furthermore, the following duality relations hold. In Sym1,2pP1, P2q, G1,2pP1, P2q and co-G1,2pP1, P2q are dual cones
of each other. In Sym1pP1, P2q, G1pP1, P2q and co-G1pP1, P2q are dual cones of each other. In Sym2pP1, P2q, G2pP1, P2q and
co-G2pP1, P2q are dual cones of each other.

Proof. We first prove the duality relations. Intuitively, the duality follows since the extremal rays of G1,2pP1, P2q (or G1pP1, P2q,
G2pP1, P2q respectively) are distributions of the form Pb2

x1 bP
b2
x2 (or Pb2

x1 bPx2 , Px1 bPb2
x2 respectively). Indeed, it follows

from Definition 15 that

G1,2pP1, P2q “ conv
 

Pb2
x1 b P

b2
x2 : Px1 P ∆pX1q, Px2 P ∆pX2q

(

X J1,2pP1, P2q,

G1pP1, P2q “ conv
 

Pb2
x1 b Px2 : Px1 P ∆pX1q, Px2 P ∆pX2q

(

X J1pP1, P2q,

G2pP1, P2q “ conv
 

Px1 b Pb2
x2 : Px1 P ∆pX1q, Px2 P ∆pX2q

(

X J2pP1, P2q,

where convt¨u denotes the convex hull of a set. Therefore, one can replace Px1
1,x

1
2,x

2
1,x

2
2
P G1,2pP1, P2q (or Px1

1,x
1
2,x

2 , Px1,x2
1,x

2
2

respectively) in the definition of G1,2pP1, P2q
˚ (or G1pP1, P2q

˚, G2pP1, P2q
˚ respectively) below with Pb2

x1 bP
b2
x2 (or Pb2

x1 bPx2 ,
Px1 b Pb2

x2 respectively).

G1,2pP1, P2q
˚
“

!

Qx1
1,x

1
2,x

2
1,x

2
2
P Sym1,2pP1, P2q : @Px1

1,x
1
2,x

2
1,x

2
2
P G1,2pP1, P2q,

A

Px1
1,x

1
2,x

2
1,x

2
2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

ě 0
)

,

G1pP1, P2q
˚
“

!

Qx1
1,x

1
2,x

2 P Sym1pP1, P2q : @Px1
1,x

1
2,x

2 P G1pP1, P2q,
A

Px1
1,x

1
2,x

2 , Qx1
1,x

1
2,x

2

E

ě 0
)

,

G2pP1, P2q
˚
“

!

Qx1,x2
1,x

2
2
P Sym2pP1, P2q : @Px1,x2

1,x
2
2
P G2pP1, P2q,

A

Px1,x2
1,x

2
2
, Qx1,x2

1,x
2
2

E

ě 0
)

.

After the replacement, we get exactly G1,2pP1, P2q (or G1pP1, P2q, G2pP1, P2q, respectively).
To formalize this intuition, we prove two-sided set inclusions for co-G1,2pP1, P2q and co-G1pP1, P2q. The proof for co-G2pP1, P2q

is the same as that for co-G1pP1, P2q up to change of notation.
We first prove co-G1,2pP1, P2q “ G1,2pP1, P2q

˚.
Ď. Let Qx1

1,x
1
2,x

2
1,x

2
2
P co-G1,2pP1, P2q. Let Px1

1,x
1
2,x

2
1,x

2
2
“

řk
i“1 λiP

b2
1,i b Pb2

2,i P G1,2pP1, P2q. By Definition 16, we have
A

Qx1
1,x

1
2,x

2
1,x

2
2
, Pb2

1,i b P
b2
2,i

E

ě 0 for all i P rks. Therefore,
A

Px1
1,x

1
2,x

2
1,x

2
2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

ě 0, which means Qx1
1,x

1
2,x

2
1,x

2
2
P

G1,2pP1, P2q
˚. This proves co-G1,2pP1, P2q Ď G1,2pP1, P2q

˚.
Ě. Let Qx1

1,x
1
2,x

2
1,x

2
2
P G1,2pP1, P2q

˚. By Definition 17, for any Px1 P ∆pX1q and Px2 P ∆pX2q, we have
A

Qx1
1,x

1
2,x

2
1,x

2
2
, Pb2

x1 b P
b2
x2

E

ě

0 since Pb2
x1 b P

b2
x2 P G1,2pP1, P2q. Therefore, Qx1

1,x
1
2,x

2
1,x

2
2
P co-G1,2pP1, P2q and G1,2pP1, P2q

˚
Ď co-G1,2pP1, P2q.

We then prove co-G1pP1, P2q “ G1pP1, P2q
˚ in the same way.
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Ď. Let Qx1
1,x

1
2,x

2 P co-G1,2pP1, P2q. Let Px1
1,x

1
2,x

2 “
řk
i“1 λiP

b2
1,i b P2,i P G1,2pP1, P2q. By Definition 16, for each i P rks,

we have
A

Qx1
1,x

1
2,x

2 , Pb2
1,i b P2,i

E

ě 0. Therefore,
A

Px1
1,x

1
2,x

2 , Qx1
1,x

1
2,x

2

E

ě 0, which means Qx1
1,x

1
2,x

2 P G1pP1, P2q
˚.

This proves co-G1pP1, P2q Ď G1pP1, P2q
˚.

Ě. Let Qx1
1,x

1
2,x

2 P G1pP1, P2q
˚. By Definition 17, for any Px1 P ∆pX1q and Px2 P ∆pX2q, we have

A

Qx1
1,x

1
2,x

2 , Pb2
x1 b Px2

E

ě

0 since Pb2
x1 b Px2 P G1pP1, P2q. Therefore, Qx1

1,x
1
2,x

2 P co-G1pP1, P2q and G1pP1, P2q
˚
Ď co-G1,2pP1, P2q.

This finishes the proof for duality.
The claimed convexity and conic property of co-G1,2pP1, P2q, co-G1pP1, P2q and co-G2pP1, P2q follow directly from Defi-

nition 16. The closedness of G1,2pP1, P2q, G1pP1, P2q and G2pP1, P2q follows from the fact that the dual cone of any convex
cone is closed. One can easily find distributions that are in the interior of the cones under consideration. The pointedness of
G1,2pP1, P2q, G1pP1, P2q and G2pP1, P2q follows from nonnegativity of the entries of their elements. Finally, the pointedness of
co-G1,2pP1, P2q, co-G1pP1, P2q and co-G2pP1, P2q follows from the fact that the dual cone of any convex cone with nonempty
interior is pointed.

XI. A CHARACTERIZATION OF THE SHAPE OF CAPACITY REGION

Theorem 19. Fix a pair of input distributions pP1, P2q P Γ1 ˆ Γ2.
1) If GpP1, P2q ‰ H, then the capacity region contains rate pairs pR1, R2q such that R1 ą 0, R2 ą 0 or R1 ą 0, R2 “ 0

or R1 “ 0, R2 ą 0 or R1 “ 0, R2 “ 0.
2) If GpP1, P2q “ H, G1pP1, P2qzK1pP1, P2q ‰ H and G2pP1, P2qzK2pP1, P2q ‰ H, then the capacity region only contains

rate pairs pR1, R2q such that R1 ą 0, R2 “ 0 or R1 “ 0, R2 ą 0 or R1 “ 0, R2 “ 0.
3) If G1pP1, P2qzK1pP1, P2q ‰ H and G1pP1, P2qzK2pP1, P2q “ H, then the capacity region only contains rate pairs
pR1, R2q such that R1 ą 0, R2 “ 0 or R1 “ 0, R2 “ 0.

4) If G1pP1, P2qzK1pP1, P2q “ H and G1pP1, P2qzK2pP1, P2q ‰ H, then the capacity region only contains rate pairs
pR1, R2q such that R1 “ 0, R2 ą 0 or R1 “ 0, R2 “ 0.

5) If G1pP1, P2qzK1pP1, P2q “ H and G1pP1, P2qzK2pP1, P2q “ H, then the capacity region only contains p0, 0q.

Cases GpP1, P2q ‰ H G1pP1, P2qzK1pP1, P2q ‰ H G2pP1, P2qzK2pP1, P2q ‰ H Capacity region
Case (1) X X X p`,`q, p`, 0q, p0,`q, p0, 0q
Case (2) ˆ X X p`, 0q, p0,`q, p0, 0q
Case (3) ˆ X ˆ p`, 0q, p0, 0q
Case (4) ˆ ˆ X p0,`q, p0, 0q
Case (5) ˆ ˆ ˆ p0, 0q

TABLE I: A characterization of the shape of the capacity region of any omniscient adversarial two-user MAC. Note that the
condition GpP1, P2q ‰ H implies both G1pP1, P2qzK1pP1, P2q ‰ H and G2pP1, P2qzK2pP1, P2q ‰ H. Indeed, the former
condition is strictly stronger. In each case, we highlight the conditions in colors in such a way that red conditions imply blue
conditions. Note that the table above covers all possible cases.

The proof of the above characterization is comprised of two parts: achievability (Lemma 23) and converse (Theorem 20).

Theorem (Achievability, restatement of Lemma 23). Fix input distributions pP1, P2q P Γ1 ˆ Γ2.
1) If GpP1, P2q ‰ H, then there exist achievable rate pairs pR1, R2q such that R1 ą 0, R2 ą 0.
2) If G1pP1, P2qzK1pP1, P2q ‰ H, then there exist achievable rate pairs pR1, 0q such that R1 ą 0.
3) If G2pP1, P2qzK2pP1, P2q ‰ H, then there exist achievable rate pairs p0, R2q such that R2 ą 0.

Various achievability results are proved in Section XIII. Firstly, in Lemma 22, we prove the existence of positive rates using
product distributions. Next, in Lemma 23, we refine this result using mixtures of product distributions, i.e., good distributions
(Definition 15). Finally, in Lemma 24 we present inner bounds on the capacity region using product distributions.

Theorem 20 (Converse). Fix a pair of input distributions pP1, P2q P Γ1 ˆ Γ2.
1) If GpP1, P2q “ H, then there does not exist achievable rate pair pR1, R2q such that R1 ą 0, R2 ą 0.
2) If G1pP1, P2qzK1pP1, P2q “ H, then there does not exist achievable rate pair pR1, R2q such that R1 ą 0.
3) If G2pP1, P2qzK2pP1, P2q “ H, then there does not exist achievable rate pair pR1, R2q such that R2 ą 0.

Proof. Case 1 is proved in Section XIV. Cases 2 and 3 are proved in Section XV.

Observation 13. For an omniscient two-user adversarial MAC, for i “ 1, 2, if a rate Ri ą 0 is achievable for transmitter i,
then any rate 0 ď R1i ď Ri is also achievable for transmitter i.

By Observation 13, if the capacity region contains a rate pair pR1, R2q where R1 ą 0, R2 ą 0, then the rate pairs pR1, 0q
and p0, R2q are also in the capacity region.
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A. A remark on nonconvexity of capacity region

As suggested by Theorem 19, the capacity region of an adversarial MAC can be nonconvex. E.g., if a MAC satisfies
the conditions in Case 2 of Theorem 19, then the capacity region only consists of two perpendicular line segments and is
therefore nonconvex. However, the capacity region cannot be an arbitrary nonconvex region. Indeed, Observation 13 implies
that if a rate pair pR1, R2q with R1 ą 0, R2 ą 0 is achievable, then all rate pairs in the (closed) rectangle with vertices
p0, 0q, pR1, 0q, p0, R2q, pR1, R2q are also achievable.

For AVMACs (i.e., the oblivious adversarial MACs), the nonconvexity of the capacity region was noted by Gubner–Hughes
[GH95] and Pereg–Steinberg [PS19] via the example of an (oblivious) erasure MAC. As a side note, for AVMACs equipped
with common randomness, the capacity region may or may not be convex, depending on how the common randomness is
instantiated. If each encoder shares an independent secret key with the decoder, then the corresponding capacity region, known
as the divided-randomness capacity region, is not necessarily convex [GH95]. On the other hand, if all of two encoders and
the decoder share the same key, then the corresponding capacity region, known as the random code capacity region, is always
convex [PS19]. In our work, we do not equip any party with shared randomness. See [PS19] for a more detailed discussion
on the nonconvexity of the capacity region of AVMACs.

B. Comparison of our results with [PS19] on (oblivious) AVMACs

We compare below our results with the parallel results by Pereg and Steinberg on oblivious AVMACs. For simplicity, we only
compare the characterizations of positivity of capacities. Specifically, an oblivious AVMAC is a general adversarial MAC with
input and state constraints and an oblivious adversary who does not know the transmitted sequences from any of the encoders.
As many other results in the AVC literature, their characterization involves the oblivious analog of confusability known as
symmetrizability. Proper notions of first marginal symmetrizability, second marginal symmetrizability and joint symmetrizability
(denoted in their notation by symmetrizability-X1|X2, symmetrizability-X2|X1 and symmetrizability-X1ˆX2 respectively) were
introduced and were shown to characterize the capacity positivity. See Table II below.

Cases non-joint symmetrizability non-first marginal symmetrizability non-second marginal symmetrizability Capacity region
Case (1) X X X p`,`q, p`, 0q, p0,`q, p0, 0q
Case (2) X X ˆ p`, 0q, p0, 0q
Case (3) X ˆ X p0,`q, p0, 0q
Case (4) ˆ ? ? p0, 0q
Case (5) X ˆ ˆ p0, 0q

TABLE II: Results in [PS19] on capacity positivity of oblivious AVMACs. In the table, “X” (resp. “ˆ”) means the
corresponding non-symmetrizability condition is satisfied (resp. unsatisfied). Question marks “?” mean either satisfied or
unsatisfied, regardlessly. As noted, non-joint symmetrizability is a necessary condition for any positive achievable rate.

Intuitively, one should think of symmetrizability as the oblivious analog of confusability defined in Section IX. However, in
the AVMAC setting, due to the “independence” between the jammer and the encoders, the formal definition of symmetrizability
does not appear to be a straightforward adjustment of Definition 11. As a result, the characterization of positivity in [PS19]
does not exactly parallel ours. An informal analogy between the symmetrizability of Pereg and Steinberg’s and the confusability
of ours is as follows. Non-first (resp. -second) marginal symmetrizability corresponds to G1pP1, P2qzK1pP1, P2q ‰ H (resp.
G2pP1, P2qzK2pP1, P2q ‰ H). Non-joint symmetrizability corresponds to G1,2pP1, P2qzK1,2pP1, P2q ‰ H. However, one gets
wrong results (for Cases 1 and 2 in particular) if she/he verbatim translates the oblivious results to the omniscient setting using
the aforementioned informal correspondence.

In the AVMAC setting, non-joint symmetrizability is a necessary condition for the existence of R1 ą 0 or R2 ą 0. As a
consequence, there does not exist situation where R1 ą 0 or R2 ą 0 can be achieved separately yet not simultaneously (Case 2
in Theorem 19).

In the omniscient setting, the condition that determines the possibility of pR1, R2q with R1 ą 0, R2 ą 0 is in terms of
GpP1, P2q rather than G1,2pP1, P2qzK1,2pP1, P2q. Communication at positive rates for both encoders simultaneously may not be
possible even if G1,2pP1, P2qzK1,2pP1, P2q ‰ H. It is possible only if there is a single good distribution (as per Definition 15)
that is simultaneously non-jointly symmetrizable and non-marginally symmetrizable (for both transmitters).

XII. OVERVIEW OF PROOF TECHNIQUES

In this section we overview the proof techniques for establishing Theorem 19. Since there are cases where both/exactly
one/none of the transmitters can achieve positive rates, we have to divide the analysis into several cases. Nevertheless, the proofs
for different cases share roughly the same structure. In what follows, we briefly introduce the ideas behind the achievability
part and the converse part separately.
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A. Proof techniques for achievability

To show positive achievable rates under the conditions of Lemma 23, we use the standard method of random coding with
expurgation. The conditions in Lemma 23 can be intuitively interpreted as the existence of good distributions (according to
Definition 15) that are not bad (according to Definition 11).

If one is able to find a product distribution (which is always good by definition) that is outside the confusability sets, then
one can simply sample positive rate codes whose entries are i.i.d. according to the distribution. By concentration of measure,
the joint type of any codeword tuple is tightly concentrated around the product distribution. In particular, any joint type is
outside the confusability sets with high probability. Now by large deviation principle, if the code rates are sufficiently small,
a union bound over all codeword tuples allows us to conclude that no joint type is confusable and hence the whole code pair
attains zero error with high probability. This gives Lemma 22.

Lemma 22 can be strengthened in the following two ways.
Firstly, even if product distributions are confusable, if one can find mixtures of product distributions that are outside the

confusability sets, then positive rates are still achievable. Here the additional idea is time-sharing. Recall that a good distribution
is a convex combination of product distributions.12 The coefficients of the convex combination can be regarded as giving a
time-sharing sequence. We then sample random codes in the following way. All codewords are chopped up into chunks of
lengths proportional to the convex combination coefficients. Entries of all codewords in a particular chunk are i.i.d. according
the corresponding component distribution of the convex combination. Effectively it is as if we convexly concatenate multiple
codebooks of shorter lengths sampled from different product distributions. Again by a Chernoff-union argument, all joint
types are tightly concentrated around the mixture distribution provided that the rates are sufficiently small. Since the mixture
distribution itself is outside the confusability sets, the code pair attains zero error with high probability. This gives Lemma 23.
Such a code construction is known as coded time-sharing (see Remark 14).

Secondly, by carefully analyzing the large deviation exponent, one can in fact obtain inner bounds on the capacity region.
To this end, one could not simply set the rates to be sufficiently small so as to admit a union bound. A standard trick is to
remove (a.k.a. expurgate) one codeword from each confusable pair. Using Sanov’s theorem (Lemma 3), one can get the exact
exponent of the probability of sampling a confusable pair. One can then set the rates so as to guarantee that the (expected)
number of expurgated codewords is at most, say, half of the code size. This ensures that the expurgation process does not hurt
the rate. This gives Lemma 24. We remark that if one wishes to achieve a rate pair with two positive rates, then the above
argument requires one to expurgate codewords that contribute to (at least one of) jointly confusable pairs, first marginally
confusable pairs or second marginally confusable pairs. We believe that such an expurgation strategy is pessimistic and higher
rates may be obtained using more clever expurgation strategies. See Item 4 in Section XVI.

B. Proof techniques for converse

The converse part is considerably more involved. At a high level, it is inspired by the classical Plotkin bound in coding
theory and follows a similar structure as [WBBJ19]. However, due to the multiuser nature of the channel, the case analysis is
more delicate.

The basic proof strategy is comprised of the following components. Given any code pair pC1, C2q that attains zero error, we
would like to show that they have zero rate(s) once the conditions in Theorem 20 are satisfied. To this end, we follow the
steps below.

1) First, we extract a subcode pair pC11, C12q which has nontrivial sizes and is “equicoupled”. More specifically, for one thing,

the code sizes are mildly large in the sense that |C1i|
|Ci|Ñ8
ÝÝÝÝÝÑ 8 for i “ 1, 2. In fact |C1i| “ fp|Ci|q where fp¨q is the

inverse Ramsey number which grows extremely slow. However, this is enough for our purposes since it will be ultimately
proved that maxt|C11|, |C1|u ď C for some constant C ą 0 independent of n. Then maxt|C1|, |C2|u ď f´1pCq which is a
huge constant. However, this is already more than sufficient to imply zero rates. For another (more important) thing, the
subcode pair we obtained is highly structured in the sense that the joint type of any codeword tuple from the subcode pair
is approximately the same (hence the subcodes are at times called equicoupled in this paper). This follows from Ramsey’s
theorem (Theorem 26). At the cost of losing rates (which is actually fine), we localize some highly regular structures into
a tiny subcode pair.

2) We then focus on the subcode pair. It is unclear whether or not the distribution that all joint types are concentrated around
is symmetric (as per Definition 14). However, viewing the codebook as a sequence of random variables, we can show (in
Section XIV-B) that the size of the equicoupled subcode must be small if the distribution is asymmetric. This, after some
preprocessing of the sequence of random variables, follows from a classical theorem by Komlós (Theorem 29).

3) Now we assume that the equicoupled subcode is equipped with a symmetric distribution. Since we started with a code
pair of zero error, all joint types are outside the confusability sets. Hence by the equicoupledness property, the associated
distribution is outside the confusability sets as well. By the assumptions of Theorem 20, this distribution cannot be good

12Note that importantly, the components of such a convex combination do not have to satisfy the input constraints. This is why it is possible to find mixtures
of product distributions that are non-confusable even if all feasible product distributions are confusable. See Remark 14.
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(as per Definition 15) since the sets of good distributions are assumed to be subsets of the confusability sets. By the
duality (Theorem 18) between the sets of good and “co-good” tensors (Definition 16), we can find a witness (which itself
is a co-good tensor) of the non-goodness of the distribution. This finally allows us to apply a Plotkin-type double counting
trick. Specifically, we upper and lower bound the following crucial quantity (Equation (41)): the average inner product
between the witness and the joint types in the subcodes. Careful calculations give us upper and lower bounds on this
quantity. Contrasting these bounds further gives us an upper bound on the code sizes as promised.

Similar argument can be adapted to the marginal case where exactly one transmitter suffers from zero capacity.

XIII. ACHIEVABILITY

We need the following lemma which concentrates the size of the constant composition component of a random code. The
proof follows from the Chernoff bound (Lemma 2) and can be found in, e.g., [ZBJ20].

Lemma 21. Let C Ď Xn be a random code that consists of codewords x1, ¨ ¨ ¨ ,xM i.i.d. according to Pbnx for some
Px P ∆pX q. Let C1 Ď C be the Px-constant composition subcode of C. Then

Pr

„

ˇ

ˇC1
ˇ

ˇ R p1˘ 1{2q
M

νpPx, nq



ď2 exp

ˆ

´
M

12νpPx, nq

˙

.

A. Positive achievable rates via product distributions

Lemma 22 (Positive achievable rates via product distributions). Let pP1, P2q P Γ1 ˆ Γ2.
1) If Pb2

1 bPb2
2 R K1,2pP1, P2q, Pb2

1 bP2 R K1pP1, P2q and P1bP
b2
2 R K2pP1, P2q, then there exist achievable rate pairs

pR1, R2q such that R1 ą 0, R2 ą 0.
2) If Pb2

1 b P2 R K1pP1, P2q, then there exist achievable rate pairs pR1, R2q such that R1 ą 0, R2 “ 0.
3) If P1 b P

b2
2 R K1pP1, P2q, then there exist achievable rate pairs pR1, R2q such that R1 “ 0, R2 ą 0.

Proof of Case 1 in Lemma 22. Assume that both P1 and P2 have no zero atoms. Sample a random code pair pC1, C2q Ď

Xn
1 ˆ Xn

2 of sizes pM1,M2q, where Ci consists of codewords xi1, ¨ ¨ ¨ ,x
i
Mi

i.i.d. according to Pbni (i “ 1, 2). Note that for
any 1 ď i1 ă i2 ďM1 and 1 ď j1 ă j2 ďM2,

E
”

τx1
i1
,x1

i2
,x2

j1
,x2

j2

ı

“Pb2
1 b Pb2

2 . (4)

To see this, for any px1
1, x

1
2, x

2
1, x

2
2q P X 2

1 ˆ X 2
2 ,

E
”

τx1
i1
,x1

i2
,x2

j1
,x2

j2

ı

px1
1, x

1
2, x

2
1, x

2
2q “

1

n

n
ÿ

k“1

E
“

1
 

x1
i1
pkq “ x1

1,x
1
i2
pkq “ x1

2,x
2
j1
pkq “ x2

1,x
2
j2
pkq “ x2

2

(‰

“
1

n

n
ÿ

k“1

E
“

1
 

x1
i1
pkq “ x1

1

(‰

E
“

1
 

x1
i1
pkq “ x1

2

(‰

E
“

1
 

x2
j1
pkq “ x2

1

(‰

E
“

1
 

x2
j2
pkq “ x2

2

(‰

(5)

“
1

n

n
ÿ

k“1

Pr
“

x1
i1
pkq “ x1

1

‰

Pr
“

x1
i2
pkq “ x1

2

‰

Pr
“

x2
j1
pkq “ x2

1

‰

Pr
“

x2
j2
pkq “ x2

2

‰

“P1px
1
1qP1px

1
2qP2px

2
1qP2px

2
2q, (6)

where Equation (5) follows since each codeword is sampled independent; Equation (6) follows since each component is
identically distributed. Similarly,

E
”

τx1
i1
,x1

i2
,x2

j1

ı

“Pb2
1 b P2, E

”

τx1
i1
,x2

j1
,x2

j2

ı

“ P1 b P
b2
2 .

Let C1i be the Pi-constant composition subcode of Ci (i “ 1, 2). By Lemma 21, for i “ 1, 2,

Pr

„

ˇ

ˇC1i
ˇ

ˇ R p1˘ 1{2q
Mi

νpPi, nq



ď2 exp

ˆ

´
Mi

12νpPi, nq

˙

. (7)

Let
ρ1,2 :“d8

`

Pb2
1 b Pb2

2 ,K1,2pP1, P2q
˘

,

ρ1 :“d8
`

Pb2
1 b P2,K1pP1, P2q

˘

,

ρ2 :“d8
`

P1 b P
b2
2 ,K2pP1, P2q

˘

,

ε :“
1

2
mintρ1,2, ρ1, ρ2u.

(8)



19

By the assumptions of Case 1, all the above quantities are strictly positive. Since ε ă ρ1,2, for any 1 ď i1 ă i2 ď M1 and
1 ď j1 ă j2 ďM2,

Pr
”

τx1
i1
,x1

i2
,x2

j1
,x2

j2
P K1,2pP1, P2q

ı

ďPr
”

d8

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Pb2

1 b Pb2
2

¯

ě ε
ı

“Pr
”

Dpx1
1, x

1
2, x

2
1, x

2
2q P X 2

1 ˆ X 2
2 ,

ˇ

ˇ

ˇ
τx1

i1
,x1

i2
,x2

j1
,x2

j2
px1

1, x
1
2, x

2
1, x

2
2q ´ P1px

1
1qP1px

1
2qP2px

2
1qP2px

2
2q

ˇ

ˇ

ˇ
ě ε

ı

ď
ÿ

px1
1,x

1
2,x

2
1,x

2
2qPX 2

1ˆX 2
2

Pr

«
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

1
 

x1
i1
pkq “ x1

1,x
1
i2
pkq “ x1

2,x
2
j1
pkq “ x2

1,x
2
j2
pkq “ x2

2

(

´ nP1px
1
1qP1px

1
2qP2px

2
1qP2px

2
2q

ˇ

ˇ

ˇ

ˇ

ˇ

ě nε

ff

“
ÿ

px1
1,x

1
2,x

2
1,x

2
2qPX 2

1ˆX 2
2

Pr

«

n
ÿ

k“1

1
 

x1
i1
pkq “ x1

1,x
1
i2
pkq “ x1

2,x
2
j1
pkq “ x2

1,x
2
j2
pkq “ x2

2

(

R

ˆ

1˘
nε

µ

˙

µ

ff

(9)

ď
ÿ

px1
1,x

1
2,x

2
1,x

2
2qPX 2

1ˆX 2
2

2 exp

˜

´
1

3

ˆ

nε

µ

˙2

µ

¸

(10)

“
ÿ

px1
1,x

1
2,x

2
1,x

2
2qPX 2

1ˆX 2
2

2 exp

ˆ

´
nε2

3P1px1
1qP1px1

2qP2px2
1qP2px2

2q

˙

(11)

ď|X1|
2
|X2|

2
¨ 2 exp

ˆ

´
nε2

3

˙

. (12)

In Equation (9), we define

µ “ µpx1
1, x

1
2, x

2
1, x

2
2q :“ E

”

τx1
i1
,x1

i2
,x2

j1
,x2

j2

ı

px1
1, x

1
2, x

2
1, x

2
2q “ P1px

1
1qP1px

1
2qP2px

2
1qP2px

2
2q ą 0.

Equation (10) is by Lemma 2. In Equation (11), we used Equation (4). In Equation (12), we used the trivial bound: for i “ 1, 2,
Pipxq ď 1 for x P Xi.

We only need to consider ordered pairs i1 ă i2 and j1 ă j2, since by the Property 2 of Proposition 15, if τx1
i1
,x1

i2
,x2

j1
,x2

j2
P

K1,2pP1, P2q then τx1
i2
,x1

i1
,x2

j2
,x2

j1
P K1,2pP1, P2q. By union bound,

Pr

„

Dppi1, i2q, pj1, j2qq P

ˆ

r|C11|s
2

˙

ˆ

ˆ

r|C12|s
2

˙

, τx1
i1
,x1

i2
,x2

j1
,x2

j2
P K1,2pP1, P2q



ď

ˆ

M1

2

˙ˆ

M2

2

˙

¨ |X1|
2
|X2|

2
¨ 2 exp

ˆ

´
nε2

3

˙

ď exp
`

n
`

2R1 ln|X1| ` 2R2 ln|X2| ´ ε
2{3` op1q

˘˘

. (13)

Similar Chernoff-union argument yields

Pr

„

Dppi1, i2q, jq P

ˆ

r|C11|s
2

˙

ˆ r|C12|s, τx1
i1
,x1

i2
,x2

j
P K1pP1, P2q



ď exp
`

n
`

2R1 ln|X1| `R2 ln|X2| ´ ε
2{3` op1q

˘˘

, (14)

Pr

„

Dpi, pj1, j2qq P r|C11|s ˆ
ˆ

r|C12|s
2

˙

, τx1
i ,x

1
j1
,x2

j2
P K2pP1, P2q



ď exp
`

n
`

R1 ln|X1| ` 2R2 ln|X2| ´ ε
2{3` op1q

˘˘

. (15)

It suffices to take pR1, R2q such that 2R1 ln|X1| ` 2R2 ln|X2| ´ ε2{3 ă 0. For instance, one can take R1 “
ε2

24 ln|X1|
and

R2 “
ε2

24 ln|X2|
. Then Equations (13) to (15) are all expp´Ωpnqq. Finally, combining Equations (7) and (13) to (15), we get

that with probability 1´ expp´Ωpnqq, pC11, C12q is a good code pair of rates RpC11q — R1 ą 0 and RpC12q — R2 ą 0.

Proof of Cases 2 and 3 in Lemma 22. We only prove Case 2 and Case 3 follows similarly once the roles of user one and user
two are interchanged.

Suppose Pb2
1 b P2 R K1pP1, P2q. We construct a codebook pair pC1, C2q as follows. The codebook C2 consists of only one

(arbitrary) codeword x2 P Xn
2 of type P2. Apparently RpC2q Ñ 0 as n Ñ 0. Indeed, user two cannot even transmit a single

bit reliably through the channel. The codebook C1 P XMˆn
1 consists of M codewords x1

1, ¨ ¨ ¨ ,x
1
M i.i.d. according to Pbn1 .

Note that for all 1 ď i1 ă i2 ďM , E
”

τx1
i1
,x1

i2
,x2

ı

“ Pb2
1 b P2. Indeed, for any px1

1, x
1
2, x

2q P X 2
1 ˆ X2,

E
”

τx1
i1
,x1

i2
,x2

ı

px1
1, x

1
2, x

2q “
1

n

n
ÿ

k“1

E
“

1
 

x1
i1pkq “ x1

1,x
1
i2pkq “ x1

2, x
2pkq “ x2

(‰

“
1

n

n
ÿ

k“1

E
“

1
 

x1
i1pkq “ x1

1

(‰

E
“

1
 

x1
i2pkq “ x1

2

(‰

1
 

x2pkq “ x2
(
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“Pr
“

x1p1q “ x1
1

‰

Pr
“

x1p1q “ x1
2

‰ 1

n

n
ÿ

k“1

1
 

x2pkq “ x2
(

“P1px
1
1qP1px

1
2qτx2px2q

“
`

Pb2
1 b P2

˘

px1
1, x

1
2, x

2q.

By Lemma 21, Equation (7) holds for the P1-constant composition subcode of C1, denoted by C11. Therefore, C11 has asymp-
totically the same rate as RpC1q.

We define the gap ρ1 ą 0 between Pb2
1 b P2 and K1pP1, P2q in the same way as in Equation (8). Let ε :“ ρ1{2. Similar

Chernoff-union-type argument as before yields

Pr

„

Dpi1, i2q P

ˆ

r|C11|s
2

˙

, τx1
i1
,x1

i2
,x2 P K1pP1, P2q



ď

ˆ

M

2

˙

¨ |X1|
2
¨ 2 exp

ˆ

´
nε2

3

˙

ď exp
`

n
`

2R1 ln|X1| ´ ε
2{3` op1q

˘˘

. (16)

Taking R1 “
ε2

12|X1|
, we get that with probability 1´ 2´Ωpnq, the codebook pair pC11, C2q constructed above is good.

B. Positive achievable rates via mixtures of product distributions

Lemma 23 (Positive achievable rates via mixtures product distributions). Fix input distributions pP1, P2q P Γ1 ˆ Γ2.
1) If GpP1, P2q ‰ H, then there exist achievable rate pairs pR1, R2q such that R1 ą 0, R2 ą 0.
2) If G1pP1, P2qzK1pP1, P2q ‰ H, then there exist achievable rate pairs pR1, 0q such that R1 ą 0.
3) If G2pP1, P2qzK2pP1, P2q ‰ H, then there exist achievable rate pairs p0, R2q such that R2 ą 0.

Proof of Case 1. By the condition in Case 1, we are able to find a distribution Px1
1,x

1
2,x

2
1,x

2
2
P GpP1, P2q. Suppose Px1

1,x
1
2,x

2
1,x

2
2
“

řk
`“1 λ`P

b2
1,` bP

b2
2,` for some k P Zě1, tλ`u

k
`“1 Ă p0, 1s with

řk
`“1 λ` “ 1 and distributions tP1,`u

k
`“1 Ă ∆pX1q, tP2,`u

k
`“1 Ă

∆pX2q. It simultaneously holds that

Px1
1,x

1
2,x

2
1,x

2
2
PG1,2pP1, P2qzK1,2pP1, P2q,

Px1
1,x

1
2,x

2 :“
k
ÿ

`“1

λ`P
b2
1,` b P2,` PG1pP1, P2qzK1pP1, P2q,

Px1,x2
1,x

2
2

:“
k
ÿ

`“1

λ`P1,` b P
b2
2,` PG2pP1, P2qzK2pP1, P2q.

(17)

See Figure 3a for the geometry of the aforementioned distributions.
Partition rns into k subsets I1, ¨ ¨ ¨ , Ik such that |I`| “ λ`n (` P rks). Now sample a codebook pair pC1, C2q Ď Xn

1 ˆXn
2 of

sizes pM1,M2q in the following way. For i “ 1, 2, ` P rks, the entries of each codeword of Ci that are in I` are i.i.d. according
to Pi,`. See Figure 3b for a pictorial explanation of the code construction.

The proof is similar to that of Lemma 22 and the geometry of various distributions is depicted in Figure 3c. We can
apply similar Chernoff-union argument to the `-th punctured codes of pC1, C2q for each ` P rks and then take a union bound
over `. Here by the `-th punctured codes we mean the codes obtained by restricting codewords to I`. We use x1

i,` P X λ`n
1

and x2
j,` P X λ`n

2 to denote respectively the subsequences of x1
i and x2

j whose components are in I`. Note that for any
1 ď i1 ă i2 ďM1 and 1 ď j1 ă j2 ďM2, by Fact 4,

E
”

τx1
i1
,x1

i2
,x2

j1
,x2

j2

ı

“

k
ÿ

`“1

λ`E
”

τx1
i1,`,x

1
i2,`,x

2
j1,`,x

2
j2,`

ı

“

k
ÿ

`“1

λ`P
b2
1,` b P

b2
2,` “ Px1

1,x
1
2,x

2
1,x

2
2
,

E
”

τx1
i1
,x1

i2
,x2

j1

ı

“

k
ÿ

`“1

λ`E
”

τx1
i1,`,x

1
i2,`,x

2
j1,`

ı

“

k
ÿ

`“1

λ`P
b2
1,` b P2,` “ Px1

1,x
1
2,x

2 ,

E
”

τx1
i1
,x2

j1
,x2

j2

ı

“

k
ÿ

`“1

λ`E
”

τx1
i1,`,x

2
j1,`,x

2
j2,`

ı

“

k
ÿ

`“1

λ`P1,` b P
b2
2,` “ Px1,x2

1,x
2
2
.

Let C1i be the subcode of Ci such that all codewords in C1i restricted to I` are Pi,`-constant composition (i “ 1, 2, ` P rks).
The size of C1i can be concentrated similarly as before.

E
“

|C1i|
‰

“

Mi
ÿ

j“1

Pr
”

@` P rks, τxi
j,`
“ Pi,`

ı

“

Mi
ÿ

j“1

k
ź

`“1

Pr
”

τxi
j,`
“ Pi,`

ı

—Mi

k
ź

`“1

νpPi,`, λ`nq
´1.
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(a) By the assumption GpP1, P2q ‰ H, there exists a distribution
řk
i“1 λiP

b2
1,i bP

b2
2,i R K1,2pP1, P2q such that

řk
i“1 λiP

b2
1,i b

P2,i R K1pP1, P2q and
řk
i“1 λiP1,i b P

b2
2,i R K2pP1, P2q (see Equation (17)).

(b) A pictorial explanation of our code construction from
řk
i“1 λiP

b2
1,i bP

b2
2,i . The construction can be viewed as an application

of coded time-sharing where the time-sharing sequence is given by the convex combination coefficients tλiuki“1. For any fixed
value ` P rks of the time-sharing variable, each symbol of Ci is i.i.d. according to P`,i.

(c) By the assumption that
řk
i“1 λiP

b2
1,i bP

b2
2,i is ρ1,2-far from K1,2pP1, P2q,

řk
i“1 λiP

b2
1,i bP2,i is ρ1-far from K1pP1, P2q

and
řk
i“1 λiP1,i b P

b2
2,i is ρ2-far from K2pP1, P2q, one can show via a Chernoff-union-type argument that all joint types of

pC1, C2q are ε-far from the confusability sets and hence pC1, C2q attains positive rates and zero error. The gap factors ρ1,2, ρ1, ρ2
and ε are defined in Equation (19).

Fig. 3: Illustration of the proof of Case 1 of Lemma 23. Under the assumption GpP1, P2q ‰ H, the goal is to show the
existence of zero-error code pairs pC1, C2q of positive rates.



22

By Lemma 2,

Pr
“

|C1i| R p1˘ 1{2qE
“

|C1i|
‰‰

ď2 exp

˜

´
Mi

12
śk
`“1 νpPi,`, λ`nq

¸

. (18)

Let
ρ1,2 :“d8

´

Px1
1,x

1
2,x

2
1,x

2
2
,K1,2pP1, P2q

¯

ą 0,

ρ1 :“d8

´

Px1
1,x

1
2,x

2 ,K1pP1, P2q

¯

ą 0,

ρ2 :“d8

´

Px1,x2
1,x

2
2
,K2pP1, P2q

¯

ą 0,

ε :“
1

2
mintρ1,2, ρ1, ρ2u ą 0.

(19)

For any 1 ď i1 ă i2 ďM1 and 1 ď j1 ă j2 ďM2,

Pr
”

τx1
i1
,x1

i2
,x2

j1
,x2

j2
P K1,2pP1, P2q

ı

ďPr
”

D` P rks, d8

´

τx1
i1,`,x

1
i2,`,x

2
j1,`,x

2
j2,`

, Pb2
1,` b P

b2
2,`

¯

ě ε
ı

(20)

ďk ¨ |X1|
2
|X2|

2
¨ 2 exp

ˆ

´
nε2

3

˙

. (21)

Inequality (20) follows since d8
´

τx1
i1,`,x

1
i2,`,x

2
j1,`,x

2
j2,`

, Pb2
1,` b P

b2
2,`

¯

ă ε for all ` P rks implies

d8

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

“ max
px1

1,x
1
2,x

2
1,x

2
2qPX 2

1ˆX 2
2

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

`“1

λ`τx1
i1,`,x

1
i2,`,x

2
j1,`,x

2
j2,`
px1

1, x
1
2, x

2
1, x

2
2q ´

k
ÿ

`“1

λ`P
b2
1,` b P

b2
2,` px

1
1, x

1
2, x

2
1, x

2
2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

k
ÿ

`“1

λ` max
px1

1,x
1
2,x

2
1,x

2
2qPX 2

1ˆX 2
2

ˇ

ˇ

ˇ
τx1

i1,`,x
1
i2,`,x

2
j1,`,x

2
j2,`
px1

1, x
1
2, x

2
1, x

2
2q ´ P

b2
1,` b P

b2
2,` px

1
1, x

1
2, x

2
1, x

2
2q

ˇ

ˇ

ˇ

“

k
ÿ

`“1

λ`d8

´

τx1
i1,`,x

1
i2,`,x

2
j1,`,x

2
j2,`

, Pb2
1,` b P

b2
2,`

¯

ă ε ă ρ1,2,

which in turn implies τx1
i1
,x1

i2
,x2

j1
,x2

j2
R K1,2pP1, P2q. In Equation (21), we took a union bound over ` P rks where k “ Op1q.

Similarly, we have

Pr
”

τx1
i1
,x1

i2
,x2

j
P K1pP1, P2q

ı

ďk ¨ |X1|
2
|X2| ¨ 2 exp

ˆ

´
nε2

3

˙

, (22)

for all 1 ď i1 ă i2 ďM1 and 1 ď j ďM2; and

Pr
”

τx1
i ,x

2
j1
,x2

j2
P K2pP1, P2q

ı

ďk ¨ |X1||X2|
2
¨ 2 exp

ˆ

´
nε2

3

˙

, (23)

for all 1 ď i ď M1 and 1 ď j1 ă j2 ď M2. Taking further union bounds on Equations (21) to (23) over ppi1, i2q, pj1, j2qq,
ppi1, i2q, jq and pi, pj1, j2qq respectively ensures that Equations (13) to (15) still hold. The rest of the proof remains the same
and we get a good code pair pC11, C12q of rate RpC11q ą 0, RpC12q ą 0.

Proof of Cases 2 and 3. We only prove Case 2 since Case 3 is the same once the roles of the first and second users are
swapped.

Suppose Px1
1,x

1
2,x

2 P G1pP1, P2qzK1pP1, P2q has a decomposition Px1
1,x

1
2,x

2 “
řk
`“1 λ`P

b2
1,` b P2,` for some k P Zě1,

tλ`u
k
`“1 Ă p0, 1s with

řk
`“1 λ` “ 1 and tP1,`u

k
`“1 Ă ∆pX 2

1 q, tP2,`u
k
`“1 Ă ∆pX 2

2 q.
Partition rns into k subsets I1, ¨ ¨ ¨ , Ik such that |I`| “ λ`n (` P rks). Construct a codebook pair pC1, C2q as follows. The

second codebook C2 only consists of one (arbitrary) codeword x2 P Xn
2 satisfying the following property. Let x2

` P X λ`n
2

denote the subsequence of x2 restricted to I`. For each ` P rks, τx2
`
“ P2,`. The first codebook C1 P XMˆn

1 consists of

M codewords x1
1, ¨ ¨ ¨ ,x

1
M , where for each i P rM s and ` P rks, x1

i,`
i.i.d.
„ P

bpλ`nq
1,` . Note that for all 1 ď i1 ă i2 ď M ,

E
”

τx1
i1
,x1

i2
,x2

ı

“ Px1
1,x

1
2,x

2 . Let C11 be the subcode of C1 whose codewords restricted to I` are all P1,`-constant composition
(` P rks). For C11, Equation (18) still holds. Therefore, RpC11q — RpC1q (n Ñ 8). We define ρ1 in the same way as in
Equation (19). Let ε :“ ρ1{2. Since

d8

´

τx1
i1
,x1

i2
,x2 , Px1

1,x
1
2,x

2

¯

ď

k
ÿ

`“1

λ`d8

´

τx1
i1,`,x

1
i2,`,x

2
`
, Pb2

1,` b P2,`

¯

,
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a Chernoff-union bound gives

Pr
”

τx1
i1
,x1

i2
,x2 P K1pP1, P2q

ı

ďPr
”

d8

´

τx1
i1
,x1

i2
,x2 , Px1

1,x
1
2,x

2

¯

ě ε
ı

ďPr
”

D` P rks, d8

´

τx1
i1,`,x

1
i2,`,x

2
`
, Pb2

1,` b P2,`

¯

ě ε
ı

ďk ¨ |X1|
2
¨ 2 exp

ˆ

´
nε2

3

˙

.

Since k is a constant independent of n, a union bound over pi1, i2q P
`

r|C11|s
2

˘

gives Equation (16). Under a proper choice of
R1 ą 0, we get that pC11, C2q is a good codebook pair with probability at least 1´ 2´Ωpnq.

Remark 14. In the above proof of Lemma 23, the partition tI`uk`“1 can be thought of as a time-sharing sequence u P rksn of
type Pu given by the coefficients tλiu

k
i“1 of the convex combination. That is, Pupuq “ λu for any u P rks. This particular type

of time-sharing scheme is known as the coded time-sharing in the literature [PS19]. As explained in [PS19, Remark 6], the
classical operational time-sharing in network information theory does not work for (oblivious) arbitrarily varying channels with
constraints. This is because the adversary can concentrate his power on coordinates in a single I`. This effectively increases
the noise level in I` significantly and the `-th component codebook in the time-sharing is not necessarily resilient to this
effective level of noise. The above argument also applies to the omniscient adversarial channel model. More discussions on the
“non-tensorization” of good codes for adversarial channels and its implications to single-letterization of capacity expressions
can be found in Item 5 of Section XVI. These phenomena suggest that the capacity region of adversarial channels does not
have to be convex in general (see Section XI-A).

Furthermore, we emphasize the following point in the above achievability proof. Each component P1,` and P2,` of the convex
combinations is not necessarily non-confusable, i.e., Pb2

1,` bP
b2
2,` , Pb2

1,` bP2,` or P1,` bP
b2
2,` may be confusable. Nonetheless,

it is only desired that their convex combinations are non-confusable.
Remark 15. In the above proof of Cases 2 and 3, the transmitter with zero capacity cannot even reliably transmit a single bit
through the MAC since the codebook contains only one codeword. Such achievability proofs go through as long as there exist
non-marginally confusable distributions. In contrast, in the AVMAC setting [PS19], besides non-marginal symmetrizability,
non-joint symmetrizability is a necessary condition for achieving any positive rate even individually instead of jointly. More
discussions on the differences between our results and Pereg–Steinberg’s [PS19] can be found in Section XI-B.

C. Inner bounds via product distributions

Lemma 24 (Inner bounds via product distributions). Fix input distributions pP1, P2q P Γ1 ˆ Γ2.
1) If Pb2

1 b Pb2
2 R K1,2pP1, P2q, P1 R K1pP1, P2q and P2 R K2pP1, P2q, then rate pairs pR1, R2q P R2

ě0 satisfying

R1 ďDpP1, P2q ´ pDpP1, P2q

R2 ďDpP1, P2q ´ pDpP1, P2q

R1 `R2 ď pDpP1, P2q

(24)

are achievable, where

DpP1, P2q :“ min
P

x1
1,x1

2,x2
1,x2

2
PK1,2pP1,P2q

D
´

Px1
1,x

1
2,x

2
1,x

2
2

›

›

›
Pb2

1 b Pb2
2

¯

pDpP1, P2q :“min

#

min
P

x1
1,x1

2,x2PK1pP1,P2q
D
´

Px1
1,x

1
2,x

2

›

›

›
Pb2

1 b P2

¯

, min
P

x1,x2
1,x2

2
PK2pP1,P2q

D
´

Px1,x2
1,x

2
2

›

›

›
P1 b P

b2
2

¯

+

.

2) If Pb2
1 b Pb2

2 R K1,2pP1, P2q, Pb2
1 R K1pP1, P2q and Pb2

2 P K2pP1, P2q, then rate pairs pR1, 0q satisfying

0 ď R1 ď min
P

x1
1,x1

2,x2PK1pP1,P2q
D
´

Px1
1,x

1
2,x

2

›

›

›
Pb2

1 b P2

¯

(25)

are achievable.
3) If Pb2

1 b Pb2
2 R K1,2pP1, P2q, Pb2

1 P K1pP1, P2q and Pb2
2 R K2pP1, P2q, then rate pairs p0, R2q satisfying

0 ď R2 ď min
P

x1,x2
1,x2

2
PK2pP1,P2q

D
´

Px1,x2
1,x

2
2

›

›

›
P1 b P

b2
2

¯

(26)

are achievable.



24

Corollary 25 (Inner bounds on capacity region). Let MAC2 “
`

X1,X2,S,Y,Γ1,Γ2,Λ,Wy|x,s

˘

be a two-user omniscient
adversarial MAC. The capacity region of MAC2 contains as a subset the following region

ď

pP1,P2qPΓ1ˆΓ2

conditions in Case 1 are satisfied

tpR1, R2q : pR1, R2q satisfies Equation (24)u

Y
ď

pP1,P2qPΓ1ˆΓ2

conditions in Case 2 are satisfied

tpR1, 0q : R1 satisfies Equation (25)u

Y
ď

pP1,P2qPΓ1ˆΓ2

conditions in Case 3 are satisfied

tp0, R2q : R2 satisfies Equation (26)u.

Proof of Case 1. Sample a random code pair pC1, C2q Ď Xn
1 ˆ Xn

2 of sizes pM1,M2q, where Ci consists of codewords
xi1, ¨ ¨ ¨ ,x

i
Mi

i.i.d. according to Pbni (i “ 1, 2). By Lemma 1, the the expected number of codewords in Ci of type Pi is
asymptotically Mi{νpPi, nq. For any 1 ď i1 ă i2 ďM1 and 1 ď j1 ă j2 ďM2, by Lemma 3,

Pr
”

τx1
i1
,x1

i2
,x2

j1
,x2

j2
P K1,2pP1, P2q

ı

.
“ sup
P

x1
1,x1

2,x2
1,x2

2
PK1,2pP1,P2q

2
´nD

´

P
x1
1,x1

2,x2
1,x2

2

›

›

›
Pb2

1 bPb2
2

¯

,

Pr
”

τx1
i1
,x1

i2
,x2

j1
P K1pP1, P2q

ı

.
“ sup
P

x1
1,x1

2,x2PK1pP1,P2q

2
´nD

´

P
x1
1,x1

2,x2

›

›

›
Pb2

1 bP2

¯

,

Pr
”

τx1
i1
,x2

j1
,x2

j2
P K2pP1, P2q

ı

.
“ sup
P

x1,x2
1,x2

2
PK2pP1,P2q

2
´nD

´

P
x1,x2

1,x2
2

›

›

›
P1bP

b2
2

¯

.

Hence the expected number of confusable tuples px1
i1
,x1
i2
,x2
j1
,x2
j2
q, px1

i1
,x1
i2
,x2
j q and px1

i ,x
2
j1
,x2
j2
q is respectively

ˆ

M1

2

˙ˆ

M2

2

˙

2
´n inf D

´

P
x1
1,x1

2,x2
1,x2

2

›

›

›
Pb2

1 bPb2
2

¯

ďM2
1M

2
2 2
´n inf D

´

P
x1
1,x1

2,x2
1,x2

2

›

›

›
Pb2

1 bPb2
2

¯

,

ˆ

M1

2

˙

M22
´n inf D

´

P
x1
1,x1

2,x2

›

›

›
Pb2

1 bP2

¯

ďM2
1M22

´n inf D
´

P
x1
1,x1

2,x2

›

›

›
Pb2

1 bP2

¯

,

M1

ˆ

M2

2

˙

2
´n inf D

´

P
x1,x2

1,x2
2

›

›

›
P1bP

b2
2

¯

ďM1M
2
2 2
´n inf D

´

P
x1,x2

1,x2
2

›

›

›
P1bP

b2
2

¯

.

Pick M1,M2 such that

M2
1M

2
2 2
´n inf D

´

P
x1
1,x1

2,x2
1,x2

2

›

›

›
Pb2

1 bPb2
2

¯

ďmin

"

M1

3νpP1, nq
,

M2

3νpP2, nq

*

,

M2
1M22

´n inf D
´

P
x1
1,x1

2,x2

›

›

›
Pb2

1 bP2

¯

ď
M1

3νpP1, nq

M1M
2
2 2
´n inf D

´

P
x1,x2

1,x2
2

›

›

›
P1bP

b2
2

¯

ď
M2

3νpP2, nq
.

This can be satisfied if

2R1 ` 2R2 ´ inf D
´

Px1
1,x

1
2,x

2
1,x

2
2

›

›

›
Pb2

1 b Pb2
2

¯

ďmintR1, R2u ´ op1q,

2R1 `R2 ´ inf D
´

Px1
1,x

1
2,x

2

›

›

›
Pb2

1 b P2

¯

ďR1 ´ op1q,

R1 ` 2R2 ´ inf D
´

Px1,x2
1,x

2
2

›

›

›
P1 b P

b2
2

¯

ďR2 ´ op1q,

i.e.,

R1 ` 2R2 ď inf D
´

Px1
1,x

1
2,x

2
1,x

2
2

›

›

›
Pb2

1 b Pb2
2

¯

´ op1q,

2R1 `R2 ď inf D
´

Px1
1,x

1
2,x

2
1,x

2
2

›

›

›
Pb2

1 b Pb2
2

¯

´ op1q,

R1 `R2 ďmin
!

inf D
´

Px1
1,x

1
2,x

2

›

›

›
Pb2

1 b P2

¯

´ op1q, inf D
´

Px1,x2
1,x

2
2

›

›

›
P1 b P

b2
2

¯

´ op1q
)

.

That is, it suffices to take pR1, R2q satisfying Equation (24) (as nÑ8).
Now, we remove all codewords from C1 and C2 whose types are not P1 and P2 respectively. For all 1 ď i1 ă i2 ďM1 and

1 ď j1 ă j2 ďM2, we also remove
1) one of px1

i1
,x1
j2
q from C1 and one of px2

j1
,x2
j2
q from C2 if τx1

i1
,x1

i2
,x2

j1
,x2

j2
P K1,2pP1, P2q;
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2) one of px1
i1
,x1
i2
q from C1 if τx1

i1
,x1

i2
,x2

j1
P K1pP1, P2q;

3) one of px2
j1
,x2
j2
q from C2 if τx1

i1
,x2

j1
,x2

j2
P K2pP1, P2q.

After the removal, pC1, C2q becomes a good code pair. In total, the expected number of codewords we removed from Ci is at
most

Mi ´
Mi

νpPi, nq
`

Mi

3νpPi, nq
`

Mi

3νpPi, nq
“Mi ´

Mi

3νpPi, nq

for i “ 1, 2. Therefore, pR1, R2q is preserved after the removal. Noting that we have exhibited the existence of code pairs that
attain zero error for MAC2 with desired rates, we finish the proof.

Proof of Cases 2 and 3. We only prove Case 2. Case 3 will follow verbatim. Let x2 P Xn
2 be an arbitrary codeword of type P2.

The codebook C2 only consists of x2. The codebook C1 consists of M codewords x1
1, ¨ ¨ ¨ ,x

1
M i.i.d. according to Pbn1 . Again,

the expected number of codewords in C1 of type P1 is asymptotically M{νpP1, nq. By Lemma 3, for any 1 ď i1 ă i2 ďM ,

Pr
”

τx1
i1
,x1

i2
,x2 P K1pP1, P2q

ı

.
“ sup
P

x1
1,x1

2,x2PK1pP1,P2q

2
´nD

´

P
x1
1,x1

2,x2

›

›

›
Pb2

1 bP2

¯

.

Hence the expected number of confusable tuples px1
i1
,x1
i2
, x2q is

ˆ

M

2

˙

2
´n inf D

´

P
x1
1,x1

2,x2

›

›

›
Pb2

1 bP2

¯

ďM22
´n inf D

´

P
x1
1,x1

2,x2

›

›

›
Pb2

1 bP2

¯

.

Pick M such that

M22
´n inf D

´

P
x1
1,x1

2,x2

›

›

›
Pb2

1 bP2

¯

ď
M

2νpP1, nq
.

It suffices to take

2R1 ´ inf D
´

Px1
1,x

1
2,x

2

›

›

›
Pb2

1 b P2

¯

ďR1 ´ op1q,

i.e., R1 asymptotically satisfies Equation (25).
We then remove all codewords from C1 which have type different from P1. We also remove x1

i1
if τx1

i1
,x1

i2
,x2 P K1pP1, P2q

for some i1 ă i2 ď M . After removal we get a constant composition codebook pair that attains zero error. The expected
number of codewords we removed from C1 is at most M ´M{νpP1, nq `M{2νpP1, nq “M ´M{2νpP1, nq. Therefore, the
removal does not (asymptotically) change the rate. This finishes the proof.

Remark 16. In Lemma 24, we did not obtain a pentagon region defined by three mutual information terms as is commonly
seen in problems regarding MACs. It is perhaps due to our crude expurgation strategy. We believe that our inner bounds can
be improved by employing more careful expurgation strategies (see Item 4 in Section XVI).

XIV. CONVERSE, CASE 1 IN THEOREM 20

In this section, we assume that GpP1, P2q “ H. Let pC1, C2q Ď Xn
1 ˆXn

2 be any good codebook pair. Without loss of rate,
we assume that C1 is P1-constant composition and C2 is P2-constant composition. Our goal is to show that RpC1q and RpC2q

cannot be simultaneously positive. In fact, we will show that at least one of M1 :“ |C1| and M2 :“ |C2| is bounded from above
by a constant (independent of n).

A. Subcode pair extraction

Definition 18 (Bipartite, uniform, complete hypergraphs). A hypergraph H “ pV, Eq is called pN1, N2q-bipartite if it is bipartite
with V “ V1 \ V2 where |V1| “ N1 and |V2| “ N2. It is called pk1, k2q-uniform if every hyperedge contains k1 vertices in
V1 and k2 vertices in V2. It is called complete if every k1-tuple of vertices in V1 and every k2-tuple of vertices in V2 are
connected.

Theorem 26 (Bipartite hypergraph Ramsey’s theorem [BLA76]). Let N1, N2, D be integers that are at least 2. There exist
constants K1 “ K2pN1, N2, Dq and K2 “ K2pN1, N2, Dq such that for every pM1,M2q-bipartite p2, 2q-uniform complete
hypergraph H “ ppV1,V2q, Eq such that |V1| “ M1 ě K1 and |V2| “ M2 ě K2, for every D-coloring of E , there must exist
V 11 Ď V1 and V 12 Ď V2 such that |V 11| ě N1, |V 12| ě N2 and all hyperedges crossing V 11 and V 12 have the same color.

Lemma 27 (Subcode pair extraction). For any code pair pC1, C2q “

´

 

x1
k

(M1

k“1
,
 

x2
`

(M2

`“1

¯

of sizes M1 and M2, respectively,

there exists a subcode pair pC11, C12q “
´

 

x1
i

(M 1
1

i“1
,
 

x2
j

(M 1
2

j“1

¯

of sizes M 1
1 ě f1p|X1|, |X2|, η,M1,M2q

M1Ñ8
ÝÝÝÝÝÑ 8 and M 1

2 ě
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f2p|X1|, |X2|, η,M1,M2q
M2Ñ8
ÝÝÝÝÝÑ 8, respectively, and there exists a distribution Px1

1,x
1
2,x

2
1,x

2
2
P J1,2pP1, P2q such that, for all

1 ď i1 ă i2 ďM 1
1 and 1 ď j1 ă j2 ďM 1

2, it holds that d8
´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

ď η.

Proof. To apply Theorem 26, we build an pM1,M2q-bipartite p2, 2q-uniform complete hypergraph H. The left and right vertex
sets of H are the codewords in C1 and the codewords in C2 respectively. Every pair of codewords px1

i1
, x1
i2
q P

`C1

2

˘

(where
1 ď i1 ă i2 ă M1) in the left vertex set is connected to all pairs of codewords px2

j1
, x2
j2
q P

`C2

2

˘

(for all 1 ď j1 ă j2 ď M2)
in the right vertex set.

We now color all hyperedges of H using distributions in J1,2pP1, P2q. To this end, we first take an η-net N of J1,2pP1, P2q

with respect to d8. By Lemma 5, D :“ |N | can be made no larger than
´

|X1|
2
ˆ|X2|

2

2η ` 1
¯|X1|

2
ˆ|X2|

2

. The hyperedges in H
are colored in the following way. If an hyperedge ppx1

i1
, x1
i2
q, px2

j1
, x2
j2
qq (where 1 ď i1 ă i2 ă M1 and 1 ď j1 ă j2 ď M2)

satisfies d8
´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

ď η for some Px1
1,x

1
2,x

2
1,x

2
2
P N , then we color this hyperedge by Px1

1,x
1
2,x

2
1,x

2
2
. Note

that by the covering property of N , such a distribution must exist.
By Theorem 26, there exist subcodes pC11, C12q of pC1, C2q satisfying

1) M 1
1 :“ |C11| ě N1,M

1
2 :“ |C12| ě N2 for N1 “ N1pM1,M2, Dq, N2 “ N2pM1,M2, Dq with N1

M1Ñ8
ÝÝÝÝÝÑ 8, N2

M2Ñ8
ÝÝÝÝÝÑ

8;
2) all hyperedges between C11 and C12 are monochromatic.

In other words, according to the way we colored the hyperedges, there is a distribution Px1
1,x

1
2,x

2
1,x

2
2
P J1,2pP1, P2q such that

for all 1 ď i1 ă i2 ď M 1
1 and 1 ď j1 ă j2 ď M 1

2, we have d8

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

ď η. This completes the
proof.

In what follows, we will prove that the “equicoupled” subcode pair pC11, C12q must have at least one zero rate. We do so
by treating separately the case where Px1

1,x
1
2,x

2
1,x

2
2

is (almost) symmetric and the case where it is (significantly) asymmetric.
We will actually show that13 M 1

1 “ fpM1q ď C1 or M 1
2 “ fpM2q ď C2 for some constants (independent of n) C1 ą 0 and

C2 ą 0. Since fp¨q is a (slowly) increasing function, this implies that the original code pair pC1, C2q has sizes M1 ď f´1pC1q

and M2 ď f´1pC2q which are still constants (though enormous). This is a stronger statement than that pC1, C2q have at least
one zero rate.

B. Asymmetric case

Definition 19 (Asymmetry and approximate symmetry). The t1, 2u-asymmetry, the t1u-asymmetry, the t2u-asymmetry and the
asymmetry of a distribution Px1

1,x
1
2,x

2
1,x

2
2
P ∆pX 2

1 ˆ X 2
2 q is respectively defined as

asymm1,2pPx1
1,x

1
2,x

2
1,x

2
2
q :“ max

px1
1,x

1
2qPX1

2
max

px2
1,x

2
2qPX2

2

ˇ

ˇ

ˇ
Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
1, x

2
2q ´ Px1

1,x
1
2,x

2
1,x

2
2
px1

2, x
1
1, x

2
2, x

2
1q

ˇ

ˇ

ˇ
,

asymm1pPx1
1,x

1
2,x

2
1,x

2
2
q :“ max

px1
1,x

1
2qPX1

2
max

px2
1,x

2
2qPX2

2

ˇ

ˇ

ˇ
Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
1, x

2
2q ´ Px1

1,x
1
2,x

2
1,x

2
2
px1

2, x
1
1, x

2
1, x

2
2q

ˇ

ˇ

ˇ
,

asymm2pPx1
1,x

1
2,x

2
1,x

2
2
q :“ max

px1
1,x

1
2qPX1

2
max

px2
1,x

2
2qPX2

2

ˇ

ˇ

ˇ
Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
1, x

2
2q ´ Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
2, x

2
1q

ˇ

ˇ

ˇ
,

asymmpPx1
1,x

1
2,x

2
1,x

2
2
q :“max

!

asymm1,2pPx1
1,x

1
2,x

2
1,x

2
2
q, asymm1pPx1

1,x
1
2,x

2
1,x

2
2
q, asymm2pPx1

1,x
1
2,x

2
1,x

2
2
q

)

.

A distribution Px1
1,x

1
2,x

2
1,x

2
2

is called α-symmetric if asymmpPx1
1,x

1
2,x

2
1,x

2
2
q ď α.

Remark 17. By definition, a self-coupling Px1
1,x

1
2,x

2
1,x

2
2
P J1,2pP1, P2q is in S1,2pP1, P2q if and only if asymmpPx1

1,x
1
2,x

2
1,x

2
2
q “

0.
According to Definition 19, the asymmetry of Px1

1,x
1
2,x

2
1,x

2
2

that was extracted in Lemma 27 can be divided into eight different
cases as shown in Table III below. Case (1) in Table III corresponds to the case where Px1

1,x
1
2,x

2
1,x

2
2

is α-symmetric. This case
will be treated in Section XIV-C. Other cases correspond to when Px1

1,x
1
2,x

2
1,x

2
2

is asymmetric with asymmetry larger than α.
They will be treated in Sections XIV-B1 to XIV-B3.

For the asymmetric cases (Cases (5)-(8) in Table III), we prove the following lemma.

Lemma 28. If a code pair pC11, C12q P XM 1
1ˆn

1 ˆ XM 1
2ˆn

2 satisfies that there exists a distribution Px1
1,x

1
2,x

2
1,x

2
2
P J1,2pP1, P2q

such that
1) Ci is Pi-constant composition for i “ 1, 2;
2) for all 1 ď i1 ă i2 ďM 1

1 and 1 ď j1 ă j2 ďM 1
2, d8

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

ď η;

13Hereafter we use the simplified notation M 1
1 “ fpM1q and M 1

2 “ fpM2q (where fp¨q is an increasing function) to emphasize the respective dependence
of |C11| and |C12| on |C1| and C2, ignoring the dependence on other parameters. Indeed, noting M1,M2 ě 1 and treating |X1|, |X2|, η as constants, one can
take fp¨q “ mintf1p|X1|, |X2|, η; ¨, 1q, f2p|X1|, |X2|, η; 1, ¨qu where f1 and f2 are from Lemma 27.
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Cases asymm1,2pPx1
1,x

1
2,x

2
1,x

2
2
q

?
ď α asymm1pPx1

1,x
1
2,x

2
1,x

2
2
q

?
ď α asymm2pPx1

1,x
1
2,x

2
1,x

2
2
q

?
ď α Section

Case (1) ď ď ď Section XIV-C
Case (2) ą ď ď Section XIV-B3
Case (3) ď ą ď Section XIV-B3
Case (4) ď ď ą Section XIV-B3
Case (5) ą ą ď Section XIV-B1
Case (6) ą ď ą Section XIV-B1
Case (7) ď ą ą Section XIV-B2
Case (8) ą ą ą Section XIV-B2

TABLE III: The asymmetric case can be divided into several sub-cases.

3) asymmpPx1
1,x

1
2,x

2
1,x

2
2
q ě α,

then at least one of M 1
1 and M 1

2 is at most a constant Cpα, ηq ą 0.

Proof. The proof is divided into several cases. As we shall see in Sections XIV-B1 and XIV-B2, only Cases (5)-(8) in Table III
are asymmetric cases. Cases (2)-(4), handled in Section XIV-B3, can be reduced to the symmetric case (Case (1)). The
symmetric Case (1) will be treated in the next section (Section XIV-C).

The following lemma will be crucial in the proceeding subsections.

Theorem 29 ([Kom90]). Let v1, ¨ ¨ ¨ ,vM be a sequence of random variables over a common finite alphabet W . If there exist
a distribution Pw1,w2

P ∆pW2q and a constant η ě 0 such that
›

›Pvi,vj
´ Pw1,w2

›

›

8
ď η for all 1 ď i ă j ď M , then

asymmpPw1,w2
q ď 6{

?
M ` 4

?
η ` 2η, where

asymmpPw1,w2
q :“ max

pw1,w2qPWˆW
|Pw1,w2

pw1, w2q ´ Pw1,w2
pw2, w1q|.

1) Cases (5) & (6) in Table III: We only prove Case (5) since Case (6) is the same up to change of notation. We will show
that M 1

1 :“ |C11| is at most a constant.
We identify Px1

1,x
1
2,x

2
1,x

2
2

with Px1
1,x

1
2,z

2 where z2 “ px2
1,x

2
2q is a random variable over Z2 :“ X 2

2 . Immediately, α ă
asymm1pPx1

1,x
1
2,x

2
1,x

2
2
q “ asymm1pPx1

1,x
1
2,z

2q where asymm1pPx1
1,x

1
2,x

2
1,x

2
2
q is naturally defined as

asymm1pPx1
1,x

1
2,z

2q :“ max
px1

1,x
1
2qPX 2

1

max
z2PZ2

ˇ

ˇ

ˇ
Px1

1,x
1
2,z

2px1
1, x

1
2, z

2q ´ Px1
1,x

1
2,z

2px1
2, x

1
1, z

2q

ˇ

ˇ

ˇ
.

We then have the following simple lemma.

Lemma 30. If a distribution Px1
1,x

1
2,z

2 satisfies asymm1pPx1
1,x

1
2,z

2q ą α, then asymmpPw1,w2q ą α, where wi :“ px1
i , z

2q P

W :“ X1 ˆ Z2 for i “ 1, 2.

Proof. The lemma follows from the following simple (in)equalities:

|Pw1,w2
pw1, w2q ´ Pw1,w2

pw2, w1q| “

ˇ

ˇ

ˇ
Ppx1

1,z
2q,px1

2,z
2qppx

1
1, z

2q, px1
2, z

2qq ´ Ppx1
1,z

2q,px1
2,z

2qppx
1
2, z

2q, px1
1, z

2qq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
Px1

1,x
1
2,z

2px1
1, x

1
2, z

2q ´ Px1
1,x

1
2,z

2px1
2, x

1
1, z

2q

ˇ

ˇ

ˇ
ą α.

Recall M 1
1 :“ |C11|,M 1

2 :“ |C12|. By equicoupledness, for any fixed 1 ď j1 ă j2 ăM 1
2, we have d8

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

ď

η for all 1 ď i1 ă i2 ďM 1
1. Identify the codewords x1

1, ¨ ¨ ¨ , x
1
M 1

1
in C11 together with x2

j1
, x2
j2
P C12 with a sequence of random

variables χ1, ¨ ¨ ¨ ,χM 1
1
, ζ2

P XM 1
1

1 ˆZ2. That is Pχ1,¨¨¨ ,χM11
,ζ2 :“ τx1

1,¨¨¨ ,x
1
M11

,px2
j1
,x2

j2
q. Arrange this sequence in the following

way: v1, ¨ ¨ ¨ ,vM 1
1

where vi “ pχi, ζ
2
q P W :“ X1 ˆ Z2. This sequence satisfies d8

`

Pvi1
,vi2

, Pw1,w2

˘

ď η for every
1 ď i1 ă i2 ďM 1

1. To see this,

d8
`

Pvi1
,vi2

, Pw1,w2

˘

“d8

´

Ppχi1
,ζ2q,pχi2

,ζ2q, Ppx1
1,z

2q,px1
2,z

2q

¯

“d8

´

Pχi1
,χi2

,ζ2 , Px1
1,x

1
2,z

2

¯

“d8

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

ď η. (27)

Inequality (27) is by the second assumption of Lemma 28. Now by Theorem 29 and Lemma 30, α ă asymmpPw1,w2
q ď

6{
a

M 1
1 ` 4

?
η ` 2η, i.e., M 1

1 ă 36{pα´ 4
?
η ´ 2ηq2. This finishes the proof of this case.

2) Cases (7) & (8) in Table III: In both Cases (7) & (8), it simultaneously holds that asymm1pPx1
1,x

1
2,x

2
1,x

2
2
q ą α and

asymm2pPx1
1,x

1
2,x

2
1,x

2
2
q ą α. By the analysis of the previous case, we have M 1

1 ă 36{pα ´ 4
?
η ´ 2ηq2 and M 1

2 ă 36{pα ´

4
?
η ´ 2ηq2.
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3) Cases (2)-(4) in Table III: We apply the following lemma to handle Cases (2)-(4).

Lemma 31. The following relations hold.

asymm1,2pPx1
1,x

1
2,x

2
1,x

2
2
q ďasymm1pPx1

1,x
1
2,x

2
1,x

2
2
q ` asymm2pPx1

1,x
1
2,x

2
1,x

2
2
q, (28)

asymm1pPx1
1,x

1
2,x

2
1,x

2
2
q ďasymm1,2pPx1

1,x
1
2,x

2
1,x

2
2
q ` asymm2pPx1

1,x
1
2,x

2
1,x

2
2
q, (29)

asymm2pPx1
1,x

1
2,x

2
1,x

2
2
q ďasymm1,2pPx1

1,x
1
2,x

2
1,x

2
2
q ` asymm1pPx1

1,x
1
2,x

2
1,x

2
2
q. (30)

Proof. The lemma is a simple consequence of the triangle inequality. We only prove Equation (28). Equations (29) and (30)
follow similarly.

asymm1,2pPx1
1,x

1
2,x

2
1,x

2
2
q “ max

px1
1,x

1
2qPX1

2
max

px2
1,x

2
2qPX2

2

ˇ

ˇ

ˇ
Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
1, x

2
2q ´ Px1

1,x
1
2,x

2
1,x

2
2
px1

2, x
1
1, x

2
2, x

2
1q

ˇ

ˇ

ˇ

ď max
px1

1,x
1
2qPX1

2
max

px2
1,x

2
2qPX2

2

´
ˇ

ˇ

ˇ
Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
1, x

2
2q ´ Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
2, x

2
1q

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
2, x

2
1q ´ Px1

1,x
1
2,x

2
1,x

2
2
px1

2, x
1
1, x

2
2, x

2
1q

ˇ

ˇ

ˇ

¯

ď max
px1

1,x
1
2qPX1

2
max

px2
1,x

2
2qPX2

2

ˇ

ˇ

ˇ
Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
1, x

2
2q ´ Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
2, x

2
1q

ˇ

ˇ

ˇ

` max
px1

1,x
1
2qPX1

2
max

px2
1,x

2
2qPX2

2

ˇ

ˇ

ˇ
Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
2, x

2
1q ´ Px1

1,x
1
2,x

2
1,x

2
2
px1

2, x
1
1, x

2
2, x

2
1q

ˇ

ˇ

ˇ

“asymm1pPx1
1,x

1
2,x

2
1,x

2
2
q ` asymm2pPx1

1,x
1
2,x

2
1,x

2
2
q.

By Lemma 31, we can reduce Cases (2)-(4) to the symmetric case (Case (1)) with α replaced by 2α. Indeed, in Case (2),

α ă asymm1,2pPx1
1,x

1
2,x

2
1,x

2
2
q ďasymm1pPx1

1,x
1
2,x

2
1,x

2
2
q ` asymm2pPx1

1,x
1
2,x

2
1,x

2
2
q ď 2α.

Cases (3) and (4) are similar.
4) Case (1) in Table III: Case (1) is treated in the next section.

C. Symmetric case

In the previous section, we showed that Px1
1,x

1
2,x

2
1,x

2
2

associated to the subcode pair pC11, C12q must be approximately symmetric
(in the sense of Definition 19) for both |C11| and |C12| to be large, regardless of the channel structure. Therefore, in this section
we focus on the case where

asymmpPx1
1,x

1
2,x

2
1,x

2
2
q ď α. (31)

Though we assume GpP1, P2q “ H in Case 1 of Theorem 20, the set G1,2pP1, P2qzK1,2pP1, P2q may or may not be empty
(see Figure 5). We treat these two cases separately in the subsequent two subsections (Sections XIV-C1 and XIV-C2).

1) The case where G1,2pP1, P2qzK1,2pP1, P2q “ H: In this subsection, we show that if G1,2pP1, P2qzK1,2pP1, P2q “ H,
then both M 1

1 and M 1
2 are bounded from above by a constant. Therefore, any good code pair pC1, C2q has rates R1 “ 0 and

R2 “ 0. The geometry of various sets of distributions that are involved in the following proof is depicted in Figure 4.
We assume that G1,2pP1, P2q is a proper subset of K1,2pP1, P2q. Specifically, we assume that there exists a constant ε ą 0

such that

d1pG1,2pP1, P2q,J1,2pP1, P2qzK1,2pP1, P2qq ě ε. (32)

We first project Px1
1,x

1
2,x

2
1,x

2
2

to S1,2pP1, P2q and obtain an exactly symmetric distribution Px1
1,x

1
2,x

2
1,x

2
2
,

Px1
1,x

1
2,x

2
1,x

2
2

:“
1

4

´

Px1
1,x

1
2,x

2
1,x

2
2
` Px1

2,x
1
1,x

2
1,x

2
2
` Px1

1,x
1
2,x

2
2,x

2
1
` Px1

2,x
1
1,x

2
2,x

2
1

¯

. (33)

Since the four summands are all in J1,2pP1, P2q, Px1
1,x

1
2,x

2
1,x

2
2

is also in J1,2pP1, P2q. Also, one can easily check that it is
indeed symmetric in the sense of Definition 14. Furthermore, Px1

1,x
1
2,x

2
1,x

2
2

and Px1
1,x

1
2,x

2
1,x

2
2

are close to each other.

d1

´

Px1
1,x

1
2,x

2
1,x

2
2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

“
ÿ

px1
1,x

1
2,x

2
1,x

2
2qPX 2

1ˆX 2
2

ˇ

ˇ

ˇ
Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
1, x

2
2q ´ Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
1, x

2
2q

ˇ

ˇ

ˇ

ď
ÿ

px1
1,x

1
2,x

2
1,x

2
2qPX 2

1ˆX 2
2

1

4

´
ˇ

ˇ

ˇ
Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
1, x

2
2q ´ Px1

2,x
1
1,x

2
1,x

2
2
px1

1, x
1
2, x

2
1, x

2
2q

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
1, x

2
2q ´ Px1

1,x
1
2,x

2
2,x

2
1
px1

1, x
1
2, x

2
1, x

2
2q

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
Px1

1,x
1
2,x

2
1,x

2
2
px1

1, x
1
2, x

2
1, x

2
2q ´ Px1

2,x
1
1,x

2
2,x

2
1
px1

1, x
1
2, x

2
1, x

2
2q

ˇ

ˇ

ˇ

¯
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Fig. 4: The geometry of various sets of distributions in the converse proof in Section XIV-C1. We assume
G1,2pP1, P2qzK1,2pP1, P2q “ H and would like to show that any zero-error code pair has rate R1 “ 0 and R2 “ 0. In
the above figure, the ambient space is the set J1,2pP1, P2q of self-couplings equipped with `1 metric. The set G1,2pP1, P2q is
a strict subset of K1,2pP1, P2q such that they are ε-separated (see Equation (32)). The joint types of the equicoupled subcode
pair pC11, C12q are in an η1-ball (see Equation (36)) around a distribution Px1

1,x
1
2,x

2
1,x

2
2

which is assumed to be α-symmetric (see
Equation (31)). We then project Px1

1,x
1
2,x

2
1,x

2
2

to obtain a symmetric distribution Px1
1,x

1
2,x

2
1,x

2
2

defined in Equation (33). (Note
that Px1

1,x
1
2,x

2
1,x

2
2

may be slight inside K1,2pP1, P2q.) It can be shown that Px1
1,x

1
2,x

2
1,x

2
2

and Px1
1,x

1
2,x

2
1,x

2
2

are α1-close (see
Equation (34)). Since pC11, C12q attains zero error and all joint types are outside K1,2pP1, P2q, one can show that Px1

1,x
1
2,x

2
1,x

2
2

is pε´ η1 ´ α1q-far from G1,2pP1, P2q (see Claim 32). This allows us to proceed with the double counting argument.

ď
3

4
|X1|

2|X2|
2α “: α1. (34)

Equation (34) follows from the assumption given by Equation (31). Though we will not use it, the above bound can be slightly
improved to α1 “ 1

4

`

3|X1|
2|X2|

2 ´ |X1||X2|
2 ´ |X1|

2|X2| ´ |X1||X2|
˘

by noting that some terms corresponding to x1
1 “ x1

2

or x2
1 “ x2

2 do not contributed to the sum.

Claim 32. Under the assumptions of Section XIV-C1, Px1
1,x

1
2,x

2
1,x

2
2

is not in G1,2pP1, P2q:

d1

´

Px1
1,x

1
2,x

2
1,x

2
2
,G1,2pP1, P2q

¯

ěε´ η1 ´ α1, (35)

where η1 :“ |X1|
2
|X2|

2
η and α1 was defined in Equation (34).

Proof. To prove the claim, first recall that for any 1 ď i1 ă i2 ďM 1
1 and 1 ď j1 ă j2 ďM 1

2, we have (by Fact 6)

d1

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

ď|X1|
2
|X2|

2
d8

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

ď |X1|
2
|X2|

2
η “: η1. (36)

Since pC1, C2q is a good code pair, pC11, C12q is also good. Hence τx1
i1
,x1

i2
,x2

j1
,x2

j2
is not confusable, i.e.,

τx1
i1
,x1

i2
,x2

j1
,x2

j2
P J1,2pP1, P2qzK1,2pP1, P2q. (37)

We get that τx1
i1
,x1

i2
,x2

j1
,x2

j2
is strictly bounded away from G1,2pP1, P2q.

d1

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
,G1,2pP1, P2q

¯

ě d1pG1,2pP1, P2q,J1,2pP1, P2qzK1,2pP1, P2qq ě ε. (38)

The first inequality is by Equation (37) and the second one follows from the assumption given by Equation (32). Equations (36)
and (38) imply that Px1

1,x
1
2,x

2
1,x

2
2

is strictly outside G1,2pP1, P2q.

d1

´

Px1
1,x

1
2,x

2
1,x

2
2
,G1,2pP1, P2q

¯

ěd1

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
,G1,2pP1, P2q

¯

´ d1

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

ě ε´ η1. (39)

Combining Equations (34) and (39), we further have

d1

´

Px1
1,x

1
2,x

2
1,x

2
2
,G1,2pP1, P2q

¯

ěd1

´

Px1
1,x

1
2,x

2
1,x

2
2
,G1,2pP1, P2q

¯

´ d1

´

Px1
1,x

1
2,x

2
1,x

2
2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

ě ε´ η1 ´ α1.

This finishes the proof of Claim 32.
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Since Px1
1,x

1
2,x

2
1,x

2
2
R G1,2pP1, P2q by Equation (35), we can apply Theorem 18. There exists Qx1

1,x
1
2,x

2
1,x

2
2
P co-G1,2pP1, P2q

such that
A

Px1
1,x

1
2,x

2
1,x

2
2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

ď´ ε1 ă 0 (40)

for some constant ε1 ą 0.
To prove upper bounds on M 1

1 and M 1
2, the trick is to upper and lower bound the following quantity

ÿ

pi1,i2qPrM 1
1sˆrM

1
2s

ÿ

pj1,j2qPrM 1
2sˆrM

1
2s

A

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

. (41)

Contrasting the upper and lower bounds on Equation (41) will give us an upper bound on maxtM 1
1,M

1
2u. We first prove an

upper bound on Equation (41).

Claim 33. Equation (41) is at most
ÿ

pi1,i2qPrM 1
1sˆrM

1
2s

ÿ

pj1,j2qPrM 1
2sˆrM

1
2s

A

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

ďM 1
1pM

1
1 ´ 1qM 1

2pM
1
2 ´ 1qpη1 ` α1 ´ ε1q `M 12

1 M
1
2 `M

1
1M

12
2 `M

1
1M

1
2. (42)

Proof. Expanding the summation in Equation (41), we have
ÿ

pi1,i2qPrM 1
1sˆrM

1
1s

ÿ

pj1,j2qPrM 1
2sˆrM

1
2s

A

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

“
ÿ

pi1,i2,j1,j2qPrM
1
1s

2
ˆrM 1

2s
2

i1‰i2,j1‰j2

`
ÿ

pi1,i2,j1,j2qPrM
1
1s

2
ˆrM 1

2s
2

i1“i2 or j1“j2

A

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

“
ÿ

i1‰i2,j1‰j2

`
ÿ

i1‰i2,j1“j2

`
ÿ

i1“i2,j1‰j2

`
ÿ

i1“i2,j1“j2

A

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

. (43)

Note that
A

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

ď

›

›

›
τx1

i1
,x1

i2
,x2

j1
,x2

j2

›

›

›

2

›

›

›
Qx1

1,x
1
2,x

2
1,x

2
2

›

›

›

2
ď

›

›

›
τx1

i1
,x1

i2
,x2

j1
,x2

j2

›

›

›

1

›

›

›
Qx1

1,x
1
2,x

2
1,x

2
2

›

›

›

1
“ 1.

The last three terms in Equation (43) is at most

M 12
1 M

1
2 `M

1
1M

12
2 `M

1
1M

1
2. (44)

The first term in Equation (43) can be bounded as follows.
ÿ

i1‰i2,j1‰j2

A

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

“
ÿ

i1‰i2,j1‰j2

´A

τx1
i1
,x1

i2
,x2

j1
,x2

j2
´ Px1

1,x
1
2,x

2
1,x

2
2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

`

A

Px1
1,x

1
2,x

2
1,x

2
2
, Qx1

1,x
1
2,x

2
1,x

2
2

E¯

. (45)

For any i1 ‰ i2 and j1 ‰ j2, the first term of the summand in Equation (45) is at most
A

τx1
i1
,x1

i2
,x2

j1
,x2

j2
´ Px1

1,x
1
2,x

2
1,x

2
2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

ď

›

›

›
τx1

i1
,x1

i2
,x2

j1
,x2

j2
´ Px1

1,x
1
2,x

2
1,x

2
2

›

›

›

1

›

›

›
Qx1

1,x
1
2,x

2
1,x

2
2

›

›

›

8
(46)

ďd1

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

` d1

´

Px1
1,x

1
2,x

2
1,x

2
2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

(47)

ďη1 ` α1. (48)

In Equation (46), we used the symmetry14 (as per Definition 14) of Px1
1,x

1
2,x

2
1,x

2
2
. Specifically, since Px1

1,x
1
2,x

2
1,x

2
2
P S1,2pP1, P2q,

we have

d1

´

τx1
i2
,x1

i1
,x2

j2
,x2

j1
, Px1

1,x
1
2,x

2
1,x

2
2

¯

“d1

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

2,x
1
1,x

2
2,x

2
1

¯

“ d1

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

,

d1

´

τx1
i2
,x1

i1
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

“d1

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

2,x
1
1,x

2
1,x

2
2

¯

“ d1

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

,

d1

´

τx1
i1
,x1

i2
,x2

j2
,x2

j1
, Px1

1,x
1
2,x

2
1,x

2
2

¯

“d1

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
2,x

2
1

¯

“ d1

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

.

14The double counting argument crucially relies on the symmetry of Px1
1,x

1
2,x

2
1,x

2
2

which is the reason why we treat the symmetric and asymmetric cases
separately.



31

Hence, the bound in Equation (48) holds for all i1 ‰ i2 and j1 ‰ j2 (not only for i1 ă i2 and j1 ă j2). In Equation (47), we
used the trivial bound

›

›

›
Qx1

1,x
1
2,x

2
1,x

2
2

›

›

›

8
ď 1 since Qx1

1,x
1
2,x

2
1,x

2
2

is a probability distribution. Equation (48) is by Equations (34)
and (36). Combining Equations (40) and (48), we get that the first term in Equation (43) is at most

M 12
1 M

12
2 pη

1 ` α1 ´ ε1q. (49)

Overall, by Equations (44) and (49), we get an upper bound on Equation (41):

M 1
1pM

1
1 ´ 1qM 1

2pM
1
2 ´ 1qpη1 ` α1 ´ ε1q `M 12

1 M
1
2 `M

1
1M

12
2 `M

1
1M

1
2,

which completes the proof of Claim 33.

On the other hand, a lower bound on Equation (41) follows from a direct calculation.

Claim 34. Equation (41) is nonnegative, i.e.,
ÿ

pi1,i2qPrM 1
1sˆrM

1
2s

ÿ

pj1,j2qPrM 1
2sˆrM

1
2s

A

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

ě 0. (50)

Proof. We compute Equation (41) from the first principle and interchange the summations.

ÿ

pi1,i2qPrM 1
1sˆrM

1
2s

ÿ

pj1,j2qPrM 1
2sˆrM

1
2s

A

τx1
i1
,x1

i2
,x2

j1
,x2

j2
, Qx1

1,x
1
2,x

2
1,x

2
2

E

“
ÿ

pi1,i2qPrM 1
1s

2

ÿ

pj1,j2qPrM 1
2s

2

ÿ

px1
1,x

1
2qPX 2

1

ÿ

px2
1,x

2
2qPX 2

2

τx1
i1
,x1

i2
,x2

j1
,x2

j2
px1

1, x
1
2, x

2
1, x

2
2qQpx

1
1, x

1
2, x

2
1, x

2
2q

“
ÿ

px1
1,x

1
2qPX

2
1

px2
1,x

2
2qPX

2
2

ÿ

pi1,i2qPrM
1
1s

2

pj1,j2qPrM
1
2s

2

1

n

ÿ

kPrns

1
 

x1
i1pkq “ x1

1

(

1
 

x1
i2pkq “ x1

2

(

1
 

x2
j1pkq “ x2

1

(

1
 

x2
j2pkq “ x2

2

(

Qpx1
1, x

1
2, x

2
1, x

2
2q

“
1

n

ÿ

px1
1,x

1
2qPX

2
1

px2
1,x

2
2qPX

2
2

ÿ

kPrns

¨

˝

ÿ

i1PrM 1
1s

1
 

x1
i1pkq “ x1

1

(

˛

‚

¨

˝

ÿ

i2PrM 1
1s

1
 

x1
i2pkq “ x1

2

(

˛

‚

¨

˝

ÿ

j1PrM 1
2s

1
 

x2
j1
pkq “ x2

1

(

˛

‚

¨

˝

ÿ

j2PrM 1
2s

1
 

x2
j2
pkq “ x2

2

(

˛

‚Qpx1
1, x

1
2, x

2
1, x

2
2q

“
M 12

1 M
12
2

n

ÿ

kPrns

ÿ

px1
1,x

1
2qPX

2
1

px2
1,x

2
2qPX

2
2

P
pkq
1 px1

1qP
pkq
1 px1

2qP
pkq
2 px2

1qP
pkq
2 px2

2qQpx
1
1, x

1
2, x

2
1, x

2
2q (51)

“M 12
1 M

12
2

C

1

n

ÿ

kPrns

´

P
pkq
1

¯b2

b

´

P
pkq
2

¯b2

, Qx1
1,x

1
2,x

2
1,x

2
2

G

ě0. (52)

In Equation (51), P pkqi denotes the empirical distribution of the k-th column of the codebook C1i P X
M 1

iˆn
i , i.e., for any xi P Xi,

P
pkq
i pxiq “

1

M 1
i

ˇ

ˇ

 

` P rM 1
is : xi`pkq “ xi

(
ˇ

ˇ. (53)

Equation (52) follows from Theorem 18 since 1
n

ř

kPrns

´

P
pkq
1

¯b2

b

´

P
pkq
2

¯b2

P G1,2pP1, P2q and Qx1
1,x

1
2,x

2
1,x

2
2
P co-G1,2pP1, P2q.

This finishes the proof of Claim 34.

Finally, Equations (42) and (50) yield

0 ďM 12
1 M

12
2 pη

1 ` α1 ´ ε1q `M 12
1 M

1
2 `M

1
1M

12
2 `M

1
1M

1
2

ùñ 0 ďM 1
1M

1
2pη

1 ` α1 ´ ε1q `M 1
1 `M

1
2 ` 1

ùñ 0 ď´ δM 12 ` 2M 1 ` 1 (54)

ùñ M 1 ď
1`

?
1` δ

δ
(55)

In Equation (54), we let M 1 :“ maxtM 1
1,M

1
2u and δ :“ ε1 ´ η1 ´ α1 ą 0. Equation (55) gives us the desired bound

maxtM 1
1,M

1
2u ď C for some constant C ą 0 independent of n.
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2) The case where G1,2pP1, P2qzK1,2pP1, P2q ‰ H: Intuitively, this case is impossible for the following reasons. In the
last subsection, we have shown that for any of |C11| and |C12| to be large, the distribution Px1

1,x
1
2,x

2
1,x

2
2

should (approximately)
belong to G1,2pP1, P2qzK1,2pP1, P2q. For one thing, since Px1

1,x
1
2,x

2
1,x

2
2
P G1pP1, P2q, by the second property in Proposi-

tion 17,
”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

1
2,x

2
1

(approximately) belongs to G1pP1, P2q and
”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

2
1,x

2
2

(approximately) belongs

to G2pP1, P2q. For another thing, since the code pair pC11, C12q is assumed to attain zero error in the first place, we have
that

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

1
2,x

2
1

which is close to τx1
i1
,x1

i2
,x2

j1
is (approximately) outside K1pP1, P2q and

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

2
1,x

2
2

which is close to τx1
i1
,x2

j1
,x2

j2
is (approximately) outside K2pP1, P2q. In summary, we found a distribution Px1

1,x
1
2,x

2 P

G1,2pP1, P2qzK1,2pP1, P2q with
”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

1
2,x

2
1

P G1pP1, P2qzK1pP1, P2q and
”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

2
1,x

2
2

P G2pP1, P2qzK2pP1, P2q.

This, nevertheless, contradicts the assumption GpP1, P2q “ H of Case 1 in Theorem 20.
The above intuition can be formalized by taking a good care of various slack factors. We flesh out the details below.
In the previous section, we showed that for any constant γ ą 0, if the distribution Px1

1,x
1
2,x

2
1,x

2
2

(which is the symmetrized
version of Px1

1,x
1
2,x

2
1,x

2
2
, as defined in Equation (33)) associated to pC11, C12q is γ-far (in `1 distance) from G1,2pP1, P2q, then both

M 1
1 and M 1

2 are at most a constant gpγq for some function gpγq γÑ0
ÝÝÝÑ 0.15 In other words, for M 1

1 or M 1
2 to be sufficiently

large, Px1
1,x

1
2,x

2
1,x

2
2

has to be γ-close (in `1 distance) to G1,2pP1, P2q for an arbitrarily small constant γ ą 0. Note also that
unlike τx1

i1
,x1

i2
,x2

j1
,x2

j2
, the distribution Px1

1,x
1
2,x

2
1,x

2
2

can be slightly inside K1,2pP1, P2q. However, it cannot be significantly
inside K1,2pP1, P2q. Specifically, for any 1 ď i1 ă i2 ďM 1

1 and 1 ď j1 ă j2 ďM 1
2,

d1

´

Px1
1,x

1
2,x

2
1,x

2
2
,J1,2pP1, P2qzK1,2pP1, P2q

¯

ďd1

´

Px1
1,x

1
2,x

2
1,x

2
2
, Px1

1,x
1
2,x

2
1,x

2
2

¯

` d1

´

Px1
1,x

1
2,x

2
1,x

2
2
, τx1

i1
,x1

i2
,x2

j1
,x2

j2

¯

` d1

´

τx1
i1
,x1

i2
,x2

j1
,x2

j2
,J1,2pP1, P2qzK1,2pP1, P2q

¯

(56)

ďα1 ` η1. (57)

In Equation (57), we used Equations (34) and (36). Also, the last term in Equation (56) is zero due to Equation (37). Overall,
we have that for any good code pair pC11, C11q P XM 1

1ˆn
1 ˆ XM 1

2ˆn
2 extracted from Lemma 27, for either M 1

1 or M 1
2 to be

sufficiently large, Px1
1,x

1
2,x

2
1,x

2
2

has to be pε´ η1 ´ α1q-close to G1,2pP1, P2q and pα1 ` η1q-close to J1,2pP1, P2qzK1,2pP1, P2q

for arbitrarily small constants ε, η1, α1 ą 0.
Therefore, we can without loss of rigor drop these slack factors and assume for convenience

Px1
1,x

1
2,x

2
1,x

2
2
P G1,2pP1, P2qzK1,2pP1, P2q. (58)

For this to be possible, in this subsection we consider the case where G1,2pP1, P2qzK1,2pP1, P2q ‰ H.
Let

Px1
1,x

1
2,x

2 :“
”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

1
2,x

2
1

“

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

1
2,x

2
2

,

Px1,x2
1,x

2
2

:“
”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

2
1,x

2
2

“

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
2,x

2
1,x

2
2

.

Since Px1
1,x

1
2,x

2
1,x

2
2
P G1,2pP1, P2q, the equality of the respective marginals above is by the second property of Proposition 17.

Furthermore, by Equation (57) and Lemma 9,

d1

´

Px1
1,x

1
2,x

2 ,J1pP1, P2qzK1pP1, P2q

¯

ďα1 ` η1, (59)

d1

´

Px1,x2
1,x

2
2
,J2pP1, P2qzK2pP1, P2q

¯

ďα1 ` η1. (60)

We further divide the analysis into two cases (as shown in Figure 5).
1) Define

ĂG1pP1, P2q :“

"

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

1
2,x

2
1

: Px1
1,x

1
2,x

2
1,x

2
2
P G1,2pP1, P2qzK1,2pP1, P2q

*

Ď G1pP1, P2q. (61)

Note that by Equation (58),

Px1
1,x

1
2,x

2 PĂG1pP1, P2q. (62)

Since we assume GpP1, P2q “ H in Case 1 of Theorem 20, ĂG1pP1, P2qzK1pP1, P2q may or may not be empty. We first
handle the case where ĂG1pP1, P2qzK1pP1, P2q “ H. In fact, let us assume

d1

´

ĂG1pP1, P2q,J1pP1, P2qzK1pP1, P2q

¯

ě ε1 (63)

15In the previous section, γ “ ε´ η1 ´ α1 as we got in Equation (35) and gpγq “ gpε, η1, α1q “
1`
?

1`ε1´η1´α1

ε1´η1´α1
where ε1 “ ε1pεq as we obtained in

Equation (55).
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(a) The case where ĂG1pP1, P2qzK1pP1, P2q “ H where
ĂG1pP1, P2q is defined in Equation (61).

(b) The case where ĂG1pP1, P2qzK1pP1, P2q ‰ H while
ĂG2pP1, P2qzK2pP1, P2q “ H where ĂG2pP1, P2q is defined in
Equation (66).

Fig. 5: Under the assumptions GpP1, P2q “ H and G1,2pP1, P2qzK1,2pP1, P2q ‰ H, we further divide the converse analysis
into two cases. The goal is to show that in these cases there do not exist zero-error code pairs of rates R1 ą 0 and R2 ą 0.
In the above figures, pink sets are confusability sets and green sets are sets of good distributions. Two-dimensional sets are
sets of joint distributions (e.g., G1,2pP1, P2q,K1,2pP1, P2q) and one-dimensional sets are sets of marginal distributions (e.g.,
G1pP1, P2q,G2pP1, P2q,K1pP1, P2q,K2pP1, P2q, etc.).

for some ε1 ą 0. See Figure 5a. However, Equations (59) and (62) lead to a contradiction if α1 and η1 and sufficiently
small so that α1 ` η1 ă ε1. Therefore, it is impossible for this case to happen.

2) Now we assume

ĂG1pP1, P2qzK1pP1, P2q ‰ H. (64)

The analysis of the above case shows that Px1
1,x

1
2,x

2 PĂG1pP1, P2q has to be pα1` η1q-close to J1pP1, P2qzK1pP1, P2q for
arbitrarily small α1 and η1. Similar to the assumption given by Equation (58), in the present case we may as well assume
for convenience

Px1
1,x

1
2,x

2 PĂG1pP1, P2qzK1pP1, P2q. (65)

Now define

ĂG2pP1, P2q :“

$

&

%

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

2
1,x

2
2

:
Px1

1,x
1
2,x

2
1,x

2
2
P G1,2pP1, P2qzK1,2pP1, P2q

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

1
2,x

2
1

P G1pP1, P2qzK1pP1, P2q

,

.

-

“

$

&

%

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

2
1,x

2
2

:
Px1

1,x
1
2,x

2
1,x

2
2
P G1,2pP1, P2qzK1,2pP1, P2q

”

Px1
1,x

1
2,x

2
1,x

2
2

ı

x1
1,x

1
2,x

2
1

P ĂG1pP1, P2qzK1pP1, P2q

,

.

-

Ď G2pP1, P2q. (66)

Equation (66) is by Equation (61). By the assumption given by Equation (64), ĂG2pP1, P2q ‰ H. Note that by Equations (58)
and (65),

Px1,x2
1,x

2
2
PĂG2pP1, P2q. (67)

On the other hand, by the assumption GpP1, P2q “ H and Equation (64), ĂG2pP1, P2qzK2pP1, P2q must be empty. In fact
let us assume

d1

´

ĂG2pP1, P2q,J2pP1, P2qzK2pP1, P2q

¯

ě ε2 (68)

for some ε2 ą 0. See Figure 5b. Now by Equations (60) and (67), we again reach a contradiction if α`η1 ă ε2. Therefore,
this case is also impossible to happen.

XV. CONVERSE, CASES 2 AND 3 IN THEOREM 20

In this section, we only prove Case 2. Case 3 follows by interchanging notation. We assume that G1pP1, P2qzK1pP1, P2q “ H.
More precisely, we assume

d1pG1pP1, P2q,J1pP1, P2qzK1pP1, P2qq ě ε (69)

for some ε ą 0. Let pC1, C2q be any good code pair. Suppose R1 ą 0. Our goal is to derive a contradiction.
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A. Subcode extraction

Theorem 35 (Ramsey’s theorem [Wik21]). Let KM denote the (undirected) complete graph on M vertices. Let N P Zě1, D P
Zě2. Then there exists a constant K “ KpN,Dq such that for every D-coloring of the edges of KM with M ě K, there is a
monochromatic clique in KM of size at least N .

Lemma 36 (Subcode extraction). Let pC1, C2q Ď Xn
1 ˆXn

2 be any pP1, P2q-constant composition code pair of sizes M1,M2,
respectively. Let j P rM2s. Then there exists a subcode C11 Ď C of size M 1

1 ě fp|X1|, |X2|, η,M1q
M1Ñ8
ÝÝÝÝÝÑ 8 and a distribution

Px1
1,x

1
2,x

2 P J1pP1, P2q such that for all 1 ď i1 ă i1 ďM 1
1, we have d8

´

τx1
i1
,x1

i2
,x2

j
, Px1

1,x
1
2,x

2

¯

ď η.

Proof. The proof is similar to that of Lemma 27 and follows readily from Theorem 35. We first build a complete graph KM1

whose vertex set is C1. We then color the edges of KM1
using distributions in J1pP1, P2q. Let N be an η-net of J1pP1, P2q

of size at most |N | ď
´

|X1|
2
ˆ|X2|

2η ` 1
¯|X1|

2
ˆ|X2|

“: D (by Lemma 5). An edge px1
i1
, x1
i2
q (1 ď i1 ă i2 ď M1) is colored

by a distribution Px1
1,x

1
2,x

2 P N if d8
´

τx1
i1
,x1

i2
,x2

j
, Px1

1,x
1
2,x

2

¯

ď η. Now by Theorem 35, there is a monochromatic subcode

C11 Ď C1 of size at least M 1
1 ě fp|X1|, |X2|, η,M1q, where fp|X1|, |X2|, η,M1q

M1Ñ8
ÝÝÝÝÝÑ 8. According to the way we colored

the edges, this means that for all 1 ď i1 ă i2 ďM 1
1, d8

´

τx1
i1
,x1

i2
,x2

j
, Px1

1,x
1
2,x

2

¯

ď η.

Fix any j P rM2s. By Lemma 36, there is a subcode C11 Ď C1 of size M 1
1

M1Ñ8
ÝÝÝÝÝÑ 8 such that for some distribution

Px1
1,x

1
2,x

2 P J1pP1, P2q, we have

d8

´

τx1
i1
,x1

i2
,x2

j
, Px1

1,x
1
2,x

2

¯

ď η (70)

for all 1 ď i1 ă i2 ďM 1
1. Equation (70) implies, by Fact 6, that

d1

´

τx1
i1
,x1

i2
,x2

j
, Px1

1,x
1
2,x

2

¯

ď |X1|
2
|X2|η “: η1. (71)

In the following two sections (Sections XV-B and XV-C) we treat the cases where Px1
1,x

1
2,x

2 is (noticeably) asymmetric and
(approximately) symmetric (in the sense of Definition 14) separately.

B. Asymmetric case

Reusing the proof for Cases (5) & (6) of Lemma 28 with z2 being x2 (instead of px2
1,x

2
2q as in Section XIV-B) and

ζ2 corresponding to x2
j (instead of px2

j1
, x2
j2
q as in Section XIV-B), we get that asymmpPx1

1,x
1
2,x

2q ď α as long as M 1
1 ě

36{pα´ 4
?
η ´ 2ηq2.

C. Symmetric case

As we saw in the last section, for M 1
1 to be sufficiently large, asymmpPx1

1,x
1
2,x

2q ď α. Under such an approximate symmetry
condition, we then pass to an exactly symmetric distribution Px1

1,x
1
2,x

2 P S1pP1, P2q defined as

Px1
1,x

1
2,x

2 :“
1

2

´

Px1
1,x

1
2,x

2 ` Px1
2,x

1
1,x

2

¯

.

Furthermore,

d1

´

Px1
1,x

1
2,x

2 , Px1
1,x

1
2,x

2

¯

“
ÿ

px1
1,x

1
2,x

2qPX 2
1ˆX2

ˇ

ˇ

ˇ
Px1

1,x
1
2,x

2px1
1, x

1
2, x

2q ´ Px1
1,x

1
2,x

2px1
1, x

1
2, x

2q

ˇ

ˇ

ˇ

ď
1

2

ÿ

px1
1,x

1
2,x

2qPX 2
1ˆX2

ˇ

ˇ

ˇ
Px1

2,x
1
1,x

2px1
1, x

1
2, x

2q ´ Px1
1,x

1
2,x

2px1
1, x

1
2, x

2q

ˇ

ˇ

ˇ

ď
1

2
|X1|

2
|X2|α “: α1. (72)

To apply the duality theorem (Theorem 18), we argue that Px1
1,x

1
2,x

2 is not in G1pP1, P2q.

d1

´

Px1
1,x

1
2,x

2 ,G1pP1, P2q

¯

ěd1

´

Px1
1,x

1
2,x

2 ,G1pP1, P2q

¯

´ d1

´

Px1
1,x

1
2,x

2 , Px1
1,x

1
2,x

2

¯

ěd1

´

τx1
i1
,x1

i2
,x2

j
,G1pP1, P2q

¯

´ d1

´

τx1
i1
,x1

i2
,x2

j
, Px1

1,x
1
2,x

2

¯

´ α1 (73)

ěd1pG1pP1, P2q,J1pP1, P2qzK1pP1, P2qq ´ η
1 ´ α1 (74)

ěε´ η1 ´ α1. (75)
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Equation (73) is by Equation (72). Equation (74) is by Equation (71) and the fact that τx1
i1
,x1

i2
,x2

j
R K1pP1, P2q. Equation (75)

follows from Equation (69). By Theorem 18, there exists Qx1
1,x

1
2,x

2 P co-G1pP1, P2q, such that
A

Px1
1,x

1
2,x

2 , Qx1
1,x

1
2,x

2

E

ď ´ε1 (76)

for some constant ε1 ą 0. The strategy is to bound
ÿ

pi1,i2qPrM 1
1s

2

A

τx1
i1
,x1

i2
,x2

j
, Qx1

1,x
1
2,x

2

E

. (77)

For an upper bound,
ÿ

pi1,i2qPrM 1
1s

2

A

τx1
i1
,x1

i2
,x2

j
, Qx1

1,x
1
2,x

2

E

“
ÿ

pi1,i2qPrM
1
1s

2

i1‰i2

A

τx1
i1
,x1

i2
,x2

j
, Qx1

1,x
1
2,x

2

E

`
ÿ

iPrM 1
1s

A

τx1
i ,x

1
i ,x

2
j
, Qx1

1,x
1
2,x

2

E

“
ÿ

pi1,i2qPrM
1
1s

2

i1‰i2

´A

τx1
i1
,x1

i2
,x2

j
´ Px1

1,x
1
2,x

2 , Qx1
1,x

1
2,x

2

E

´

A

Px1
1,x

1
2,x

2 , Qx1
1,x

1
2,x

2

E¯

`
ÿ

iPrM 1
1s

A

τx1
i ,x

1
i ,x

2
j
, Qx1

1,x
1
2,x

2

E

ďM 12
1 pη

1 ` α1 ´ ε1q `M 1
1. (78)

In the above Inequality (78), besides Equations (71), (72) and (76), we also used the fact that Px1
1,x

1
2,x

2 P S1pP1, P2q and
hence by Definition 14

d1

´

τx1
i2
,x1

i1
,x2

j
, Px1

1,x
1
2,x

2

¯

“ d1

´

τx1
i1
,x1

i2
,x2

j
, Px1

2,x
1
1,x

2

¯

“ d1

´

τx1
i1
,x1

i2
,x2

j
, Px1

1,x
1
2,x

2

¯

.

For a lower bound,
ÿ

pi1,i2qPrM 1
1s

2

A

τx1
i1
,x1

i2
,x2

j
, Qx1

1,x
1
2,x

2

E

“
ÿ

pi1,i2qPrM 1
1s

2

ÿ

px1
1,x

1
2,x

2qPX 2
1ˆX2

τx1
i1
,x1

i2
,x2

j
px1

1, x
1
2, x

2qQx1
1,x

1
2,x

2px1
1, x

1
2, x

2q

“
ÿ

pi1,i2qPrM 1
1s

2

ÿ

px1
1,x

1
2,x

2qPX 2
1ˆX2

1

n

ÿ

kPrns

1
 

x1
i1
pkq “ x1

1, x
1
i2
pkq “ x1

2, x
2
j pkq “ x2

(

Qx1
1,x

1
2,x

2px1
1, x

1
2, x

2q

“M 12
1

ÿ

px1
1,x

1
2,x

2qPX 2
1ˆX2

1

n

ÿ

kPrns

P
pkq
1 px1

1qP
pkq
1 px1

2qP
pkq
2 px2qQx1

1,x
1
2,x

2px1
1, x

1
2, x

2q (79)

“M 12
1

C

1

n

ÿ

kPrns

´

P
pkq
1

¯b2

b P
pkq
2 , Qx1

1,x
1
2,x

2

G

ě 0. (80)

In Equation (79), P pkq1 denotes the empirical distribution of the k-th column of C11 as defined in Equation (53) for i “ 1; P pkq2

is the indicator distribution P pkq2 px2q :“ 1
 

x2
j pkq “ x2

(

for all x2 P X2. Inequality (80) is by duality (Theorem 18).
Inequalities (78) and (80) jointly yield

M 12
1 pη

1 ` α1 ´ ε1q `M 1
1 ě 0,

i.e.,

M 1
1 ď

1

ε1 ´ η1 ´ α1
.

Remark 18. The marginal cases (Cases 2 and 3) of Theorem 20 proved in this section do not directly follow from the point-to-
point results by Wang et al. [WBBJ19] in a black-box manner. Unlike in the achievability proof (see proofs of Cases 2 and 3
of Lemma 22, proofs of Cases 2 and 3 of Lemma 23 and proofs of Cases 2 and 3 of Lemma 24), we cannot assume in a
converse argument that a zero-rate codebook only contains one codeword. Indeed, a rateless code may contain subexponentially
many codewords. Consequently, the adversary may leverage his knowledge of this small code and jam the communication in
a potentially more malicious way than as if he was not aware of the existence of the small code (in which case the problem
reduces to the point-to-point setting). Incorporating such strength of the adversary requires a more tender care of the converse
argument as we did in this section.

Finally, we reiterate the nontriviality of the marginal cases of MACs even given the point-to-point results. Indeed, similar
issues also arise in the study of AVMACs (where the adversary is oblivious) – another adversarial model that received more
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attention than ours over the past years. The corner cases where exactly one of the transmitters has zero capacity was left as a
gap in Ahlswede and Cai’s paper [AC99], though the point-to-point results [Ahl78], [CN88b] were known for long by then.
The gap was later noticed by Wiese and Boche [WB12] and recently filled by Pereg and Steinberg [PS19], more than twenty
years after [AC99].

XVI. CONCLUDING REMARKS AND OPEN PROBLEMS

In the following remarks we reflect on the results we obtained and the techniques we leveraged in this paper, and interleave
them with several promising/interesting open questions.

1) Another highly related yet different model that is not considered in this paper is the adversarial MACs with average
probability of error. As briefly discussed in Remark 1, even for stochastic MACs, the capacity region exhibits different
behaviours under average error criterion than maximum error criterion. Therefore, we do not believe that average error
criterion behaves the same (at least under deterministic encoding) as the maximum one (which is equivalent to the zero
error criterion under deterministic encoding) under our omniscient adversarial MAC model. Characterizing the capacity
positivity and proving inner and outer bounds on the capacity region with average probability of error are left for future
research. In contrast, for point-to-point AVCs, the capacity remains the same under average probability of error (with
deterministic encoding) and maximum probability of error (with stochastic encoding) [CN88b].

2) For technical simplicity, this paper only handles deterministic MACs. For general (potentially stochastic) MACs, maximum
error criterion is not equivalent to zero error criterion (though they are for deterministic MACs). Techniques along the
lines of [CK81] are of relevance for extending our results to general adversarial MACs.

3) It is possible to generalize our results on capacity positivity to t-user MACs with t ą 2, though the case analysis may
become baroque.

4) We believe that the capacity inner bounds obtained in Lemma 24 can be improved. In particular, the expurgation
method we employed is crude – we expurgated one codeword from each user’s codebook for every pair of con-
fusable pairs ppx1

i1
,x2
j1
q, px1

i2
,x2
j2
qq. Noting that a pair of codewords px1

i1
,x2
j1
q participates in ΘpM1M2q many pairs

ppx1
i1
,x2
j1
q, px1

i2
,x2
j2
qq, we might have over-expurgated a more-than-desired number of codewords. We believe that more

careful expurgation strategy may lead to improved inner bounds. For example, in [Gu18], a nontrivial lower bound for t-
user binary adder MACs16 was obtained by only expurgating codewords with minimal violation of the zero error criterion.
A naive expurgation as ours does not yield such a bound.

5) In classical zero-error information theory where channels under consideration are non-adversarial (or equivalently, uncon-
strainedly adversarial under our framework), there is a well-known n-letter expression for the capacity of a general DMC
with zero error. The expression involves the independence number of the n-fold strong product of the confusability graph
associated to the channel. Similarly, the non-stochastic information theory framework initiated by Nair [Nai11], [Nai13]
also provides multi-letter expressions in terms of non-stochastic information measures. In our opinion, the availability of
such formulas heavily relies on the unconstrainedness of the channel. That is, viewed as an adversarial channel, the noise
sequence s can take any value in Sn. Consequently, “good codes tensorize” in the sense that if C Ď Xn attains zero error
then CˆC Ď X 2n also attains zero error17. Unfortunately, such a tensorization property is not true for channels with state
constraints. It can be easily seen that the adversary can allocate his power on the long codeword in a nonuniform manner
so as to confuse the decoder. Codes for the adversarial bitflip channel is a concrete counterexample.18 The possibility of
obtaining tight n-letter expressions for the capacity of omniscient adversarial channels using our framework is left for
future investigations.

6) Recall that our main theorem asserts that for the sake of capacity positivity, it suffices to only consider distributions
corresponding to mixtures of i.i.d. random variables. Achievability-wise, one can achieve positive rates, whenever possible,
by sampling random codes using mixtures of product self-couplings, i.e., “good” distributions as per Definition 15.
Conversely, if one could not achieve positive rates using good distributions, then she/he cannot achieve them using any
other distributions. In the above sense, the set of good distributions we introduced plays a fundamental role in understanding
capacity thresholds. This brings a natural question of whether there exist scenarios where correlated distributions help
enlarge the region of positive rates and are hence also fundamentally “good”. One feasible way of physically instantiating
correlation between input distributions is to allow cooperation. There is a recent line of works on oblivious adversarial
MACs (i.e., the classical AVMAC model) with cooperation [WBBJ11], [WB12], [BS16], [HS17]. That is, two encoders
are allowed to communicate through a rate-limited channel19. It is an interesting problem to examine the behaviour of
MACs with cooperations under the omniscient model.

16One caveat is that Gu [Gu18] was dealing with t-user MACs in which all transmitters use the same codebook. Such codes are also known as Bt codes.
17Here we think of the tensor product C ˆ C as the set of concatenated codewords of length-2n with both length-n components from C.
18Consider a bitflip channel which can arbitrarily flip p fraction of bits in the transmitted sequence. Let C P t0, 1un be a good code for this channel. That

is, the minimum distance of C is at least 2np. Then C ˆ C still has distance 2np while its length doubles. This means that it can only correct a p{2 fraction
of errors, no longer attaining zero error for the original channel with noise level p.

19Note that if the channel between the two encoders is rate-unbounded, then the MAC problem reduces to a point-to-point problem.
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7) It is an intriguing question to extend our results to list decoding with constant list sizes. The list decoding problem for
both (oblivious) AVCs [Hug97], [SG12], [BSP18], [HK19], [ZJB20] and AVMACs [BS16], [Nit13], [Cai16], [Zha20] is
well-studied. There are also papers on combinatorial list decoding for special MACs [DPSV19], [Shc16], not mentioning
a huge body of work on list decoding for bitflip channels. However, zero-error list decoding for general omniscient
adversarial channels remains relatively uncharted until recently [ZBJ20]. One of the major technical challenges for MACs
that is absent in the point-to-point case has to do with list configurations. A list for MAC can be represented by a bipartite
graph [Cai16], [Zha20]. For a target list size L P Zě2, the bipartite graph with L edges corresponding to an L-list may
have different “shapes”. Such complications call for delicate analysis.

8) It is plausible that our framework, built upon the prior work [WBBJ19], is eligible for tackling the capacity threshold
problem of other adversarial multiuser channels, e.g., broadcast channels, interference channels, relay channels, etc. We
leave this for further exploration. The non-adversarial/unconstrained version of these problems has been considered by
Devroye [Dev16].

9) Motivated by the situation where the fundamental limit of oblivious MAC is well-understood [PS19] while that of the
omniscient counterpart is out of reach of the current techniques, it is tempting to study an intermediate model which
interpolates between the oblivious and the omniscient models. One model of this kind known as the myopic channels was
initiated by Sarwate [Sar10] and was advanced in a sequence of followup work [DJL15], [BDJ`20], [ZVJS18]. Despite
the progress, even the capacity threshold of general point-to-point myopic channels is unknown. In the case of MAC, one
natural definition of the myopic variant could be that the adversary gets to observe a noisy version of the transmitted
sequence pair through a stochastic (non-adversarial) MAC. Such a model, as far as we know, remains unexplored.

10) Strictly speaking, both our achievability and converse proofs rely on a strict separation between the set of good distributions
and the confusability set. Specifically, we have to assume that the good set minus the confusability set has nonempty
interior in the achievability proof; we have to assume that the good set is a proper subset of the confusability set in
the converse proof. The case where the good set kisses the confusability set remains unsolved. Such boundary cases
are solved for some special channels including the (point-to-point) bitflip channel (see, e.g., [GRS12, Theorem 4.4.1]).
Similar subtleties also arise in the oblivious AVC/AVMAC setting where the boundary cases are in general open but are
solved when the optimal jamming strategy is deterministic (which is the case, in particular, if the channel is deterministic)
[CN88b], [PS19]. In all above solved cases, the capacity is zero at the boundary. Inspired by these results, we conjecture
that the capacity of our omniscient adversarial MACs is also zero in the boundary case. That is, our converse can be
(conjecturally) strengthened.

11) Our proof heavily relies on the assumption of finite alphabets. It is unclear how to extend our proof to the case where
the alphabet sizes grow with n. In fact, we believe that the behaviour of the capacity (region) is significantly different
in the large alphabet regime. Indeed, for bitflip channels, there are algebraic constructions (notably the Reed–Solomon
codes) attaining the capacity upper bound (the Singleton bound). In other words, unlike in the small alphabet case, the
first-order asymptotics of bitflip channels are known as long as the alphabet sizes are sufficiently large (in particular at
least n suffices). It remains an intriguing question to explore the behaviour of omniscient adversarial MACs in the large
alphabet regime.

12) Our converse results (Theorem 20) give upper bounds on the size of codes when the channel does not admit positive
rates. For instance, if the set of good distributions is “ε-contained” (as per Equation (32)) in the confusability set, then
our proof gives maxt|C1|, |C2|u ď fp1{εq which is independent of n. However, the function fp¨q involves Ramsey number
and is therefore enormous. We do not expect this bound to have an optimal dependence on 1{ε. This type of question
regarding the size of codes above the Plotkin bound was studied previously only for special channels. For instance, for
the (point-to-point) bitflip channels with noise level p, the optimal dependence is known to be Θp1{εq [Lev61] where
ε “ p ´ 1{4 is the gap between the Plotkin point and the noise level. Optimal bounds are also known for list decoding
over bitflip channels with odd20 list sizes [ABP18]. We are not aware of any result on codes above the Plotkin bound for
adversarial MACs.
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APPENDIX A
TABLE OF NOTATION

Frequently used notation is listed in the following table (Table IV).

20In [ABP18], the list size was parameterized by L´ 1 and optimal bounds were only shown for even L, i.e., odd list sizes.



38

Notation Meaning Definition
asymm1p¨q, asymm2p¨q, asymm1,2p¨q, asymmp¨q Asymmetry of a joint distribution Definition 19
pC1, C2q Ď Xn

1 ˆ Xn
2 Code pair Definition 5

co-G1pP1, P2q, co-G2pP1, P2q, co-G1,2pP1, P2q Sets of co-good tensors with marginals pP1, P2q Definition 16
Dec: Yn Ñ rM1s ˆ rM2s Decoder of the receiver Definition 5
Enc1 : rM1s Ñ Xn

1 ,Enc2 : rM2s Ñ Xn
2 Encoders of the transmitters Definition 5

G1pP1, P2q,G2pP1, P2q,G1,2pP1, P2q Sets of good distributions with marginals pP1, P2q Definition 15
GpP1, P2q Set of simultaneously good distributions with marginals pP1, P2q Definition 15
J1pP1, P2q,J2pP1, P2q,J1,2pP1, P2q Sets of self-couplings with marginals pP1, P2q Definition 10
Jam: Xn

1 ˆ Xn
2 Ñ Sn Jamming function of the adversary Definition 6

K1pP1, P2q,K2pP1, P2q,K1,2pP1, P2q Confusability sets with marginals pP1, P2q Definition 11
MAC2 “

`

X1,X2,S,Y,Γ1,Γ2,Λ,Wy|x,s

˘

Omniscient adversarial MAC Definition 4
pm1,m2q P rM1s ˆ rM2s Messages of the transmitters Definition 4
M1 “ |C1|,M2 “ |C2| Sizes of codebooks Definition 5
rPx,ysx P ∆pX q Marginal distribution of Px,y P ∆pX ˆ Yq on the variable x Section V
pR1, R2q Rate pair Definition 5
s P Sn Jamming sequence of the adversary Definition 4
S Alphabet of the adversary Definition 4
S1pP1, P2q,S2pP1, P2q,S1,2pP1, P2q Sets of symmetric distributions with marginals pP1, P2q Definition 14
Sym1pP1, P2q,Sym2pP1, P2q,Sym1,2pP1, P2q Sets of symmetric tensors with marginals pP1, P2q Definition 13
Wy|x1,x2,s Channel transition law Definition 4
px1, x2q P Xn

1 ˆ Xn
2 Input sequences from the transmitters Definition 4

X1,X2 Alphabets of the transmitters Definition 4
y P Yn Output sequence to the receiver Definition 4
Y Alphabet of the receiver Definition 4
pΓ1,Γ2q Ď ∆pX1q ˆ∆pX2q Input constraints Definition 4
∆pX q Probability simplex on X Section V
∆1pP1, P2q,∆2pP1, P2q,∆1,2pP1, P2q Sets of generalized self-couplings with marginals pP1, P2q Definition 12
∆pnqpX q Sets of types of Xn-valued vectors Definition 3
Λ Ď ∆pSq State constraints Definition 4
νpPx, nq – Equation (1)
τx P ∆pnqpX q Type of x P Xn Definition 3

TABLE IV: Table of frequently used notation.

APPENDIX B
PROOF OF PLOTKIN BOUND FOR BINARY NOISY XOR MACS (THEOREM 11)

Proof of Theorem 11. Suppose p “ 1{4 ` ε for some constant ε ą 0. Let pC1, C2q be a code pair which attains zero error
on the binary noisy XOR MAC. Let M1 :“ |C1|,M2 :“ |C2|. We will show that M1M2 ď 1{4ε ` 1. To this end, inspired the
classical Plotkin bound in coding theory, we estimate the following quantity

ÿ

px1
1,x

1
2,x

2
1,x

2
2qPC2

1ˆC2
2

dH

`

x1
1 ‘ x

2
1, x

1
2 ‘ x

2
2

˘

. (81)

One the one hand, by the goodness of pC1, C2q, as long as px1
1, x

2
1q ‰ px

1
2, x

2
2q, we have dH

`

x1
1 ‘ x

2
1, x

1
2 ‘ x

2
2

˘

ą 2np. For
px1

1, x
2
1q “ px

1
2, x

2
2q, the summand is apparently zero. Therefore, Term (81) is larger than pM2

1M
2
2 ´M1M2q ¨ 2np.

On the other hand, we can expand Term (81) as follows.
ÿ

px1
1,x

1
2,x

2
1,x

2
2qPC2

1ˆC2
2

dH

`

x1
1 ‘ x

2
1, x

1
2 ‘ x

2
2

˘

“
ÿ

px1
1,x

1
2,x

2
1,x

2
2qPC2

1ˆC2
2

wtH
`

x1
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2
1 ‘ x

1
2 ‘ x

2
2

˘

“
ÿ

px1
1,x

1
2,x

2
1,x

2
2qPC2

1ˆC2
2

ÿ

pa1,b1,a2,b2qPM

n
ÿ

j“1

1
 

x1
1pjq “ a1

(

1
 

x2
1pjq “ b1

(

1
 

x1
2pjq “ a2

(

1
 

x2
2pjq “ b2

(

(82)
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“

n
ÿ

j“1

ÿ

pa1,b1,a2,b2qPM

¨

˝

ÿ

x1
1PC1

1
 

x1
1pjq “ a1

(

˛

‚

¨

˝

ÿ

x2
1PC2

1
 

x2
1pjq “ b1

(

˛

‚

¨

˝

ÿ

x1
2PC1

1
 

x1
2pjq “ a2

(

˛

‚

¨

˝

ÿ

x2
2PC2

1
 

x2
2pjq “ b2

(

˛

‚

“

n
ÿ

j“1

`

pM1 ´ SjqpM2 ´ TjqpM1 ´ SjqTj ` pM1 ´ SjqpM2 ´ TjqSjpM2 ´ Tjq

` pM1 ´ SjqTjpM1 ´ SjqpM2 ´ Tjq ` SjpM2 ´ TjqpM1 ´ SjqpM2 ´ Tjq

` SjTjSjpM2 ´ Tjq ` SjTjpM1 ´ SjqTj ` SjpM2 ´ TjqSjTj ` pM1 ´ SjqTjSjTj
˘

(83)

“M2
1M

2
2

n
ÿ

j“1

`

αjβjαjβj ` αjβjαjβj ` αjβjαjβj ` αjβjαjβj ` αjβjαjβj ` αjβjαjβj ` αjβjαjβj ` αjβjαjβj
˘

(84)

In Equation (82), we use M :“ t0001, 0010, 0100, 1000, 1110, 1101, 1011, 0111u to denote the set of length-4 binary sequences
with odd parity. In Equation (83), we define Sj :“

ř

x1PC1
1
 

x1pjq “ 1
(

and Tj :“
ř

x2PC2
1
 

x2pjq “ 1
(

to be the number of
1’s in the j-th column of C1 P t0, 1u

M1ˆn and C2 P t0, 1u
M2ˆn respectively. In Equation (84), we further define αj :“ Sj{M1

and βj :“ Tj{M2 to be the density of 1’s in the j-th column of C1 and C2 respectively; we also use the notation a :“ 1´ a
for a P r0, 1s.

For any j P rns, since αj , βj P r0, 1s the summand of Equation (84) is at most 1{2. This can be verified by solving the
following simple constrained (degree-4) polynomial optimization problem:

max
pα,βqPr0,1s2

αβαβ ` αβαβ ` αβαβ ` αβαβ ` αβαβ ` αβαβ ` αβαβ ` αβαβ.

The maximum 1{2 is attained at α “ 1{4, β “ 1{2. Therefore, Term (81) is at most M2
1M

2
2n{2.

Putting the lower and upper bounds on Term (81) together, we have
`

M2
1M

2
2 ´M1M2

˘

¨ 2np ă
M2

1M
2
2n

2

ðñ

´

1´ 1
M1M2

¯

2
`

1
4 ` ε

˘

ă 1
2

ðñ M1M2 ă
1
4ε ` 1,

which finishes the proof of Theorem 11.
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[Lov79] László Lovász. On the shannon capacity of a graph. IEEE Transactions on Information theory, 25(1):1–7, 1979. II-B
[Nai11] Girish N Nair. A non-stochastic information theory for communication and state estimation over erroneous channels. In 2011 9th IEEE International

Conference on Control and Automation (ICCA), pages 159–164. IEEE, 2011. II-D, 5
[Nai12] Girish N Nair. A nonstochastic information theory for feedback. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pages

1343–1348. IEEE, 2012. II-D
[Nai13] Girish N Nair. A nonstochastic information theory for communication and state estimation. IEEE Transactions on automatic control, 58(6):1497–

1510, 2013. II-D, 5
[Nit13] Sirin Nitinawarat. On the deterministic code capacity region of an arbitrarily varying multiple-access channel under list decoding. IEEE transactions

on information theory, 59(5):2683–2693, 2013. 7
[NY20] Chandra Nair and Mehdi Yazdanpanah. On the and-or interference channel and the sandglass conjecture. In 2020 IEEE International Symposium

on Information Theory (ISIT), pages 1540–1545. IEEE, 2020. II-B
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