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Abstract

This paper considers the problem of covert communication with mismatched decoding, in which a sender wishes to reliably
communicate with a receiver whose decoder is fixed and possibly sub-optimal, and simultaneously to ensure that the communication
is covert with respect to a warden. We present single-letter lower and upper bounds on the information-theoretically optimal
throughput as a function of the given decoding metric, channel laws, and the desired level of covertness. These bounds match for
a variety of scenarios of interest, such as (i) when the channel between the sender and receiver is a binary-input binary-output
channel, and (ii) when the decoding metric is particularized to the so-called erasures-only metric. The lower bound is obtained
based on a modified random coding union bound with pulse position modulation (PPM) codebooks, coupled with a non-standard
expurgation argument. The proof of the upper bound relies on a non-trivial combination of analytical techniques for the problems
of covert communication and mismatched decoding.

I. INTRODUCTION

In contrast to classical information-theoretic security problems that are concerned with hiding the content of information, the
problem of covert communication1 instead aims to hide the fact that communication is taking place. Covert communication has
potential applications in a variety of important scenarios, such as military communications. For example, the communication
between two submerged submarines should be covert when an enemy maritime patrol aircraft is present, otherwise serious
consequences may occur.

Due to its potentially widespread applications, covert communication has attracted significant attention in recent years.
The pioneering work by Bash et al. [1] first demonstrated a square-root law for covert communication, stating that one
can only covertly and reliably transmit Θ(

√
n) bits of message over n channel uses. Building upon [1], subsequent works

further characterized information-theoretic limits of covert communication for diverse channel models, as well as developed low-
complexity covert communication schemes by exploiting a variety of coding techniques. We refer the readers to Subsection I-B
below for a detailed literature review.

While the problem of covert communication has been extensively studied, most, if not all, of the prior works focused on the
setting in which the encoder and decoder can be optimized according to the channel law. However, in some practical scenarios,
one may not have accurate knowledge about the channel (e.g., submarines often only have an imperfect channel estimation in
the ocean). In other scenarios, even if the channel is precisely known, one may still wish to implement a sub-optimal decoder
due to computational complexity considerations. Motivated by these practical considerations, we consider the problem of covert
communication with mismatched decoding [2]–[5], where the decoder is fixed a priori and possibly sub-optimal. It is assumed
that the decoding rule is governed by a given decoding metric, and the only freedom for designers is to optimize the codebook
and the encoder. Given the differences between the current problem and standard covert communication problem, it is then
natural to ask (i) What is the highest rate at which message bits can be transmitted covertly and reliably with mismatched
decoding (which is formally referred to as the covert mismatch capacity), and (ii) In which case using a mismatched decoder
also lead to an optimal throughput?

To address the aforementioned questions, this work investigates the following covert communication setting. The sender
occasionally communicates with the legitimate receiver through a binary-input2 discrete memoryless channel (BDMC), and it
is assumed that there is a warden who can eavesdrop their communication through another independent BDMC. The goals are
twofold. One one hand, the receiver should be able to reliably reconstruct the message by using the given decoding metric.
On the other hand, the covertness constraint requires the warden to be unable to determine whether or not communication is
taking place. More specifically, we require that at the warden’s side, the output distribution when communication takes place
is almost indistinguishable from the output distribution when no communication takes place, where the discrepancy between
the two output distributions is measured by the Kullback-Leibler (KL) divergence.

The main contributions of this work can be summarized as follows.
• We first develop an achievability scheme and derive a lower bound on the covert mismatch capacity (Theorem 1). Our

scheme is based on pulse position modulation (PPM) codebooks and a careful expurgation argument.
• We also provide a single-letter upper bound on the covert mismatch capacity (Theorem 2), which improves on the trivial

upper bound—the covert capacity [6], [7].

Qiaosheng Zhang is with the Department of Electrical and Computer Engineering, National University of Singapore (e-mail: elezqiao@nus.edu.sg).
Vincent Y. F. Tan is with the Department of Electrical and Computer Engineering and Department of Mathematics, National University of Singapore (e-mail:

vtan@nus.edu.sg).
1Covert communication is also known as low probability of detection (LPD) communication in the literature.
2It is also possible to consider a more general setting with multiple non-zero input symbols (by following the lead of [6]); however, for simplicity and ease

of presentation, we focus on the binary-input setting in this work.
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• When the given decoding metric matches the channel law (which is referred to as the matched case), our lower and upper
bounds both equal the covert capacity.

• When the channel between the sender and receiver is a binary-input binary-output channel, the lower and upper bounds
coincide and thus we have an exact characterization of the covert mismatch capacity (Theorem 3). It is also worth noting
that in this case, covert mismatch capacity exhibits a dichotomy—it equals either the covert capacity or zero.

• Finally, we apply our lower and upper bounds to the problem of covert communication with zero undetected error, which
is a special case of covert communication with mismatched decoding (by choosing an appropriate decoding metric). The
zero undetected error problem is a classical information theory problem, and requires that the decoder should never output
an incorrect message, and that the probability of erasure (i.e., detected error) should tend to zero. Perhaps surprisingly, our
lower and upper bounds coincide for covert communication over BDMCs (Theorem 4), and thus we have an exact single-
letter expression for the so-called covert erasures-only capacity3. In contrast, to the best of our knowledge, there does not
exist a computable capacity expression for standard (non-covert) communication over BDMCs (while an incomputable
expression was given in [2]).

A. Technical challenges and solutions

Unlike the standard mismatched decoding problem, the requirement of covertness puts forth new challenges in designing
achievability schemes and proving new coding theorems. We first discuss two challenges from the achievability’s perspective.
• First, our lower bound is established using a low-weight PPM codebook (rather than a more common constant composition

codebook), due to the requirement of covertness. The PPM codebook can be viewed as a highly structured sub-class of
constant composition codebooks, and its optimality for covert communication was first derived by Bloch and Guha [8].
While the PPM codebook is ideal from the perspective of covertness, the use of it also raises issues in the reliability
part under mismatched decoding. For example, a standard technique to circumvent the non-independent issue of constant
composition codebooks is to approximate the probability of each constant composition codeword by the probability of its
corresponding i.i.d. codeword (see [9, Chapter 2.6.5] for an example). However, this technique does not apply here because
the probability of each PPM codeword is significantly larger than its corresponding i.i.d. codeword. Another issue is that
the fixed decoding rule prevents us from designing decoders that have been shown to be suitable for low-weight codebooks
(e.g., the modified information-density decoder [7], [10], [11]). To overcome these issues, we exploit specific properties
of the PPM codebook to obtain a chunk-wise independent structure, which allows us to decompose the blocklength n into
Θ(
√
n) disjoint chunks and then analyze each chunk independently (see Eqns. (31)-(35) for details).

• Second, in the context of covert communication, the two common reliability criteria—average and maximum probability
of error—cannot be simply connected through the standard expurgation technique4. This is because although expurgating
codewords is helpful from the perspective of reliability, it changes the output distribution induced by the code and thus
the resultant code may no longer satisfy the covertness constraint. In this work, we adopt the more stringent maximum
probability of error as the reliability criterion. To ensure a vanishing maximum probability of error, we use a recently
developed result by Tahmasbi and Bloch [10] to show the existence of a code such that every subset of codewords (with
a fixed cardinality) satisfies the covertness constraint. This allows us to apply an expurgation argument to the set of “bad”
codewords and to simultaneously ensure the resultant code is still covert (see Remark 3 for a detailed discussion).

The proof of the upper bound requires a non-trivial combination of analytical techniques for the problems of covert
communication and mismatched decoding. We first use an expurgation argument to show that for any code satisfying the
covertness constraint, there must exist a low-weight constant composition subset of codewords whose size is almost as large
as the original code. Our next step, which analyzes the probability of error of the resultant subset, is inspired [12], in which
the authors established, for the first time, a single-letter upper bound for the mismatched decoding problem. The main idea is
to translate the mismatched-decoding error of the original channel to the maximum-likelihood decoding error of an auxiliary
channel. However, their key result [12, Theorem 5] is not readily applicable to our setting due to the stringent input constraint
imposed by the covertness requirement. We circumvent this difficulty by proving a strengthened lemma (Lemma 5) that allows
us to lower bound the probability of error for any low-weight constant composition code. A detailed comparison between our
strengthened lemma and the original result [12, Theorem 5] is presented in Section VI, right after Lemma 5.

B. Related works

The theoretical underpinnings of covert communication have been extensively studied following the pioneering work by
Bash et al. [1]. Researchers have progressively established information-theoretic limits of covert communication for a variety of
channel and network models, including discrete memoryless channels [6], [7], [10], [13]–[16], Gaussian channels [6], [7], [17],

3The covert erasures-only capacity is defined as the highest rate at which the covertness could be guaranteed, the probability of undetected error exactly
equals zero, and the probability of erasure could vanish.

4The standard expurgation technique states that for any code of size |M| with a vanishing average probability of error, one can simply expurgate |M|/2
codewords that have highest probability of error to obtain a new code that has a vanishing maximum probability of error.
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multiuser channels [18]–[22], channel with states [23], [24], channel with jammers [25]–[28], Rayleigh-fading channels [29]–
[31], continuous-time channels [32]–[34], quantum channels [35]–[37], MIMO channels [38], adhoc networks [39], [40], etc. In
addition to characterizing the information-theoretic limits, researchers have also studied covert communication from a coding
perspective, and have investigated various coding techniques such as concatenated codes [41], PPM [8], multilevel coding with
PPM [42]–[44], and polar codes [45]. In recent years, the concept of covertness has also been incorporated into other research
fields, ranging from information theory to information security and wireless communications. Specific topics include secret key
agreement [46], source coding [47], identification-via-channels [11], authentication [48], unmanned aerial vehicle [49]–[51],
etc.

The mismatched decoding problem [2]–[5] is a classical fiendishly hard problem in information theory, and the objective is
to understand the highest communication rate when the decoding rule is fixed and possibly sub-optimal. It is closely related to
other long-standing problems such as the zero-error capacity. While multiple lower and upper bounds have been developed, the
capacity of the mismatched decoding problem still remains open. The most notable single-letter lower bound is the so-called
LM rate, which was first derived by Csiszár and Körner [4] and Hui [5] based on constant composition codes. Csiszár and
Narayan [2] later showed that the multi-letter version of the LM rate is in general better than its single-letter counterpart.
Another line of works studied mismatched decoding for multiuser settings [52]–[54]; in particular, Lapidoth showed that the
LM rate can be improved by treating the point-to-point channel as a multiple access channel and using a multiuser scheme [52].
While there have been extensive studies on lower bounds, until recently, much less has been understood about upper bounds.
Kangarshahi and Guillén i Fàbregas [12] recently provided a single-letter upper bound on the mismatched capacity, and Somekh-
Baruch presented both single-letter and multi-letter upper bounds in a series of works [55]–[57]. These recently developed
upper bounds significantly promote the understanding of mismatched decoding. We refer the readers to [9] for a comprehensive
survey of the mismatched decoding problem.

C. Outline

The rest of this paper is organized as follows. We provide some notational conventions and preliminaries in Section II, and
formally introduce the problem of covert communication with mismatched decoding in Section III. In Section IV, we present
lower and upper bounds on the covert mismatch capacity, and further provide analytical and numerical evaluations of these
bounds for a variety of scenarios of interest. Finally, Sections V and VI respectively provide the detailed proofs of the lower
and upper bounds.

II. PRELIMINARIES

A. Notation

Random variables and their realizations are respectively denoted by uppercase and lowercase letters, e.g., X and x. Sets are
denoted by calligraphic letters, e.g., X . Vectors are denoted by boldface letters, e.g., X or x, where the length of each vector
will be clear from the context. We use Xi or xi to denote the i-th element of the vector X or x, and Xb

a or xba to denote the
subsequence (Xa, Xa+1, . . . , Xb) or (xa, xa+1, . . . , xb). Let wtH(x) be the Hamming weight, or number of non-zero elements,
of the vector x.

In our calculations, logarithms log and exponentials exp are to the natural base e. For any real number c ∈ R, we define
[c]+ , max{0, c}. For any probability distribution P over the finite set X , we denote its n-letter product distribution by P⊗n,
and the largest probability and smallest non-zero probability respectively by

[P ]max , max
x∈X

P (x) and [P ]min , min
x∈X :P (x)>0

P (x). (1)

For any two probability distributions P and Q over the same finite set X , their KL divergence and χ2-distance are respectively
given by D(P‖Q) ,

∑
x∈X P (x) log P (x)

Q(x) and χ2(P‖Q) ,
∑
x∈X

(P (x)−Q(x))2

Q(x) . We say P is absolutely continuous with
respect to Q (denoted by P � Q) if the support of P is a subset of the support of Q (i.e., for all x ∈ X such that Q(x) = 0,
P (x) = 0).

B. Preliminaries on the method of types

Given a length-n vector x ∈ Xn, we define its type (or empirical distribution) as Tx(x) , 1
n

∑n
j=1 1{xi = x}. The type

class corresponding to a specific type P ∈ Pn(X ) is denoted by TP , {x ∈ Xn : Tx = P}. Given two sequences x ∈ Xn
and y ∈ Yn, we define their joint type as Tx,y(x, y) , 1

n

∑n
j=1 1{xj = x, yj = y}, and the conditional type of y given x as

Ty|x(y|x) ,

{
Tx,y(x,y)
Tx(x)

, if Tx(x) > 0,
1
|Y| , otherwise.

(2)

For a given x ∈ TP and a conditional distribution V ∈ P(Y|X ), the set of y ∈ Yn such that (x,y) has joint type P × V is
denoted by TV (x) , {y ∈ Yn : Tx,y = P × V }. Let VP (Y|X ) be the set of all V ∈ P(Y|X ) for which the conditional type
class of a sequence of type P is non-empty.
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III. PROBLEM SETTING

A. Model

The sender may occasionally communicate with the receiver through a binary-input discrete memoryless channel (BDMC)
(X ,WY |X ,Y), where the input alphabet X = {0, 1} with ‘0’ being the innocent symbol, and the output alphabet Y is assumed
to be finite. The transmission status of the sender is denoted by a binary-valued variable Λ ∈ {0, 1}:
• When Λ = 1, the sender sends a message M (which is uniformly chosen from the message set M) to the receiver;
• When Λ = 0, the sender always sends the innocent symbol ‘0’ to the channel WY |X .

The communication between the sender and receiver is possibly assisted by a shared key K, which is uniformly distributed
over the key set K. There is also a warden who can eavesdrop the communication through another BDMC (X ,WZ|X ,Z),
where Z is a finite alphabet. The warden does not know the shared key. For notational convenience, we further define

P0 ,WY |X=0, P1 ,WY |X=1, (3)

Q0 ,WZ|X=0, Q1 ,WZ|X=1. (4)

Following the convention in the covert communication literature, we make three assumptions on the channels WZ|X and WY |X :
(A1) Q0 6= Q1, (A2) Q1 � Q0 (i.e., Q1 is absolutely continuous with respect to Q0), and (A3) P1 � P0. The first two
assumptions (A1) and (A2) respectively preclude the scenarios in which covertness is always guaranteed or would never be
guaranteed. Without assumption (A3), the sender and receiver are able to communicate Θ(

√
n log n) bits reliably and covertly,

breaking the square-root law [7, Theorem 7].

B. Code and Mismatched decoder

A code C of blocklength n consists of a message set M, a shared key set K, a collection of length-n codewords
{x(m, k)}m∈M,k∈K (called the codebook), and a encoder f : M × K → Xn that maps the message-key pair (m, k) to
x(m, k). The channel laws corresponding to n channel uses are denoted by W⊗nY |X(y|x) ,

∏n
i=1WY |X(yi|xi) and W⊗nZ|X(z|x) ,∏n

i=1WZ|X(zi|xi). Upon receiving y ∈ Yn and based on the knowledge of the shared key k ∈ K, the decoder outputs the
message M̂ such that

M̂ = arg max
m∈M

qn(x(m, k),y), where qn(x(m, k),y) =

n∏
i=1

q(xi(m, k), yi), (5)

and q : X × Y → (0,∞) is the given decoding metric. When there is a tie, the decoder simply declares an error.

Remark 1. For simplicity, we consider the setting in which q(x, y) takes on values on the positive real line, while some other
works may allow q(x, y) to only be non-negative. This helps us to avoid some complicated special cases that arise in covert
communication. For example, if there exists a y ∈ Y such that P1(y) > 0, q(1, y) > 0 and q(0, y) = 0, the sender and receiver
can adopt the scheme described in [7, Appendix G] to communicate Θ(

√
n log n) bits of message over n channel uses—this

breaks the square-root law for covert communication, and the coding rate (measured according to Definition 3) would become
infinity.

C. Reliability and covertness criteria

In this work, we adopt the more stringent maximum probability of error to measure the reliability of communication.

Definition 1 (Probabilities of error). When transmitting x(m, k), a decoding error occurs if there exists another codeword
x(m′, k) having a higher value qn(x(m′, k),y). The corresponding probability of error Perr(m, k) is

Perr(m, k) = PW⊗n
Y |X

(
∃m′ 6= m : qn(x(m′, k),Y) ≥ qn(x(m, k),Y)

)
. (6)

The maximal probability of error of the code C, which is maximized over all the message-key pairs (m, k) ∈ M × K, is
defined as Pmax

err (C) , maxm∈M,k∈K Perr(m, k).

As is common in the covert communication literature, we measure the covertness with respect to the warden via a KL
divergence metric. To be specific, when the transmission status Λ = 1 (i.e., communication is taking place), the output
distribution at the warden’s side is denoted by

Q̂nC(z) ,
1

|M||K|
∑
m∈M

∑
k∈K

W⊗nZ|X(z|x(m, k)), ∀z ∈ Zn. (7)

Note that Q̂nC is the distribution induced by the code C and channel WZ|X . When the transmission status Λ = 0, the output
distribution at the warden’s side is Q⊗n0 , since the channel input is always the innocent symbol ‘0’. As shown in Definition 2
below, we require the KL divergence between Q̂nC and Q⊗n0 to be bounded from above by a covertness parameter δ > 0.
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Definition 2 (Covertness). The code is said to be δ-covert if its output distribution Q̂nC satisfies D
(
Q̂nC‖Q

⊗n
0

)
≤ δ.

Remark 2. In addition to the KL divergence metric, another widely used covertness metric is the variational distance metric [1],
[10], [13]–[15]. Both of the two metrics impose stringent constraints on the warden’s estimator, and require that the best
estimator should not outperform random guessing by too much. Besides, other metrics, such as the probability of missed
detection for fixed probability of false alarm [10], have also been studied in the literature. Although this work focuses on the
KL divergence metric, our results can also be extended to other metrics.

D. Covert mismatch capacity

Prior works on covert communication have already shown that, due to the stringent covertness constraint, one can only
transmit Θ(

√
n) bits reliably and covertly over n channel uses (i.e., the square-root law). Thus, it is natural to define the rate to

be the logarithm of the message size |M| normalized by
√
n (rather than n in non-covert communication). Below, we present

the definitions of the achievable rate pair and covert mismatch capacity.

Definition 3. For the given decoding metric q and covertness parameter δ > 0, a rate pair (R,RK) is said to be (q, δ)-achievable
if there exists a sequence of codes with increasing blocklength n such that

lim inf
n→∞

log |M|√
n
≥ R, lim sup

n→∞

log |K|√
n
≤ RK , (8)

lim
n→∞

D
(
Q̂nC‖Q⊗n0

)
≤ δ, lim

n→∞
Pmax
err (C) = 0. (9)

The covert mismatch capacity Cq,δ is defined as the supremum of R over all (q, δ)-achievable rate pairs.

IV. MAIN RESULTS

This section comprises the main results of this work. In Subsections IV-A and IV-B, we respectively present a lower bound
and an upper bound on the covert mismatch capacity Cq,δ . While these bounds do not match in general, Subsection IV-C shows
that they do match when the channel WY |X is a binary-input binary-output channel, and thus we have an exact characterization
of the covert mismatch capacity. In Subsection IV-D, we provide numerical evaluations of our bounds when the channel WY |X
is a binary-input ternary-output channel. In Subsection IV-E, we introduce the problem of covert communication with zero
undetected error, in which the capacity can be characterized based on our bounds derived for mismatched decoding.

Before introducing the results, we first define the weight parameter tδ as

tδ ,

√
2δ

χ2(Q1‖Q0)
, (10)

whose operational meaning is that the average Hamming weight of codewords in any δ-covert code should not exceed tδ
√
n(1+

o(1)). Note that the weight parameter tδ is an increasing function of the covertness parameter δ, and a decreasing function
of χ2(Q1‖Q0). This makes intuitive sense because the average Hamming weight is allowed to be larger if the covertness
constraint is less stringent, or the warden’s observed output distributions Q0 and Q1 become closer to each other.

A. Lower bound

Theorem 1 below presents a single-letter lower bound on the covert mismatch capacity Cq,δ .

Theorem 1 (Lower bound). For the given decoding metric q, any covertness parameter δ > 0, and any pair of BDMCs
(WY |X ,WZ|X), we define

Rq,δ , tδ ·
(

sup
s≥0

EP1

[
log

q(1, Y )s

q(0, Y )s

]
− logEP0

[
q(1, Y )s

q(0, Y )s

])
. (11)

The rate pair (Rq,δ, RK) is achievable for any RK ≥ max
{

0, tδ · D (Q1‖Q0)− Rq,δ

}
. Thus, the covert mismatch capacity

Cq,δ ≥ Rq,δ .

The proof of Theorem 1 is presented in Section V. Some remarks on Theorem 1 are in order.
1) When particularizing the decoding metric q to the channel law WY |X (i.e., q(0, 0) = P0(0), q(0, 1) = P0(1), q(1, 0) =

P1(0), and q(1, 1) = P1(1)), it can be shown that s = 1 maximizes the right-hand side (RHS) of (11) and thus

Rq,δ = tδ · EP1

[
log(P1(Y )/P0(Y ))

]
= tδ · D(P1‖P0). (12)

Recall that the covert capacity for covert communication [6], [7] is also Cδ = tδ · D(P1‖P0). This means that our lower
bound is optimal under the matched case (i.e., the case when the decoding metric matches the channel law).
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2) While the form of Rq,δ in (11) looks like the GMI rate [58], [59] (compared to the LM rate [2]–[5]) in the mismatched
decoding literature5, Rq,δ is actually more similar to the LM rate since its derivation relies on a special sub-class of
constant composition codebooks—the PPM codebook. As we shall see in Subsection IV-C, when the output alphabet Y
is binary, Rq,δ possesses the same property as the LM rate, i.e., it equals either the covert capacity or zero.

3) The choice of RK in Theorem 1 ensures that the size of the whole codebook is at least exp{tδD(Q1‖Q0)
√
n}, which,

from a channel resolvability perspective, is the necessary condition for driving D(Q̂nC‖Q
⊗n
0 ) to be less than δ.

B. Upper bound

In the following, we first introduce the definition of maximal joint conditional distribution (adapted from [12, Definition
1]), and then present a single-letter upper bound on the covert mismatch capacity Cq,δ .

Definition 4 (Maximal joint conditional distribution). For each pair (y, ŷ) ∈ Y × Y , we define

Sq(y, ŷ) ,

{
x ∈ X

∣∣∣x = arg max
x′∈X

q(x′, ŷ)

q(x′, y)

}
. (13)

A joint conditional distribution PY Ŷ |X ∈ P(Y ×Y|X ) is called a maximal joint conditional distribution if PY Ŷ |X(y, ŷ|x) = 0

for all (y, ŷ) ∈ Y × Y and x /∈ Sq(y, ŷ). The set of maximal joint conditional distribution is defined as

Mmax(q) ,
{
PY Ŷ |X ∈ P(Y × Y|X ) : PY Ŷ |X is maximal

}
. (14)

Theorem 2 (Upper bound). For the given decoding metric q, any covertness parameter δ > 0, and any pair of BDMCs
(WY |X ,WZ|X), we define

R̄q,δ , tδ ·

[
min

PY Ŷ |X∈Mmax(q):PY |X=WY |X
D
(
PŶ |X=1‖PŶ |X=0

)]
, (15)

and the covert mismatch capacity Cq,δ ≤ R̄q,δ .

The proof of Theorem 2 is presented in Section VI. From Theorems 1 and 2, it is clear that the covert mismatch capacity
satisfies Rq,δ ≤ Cq,δ ≤ R̄q,δ . Also note that the covert capacity is a trivial upper bound on the covert mismatch capacity, i.e.,
Cq,δ ≤ Cδ , since in the standard covert communication problem, the decoder can be chosen arbitrarily and thus the capacity
can only be higher. Indeed, the upper bound R̄q,δ is in general better than the trivial upper bound Cδ . This is because the set
Mmax(q) contains a joint conditional distribution P̃Y Ŷ |X whose marginal distributions P̃Y |X = P̃Ŷ |X = WY |X , implying

R̄q,δ ≤ tδ · D(P̃Ŷ |X=1‖P̃Ŷ |X=0) = tδ · D(P1‖P0) = Cδ. (16)

As a result, the covert mismatch capacity satisfies Rq,δ ≤ Cq,δ ≤ R̄q,δ ≤ Cδ .

C. Covert mismatch capacity for binary-input binary-output channels

When the channel WY |X between the sender and receiver is a binary-input binary-output channel (i.e., X = Y = {0, 1}),
Theorem 3 below states that the lower bound Rq,δ and upper bound R̄q,δ coincide, and thus we have an exact characterization
of the covert mismatch capacity. Theorem 3 also shows a dichotomy of Cq,δ—it equals either the covert capacity Cδ or zero.
Note that the output alphabet Z at the warden’s side is not necessarily binary.

Theorem 3. Let X = Y = {0, 1}, and without loss of generality we assume the channel WY |X satisfies P0(0) + P1(1) ≥
P0(1) + P1(0).

1) When q(0, 0)q(1, 1) > q(0, 1)q(1, 0), the covert mismatch capacity is Cq,δ = Rq,δ = R̄q,δ = tδ · D(P1‖P0), which also
equals the covert capacity Cδ .

2) When q(0, 0)q(1, 1) ≤ q(0, 1)q(1, 0), we have Cq,δ = Rq,δ = R̄q,δ = 0.

Theorem 3 is proved by evaluating Rq,δ and R̄q,δ for the binary-input binary-output setting, and the details can be found in
Appendix A. In the classical mismatched decoding problem (without covertness constraints), it is also known that the mismatch
capacity exhibits a dichotomy (i.e., equals either the channel capacity or zero) for binary-input binary-output channels [2]. Thus,
Theorem 3 can be viewed as a counterpart of the aforementioned classical result under the covert communication framework.

5We refer the readers to [9, Section 2.3] for a comprehensive survey of the GMI and LM rates in the mismatched decoding problem. Roughly speaking,
the GMI rate is derived using an i.i.d. codebook, while the LM rate is derived using a constant composition codebook. The LM rate is in general larger than
the GMI rate.



7

0 1 2 3 4 5 6 7 8 9 10
u

0

0.05

0.1

0.15

0.2

0.25

0.3

R
a
te

Covert Capacity
Upper Bound
Lower Bound

Fig. 1: Plots of the lower bound, upper bound, and covert capacity for the binary-input ternary-output setting in Example 1

D. Numerical evaluations of the lower and upper bounds when |Y| = 3

When the cardinality of the output alphabet |Y| ≥ 3, the lower and upper bound do not match in general. In the following,
we provide numerical evaluations of Rq,δ and R̄q,δ for a binary-input ternary-output setting.

Example 1 (Binary-Input Ternary-Output). We set the covertness parameter δ = 0.1, and the channels and decoding metric q
to be

WY |X =

[
0.6 0.2 0.2
0.2 0.2 0.6

]
, q =

[
u 1 1
1 1 3

]
, and WZ|X =

[
0.8 0.1 0.1
0.2 0.3 0.5

]
, (17)

where u ∈ R is a variable. In Fig. 1, we plot the lower bound Rq,δ , upper bound R̄q,δ , and covert capacity Cδ as u increases
from 0 to 10. As expected, the lower bound achieves maximum (and also achieves the covert capacity) when u = 3, which
corresponds to the matched case where the decoding metric q is proportional to the channel law WY |X . Besides, we note that
when u < 1, the upper bound R̄q,δ is strictly better than the trivial upper bound Cδ .

E. Covert communication with zero undetected error

In this subsection, we consider the problem of covert communication with zero undetected error. We say an undetected
error occurs if the decoder outputs an incorrect message, and an erasure occurs if the decoder chooses to declare an error.
Since undetected errors are often more harmful, it is of interest to investigate the highest rate at which the undetected error
can be exactly zero and the probability of erasure vanishes as the blocklength grows. This problem is referred to as the zero
undetected error problem or the erasures-only problem. It has been noticed [2] that the erasures-only problem is a special case
of the mismatched decoding problem with decoding metric

q(x, y) =

{
1, if WY |X(y|x) > 0,

ξ, if WY |X(y|x) = 0,
(18)

where ξ ∈ (0, 1) can be chosen arbitrarily. With this decoding metric, the decoder chooses a codeword x if it is the only
codeword satisfying qn(x,y) = 1 (or equivalently, W⊗nY |X(y|x) > 0), and declares an error if there are multiple codewords
satisfying qn(x,y) = 1. Since the correct codeword x always satisfies W⊗nY |X(y|x) > 0, an undetected error would never occur,
and the probability of error in this specific mismatched decoding problem is exactly the probability of erasures. Thus, we
define the covert erasures-only capacity C

(eo)
δ as the covert mismatched capacity when q is particularized to the erasures-only

metric in (18).
For any BDMC WY |X , we define the set D as a collection of symbols y ∈ Y that can only be induced by the innocent

symbol X = 0, i.e., D , {y ∈ Y : P0(y) > 0, P1(y) = 0}. Also note that the set {y ∈ Y : P1(y) > 0, P0(y) = 0} is empty,
since the channel WY |X satisfies the absolute continuity assumption P1 � P0.

Theorem 4. For any covertness parameter δ > 0 and any pair of BDMCs (WY |X ,WZ|X), the covert erasures-only capacity

C
(eo)
δ = tδ · log

(
1

P0(Y \ D)

)
. (19)

Theorem 4 is proved by evaluating the lower and upper bounds for the covert mismatched capacity when particularizing the
decoding metric to (18), and the details are deferred to Appendix B. To the best of our knowledge, a computable expression



8

of erasures-only capacity for standard (non-covert) communication over a BDMC is not known. In contrast, we show that
for covert communication over BDMCs (with the aforementioned absolute continuity assumption), the covert erasures-only
capacity can be precisely characterized by a single-letter expression.

V. PROOF OF THEOREM 1 (LOWER BOUND)

We first introduce our code design and provide a short proof sketch, and defer the detailed analyses to Subsections V-A–V-D.
Let the sizes of the message set and key set to be

log |M|√
n

= Rq,δ − η1, and (20)

log |M|+ log |K|√
n

= max
{
Rq,δ − η1, tδD (Q1‖Q0) + η2

}
, (21)

where η1, η2 ∈ (0, 1) can be made arbitrarily small. Note that no shared key is needed if Rq,δ − η1 ≥ tδD (Q1‖Q0) + η2
(corresponding to the scenario when the channel WZ|X is sufficiently noisy).

For each message-key pair (m, k) ∈M×K, we generate a codeword x(m, k) ∈ Xn independently according to the so-called
PPM distribution Pn,lX (to be described in Subsection V-A below). The code C contains all the codewords {xm,k} for m ∈M
and k ∈ K. For every k′ ∈ K, the corresponding sub-code Ck′ contains all the codewords {x(m, k′)}m∈M indexed by k′, and
its average probability of error P (avg)

err (Ck) and maximal probability of error P (max)
err (Ck) are respectively given by

P (avg)
err (Ck) =

1

|M|
∑
m∈M

Perr(m, k), (22)

P (max)
err (Ck) = max

m∈M
Perr(m, k). (23)

Also note that P (max)
err (C) = maxk∈K P

(max)
err (Ck).

Proof Sketch: While the ultimate goal is to show that limn→∞ P
(max)
err (C) = 0 (i.e., the maximal probabilities of error of

all sub-codes are vanishing), we instead choose to analyze the average probability of error of each sub-code as our first step,
by using a modified random coding union (RCU) bound. The details are provided in Subsection V-B.

Based on a random coding argument, in Subsection V-C we show the existence of a code C = {Ck}k∈K such that

1) The average probabilities of error P (avg)
err (Ck) of all sub-codes are vanishing.

2) Every subset of the codebook6 I ⊂ C with cardinality |I| = n−11|C| satisfies the “resolvability” property—its induced
output distribution (i.e., the distribution induced by the uniformly distributed codewords in I and the channel WZ|X ) is
close to the distribution Pn,lZ (which, to be defined in (26), is induced by the PPM distribution Pn,lX and channel WZ|X ).

The second property is critical for our expurgation argument described below, since it ensures that every subset of the code C
satisfies the desired “resolvability” property (which is the key for achieving covertness).

We then construct a new code C̃ = {C̃k}k∈K from the original code C = {Ck}k∈K, by expurgating n−11|M| of the codewords
that have the highest probabilities of error from each of the sub-code {Ck}k∈K. We show in Subsection V-D that the new
expurgated code C̃ has the following desired properties:

1) The maximal probabilities of error P (max)
err (C̃k) of all sub-code C̃k are vanishing;

2) The output distribution Q̂n
C̃

induced by C̃ satisfies the covertness constraint, i.e., D(Q̂n
C̃
‖Q⊗n0 ) ≤ δ;

3) The message size of each sub-code C̃k is almost as large as that of Ck, i.e.,

lim inf
n→∞

log |C̃k|√
n

= lim inf
n→∞

log |Ck|√
n

= lim inf
n→∞

log |M|√
n

= Rq,δ − η1, (24)

where η1 > 0 can be made arbitrarily small.

Remark 3. It is worth noting that applying the expurgation technique makes the proof of covertness challenging. This is
because although it is relatively standard to prove that the output distribution of the original code C satisfies the covertness
constraint (e.g., through a channel resolvability argument), it is more challenging to do so for the expurgated code C̃ since
its output distribution differs from that of the original code C (due to the expurgation process). To solve this issue, we use
a recently developed result in [10] showing that for every subset of the original code C with a fixed cardinality, its output
distribution satisfies the covertness constraint (as shown in Lemma 2 below). This eventually implies that the expurgated code
C̃ satisfies the covertness constraint.

6With a slight abuse of notation, we use C to denote both the code and the codebook.
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A. Pulse position modulation (PPM)

We now formally introduced the PPM distribution Pn,lX used in our code design. Let the Hamming weight of each codeword

in the codebook be l ,
⌊√

(2δ−n−1/3)n
χ2(Q1‖Q0)

⌋
, and note that limn→∞ l/tδ

√
n = 1. We also define (w, s) as non-negative integers

such that w , bn/lc and r , n− wl. We use x ∈ Xw,y ∈ Yw, z ∈ Zw to denote vectors of length w. Let

PwX(x) ,

{
1/w, if wtH(x) = 1,

0, otherwise,

be the distribution on Xw such that PwX(x) is non-zero if and only if x has Hamming weight one. For each length-n vector
x and each i ∈ [1 : l], we define x(i) , xiw(i−1)w+1 as the length-w subsequence that comprises consecutive elements from
x(i−1)w+1 to xiw. Thus, x can be represented as x = [x(1), . . . ,x(l), xnwl+1], where xnwl+1 is of length r. The PPM distribution
is defined as

Pn,lX (x) ,
l∏
i=1

PwX(x(i)) · 1
{

wtH(xnwl+1) = 0
}
. (25)

That is, we require each generated vector x to contain exactly l ones; in particular, each of the first l intervals [1 : w], [w+ 1 :
2w], . . . , [(l − 1)w + 1 : lw] contains a single one, and the last interval [wl + 1 : n] contains all zeros. The PPM output
distribution Pn,lZ , induced by Pn,lX and the channel WZ|X , takes the form

Pn,lZ (z) ,
∑

x∈Xn

Pn,lX (x)W⊗nZ|X(z|x). (26)

B. Analysis of the average probability of error

We first consider the expected average probability of error (over the codebook generation) for each sub-code Ck, where
k ∈ K. By applying a modified RCU bound that is adapted to the decoding metric q, one can show that for every Ck,

E
(
P (avg)
err (Ck)

)
= E

P
 ⋃
m′∈M\m

{qn(X(m′),Y) ≥ qn(X(m),Y)}
∣∣∣∣X(m),Y

 (27)

≤ E
[
min

{
1, (|M| − 1)× P

(
qn(X̃,Y) ≥ qn(X,Y)

∣∣∣∣X,Y)}] (28)

≤ E

[
min

{
1, |M| × E

[(
qn(X̃,Y)

qn(X,Y)

)s ∣∣∣∣X,Y
]}]

(29)

≤ P

[
log |M|+ logE

[(
qn(X̃,Y)

qn(X,Y)

)s ∣∣∣∣X,Y
]
≥ log λ

]
+ λ (30)

for any s ≥ 0 and λ > 0, where (X,Y, X̃) ∼ Pn,lX (x) ·W⊗nY |X(y|x) · Pn,lX (x̃). Note that

− logE

[(
qn(X̃,Y)

qn(X,Y)

)s ∣∣∣∣X,Y
]

(31)

= − log
∑
x̃

Pn,lX (x̃)

(
qn(x̃,Y)

qn(X,Y)

)s
(32)

= − log
∑
x̃

(
l∏
i=1

PwX(x̃(i)) · 1
{

wtH(x̃nwl+1) = 0
})[ ∏l

i=1 q
w(x̃(i),Y(i))s · qn−wl(x̃nwl+1, Y

n
wl+1)s∏l

i=1 q
w(X(i),Y(i))s · qn−wl(Xn

wl+1, Y
n
wl+1)s

]
(33)

= − log

 l∏
i=1

∑
x̃(i)

PwX(x̃(i))
qw(x̃(i),Y(i))s

qw(X(i),Y(i))s

×
∑
x̃n
wl+1

1
{

wtH(x̃nwl+1) = 0
} qn−wl(x̃nwl+1, Y

n
wl+1)s

qn−wl(Xn
wl+1, Y

n
wl+1)s

 (34)

=

l∑
i=1

− log
∑
x̃(i)

PwX(x̃(i))
qw(x̃(i),Y(i))s

qw(X(i),Y(i))s
− log

qn−wl(0n−wl, Y nwl+1)s

qn−wl(Xn
wl+1, Y

n
wl+1)s

. (35)
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The second term in (35) always equals zero since Xn
wl+1 = 0n−wl with probability one (due to the property of the PPM

distribution Pn,lX ). Thus, it suffices to focus on the first l terms

Si , − log
∑
x̃(i)

PwX(x̃(i))
qw(x̃(i),Y(i))s

qw(X(i),Y(i))s
. (36)

Lemma 1. There exist two constants B and B̄ such that B ≤ Si ≤ B̄ (i.e., Si is bounded), and the expectation of Si satisfies

E(Si) ≥ EP1

(
log

q(1, Y )s

q(0, Y )s

)
− logEP0

(
q(1, Y )s

q(0, Y )s

)
− C0

w
(37)

for some constant C0 > 0.

We prove Lemma 1 in Appendix C. Note that E(Si) is finite since the decoding metric q is only allowed to take on positive
values. By applying Hoeffding’s inequality and choosing λ = exp(−n1/4), one can bound the first term in (30) from above as

P

[
l∑
i=1

Si ≤ log |M| − log λ

]
= P

∑l
i=1 Si
l

− E(Si) ≤

√1 +
n−1/3

2δ − n−1/3
− 1

E(Si)−
η1
√
n

l
+
n1/4

l

 (38)

≤ 2 exp
(
−Θ(
√
δn · η(η1)2)

)
, (39)

where η(η1)→ 0 as η1 → 0. Therefore, for each sub-code Ck, the expected average probability of error satisfies

E
(
P (avg)
err (Ck)

)
≤ 2 exp

(
−Θ(
√
δn · η(η1)2)

)
+ exp(−n1/4) ≤ 2 exp(−n1/4) (40)

for sufficiently large n.

C. Analysis of the randomly generated code C
We first introduce a result showing that, with a positive probability, the randomly generated code C simultaneously satisfies

the two properties mentioned in the beginning of this section.

Lemma 2 (Adapted from Lemma 4 in [10]). For every λ1, λ2, γ > 0, we have that if

1− 1

n
> exp

−|M|
 2λ1λ

2
2

log2
(
λ1|M||K||Zn|
([Pn,l

Z ]min)2

) −Hb(λ1)


 , (41)

where Hb(·) is the binary entropy function, then with a positive probability, the following two events occur simultaneously:
• Event E1: For every sub-codes {Ck}k∈K, the average probabilities of error satisfies

P (avg)
err (Ck) ≤ 2n exp(−n1/4). (42)

• Event E2: For every subset of the codebook I ⊂M×K with cardinality |I| = λ1|M||K|, its induced output distribution
Q̂nI , which takes the form Q̂nI(z) = 1

|I|
∑

(m,k)∈IW
⊗n
Z|X(z|xm,k), satisfies

D
(
Q̂nI‖P

n,l
Z

)
≤ log

(
1 +

1

[Pn,lZ ]min

)
× PPn,l

X W⊗n
Z|X

(
log

W⊗nZ|X(Z|X)

Pn,lZ (Z)
> γ

)
+

exp(γ)

λ1|M||K|
+ λ2. (43)

The proof of Lemma 2 is adapted from that for [10, Lemma 4] with appropriate modifications, and the details are provided
in Appendix D. In the following, we evaluate (41) and (43) by setting λ1 = 1− n−11, λ2 = n−4, and γ = log(|M||K|/n4).
First note that [Pn,lZ ]min ≥ (min{[Q0]min, [Q1]min})n, and the RHS of (41) satisfies

exp

−|M|
 2λ1λ

2
2

log2
(
λ1|M||K||Zn|
([Pn,l

Z ]min)2

) −Hb(λ1)


 ≤ exp

{
− |M| ·

(
C1n

−10 − C2n
−11 log n

) }
(44)

for some constants C1, C2 > 0. Therefore, the condition in (41) holds for sufficiently large n, and there must exist a code
C = {Ck}k∈K, with each |Ck| = |M|, satisfying (42) and (43) simultaneously.

We next evaluate (43). According to [10, Lemma 7], we have

PPn,l
X W⊗n

Z|X

(
log

W⊗nZ|X(Z|X)

Pn,lZ (Z)
> γ

)
≤ exp

{
− [γ − lD(Q1‖Q0)]2

l · (logw)2

}
(45)

≤ exp

{
− [t
√
nD(Q1‖Q0) + η2

√
n− 4 log n− lD(Q1‖Q0)]2

l · (logw)2

}
, (46)
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where (46) is due to the choices of γ and |M||K|. For sufficiently large n, the first term in the RHS of (43) satisfies

log

(
1 +

1

[Pn,lZ ]min

)
× PPn,l

X W⊗n
Z|X

(
log

W⊗nZ|X(Z|X)

Pn,lZ (Z)
> γ

)
(47)

≤
[
(n+ 1) log

1

min{[Q0]min, [Q1]min}

]
× exp

{
− [t
√
nD(Q1‖Q0) + η2

√
n− 4 log n− lD(Q1‖Q0)]2

l · (logw)2

}
(48)

≤ exp
(
−C3

√
n
)
, (49)

for some constant C3 > 0. Thus, for every subset of the codebook |I| ⊂ M×K with cardinality I = (1− n−11)|M||K|, its
induced output distribution Q̂nI satisfies

D
(
Q̂nI‖P

n,l
Z

)
≤ exp

(
−C3

√
n
)

+
exp(log(|M||K|/n4))

(1− n−11)|M||K|
+ n−4 ≤ 3n−4. (50)

D. Analysis of the expurgated code C̃
As described in the beginning of this section, we construct a new code C̃ = {C̃k}k∈K based on the original code C = {Ck}k∈K

that satisfies (42) and (43), by expurgating n−11|M| codewords that have the highest probabilities of error from each of the
sub-code {Ck}k∈K. Since P (avg)

err (Ck) ≤ 2n exp(−n1/4) for every k ∈ K, by Markov’s inequality we have that

P (max)
err (C̃k) ≤ 1

n−11
· 2n exp(−n1/4) = 2n12 exp(−n1/4) (51)

for every k ∈ K. This implies that

lim
n→∞

P (max)
err (C̃) = lim

n→∞
max
k∈K

P (max)
err (C̃k) = 0. (52)

Since the new code C̃ is a subset of the original code C and satisfies |C̃| = (1− n−11)|M||K|, its induced output distribution
Q̂n
C̃

satisfies (50), i.e., D
(
Q̂n
C̃
‖Pn,lZ

)
≤ 3n−4. Following the analysis in [11, Lemmas 4 and 5], one can further show that the

choice of l implies

D
(
Pn,lZ ‖Q

⊗n
0

)
≤ δ − 1

3
n−1/3, and (53)∑

z

(
Q̂nC̃(z)− Pn,lZ (z)

)
log

Pn,lZ (z)

Q⊗n0 (z)
≤ 2n

(
log

1

[Q0]min

)√
D
(
Q̂n
C̃
‖Pn,lZ

)
. (54)

Therefore, the KL divergence between Q̂n
C̃

and Q⊗n0 can be bounded from above as

D
(
Q̂nC̃‖Q

⊗n
0

)
= D

(
Q̂nC̃‖P

n,l
Z

)
+ D

(
Pn,lZ ‖Q

⊗n
0

)
+
∑
z

(
Q̂nC̃(z)− Pn,lZ (z)

)
log

Pn,lZ (z)

Q⊗n0 (z)
≤ δ, (55)

where the last inequality is valid for sufficiently large n. Finally, we note that

lim inf
n→∞

log |C̃k|√
n

= lim inf
n→∞

log |Ck|√
n

= lim inf
n→∞

log |M|√
n

= Rq,δ − η1, (56)

and the proof is completed by taking η1 → 0+.

VI. PROOF OF THEOREM 2 (UPPER BOUND)

Similar to the definition of the maximal joint conditional distributions in Definition 4, below we introduce the definition of
the maximal joint conditional type.

Definition 5 (Maximal joint conditional type). A joint conditional type TY Ŷ |X is called a maximal joint conditional type if

TY Ŷ |X(y, ŷ|x) = 0, for all (y, ŷ) ∈ Y × Y and x /∈ Sq(y, ŷ). (57)

Suppose there exists a δ-covert code C containing |K| sub-codes {Ck}k∈K of size |M|, where log |M|√
n

= R̄q,δ + σ for some

σ > 0. Since the code C satisfies the covertness constraint D(Q̂nC‖Q
⊗n
0 ) ≤ δ, by [10, Eqn. (234)] we know that there exists a

subset of codewords D ⊆ C and a vanishing sequence γn such that

(i) |D| ≥ |M||K|
n

and (ii) max
x∈D

wtH(x)√
n
≤ (1 + γn)tδ. (58)
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For each sub-code Ci, we define CDi , Ci ∩ D as the intersection between Ci and the subset D. By the Pigeonhole principle,
there must exist a subset CDi such that |CDi | ≥ |M|/n and maxx∈CDi wtH(x) ≤ (1 + γn)tδ

√
n. By applying the Pigeonhole

principle again to CDi , one can obtain a constant composition code Ccci ⊆ CDi such that

(i) |Ccci | ≥
|M|

(1 + γn)tδn3/2
and (ii) ∀x ∈ Ccci , Tx(1) = 1− Tx(0) =

t′n√
n

for some 0 ≤ t′n ≤ (1 + γn)tδ. (59)

We denote the type of the codewords in Ccci by P cc, i.e., Tx = P cc for all x ∈ Ccci . Note that P (max)
err (Ci) ≥ P

(max)
err (Ccci ) by

the definition of maximum probability of error, thus it suffices to show that P (max)
err (Ccci ) is bounded away from zero.

If the weight parameter t′n of codewords in Ccci satisfies t′n ∈ o( 1
logn ), then there must exist two identical codewords

x,x′ ∈ Ccci (since the size of the type class
(

n
t′n
√
n

)
is even smaller than the number of codewords in Ccci ), thus Perr(Ccci )

must be bounded away from zero. Therefore, in the following, we only consider the scenario in which t′n /∈ o( 1
logn ), which is

equivalent to saying that lim supn→∞
t′n

1/ logn > 0. This implies that there exists a subsequence of blocklengths {nk}∞k=1 such
that t′nk

log nk > ε for some ε > 0. By passing to a subsequence (as above) if necessary, we can assume that t′n log n is a
convergent sequence and its limit is greater than zero. In the following, we also abbreviate t′n as t′ for notational convenience.

We denote the set of conditional types V ∈ VP cc(Y|X ) that are close to the channel WY |X as

VP cc ,

{
V ∈ VP cc(Y|X ) : ∀y ∈ Y, |V (y|1)− P1(y)| ≤ [P1]maxn−1/8, |V (y|0)− P0(y)| ≤ [P0]max

√
log n

n

}
, (60)

and recall that P0 = WY |X=0 and P1 = WY |X=1.

Lemma 3. For any codeword x ∈ Ccci , with probability at least 1 − 2n−
1
3 [P0]

min

, Bob’s received sequence Y satisfies
TY|x ∈ VP cc .

Lemma 3 can be proved via standard concentration inequalities, and we defer the detailed proof to Appendix E. We
now consider the joint conditional distribution P ∗

Y Ŷ |X
that minimizes (15), and note that its marginal distributions must

satisfy P ∗
Ŷ |X=1

� P ∗
Ŷ |X=0

, since D
(
P ∗
Ŷ |X=1

‖P ∗
Ŷ |X=0

)
would be infinite otherwise. We denote the set of conditional types

V ∈ VP cc
X

(Y|X ) that are close to P ∗
Ŷ |X

as

V̂P cc ,

{
V̂ ∈ VP cc

X
(Y|X ) : ∀ŷ ∈ Y,

∣∣∣V̂ (ŷ|1)− P ∗
Ŷ |X(ŷ|1)

∣∣∣ ≤ [P1]max|Y|
n1/8

+
|Y|2 + |Y|
t′
√
n

,

∣∣∣V̂ (ŷ|0)− P ∗
Ŷ |X(ŷ|0)

∣∣∣ ≤ [P0]max|Y|
√

log n√
n

+
2|Y|2 + |2Y|

n

}
. (61)

Lemma 4 below shows that regardless of the conditional type V ∈ VP cc that Bob’s received sequence Y falls into, there
always exists a maximal joint conditional type V̄Y Ŷ |X such that its marginal conditional types V̄Y |X = V and V̄Ŷ |X ∈ V̂P cc ,
thus V̄Y Ŷ |X is also close to P ∗

Y Ŷ |X
.

Lemma 4. For any conditional type V ′ ∈ VP cc satisfying that V ′(y|x) = 0 if WY |X(y|x) = 0, there exists a maximal joint
conditional type V̄Y Ŷ |X such that its marginal conditional types V̄Y |X = V ′ and V̄Ŷ |X ∈ V̂P cc .

Proof. See Appendix F.

Next, we present a key lemma (Lemma 5) stating that if the size of constant composition code Ccci were too large (as
quantified in (62)), then there would exist a codeword x(m) having a non-vanishing probability of error (under the decoding
metric q), thus P (max)

err (Ccci ) would be non-vanishing. Lemma 5 can be viewed as a strengthened version of [12, Theorem 3],
which was developed by Kangarshahi and Guillén i Fàbregas for the classical mismatched decoding problem.

Lemma 5. If the constant composition code Ccci satisfies that for some integer a ≥ 2, for all x ∈ TP cc and all V̂ ∈ V̂P cc ,

|Ccci | ·
|TV̂ (x)|

|V̂P cc | · |TP ccV̂ |
≥ a2, (62)

where P ccV̂ is the marginal output type induced by P cc and V̂ , then there exists a codeword x(m) ∈ Ccci such that

P
(
M̂ 6= m|M = m,TY|x(m) ∈ VP cc

)
≥ 1− 2

a+ 1
. (63)

Proof. See Appendix G.
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Roughly speaking, the term |TP ccV̂ |/|TV̂ (x)| in (62) corresponds to the mutual information of the conditional type V̂ ∈ V̂P cc ,
thus one can interpret (62) as the condition that the rate exceeds the mutual information. We remark that the key difference
between Lemma 5 and [12, Theorem 3] lies in the condition (62), where [12, Theorem 3] instead requires that

|Ccci | ·
minV̂ ∈V̂Pcc

|TV̂ (x)|

|V̂P cc | ·
(

maxV̂ ∈V̂Pcc
|TP ccV̂ |

) ≥ a2. (64)

In standard (non-covert) communication, the effect of the minimization and maximization over V̂ ∈ V̂P cc is essentially
negligible, thus maxV̂ ∈V̂Pcc

|TP ccV̂ |/minV̂ ∈V̂Pcc
|TV̂ (x)| can approximately be interpreted as the mutual information of any

conditional type V̂ ∈ V̂P cc . However, due to the stringent constraint on the Hamming weight of x in covert communication, the
two quantities |TV̂ (x)| and |TP ccV̂ | have the same first-order term and only differ in the second-order terms. This further implies
that the effect of the minimization and maximization over V̂ ∈ V̂P cc is not negligible, and in fact, the constant composition
code Ccci does not satisfy (64) for any a ≥ 2. To overcome this challenge, we provide a strengthened result in Lemma 5, where
the condition (62) is more relaxed compared to the condition (64) in [12, Theorem 3].

Next, we show that the constant composition code Ccci satisfies Lemma 5 for a = exp((σ/4)n). For V̂ ∈ V̂P cc , we denote
its output types corresponding to X = 0 and X = 1 respectively as V̂0 and V̂1, thus one can show that for any x ∈ TP cc ,∣∣TV̂ (x)

∣∣ ≥ (n+ 1)−|X||Y| exp

{
n

(
t′√
n
H(V̂1) +

(
1− t′√

n

)
H(V̂0)

)}
, and (65)∣∣TP ccV̂

∣∣ ≤ exp

{
nH

(
t′√
n
V̂1 +

(
1− t′√

n

)
V̂0

)}
. (66)

By Taylor expansions and some simple algebras (as detailed in Appendix H), one can show that

H

(
t′√
n
V̂1 +

(
1− t′√

n

)
V̂0

)
− t′√

n
H(V̂1)−

(
1− t′√

n

)
H(V̂0) ≤ t′√

n
D
(
V̂1
∥∥V̂0)+

C4 · (t′)2

n
(67)

for some constant C4 > 0. Since each V̂ ∈ V̂P cc is close to P ∗
Ŷ |X

, we show in Appendix I that there exists a vanishing
sequence µn such that

D
(
V̂1
∥∥V̂0) ≤ D

(
P ∗
Ŷ |X=1

‖P ∗
Ŷ |X=0

)
+ µn. (68)

Thus, by combining (65)-(68) and noting that |V̂P cc | ≤ (n+ 1)|X ||Y|, we have

|Ccci | ·
|TV̂ (x)|

|V̂P cc | · |TP ccV̂ |

≥ |M|
(1 + γn)tδn3/2

exp
{
−t′
√
n
[
D
(
P ∗
Ŷ |X=1

‖P ∗
Ŷ |X=0

)
+ µn

]
− C4 · (t′)2

}
(n+ 1)−2|X ||Y| (69)

= exp
{√

n(R̄q,δ + σ)− t′
√
n
[
D
(
P ∗
Ŷ |X=1

‖P ∗
Ŷ |X=0

)
+ µn

]
− C4 · (t′)2

} (n+ 1)−2|X ||Y|

(1 + γn)tn3/2
(70)

≥ exp
{√

n
[
tδD

(
P ∗
Ŷ |X=1

‖P ∗
Ŷ |X=0

)
+ σ

]
− (1 + γn)tδ

√
n
[
D
(
P ∗
Ŷ |X=1

‖P ∗
Ŷ |X=0

)
+ µn

]
− C4 · (t′)2

} (n+ 1)−2|X ||Y|

(1 + γn)tδn3/2

(71)

≥ exp{(σ/2)
√
n}, (72)

for sufficiently large n. Thus, the constant composition code Ccci satisfies Lemma 5 for a = exp((σ/4)n), and there exists a
codeword x(m) such that

P
(
M̂ 6= m|M = m,Ty|x(m) ∈ VP cc

)
≥ 1− 2

exp((σ/4)n) + 1
. (73)

Finally, the maximum probability of error P (max)
err (Ccci ) can be bounded from below as

P (max)
err (Ccci ) ≥ P(M̂ 6= m|M = m) (74)

≥ P
(
M̂ 6= m|M = m,TY|x(m) ∈ VP cc

)
· P
(
TY|x(m) ∈ VP cc |M = m

)
(75)

≥
(

1− 2

exp((σ/4)n) + 1

)
×
(

1− 2n−
1
3 [P0]

min
)
, (76)

which tends to one as n tends to infinity. This completes the proof of the upper bound.
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APPENDIX A
PROOF OF THEOREM 3

To simplify the expression of the achievable rate Rq,δ , we first define f(s) , EP1

[
log q(1,Y )s

q(0,Y )s

]
− logEP0

[
q(1,Y )s

q(0,Y )s

]
, and note

that Rq,δ = tδ ·
(
sups≥0 f(s)

)
. The derivative of f(s) is

df(s)

ds
=

(
log

q(0, 0)q(1, 1)

q(0, 1)q(1, 0)

)
×

 1

1 + 1−P0(0)
P0(0)

q(0,0)sq(1,1)s

q(0,1)sq(1,0)s

− P1(0)

 . (77)

a) When q(0, 0)q(1, 1) > q(0, 1)q(1, 0): One can check that the derivative
df(s)
ds ≥ 0, when 0 ≤ s < s0,

df(s)
ds = 0, when s = s0,

df(s)
ds ≤ 0, when s > s0,

where s0 =
log P0(0)P1(1)

P0(1)P1(0)

log q(0,0)q(1,1)
q(0,1)q(1,0)

. (78)

Note that s0 is non-negative since the numerator log P0(0)P1(1)
P0(1)P1(0)

≥ 0 when the assumption P0(0) + P1(1) ≥ P0(1) + P1(0)

holds. Thus, f(s) achieves its maximum when s = s0, and

Rq,δ = tδ · f(s0) = tδ · D(P1‖P0). (79)

Next, we analyze the upper bound R̄q,δ in Theorem 2. By noting that Sq(0, 0) = Sq(1, 1) = {0, 1}, Sq(0, 1) = {1}, Sq(1, 0) =
{0}, one can verify that the set of distributions {PY Ŷ |X ∈Mmax(q) : PY |X = WY |X} can be characterized by[

PY Ŷ |X(00|0) = P0(0) PY Ŷ |X(01|0) = 0

PY Ŷ |X(10|0) = r1 PY Ŷ |X(11|0) = P0(1)− r1

]
and

[
PY Ŷ |X(00|1) = P1(0)− r2 PY Ŷ |X(01|1) = r2

PY Ŷ |X(10|1) = 0 PY Ŷ |X(11|1) = P1(1)

]
for r1 ∈ [0, P0(0)] and r2 ∈ [0, P1(0)]. Thus, the marginal distribution PŶ |X takes the form

PŶ |X =

[
P0(0) + r1 P0(1)− r1
P1(0)− r2 P1(1) + r2

]
, (80)

in which the rows represent X and the columns represent Ŷ . Note that

D(PŶ |X=1‖PŶ |X=0) = (P1(0)− r2) log
P1(0)− r2
P0(0) + r1

+ (P1(1) + r2) log
P1(1) + r2
P0(1)− r1

(81)

= D(Bern(P1(0)− r2)‖Bern(P0(0) + r1)) (82)
≥ D(P1‖P0), (83)

where (82) holds since P1(1) + r2 = 1 − (P1(0) − r2) and P0(1) − r1 = 1 − (P0(0) + r1), and (83) can be verified by
calculating partial derivatives with respect to r1 and r2. The equality in (83) is achieved when r1 = r2 = 0. Thus, the upper
bound R̄q,δ = tδ · D(P1‖P0).

b) When q(0, 0)q(1, 1) < q(0, 1)q(1, 0): The second term in (77) is at least P0(0)−P1(0) for all s ≥ 0, and P0(0)−P1(0)

is non-negative when the assumption P0(0) + P1(1) ≥ P0(1) + P1(0) holds. Thus, df(s)
ds ≤ 0 for all s ≥ 0, and

Rq,δ = tδ · f(0) = 0. (84)

Next, we examine the upper bound R̄q,δ . By noting that Sq(0, 0) = Sq(1, 1) = {0, 1}, Sq(0, 1) = {0}, Sq(1, 0) = {1}, one
can check that the set {PY Ŷ |X ∈Mmax(q) : PY |X = WY |X} can be characterized by[

PY Ŷ |X(00|0) = P0(0)− r1 PY Ŷ |X(01|0) = r1
PY Ŷ |X(10|0) = 0 PY Ŷ |X(11|0) = P0(1)

]
and

[
PY Ŷ |X(00|1) = P1(0) PY Ŷ |X(01|1) = 0

PY Ŷ |X(10|1) = r2 PY Ŷ |X(11|1) = P1(1)− r2

]
for r1 ∈ [0, P0(0)] and r2 ∈ [0, P1(1)]. We then have

PŶ |X =

[
P0(0)− r1 P0(1) + r1
P1(0) + r2 P1(1)− r2

]
, (85)

where rows represent X and columns represent Ŷ . Note that the assumption P0(0) +P1(1) ≥ P0(1) +P1(0) implies P0(0) ≥
P1(0), P1(1) ≥ P0(1), and P0(0)− P1(0) = P1(1) + P0(1). Thus, it is valid to set r1 = r2 = P0(0)−P1(0)

2 = P1(1)−P0(1)
2 , in

which case the two rows in (85) are identical, yielding D(PŶ |X=1‖PŶ |X=0) = 0. Therefore, the upper bound R̄q,δ = 0.



15

c) When q(0, 0)q(1, 1) = q(0, 1)q(1, 0): It is clear that df(s)
ds = 0 for all s ≥ 0, thus Rq,δ = tδ · f(0) = 0. To

examine the upper bound R̄q,δ , we first note that Sq(0, 0) = Sq(1, 1) = Sq(0, 1) = Sq(1, 0) = {0, 1}, and thus the set
{PY Ŷ |X ∈Mmax(q) : PY |X = WY |X} can be characterized by[
PY Ŷ |X(00|0) = P0(0)− r1 PY Ŷ |X(01|0) = r1

PY Ŷ |X(10|0) = r′1 PY Ŷ |X(11|0) = P0(1)− r′1

]
and

[
PY Ŷ |X(00|1) = P1(0)− r′2 PY Ŷ |X(01|1) = r′2

PY Ŷ |X(10|1) = r2 PY Ŷ |X(11|1) = P1(1)− r2

]
for r1 ∈ [0, P0(0)], r′1 ∈ [0, P0(1)], r′2 ∈ [0, P1(0)], r2 ∈ [0, P1(1)]. Setting r1 = r2 = P0(0)−P1(0)

2 = P1(1)−P0(1)
2 and

r′1 = r′2 = 0 yields D(PŶ |X=1‖PŶ |X=0) = 0. Therefore, the upper bound R̄q,δ = 0.

APPENDIX B
PROOF OF THEOREM 4

To evaluate the lower bound Rq,δ , we substitute the decoding metric in (18) to the expression in (11), yielding that

Rq,δ = tδ ·

sup
s≥0

∑
y∈Y\D

P1(y) log
q(1, y)s

q(0, y)s
− log

∑
y∈Y

P0(y)
q(1, y)s

q(0, y)s

 (86)

= tδ ·

(
sup
s≥0
− log

[
P0(Y \ D) +

∑
y∈D

P0(y) · ξs
])

(87)

= tδ · log (1/P0(Y \ D)) , (88)

where (87) holds since q(1, y) = q(0, y) = 1 for every y ∈ Y \ D, and q(1, y) = ξ and q(0, y) = 1 for every y ∈ D. This
means that the rate tδ · log (1/P0(Y \ D)) is achievable.

Next, we evaluate the upper bound R̄q,δ in (15). Based on the decoding metric in (18), one can characterize the sets Sq(y, ŷ)
for different pairs (y, ŷ) ∈ Y × Y as follows:
• If y /∈ D and ŷ ∈ D, then Sq(y, ŷ) = {0} and Sq(ŷ, y) = {1};
• If both y /∈ D and ŷ /∈ D, then Sq(y, ŷ) = {0, 1};
• If both y ∈ D and ŷ ∈ D, then Sq(y, ŷ) = {0, 1}.

Given these sets Sq(y, ŷ), one can check that any joint conditional distribution PY Ŷ |X belonging to the set

{PY Ŷ |X ∈Mmax(q) : PY |X = WY |X} (89)

also satisfies the following two properties:∑
ŷ∈Y\D

PŶ |X=1(ŷ) = 1 and
∑

ŷ∈Y\D

PŶ |X=0(ŷ) ≤ P0(Y \ D). (90)

Thus, for any joint conditional distribution PY Ŷ |X belonging to the set in (89), we have

D
(
PŶ |X=1‖PŶ |X=0

)
=
∑
ŷ∈Y

PŶ |X=1(ŷ) log
PŶ |X=1(ŷ)

PŶ |X=0(ŷ)
(91)

=
∑

ŷ∈Y\D

PŶ |X=1(ŷ) log
PŶ |X=1(ŷ)

PŶ |X=0(ŷ)
(92)

= −
∑

ŷ∈Y\D

PŶ |X=1(ŷ) log
PŶ |X=0(ŷ)

PŶ |X=1(ŷ)
(93)

≥ − log
∑

ŷ∈Y\D

PŶ |X=1(ŷ)
PŶ |X=0(ŷ)

PŶ |X=1(ŷ)
(94)

≥ log(1/P0(Y \ D)), (95)

where (92) follows from the first property stated in (90), inequality (94) follows from Jensen’s inequality, and inequality (95)
is due to the second property stated in (90). Moreover, one can check that the following joint conditional distribution P ′

Y Ŷ |X
,

whose non-zero entries are given by

For a specific y∗ /∈ D :
{
P ′
Y Ŷ |X(yy∗|0) = P0(y)

}
y/∈D

,
{
P ′
Y Ŷ |X(yy∗|1) = P1(y)

}
y/∈D

, (96)

For a specific y† ∈ D :
{
P ′
Y Ŷ |X(yy†|0) = P0(y)

}
y∈D

, (97)
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also belongs to the set in (89), and this distribution satisfies

D
(
P ′
Ŷ |X=1

‖P ′
Ŷ |X=0

)
= log(1/P0(Y \ D)). (98)

Combining (95) and (98), we note that the upper bound R̄q,δ exactly equals tδ · log(1/P0(Y \ D)), which matches the lower
bound Rq,δ .

APPENDIX C
PROOF OF LEMMA 1

We first prove that the random variable Si is bounded. By symmetry, one can set X(i) = e1, where ej is a weight-one
length-w vector with the j-th element being 1. We then rewrite Si as

Si = − log

w∑
j=1

1

w

qw(ej ,Y
(i))s

qw(e1,Y
(i))s

= − log

 1

w

w∑
j=1

q(0, Y
(i)
1 )s

q(1, Y
(i)
1 )s

q(1, Y
(i)
j )s

q(0, Y
(i)
j )s

 , (99)

where Y (i)
1 ∼ P1 and Y (i)

j ∼ P0 for 2 ≤ j ≤ w (since X(i) = e1). It is clear that for any realization of Y(i),

− log

[(
max

y:P1(y)>0

q(0, y)s

q(1, y)s

)(
max

y:P0(y)>0

q(1, y)s

q(0, y)s

)]
≤ Si ≤ − log

[(
min

y:P1(y)>0

q(0, y)s

q(1, y)s

)(
min

y:P0(y)>0

q(1, y)s

q(0, y)s

)]
, (100)

which means that Si is bounded since q takes on values on the positive real line.
Next, we calculate the expectation of Si:

E(Si) =
1

w

w∑
k=1

∑
y(i)

W⊗wY |X (y(i)|ek) ·

− log

w∑
j=1

1

w

qw(ej , y
(i))s

qw(ek, y(i))s

 (101)

=
∑
y(i)

W⊗wY |X (y(i)|e1) ·

− log

w∑
j=1

1

w

qw(ej , y
(i))s

qw(e1, y(i))s

 (102)

= −
∑
y
(i)
1

P1(y(i)
1

)
∑

(y(i))w2

P⊗w−10

(
(y(i))w2

)
· log

1

w

w∑
j=1

q(0, y(i)
1

)s

q(1, y
(i)
1 )s

q(1, y(i)
j

)s

q(0, y
(i)
j )s

(103)

=

−∑
y
(i)
1

P1(y(i)
1

) log
q(0, y(i)

1
)s

q(1, y
(i)
1 )s

−
∑
y
(i)
1

P1(y(i)
1

)
∑

(y(i))w2

P⊗w−10

(
(y(i))w2

)
log

1

w

w∑
j=1

q(1, y(i)
j

)s

q(0, y
(i)
j )s

 , (104)

where (102) is due to symmetry. Note that the first term in (104) equals
∑
y P1(y) log q(1,y)s

q(0,y)s . The second term in (104) can
be bounded using Jensen’s inequality as follows:

∑
y
(i)
1

P1(y(i)
1

)
∑

(y(i))w2

P⊗w−10

(
(y(i))w2

)
log

1

w

w∑
j=1

q(1, y(i)
j

)s

q(0, y
(i)
j )s

≤ log

∑
y
(i)
1

P1(y(i)
1

)
∑

(y(i))w2

P⊗w−10

(
(y(i))w2

) 1

w

w∑
j=1

q(1, y(i)
j

)s

q(0, y
(i)
j )s

 (105)

= log

[
w − 1

w

(∑
y

P0(y)
q(1, y)s

q(0, y)s

)
+

1

w

(∑
y

P1(y)
q(1, y)s

q(0, y)s

)]
(106)

≤ log

(∑
y

P0(y)
q(1, y)s

q(0, y)s

)
+
C0

w
(107)

for some constant C0 > 0. Combining (104) and (107), we complete the proof of Lemma 1.
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APPENDIX D
PROOF OF LEMMA 2

First, the probability of E1 can be bounded from below as

P(E1) = P

(⋂
k∈K

{
P (avg)
err (Ck) ≤ 2n exp(−n1/4)

})
(108)

=
[
1− P

(
P (avg)
err (C1) > 2n exp(−n1/4)

)]|K|
(109)

≥
(

1− 1

n

)|K|
, (110)

where (109) holds since the sub-codes are generated independently, and (110) follows from Markov’s inequality and the fact
that E(P

(avg)
err (C1)) ≤ 2 exp(−n1/4). The rest of the proof essentially follows from that of [10, Lemma 4]. As shown in [10,

Eqns.(94)-(100)], the probability of E2 can be bounded from below as

P(E2) ≥ 1− exp

−|M||K|
 2λ1λ

2
2

log2
(
λ1|M||K||Zn|
([Pn,l

Z ]min)2

) −Hb(λ1)


 . (111)

Therefore,

P(E1 ∩ E2) ≥ 1− P(Ec1)− P(Ec2) = P(E1) + P(E2)− 1 (112)

≥
(

1− 1

n

)|K|
− exp

−|M||K|
 2λ1λ

2
2

log2
(
λ1|M||K||Zn|
([Pn,l

Z ]min)2

) −Hb(λ1)


 , (113)

which is positive when the condition in (41) holds.

APPENDIX E
PROOF OF LEMMA 3

Without loss of generality, we consider a specific codeword x ∈ Ccci such that its type Tx = P cc, x1 = · · · = xt′
√
n = 1,

and xt′
√
n+1 = · · · = xn = 0. For every y ∈ Y , the expected value of

∑t′
√
n

j=1 1{(xj , Yj) = (1, y)} is t′
√
nP1(y), and by

applying the Chernoff bound we have that for any ε1 > 0,

P

∣∣∣∣∣∣
t′
√
n∑

j=1

1{(xj , Yj) = (1, y)} − t′
√
nP1(y)

∣∣∣∣∣∣ ≥ ε1t′√nP1(y)

 ≤ 2 exp

{
−1

3
ε21t
′√nP1(y)

}
. (114)

Setting ε1 = n−1/8, we obtain that with probability at least 1− 2 exp
{
− 1

3 t
′n1/4[P1]min

}
,

∣∣TY|x(y|1)− P1(y)
∣∣ =

∣∣∣∣∣∣
∣∣∣∑t′

√
n

j=1 1{(xj , Yj) = (1, y)}
∣∣∣

t′
√
n

− P1(y)

∣∣∣∣∣∣ ≤ P1(y)n−1/8 ≤ [P1]maxn−1/8. (115)

Similarly, for every y ∈ Y , the expected value of
∑n
j=t′
√
n+1 1{(xj , Yj) = (0, y)} is (n− t′

√
n)P0(y), and by applying the

Chernoff bound we have that for any ε2 > 0,

P

∣∣∣∣∣∣
n∑

j=t′
√
n+1

1{(xj , Yj) = (0, y)} − (n− t′
√
n)P0(y)

∣∣∣∣∣∣ ≥ ε2(n− t′
√
n)P0(y)

 ≤ 2 exp

{
−1

3
ε22(n− t′

√
n)P0(y)

}
. (116)

Setting ε2 =
√

(log n)/n, we obtain that with probability at least 1− 2n−
1
3 [P0]

min

,

∣∣TY|x(y|0)− P0(y)
∣∣ =

∣∣∣∣∣∣
∣∣∣∑n

j=t′
√
n+1 1{(xj , Yj) = (0, y)}

∣∣∣
n− t′

√
n

− P0(y)

∣∣∣∣∣∣ ≤ P0(y)

√
log n

n
≤ [P0]max

√
log n

n
. (117)

Combining (115) and (117), we complete the proof of Lemma 3.
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APPENDIX F
PROOF OF LEMMA 4

First, we construct a joint conditional type V̄Y Ŷ |X that corresponds to the joint conditional distribution P ∗
Y Ŷ |X

. For every
x ∈ X and y, ŷ ∈ Y , we set V̄Y Ŷ |X(y, ŷ|x) to be either⌊

nP cc(x)P ∗
Y Ŷ |X

(y, ŷ|x)
⌋

nP cc(x)
or

⌈
nP cc(x)P ∗

Y Ŷ |X
(y, ŷ|x)

⌉
nP cc(x)

(118)

such that
∑
y,ŷ V̄Y Ŷ |X(y, ŷ|x) = 1. By construction, V̄Y Ŷ |X is a maximal joint conditional type, and every pair (y, ŷ) ∈ Y×Y

satisfies ∣∣∣V̄Y Ŷ |X(y, ŷ|x)− P ∗
Y Ŷ |X(y, ŷ|x)

∣∣∣ ≤ 1

nP cc(x)
. (119)

Furthermore, if we consider the marginals of V̄Y Ŷ |X and P ∗
Y Ŷ |X

, we have∣∣∣V̄Y |X(y|x)− P ∗Y |X(y|x)
∣∣∣ ≤∑

ŷ

∣∣∣V̄Y Ŷ |X(y, ŷ|x)− P ∗
Y Ŷ |X(y, ŷ|x)

∣∣∣ ≤ |Y|
nP cc(x)

, (120)

∣∣∣V̄Ŷ |X(ŷ|x)− P ∗
Ŷ |X(ŷ|x)

∣∣∣ ≤∑
y

∣∣∣V̄Y Ŷ |X(y, ŷ|x)− P ∗
Y Ŷ |X(y, ŷ|x)

∣∣∣ ≤ |Y|
nP cc(x)

. (121)

For simplicity we define κn(0) , |Y|
n−t′

√
n

+ [P0]max
√

logn
n and κn(1) , |Y|

t′
√
n

+ [P1]maxn−1/8. Since the conditional type
V ′ ∈ VP cc and by noting that P ∗Y |X = WY |X , we have that for all y ∈ Y ,∣∣V̄Y |X(y|x)− V ′(y|x)

∣∣ ≤ ∣∣V̄Y |X(y|x)−WY |X(y|x)
∣∣+
∣∣WY |X(y|x)− V ′(y|x)

∣∣ ≤ κn(x). (122)

We now construct another joint conditional type VY Ŷ |X as follows:

• For y ∈ Y such that V̄Y |X(y|x) ≤ V ′(y|x), we add non-negative real numbers {ε(x, y, ŷ)}ŷ∈Y to the elements in
{V̄Y Ŷ |X(y, ŷ|x)}ŷ∈Y such that VY Ŷ |X(y, ŷ|x) , V̄Y Ŷ |X(y, ŷ|x) + ε(x, y, ŷ). We choose {ε(x, y, ŷ)}ŷ∈Y in such a way
that (i) 0 ≤ ε(x, y, ŷ) ≤ κn(x), (ii) ε(x, y, ŷ) = 0 if V̄Y Ŷ |X(y, ŷ|x) = 0, and (iii)

∑
ŷ ε(x, y, ŷ) = V ′(y|x)− V̄Y |X(y|x).

• For y ∈ Y such that V̄Y |X(y|x) > V ′(y|x), we add non-positive real numbers {ε(x, y, ŷ)}ŷ∈Y to the elements in
{V̄Y Ŷ |X(y, ŷ|x)}ŷ∈Y such that VY Ŷ |X(y, ŷ|x) , V̄Y Ŷ |X(y, ŷ|x) + ε(x, y, ŷ). We choose {ε(x, y, ŷ)}ŷ∈Y in such a way
that (i) −κn(x) ≤ ε(x, y, ŷ) ≤ 0, (ii) V̄Y Ŷ |X(y, ŷ|x) + ε(x, y, ŷ) ≥ 0 for all ŷ ∈ Y , and (iii)

∑
ŷ ε(x, y, ŷ) = V ′(y|x) −

V̄Y |X(y|x).
The properties of {ε(x, y, ŷ)}ŷ∈Y ensure that (i) VY Ŷ |X is a maximal joint conditional type and (ii) the marginal conditional
type VY |X satisfies

VY |X(y|x) =
∑
ŷ

VY Ŷ |X(y, ŷ|x) = V ′(y|x), ∀x ∈ X , y ∈ Y. (123)

Finally, we examine the other marginal conditional type VŶ |X as follows:∣∣∣VŶ |X(ŷ|x)− P ∗
Ŷ |X(ŷ|x)

∣∣∣ ≤∑
y

∣∣∣VY Ŷ |X(y, ŷ|x)− P ∗
Y Ŷ |X(y, ŷ|x)

∣∣∣ (124)

≤
∑
y

∣∣∣V̄Y Ŷ |X(y, ŷ|x)− P ∗
Y Ŷ |X(y, ŷ|x)

∣∣∣+
∑
y

|ε(x, y, ŷ)| (125)

≤ |Y|
nP cc(x)

+ |Y| · κn(x), (126)

where (126) follows from the inequality in (121) as well as the fact that |ε(x, y, ŷ)| ≤ κn(x). This completes the proof of
Lemma 4.

APPENDIX G
PROOF OF LEMMA 5

We label all the elements in V̂P cc by
{
V̂ 1, V̂ 2, . . . , V̂ |V̂Pcc |

}
. The first step is to show that there exists a codeword x(m) ∈ Ccci

and a collection of sets Bj ⊂ TV̂ j (x(m)) for j ∈ {1, 2, . . . , |V̂P cc |} such that
1) |Bj | ≥ a−1

a

∣∣TV̂ j (x(m))
∣∣;
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2) For all ŷ ∈ Bj , the code Ccci contains a other codewords x′(1), . . . ,x′(a) that have exactly the same conditional type
with x(m), i.e., Tŷ|x′(1) = · · · = Tŷ|x′(a) = Tŷ|x(m).

We prove the above argument by contradiction. Suppose for every x ∈ Ccci , there is a set Ax ⊂ TV̂ j (x) for some j ∈
{1, 2, . . . , |V̂P cc |} such that

1) |Ax| > 1
a

∣∣TV̂ j (x)
∣∣;

2) For all ŷ ∈ Ax, there are at most a−1 other codewords x′(1), . . . ,x′(a−1) ∈ Ccci satisfying Tŷ|x′(1) = · · · = Tŷ|x′(a−1) =
Tŷ|x.

We then partition the constant composition code Ccci into |V̂P cc | disjoint subsets Ccci (j), where Ccci (j) ,
{
x ∈ Ccci : Ax ⊂ TV̂ j (x)

}
.

For every ŷ ∈ TP ccV̂ j , one can prove that it is a member of at most a sets {Ax}x∈Ccci (j) that corresponds to codewords in a
single Ccci (j). This is because if ŷ were belonging to Ax(1)∩Ax(2)∩· · ·∩Ax(a+1) (where x(1),x(2), . . . ,x(a+1) ∈ Ccci (j)),
then such ŷ would satisfy ŷ ∈ Ax(1) but there are a other codewords x(2), . . . ,x(a+ 1) ∈ Ccci such that Ty|x(1) = Tŷ|x(2) =

. . . = Tŷ|x(a+1), thus violating the second property that Ax(1) should satisfy. Then for every j ∈ {1, 2, . . . , |V̂P cc |}, we have

∑
x∈Ccci (j)

|Ax| =
∑

x∈Ccci (j)

∑
ŷ∈TPccV̂ j

1 {ŷ ∈ Ax} =
∑

ŷ∈TPccV̂ j

∑
x∈Ccci (j)

1 {ŷ ∈ Ax} ≤ a×
∣∣TP ccV̂ j

∣∣ . (127)

On the other hand, by the first property of Ax we have

∑
x∈Ccci (j)

|Ax| >
∑

x∈Ccci (j)

1

a

∣∣TV̂ j (x)
∣∣ ≥ ∑

x∈Ccci (j)

|V̂P cc |
|Ccci |

× a×
∣∣TP ccV̂ j

∣∣ (128)

=
|V̂P cc ||Ccci (j)|
|Ccci |

× a×
∣∣TP ccV̂ j

∣∣ . (129)

By the Pigeonhole principle, there must exist a Ccci (j′) (where j′ ∈ {1, 2, . . . , |V̂P cc |}) such that |Ccci (j′)| ≥ |Ccci |/|V̂P cc |, thus

∑
x∈Ccci (j′)

|Ax| > a×
∣∣TP ccV̂ j′

∣∣ . (130)

Therefore, a contradiction for Ccci (j′) arises due to (127) and (130). This means that when (62) holds, there must exist a
“bad” codeword x(m) such that for all conditional type V̂ j ∈ V̂P cc , a large fraction of ŷ sequences in the corresponding type
class cause a type conflict with a other codewords (i.e., there are a codewords x′(1), . . . ,x′(a) satisfying Tŷ|x′(1) = · · · =
Tŷ|x′(a) = Tŷ|x(m)).

The rest of the proof is essentially due to [12]. Now, suppose the aforementioned codeword x(m) is transmitted, and Bob’s
received sequence Y belongs to a conditional type V ∈ VP cc (which occurs with high probability). By Lemma 4, one can
find a maximal joint conditional type VY Ŷ |X such that its marginal conditional types VY |X = V and VŶ |X ∈ V̂P cc . As noted
in [12], any pair of sequences (y, ŷ) in the maximal joint conditional type has the following property.

Claim 1 (Lemma 3 of [12]). If (y, ŷ) ∈ TVY Ŷ |X
(x(m)), and ŷ has a type conflict with another codeword x′ ∈ Ccci , i.e.,

Tŷ|x′ = Tŷ|x(m) = VŶ |X , then qn(x,y) ≤ qn(x′,y).

Claim 1 implies that for any y ∈ TV (x(m)), if one can find a ŷ such that (i) (y, ŷ) ∈ TVY Ŷ |X
(x(m)), and (ii) ŷ has a

type conflict with a other codewords, then the probability of decoding error when receiving y (under the decoding metric q)
is at least a

a+1 . In fact, [12, Lemma 2] shows that at least a−1
a fraction of sequences y ∈ TV (x(m)) satisfies the above two

properties simultaneously.7 Thus, when Bob’s received sequence Y ∈ V for some V ∈ VP cc , we have

P
(
M̂ 6= m|M = m,TY|x(m) = V

)
≥ a− 1

a+ 1
= 1− 2

a+ 1
. (131)

7Roughly speaking, this is because for the “bad” codeword x(m), most sequences (of fraction a−1
a

) in TV
Ŷ |X

have a type conflict with at least a other
codewords.
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APPENDIX H
PROOF OF EQN. (67)

By using Taylor expansions, we have

H

(
t′√
n
V̂1 +

(
1− t′√

n

)
V̂0

)
− t′√

n
H(V̂1)−

(
1− t′√

n

)
H(V̂0)

= −
(

1− t′√
n

)∑
y

V̂0(y) log

[
1− t′√

n
+

t√
n

V̂1(y)

V̂0(y)

]
− t′√

n

∑
y

V̂1(y) log

[
t′√
n

+

(
1− t′√

n

)
V̂0(y)

V̂1(y)

]
(132)

= −
(

1− t′√
n

)∑
y

V̂0(y)

[
t′√
n

V̂1(y)− V̂0(y)

V̂0(y)
+O

(
(t′)2

n

)]

− t′√
n

∑
y

V̂1(y) log

[
V̂0(y)

V̂1(y)

(
1 +

t′√
n

(
1− V̂1(y)

V̂0(y)

))]
(133)

≤ t′√
n
D
(
V̂1
∥∥V̂0)+

C4 · (t′)2

n
(134)

for some constant C4 > 0.

APPENDIX I
PROOF OF EQN. (68)

For simplicity we define τ1n , [P1]
max|Y|
n1/8 + |Y|2+|Y|

t′
√
n

and τ0n , [P0]
max|Y|

√
logn√

n
+ 2|Y|2+|2Y|

n . For each V̂ ∈ V̂P cc , we have

D
(
V̂1
∥∥V̂0) =

∑
ŷ:V̂1(ŷ)≥V̂0(ŷ)

V̂1(ŷ) log
V̂1(ŷ)

V̂0(ŷ)
+

∑
ŷ:V̂1(ŷ)<V̂0(ŷ)

V̂1(ŷ) log
V̂1(ŷ)

V̂0(ŷ)
(135)

≤
∑

ŷ:V̂1(ŷ)≥V̂0(ŷ)

(
P ∗
Ŷ |X(ŷ|1) + τ1n

)
log

P ∗
Ŷ |X

(ŷ|1) + τ1n

P ∗
Ŷ |X

(ŷ|0)− τ0n
+

∑
ŷ:V̂1(ŷ)<V̂0(ŷ)

(
P ∗
Ŷ |X(ŷ|1)− τ1n

)
log

P ∗
Ŷ |X

(ŷ|1) + τ1n

P ∗
Ŷ |X

(ŷ|0)− τ0n
(136)

≤
∑
ŷ∈Y

P ∗
Ŷ |X(ŷ|1) log

P ∗
Ŷ |X

(ŷ|1) + τ1n

P ∗
Ŷ |X

(ŷ|0)− τ0n
+ τ1n

∑
ŷ∈Y

∣∣∣∣∣log
P ∗
Ŷ |X

(ŷ|1) + τ1n

P ∗
Ŷ |X

(ŷ|0)− τ0n

∣∣∣∣∣ , (137)

where (136) follows from the definition of V̂P cc . By applying Taylor expansions, we have

log
P ∗
Ŷ |X

(ŷ|1) + τ1n

P ∗
Ŷ |X

(ŷ|0)− τ0n
≤ log

P ∗
Ŷ |X

(ŷ|1)

P ∗
Ŷ |X

(ŷ|0)
+ C5τ

1
n + C6τ

0
n (138)

for some constants C5, C6 > 0. Combining (137) and (138), we eventually obtain that there exists a vanishing sequence µn
(depending on τ1n and τ0n) such that

D
(
V̂1
∥∥V̂0) ≤ D

(
P ∗
Ŷ |X=1

‖P ∗
Ŷ |X=0

)
+ µn. (139)
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