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Abstract

Motivated by polymer-based data-storage platforms that use chains of binary synthetic polymers as the recording media and
read the content via tandem mass spectrometers, we propose a new family of codes that allows for both unique string reconstruction
and correction of multiple mass errors. We consider two approaches: The first approach pertains to asymmetric errors and it is
based on introducing redundancy that scales linearly with the number of errors and logarithmically with the length of the string.
The construction allows for the string to be uniquely reconstructed based only on its erroneous substring composition multiset.
The key idea behind our unique reconstruction approach is to interleave (shifted) Catalan-Bertrand paths with arbitrary binary
strings and “reflect” them so as to force prefixes and suffixes of the same length to have different weights. The asymptotic code
rate of the scheme is one, and decoding is accomplished via a simplified version of the Backtracking algorithm used for the
Turnpike problem. For symmetric errors, we use a polynomial characterization of the mass information and adapt polynomial
evaluation code constructions for this setting. In the process, we develop new efficient decoding algorithms for a constant number
of composition errors.

Index Terms
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I. INTRODUCTION

Current digital storage systems are facing numerous obstacles in terms of scaling the storage density and allowing for in-
memory based computations [1]. To offer storage densities at nanoscale, several molecular storage paradigms have recently
been put forward in [2]–[6]. One promising line of work with low storage cost and readout latency is the work in [2], which
proposes using synthetic polymers for storing user-defined information and reading the content via tandem mass spectrometry
(MS/MS) techniques. More precisely, binary data is encoded using poly(phosphodiester)s, synthesized through automated
phosphoramidite chemistry in such a way that the two bits 0 and 1 are represented by molecules of different masses that are
stitched together into strings of fixed length. To read the encoded data, phosphate bonds are broken, and MS/MS readers are
used to estimate the masses of the fragmented polymer and reconstruct the recorded string, as illustrated in the simplified
scheme shown in Figure 1. Ideally, the masses of all prefixes and suffixes are recovered reliably, allowing one to read the
message content by taking the differences of the increasing fragment masses and mapping them to the masses of the 0 or 1
symbol. Polymer synthesis is cost- and time-efficient and MS/MS sequencers are significantly faster than those designed for
other macromolecules, such as DNA. Nevertheless, despite the fact that the masses of the polymers can be tuned to allow
for more accurate mass discrimination, polymer-based storage systems still suffer from large read error-rates. This is due to
the fact that MS/MS sequencing methods tend to produce peaks, representing the masses of the fragments that are buried in
analogue noise due to atom disassociation during the fragmentation process and other sources of errors.

In an earlier line of work, the authors of [7] introduced the problem of binary string reconstruction from its substring
composition multiset to address the issue of MS/MS readout analysis. The substring composition multiset of a binary string is
obtained by writing out substrings of the string of all possible lengths and then representing each substring by its composition.
As an example, the string 101 contains three substrings of length one - 1, 0, and 1, two substrings of length 2 - 10 and 01, and
one substring of length three - 101. The composition multiset of the substrings of length one equals {0, 1, 1}, the composition
multiset of substrings of length two equals {0111, 0111} and the composition multiset of substrings of length three equals
{0112}. Note that composition multisets ignore information about the actual order of the bits in the substrings and may hence
be seen as only capturing the information about the “mass” or “weight” of the unordered substrings. Furthermore, the multiset
information cannot distinguish between a string and it’s reversal, as well as some other nontrivial interleaved string settings.
The problem addressed in [7] was to determine for which string lengths one can guarantee unique reconstruction from an
error-free composition multiset, up to string reversal. The main results of [7, Theorem 17, 18, 20] assert that binary strings
of length ≤ 7, one less than a prime or one less than twice a prime are uniquely reconstructable up to reversal.
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Fig. 1: The scheme is adapted from [2]. The top figure depicts a binary string synthesized using phosphoramidite chemistry.
The bottom image is an illustration of peak series or MS Spectrum obtained by MS/MS readout of the digital polymer. The
peak series plots the charge at the detection plates (in eV) against the ratio of the mass number of the ion and its charge
number (m/z). The charge normalization is often removed through calibration thereby allowing one to deal with masses only.
Under ideal conditions, the peaks are supposed to correspond to the masses of string fragments, or more precisely, masses of
prefixes and suffixes of the string. Due to measurement errors, spurious peaks arise and one needs to apply specialized signal
processing techniques to identify the correct peaks.

For our line of work, we will rely on the two modeling assumptions first described in [7]:
Assumption 1. One can infer the composition of a polymer substring from its mass. Assumption 2. When a polymer is broken

down for mass spectrometry analysis, we observe the masses of all its substrings with identical frequency.
The masses of all binary substrings of an encoded polymer may be abstracted by the composition multiset of a string,

provided that Assumption 1 holds. Assumption 2 slightly deviates from practical ion series measurements in so far that the
latter only provides information about the masses of the prefixes and suffixes, while the proposed modification allows one to
observe the masses of all substrings, but without a priori knowledge of their order. Observe that one can make use of platforms
that provide mass information for all substrings but such systems require more than one string disassociation and are hence
are harder to implement and more expensive.

Unlike the work in [7] which has solely focused on the problem of determining under which conditions unique string
reconstruction is possible, we view the problem of multiset composition analysis from a coding-theoretic perspective and ask
the following questions:

Q1. Can one add asymptotically negligible redundancy to information strings in such a way that unique reconstruction is
possible, independent of the length of the strings? Since only strings of specific lengths are reconstructable up to reversals, we
aim to devise an efficiently encodable and decodable scheme that encode all strings of length k ≥ 1 into strings of a larger
length n ≥ k that are uniquely reconstructable for all possible string lengths. Furthermore, we do not allow for both a string
and its reversal to be included in the codebook. One simple means for ensuring that a string is uniquely reconstructable up to
reversal is to pad the string with 0s to obtain the shortest length of the form min{p− 1, 2q − 1}, where p and q primes. For
example, if k > 89693, it is known that there exists a prime p such that k − 1 < p− 1 <

(
1 + 1

ln3 k

)
k − 1. The result only

holds for very large k that are beyond the reach of polymer chemistry. Bertrand’s postulate [8] applies to shorter lengths k > 3
but only guarantees that k − 1 < p− 1 < 2k − 4. This implies a possible coding rate loss of up to 1/2. Note that eliminating
reversals of strings reduces the codebook size by less than a half.

Q2. Can one add asymptotically negligible redundancy to information strings in such a way that unique reconstruction is
possible even in the presence of errors, independent on the length of the strings? We focus on mass error models under which
the composition (mass) of one substring is erroneously interpreted as a different composition (mass). In the asymmetric error
model, no two errors can simultaneously affect the masses of two substrings of length i and k− i+ 1, while in the symmetric
error model such pairs are allowed. Clearly, the two models are the same when only one mass error is present. Furthermore,
asymmetric errors are easily detectable even without added redundancy, while symmetric errors may not be automatically
detectable. Symmetric errors tend to be correlated as they arise during the same fragmentation process, while asymmetric
errors may be independent as they arise during two different fragmentation processes. It is therefore of interest to analyze both
cases.

We answer both questions affirmatively by describing coding schemes that allow for both unique reconstruction and
correction of multiple symmetric and asymmetric mass errors. For the case of asymmetric errors, encoding is performed
by interleaving symmetric strings with shifted Catalan-Bertrand paths while decoding is accomplished through a modification
of the backtracking decoding algorithm described in [7]. For symmetric errors, the proposed encoding and decoding procedures
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use the polynomial factorization approach of [7] and add redundancy in a fashion similar to that included in Reed-Solomon
codes.

Both lines of work extend the existing literature in string reconstruction [9]–[12] and coded string reconstruction [?], [13]–
[15].

The paper is organized as follows. Section II introduces the problem, the relevant terminology and notation. The topic of
reconstruction codes, or code design for unique reconstruction, is addressed in Section III. Asymmetric error-correction codes
with unique reconstruction properties are addressed in Section IV, while symmetric error-correction code constructions are
discussed in Section V. The paper concludes with a discussion of open problems in Section VI.

II. PROBLEM STATEMENT

Let s = s1s2 . . . sk be a binary string of length k ≥ 2. A substring of s starting at i and ending at j, where 1 ≤ i≤j ≤ k,
is denoted by sji , and is said to have composition 0z1w, where 0 ≤ z, w ≤ j − i + 1 stand for the number of 0s and 1s in
the substring, respectively. Let c(sji ) denote the composition of sji , i ≤ j. A composition only conveys information about the
weight of the substring, but not the particular order of the bits. Furthermore, let Cl(s) stand for the multiset of compositions
of substrings of s of length l, 1 ≤ l ≤ k; clearly, this multiset contains k − l + 1 compositions. For example, if s = 100101,
then the substrings of length two are 10, 00, 01, 10, 01, so that C2(s) = {0111, 02, 0111, 0111, 0111}.

The multiset C(s) = ∪kl=1Cl(s) is termed the composition multiset. It is straightforward to see that the composition multisets
of a string s and its reversal, sr = sksk−1 . . . s1, are identical and hence these two strings are indistinguishable based on C(·).
We define the cummulative weight of a composition multiset Cl(s), with compositions of the form 0z1w, where z + w = l,
as wl(s) =

∑
0z1w∈Cl(s) w. Observe that w1(s) = wk(s), as both equal the weight of the string s. More generally, one has

wl(s) = wk−l+1(s), for all 1 ≤ l ≤ k. This assertion can be proved by counting the objects of interest in two different ways.
One may arrange all substrings of length ` row-wise. In this case, the columns represent strings of length k−`+1. The weight
counts of the rows have to be the same as those of the columns, so that w` = wk+1−`.

In our subsequent derivations, we also make use of the following notation. For a string s = s1s2 . . . sk, we let σi =
wt(sisk−i+1) for i ≤ bk2 c, and for odd k, σd k2 e

= wt(sd k2 e), where wt stands for the weight of the string. For our running
example s = 100101, σ1 = 2, while σ2 = 0. We use Σd

k
2 e to denote the sequence (σi)i∈[d k2 e]

, where [a] = {1, . . . , a}.
Whenever clear from the context, we omit the argument s.
The problems of interest are as follows. The first problem pertains to reconstruction codes: A collection of binary strings of

fixed length is called a reconstruction code if all the strings in the code can be reconstructed uniquely based on their multiset
compositions. We seek reconstruction codes of small redundancy and consequently, large rate.

As part of the second problem, we consider error-correcting reconstruction codes. In this context, one is given a valid
composition multiset of a string s, C(s). Within the multiset C(s), some compositions may be arbitrarily corrupted to a
composition of the same length. We refer to such errors as composition errors. For example, when s = 100101, the multiset
C2(s) = {0111, 02, 0111, 0111, 0111} may be corrupted to C̃2(s) = {02, 02, 0111, 0111, 0111}, in which case we have a single
composition error.

For the case where multiple composition errors may occur so that the symmetric difference between C(s) and C̃(s), denoted
C(s) 4 C̃(s) may contain more than one element, we will call the errors as asymmetric if the following condition holds:
For each i ∈ {1, 2, . . . , bn2 c}, if

∣∣∣Ci(s)4 C̃i(s)
∣∣∣ 6= 0, then

∣∣∣Cn−i+1(s)4 C̃n−i+1(s)
∣∣∣ = 0. In words, this means that the

composition sets Ci(s) and Cn−i+1(s) cannot both be in error. For the case of symmetric errors, this condition need not hold
(so that there are no restrictions on the structure of the composition errors), and asymmetric composition errors are a special
case of symmetric composition errors. For the case where a single composition error occurs between C(s) and C̃(s), the single
composition error is necessarily asymmetric (and therefore also symmetric).

Continuing from our previous example, the multisets C2(s) and C5(s) may be corrupted to C̃2(s) = {02, 02, 0111, 0111, 0111}
and C̃5(s) = {0114, 0312}, in which case we say that we encountered an example of two symmetric composition errors, given
that the sum of the substrings lengths, 2 and 5, sum up to k + 1 = 7. Note that this example does not represent two
asymmetric composition errors because an error has occurred in a composition of length i = 2 and also in composition of
length n− i+ 1 = 6− 2 + 1 = 5.

Our main results are summarized below.
Theorem 1 establishes the existence of efficiently decodable reconstruction codes that have asymptotic rate one (proved

in Section III), while Theorem 2 establishes similar results for the case of reconstruction codes capable of correcting one
composition error (proved in Section IV-A).

Theorem 1. There exist efficiently encodable and decodable reconstruction codes with information string-length k and
redundancy at most 1

2 log (k) + 5.

Theorem 2. There exist efficiently encodable and decodable reconstruction codes with information string-length k capable of
correcting a single composition error and redundancy at most 1

2 log (k) + 13.
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Theorems 3, 4 and 5 extend the results of Theorem 2 for the case of multiple composition errors, including both the
asymmetric and symmetric case (proved in Sections IV-B, V, and V respectively) . The result in Theorem 3 demonstrates the
existence of explicit asymmetric error-correcting reconstruction codes of asymptotic rate one that can be efficiently reconstructed
for constant t. The result in Theorem 4 applies to symmetric errors. The best known redundancy is achieved using the
construction supporting Theorem 5.

Theorem 3. There exist efficiently encodable and decodable reconstruction codes with information string-length k capable
of correcting a constant number of t asymmetric composition errors and redundancy O (t log k). The decoding algorithm has
complexity O(n3 2t).

Theorem 4. There exist efficient symmetric t-error correcting reconstruction codes with information string-length k, redundancy
O(t2 log k) and decoding complexity O(n3).

Theorem 5. There exist symmetric t-error correcting reconstruction codes with information string-length k, redundancy
O(log k + t) and decoding complexity O(n3+3t).

A. Technical Background
For a string of length k, recall that σi = wt(si, sk+1−i), and that given C1 one can compute w1 =

∑d k2 e
j=1 σj . When i = 2,

the bits at positions 1 and k contribute once to w2, whereas the bits 2, . . . , k − 1 all contribute twice to w2.
Using C2, we can obtain σ1 + 2

∑d k2 e
j=2 σj = w2. Generalizing this result for all Ci, i ≤ dk2 e is straightforward, and gives the

following equalities:
1

i
σ1 +

2

i
σ2 + · · ·+ i− 1

i
σi−1 + σi + σi+1 + · · ·+ σd k2 e

=
1

i
wi. (1)

The above system of dk2 e linear equations with dk2 e unknowns can be solved efficiently. Thus, for all error-free composition
sets, one can find Σd

k
2 e.

Some of our code designs rely on the Backtracking algorithm [7], first used in the context of the Turnpike problem. We
provide an example illustrating the operation of the algorithm. The composition multiset C(s) of a string is given as the input
to the algorithm, and its output is the set of all strings that have the same composition as C(s).

Example 1. Let s = 1010001010. The sequence Σ5 = (σ1 = 1, σ2 = 1, σ3 = 1, σ4 = 1, σ5 = 0) can be uniquely determined
from the composition multiset. This follows from w1 =

∑5
i=1 σi and i w1 −wi =

∑i−1
j=1(i− j)σj , for i = 1, . . . , dk2 e. Solving

the system of equations produces Σ5.
The Backtracking algorithm starts by determining the first and the last bit of the string and then proceeds to place the

remaining bits in an inward fashion. Since σ1 = wt(s1s10) is known, and since a string and its reversal have the same
composition multiset, the first and the last bits are placed arbitrarily. In our example, without loss of generality, the Backtracking
algorithm sets s1 = 1 and s10 = 0.

Let `r be the length of the reconstructed prefix/suffix pair. Backtracking produces a multiset of all compositions that are
jointly determined by the reconstructed prefix and suffix of length `r = 1, s11 = 1, s1010 = 0 and Σ5. Denote this multiset by
T`r=1.

Note that σ5 = 0 implies that the composition of s65 is 02. Similarly, σ4 = 1 and σ5 = 0 imply that the composition of s74
is 031. Thus, using the information in Σ5 alone one can reconstruct the following compositions: 0614, 0513, 0412, 0311, 02.
Note that compositions of substrings of the form sji can be reconstructed provided that i, j satisfy: (1) i≤j ≤ `r or (2)
k + 1 − `r ≤ i≤j or (3) i ≤ `r + 1 and j ≥ k − `r. Thus, the composition 0514 of s91 and the composition 0613 of s102 can
both be reconstructed as well. Consequently, T1 = {0614, 0514, 0613, 0513, 0412, 0311, 02, 0, 1}.

In the next step, the Backtracking algorithm tries to determine the bits s2 and s9. First, recall that σ2 = 1 is known. The
algorithm determines the compositions of the two longest substrings in the multiset C \ T1 to be {0513, 0513}. Observe that
these compositions must be those of the substrings s81 and s103 (although inconsequential for this example, it is still important
to note that in general one does not know which one of the two largest compositions in C \ T1 correspond to the prefix).
Hence, the compositions of the prefix-suffix pair {s21, s109 } equal {01, 01}.

Since the weight of the reconstructed prefix is not equal to the weight of the reconstructed suffix, i.e., wt(s11) = 1 6= 0 =
wt(s1010), the Backtracking algorithm outputs s2 = 0, s9 = 1. This follows due to the fact that given that the reconstructed
prefix-suffix pair have a weight mismatch, setting (s2 = 0, s9 = 1), or setting (s2 = 1, s9 = 0) leads to different prefix-
suffix compositions. As a result, {12, 02} 6= {01, 01}. The algorithm completes this iteration by updating T to T`r=2 =
{0614, 0514, 0613, 0513, 0513, 0513, 0413, 0512, 0412, 0311, 02, 01, 01, 0, 1, 0, 1}.

In the next iteration, following the same steps described above, the compositions of the prefix-suffix pair of length 3 are found
to be {012, 021}. However, since wt(s21) = wt(s109 ), the Backtracking algorithm cannot determine the bits s3, s8. Thus, whenever
wt(s`r1 ) = wt(skk+1−`r ) and σ`+1 = 1, the algorithm guesses the bits s`r+1, sn−`r . However, if wt(s`r1 ) = wt(skk+1−`r ) and
σ`+1 ∈ {0, 2}, then the reconstruction of bits s`r+1 and sn−`r is straightforward. For example, guessing that s3 = 0, and
s7 = 1 leads to an error. The error is detected by encountering a multiset T`r that is incompatible with the composition
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multiset C of the given string. Upon detection of an error, the algorithm backtracks to the last position where it guessed the bit
assignment, changes its guess and restarts the algorithm from that iteration. In our example, this leads to s3 = 1 and s8 = 0,
and one hence obtains the reconstructed string 1010001010.

The complexity of the Backtracking algorithm is summarized in the following theorem.

Theorem. [7, Theorem 32] Let

`s
def
= |{i ≤ bn

2
c : wt(si1) = wt(snn+1−i) and si+1 6= sn−i}|,

Es
def
= {v : C(v) = C(s)}, `∗s

def
= max

u∈Es

`u.

For a given input C(s) and `s, the Backtracking algorithm outputs a set of strings that contains s in time O(2`sn2 log (n)).
Furthermore, Es can be recovered in time O(2`

∗
sn2 log (n)).

If a string has a length that does not allow for unique reconstruction up to reversal, the algorithm returns a set of strings
and in the process backtracks multiple times. Backtracking is possible even when the string is uniquely reconstructable, but
a condition that ensures that the algorithm does not backtrack is that no prefix has a matching suffix of the same length and
same weight. If the algorithm does not backtrack, the string has to be unique. This observation is crucial for our subsequent
constructions and it motivates the use of Catalan-Bertrand paths discussed in what follows.

Theorem 6. (Whitworth [1878] , Bertrand [1887]) Among all strings comprising of a 0s and b 1s, where a ≥ b, there are(
a+b
a

)
−
(
a+b
a+1

)
strings in which every prefix has at least as many 0s as 1s. Note that when a = b = h,(

a+ b

a

)
−
(
a+ b

a+ 1

)
=

1

h+ 1

(
2h

h

)
= Ch.

The number Ch is known as the hth Catalan number. Note that the central binomial coefficient
(
2h
h

)
also counts the number

of strings of length 2h whose every prefix has at least as many 0s as 1s. Furthermore, note that the scaled central binomial
coefficient 1

2

(
2h
h

)
counts the number of strings of length 2h whose every prefix contains strictly more 0s than 1s.

The second part of Theorem 6 is proved in Appendix A.
Strings that have the property that their every prefix contains strictly more 0s than 1s are henceforth referred to as Catalan-

Bertrand strings.
We also find the following bounds on the central binomial coefficient useful in our subsequent derivations.

Proposition 1. The central binomial coefficient may be bounded [16] as:

22h√
π(h+ 1)

≤
(

2h

h

)
≤ 22h√

πh
, ∀h ≥ 1. (2)

III. RECONSTRUCTION CODES

We describe next a family of efficiently encodable and decodable reconstruction codes that map strings of any length k into
strings of length n ≤ k + 1

2 log (k) + 5.
Recall that for a given string of length n, the system of dn2 e linear equations with dn2 e unknowns given by (1) can be solved

efficiently. Thus, for all error-free composition sets, one can find Σd
n
2 e. Therefore, the problem of interest is to determine s

given Σd
n
2 e and C(s). Note that when wt(si1) 6= wt(snn+1−i), [7, Lemma 31] asserts that C(s), si1, and snn−i+1 determine the

ordered pair (si+1, sn−i).
The previous lemma [7, Lemma 31] will be used to guide our construction of a reconstructible code based on Catalan-

Bertrand strings. We proceed as follows. Let I ⊆ [n]. The string formed by concatenating bits at positions in I in-order is
denoted by sI . We define a reconstruction code SR(n) of even length n as follows:

SR(n) ={s ∈ {0, 1}n, s1 = 0, sn = 1, and (3)
∃ I ⊆ {1, 2, . . . , n− 1, n} such that

for all i ∈ I, si 6= sn+1−i,

for all i 6∈ I, si = sn+1−i,

s[n2 ]∩I is a Catalan-Bertrand string.}

For odd n, we define the codebook as

SR(n) = ∪s∈SR(n−1){s
n−1
2

1 0 sn−1n+1
2

, s
n−1
2

1 1 sn−1n+1
2

}.

The following proposition is an immediate consequence of the above construction.
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Lemma 1. Consider a string s ∈ SR(n). For all prefix-suffix pairs of length 1 ≤ j ≤ n
2 , one has wt(sj1) 6= wt(snn+1−j).

The proof of Theorem 1 follows from the fact that SR(n) is a reconstruction code, which may be easily established from
the guarantees for the Backtracking algorithm and Lemma 1.

For n even, the size of SR(n) may be bounded as:

|SR(n)| =
n
2−1∑
i=0

(n
2 − 1

i

)
2

n
2−1−i

(
i

b i2c

)
≥ 2n−3√

πn
.

The first equality follows from the description of the codebook, while the second inequality follows from Proposition 1 and the
binomial theorem. For odd n, |SR(n)| = 2|SR(n−1)| ≥ 2n−3

√
πn
. Further details are provided in Apprendix B. As 2k ≤ |SR(n)|,

simple algebraic manipulation reveals that the redundancy of the reconstruction code for information lengths k is at most
1/2 log (k) + 5 for all k ≥ 8.

Given an information string of length k, the encoding algorithm returns a reconstructable string of length n. The encoding
algorithm that accompanies our reconstruction codebook (a bijective map between the set of all information strings of length k
and a subset of the reconstructable strings of length n) can be implemented using simple lexicographical rankings of Catalan-
Bertrand strings and symmetric strings. This encoding technique requires O(n2) time (see Appendix C for details). However,
as described in [17], there exist other ordering-based constructions for Catalan strings that may be used to further increase
the efficiency of the encoding algorithm. The Backtracking algorithm reconstructs the coded string in O(n3) time. The coded
string is then mapped to the information string via the inverse encoding map, which takes an additive O(n2) time. Thus, the
overall reconstruction time remains O(n3). This concludes the proof of Theorem 1.

IV. ERROR-CORRECTING RECONSTRUCTION CODES: THE ASYMMETRIC SETTING

For clarity of exposition, we will start with a discussion of single error-correcting reconstruction codes, as they illustrate
the use of Catalan-Bertrand paths and are conceptually easy to extend for the case of multiple composition errors. Our
reconstruction codes with composition error-correcting capabilities are derived using the interleaving procedure described in
the previous section, and they require adding an additional logarithmic number of redundant bits to recover the sequence Σd

n
2 e.

A. Single Error-Correcting Reconstruction Codes

Let SR(n − 2) be the code of odd length n − 2 , dn2 e divisible by three, as described in the previous section. Then, a
single (symmetric or asymmetric) composition error-correcting code of length n, S(1)C (n), can be constructed by adding two
bits to each string in SR(n− 2) and subsequently fixing the value of one additional bit. These three redundant bits allow us
to uniquely recover the sequence Σd

n
2 e in the presence of a single composition error. As will be seen from our subsequent

derivations, given Σd
n
2 e and the erroneous composition set of s, one can reconstruct s.

To prove Theorem 2, let C̃(s) denote the set obtained by introducing a single error in the composition set C(s) of a string
s of length n. Recall that wj stands for the cumulative weight of compositions of length j in C and that wj = wn−j+1. Let
w̃j denote the cumulative weight of compositions in C̃j . It is straightforward to prove the following proposition.

Proposition 2. Let j ∈
[
dn2 e

]
. Then,

wj=jw1 −
j−1∑
i=1

i σj−i,

which implies

jw1 −
j−1∑
i=2

i σj−i ≤ wj ≤ jw1 −
j−1∑
i=2

i σj−i + 2.

Proof. Note that wj =
∑j−1
i=1 iσi +

∑dn2 e
i=j jσi. Since w1 =

∑dn2 e
i=1 σi, we have

wj =σ1 + 2σ2 + · · ·+ (j − 1)σj−1 + j

dn2 e∑
i=j

σj

=j

dn2 e∑
i=1

σi

− σj−1 − 2σj−2 − · · · − (j − 1)σ1.

=jw1 −
j−1∑
i=1

iσj−i.
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�

This result immediately implies the next proposition.

Proposition 3. Let j ∈
[
dn2 e

]
and suppose that we are given w1, σ1, . . . , σj−2. Then, the value wj mod 3 uniquely determines

wj .

We also need the following three propositions.

Proposition 4. Given wt(s) mod 2, w̃n and w̃1, one can recover w1.

Proof. If w̃n = w̃1, then clearly w1 = w̃n = w̃1. Hence, suppose that w̃n 6= w̃1 and observe that |w̃1 − w1| ≤ 1. The last
inequality follows since at most one composition error is allowed. If w̃1 mod 2 = wt(s) mod 2, then w1 = w̃1; otherwise,
w1 = w̃n. �

Proposition 5. Suppose that n is odd and that either dn2 e + 1 or dn2 e is divisible by 3. Assume that s = s1 . . . sdn2 e . . . sn,
and let s′ = s1 . . . 1− sdn2 e . . . sn. Then,

dn2 e∑
i=1

wi(s) ≡
dn2 e∑
i=1

wi(s′) mod 3.

Proof. Suppose that sdn2 e = 1. Then, the bit sdn2 e contributes dn2 e to wdn2 e and dn2 e − 1 to wdn2 e−1.
In summary, if sdn2 e = 1, then

dn2 e∑
i=1

wi(s) =

dn2 e∑
i=1

wi(s′) +
dn2 e (dn2 e+ 1)

2
.

The result follows if either dn2 e+ 1 or dn2 e is divisible by 3. �

Proposition 6. For odd n, if s1 . . . sdn2 e . . . sn ∈ SR(n), then s1 . . . 1− sdn2 e . . . sn ∈ SR(n).

The proof of the proposition is straightforward, as it follows from the definition of the reconstruction set SR(n).
For odd n such that dn2 e ≡ 0 mod 3 our code is defined as follows:

S(1)C (n) =
{

s = s1s2s3 . . . sdn2 e . . . sn−2sn−1sn ∈ {0, 1}
n :

s1sn−23 sn = s1s3s4s5 . . . sn−4sn−3sn−2sn ∈ SR(n− 2),

wt(s) mod 2 = 0,

dn2 e∑
i=1

wi(s) ≡ 0 mod 3, where s2 ≤ sn−1
}
.

The size of the code S(1)C (n) is |SR(n−2)|
2 , which follows from the second constraint that s1s3 . . . sn−2sn ∈ SR(n − 2),

along with Proposition 6. To construct a string in S(1)C (n), we first fix s2 and sn−1 so that
∑dn2 e
i=1 wi(s) ≡ 0 mod 3. Then,

we choose sdn2 e to satisfy wt(s) ≡ 0 mod 2. From Propositions 5 and 6, the resulting string belongs to S(1)C (n). The next
proposition shows that for certain codelengths, there exists values for s2 and sn−1 that always allow for the constraints to be
satisfied.

Proposition 7. When dn2 e is divisible by 3, then for any x = x1 . . . xn−2 ∈ {0, 1}n−2, there exists s2sn−1 ∈ {0, 1}2 so that

dn2 e∑
i=1

wi

(
x1s2x2x3 . . . xn−3sn−1xn−2

)
≡ 0 mod 3,

where s2 ≤ sn−1.

Proof: Let s = x1s2x2x3 . . . xn−3sn−1xn−2. Clearly, the elements s2 and sn−1 appear in exactly one composition from
C1(s) (recall that Ci(s) denotes the set of compositions of s of length i). Furthermore, s2 and sn−1 each appear twice in
every set Ci(s), where dn2 e ≥ i ≥ 2. Therefore the symbol s2 appears in

2
(
dn

2
e − 1

)
+ 1
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compositions from C1(s)∪C2(s)∪ · · ·∪Cdn2 e(s), and, by symmetry, the symbol sn−1 appears 2
(
dn2 e − 1

)
+ 1 times as well.

Suppose
∑dn/2e
i=1 wi(s) ≡ a mod 3 when (s2, sn−1) = (0, 0). Then, more generally if (s2, sn−1) = (c1, c2) ∈ {0, 1}2 where

(c1, c2) are not necessarily equal to (0, 0) we have,

dn2 e∑
i=1

wi(s) ≡ a+ c1

(
2
(
dn

2
e − 1

)
+ 1
)

+ c2

(
2
(
dn

2
e − 1

)
+ 1
)

mod 3

≡ a− c1 − c2 mod 3.

Since for the case (c1, c2) = (0, 0),
∑dn2 e
i=1 wi(s) ≡ a mod 3, for (c1, c2) = (0, 1),

∑dn2 e
i=1 wi(s) ≡ a − 1 mod 3, and for

(c1, c2) = (1, 1),
∑dn2 e
i=1 wi(s) ≡ a− 2 mod 3. This completes the proof.

For the next lemma, recall that C̃(s) is the result of a single composition error in C(s).

Lemma 2. Suppose that s ∈ S(1)C (n) where dn2 e is divisible by 3. Then, given C̃(s), one can recover Σd
n
2 e.

Proof. In order to prove the claim, we show that given C̃(s), one can recover w1, w2, . . . , wn, which we know uniquely
determine Σn/2 according to (1). Let j be such that w̃j 6= w̃n+1−j . Since at most one single composition error is allowed,
there exists at most one such j. It is straightforward to see that due to symmetry, either w̃j 6= wj = wn+1−j or w̃n+1−j 6= wj =
wn+1−j . Since wt(s) mod 2 = 0 by construction, it follows that we can determine w1 based on Proposition 4. In addition, using
the first identity from Proposition 2, it follows that we can recover σ1, σ2, . . . , σj−2. Also, using the constraint

∑dn2 e
i=1 wi(s) ≡

0 mod 3, we can recover wj mod 3. Then, according to Proposition 3, we can recover wj along with w1, . . . , wn. One case
left to consider is when w̃i = w̃n+1−i, for all i ∈ [bn2 c]. In this case, w̃dn2 e 6= wdn2 e. Applying Proposition 3 allows us to
determine wdn2 e for this case as well. This completes the proof. �

Next, recall that Ti stands for the set of compositions of all substrings slj for which j < l ≤ i, or n + 1 − i ≤ j < l, or
j ≤ i+ 1 and n− i ≤ l, or l = n+ 1− j.

Let the two strings s and v be such that sj1 = vj1 and snn+1−j = vnn+1−j and either sj+1 6= vj+1 or sn−j 6= vn−j . Then we
say that the longest prefix-suffix pair shared by the two strings has length j.

Before we proceed to prove that S(1)C (n) is a single error-correcting code, we provide two illustrative examples - one for
the case where the error occurs in a composition of length (size) j ≤ bn2 c, and another for the case where the error occurs in
a composition of length (size) j ≥ dn2 e.

Example 2. Let n = 11 and consider s = 00001111111 ∈ S(1)C (n). Let the composition multiset with one composition error be
C̃(s) = (C(s)∪{14})\{04}. Given C̃(s), by Lemma 2, we can infer Σ6 = (1, 1, 1, 1, 2, 1). The Backtracking algorithm readily
reconstructs up to s1s2s3 = 000, and s9s10s11 = 111. For further details on the Backtracking algorithm, refer to Example 1
and [7]. Next, observe that w4 6= w8, and that the two largest compositions in C̃(s) \T3 = {0413, 17} are compatible with the
reconstructed prefix, suffix and the constraints imposed by Σ6. Thus, the Backtracking algorithms proceeds by reconstructing
s4s8 = 01, and computing T4. Note that for this string, due to the constraints imposed by σ5, and σ6, the string is immediately
reconstructed as 00001111111. The Backtracking algorithm finds that 04 ∈ T4, but 04 6∈ C̃(s). However, this one single
incompatibility is expected in the given error setting. In general, for the case of a single composition error, if the error occurs
in a composition that corresponds to a substring of length ≤ bn2 c, it does not affect the Backtracking algorithm.

Example 3. Let n = 11 and once again consider s = 00001111111 ∈ S(1)C (n). Let the composition multiset with one
composition error be C̃(s) = (C(s) ∪ {016}) \ {17}. Given C̃(s), by Lemma 2, we can infer Σ6 = (1, 1, 1, 1, 2, 1). The
Backtracking algorithm readily reconstructs up to s1s2s3 = 000, and s9s10s11 = 111. Note that w4 6= w8, and that the two
largest compositions in C̃(s) \ T3 equal {0413, 016}, implying s4s8 = 00. Clearly, one of these two compositions is erroneous
as σ4 = 1. Hence, the two possibilities for the bits s4s8 are 10 or 01. If the Backtracking algorithm assigns s1s2s3s4 = 0001,
and s8s9s10s11 = 0111, then note that while T4 contains only one 14, C̃(s) contains four 14. In particular, the number of
distinct elements in the sets C̃(s) and T4 due to incorrect bit assignments is strictly greater than one. Thus, if the Backtracking
algorithm erroneously reconstructs the bits s4s8, it backtracks and assigns s4s8 = 01 instead. As mentioned in Example 2,
due to the constraints imposed by σ5, and σ6, the string is then correctly reconstructed as 00001111111.

Lemma 3. Let s ∈ S(1)C (n). Given C̃(s), one can uniquely reconstruct the string s.

Proof. Let j denote the index of the composition multiset Cj that contains an error. As shown in the example, single composition
errors that occur in a composition of a substring of length j ≤ bn2 c do not affect the reconstruction process, since the
Backtracking algorithm only makes use of information provided by compositions of substrings of length ≥ dn2 e. As the
Backtracking algorithm progresses, the erroneous composition is identified through a comparison of the erroneous observed
composition multiset and the iteratively constructed set T`, as explained in the above examples. Errors that happen for j ≤ bn2 c
are easily identified and automatically corrected by the Backtracking algorithm. From Lemma 2, Σd

n
2 e may be determined in
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an error-free manner. Using the obtained Σd
n
2 e, we run the Backtracking algorithm and in the process, we possibly run into

incompatible compositions for j ≥ dn2 e. Note that when j = dn2 e, the Backtracking algorithm has reconstructed the entire
string. Given an already reconstructed prefix-suffix pair of length i, si1, snn−i+1, we make use of the two largest cardinality
compositions in C̃(s)\Ti to reconstruct the bits si+1 and sn−i. If σi+1 ∈ {0, 2}, si+1 and sn−i can be determined immediately.
Also, given Σd

n
2 e, if the Backtracking algorithm can correctly determine which of the above two compositions corresponds to

a prefix and a suffix, then si+1 and sn−i can be uniquely identified. Otherwise, the Backtracking algorithm halts and performs
a guess. Thus, in summary, an error occurring in a composition in Cj affects the reconstruction of the bits indexed by i + 1
and n− i, where i is such that j + i+ 1 = n.

Consider the case where the incompatibility manifests itself through Ti 6⊂ C̃, where j = n − i − 1. Here, we identify the
element that is in Ti but not in C̃j , and add its weight to w̃j and compare it with w̃n+1−j ; this allows us to identify the
erroneous composition. The assumption is that a composition corresponding to a substring of length j is erroneous. Clearly,
C̃j = (Cj \ {ci1}) ∪ {ci2}, for some compositions indexed by i1 and i2, where ci1 corresponds to the original, correct
composition, while ci2 corresponds to the erroneous composition. Since Ti contains some composition ci3 of a substring of
length j that is not present in C̃j , it must be that ci3 = ci1 . Thus, we have wt(ci2) = w̃j +wt(ci1)− w̃n+1−j and the erroneous
composition can be identified and corrected. Next, suppose on the contrary that Ti ⊂ C̃. In this case, consider the two largest
compositions in C̃ \ Ti. The two largest compositions in C̃ \ Ti are the compositions of a prefix-suffix pair of length j.

Since we have reconstructed the prefix and suffix of length i, and we know that σi+1 = 1, the prefix-suffix pair is either
(si10, 1snn+1−i) or (si11, 0snn+1−i). To show that only one of the constructed prefix-suffix pairs is valid/compatible, it suffices
to show the following: For any two distinct strings s, v ∈ S(1)C (n) that have the same Σd

n
2 e, and are such that the longest

prefix-suffix pairs shared by them is of length i, one has |C(s) \ C(v)| ≥ 3. Note that it now follows from Lemma 2 that
for all strings s ∈ S(1)C (n), Σd

n
2 e can be determined. Thus, if two strings u, v ∈ S(1)C (n) share the same Σd

n
2 e sequence,

and ui+1
1 = si10,unn−i = 1snn+1−i, and vi+1

1 = si11, vnn−i = 0snn+1−i, C̃(u) = C̃(v) only if |C(u) \ C(v)| ≤ 2. Thus,
|C(u) \ C(v)| ≥ 3 implies that C̃(u) 6= C̃(v). Observe that since v ∈ S(1)C (n), the number of 0s in c(si1) is at least by two
larger than the number of 0s in c(snn+1−i).

Let us assume that on the contrary, there are two strings s, v such that |C(s) \ C(v)| ≤ 2, and that they differ only in their
respective Cj sets.

Since the prefixes and suffixes of the strings of length i = n − j − 1 are identical, we let s1, . . . , si and sn+1−i, . . . , sn
denote the first and last i bits of both strings. Let c(s) denote the composition of the string s. Furthermore, let c(sji ) denote
the composition of sji , i ≤ j and let c = c(sn−i−2i+3 ).

When n = 2(i + 1) + 1, the strings differ in two compositions in Cn−1−i due to the assumption that the longest prefix-
suffix pair shared by the two strings s and v is of length i. Since s and v share the same Σd

n
2 e, let sdn2 e = vdn2 e = b.

Therefore, s = si10b1snn+1−i, v = si11b0snn+1−i. Observe that for the cases b = 0 and b = 1, |Cj−1(s) \ Cj−1(v)| ≥ 1. Thus,
|C(s) \ C(v)| ≥ 3.

When n ≥ 2(i + 1) + 3 and σi+2 = 1, we let s+ stand for the (i + 2)th bit in the string s, and v+ stand for the (i + 2)th

bit of string v. Figure 2 illustrates this setting. When σi+2 ∈ {0, 2}, we let b denote the (i + 2)th bits of the two strings,
which are identical. Next, we determine conditions under which Cj−1(s) = Cj−1(v). We know that if the compositions of the
two strings differ by three or more, the two strings cannot be confused under the single composition error model. Due to the
constraints imposed by the very construction of the string, we know that |Cj(s) \Cj(v)| = 2. Thus, for the two strings not to
be confusable under the given error model, |C`(s)\C`(v)| > 0 for some ` ∈ [n]\{j}. We show that a specific ` satisfying the
previous inequality equals j − 1, i.e., |Cj−1(s) \ Cj−1(v)| > 0. Note that the compositions of substrings of length n− i− 2
that contain the bits i+ 1, . . . , n− i are identical for the two strings.

Fig. 2: Two strings s and v that satisfy the assumptions used in the proof.

Case 1: σi+2 = 1. With a slight abuse of notation, we choose to write compositions as sets containing both bits and other
compositions. On the left-hand-side of the equation below, the compositions correspond to the substrings of s of length n−i−2
that may differ for the two strings. The right-hand-side of the equation corresponds to the same entities in v. If the equation
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holds, then the multisets Cj−1(s) and Cj−1(v) are equal.
{c(si1), 0, s+, c},
{c(si2), 0, s+, c, 1− s+},
{c(snj+2), 1, 1− s+, c},
{c(sn−1j+2 ), 1, 1− s+, c, s+}


=


{c(si1), 1, v+, c},
{c(si2), 1, v+, c, 1− v+},
{c(snj+2), 0, 1− v+, c},
{c(sn−1j+2 ), 0, 1− v+, c, v+}


The exhaustive case-by-case arguments that show that the above set equality is never true.

Case 2: σi+2 ∈ {0, 2} Similar reasoning leads to a set equality condition in which s+ and v+ are replaced by b. Once
again, it can be shown by an exhaustive case-by-case analysis that the set equality never holds, independently on the choice
of b. This implies that the composition sets Cj−1(s) and Cj−1(v) differ, which in turn implies that the composition multisets
of the two strings are at distance ≥ 3. �

Recall that when dn2 e mod 3 = 0, the size of the code S(1)C (n) is |SR(n−2)|
2 . In addition to the redundancy required to

construct the reconstruction code, we require one bit to ensure n− 3 is even, three bits to fix s2, sn−1 and sdn2 e, and four bits
to ensure that dn2 e is divisible by three. Thus, S(1)C (n) requires 1

2 log k + 13 redundant bits.
The backtracking string reconstruction process based on an erroneous composition set is straightforward: It takes O(n2) time

to compute the Tk multiset, and backtracking performs O(n) steps. Thus, the decoding algorithm can computes the original
string in O(n3) time.

B. Multiple Error-Correcting Reconstruction Codes: The Asymmetric Case

We consider an error model in which each of the multisets Ci∪Cn+1−i, i ∈ [n] is allowed to contain at most one composition
error and the total number of errors is at most t. The codes described in what follows add asymptotically negligible redundancy
to the information strings to correct a fixed number of t asymmetric errors. To construct the codes, we generalize the approach
used in the previous section for correcting a single error.

We start with the description of a t-shifted reconstruction code of even length m, denoted by S(t)R (m) and defined below.

S(t)R (m) ={s ∈ {0, 1}m, st1 = 0, smm−t+1 = 1, and (4)
∃ I ⊆ {t+ 1, . . . ,m− t} such that

∀ i ∈ I, si 6= sm+1−i,

and ∀ i 6∈ I, si = sm+1−i,

s[m/2]∩I is a Catalan-Bertrand string.}

We refer to strings of the form st1s[m/2]∩I as t-shifted Catalan-Bertrand strings. For a s ∈ S(t)R (m), every prefix of length i
where m

2 ≥ i ≥ t+ 1, has at least t+ 1 more 0s than its corresponding suffix of the same length.

Lemma 4. Let s, v ∈ S(t)R (m) share the same Σ
m
2 sequence and satisfy |Cj(s)\Cj(v)| ≤ 2 for all j ∈ [m]. If the longest prefix-

suffix pair shared by s and v is of length i, then their corresponding composition multisets Cm−i−1, Cm−i−2, . . . , Cm−i−t, Cm−i−t−1
each differ in at least 2 compositions.

We defer the proof to Appendix D.

Corollary 1. Let s ∈ S(t)R (m), and let C̃(s) be the composition multiset C(s) corrupted by at most t asymmetric errors. Then,
given the correct Σ

m
2 sequence, the string s can be uniquely reconstructed from C̃(s).

Proof. The result immediately follows from Lemma 4. �

Henceforth, we use S(t)CA(n) to denote an asymmetric t-error-correcting reconstruction code. Strings s ∈ S(t)CA(n) are
constructed by adding n−m redundancy bits to a string s′ ∈ S(t)R (m) of even length in such a way that the Σd

n
2 e sequence

can be recovered even in the presence of t asymmetric errors.

Claim 1. Let s be an arbitrary string of even length n and let C̃(s) denote the composition multiset C(s) corrupted by t
asymmetric errors. Then, at least n

2 − 3t elements in (σ1, σ2, . . . , σn
2

) can be determined based on C̃(s).
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Proof. The claim is a consequence of a simple analysis of the set of linear equations in (1). Clearly, wi is unknown whenever
Ci ∪ Cn+1−i contains an error. Therefore, if we have t errors we only have n

2 − t linear equations that involve n
2 variables.

From this system of n
2 − t linear equations we form a new system of linear equations by subtracting equation (1) with index i

from the equation (1) with index i+1. Note that for all values of i such that wi−1, wi and wi+1 are known, the value of σi can
be found from the new system of equations. Thus, the derived system of equations allows one to infer at least n2 −3t elements
of the Σ

n
2 sequence. Note that all the expressions above assume that n is even. For odd n, dn2 e should be used instead. �

We illustrate the above claim with an example. If w3, w4 and w5 are known then using the linear equations corresponding
to i = 3 and i = 4, one can infer

∑n
2

k=4 σk and using the linear equations corresponding to i = 4 and i = 5, one can infer∑n
2

k=5 σk. Thus, one can determine σ4 =
∑n

2

k=4 σk −
∑n

2

k=5 σk.
Thus, to recover the entire Σ

n
2 sequence, it suffices to take the Σ

n
2 string from a systematic Reed-Solomon code over the

alphabet {0, 1, 2} that can correct up to 3t erasures.
Thus, the codestrings s ∈ S(t)CA(n) are constructed via the following procedure:

• Pick a string s
′

= s
′m

2
1 s

′m
m
2 +1 ∈ S

(t)
R (m).

• Using a systematic Reed-Solomon code over the alphabet {0, 1, 2} that can correct up to 3t erasures, the Σ
m
2 sequence

is mapped to Σ
n
2 . Note that the sequence (σm

2 +1, . . . , σn
2

) is appended to Σ
m
2 .

• A string b of length n−m is created using the sequence (σm
2 +1, . . . , σn

2
) as follows. For all k ∈

[
n−m

2

]
:

bkbn−m+1−k =


00, if σm

2 +k = 0;

01, if σm
2 +k = 1;

11, if σm
2 +k = 2.

• A codestring s ∈ S(t)CA(n) is obtained by concatenating the strings s
′

and b, namely s = s
′m

2
1 bn−m1 s

′m
m
2 +1.

Given C̃(s), the composition multiset C(s) corrupted by t asymmetric errors, the string s can be uniquely reconstructed via
the the following four-step procedure:
• Construct the linear system of equations governed by (1) using the erroneous composition multiset.
• Solve for the σi values that can be inferred from the linear system.
• Infer the correct Σ

n
2 sequence using an efficient polynomial evaluation decoder.

• Reconstruct the string s using the Backtracking algorithm.
The procedure described above requires 1

2 log n+6 redundant bits to ensure the Catalan-Bertrand string structure of even length,
2t redundant bits for the t-shifted structure and 3t log n redundant bits to correct erasures in the Σ

n
2 sequence. Thus, the number

of redundant bits r required is
(
1
2 + 3t

)
log n+ 2t+ 6. Furthermore, r does not exceed

(
1
2 + 3t

)
log k+ 2t+ 7 +

(
1
2 + 3t

)
1
κ ,

where κ is supremum over all κ > 0 such that n ≥ (1 + κ)
((

1
2 + 3t

)
log n+ 2t+ 7

)
.

Recall that the Backtracking algorithm takes O(n3) time to reconstruct the string (it takes O(n2) time to find the longest
compositions in the set T` \C, and reconstruct the bits s`+1sn−`; and, there are n

2 such pairs to be reconstructed). With a slight
abuse of notation, we say that index i corresponds to an asymmetric error if a single composition error occurred in Ci∪Cn+1−i.
Now assume that the indices i, i + 1, . . . , j (j ≥ i) correspond to composition lengths that contain asymmetric errors, and
that, Ci−1, Cn+2−i, Cj+1, Cn−j are error-free. Note that the proof of Lemma 4 established that the Backtracking algorithm
can reconstruct the correct substrings sji s

n+1−i
n+1−j before proceeding to reconstruct the bits sj+1, sn−j . Thus, every contiguous

burst of errors of length t′ causes an additional O(n22t
′
) reconstruction time delay. Thus, the worst case reconstruction time

is O(n22t).
Combining this result with that of Corollary 1 establishes Theorem 3.

V. MULTIPLE ERROR-CORRECTING RECONSTRUCTION CODES: THE SYMMETRIC CASE

We now turn our attention to designing reconstruction codes capable of correcting symmetric composition errors. The
proposed method leverages a polynomial formulation of the composition reconstruction problem first described in [7]. The
main result is a constructive proof for the existence of codes with O(t2 log k) bits of redundancy capable of correcting t
symmetric composition errors.

To this end, we first review the results of [7] describing how to formulate the string reconstruction problem in terms of
bivariate polynomial factorization.

For a string s ∈ {0, 1}n, let Ps(x, y) be a bivariate polynomial of degree n with coefficients in {0, 1} such that Ps(x, y)

contains exactly one term with total degree i ∈ {0, 1, . . . , n}. If s = s1 . . . sn and if
(
Ps(x, y)

)
i

denotes the unique term of

total degree i, then
(
Ps(x, y)

)
0

= 1, and

(
Ps(x, y)

)
i

=

y
(
Ps(x, y)

)
i−1

, if si = 0,

x
(
Ps(x, y)

)
i−1

, if si = 1.
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In words, we use y to denote the bit 0 and x to denote the bit 1 and then summarize the composition of all prefixes of the
string s in polynomial form. As a simple example, for s = 0100 we have Ps(x, y) = 1 + y+ xy+ xy2 + xy3. To see why this
is true, we start with the free coefficient 1, then add y to indicate that the prefix of length one of the string equals 0, add xy
to indicate that the prefix of length two contains one 0 and one 1, add xy2 to indicate that the prefix of length three contains
two 0s and one 1 and so on.

We also introduce another bivariate polynomial Ss(x, y) to describe the composition multiset C(s) in a manner similar to
Ps(x, y). In particular, we now associate each composition with a monomial in which the symbol y represents the bit 0 and
the symbol x with the bit 1. As an example, for s = 0100 we have

C(s) =
{

0, 1, 0, 0, 01, 01, 02, 021, 021, 031
}
,

and
Ss(x, y) = x+ 3y + 2xy + y2 + 2xy2 + xy3,

where the first two terms in Ss(x, y) indicate that the composition multiset contains one substring 1 and three substrings 0;
the next three terms indicate that the string contains two substrings with one 1 and one 0 and one substring with two 0s. The
remaining terms are interpreted similarly.

The key identity from [7] is of the form

Ps(x, y)Ps

(
1

x
,

1

y

)
= (n+ 1) + Ss(x, y) + Ss

(
1

x
,

1

y

)
. (5)

Given a bivariate polynomial f(x, y), we use f∗(x, y) to denote its reciprocal polynomial, defined as

f∗(x, y) = xdegx(f)ydegy(f)f

(
1

x
,

1

y

)
,

where degx(f) denotes the x-degree of f(x, y) and degy(f) denotes its y-degree. For simplicity, we hence write dx = degx(Ps)
and dy = degy(Ps). Using the notion of the reciprocal polynomial we can rewrite the expression in (5) as:

Ps(x, y)P ∗s (x, y) = xdxydy (n+ 1 + Ss(x, y)) + S∗s (x, y). (6)

Note that if C̃(s) is the composition multiset resulting from t symmetric composition errors in C(s) and S̃s(x, y) is the
polynomial representation of C̃(s) while Ss(x, y) is the polynomial representation of C(s), then

S̃s(x, y) = Ss(x, y) + E(x, y),

where E(x, y) has at most 2t nonzero coefficients. Note that the coefficients of E(x, y) lie in {−t,−t+1, . . . ,−1, 0, 1, . . . , t−
1, t}. A composition error corresponds to removing a multinomial et from Ss(x, y) and adding a different multinomial ef .
Thus, −et, and +ef are addends in E(x, y). Since up to t errors are possible, the coefficients of every multinomial in E(x, y)
are integers in {−t,−t + 1, . . . ,−1, 0, 1, . . . , t − 1, t}. If every multinomial removed from or added to Ss(x, y) is unique,
then there are 2t terms in E(x, y). Otherwise, the number of multinomials is less than 2t. Our first result relates S̃s(x, y) and
Ps(x, y).

Claim 2. Suppose that wt(s)mod(2t+ 1) = cw for some cw ∈ {0, 1, . . . , 2t}. Then, given S̃s(x, y) and cw one can generate

Ps(x, y)P ∗s (x, y) + Ẽ(x, y),

where the polynomial Ẽ(x, y) has at most 4t terms.

Proof. First, recall that S̃s(x, y) = Ss(x, y) + E(x, y) where E(x, y) has at most 2t nonzero coefficients. Given cw, we can
easily determine the exact degrees dx and dy of the polynomial encoding of s: In the error-free case, the sum of all compositions
of length 1 (i.e., the sum of the bits of the string) equals wt(s) = dx. When the composition multiset is erroneous, we can
only observe d̃x, which takes a value in the set {dx− t, dx− t+ 1, . . . , dx, dx+ 1, dx+ 2, . . . , dx+ t−1, dx+ t}. Equivalently,
we know that

dx ∈ {d̃x − t, d̃x − t+ 1, . . . , d̃x, d̃x + 1, d̃x + 2, . . . , d̃x + t− 1, d̃x + t}.

Since dx ≡ cw mod (2t+ 1), exactly one value in the set {d̃x − t, d̃x − t+ 1, . . . , d̃x, d̃x + 1, d̃x + 2, . . . , d̃x + t− 1, d̃x + t}
will satisfy this condition. Hence, dw can be inferred exactly, and since dy = n− dx, the same conclusion holds for dy .
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Next, we form Ps(x, y)P ∗s (x, y) as follows:

xdxydy
(
n+ 1 + S̃s(x, y) + S̃s

(
1

x
,

1

y

))
= xdxydy (n+ 1) + xdxydy ×(
Ss(x, y) + E(x, y) + Ss

(
1

x
,

1

y

)
+ E

(
1

x
,

1

y

))
= Ps(x, y)P ∗s (x, y) + xdxydy

(
E(x, y) + E

(
1

x
,

1

y

))
= Ps(x, y)P ∗s (x, y) + Ẽ(x, y),

where Ẽ(x, y) = xdxydy
(
E(x, y) + E

(
1
x ,

1
y

))
has at most 4t nonzero coefficients, which proves the desired result. �

Let Fq be a finite field of order q, where q is an odd prime. Let α ∈ Fq be a primitive element of the field. For a polynomial
f(x) ∈ Fq[x], let R(f) denote the set of its roots. We find the following result useful for our subsequent derivations.

Theorem 7. ( [18, Ch. 5]) Assume that E(x) ∈ Fq[x] has at most t nonzero coefficients. Then, E(x) can be uniquely determined
in O(n2) time given E(αt), E(αt−1), . . . , E(α0), E(α−1), . . . , E(α−t).

A. The Code Construction

Our approach to constructing a symmetric t-error-correcting code of length n, denoted by S(t)CS(n), relies on the fact that
Ẽ(x, y) may be written as:

Ẽ(x, y) =(ai1,1y
ji1,1 + · · ·+ ai1,mi1

y
ji1,mi1 )xi1+

(ai2,1y
ji2,1 + · · ·+ ai2,mi2

y
ji2,mi2 )xi2+

... (7)

(aih,1y
jih,1 + · · ·+ aih,mih

y
jih,mih )xih ,

where each ai,j ∈ {−1, 1}, h ≤ 4t and the total number of nonzero terms is ≤ 4t. Since Ẽ(x, y) is restricted to have at
most 4t nonzero terms, each of the polynomials (ai`,1y

ji`,1 + · · · + ai`,mi`
y
ji`,mi` ) can contain at most 4t nonzero terms.

Consequently, one has mi` ≤ 4t for all ` ∈ {1, 2, . . . , h}.
Based on the previous observations we are ready to introduce our first code construction. We assume that Ps(x, y) is a

bivariate polynomial over the field Fq, where q is the smallest prime ≥ 2n + 1. Clearly, for a Ps(x, y) ∈ I[x, y] over the set
integers I, one can obtain Ps(x, y) ∈ Fq[x, y] by simply reducing Ps(x, y) modulo q.

Lemma 5. Let

C = {s ∈ {0, 1}n s.t. wt(s) mod 2t+ 1 = 0,

{1, α, α2, . . . , α4t} ⊆ R(Ps(x, 1)),

{1, α, α2, . . . , α4t} ⊆ R(Ps(x, α)),

...

{1, α, α2, . . . , α4t} ⊆ R(Ps(x, α
4t))}.

Then, C is a symmetric t-error-correcting code.

Proof. We prove the claim by describing a decoding algorithm that for any given S̃s(x, y), which is the result of at most t
composition errors occurring in Ss(x, y), uniquely recovers Ss(x, y).

Since there are at most t erroneous compositions in S̃s(x, y), one can determine wt(s) by summing up the length-one
compositions (i.e., the bits) in S̃s(x, y) along with the fact that wt(s) mod 2t + 1 = 0. Therefore, from Claim 2, we can
construct the polynomial

F (x, y) = Ps(x, y)P ∗s (x, y) + Ẽ(x, y), (8)

where Ẽ(x, y) has at most 4t nonzero coefficients.
Suppose that β, β′ ∈ Fq . First, observe that if Ps(β, β

′)P ∗s (β, β′) = 0, then Ps(
1
β ,

1
β′ )P

∗
s ( 1

β ,
1
β′ ) = 0 which immediately

follows from the definition of P ∗s (x, y). Thus, if (β, β′) is a root of Ps(·, ·), then so is (β−1, β′−1). Since {1, α, α2, . . . , α4t} ⊆
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R(Ps(α
`1 , y)) for all `1 ∈ {0, 1, . . . , 4t}, and similarly {1, α, α2, . . . , α4t} ⊆ R(Ps(x, α

`2)) for all `2 ∈ {0, 1, . . . , 4t}, it
follows that F (α`1 , α`2) = Ẽ(α`1 , α`2). Hence, we have:

Ẽ(α`1 ,α`2) =(
ai1,1α

`2×ji1,1 + · · ·+ ai1,mi1
α
`2×ji1,mi1

)
α`1×i1

+
(
ai2,1α

`2×ji2,1 + · · ·+ ai2,mi2
α
`2×ji2,mi2

)
α`1×i2

...

+
(
aih,1α

`2×jih,1 + · · ·+ aih,mih
α
`2×jih,mih

)
α`1×ih ,

for `1, `2 ∈ {0, 1, . . . , 4t,−1,−2, . . . ,−4t}. From Theorem 7, for any fixed `2 we know the evaluations Ẽ(α`1 , α`2) for
`1 ∈ {0, 1, . . . , 4t,−1,−2, . . . ,−4t}, so that we can recover the polynomials

Ẽ(x, α`2) =
(
ai1,1α

`2×ji1,1 + · · ·+ ai1,mi1
α
`2×ji1,mi1

)
xi1

+
(
ai2,1α

`2×ji2,1 + · · ·+ ai2,mi2
α
`2×ji2,mi2

)
xi2

...

+
(
aih,1α

`2×jih,1 + · · ·+ ajih,mih
α
`2×jih,mih

)
xih , (9)

using a decoder for a cyclic Reed-Solomon code of complexity O(n2).
Let

Mi`(y) = ai`,1y
ji`,1 + · · ·+ ai`,mi`

y
ji`,mi`

be the polynomial multiplier of xi` in Ẽ(x, y). From the previous discussion, we know that the maximum number of nonzero
terms in Mi`(y) is 4t. Using (9), we can determine Mi`(α

`2) for `2 ∈ {0, 1, 2, . . . , 4t,−1,−2, . . . ,−4t}. Due to Theorem 7,
this implies that we can recover Mi`(y) for ` ∈ {1, 2, . . . , h} once again using a decoder for a Reed-Solomon code. Since

Ẽ(x, y) = Mi1(y)xi1 +Mi2(y)xi2 + · · ·+Mih(y)xih ,

we can determine E(x, y) by noting the following: 1) Given wt(s) mod (2t + 1), we can recover wt(s) from the erroneous
composition multiset, from which dx and dy = n − dx can be determined. 2) Since dx, dy are known, and Ẽ(x, y) =

xdxydy
(
E(x, y) + E

(
1
x ,

1
y

))
, E(x, y) can be determined. Subsequently we can reconstruct Ss(x, y) given S̃s(x, y). �

The following corollary is an immediate consequence of Lemma 5.

Corollary 2. Let

C = {s ∈ {0, 1}n s.t. Ps(α
`1 , α`2) = a`1,`2 ,

wt(s) ≡ a mod 2t+ 1},

for all `1, `2 ∈ {0, 1, . . . , 4t}, a ∈ {0, 1, . . . , 2t}, and where (a`1,`2)4t`1=0,`2=0 is an arbitrary vector from F(4t+1)2

q . Then, C
can correct t symmetric composition errors.

B. A Systematic Encoder Et,n
We construct next a systematic encoder Et,n for the previously proposed codes.
Let r be the number of redundant bits in the proposed code construction. We will show in Theorem 4 that for all n, one

requires a redundancy that does not exceed

4
[
(4t+ 1)2(log(2n+ 1) + 1) + log(2t+ 1)

+ t log
(
(4t+ 1)2(log(2n+ 1) + 1) + log(2t+ 1)

) ]
+

1

2
log(n) + 5.

One can show that r does not exceed 156t2 log 8n. Thus, r = O(t2 log n). Furthermore, r does not exceed 156t2 log 8k +
156t2

(
1
κ

)
, where κ is supremum over all κ > 0 such that n ≥ 156(1 + κ)(t2 log 8n+ 1). To express the redundancy in terms

of the information length k, we upper bound ct2 log n, where c is a constant, as follows. First, we write

ct2 log n = ct2
(

log k + log

(
n− k + k

k

))
.
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Then, we upper bound the term log
(
n−k+k

k

)
using the Taylor series for log(1 + x) and the linear term involved to arrive at

log
(
n−k+k

k

)
< n−k

k . For k0 large enough and for all k ≥ k0, n−kk ct2 can be upper bound by a constant independent of n and
k under the given parameter assumptions.

The encoder Et,n takes as input the string u ∈ {0, 1}n−r̂, where r̂ > 0 is a redundancy to be precisely specified later, and
it produces a string s. The evaluations of the polynomial Ps(x, y) is stored in(

w1, w2, . . . , w r̂
2

)
mod 2,

where we recall that wi stands for the cumulative weight of compositions of length i in C(s).
Let Et : {0, 1}m → {0, 1}m+t logm be a systematic encoder for a code with minimum Hamming distance 2t+1 that inputs a

string of length m and outputs a string of length m+ t logm. We will use this encoder with m = (4t+ 1)2(1 + log(2n+ 1)) +
log(2t+ 1). Clearly, such a code exists since binary BCH codes of odd minimum distance have the desired set of parameters.

Encoder Et,n : {0, 1}n−r̂ → {0, 1}n.

Input String u ∈ {0, 1}n−r̂.
Output Symmetric t-error-correcting codestring s ∈ {0, 1}n.

1) Let α ∈ Fq be a primitive element and let q be an odd prime ≥ 2n+1. For `1, `2 ∈ {0, 1, . . . , 4t}, set a`1,`2 = Pu(α`1 , α`2),
a = (a`1,`2)4t`1=0,`2=0.
Let a = wt(u) mod 2t+ 1.

2) Let s̄ = Et(a, a) ∈ {0, 1} r̂
4 .

3) For j ∈ {1, 2, . . . , r̂2}, define z = (z1 . . . z r̂
2
) as

zj =


∑j−1
i=1 zi mod 2, if j is odd and s̄ j+1

2
= 0,∑j−1

i=1 zi + 1 mod 2, if j is odd and s̄ j+1
2

= 1,

0, if j is even.

4) Set s = 0 u z ∈ {0, 1}n, where 0 is an all-zero string of length r̂
2 .

The t-error-correcting code S(t)CS(n) is generated by the following two-step procedure:
• An information string of length k is first encoded using the reconstruction code SR, resulting in the string u ∈ SR(n− r̂).
• The string u is passed through the encoder Et,n, resulting in the codestring s = Et,n(u) ∈ S(t)CS(n).

Based on the above analysis, we set r̂ to be the smallest integer ≥ r −
(
1
2 log(n) + 5

)
that is divisible by 4.

The redundancy of the code may be calculated as follows:
1) Since q ≥ 2n + 1, every α`1,`2 , `1, `2 ∈ {0, 1, . . . 4t} requires at most 1 + log(2n + 1) (due to the fact that given any

positive integer x, there exits a prime number between x and 2x).
2) Note that a requires log 2t+ 1 bits of redundancy. Thus, r̂4 is at most

(4t+ 1)2(1 + log(2n+ 1)) + log(2t+ 1)

+ t log((4t+ 1)2(1 + log(2n+ 1)) + log(2t+ 1)).

3) As already observed, the reconstructable string u requires at most 1
2 log n+ 5 bits of redundancy.

The redundancy of the encoder Et,n is O(t2 log n) bits.
We find the following claims useful in our subsequent derivations.

Claim 3. At Step 3) of the encoding procedure, for odd j ∈ [ r̂2 ], one has

s̄ j+1
2

=

j∑
i=1

zi mod 2. (10)

This claim obviously follows from the definition of the string z.
Recall next that for a string s ∈ {0, 1}n, its Σd

n
2 e sequence (σ1, σ2, . . . , σdn2 e) ∈ {0, 1, 2}

dn2 e equals σi = si + sn+1−i. As
a result of Step 4) of encoding with Et,n, we have the next result.

Claim 4. For j ∈ [ r̂2 ],

zj = σ r̂
2+1−j .

The next claim connects the quantities wi and s̄, defined in Step 2 of the encoding procedure.

Claim 5. For j ∈ r̂
4 , it holds

w2j ≡ s̄j mod 2.
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Proof. The result is a consequence of the observation that

w2j ≡2jw1 − (2j − 1)σ1 − (2j − 2)σ2 − · · · − σ2j−1 mod 2

≡σ1 + σ3 + · · ·+ σ2j−1 mod 2,

where the first line follows from Equation (1). From Claims 3 and 4, and the previous observation, and the fact that we set
zj = 0 for even values of j in Step 3) of the encoding procedure, we have

w2j ≡
2j−1∑
i=1

σj ≡
2j−1∑
i=1

zj ≡ s̄j mod 2.

�

The next result will be used to prove the main finding regarding symmetric error-correction codes, as stated in Theorem 4.

Lemma 6. The collection of strings

C =
{

s : s = Et,n(u),u ∈ {0, 1}n−r̂
}

constitutes a symmetric t-error-correcting code.

Proof. In order to prove the result, we will describe how to recover Ss(x, y) given S̃s(x, y), where S̃s(x, y) is the result of at
most t composition errors in Ss(x, y) for a codestring generated according to Et,n(u) = s.

We begin by forming the string

w̃ =
(
w̃2, w̃4, . . . , w̃ r̂

2

)
.

One can obtain w̃ from S̃s(x, y) by summing up the 1s in all compositions of length two to get w̃2, summing up the 1s in all
compositions of length four to get w̃4, and so on. For simplicity, let w =

(
w2, w4, . . . , w r̂

2

)
for the string s.

Since there are at most t composition errors in S̃s(x, y), it follows that

dH

(
w mod 2, w̃ mod 2

)
≤ t.

From Claim 5, since w mod 2 belongs to a code with minimum Hamming distance 2t + 1, we can recover w mod 2 from
w̃ mod 2. Then, given w mod 2, we can recover s̄ from Step 2) of the encoding procedure, and from s̄ we can determine
a = wt(u) mod (2t + 1). Using s̄, it is also straightforward to determine z from Step 3) of the encoding procedure. Thus,
wt(z) is determined accurately as well. One can then easily determine the exact (yet potentially erroneous) weight of u, since
wt(u) = wt(s) − wt(z). Given w̃t(s), as determined from the sum of all compositions of substrings of length one, since we
know 1) |

[
w̃t(s)− wt(z)

]
− wt(u)| ≤ t, and 2) a = wt(u) mod (2t + 1) we can infer wt(u) exactly. Subsequently, we can

recover

wt(s) = wt(u) + wt(z),

and from wt(s), we can determine dx and dy , the x and y degrees of the polynomial Ps(x, y).
Next, we turn our attention to recovering the evaluations of the polynomial Ps(α

`1 , α`2) for `1, `2 ∈ {0, 1, . . . , 4t}. These,
along with wt(s), suffice according to Lemma 5 to recover s. From s̄, we can determine Pu(α`1 , α`2) according to Steps 1)
and 2) of the encoding procedure.

Let dx,u = degx(Pu(x, y)) and dy,u = degy(Pu(x, y)).
First, note that

Ps(x, y) = P0(x, y) + y
r̂
2 (Pu(x, y)− 1)

+ xdx,uy
r̂
2+dy,u (Pz(x, y)− 1).

Therefore, since z is already known, we have

Ps(α
`1 , α`2) = P0(α`1 , α`2) + α`2×

r̂
2 (Pu(α`1 , α`2)− 1)

+ α`1×dx,uα`2×(
r̂
2+dy,u) (Pz(α

`1 , α`2)− 1),

The proof of the claim now follows from Corollary 2. �

We are left with the task of reconstructing the string s from its correct composition multiset C(s). Recall that if all pairs
of prefixes and suffixes of the same length are such that their weights differ, the string can be reconstructed efficiently by the
Backtracking algorithm. Also, recall that the string s is obtained by concatenating three strings, i.e., s = 0 u z. The prefix of
length r̂

2 is fixed to be all zeros and can therefore be reconstructed immediately. Lemma 6 allows one to recover the suffix
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z. Since u ∈ SR(n − r̂), every prefix of length ≤ bn2 c has strictly more 0s than its corresponding suffix of the same length.
Thus, the Backtracking algorithm can efficiently reconstruct the correct string s. This establishes the result of Theorem 4.

We conclude our exposition by describing another family of uniquely reconstructable codes that can correct up to t
composition errors in C(s). These codes rely on the use of Catalan paths. Recall that Catalan paths of length 2h may
be represented by binary strings that have the property that every prefix has at least as many 0s as 1s and the weight of the
strings is h.

Let P(2h) ⊂ {0, 1}2h denote the set of Catalan strings of even length 2h. It is well-known that the codebook P(2h) has
approximately 3

2 log h bits of redundancy, which follows directly from the expression for the Catalan number Ch = 1
h+1

(
2h
h

)
.

The main differences between the polynomial construction and the Catalan-based designs are that the former has a larger
order of redundancy (O(t2 log n) compared to O(log n + t)) but also has an efficient decoding algorithm. At this point, no
algorithm scaling efficiently with both n and t is known for the Catalan-based construction.

The basic idea behind the construction is simple and it imposes two constraints on the underlying codestrings:
1) The Catalan string constraint: This constraint requires that the codestrings be Catalan.
2) Parity symbols: The codestrings need to include 4t+ 1 0s in the prefix and 4t+ 1 1s in the suffix.

Intuitively, the fixed prefixes of 0s and suffixes of 1s, as well as the balancing property of Catalan strings ensure that for at
least 4t+ 1 choices of `, the compositions multisets C`(s) and C`(v) of two distinct codestrings s and v differ in at least one
composition.

Throughout our subsequent exposition, due to the heavy use of subscripts and superscripts, we write −i instead of n− i+ 1
for all indices used.

Let

C(n, t) =
{

s ∈ {0, 1}n : s1 . . . s4t+1 = 0 0 . . . 0, (11)

s−4t−1 s−4t . . . s−1 = 1 1 . . . 1,

s4t+2 s4t+3 . . . s−4t−2 ∈ P(n− 2(4t+ 1))
}
,

where n is even.
We show next that C(n, t) is a t symmetric composition error-correcting code with O(log n + t) bits of redundancy. This

redundancy is significantly improved compared to that of the previously described polynomial evaluation construction.
Henceforth, S1 4 S2 = (S1 \ S2) ∪ (S2 \ S1) is used to denote the symmetric difference of two sets S1 and S2.

Theorem 8. The code C(n, t) can correct t composition errors.

Proof. We prove the result by showing that any pair of distinct codestrings s, v ∈ C satisfies

|C(v)4 C(s)| ≥ 4t+ 1,

which implies the desired result.
Suppose that i is the smallest integer such that either si 6= vi or s−i 6= v−i. Since the first and last 4t + 1 bits of each

codestring are identical and since every Catalan string begins with a 0 and ends with a 1, we have i ≥ 4t+ 3.
Next, assume that s−i 6= v−i, si = vi. The cases si 6= vi, s−i = v−i and si 6= vi, s−i 6= v−i can be proven similarly by

considering the reversals of the strings s and v.
Consider the compositions of the following two substrings:

s−i−11 = s1 s2 . . . s−i−1,

v−i−11 = v1 v2 . . . v−i−1.

We claim that wt(s−i−11 ) 6= wt(v−i−11 ), which implies c(s−i−11 ) 6= c(v−i−11 ). This follows due to the Catalan constraint, which
ensures that wt(s) = wt(v), the assumptions that s−i 6= v−i, s−1−i+1 = v−1−i+1, si−11 = vi−11 , and from the choice of i.

As a result, we have

wt(s−ii ) = wt(v−ii ).

Next, we establish that c(s−i−11 ) ∈ C(v)4C(s). For any 1 < j ≤ i+1, we have the following equality that holds for substrings
of s of length n− i :

wt(s−(i−j+2)
j ) = wt(si−1j ) + wt(s−ii ) + wt(s−(i−j+2)

−i+1 ).

To prove this result, we consider the strings of length n − i that are in the symmetric difference C(v)4 C(s). In particular,
we consider the following three cases:

1) j ≤ i− 1,
2) j = i,
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3) j = i+ 1.
Clearly, for the first case it holds that

wt(s−(i−j+2)
j ) = wt(v−(i−j+2)

j ).

For the second case, due to the constraints that s4t+2 s4t+3 . . . s−4t−2 ∈ P(n − 2(4t + 1)), s1 . . . s4t+1 = 00 . . . 0 and
s−4t−1 s−4t . . . s−1 = 11 . . . 1, it follows that s−i−11 contains more 0s than 1s, but v−2i contains more 1s than 0s. A similar
argument may be used for the third case, and it can be shown in this case that v−1i+1 also contains more 1s than 0s, which
implies that c(s−i−11 ) ∈ C(v) 4 C(s), as desired. In other words, we consider substrings of length n − i (because s−i−11

has length n − i), of the form s−(i−j+2)
j . For the case where 1 < j ≤ i − 1, the substrings of length n − i in v and s

have the same compositions, since wt(s−(i−j+2)
j ) = wt(v−(i−j+2)

j ). Thus, these substrings do not affect the compositions in
C(v)∆C(s). This covers the first case, Case 1). Hence it remains to show that c(s−i−11 ) 6= c(v−i−j+2

j ) for Cases 2) and 3)
(when i = j and i = j + 1). For the case i = j, we have c(s−(i−1)1 ) 6= c(v−2i ), since s−(i−1)1 has more 0s than 1s, whereas
v−2i has more 1s than 0s. For the case j = i+ 1, c(v−1i+1) also has more 1s than 0s. This completes the claim that for l = 1,

c(s−i−1l ) = c(s−i−11 ) ∈ C(v)∆C(s). The case l ≥ 2 can be analyzed similarly.
Based on the discussion above, it is straightforward to identify additional substrings whose compositions lie in the symmetric

difference of C(s) and C(v). In particular, if we can show that for every l ∈ {2, 3, 4, . . . , 4t + 1} one of the following two
claims is true:

1) c(s−i−1l ) ∈ C(v)4 C(s), or
2) c(v−i−1l ) ∈ C(v)4 C(s).

then |C(s)4 C(v)| ≥ 4t+ 1.
For l ∈ {2, 3, 4, . . . , 4t+ 1}, it is straightforward to see that

wt(s−i−1l ) 6= wt(v−i−1l ).

Without loss of generality, we may assume that wt(s−i−1l ) < wt(v−i−1l ). Then c(s−i−1l ) ∈ C(v)4 C(s). Similarly as before,
for any l < j ≤ i+ l, the following holds for substrings of s of length n− i− l + 1:

wt(s−(i−j+l+1)
j ) = wt(si−1j ) + wt(s−ii ) + wt(s−(i−j+l+1)

−i+1 ).

If j ≤ i− 1, we have

wt(s−(i−j+l+1)
j ) =wt(si−1j ) + wt(s−ii ) + wt(s−(i−j+l+1)

−i+1 )

=wt(vi−1j ) + wt(v−ii ) + wt(v−(i−j+l+1)
−i+1 )

=wt(v−(i−j+l+1)
j ).

For the case j ≥ i ≥ 4t + 3, note that s−i−1l contains more zeros than ones but for j > i − 1, the substring v−(i−j+l+1)
j

contains at least as many 1s as 0s. Therefore, for any j > i− 1,

c(s−i−1l ) 6= c(v−(i−j+l+1)
j ).

We are left with analyzing the compositions of substrings of length n − i − l + 1 in v to the left of v−i−1l . Since every
codestring in C(n, t) starts with 4t+ 1 0s, it follows that for any j < l

wt(v−(i−j+l+1)
j ) ≤ wt(v−(i−(j−1)+l+1)

j−1 ).

Furthermore, since wt(s−i−1l ) < wt(v−i−1l ), it follows that for any j < l,

wt(s−i−1l ) < wt(v−(i−j+l+1)
j ).

Thus, c(s−i−1l ) ∈ C(v)4 C(s). This completes the proof. �

The result of Theorem 4 may be used to prove Theorem 5 since the number of redundant bits, O(log k + t), is a direct
consequence of the code construction described in (11).

The reconstruction time for the described codes for a constant number of errors t is polynomial in n. To see this, consider
the
((n+1

2 )
t

)
possible choices for errors in distinct compositions. Each composition can be corrupted in at most n different ways

(for the composition corresponding to the whole string this number equals n). Thus, given an erroneous composition multiset
C̃(s), there are at most

((n+1
2 )
t

)
nt candidate true composition multisets {C̃1(s), C̃2(s), . . . C̃m(s)}, where m = O(n3t). Thus,

by reconstructing the strings as given by the compositions {C̃1(s), C̃2(s), . . . C̃m(s)} using the Backtracking algorithm, we
can recover the string s in O(n3+3t) time.
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VI. OPEN PROBLEMS

Many combinatorial and coding-theoretic problems related to mass error-correcting codes remain open and are listed below.
• In Sections III, IV and V we showed that the number of redundant bits sufficient for unique and efficient reconstruction

without errors and in the presence of a constant number of t errors equals O(log k) and O(t2 log k), respectively. Lower
bounds on the number of redundant bits are still unknown.

• The decoding algorithm used in the proof of Theorem 3 is efficient only if the number of errors t is a constant. We do
not know of any string reconstruction algorithms that are efficient both in t and n.

• In our analysis, we made two simplifying assumptions described in the Introduction and previously used in [7]. However,
in reality one does not have access to the masses of all substrings but rather to corrupted masses of prefixes and suffixes
of mixtures of strings. Mixing polymer strings also allows for faster readouts of information via MS/MS spectrometers.
Therefore, a natural question is how to perform reconstruction of multiple strings based on the union of their composition
multisets or prefix-suffix sets.

• We addressed the string reconstruction problem when the errors are either asymmetric or symmetric. However, MS/MS
errors are often bursty and context-dependent. Thus, studying more general error models is another problem of interest.

• Several problems outlined in [7] at this time also remain open. We restate two of those problems for completeness: 1)
Improve the upper and lower bounds on the number of confusable strings; 2) Determine explicit polynomial-time algorithm
for string reconstruction problems, the existence of which was established in [19]–[22].
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APPENDIX

APPENDICES

A. Proof of the second part of Theorem 6

Theorem. The central binomial coefficient
(
2m
m

)
counts the following types of binary strings of length 2m.

(A) Those whose every prefix has at least as many 0s as 1s.
(B) Those whose every prefix has strictly more 0s than 1s, or vice-versa.

Proof. The number of binary strings of Type (A) of length ` = a + b, with ` possibly odd, such that the number of 0s is
greater or equal to the number of 1s, i.e., a ≥ b is given by

(
`
a

)
−
(
`

a+1

)
. The number of strings for which every prefix has at

least as many 0s as 1s is given by
∑
a≥d `2 e

(
`
a

)
−
(
`

a+1

)
, which is a telescoping sum that equals

(
`
d `2 e
)
.

To prove (B), let us consider strings of length 2m whose every prefix has strictly more 0s than 1s. In this case, the first bit of
any string s is always 0. Thus, the remaining length-(2m− 1) binary string s2m2 is such that for every prefix, the number of
0s is at least as large as the number of 1s in that same prefix. Thus, the number of strings of length 2m whose every prefix
has strictly more 0s than 1s is

(
2m−1
m

)
. As a result, the total number of binary strings of length 2m whose every prefix has

strictly more 0s than 1s or vice-versa is equal to 2
(
2m−1
m

)
=
(
2m
m

)
. �

B. Derivation of the lower bound of |SR(n)|
Let n be even. Note that all strings s ∈ SR(n) satisfy s1 = 0 and sn = 1. Let |

[
n
2

]
∩ I| = i + 1. Thus, the indices

corresponding to the Catalan-Bertrand string can be chosen in
(n

2−1
i

)
ways. Since s1 = 0, it must be that every prefix of

s[n
2 ]∩I\{1} contains at least as many 0s as 1s. There are

(
i
b i
2 c
)

such binary strings of length i. Therefore,

|SR(n)| =
n
2−1∑
i=0

(n
2 − 1

i

)
2

n
2−1−i

(
i

b i2c

)
.

As a result,
n
2−1∑
i=0

(n
2 − 1

i

)
2

n
2−1−i

(
i

b i2c

)
(12)

≥
n
2−1∑
i=2

(n
2 − 1

i

)
2

n
2−1−i

2i−1√
π(i+ 1)

+

(n
2 − 1

1

)
2

n
2−1−1 +

(n
2 − 1

0

)
2

n
2−1 (13)

≥ 2
n
2−2
√
πn

n
2−1∑
i=0

(n
2 − 1

i

)
(14)

=
2

n
2−2
√
πn

2
n
2−1 =

1√
πn

2n−3. (15)

Expression (12) follows from the description of the codebook. Also,
(
2`+1
`

)
≥
(
2`
`

)
clearly holds. As a result, inequality (13)

follows from Proposition 1, for all i ≥ 2. Inequality (14) holds since for all 0 ≤ i ≤ n
2 , (i+ 1) ≤ n. The next two equalities

in (15) follow from the fact that
∑`
i=0

(
`
i

)
= 2`, and some rearrangements of terms.

For odd n, |SR(n)| = 2|SR(n− 1)| ≥ 2 2n−1−3√
π(n−1)

≥ 2n−3
√
πn
.

C. A bijective map between information strings and reconstructable strings

An optimal approach for performing encoding of information strings into Catalan string was first described in [17] and it
relies on using a ranking/unranking scheme of complexity O(n). However, we provide a much simpler method to order and
retrieve the reconstructable strings in additive O(n2) time, which is still absorbed in the leading complexity term of O(n3)
incurred by the Backtracking algorithm.
Recall that the reconstruction code is obtained by interleaving arbitrary, unconstrained strings with a Catalan-Bertrand strings
and then mirroring the interleaved string around what will be the midpoint of the resulting codestring.

1) The construction starts by partitioning the first bn2 c indices into two sets, say I0 and I1, the cardinalities of which are
in {0, . . . , bn2 c}. Let I0 denote the set of indices that describe the locations of the string to be interleaved, and let I1 denote
the indices that describe the locations of the Catalan-Bertrand string.
Next, order all possible partitions according to the cardinality of their corresponding I0 sets, in increasing order. For example, if
000111010 and 001111010 are the labels of two partitions of a string of length 9, than 001111010 appears in the rank-ordered
list before 000111010 (the first partition has |I0| = 4, while the second partition has |I0| = 5 > 4).
In the next step, order the partitions with the same value of |I0|. Given a partition described using the binary alphabet as above,
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one can convert the binary strings into integers and arrange them in increasing order which naturally induces a ranking of the
partitions themselves. Finding the index of a partition in this ranking takes O(n) time. To see this, consider a partition Π of
m = bn2 c indices, and let |I0| = i. Thus, the rank of this partition is an integer in the interval

[∑i−1
j=0

(
m
j

)
+ 1,

∑i
j=0

(
m
j

)]
.

Assume that the set I0 contains the indices (`1, `2, . . . , `i) arranged in increasing order. The rank of the partition Π is given
by

i−1∑
j=0

(
m

j

)
+

[(
`i − 1

i

)
+

(
`i−1 − 1

i− 1

)
+

(
`i−2 − 1

i− 2

)
+ · · ·+

(
`1 − 1

1

)
+ 1

]
.

Therefore, given the index of a partition, one can determine the actual partition in time O(n2).
2) Next, given the indices in I0, place unrestricted binary strings in the corresponding locations according to the lexico-

graphical order.
3) At indices in I1, place bits of a Catalan-Bertrand string. Let us now assume that there exists a bijective map Fm(·)

that for all natural numbers m orders all Catalan-Bertrand strings of length m efficiently. In particular, we assume that given
an index ind, Fm(ind) returns the corresponding Catalan-Bertrand string in time O(n2). Further, given a Catalan-Bertrand
string s, F−1m (s) returns its index ind in O(n) time. We defer the description of the map to the end of this exposition.
Let fm(i) denote the number of Catalan-Bertrand strings with m− i 0s and i 1s. Then, fm =

∑bm2 c
i=0 fm(i) is the number of

all Catalan-Bertrand strings of length m. Note that fm(i) has a closed form expression as given in Theorem 6, and fm equals
1
2

(
m
bm2 c

)
.

The ordering for the codestrings of the reconstruction code is obtained as follows:
a) Given two reconstructable codestrings s1, and s2, and their corresponding partitions Π1 and Π2 from 1), if Π1 is ranked
lower than Π2, then s1 is ranked lower than s2.
b) Given two reconstructable codestrings s1, and s2 such that Π1 = Π2, if the string of s1 indexed by I0 is ranked lower than
that of s2 (as per 2)), then s1 is ranked lower than s2.
c) Given two reconstructable codestrings s1 and s2 such that Π1 = Π2, and the strings of s1 and s2 indexed by I0 are the
same, if the string indexed by I2 in s1 is ranked lower than the string in s2, then the string s1 is ranked lower than s2.
In summary, the reconstructable codestrings are encoded and decoded as described below.
Encoding:
A k−bit binary string is converted into an index ind. The time taken to find the corresponding partition and Catalan-Bertrand
string is O(n). Combining this result with the result pertaining to the ranking map proves that the information string can be
encoded in O(n2) time.
Decoding:
Given a reconstructable codestring, its index can be computed in O(n) time. The k−bit binary expansion of the index uniquely
determines the information string. Since the Backtracking algorithm takes O(n3) time, the overall decoding time equals O(n3).

It remains to show that encoding and decoding of the Catalan-Bertrand strings can be performed in time O(n2). Since the
decoding process is easier to describe and leads to a straightforward approach for encoding, we start with the description of
the decoding algorithm.
Decoding Catalan-Bertrand strings: Let s = s1s2 . . . sm−1sm denote a Catalan-Bertrand string of length m that contains
m− i 0s and i 1s and recall that fm(i) denotes the number of such Catalan-Bertrand strings. We start by ranking the string
s against the set of all Catalan-Bertrand strings of length m that contain m − i 0s and i 1s. The following simple algorithm
determines the temporary index for s in O(n) time.

indtemp ← fm(i)

l← i

for j from 0 to m− 1 :

indtemp = indtemp − 1{sm−j==0} fm−1−j(l)

if sm−j == 1 :

l← l − 1,

where 1 denotes the indicator function. Note that Fm(·) then assigns the final index value
∑
`<i fm(i) +indtemp to the given

Catalan-Bertrand string s of length m in time O(n).
Encoding Catalan-Bertrand strings: From the decoding procedure it is easy to deduce how to perform the encoding: Given
m and ind, we first find an i such that s has m− i 0s and i 1s. Then, iteratively, the bits sm through s1 are computed using
the correspondence between the bit value and the index range as described in the decoding process. Hence, encoding takes
O(n2) time.
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D. Proof of Lemma 4

Recall that we consider asymmetric errors, in which case a single error may occur either in Cj or Cn+1−j but not both
multisets. Furthermore, up to t such errors are allowed. The presented code corrects such errors with at most c1t log k + c2
bits of redundancy, where k is the length of the information string, and c1, and c2 are two positive constants.
The code construction involves two parts: 1) String s ∈ SR(n1) is padded with a prefix of t 0s and a suffix of t 1s to form
an intermediate string s′ of length n′ + 2t.
2) The Σ

n1
2 is then encoded using a systematic t− error correcting code and the redundant bits are placed in the middle of

the string in manner such that the resultant string s′′ ∈ SR(n).
We show through a case-by-case analysis that the code is indeed a t−asymmetric error correcting code.

Our analysis proceeds through multiple steps addressing different possible choices for the values of σi, i = 1, . . . , n2 ,
and the currently reconstructed bits (i.e., prefixes and suffixes of the codestring). The initial setting is depicted in Figure 3.
Each subsequent figure (Figures 4, 5, 6, 7, 8, 9, 10 and 11) explains how to extend two partially reconstructed strings from
their prefix and suffix pairs so as to minimize the number of compositions they disagree in. For simplicity, such pairs are
termed “confusable” and finding confusable pairs allows us to determine the minimum composition set differences between
codestrings based on the Catalan-Bertrand construction. The final result establishes that the previous construction ensures a
minimum composition set difference ≥ 2(t+ 1).

First, we observe from Construction (4) that any pair of distinct strings s, v ∈ S(t)R (m) shares a prefix-suffix pair of length
at least t as all strings are padded by 0s and 1s on the left and right, respectively.

Next, we characterize the conditions that allow one to identify strings that are “closest” to a codestring s. More precisely,
we construct a set Vs of strings such that for all v ∈ Vs one has: 1) v and s share the same Σ

m
2 sequence; 2) If the length

of the longest shared prefix-suffix pair of v and s equals i, then for all j ∈ {m − i − 1,m − i − 2, . . . ,m − i − t − 1} the
inequality |Cj(s)\Cj(v)| ≤ 2 holds. These conditions summarize when a string may be confused with s during the backtracking
reconstruction procedure.

Recall that c(·) refers to the composition of its argument string. The substrings {si+j−1i }, i = 1, . . . ,m− j+1 of s of length
j share a common substring sjm+1−j , provided that j > m

2 . For simplicity of notation, denote the composition of the common
substring sjm+1−j by cj , i.e., let cj = c(sjm+1−j).

We start with the following observation. If σi+1 6= 1, the two strings s and v necessarily share a prefix-suffix pair of length
i + 1, which contradicts the assumption that the longest prefix-suffix pair shared by the two strings is of length i. Thus, we
have σi+1 = 1 and |Cm−i−1(s) \Cm−i−1(v)| = 2, where the latter claim follows from the discussion pertaining to the single
error-correction case: The compositions of length m− i− 1 that are not shared by the two strings include {c(si1), 0, cm−i−1},
{c(smm+1−i), 1, cm−i−1} , {c(vi1), 1, cm−i−1}, {c(vmm+1−i), 0, cm−i−1}, and these differ by construction.

Next, we describe how to simultaneously reconstruct a pair of prefix-suffix bits and update the set Vs when taking a step
in the Backtracking algorithm. We show that under the conditions of the lemma, |Cm−i−1−j(s) \ Cm−i−1−j(v)| = 2 for all
v ∈ Vs, 1 ≤ j ≤ t. For notational simplicity, at every step of the reconstruction algorithm we use the index “ + ” to denote
the next bit in the prefix and “− ” to denote the next bit in the suffix to be reconstructed. As an example, for a reconstructed
prefix-suffix pair of length i+ 1, + corresponds to i+ 2 and − corresponds to m− i− 1, i.e., s+ = si+2 and s− = sm−i−1.

Let σ+ = wt(s+s−) = wt(v+v−). We analyze the two cases σ+ = 1 and σ+ ∈ {0, 2} separately, as depicted in Figure 3.
Consider the case that σ+ = 1. Note that for any substring s`2`1 such that `1 ≤ i+ 1,m− i ≤ `2, the corresponding substring

v`2`1 of v has the same composition. The compositions in Cm−i−2(s) and Cm−i−2(v) that may be confused are listed below
on the left and right hand side of the equality, respectively:

Fig. 3: Illustration of two strings s and v that share the same Σ
m
2 sequence. Furthermore, the two strings also satisfy si1 = vi1,

smm+1−i = vmm+1−i and si+1 6= vi+1, i.e., the longest prefix-suffix pair that the strings share is of length i. The top pair of
strings corresponds to the case σi+2 = 1, while the bottom pair of strings corresponds to the case σi+2 ∈ {0, 2}.
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{c(si1), 0, s+, cm−i−2},
{c(si2), 0, s+, cm−i−2, 1− s+},
{c(smm−i+1), 1, 1− s+, cm−i−2},
{c(sm−1m−i+1), 1, 1− s+, cm−i−2, s+}

 =


{c(vi1), 1, v+, cm−i−2},
{c(vi2), 1, v+, cm−i−2, 1− v+},
{c(vmm−i+1), 0, 1− v+, cm−i−2},
{c(vm−1m−i+1), 0, 1− v+, cm−i−2, v+}

 .

We want to determine under which conditions the terms on the two sides of the equality can be perfectly matched; in the
process, we will show that |cm−i−2(s) \ cm−i−2(v)| ≤ 2.

The above sets may be more succinctly written as:
{c(si1), 0, s+, cm−i−2},
{c(si2), 021, cm−i−2},
{c(smm−i+1), 1, 1− s+, cm−i−2},
{c(sm−1m−i+1), 012, cm−i−2}

 =


{c(vi1), 1, v+, cm−i−2},
{c(vi2), 012, cm−i−2},
{c(vmm−i+1), 0, 1− v+, cm−i−2},
{c(vm−1m−i+1), 021, cm−i−2}

 .

Regrouping the a priori known extension bits with the prefixes and suffixes simplifies the sets to be matched as
{c(si1), 0, s+, cm−i−2},
{c(si1), 01, cm−i−2},
{c(smm−i+1), 1, 1− s+, cm−i−2},
{c(smm−i+1), 01, cm−i−2}

 =


{c(vi1), 1, v+, cm−i−2},
{c(vi1), 12, cm−i−2},
{c(vmm−i+1), 0, 1− v+, cm−i−2},
{c(vmm−i+1), 02, cm−i−2}

 .

For example, {c(si2), 021, cm−i−2} is rewritten as {c(si1), 011, cm−i−2} by moving one 0 to the prefix composition.
Next, we remove the compositions cm−i−2 shared by the two sets. Then we identify which compositions cannot be matched

as follows. First, it follows from the construction that the composition of a prefix of length i > t includes at least t+1 0s. As a
result, c(si1) is composed of at least t+1 more 0s than c(smm−i+1). Similarly, c(smm−i+1) is composed of at least t+1 more 1s than
c(si1). Hence, a composition involving less than i+t+1 bits that contains a composition of a prefix of length i > t is composed
of more 0s than a composition of the same length that contains a composition of a suffix of length i. Thus, compositions
{c(si1), 0, s+)}, {c(si1), 01)} are not the same as either of the compositions {c(vmm−i+1), 0, 1− v+}, {c(vmm−i+1), 02}, since
c(si1) contains at least t+ 1 more 0s than c(vmm−i+1). Therefore, we only need to consider the two reduced set equalities:{

{c(si1), 0, s+},
{c(si1), 01}

}
=

{
{c(vi1), 1, v+},
{c(vi1), 12}

}
,

and {
{c(smm−i+1), 1, 1− s+},
{c(smm−i+1), 01}

}
=

{
{c(vmm−i+1), 0, 1− v+},
{c(vmm−i+1), 02}

}
.

Clearly, {c(vi1), 12} and {c(vmm−i+1), 02} cannot be equal to any other composition in the two sets. The possible values for
the set difference |Cm−i−2(s) \ Cm−i−2(v)| for four different assignments of values for (s+, v+) are summarized in Table I.
Based on the table, if σi+2(s) = 1, then all strings v ∈ Vs satisfy (s+, v+) = (si+2, vi+2) ∈ {(0, 0), (1, 0)}.

Next, we consider the case σ+ ∈ {0, 2}. As before, we focus on Cm−i−2(s) and Cm−i−2(v) in order to establish conditions
under which |Cm−i−2(s) \ Cm−i−2(v)| is minimized.

To this end, let b = s+ = v+ = s− = v−. Following the previously outlined line of reasoning, it suffices to find when the
following set equalities hold: {

{c(si1), 0, b},
{c(si1), 01}

}
=

{
{c(vi1), 1, b},
{c(vi1), 12}

}
and {

{c(smm−i+1), 1, b},
{c(smm−i+1), 01}

}
=

{
{c(vmm−i+1), 0, b},
{c(vmm−i+1), 02}

}
.

It can be easily seen that the compositions cannot be matched. The possible cardinalities of the set difference |Cm−i−2(s) \
Cm−i−2(v)| are summarized in Table II.

As a result of the above discussion, for any v ∈ Vs we necessarily have (si+2, vi+2) ∈ {(0, 0), (1, 0)} and σi+2 = 1. This
consequently determines the pair of bits sm−i−1 and vm−i−1.

To determine si+3,sm−i−2, vi+3 and vm−i−2 we need to once again analyze two cases, one for which we assume that
σi+3 = 1 and another, for which we assume that σi+3 ∈ {0, 2}. This analysis has to be performed in the context depicted in
Figure 3, and under the constraints imposed by Tables I and II.
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We focus on the bits si+2+i′ and vi+2+i′ for some i′ such that t− 1 ≥ i′ ≥ 0, in the following inductive setting:
• Assume that starting from the index i + 2, the values of σ corresponding i′ consecutive positions all equal to 1. More

precisely, σi+1+i′

i+2 = (1, 1, . . . 1).
• The bits si+1 and vi+1 are followed by a run of i′ 0s, i.e., si+1+i′

i+2 = vi+1+i′

i+2 = 0.
This setting is depicted in Figure 4. We proceed to characterize the conditions under which |Cm−i−i′−2(s) \ Cm−i−i′−2(v)|
is minimized. As done before, we consider the cases σi+2+i′ = 1 and σi+3+i′ ∈ {0, 2} separately.

When σ+ ∈ {0, 2}, we assume that s+ = s− = v+ = v− = b. The set equality of interest reads as:

{c(si1), 0, 0i
′
, s+},

{c(si2), 0, 0i
′
, 01},

{c(si3), 0, 0i
′
, 012}

{c(si4), 0, 0i
′
, 013}

...

{c(sii′+2), 0, 0i
′
, 01i

′+1}
{c(smm−i+1), 1, 1i

′
, 1− s+},

{c(sm−1m−i+1), 1, 1i
′
, 01},

{c(sm−2m−i+1), 1, 1i
′
, 021},

{c(sm−3m−i+1), 1, 1i
′
, 031},

...

{c(sm−i
′−1

m−i+1 ), 1, 1i
′
, 0i
′+11}



=



{c(vi1), 1, 0i
′
, v+},

{c(vi2), 1, 0i
′
, 01},

{c(vi3), 1, 0i
′
, 012}

{c(vi4), 1, 0i
′
, 013}

...

{c(vii′+2), 1, 0i
′
, 01i

′+1}
{c(vmm−i+1), 0, 1i

′
, 1− v+},

{c(vm−1m−i+1), 0, 1i
′
, 01},

{c(vm−2m−i+1), 0, 1i
′
, 021},

{c(vm−3m−i+1), 0, 1i
′
, 031},

...

{c(vm−i
′−1

m−i+1 ), 0, 1i
′
, 0i
′+11}



.

Fig. 4: Illustration of the setup for determining the bits s+, s−, v+ and v− under the conditions that the bits si+1 and vi+1

are followed by a run of i′ 0s, and σi+1+i′

i+2 = (1, 1, . . . , 1). The second pair of strings illustrates the setting for which
σi+2+i′ ∈ {0, 2}, and s+ = s− = v+ = v− = b.

Using the same line of reasoning as presented earlier, one can show that it suffices to focus on two reduced set equalities,
namely {

{c(si1), 0i
′+1, s+},

{c(si1), 0i
′+11}

}
=

{
{c(vi1), 0i

′
1, v+},

{c(vi1), 1i
′+2}

}
,

and {
{c(smm−i+1), 01i

′+1},
{c(smm−i+1), 1i

′+1, 1− s+}

}
=

{
{c(vmm−i+1), 0i

′+2},
{c(vmm−i+1), 01i

′
, 1− v+}

}
.

The possible values of |Cm−i−i′−2(s) \ Cm−i−i′−2(v)| are summarized in Table III.
We now turn our attention to the case σi+i′+2 ∈ {0, 2}. Again, let b = s+ = s− = v+ = v−. It suffices to consider the

following sets: {
{c(si1), 0i

′+1, b},
{c(si1), 0i

′
, b2}

}
=

{
{c(vi1), 0i

′
1, b},

{c(vi2), b2, 1i
′+1}

}
and {

{c(smm−i+1), 1i
′+1, b},

{c(smm−i+1), 1i
′
, b2}

}
=

{
{c(vmm−i+1), 01i

′
, b},

{c(vm−1m−i+1), 0i
′+1, b2}

}
.
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The possible values of |Cm−i−i′−2(s) \ Cm−i−i′−2(v)| are summarized in Table IV.
From the above analysis we can conclude that exactly one of the following two conditions holds:

1) The strings s and v satisfy si+t+1
i+2 = vi+t+1

i+2 = 0 and σi+t+1
i+1 = (1, 1, . . . , 1). Their corresponding composition multisets

Cm−i−1, Cm−i−2, . . . , Cm−i−t, Cm−i−t−1 each differ in exactly 2 compositions.
2) The strings s and v satisfy si+1+i′

i+2 = vi+1+i′

i+2 = 0, σi+2+i′

i+2 = (1, 1, . . . , 1), and (si+i′+2, vi+i′+2) = (1, 0), where
t > i′ ≥ 0. Their corresponding composition multisets Cm−i−1, Cm−i−2, . . . , Cm−i−i′−1, Cm−i−i′−2 each differ in
exactly 2 compositions.

Figure 5 illustrates the observations. The longest substring such that (si+1, vi+1) = (0, 1), (si+2, vi+2) = (0, 0) , . . . ,
(si+i′+1, vi+i′+1) = (0, 0) and σi+i

′+2
i+2 = (1, . . . , 1) is depicted by a horizontal block in Figure 5. The bits si+i′+2, sm−i−i′−1,

vi+i′+2, vm−i−i′−1 that terminate the 00 . . . 0 (in s) and 10 . . . 0 (in v) substrings in the prefix and the 1 . . . 11 (in s) and 1 . . . 10
(in v) substrings in the suffix are represented by vertical shades in Figure 5.

Fig. 5: Illustration of the procedure for determining the set Vs based on several special cases. For the first case, we have si+t+1
i+2 =

vi+t+1
i+2 = 0 and sm−i−1m−i−t = vm−i−1m−i−t = 1. For the second case, there exist two identical substrings si+1+i′

i+2 = vi+1+i′

i+2 = 0 of
length t > i′ ≥ 0 each and it holds that (si+i′+2, vi+i′+2) = (1, 0).

Assume that the running reconstructions of the distinct strings s and v are as depicted in the second pair of blocks in
Figure 5. In the next step, illustrated in Figure 6, we extend the prefixes and suffixes and identify the conditions under which
|Cm−i−i′−3(s) \ Cm−i−i′−3(v)| is minimized. The results are summarized in Tables V and VI. In this step, we examine the
bits si+i′+r+3, vi+i′+r+3, sm−i−i′−r−2 and vm−i−i′−r−2.

Assume that
si+i

′+r+2
i+i′+3 = vi+i

′+r+2
i+i′+3 = b1 . . . br,

where r > 0 and r = 0 corresponds to a string of length 0. We have

sm−i−i
′−2

m−i−i′−r−1 = vm−i−i
′−2

m−i−i′−r−1 = b̄r . . . b̄1,

where

b̄i =

{
bi, if σi 6= 1,

1− bi, if σi = 1,
for all 1 ≤ i ≤ r.

Such a structure is illustrated in Figure 7.
For the case (s+, v+) 6= (0, 1), it is straightforward to see using arguments similar to the ones previously described that the

possible set differences are as listed in Tables VII and VIII.
For the case (s+, v+) = (0, 1) depicted in Figure 8, the conditions that ensure that the composition multisets of s and v

differ by at most 2 introduce the restrictions b1, . . . , br = 1 . . . 1 and b̄1, . . . , b̄r = 0 . . . 0.
We now extend the description of the set Vs illustrated in Figure 5 as shown in Figure 9.
Given a pair of distinct strings depicted in the second row of Figure 5, one of the conditions must hold:
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Fig. 6: Illustration of the reconstruction step following the one depicted in Figure 5. The first pair of strings corresponds to
the case σ+ = 1, while the second pair of strings corresponds to the case σ+ ∈ {0, 2} and s+ = s− = v+ = v− = b.

Fig. 7: Two pairs of strings explaining how to extend the partially reconstructed strings illustrated in Figure 6. The r bits that
follow the substring 00 . . . 0 1 in s are equal to the corresponding r bits in v. For all r ≥ i ≥ 1, b̄i = bi or b̄i = 1 − bi. The
first pair corresponds to σ+ = 1, while the second pair corresponds to σ+ ∈ {0, 2}.

• The reconstructed prefix of s is followed by a substring b1b2 . . . br that is shared by the two strings and is such that the
length of the substrings 00 . . . 0 1 b1b2 . . . br (in s) and 10 . . . 0 0 b1b2 . . . br (in v) in the prefixes equals t+ 1. In this case,
each pair of composition multisets in Cm−i−1, Cm−i−2, . . . , Cm−i−t, Cm−i−t−1 differs in exactly 2 compositions.

• The reconstructed prefix in s is followed by the substring 1 . . . 1 0 and the reconstructed prefix in v is followed by the
substring 1 . . . 1 1. The length of the substrings 00 . . . 0 11 . . . 1 0 and 10 . . . 0 01 . . . 1 1 is equal to some 0 < j′ < t.
In this case, each pair of composition multisets in Cm−i−1, Cm−i−2, . . . , Cm−i−j′+1, Cm−i−j′ also differs in exactly 2
compositions.

The bits that were most recently reconstructed in Figure 9 reestablish the initial problem we started with and the analysis
henceforth parallels our previous discussion. The pertinent explanations are summarized in Figures 10 and 11.
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Fig. 8: Conditions on the values of bi and b̄i for all i such that r ≥ i ≥ 1 that ensure that the partially reconstructed strings
from the previous step can be compatibly extended when σ+ = 1 and (s+ = 0, v+ = 1).

Fig. 9: The procedure for constructing the set Vs for several special cases of σ values. The first pair depicts the setting in which
s and v share a substring b1b2 . . . br that follows the substring 00 . . . 0 1 in s and 10 . . . 0 0 in v. The length of the substrings
00 . . . 0 1 b1b2 . . . br and 10 . . . 0 0 b1b2 . . . br in the prefix of s and v, respectively, equals t+1. The second pair depicts a setting
in which the substring 11 . . . 1 0 follows the 00 . . . 0 substring in s and the substring 01 . . . 1 1 follows the 10 . . . 0 substring in
s. Here, the lengths of the substrings 00 . . . 0 11 . . . 1 0 in s and 10 . . . 0 01 . . . 1 0 in v may be less than t+ 1.

Combining the results of all the intermediary steps allows us to describe the set Vs as satisfying one of the two conditions:
• The string s and a string v ∈ Vs share a prefix-suffix pair that is followed by a certain number of alternating substrings

00 . . . 0 and 11 . . . 1 (in s) and alternating substrings 10 . . . 0 and 01 . . . 1 (in v) in the prefixes. The length of the
alternating substrings may vary as described in the analysis, and the substrings are induced by σ values equal to
1. The last of the alternating substrings in the prefixes (equal to either 11 . . . 1 of 01 . . . 1) is followed by a shared
substring. The number of bits in the previously described substrings equals t+1. The corresponding composition multisets
Cm−i−1, Cm−i−2, . . . , Cm−i−t, Cm−i−t−1 of the string s and v ∈ Vs differ in exactly 2 compositions.

• The string s and a string v ∈ Vs share a prefix-suffix pair that is followed by a certain number of alternating substrings
00 . . . 0 and 11 . . . 1 (in s) and alternating substrings 10 . . . 0 and 01 . . . 1 (in v) in the prefixes. The length of the alternating
substrings may vary as described in the analysis. The last of the alternating substrings in the prefixes (equal to either
11 . . . 1 or 01 . . . 1) is followed by either the substring 00 . . . 0 (in s) or 10 . . . 0 (in v). The number of bits covered
by these cases totals t + 1 and all underlying values of σ are equal to 1. The corresponding composition multisets
Cm−i−1, Cm−i−2, . . . , Cm−i−t, Cm−i−t−1 of the string s and v ∈ Vs differ in exactly 2 compositions.

Figure 11 summarizes the structure of the set Vs and concludes our proof.

s+ 0 0 1 1
v+ 0 1 0 1
Set Difference 2 4 2 4

TABLE I: Four different assignments of values for (s+, v+) and the resulting set cardinalities |Cm−i−2(s) \ Cm−i−2(v)|.
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Fig. 10: Two pairs of strings explaining how to extend the partially reconstructed strings illustrated in Figure 9. The first pair
corresponds to the case σ+ = 1, while the second pair corresponds to the case σ+ ∈ {0, 2} and s+ = s− = v+ = v− = b.

Fig. 11: The partial structure of strings in Vs as inferred by the previous analysis and the setup shown in Figure 10.

b 0 1
Set Difference 3 3

TABLE II: Cardinalities of the set difference |Cm−i−2(s) \ Cm−i−2(v)| for different choices of b.

s+ 0 0 1 1
v+ 0 1 0 1
Set Difference 2 4 2 4

TABLE III: Values of |Cm−i−i′−2(s) \ Cm−i−i′−2(v)| for the setting where the bits si+1 and vi+1 are followed by a run of
i′ 0s, and where σi+1+i′

i+2 = (1, 1, . . . 1) and σ+ = 1.
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Fig. 12: The structure of the strings v ∈ Vs that are closest to a given string s. The first pair of strings illustrates the case
where the substrings 00 . . . 0 and 11 . . . 1 in the prefix of s, and 10 . . . 0 and 01 . . . 1 in the prefix of v occur in pairs, ending
with a shared substring b1b2 . . . br. The second pair illustrates the case where the substrings 00 . . . 0 and 11 . . . 1 in the prefix
of s, and 10 . . . 0 and 01 . . . 1 in the prefix of v occur in pairs ending with the substring 00 . . . 0 in the prefix of s and 10 . . . 0
in the prefix of v. Note that the substrings may not be of equal lengths. With the exception of the final shared substring (i.e.,
shared substring b1b2 . . . br for the first pair, and the substrings 00 . . . 0 in s and 10 . . . 0 in v for the second pair) all strings
are of length at least one. The number of bits in the prefix of each string obtained by alternating the above substrings equals
t+ 1.

b 0 1
Set Difference 3 3

TABLE IV: The possible values of |Cm−i−i′−2(s) \Cm−i−i′−2(v)| for the case that the bits si+1 and vi+1 are followed by a
run of i′ 0s, and such that σi+1+i′

i+2 = (1, 1, . . . 1) and σ+ ∈ {0, 2}.

s+ 0 0 1 1
v+ 0 1 0 1
Set Difference 2 2 4 2

TABLE V: The possible values of |Cm−i−i′−3(s) \ Cm−i−i′−3(v)| for σ+ = 1 corresponding to the four binary assignments
for (s+, v+) under the setting illustrated in Figure 6.

b 0 1
Set Difference 2 2

TABLE VI: The possible values of |Cm−i−i′−3(s) \ Cm−i−i′−3(v)| for different choices of b under the setting illustrated in
Figure 6.

s+ 0 1 1
v+ 0 0 1
Set Difference 2 4 2

TABLE VII: The possible values of |Cm−i−i′−r−2(s)\Cm−i−i′−r−2(v)| for σ+ = 1 corresponding to three binary assignments
(s+, v+) under the setting illustrated in Figure 7.

b 0 1
Set Difference 2 2

TABLE VIII: Cardinalities of the set difference |Cm−i−i′−r−2(s)\Cm−i−i′−r−2(v)| for different choices of b under the setting
illustrated in Figure 7.
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