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Commitment capacity of classical-quantum channels

Masahito Hayashi Fellow, IEEE, Naqueeb Ahmad Warsi

Abstract

We study commitment scheme for classical-quantum channels. To accomplish this we define various notions of

commitment capacity for these channels and prove matching upper and lower bound on it in terms of the conditional

entropy. Our achievability (lower bound) proof is quantum generalisation of the work of one of the authors

(arXiv:2103.11548) which studied the problem of secure list decoding and its application to bit-string commitment.

The techniques we use in the proof of converse (upper bound) is similar in spirit to the techniques introduced by

Winter, Nascimento and Imai (Cryptography and Coding 2003) to prove upper bound on the commitment capacity

of classical channels. However, generalisation of this technique to the quantum case is not so straightforward and

requires some new constructions, which can be of independent interest.

I. INTRODUCTION

Most of the modern protocols which are used to securely encrypt a message are based on the notion

of commitment. Commitment with respect to this secure encryption means that one of the party (Alice)

involved in the protocol is able to choose a message from a set and be committed to her choice. Her
commitment to this choice of message should be in such a way that while revealing this choice of

message to the other party (Bob), she should not be able to reveal something to which she didn’t choose
and commit. To understand this intuitively, we consider the following example:

1) Alice wants to commit a message m chosen from a finite set. She does this by writing the message

on a paper and then locking it inside an envelope.

2) Alice then gives the locked envelope to Bob. At a later point of time, when Bob wants to read the
message m, he asks for the key from Alice so that he can open the envelop and read the message.

The procedure discussed in the above example needs to satisfy the following two properties:

i Concealing: After receiving the locked envelope from Alice, Bob should have no idea about what is

written on the paper locked inside the envelope until Alice reveals him the key to open the envelope

and read the message.
ii Binding: After locking the message in the envelope, Alice should not be able to change it after she

hands over the locked envelope to Bob.

The commitment scheme tries to solve this problem without the trusted third party (locked envelope).
This problem was first introduced and studied by Blum [1]. However, [2] and [3] showed that if there

are no computational constraints on the sender and receiver then bit commitment is not possible. Crépeau

[4] pointed out that bit commitment can be realized when a binary noisy channel is available. That is, a
noisy channel (modeled as pY |X) can help in achieving commitment scheme. Studying this problem from

information theory perspective, Winter et al. [5], [6] gave a probabilistic definition of commitment and
used information theoretic notion for secrecy (concealing). Using these tools, they defined the commitment

capacity of a channel and showed that it is equal to maxpX H(X | Y ). Although their direct part is sound,
they wrote only the sketch of the converse part. In addition, their converse proof contains an analysis that

cannot be extended to the quantum setting, as explained later. The reference [7] discussed the same issue
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in a similar way. Later, Yamamoto et al. [8] studied this problem under the problem setting of multiplex

coding. Although this paper also considers the converse part as well as the direct part, their converse part
is a weaker statement than the converse part of the original problem setting, as explained later.

Further, the papers [5], [6] also introduced the commitment scheme when the parties have access to
a classical-quantum channel (cq-channel). Even though they claimed that the commitment capacity with

cq-channel is in terms of conditional quantum entropy, they didn’t provide the complete proof. In fact, this
generalization is not so straight forward. Also, they didn’t explore the possibility that the parties involved

have more options in terms of cheating the other party in the quantum case.

Recently, the reference [9] pointed out that a code to achieve the commitment capacity can be constructed
by using a special type of list decoding. Originally, list decoding was proposed by Elias [20] and

Wozencraft [21] independently. Hamming distance takes a important role in the code construction by
[9] similar to the preceding studies [5], [6], [7], [8].

We explore all these issues in this manuscript. In particular, we generalize the notion of interactive
protocol for implementing commitment scheme introduced in [5], [6] to the case of classical-quantum

channel WX→Y (in our future discussions we will omit the subscript X → Y.) Towards this aim, we

define the notion of active and passive attacks. Using these two notions, we give two types of definitions
for the commitment capacity of a classical-quantum channel and denote them as Ca(W ) and Cp(W ),
respectively. In this manuscript, we observe that finding Ca(W ) and Cp(W ) is a difficult problem.
Therefore, we study a simpler version of the interactive protocol. In this simpler version, we restrict Alice

and Bob to only use invertible operations to accomplish the commitment scheme. Therefore, to study
this special case, we introduce Ca,inv(W ) and Cp,inv(W ) which represent the commitment capacity of

a classical-quantum channel when the parties are allowed to use only invertible operations. Further, we

also explore the case when Alice and Bob implement commitment scheme by only using non-interactive
protocol over a classical-quantum channel. We define Ca,non(W ), Cp,non(W ) as the capacities under this

setting.
We show a relation between these notions of the commitment capacity of classical-quantum channel

defined in this manuscript. In particular, the following relationship is one of the main result of this
manuscript:

Ca,non(W ) = Cp,non(W ) = Ca,inv(W ) = Cp,inv(W ) = sup
P∈P (X )

H(X|Y )P . (1)

We obtain (1) by first showing that Cp,inv(W ) ≤ supP∈P (X )H(X|Y )P . This is the converse part and it
requires construction of some functions which helps in proving the converse part by using the Fano’s

inequality. However, as explained in Subsection V-C, the references [5], [6], [7] have a problem in the
construction of the above type of function. This paper concretely writes down the construction of such

a function from a general interactive quantum protocol as Proposition 1 when the protocol satisfies the
invertible condition. Since any interactive protocol in the classical setting satisfies the invertible condition,

our converse proof covers the classical setting without any condition. In addition, since the reference
[8] considered the converse part only for non-interactive protocols, it did not discuss the above type of

function.

To show the direct part, we prove that Ca,non(W ) ≥ supP∈P (X )H(X|Y )P by showing the existence
of a non-interactive protocol which satisfies the binding and concealing property even for a cq-channel.

While our protocol construction is quite similar to the protocol proposed by the reference [9], our code
construction is different from that by [9] in the following point. The reference [9] considered only the

classical channel, and introduced the special class of list decoding, so called secure list decoding. Then, the
reference [9] converts secure list decoding to a non-interactive protocol. In this conversion, Bob applies the

list decoder and gets the list of messages in the commitment phase. Bob checks whether the information

revealed by Alice is contained in the list in the reveal phase. However, in the case with cq-channel, it is
not so easy to construct the list decoder due to the non-commutativity of the density operators. Therefore,

in this paper, we construct Alice’s encoder of the commitment phase in the same way as the paper [9]. In
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our constructed non-interactive protocol, Bob does nothing in the commitment phase. In the reveal phase,

he applies the projection corresponding to the information revealed by Alice to check whether Alice is
honest or not.

The rest of the manuscript is as follows. Section II prepares notations and the definitions used in this

manuscript. Section III mathematically formulates the commitment scheme and gives a formal math-

ematical definition for it. We also define several notions of the commitment capacity in this section.
Section IV applies our result to the case when the channel has symmetry. Section V proves the converse

for commitment scheme when Alice and Bob are only using reversible operations to accomplish the
commitment scheme. Section VI gives a protocol when Alice and Bob are only allowed to use non-

interactive protocol for accomplishing commitment scheme. The protocol is given by a conversion from
a specific type of code, and Section VII is devoted to its construction. Section VIII makes conclusion and

discusses future studies.

II. PREPARATION

A. Notations and Information quantities

This paper focuses on a noisy classical-quantum (cq-) channel W = {Wx}x∈X from an input classical

system X composed of finite elements to a quantum system HY , where Wx is the density operator on
the output quantum system HY with input x ∈ X . Also, we define the density operator WP on Y as

WP :=
∑

x∈X P (x)Wx. Then, the joint cq-state W × P is defined as

W × P =
∑

x∈X

P (x)|x〉〈x| ⊗Wx. (2)

We denote the set of probability distributions on X and the set of density operators on HY by P (X ) and

S(HY ), respectively.
D(ρ‖σ) is the relative entropy between two density operators ρ and σ, which is defined as

D(ρ‖σ) := Tr ρ(log ρ− log σ). (3)

The sandwitched realtive entropy D̃α(ρ‖σ) is defined as

D̃α(ρ‖σ) :=
1

α− 1
log Tr(σ−α−1

2α ρσ−α−1
2α )α. (4)

Given a state ρXY on XY , we consider various information quantities like mutual information and

conditional entropy. When we need to clarify the state on the quantum system for these quantities, we add
the symbol like [ρ] after the information quantity. For example, the entropy is defined as H(XY )[ρXY ] :=
−Tr ρXY log ρXY . Various type of conditional entropies are defined as

H(X|Y )[ρXY ] := H(XY )[ρXY ]−H(Y )[ρXY ] (5)

H̃α(X|Y )[ρXY ] := max
σ∈S(HY )

−D̃α(ρXY ‖IX ⊗ σ). (6)

Various type of mutual informations are defined as

I(X ; Y )[ρXY ] := H(XY )[ρXY ]−H(X)[ρXY ]−H(Y )[ρXY ] (7)

Ĩα(X|Y )[ρXY ] := max
σ∈S(HY )

−D̃α(ρXY ‖ρX ⊗ σ). (8)

Now, we consider the case when the joint state ρXY is given as W × P by using a distribution P on

X . Under the state W × P , we change the symbol added to various information quantities, [W × P ] to

P . That is, we define

H(XY )P := H(XY )[W × P ], H̃α(X|Y )P := H̃α(X|Y )[W × P ] (9)

I(X ; Y )P := I(X ; Y )[W × P ], Ĩα(X|Y )P := Ĩα(X|Y )[W × P ]. (10)

In addition, we denote the trace norm of a operator C and the von Neumann entropy of the density ρ by

‖C‖1 and S(ρ), respectively.
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B. Quantum measurements

To formulate our general adaptive method for the discrimination of cq-channels, we prepare a general

notation for quantum measurements with state changes. A general quantum state evolution from A to B
is written as a completely positive trace-preserving (cptp) map M from the space T A to the space T B

of trace class operators on A and B, respectively. When we make a measurement on the initial system
A, we obtain the measurement outcome K and the resultant state on the output system B. To describe

this situation, we use a set {κk}k∈K of cp maps from the space T A to the space T B such that
∑

k∈K κk
is trace preserving. In this paper, since the classical feed-forward information is assumed to be a discrete

variable, K is a discrete (finite or countably infinite) set. Since it is a decomposition of a cptp map, it

is often called a cp-map valued measure, and an instrument if their sum is cptp.1 In this case, when the
initial state on A is ρ and the outcome k is observed with probability Trκk(ρ), where the resultant state

on B is κk(ρ)/Trκk(ρ). A state on the composite system of the classical system K and the quantum
B is written as

∑

k∈K |k〉〈k| ⊗ ρB|k, which belongs to the vector space T KB :=
∑

k∈K |k〉〈k| ⊗ T B. The

above measurement process can be written as the following cptp E map from T A to T KB.

E(ρ) :=
∑

k∈K

|k〉〈k| ⊗ κk(ρ). (11)

In the following, both of the above cptp map E and a cp-map valued measure are called a quantum

instrument.

III. PROBLEM FORMULATION

A. General protocol description

There are two parties Alice and Bob. Alice wants to communicate a message M chosen uniformly
from the set {1, · · · , 2nR} using n uses of a noisy classical-quantum (cq-) channel W = {Wx}x∈X from

an input classical system X composed of finite elements to a quantum system HY . We also assume the
following condition for our cq-channel W ;

(NR) Any element x ∈ X satisfies

min
x∈X

min
P∈P (X\{x})

D

(

∑

x′∈X\{x}

P (x′)Wx′

∥

∥

∥

∥

Wx

)

> 0. (12)

This condition is called the non-redundant condition [5], [6], [7].

They are also allowed to use a noiseless channel any number of times. However, this whole commu-

nication process consists of two phases:

Phase 1. (Commit phase) Based on Alice’s choice of message m ∈ {1, · · · , 2nR}, there are n rounds of a
multi-round of communication from Alice to Bob and Bob to Alice. In all the discussions below one

round of communication ends when first Alice communicates to Bob and then Bob communicates

to Alice. Further, Alice has a classical memory Z and Bob has a quantum memory Y ′.
In the first round, Alice communicates U1 = f1(m,Z) to Bob over a noiseless channel, and also

communicates X1 = g1(m,Z) over a classical-quantum channel, which Bob receives as quantum
state WX1 on the quantum system Y1. Then, Bob has the state ρU1Y1(m). After receiving the quantum

system Y1 and the classical information U1 from Alice, dependently on U1 = u1, Bob applies the

first quantum instrument {Γ(1)
v1|u1

}v1∈V1 : U1Y1 → Y ′
1V1. Then, Bob has the state ρY ′

1V1
(m). Bob sends

the outcome V1 to Alice.

1For simplicity, here and in the rest of the paper, we assume the set K to be discrete. In fact, if the Hilbert spaces A, B, etc, on which

the cp maps act are finite dimensional, then every instrument is a convex combination, i.e. a probabilistic mixture, of instruments with only

finitely many non-zero elements; this carries over to instruments defined on a general measurable space K. Thus, in the finite-dimensional

case the assumption of discrete K is not really a restriction.
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In the same way as the above, the i-th round is given as follows. Alice communicates Ui =
fi(m,Z, Vi−1) to Bob over a noiseless channel by using additional classical information V i−1. Also,
she communicates Xi = Ti(m,Z, Vi−1) over a classical-quantum channel, which Bob receives as

quantum state WXi
on the quantum system Yi. Then, Bob has the state ρY ′

i−1UiYi
(m). After receiving

the quantum system Yi and the classical information Ui from Alice, Dependently on ui, vi−1, Bob

applies the i-th quantum instrument {Γ(i)

vi|ui,vi−1}vi∈Vi
: Y ′

i−1UiYi → Y ′
i Vi, where ui = (u1, . . . , ui)

and vi−1 = (v1, . . . , vi−1). Then, Bob has the state ρY ′
i Vi

(m). Bob sends the outcome Vi to Alice.
We denote honest Bob’s behavior in Phase 1 and Bob’s arbitrary behavior in Phase 1 by B and B′,

respectively. We denote the set of Alice’s honest operations in Phase 1 by A1 = {A1(m)}m, where
A1(m) is Alice’s honest operations in Phase 1 with M = m. After n-th round, Bob’s state is written as

W
UnV nY ′

n

B,A1(m),Xn=xn or W
UnV nY ′

n

B′,A1(m),Xn=xn dependently on Alice’s and Bob’s operations and Xn = xn. Sim-

ilarly, we define W
UnV nY ′

n

B,A1(m),Z=z and and W
UnV nY ′

n

B,A1(m) Also, we define W
UnV nY ′

n

B,A1
=

∑

m 2−nRW
UnV nY ′

n

B,A1(m) .

It is required that the whole communication process at the end of Phase 1 doesn’t reveal anything

about the message m to Bob until Alice reveals him the message in the reveal phase mentioned
below. This property of Phase 1 is called the concealing property and is defined as follows: We call

Phase 1 as ε concealing for passive Bob if we have

1

2

∥

∥

∥
W

UnV nY ′
n

B,A1(m) −W
UnV nY ′

n

B,A1(m′)

∥

∥

∥

1
≤ ε. (13)

for any message pair (m,m′) with m 6= m′. We call Phase 1 as ε concealing for active Bob if we

have

1

2

∥

∥

∥
W

UnV nY ′
n

B′,A1(m) −W
UnV nY ′

n

B′,A1(m′)

∥

∥

∥

1
≤ ε. (14)

for any message pair (m,m′) with m 6= m′ and Bob’s arbitrary behavior B′ in Phase 1. The concealing

property for active Bob is a stronger condition than the concealing property for passive Bob.
Phase 2. (Reveal phase) In this phase, Alice reveals her message M = m and her private randomness Z

to Bob via a noiseless channel. Bob tries to answer the question “is the message revealed by Alice
correct or not?” For this aim, Bob applies binary valued measurements T = {{Tmz, I −Tmz}}mz on

the system UnV nY ′
n, where Tmz corresponds to the “Accept”. To ensure that Alice doesn’t cheat in

the reveal phase, i.e., she is not able to reveal some wrong message to Bob, we hope that Phase 2
has this property which we call as the binding property. Further, the following condition is required;
if both Alice and Bob don’t cheat, then the measurement outcome at the end of Phase 2 should ask

to Bob to accept the message revealed by Alice. This property of the protocol is called correctness.

Both these properties of Phase 2 are defined mathematically as follows. We denote the set of Alice’s
honest operations in Phase 2 by A2 = {A2(m)}m, where A2(m) is Alice’s honest operations in Phase

2 with M = m. The correctness condition is given as

Pr {m is accepted | Alice performs A1(m), A2(m), Bob performs B, T } ≥ 1− δ. (15)

There are two kinds of binding property. In biding property, we always assume that Bob is honest.

The following is the binding property for passive Alice; Any Alice’s operation A′
2 for Phase 2 satisfies

Pr{m′ is accepted | Alice performs A1(m), A′
2, Bob performs B, T } ≤ δ (16)

for m′ 6= m.
The following is the biding property for active Alice; When Alice’s operations A1 and A2 for Phases

1 and 2 satisfy the condition

Pr {m is accepted | Alice performs A1, A2, Bob performs B, T } ≥ 1− δ (17)

with an element m, any Alice’s operation A′
2 satisfies

Pr {m′ is accepted | Alice performs A1, A
′
2, Bob performs B, T } ≤ δ. (18)
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By combining the correctness and the binding property, the set of the above conditions is called a

δ-binding condition.

The above protocol is written as a combination of the four parts A1,A2,B, and T . The tuple (A1,A2,B, T )
is called a protocol with n rounds and is denoted by P . We denote the minimum value ε to satisfy the

condition (14) (the condition (13)) under the protocol P = (A1,A2,B, T ) by εa(P) (εp(P)). The value

εa(P) (εp(P)) depends only on Alice’s operation A1 in Phase 1 (Alice’s operation A1 and Bob’s operation
B in Phase 1). The value εa(P) (εp(P)) is called the active concealing parameter (the passive concealing

parameter). We denote the minimum value δ to satisfy the conditions (15) and (16) under the protocol
P = (A1,A2,B, T ) by δp(P), which is called the passive binding parameter. We denote the minimum

value δ to satisfy the conditions (15), (17), and (18) under the protocol P = (A1,A2,B, T ) by δa(P),
which is called the active binding parameter. Also, the value R is called the rate of the protocol P and

is denoted by R(P).

B. Two subclass of protocols

Since it is not so easy to discuss a general protocol, we introduce the invertible condition for A1 as fol-

lows. That is, we introduce the class of invertible protocols as the first subclass. Alice’s honest operation A1

in Phase 1 is called invertible when there exist set of TP-CP maps ΛY ′
1V1→U1Y1

,ΛY ′
2V2→Y ′

1U2Y2
, . . . ,ΛY ′

nVn→Y ′
n−1UnYn

such that the relations

ΛY ′
1V1→U1Y1

(ρY ′
1V1

(m)) = ρU1Y1(m),

ΛY ′
2V2→Y ′

1U2Y2
(ρY ′

2V2
(m)) = ρY ′

1U2Y2
(m),

...

ΛY ′
nVn→Y ′

n−1UnYn
(ρY ′

nVn
(m)) = ρY ′

n−1UnYn
(m)

(19)

hold for any m. When all densities Wx are commutative with each other, any protocol P is invertible.

Next, as another subclass, we introduce the class of non-interactive protocols. When the classical
communication for the variable Ui nor Vi is communicated in Phase 1, the protocol P = (A1,A2,B, T )
by δp(P) is called non-interactive. Clearly, the class of non-interactive protocols is included in the class

of invertible protocols .

C. Asymptotic analysis

To study the asymptotic limitation of the performance, we focus on the rate R. The rate R is called

achievable with active attack (passive attack) under the cq-channel W when there exists a sequence of
protocols {Pn}∞n=1 such that Pn is a protocol with n rounds, R = limn→∞R(Pn), limn→∞ εa(Pn) = 0
(limn→∞ εp(Pn) = 0) and limn→∞ δa(Pn) = 0 (limn→∞ δp(Pn) = 0). The supremum of achievable rate
under the cq-channel W with active attack (passive attack) is called the commitment capacity of W with

active attack (passive attack) and is denoted by Ca(W ) (Cp(W )).
The rate R is called achievable with invertible protocols and with active attack (passive attack) under

the cq-channel W when there exists a sequence of invertible protocols {Pn}∞n=1 such that Pn is an
invertible protocol with n rounds, R = limn→∞R(Pn), and limn→∞ εa(Pn) = 0 (limn→∞ εp(Pn) = 0)

and limn→∞ δa(Pn) = 0 (limn→∞ δp(Pn) = 0). The supremum of achievable rate with invertible protocols

and with active attack (passive attack) under the cq-channel W is called the invertible commitment
capacity with active attack (passive attack) of W and is denoted by Ca,inv(W ) (Cp,inv(W )). In the same

way, we define an achievable rate with non-interactive protocols, and the non-interactive commitment
capacity with active attack (passive attack) Ca,non(W ) (Cp,non(W )).
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From these definitions, we have the following inequalities

Ca(W ) ≤ Cp(W )

| ∨ | ∨
Ca,inv(W ) ≤ Cp,inv(W ) (20)

| ∨ | ∨
Ca,non(W ) ≤Cp,non(W ).

When all densities Wx are commutative with each other, we have Ca(W ) = Ca,inv(W ) and Cp(W ) =
Cp,inv(W ).

Then, we have the following theorem.
Theorem 1: Assume Condition (NR). Then, we have the following relations;

Ca,non(W ) = Cp,non(W ) = Ca,inv(W ) = Cp,inv(W ) = sup
P∈P (X )

H(X|Y )P . (21)

�

This theorem is composed of two parts because of (20).

Ca,non(W ) ≥ sup
P∈P (X )

H(X|Y )P (22)

Cp,inv(W ) ≤ sup
P∈P (X )

H(X|Y )P . (23)

That is, separating active and passive scenarios, we clarify what properties are used in the direct and

converse parts in the above way.

IV. SYMMETRIC CHANNEL

A. Formulation

As a typical example of cq-channel, we consider symmetric channel. We consider a finite group G
as the input classical system X , and a state ρ on the quantum system HY . Also, we consider a unitary

representation U of G on HY [10]. That is, for an element g ∈ G, the unitary Ug is defined to satisfy the
following conditions; Ue = I and UgUg′ = Ugg′ , where e ∈ G is the unit element. When Ue = I and

there exists a complex number eiθ(g,g
′) for g, g′ ∈ G such that UgUg′ = eiθ(g,g

′)Ugg′ , the set of unitaries
{Ug}g∈G is called a projective unitary representation [10]. In the following, we assume that {Ug}g∈G forms

a projective unitary representation.
Then, we define the cq-channel as Wg := UgρU

†
g . This channel is called a symmetric channel. When

{Ug}g∈G forms a projective unitary representation, we have Wgg′ := UgUg′ρU
†
g′U

†
g . Hence, we do not need

to care the phase factor eiθ(g,g
′) when we focus on the states {Wg}g∈G .

This channel with the commutative group was discussed in the reference [11, Section VII-A-2]. The

paper [12] studied such a channel model in the context of resource theory of asymmetry in the pure state
case. Recently, the papers [13], [14] addressed this type of channels in the context of dense coding and

private dense coding. This class of cq-symmetric channels is a quantum generalization of a regular channel

[15], which is a useful class of channels in classical information theory. This class of classical channels
is often called generalized additive [16, Section V] or conditional additive [16, Section 4] and contains

a class of additive channels as a subclass. Such a channel appears even in wireless communication by
considering binary phase-shift keying (BPSK) modulations [17, Section 4.3]. Its most simple example is

the binary symmetric channel (BSC).
In the above symmetric channel, we define the stabilizer K ⊂ G as

K := {g ∈ G|Wg = We}, (24)
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where e ∈ G expresses the unit element of the group G.

Since an element of K output the same state as the unit element e, we consider the channel with the
input system X := G/K as W[g] := Wg. We call this type of channel an induced symmetric channel.

Lemma 1: Any induced symmetric channel satisfies the Condition (NR). �

Example 1: We consider the case when G = Zd and H is spanned by {|j〉}d−1
j=0. We define the

representation Ug := Z
g, where Z :=

∑d−1
j=0 e

2πji/d|j〉〈j|. We define |φ〉 :=
∑d−1

j=0 aj|j〉 with aj 6= 0
for j = 0, . . . , d− 1. When we choose the state ρ to be |φ〉〈φ|, the vectors {Ug|φ〉}g=0,...,d−1 are linearly

independent. Hence, we have K = {0}. �

Example 2: Next, we consider the case with d = pq in Example 1. We choose |ψ〉 :=
∑p−1

j=0 bj |qj〉
with bj 6= 0 for j = 0, . . . , p− 1. When we choose the state ρ to be |ψ〉〈ψ|, the vectors {Uj |ψ〉}p−1

j=0 are
linearly independent and Uj |ψ〉 = Uj+pk|ψ〉 for j = 0, . . . , p − 1 and k = 0, . . . , q − 1. Hence, we have

K = {pk}q−1
k=0. �

B. Calculation of commitment capacity

To calculate the commitment capacity supP∈P (X )H(X|Y )P of the induced channel, we prepare the
following lemma.

Lemma 2: The function PX 7→ H(X|Y )PX
is concave. �

In addition, for the calculation of the quantity supP∈P (X )H(X|Y )P , we prepare the following things. A

projective unitary representation {Ug}g∈G on the Hilbert space H is called irreducible when the following
condition holds; When a subspace H′ of H satisfies the condition UgH′ = H′ for g ∈ G, H′ is H or 0. An

example of irreducible projective representation is given in Example 5. When G is a commutative group

and {Ug}g∈G is an irreducible unitary representation of G on H, the dimension of H is 1.

We denote the set of the irreducible projective unitary representations by Ĝ. For an element λ ∈ Ĝ, we
denote the corresponding representation space and the corresponding unitary representation by Hλ and

Uλ, respectively. We denote the dimension of Hλ by dλ. Generally, the representation space HY can be

written as

HY =
⊕

λ∈Ĝ

Hλ ⊗ C
nλ , (25)

where nλ expresses the multiplicity of the irreducible unitary presentation Uλ.
Example 3: To see the multiplicity in the most simple example, we consider the case of commutative

group G = Zd with H spanned by {|j〉}nj=1. Assume that Ug is given as
∑n

j=1 e
i2πg/d|j〉〈j| for g ∈ Zd. In

this case, Ug,j := ei2πg/d|j〉〈j| is an irreducible representation on the one-dimensional space spanned by
|j〉. The representation Ug,j has the same structure as Ug,0 for any j = 1, . . . , n, where Ug,0 := ei2πg/d|0〉〈0|.
Hence, the representation Ug,j is equivalent to the representation Ug,0. The representation Ug contains n
irreducible representations equivalent to the representation Ug,0. Now, we consider the space spanned by

{|0, j〉}nj=1, which equals H0 ⊗ Cn, where H0 is spanned by |0〉 and Cn is spanned by {|j〉}nj=1. When

the representation on H0⊗C
n is given as Ug,0⊗ I , this representation has the same structure as the above

representation Ug. In this case, the dimension of the second space expresses the number of the same

representation n, which is considered as the multiplicity. In addition,Ug is a constant times of the identity
I , K = G. �

When the representation space HY does not contain a subspace that equivalent to the irreducible
representation space Hλ, nλ is zero. We denote the projection to the space Hλ ⊗ Cnλ by Pλ. We define

the state ρλ on Cnλ and the probability p(λ) as

p(λ) := TrPλρ, ρλ :=
1

p(λ)
TrHλ

PλρPλ. (26)
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Since the average state
∑

g∈G
1
|G|
Wg is commutative with Ug for any g ∈ G, Schur’s lemma [10, Lemma

2.4] guarantees that it has the form
⊕

λ∈Ĝ
p(λ)
dλ
Iλ ⊗ σλ. Since σλ coincides with ρλ, we have

∑

g∈G

1

|G|Wg =
⊕

λ∈Ĝ

p(λ)

dλ
Iλ ⊗ ρλ, (27)

which implies that

S
(

∑

g∈G

1

|G|Wg

)

=
∑

λ∈Ĝ

p(λ)
(

S(ρλ) + log
dλ
p(λ)

)

. (28)

Using (28) and Lemma 2, we can show the following lemma.
Lemma 3: For an induced symmetric channel, the uniform distribution achieves the commitment

capacity. �

In the above lemma, we need to address the induced symmetric channel instead of the symmetric channel
because the symmetric channel does not satisfy Condition (NR) unless K = {e}.

We denote the uniform distribution on the set X of inputs of the induced symmetric channel by Puni,X .
Then, due to Lemma 3, the commitment capacity is calculated as

sup
P∈P (X )

H(X|Y )P = H(X|Y )Puni,X
= log |X |+ S(ρ)−

∑

λ∈Ĝ

p(λ)
(

S(ρλ) + log
dλ
p(λ)

)

, (29)

where the second equation follows from (28). In particular, when K = {e}, the symmetric channel satisfies

sup
P∈P (G)

H(X|Y )P = log |G|+ S(ρ)−
∑

λ∈Ĝ

p(λ)
(

S(ρλ) + log
dλ
p(λ)

)

. (30)

In the following, we consider several typical cases. When the projective representation U is an irreducible
representation Uλ, we have

sup
P∈P (G)

H(X|Y )P = log |X |+ S(ρ)− log dλ. (31)

When G is a commutative group and U has no multiplicity, we have

sup
P∈P (G)

H(X|Y )P = log |X |+ S(ρ) +
∑

λ∈Ĝ

p(λ) log p(λ) (32)

because the dimension of irreducible representation is 1.
Example 4: Eq. (32) guarantees that the capacity of the model in Example 1 is log d+

∑d−1
j=0 |aj|2 log |aj|2.

Also, due to (32), the capacity of the model in Example 2 is calculated to log p+
∑p−1

j=0 |bj |2 log |bj |2. �
Example 5: We apply our result to dense coding with a general state [18], [19]. For this aim, we

consider Zd,, Z, and H in the same way as Example 1. We define the operator X :=
∑d−1

j=0 |j + 1〉〈j|,
where |d〉 = |0〉. For G = Z

2
d, we define Uj,k := X

j
Z
k. Since the relation Uj,kUj′,k′ = (e2π/d)j

′kUj+j′,k+k′

holds, {Uj,k}(j,k)∈Z2
d forms a projective irreducible representation [10, Section 8.1.1]. The receiver has the

system HB with the same dimension as the sender’s system H. Assume that the sender and the receiver
share the n copies of a state ρ on the composite system H⊗HB . Then, the sender is allowed to apply one

of {Uj,k}(j,k)∈Z2
d on the system H and send it to the receiver as one use of the channel. In this situation,

H is the irreducible representation space [10, Chapter 8], and the space HB shows the multiplicity. We

assume that ρ is not commutative with Uj,k unless (j, k) = (0, 0). Then, we find that K = {(0, 0)}. By

using (30), the capacity is calculated to log d+ S(ρ)− S(ρB). �

C. Proofs

This subsection proves the lemmas stated in this section.
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1) Proof of Lemma 1: We show Condition (NR) by contradiction. We define the set X0 ⊂ X = G/K
as

X0 :=
{

[g] ∈ X
∣

∣

∣
Wg cannot be written as

∑

[g′]∈X\{[g]}

P ([g′])Wg′

}

. (33)

We assume that Condition (NR) does not hold, i.e., X0 6= X . We choose an element [g] ∈ X \ X0 and a

distribution P on X \ {[g]} such that Wg =
∑

[g′]∈X P ([g
′])Wg′ . For an element [g0] ∈ X0, we have

Wg0 =Ug0g−1WgU
†
g0g−1 =

∑

[g′]∈X

P ([g′])Ug0g−1Wg′U
†
g0g−1

=
∑

[g′]∈X

P ([g′])Wg0g−1g′ =
∑

[g′]∈X

P ([gg−1
0 g′])Wg′, (34)

which implies the contradiction to the condition [g0] ∈ X0. Hence, Condition (NR) holds.

2) Proof of Lemma 2: We consider the state ρ = λ|0〉〈0|Z ⊗
∑

x∈X P0(x) ⊗Wx + (1 − λ)|1〉〈1|Z ⊗
∑

x∈X P1(x)⊗Wx on the system Z,X, Y . Then, we have

λH(X|Y )P0 + (1− λ)H(X|Y )P1 = H(X|Y Z)[ρ] ≤ H(X|Y )[ρ] = H(X|Y )λP0+(1−λ)P1
. (35)

3) Proof of Lemma 3: Since a unitary operation does not change the information quantity H(X|Y )P ,
we have H(X|Y )Pg

= H(X|Y )P , where Pg(x) := P (gx) for x ∈ X . Hence, Lemma 2 implies that

H(X|Y )P ≤ H(X|Y )∑
g Pg

= H(X|Y )Puni,X . (36)

V. CONVERSE PART

A. Proof of (23)

The converse part (23) follows from the following theorem.

Theorem 2: Given an invertible protocol Pn = (A1,A2,B, T ), there exists a distribution PX on X such
that

(1− ε− 3
3
√
δ)R ≤ H(X | Y )PX

+
1 + η(ε)

n
, (37)

where R = R(Pn), δ = δp(Pn), ε = εp(Pn), and η(ε) := (ε+ 1) log(ε+ 1)− ε log(ε).
To show Theorem 2, we prepare the following proposition and the following lemma. In these statements,

we consider various information quantities on the state ρ2 after Bob’s operation of Phase 2. The state ρ2
has the random variables M,Xn, Un, V n, Z and the quantum system Y ′

n. Hence, omit the symbol added
to information quantities, [ρ2]. That is, I(M ;UnV nY ′

n)[ρ2] is simplified to I(M ;UnV nY ′
n).

Proposition 1: We consider a protocol Pn = (A1,A2,B, T ), with R = R(Pn) and δ = δp(Pn), and
assume that M is chosen uniformly from [1 : 2nR]. There exists a function h(XnUnV n) such that the

relation

Pr{M 6= h(XnUnV n)} < 3
3
√
δ (38)

holds under A1,B. Notice that the random variables M,Xn, Un, V n are defined at the end of Phase 1

and they are defined with the state ρ2. �

Lemma 4: Suppose Alice and Bob follow the protocol mentioned in section III-A such that two different
messages m 6= m′ satisfy

1

2

∥

∥

∥

∥

W
UnV nY ′

n

B,A1(m) −W
UnV nY ′

n

B,A1(m′)

∥

∥

∥

∥

1

≤ ε. (39)
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Then,

I(M ;UnV nY ′
n) ≤ nεR + η(ε), (40)

where η(ε) := (ε+ 1) log(ε+ 1)− ε log(ε). �

Proof of Lemma 4: Since W
UnV nY ′

n

B,A1
=

∑2nR

m′=1
1

2nRW
UnV nY ′

n

B,A1(m′), the application of the triangle inequality

implies

1

2
‖WUnV nY ′

n

B,A1(m) −W
UnV nY ′

n

B,A1
‖1 ≤

2nR
∑

m′=1

1

2 · 2nR‖W
UnV nY ′

n

B,A1(m) −W
UnV nY ′

n

B,A1(m′)‖1 ≤ ε, (41)

where the second inequality follows from (39). Then, since

I(M ;UnV nY ′
n) = S(W

UnV nY ′
n

B,A1
)−

2nR
∑

m=1

1

2nR
S(W

UnV nY ′
n

B,A1(m) ),

(40) follows from the continuity property of von Neumann entropy, i.e., Fannes inequality [22], [23,
Theorem 5.12].

Now, we prove Theorem 2 by using Proposition 1 and Lemmas 4 and 2.

Proof of Theorem 2: Applying Fano’s inequality to Proposition 1, we have the relations

H(M | XnUnV nY ′
n) ≤ H(M | XnUnV n) ≤ 1 + 3n

3
√
δR. (42)

Then, we have

H(Xn | UnV nY ′
n)

= H(MXn | UnV nY ′
n)−H(M | XnUnV nY ′

n)

≥ H(M | UnV nY ′
n)−H(M | XnUnV nY ′

n)
(a)

≥ H(M | UnV nY ′
n)− 1− 3n

3
√
δR

= H(M)− I(M ;UnV nY ′
n)− 1− 3n

3
√
δR

(b)

≥ H(M)− nεR− η(ε)− 1− 3n
3
√
δR

= nR(1− ε− 3
3
√
δ)− (1 + η(ε)), (43)

where (a) follows from (42), and (b) follows from Lemma 4.
Next, we consider the following virtual operation on the state ρ2. We consider the state ρ3 := ΛY ′

1V1→U1Y1
◦

ΛY ′
2V2→Y ′

1U2Y2
◦ . . .◦ΛY ′

nVn→Y ′
n−1UnYn

(ρ2). Under the state ρ3, Bob’s system is composed of quantum system

Y n and the classical variable Un. Then, we have

H(Xn | Y n)[ρ3] ≥ H(Xn | Y nUn)[ρ3]. (44)

Also, we have

H(Xn | Y n)[ρ3]

=
n

∑

i=1

H(Xi|X i−1Y n)[ρ3]

≤
n

∑

i=1

H(Xi | Yi)[ρ3]

=

n
∑

i=1

H(X|Y )PXi

≤ nH(X|Y )∑n
i=1

1
n
PXi

. (45)
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where the last inequality follows from Lemma 2. Since the operation ΛY ′
1V1→U1Y1

◦ ΛY ′
2V2→Y ′

1U2Y2
◦ . . . ◦

ΛY ′
nVn→Y ′

n−1UnYn
is invertible, Bob’s information under the state ρ3 is equivalent to Bob’s information

under the state ρ2. Hence, we have

H(Xn | Y nUn)[ρ3] = H(Xn | UnV nY ′
n)[ρ2]. (46)

Therefore, we have

nH(X|Y )∑n
i=1

1
n
PXi

(a)

≥ H(Xn | Y n)[ρ3]
(b)

≥ H(Xn | Y nUn)[ρ3]
(c)
= H(Xn | UnV nY ′

n)
(d)

≥ nR(1− ε− 3
3
√
δ)− (1 + η(ε)), (47)

where Steps (a), (b), (c), and (d) follow from (45), (44), (46), and (43), respectively. Thus, we obtain
(37).

B. Proof of Proposition 1

Outline: In this proof, we discuss Pr{M 6= h(XnUnV n)} when Alice behaves honestly in Phase 1 as
A1 and Bob behaves honestly in Phase 1 as B. Hence, we omit the symbol B in the state description.

We construct the required function h(XnUnV n) by following a sequence of steps. Here we give a brief

outline. For every m, we first show the existence of a set which we call as Good(m) ⊆ Z, where for
every z ∈ Good(m), the pair (m,z) has the property that the test T = {Tmz , I − Tmz} accepts the state

W
UnV nY ′

n

A1(m),Z=z with high probability. We then define functions F (· | m) and F̄ (· | m). Using these functions

we define the function h(·). We then invoke the properties of the set Good(m) and the functions F (· | m)
and F̄ (· | m) to arrive at (38).
Step 1: The aim of this step is to define the set Good(m) and deriving its properties. Towards this, let

f(m, z) := TrW
UnV nY ′

n

A1(m),Z=zTmz. The correctness condition implies

∑

z

PZ|M=m(z)f(m, z)

=Pr {m is accepted | Alice performs A1(m), A2(m), Bob performs B, T }
≥1− δ. (48)

For each m, define the set Good(m) as follows:

Good(m) := {z|f(m, z) > 1− 3
√
δ}. (49)

The existence of Good(m) follows from the following set of inequalities:

Pr {Good(m)}
= Pr{f(Z,m) > 1− 3

√
δ}

= 1− Pr{f(Z,m) ≤ 1− 3
√
δ}

= 1− Pr{1− f(Z,m) ≥ 3
√
δ}

(a)

≥ 1− EZ|M=m[1− f(Z,m)]
3
√
δ

(b)

≥ 1− 3
√
δ2, (50)
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where (a) follows from Markov inequality and (b) follows from (48). The relation (50) guarantees that

Good(m) is a non-empty set.
Step 2: The aim of Step 2 is introducing the functions F (xn, un, vn|mz), F (xn, un, vn|m) and deriving

their properties. Since the state on Un, V n, Y ′
n is determined with Xn = xn, Z = z, we use the notation,

W
Un=un,V n=vn,Y ′

n

Xn=xn,Z=z . Using the operator;

W
Y ′
n

Un=un,V n=vn,Xn=xn,Z=z :=
1

TrW
Un=un,V n=vn,Y ′

n

Xn=xn,Z=z

W
Un=un,V n=vn,Y ′

n

Xn=xn,Z=z , (51)

we define the functions

F (xn, un, vn|mz) :=Tr(W
Y ′
n

Un=un,V n=vn,Xn=xn,Z=z ⊗ |un, vn〉〈un, vn|)Tmz (52)

F (xn, un, vn|m) := max
z∈Good(m)

F (xn, un, vn|mz). (53)

As shown in Step 6, we have

EXnUnV n|M=m,Z=zF (X
nUnV n|m′z′) = TrW

Un,V n,Y ′
n

A1(m),Z=zTm′z′ (54)

for m,m′, z, z′. Then, we have

EXnUnV n|M=m,Z=zF (X
nUnV n|mz) = f(m, z). (55)

Therefore, we have

EXnUnV n|M=mF (X
nUnV n|m)

≥
∑

z∈Good(m)

PZ|M=m(z)EXnUnV n|M=m,Z=zF (X
nUnV n|m)

(a)

≥
∑

z∈Good(m)

PZ|M=m(z)EXnUnV n|M=m,Z=zF (X
nUnV n|mz)

(b)
=

∑

z∈Good(m)

PZ|M=m(z)f(m, z)

(c)
>

∑

z∈Good(m)

PZ|M=m(z)(1− 3
√
δ)

(d)

≥ (1− 3
√
δ2)(1− 3

√
δ)

> 1− 2
3
√
δ, (56)

where Steps (a), (b), (c), and (d) follow from (53), (55), (49), and (50), respectively.
Step 3: The aim of Step 3 is introducing the function F̄ (xn, un, vn|m), and deriving its property. We

define F̄ (xn, un, vn|m) := maxm′ 6=m F (x
n, un, vn|m′). Then, as shown below, we have

EXnUnV n|M=mF̄ (X
n, Un, V n|m) < δ. (57)
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To show (57), we choosem′ and z′ ∈ Good(m) as F̄ (XnUnV n|m) = F (XnUnV n|m′) and F (XnUnV n|m′)
= F (XnUnV n|m′z′). We define A′

2 as Alice’s dishonest operation in Phase 2 to send m′z′ instead of mz.
Hence, we have

EXnUnV n|M=mF̄ (X
nUnV n|m)

(a)
= EXnUnV n|M=mF (X

nUnV n|m′)

=
∑

z

PZ|M=m(z)EXnUnV n|M=m,Z=zF (X
nUnV n|m′)

(b)
=
∑

z

PZ|M=m(z)EXnUnV n|M=m,Z=zF (X
nUnV n|m′z′)

(c)
=
∑

z

PZ|M=m(z) TrW
Un,V n,Y ′

n

A1(m),Z=zTm′z′

(d)
=Pr{m′ is accepted | Alice performs A1(m), A′

2, Bob performs B, T }
(e)

≤ δ, (58)

where Steps (a), (b), (c), (d), and (e), follow from the choice of m′, the choice of z′, (54), the definition
of A′

2, and (16), respectively.

Step 4: The aim of Step 4 is introducing the function M̂(xn, un, vn), and deriving its property. We

define a function M̂(xn, un, vn) as follows.

h(xn, un, vn) := argmax
m

F (xn, un, vn|m). (59)

When m, xn, un, vn satisfies the condition, m 6= M̂(xn, un, vn), (59) guarantees that

F (xn, un, vn|m) < max
m′

F (xn, un, vn|m′), (60)

which implies that

F̄ (xn, un, vn|m) = max
m′

F (xn, un, vn|m′). (61)

Therefore, we have F (xn, un, vn|m) ≤ F̄ (xn, un, vn|m), which implies that

1 ≤ F̄ (xn, un, vn|m) + (1− F (xn, un, vn|m)).

Hence, we have

I[h(Xn, Un, V n) 6= m] ≤ F̄ (xn, un, vn|m) + (1− F (xn, un, vn|m)), (62)

where the function I[h(Xn, Un, V n) 6= m] is defined as

I[h(Xn, Un, V n) 6= m] :=

{

1 when h(Xn, Un, V n) 6= m;
0 when h(Xn, Un, V n) = m.

Step 5: The aim of Step 5 is showing the desired relation (38). We have

Pr{h(Xn, Un, V n) 6= m}
= EXnUnV n|M=mI[h(X

n, Un, V n) 6= m]
(a)

≤ EXnUnV n|M=m(F̄ (X
n, Un, V n|m) + (1− F (Xn, Un, V n|m)))

= EXnUnV n|M=m(F̄ (X
n, Un, V n|m)) + EXnUnV n|M=m(1− F (Xn, Un, V n|m)))

(b)
< δ + 2

3
√
δ, (63)

where Steps (a) and (b) follow from (62) and the combination of (56) and (57), respectively.
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Hence, we have

Pr(M 6= h(XnUnV n)) = EMPr{h(XnUnV n) 6= m} < δ + 2
3
√
δ ≤ 3

3
√
δ, (64)

which proves the desired statement (38).
Step 6: The claim in (54) can be shown as follows.

EXnUnV n|M=m,Z=zF (X
nUnV n|m′z′)

=EXnUnV n|M=m,Z=z Tr(W
Y ′
n

Un,V n,Xn,Z=z ⊗ |Un, V n〉〈Un, V n|)Tm′z′

=EXn|M=m,Z=z

∑

un,vn

TrW
Un=un,V n=vn,Y ′

n

Xn,Z=z Tr(W
Y ′
n

un,vn,Xn,Z=z ⊗ |un, vn〉〈un, vn|)Tm′z′

=EXn|M=m,Z=z

∑

un,vn

Tr(W
Un=un,V n=vn,Y ′

n

Xn,Z=z ⊗ |un, vn〉〈un, vn|)Tm′z′

=EXn|M=m,Z=z TrW
Un,V n,Y ′

n

A1(m),Xn,Z=zTm′z′

=TrW
Un,V n,Y ′

n

A1(m),Z=zTm′z′. (65)

C. Relation to existing converse part analyses

The proof partially follows techniques similar to those used in the papers[5], [6], [7] because these

studies used a statement similar to Proposition 1. However, our Proposition 1 is different from the the
corresponding statement in the papers [5], [6], [7]. In Proposition 1, the estimate of the message M is

given as the function h of XnUnV n. That is, the channel outputs (Y1, . . . , Yn) are not the input variables of

our function h because they do not exist in Phase 2 (Reveal phase) in our quantum setting. In contrast, the
papers [5], [6], [7] used the variables UnV n and (Y1, . . . , Yn) as the inputs of the estimate of the message

M because the channel outputs (Y1, . . . , Yn) exists even in Phase 2 (Reveal phase) in the classical setting.
Due to the above reason, we need to invent an estimation function h different from their method.

The paper [8] also considered the converse part of in the classical setting only with non-interactive
protocols. However, to derive the converse part, the paper [8] assumes that Bob can recover the original

message M only with the received information via noisy channel and Z. That is, the paper [8] did not

prove a statement corresponding to Proposition 1. In fact, if we show Proposition 1, this method works for
the converse part of non-interactive protocols, i.e, Cp,non(W ). In this case, the converse part can be shown

by the application of wiretap channel to the case when the main channel is the noiseless communication
from Alice to Bob and the wiretap channel is the channel to the output of which is accessible to Bob in

Phase 1. In addition, even when Proposition 1 is employed, the simple wiretap scenario does not work in
interactive setting because the side information V n, Un cannot be handled in the simple wiretap scenario.

VI. DIRECT PART

A. Coding-theoretic formulation for non-interactive protocol

To study the performance of non-interactive protocol, we formulate a code for a cq-channel W . A map
φ from M×L to X is called a encoder, where M := {1, . . . ,M} and L := {1, . . . , L}. When Alice’s

message is M ∈ M, she selects L ∈ L according to the uniform distribution and sends φ(M,L) via a cq

channel W . Bob’s verifier is D = {Dm,l}(m,l)∈M×L, where 0 ≤ Dm,l ≤ I . A pair (φ,D) of an encoder
and a verifier is called a code.

We introduce the parameters (A) – (C) for an encoder φ and a verifier D = {Dm,l}(m,l)∈M×L as follows.

(A) Verifiable condition.

εA(φ,D) := max
(m,l)∈M×L

εA,m,l(φ(m, l), D) (66)

εA,m,l(x,D) := 1− Tr[WxDm,l]. (67)
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(B) Concealing condition

δB(φ) := max
m,m′∈M

∥

∥

∥

L
∑

l=1

1

L
Wφ(m,l) −

L
∑

l′=1

1

L
Wφ(m′,l′)

∥

∥

∥

1
. (68)

(C) Binding condition. For x ∈ X , we define the quantity δC,x(D) as the second largest value among

{(1− εA,m,l(x,D))}(m,l)∈M×L. Then, we define

δC(D) := max
x∈X

δC,x(D). (69)

For a code (φ,D), we define two numbers |(φ,D)|1 := M and |(φ,D)|2 := L.
To construct a non-interactive protocol, we consider n use of the cq-channel, which is written as a

cq-channel W n := {W (n)
xn }xn∈Xn , where

W
(n)
xn := Wx1 ⊗ · · · ⊗Wxn

(70)

with xn = (x1, . . . , xn). Given a code (φn, Dn) for the cq-channel W n, we construct a non-interactive

protocol with n use of the channel W as follows. In Phase 1, Alice chooses the random variable Z as

the uniform random variable L ∈ L. Given the message M , Alice chooses Xn to be φn(M,L), and sends
it to Bob via the cq-channel W n. Bob receives the state W n

Xn . In Phase 2, Alice sends M and L to Bob.

Bob applies the measurement {DM,L, I −DM,L}. When Bob’s outcome corresponds to DM,L, he accepts
the message M . Otherwise, he rejects it. This protocol accomplishes commitment instead of secrecy. We

denote the above non-interactive protocol by P(φn, Dn). Remember that the active concealing parameter
εa(P) and the active binding parameter δa(P) are defined for a protocol P in the end of Section III-A.

Then, we have the following lemma.

Lemma 5: The relations

εa(P(φn, Dn)) = δB(φn) (71)

δa(P(φn, Dn)) = max(εA(φn, Dn), δC(Dn) (72)

hold. �

Proof: Since the quantity δB(φn) is defined by (68), the condition (14) holds by replacing ε by δB(φn).
Hence, we have (71).

Since the quantity εA(φn, Dn) is defined by (66), the condition (17) holds by replacing δ by εA(φn, Dn).
Since the quantity δC(Dn) is defined by (69), the condition (18) holds by replacing δ by δC(Dn). Hence,

we have (72).
Therefore, to make a non-interactive protocol, it is sufficient to make the above type of code.

To construct a code, we introduce a pre-encoder and a pre-verifier, which are useful for this construction.
A map φ from M̃ := {1, . . . , M̃} to X is called a pre-encoder. We define |φ| := M̃. Bob’s verifier is

D = {Dm}m∈M̃, where 0 ≤ Dm ≤ I . We introduce the conditions (a) ,(bα), and (c) for an pre-encoder
φ and a pre-verifier D = {Dm}m∈M̃ as follows.

(a) Verifiable condition.

εA(φ,D) := max
m∈M̃

εA,m(φ(m), D) ≤ εA (73)

εA,m(x,D) := 1− Tr[WxDm]. (74)

(bα) Rényi equivocation type of concealing condition of order α > 1.

Eα(φ) := log M̃− min
σ∈S(HY )

1

α− 1
log

M̃
∑

m=1

1

M̃
2(α−1)D̃α(Wφ(m)‖σ). (75)
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(c) Binding condition. For x ∈ X , we define the quantity δC,x(D) as the second largest value among

{(1− εA,m(x, C))}m∈M. We define

δC(D) := max
x∈X

δC,x(D). (76)

We can easily show that

H̃α(M̃ |Y ) = Eα(φ). (77)

B. Asymptotic analysis for non-interactive protocol

Now, we show the inequality (22), i.e., the existence of the non-interactive protocol to achieve the rate
supPX

H(X|Y )PX
. For this aim, we discuss a sequence of codes {(φn, Dn)}. We say that a sequence of

codes {(φn, Dn)} is secure when εA(φn, Dn) → 0, δB(φn) → 0, and δC(Dn) → 0. Then, we have the
following theorem.

Theorem 3: Assume Condition (NR). For any distribution P ∈ P (X ), there exists a secure sequence
codes {(φn, Dn)} with Mn := |(φn, Dn)|1 = 2nR1 and Ln := |(φn, Dn)|2 = 2nR2 when there exists a

distribution P on X such that

R1 +R2 < H(X)P , R2 > I(X ; Y )P . (78)

�

Therefore, there exists the above type of a code when there exists a distribution P on X such that
R1 < H(X|Y )P . The combination of this fact and Lemma 5 yields (22). That is, for the direct part (22),

it is sufficient to show Theorem 3.
To show Theorem 3, we discuss a sequence of pre-codes {(φn, Dn)}. We say that a sequence of pre-

codes {(φn, Dn)} is (α, rα)-secure when εA(φn, Dn) → 0, δC(Dn) → 0, and limn→∞
1
n
Eα(φn) ≥ rα for

α > 1.
Theorem 4: Assume Condition (NR). For any distribution P ∈ P(X ), there exists a (α, rα)-secure

sequence of pre-codes {(φn, Dn)} with M̃n := |(φn, Dn)| = 2⌊nR1⌋+⌊nR2⌋ when there exists a distribution
P on X such that

R1 +R2 < H(X)P , rα = R1 +R2 − Ĩα(X ; Y )P . (79)

�

C. Proof of Theorem 3

Here, we show Theorem 3 by using Theorem 4. Given R1, R2 that satisfies the condition (78), we

define Mn := F
⌊nR1⌋
2 Ln := F

⌊nR2⌋
2 . Using Theorem 4, we choose a pre-code (φ̃n, Dn), and the set M̃n

is identified with F
⌊nR1⌋+⌊nR2⌋
2 .

We denote the projection from Mn ⊕ Ln to Mn by P . We randomly choose an invertible linear map

F from M̃n to Mn ⊕Ln such that P ◦F satisfies the universal2 hash condition (see [24], [25] for more

details on universal2 hash functions).
Then, there exists a liner invertible function f from M̃n to Mn ⊕ Ln such that

‖ρP◦f(M̃),Y − ρmix,M ⊗ ρE‖1 ≤ 2
2
α
−1+α−1

α
(log |B|−Eα(φ̃)) (80)

for α ∈ (1, 2], where ρM̃,Y :=
∑

m̃∈M̃n

1
|M̃n|

|m̃〉〈m̃| ⊗W
(n)

φ̃n(m̃)
. The inequality in (80) follows because of

the Proposition 2 mentioned below at the end of this subsection. We define φn(m, l) := φ̃n(f
−1(m, l)).

We have

ρP◦f(M̃ ),Y =
∑

m∈Mn

1

|Mn|
|m〉〈m| ⊗

∑

l∈L

1

|L|W
(n)
φn(m,l). (81)
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Hence,

δB(φn) = ‖ρP◦f(M̃ ),Y − ρmix,M ⊗ ρY ‖1. (82)

Since ra satisfies the second condition in (79), when α is close to 1, we have

lim
n→∞

log |B| − Eα(φ̃)

n
= R1 − rα = R1 − (R1 +R2) + Ĩα(X ; Y )Y = Ĩα(X ; Y )Y −R2 < 0. (83)

The combination of (83), (82), and (80) shows that δB(φn) → 0. Other two conditions εA(φn, Dn) → 0
and δC(Dn) → 0 follow from Theorem 4.

Proposition 2 ([26][27]): Let G be a universal2 hash function from A to B Then, we have

EG‖ρG(A)E − ρmix,B ⊗ ρE‖1 ≤ 2
2
α
−1+α−1

α
(log |B|−H̃α(A|E)) (84)

for α ∈ (1, 2]. �

D. Outline of proof of Theorem 4

Here, we present the outline of Theorem 4. To realize Binding condition (c), we need to exclude the
existence of xn ∈ X n and m 6= m′ ∈ M̃n such that 1 − εA,m(x

n, D) and 1 − εA,m′(xn, D) are far

from 0. For this aim, we focus on Hamming distance dH(x
n, xn′) between xn = (xn1 , . . . , x

n
n), x

n′ =
(xn1

′, . . . , xnn
′) ∈ X n as

dH(x
n, xn′) := |{k|xnk 6= xnk

′}|. (85)

and Hermitian matricess {Ξx}x∈X to satisfy the following conditions;

Tr[WxΞx] = 0, (86)

ζ1 := min
x 6=x′∈X

−(Tr[Wx′Ξx]) > 0, (87)

ζ2 := max
x,x′∈X

Tr[Wx′(Ξx − Tr[Wx′Ξx])
2] <∞. (88)

For xn = (xn1 , . . . , x
n
n) ∈ X n, we define

Ξ
(n)
xn :=

n
∑

i=1

I⊗(i−1) ⊗ Ξxn
i
⊗ I⊗(n−i). (89)

Then, given an encoder φn mapping M̃n to X n, we employ the following projection to Bob’s decoder to

include the message m in his decoded list;

{Ξ(n)
φn(m) ≥ −ε1n}. (90)

The projection (90) performs 1−εA,m(x
n, D) small when dH(x

n, φn(m)) is larger than a certain threshold.
Indeed, we have the following lemma.

Lemma 6: When Condition (NR) holds, there exist functions {Ξx}x∈X that satisfies the conditions (86),
(87), and (88). �

Proof: We show the desired statement for each x ∈ X . If any a self-adjoint operator Ax satisfies that
TrWxAx belongs to the convex hull of {TrWx′Ax}x′∈X\{x}, Wx belongs to the set {∑x′∈X\{x} P (x

′)Wx′|P ∈
P(X \ {x})}. Due to Condition (NR), Wx does not belong to the set {

∑

x′∈X\{x} P (x
′)Wx′|P ∈ P(X \

{x})}. Considering the contraposition of the above statement, we have the following; there exists a self-

adjoint operator Ax such that TrWxAx > TrWx′Ax for x′ ∈ X \ {x}. We choose a basis {|ej,x〉}j to
diagonal Ax, and define Px(j) := 〈ej,x|Wx|ej,x〉 and Px′(j) := 〈ej,x|Wx′|ej,x〉. Then, Px does not belong

to the convex hull of {Px′}x′ 6=x. Hence, applying Lemma 1 of [9], we obtained the desired statement for
x ∈ X .
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VII. PROOF OF THEOREM 4

Step 0: We set Mn := 3
2
· 2⌊nR1⌋+⌊nR2⌋. Hence, M̃n = 2

3
·Mn. We prepare the verifier used in this proof as

follows.
Definition 1 (Verifier Dφn

): Given a distribution P on X , we define the verifier Dφn
for a given encoder

φn (a map from Mn := {1, . . . ,Mn} to X n) in the following way. Using the condition (90), we define

the projection Πxn := {Ξ(n)
xn ≥ −nε1}. We define the verifier Dφn

= {Πφn(m)}m. �

Remember that, for xn = (xn1 , . . . , x
n
n), x

n′ = (xn1
′, . . . , xnn

′) ∈ X n, Hamming distance dH(x
n, xn′) is

defined to be the number of k such that xnk 6= xnk
′ as (85) in Subsection VI-D. In the proof of Theorem 4,

we need to extract an encoder φn and elements m ∈ Mn that satisfies the following Hamming distance

condition;

dH(φn(m), φn(j)) > nε2 for ∀j 6= m. (91)

For this aim, given a code φn and a real number ε2 > 0, we define the function ηCφn,ε2
from Mn to {0, 1}

as

ηCφn,ε2
(m) :=

{

0 when (91) holds
1 otherwise.

(92)

As shown in Appendix A, we have the following lemma.
Lemma 7: When a code φ̃n defined in a subset M̃n ⊂ Mn satisfies

dH(φ̃n(m), φ̃n(m
′)) > nε2 (93)

for two distinct elements m 6= m′ ∈ M̃n, the verifier Dφ̃n
defined in Definition 1 satisfies

δD(Dφ̃n
) ≤ ζ2

n[ζ1
ε2
2
− ε1]2+

. (94)

�

Step 1: The aim of this step is preparation of lemmas related to random coding.
To show Theorem 4, we assume that the variable Φn(m) for m ∈ Mn is subject to the distribution P n

independently. Then, we have the following four lemmas, which are shown later. In this proof, we treat

the code Φn as a random variable. Hence, the expectation and the probability for this variable are denoted
by EΦn

and PrΦn
, respectively. We prepare the following lemmas whose proofs are given in Appendices.

Lemma 8: We have the average version of Verifiable condition (a), i.e.,

lim
n→∞

EΦn

Mn
∑

m=1

1

Mn

εA,m(Φn, DΦn
) = 0. (95)

�

Lemma 9 ([9, Lemma 12]): When R1 +R2 < H(X)P , for ε2 > 0, we have

lim
n→∞

EΦn

Mn
∑

m=1

1

Mn

ηCΦn,ε2
(m) = 0. (96)

�

Lemma 10: We choose σP,α ∈ S(HY ) as

σP,α := argmin
σ∈S(HY )

D̃α(W × P‖σ ⊗ P ). (97)

We have

EΦn

Mn
∑

i=1

1

Mn

2(α−1)D̃α(WΦn(i)‖σ
n
P,α) = 2n(α−1)Ĩα(X;Y )P . (98)
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�

Step 2: The aim of this step is the extraction of an encoder φn and messages m with a small decoding
error probability that satisfies the condition (91).

We define ε3,n as

ε3,n := 9EΦn

Mn
∑

m=1

1

Mn

((

εA,m(φn, DΦn
) + ηCΦn,ε2

(m)
))

. (99)

Here the function ηCΦn,ε2
reflects the Hamming distance condition (91). Lemmas 8 and 9 guarantees that

ε3,n → 0. Then, there exists a sequence of codes φn such that

Mn
∑

m=1

1

Mn

(

εA,m(φn, Dφn
) + ηCφn,ε2

(m)
)

≤ ε3,n
3

(100)

Mn
∑

m=1

1

Mn

2(α−1)D̃α(Wφn(m)‖σ
n
P,α

) ≤ 3 · 2n(α−1)Ĩα(X;Y )P . (101)

Due to Eq. (100), Markov inequality guarantees that there exist 2
3
·Mn elements M̃n := {m1, . . . , m 2

3
·Mn

}
such that every element m ∈ M̃n satisfies

εA,m(φn, Dφn
) + ηCφn,ε2

(m) ≤ ε3,n, (102)

which implies that

εA,m(φn, Dφn
) ≤ ε3,n (103)

ηCφn,ε2(m) = 0 (104)

because ηCφn,ε2
takes value 0 or 1. Then, we define a code φ̃n on M̃n as φ̃n(m) := φn(m) for m ∈ M̃n.

Eq. (103) guarantees Verifiable condition (a). For m,m′, Eq. (101) guarantees that

∑

m∈M̃n

1

|M̃n|
2(α−1)D̃α(Wφ̃n(m)‖σ

⊗n
P,α

) =
∑

m∈M̃n

3

2Mn

2(α−1)D̃α(Wφn(m)‖σ
⊗n
P,α

) ≤ 9

2
· 2n(α−1)Ĩα(X;Y )P . (105)

Step 3: The aim of this step is the evaluation of the parameter δC(Dφ̃n,3
).

The relation (104) guarantees the condition

dH(φ̃n(m), φ̃n(m
′)) > nε2 (106)

for m 6= m′ ∈ M̃n. Therefore, Lemma 7 guarantees Binding condition (c), i.e.,

δC(Dφ̃n
) ≤ ζ2

n[ζ1
ε2
2
− ε1]2+

→ 0. (107)

Step 4: The aim of this step is the evaluation of the parameter Eα(φ̃n).
Eq. (105) guarantees that

min
σn∈S(H

⊗n
Y

)

∑

m∈M̃n

1

|M̃n|
2(α−1)D̃α(Wφ̃n(m)‖σn)

≤
∑

m∈M̃n

1

|M̃n|
2(α−1)D̃α(Wφ̃n(m)‖σ

⊗n
P,α

)

(a)

≤ 9

2
· 2n(α−1)Ĩα(X;Y )P , (108)
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where (a) follows from (105). Hence, we obtain Condition (bα), i.e., the relation limn→∞
1
n
Eα(φn) ≥ rα

with (79) as

lim
n→∞

1

n
Eα(φ̃n) ≥ R1 +R2 − Ĩα(X ; Y )P . (109)

VIII. CONCLUSION

We have calculated various types of commitment capacities. To show the direct part, we have extended

the method by [9] to the quantum setting. To show the converse part, we have shown Proposition 1, which

constructs a function to estimate the message from the random variables Xn, Un, V n. This function has
been constructed from an invertible protocol, and satisfies the required property (38) due to the security

parameters of the original invertible protocol. This part was omitted in the preceding papers [5], [6], [7].
Since any interactive protocol in the classical setting satisfies the invertible condition, our converse proof

covers the classical setting without any condition.
However, we could not prove the converse part for a general interactive protocol in the cq-channel

setting. When the invertible condition does not hold, there exists no inverse TP-CP map ΛY ′
1V1→U1Y1

,

ΛY ′
2V2→Y ′

1U2Y2
, . . . ,ΛY ′

nVn→Y ′
n−1UnYn

to satisfy the condition (19). Hence, the relation (46) does not hold
in general. We need to find another method to avoid this problem for a general interactive protocol.

Therefore, it is a interesting future problem to calculate the capacities Cp(W ) and Ca(W ).
In the direct part, we have constructed a specific code to satisfy Conditions (A), (B), and (C), and

have converted it to a non-interactive protocol to achieve the commitment capacity. For this construction,
we have constructed a pre-code to satisfy Conditions (a), (bα), and (c) by using Hamming distance as

Theorem 4. However, we have not constructed a special type of list decoding unlike the reference [9] due
to the following reason. If we apply the same list decoder, we need to apply a measurement, which might

destroy the received quantum state. Therefore, we can expect that this approach does not work well for

cq-channels. It is another interesting future direction to construct secure list decoding for a cq-channel
that has a similar performance as that in the reference [9].
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APPENDIX A
PROOF OF LEMMA 7

Step 1: The aim of this step is the evaluation of W n
xn(Πxn′,3).

The conditions (86) and (87) imply that

Tr[W
(n)
xn′Ξxn ] ≤ −ζ1d(xn, xn′). (110)

By using the method by [28], the condition (88) implies that

Tr[W
(n)
xn′ (Ξ

(n)
xn − Tr[W

(n)
xn′Ξ

(n)
xn ])2] ≤ nζ2. (111)

Hence, applying Chebyshev inequality to the variable ξxn(Y n), we have

W n
xn′(Πxn,2) =Tr[W n

xn′{Ξ(n)
xn ≥ −nε1}]

≤ nζ2
[ζ1d(xn, xn′)− nε1]2+

. (112)
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Step 2: The aim of this step is the evaluation of smaller value of Tr[W n
xnΠφ̃n(m),3] and Tr[W n

xnΠφ̃n(m′),3].
Since Eq. (93) implies

nε2 < d(φ̃n(m), φ̃n(m
′)) ≤ dH(x

n, φ̃n(m)) + dH(x
n, φ̃n(m

′)), (113)

we have

max([ζ1dH(x
n, φ̃n(m))− nε1]+, [ζ1dH(x

n, φ̃n(m
′))− nε1]+) ≥ [n(ζ1

ε2
2
− ε1)]

2
+. (114)

Hence, (112) guarantees that

min(Tr[W n
xnΠφ̃n(m),3],Tr[W

n
xnΠφ̃n(m′),3])

≤ nζ2

max([ζ1d(xn, φ̃n(m))− nε1]
2
+, [ζ1d(x

n, φ̃n(m′))− nε1]
2
+)

≤ nζ2
[n(ζ1

ε2
2
− ε1)]2+

=
ζ2

n[ζ1
ε2
2
− ε1]2+

, (115)

which implies the desired statement.

APPENDIX B
PROOF OF LEMMA 8

To evaluate the value

EXn TrW
(n)
Xn (I −ΠXn) = EXn TrW

(n)
Xn{Ξ(n)

xn < −nε1}, (116)

we denote the eigenvalue of Ξx with eigenvector |ej,x〉 by ξ(j, x). We define the random variable J,X
whose joint distribution is PJX(jx) = P (x)〈ej,x|Wx|ej,x〉. We consider their n independent variables
Jn = (J1, . . . , Jn) and Xn = (X1, . . . , Xn). Hence, we define ξn(Jn, Xn) :=

∑n
i=1 ξ(Ji, Xi). The value

(116) equals the probability Pr(ξn(Jn, Xn) ≤ −nε1). Since the expectation of ξ(Ji, Xi) is zero and the
variance of ξ(Ji, Xi) is upper bounded by ζ2, this value goes to zero. Hence, we obtain Lemma 8.

APPENDIX C

PROOF OF LEMMA 10

Eq. (98) can be shown as follows.

EΦ

Mn
∑

i=1

1

Mn

2(α−1)D̃α(WΦn(i)‖σ
⊗n
P,α

) = EΦ

Mn
∑

i=1

1

Mn

n
∏

j=1

2
(α−1)D̃α(WΦn(i)j

‖σP,α)

=

Mn
∑

i=1

1

Mn

n
∏

j=1

∑

x∈X

P (x)2(α−1)D̃α(Wx‖σP,α)

=
Mn
∑

i=1

1

Mn

n
∏

j=1

2(α−1)D̃α(W×P‖σP,α⊗P )

(a)
=

Mn
∑

i=1

1

Mn

n
∏

j=1

2(α−1)Ĩα(X;Y )P =
Mn
∑

i=1

1

Mn

2n(α−1)Ĩα(X;Y )P = 2n(α−1)Ĩα(X;Y )P , (117)

where (a) follows from (97).
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