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Optimal Aggregation Strategies for Social Learning
over Graphs

Ping Hu, Virginia Bordignon, Stefan Vlaski, and Ali H. Sayed

Abstract—Adaptive social learning is a useful tool for studying
distributed decision-making problems over graphs. This paper in-
vestigates the effect of combination policies on the performance of
adaptive social learning strategies. Using large-deviation analysis,
it first derives a bound on the steady-state error probability and
characterizes the optimal selection for the Perron eigenvectors
of the combination policies. It subsequently studies the effect
of the combination policy on the transient behavior of the
learning strategy by estimating the adaptation time in the low
signal-to-noise ratio regime. In the process, it is discovered that,
interestingly, the influence of the combination policy on the
transient behavior is insignificant, and thus it is more critical
to employ policies that enhance the steady-state performance.
The theoretical conclusions are illustrated by means of computer
simulations.

Index Terms—Adaptive social learning, combination policy,
large deviation analysis, error exponent, transient behavior,
steady-state behavior.

I. INTRODUCTION

Social learning is a distributed inference process over graphs
where agents work collaboratively to identify the true state
of nature from a set of admissible hypotheses [2]. In each
step, agents update their beliefs locally using streaming private
observations, and then combine their beliefs with information
received from neighbors using a combination policy. There
exist several useful variations of social learning algorithms,
including those based on linear updates [3]–[5], log-linear up-
dates [6]–[10] and the min-rule [11]. All these variants provide
asymptotic learning guarantees under stationary environments
where the underlying state is fixed. One useful feature of
these learning procedures is the unanimity of the learning
rules [2], which ensures that the effective weights assigned to
each piece of independent observation are of the same order
of magnitude. Consequently, the information from historical
observations are stored in a uniform way, which means that
more evidence in favor of the underlying state is collected
over time. The cumulative evidence for a particular state can,
however, hinder learning in face of a changing true state. The
agents’ stubbornness towards state changes during the learning
process, which was observed in [12], makes it imperative to

This work was supported in part by the Swiss National Science Foundation
under Grant 205121-184999. A short conference version of this paper appears
in [1].

Ping Hu, Virginia Bordignon, and Ali H. Sayed are with the School of
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develop new algorithmic variants for social learning in non-
stationary environments.

Motivated by this observation, the work [12] proposed an
adaptive social learning (ASL) algorithm, which, different
from previous non-adaptive implementations [3]–[11], intro-
duced a step-size parameter δ to control the amount of weight-
ing given to recent observations in relation to past observa-
tions. Under this weighting mechanism, the agents become
more sensitive to information contained in recent observations,
and better equipped to track drifts in the statistical properties of
the data. In particular, it was shown in [12] that the parameter
δ controls a fundamental trade-off between the steady-state
learning ability of an algorithm and its adaptation ability. It
was found that in the slow adaptation regime (i.e., with small
δ), the steady-state error probability decays exponentially with
1/δ. Moreover, the decaying rate (also called error exponent)
was observed to be affected by the eigenvector centrality of
the agents, which is a function of the graph topology and the
combination policy employed by the social learning strategy.
In this work, we would like to investigate more deeply the
role of the combination policy on the behavior of adaptive
social learning methods, as well as clarify optimal choices for
the policy for faster transient behavior and lower steady-state
error probability.

Related works: In the field of social learning, the effect
of combination policies on the learning performance of some
non-adaptive algorithms has been considered in previous stud-
ies [13], [14]. However, since the error probability converges to
zero almost surely in the non-adaptive scenario, the role of the
combination policy was only examined in the transient phase
(i.e., only its effect on the speed of learning is studied). The
main conclusion from these works is that an agent with better
signal structure (in the sense of uniform informativeness [13])
should be placed in a more centralized position in the network.
In contrast to the non-adaptive scenario, the steady-state error
probability is non-zero and dependent on the combination
policy in the adaptive social learning scenario. Therefore, both
the transient and steady-state behavior need to be examined
under different choices for the combination policy.

Another line of investigation relevant to our work is the field
of distributed detection over multi-agent networks (see [15]–
[18] for a brief review). Different from the social learning
problem where agents may receive signals generated from
distinct likelihoods, the distributed detection framework of-
ten assumes that the agent’s observations are independent
and identically distributed (i.i.d.). Two classical distributed
detection strategies in the literature are: the consensus-based
strategy that uses a decaying step-size [19]–[21] and the
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diffusion-based strategy that employs a constant step-size
[22]–[24]. It was demonstrated in [22] that the diffusion-based
detection strategy achieves a better adaptation ability than
the consensus-based counterpart. The learning performance of
both strategies, namely, the learning speed and the steady-
state error probability, were shown to be dependent on the
combination policy employed by the network [19]–[23].

Contributions: Using techniques introduced in [12], our
first contribution is to extend the learning performance of the
ASL strategy to a more general scenario [7]–[10] where the
distribution of local observations received by an agent, namely
the signal model, may differ from the distributions known to
this agent conditional on any possible hypothesis, namely the
likelihood model. Under this general scenario, we first derive
a bound on the error exponent for the steady-state learning
performance, and then construct the optimal centrality vector
(i.e., Perron eigenvector of the combination matrix [25]) that
attains the upper bound of the error exponent (if it is achievable
for the given social learning task). Our results for the i.i.d. case
answer some of the questions posed earlier in [23] regarding
the optimal choice of the combination policy. We also examine
the effect of combination policies on the transient performance
measured by the adaptation time. We show that in the low
signal-to-noise ratio (SNR) regime, combination policies play
a minor role in influencing the adaptation time. This indicates
that, if the hypotheses are hard to distinguish, then it is
sufficient to rely on a combination policy with better steady-
state learning performance.

II. PROBLEM SETTING

A. Background

Network model: We consider a collection of N agents,
denoted by N = {1, 2, . . . , N}, working collectively to agree
on a hypothesis that best explains the streaming and dispersed
observations received by the group. The communication net-
work among agents is modeled as a directed graph, which is
assumed to be strongly connected. An example of a strongly
connected network is shown in Fig. 1.

Assumption 1 (Strong connectivity of network1). The un-
derlying graph of the network is strongly connected. That
is, there exist paths between any two distinct agents in both
directions, and at least one agent has a self-loop [25].

The combination policy among agents is described by the
matrix A = [aℓk], where aℓk is the weight that agent k places
on the information received from the neighboring agent ℓ.
We assume that the agents adopt a left-stochastic combination
policy. Let Nk be the set of neighbors of agent k, then the
combination matrix A satisfies

A⊤
1 = 1, aℓk > 0, ∀ℓ ∈ Nk, (1)

1In this paper, strong connectivity refers to a property of strongly connected
networks. We require the existence of at least one self-loop, which ensures
that the combination matrix will be primitive. This condition may not be used
in some other studies on graph theory, such as [26], [27]. However, in the
context of learning theory, this condition is not restrictive and is automatically
satisfied in most cases of interest since agents naturally place some level of
confidence on their own data.
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Fig. 1. A strongly connected network consisting of N agents. The neighbor-
hood of agent k is marked by the area highlighted in green.

and aℓk = 0 for ℓ /∈ Nk, where 1 denotes the N -dimensional
vector of all ones. The strong connectivity of the graph ensures
that the combination matrix A is primitive. According to the
Perron-Frobenius theorem [25], [28], matrix A has a single
eigenvalue at 1 and all other eigenvalues will be strictly
inside the unit circle. Therefore, the second largest-magnitude
eigenvalue of A is strictly smaller than 1. Moreover, the Perron
eigenvector π of matrix A can be normalized to have strictly
positive entries. That is,

Aπ = π, 1
⊤π = 1, πk > 0, ∀k ∈ N. (2)

Observation model: At each time instant i, each agent k
receives a private signal ξk,i belonging to a certain space Xk.
Note that we are utilizing boldface notation to emphasize that
ξk,i is random. The private signals of every agent, which are
assumed to be statistically independent over time and space
given a fixed true state of nature, are realizations of a random
variable following an unknown distribution fk:

ξk,i ∼ fk, ∀k ∈ N. (3)

The joint observation profile at time instant i generated by
the network is denoted by ξi = (ξ1,i, ξ2,i, . . . , ξN,i), which is
an i.i.d. sequence on the space X = X1 × X2 × · · · × XN

and distributed as f =
∏N

k=1 fk under the independence
assumption of the private signals. Moreover, each agent k has a
family of local likelihood models {Lk(·|θ)} parameterized by
the hypothesis θ ∈ Θ = {θ1, θ2, . . . , θH}. Among the given H
hypotheses, there is one true state of nature θ⋆ ∈ Θ, referred to
as the global truth for the network. Without loss of generality,
we assume θ⋆ = θ1. In addition, we assume that {Lk(·|θ)}
has the same support as fk, namely, Xk. The likelihood of a
signal ξ received by agent k conditioned on hypothesis θ is
denoted by

Lk(ξ|θ), ∀ξ ∈ Xk. (4)

Depending on whether the signal space Xk is continuous
or discrete, the signal model fk and the likelihood models
{Lk(·|θ)} can be respectively probability density functions
(pdfs) or probability mass functions (pmfs).
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We consider a general learning scenario where the signal
model fk may not match exactly any of the H local likelihood
models Lk(·|θ). This is more general than many existing works
(e.g., [3]–[6], [11]–[14]), where fk is taken as the likelihood
model of the true hypothesis. That is, the signal ξk,i is a
sample drawn according to the likelihood model Lk(·|θ1):

ξk,i ∼ Lk(·|θ1), ∀k ∈ N. (5)

Since in this case all agents possess knowledge of the true
signal model, we refer to scenario (5) as the accurate sig-
nal model scenario. In contrast, scenario (3) is referred to
as the general signal model scenario. The Kullback-Leiber
(KL) divergence [29] between fk and Lk(·|θ), denoted by
DKL(fk∥Lk(·|θ)), is a useful measure of the “distance” be-
tween relevant distributions. Without loss of generality, we
assume the following regularity condition on KL divergences
[3]–[14].

Assumption 2 (Finiteness of KL divergences). For each
hypothesis θ ∈ Θ and for each agent k ∈ N, DKL(fk∥Lk(·|θ))
is finite.

Two hypotheses θm and θn are said to be observa-
tionally equivalent from the perspective of agent k if
DKL(fk∥Lk(·|θm)) = DKL(fk∥Lk(·|θn)). The optimal hy-
pothesis set for agent k (also called the local truth) is
defined as the collection of hypotheses with the minimum KL
divergence:

Θ⋆
k ≜ argmin

θ∈Θ
DKL(fk∥Lk(·|θ)). (6)

Due to the non-negativeness of KL divergences, it is clear that
in the accurate signal model scenario, the global truth θ1 is also
a local truth for all agents, i.e., θ1 ∈ Θ⋆

k,∀k ∈ N. However,
in the general signal model scenario, some agents may fail
to recognize the global truth due to the model discrepancy
between fk and Lk(·|θ1). We denote the sets of agents whose
local truth agrees or collides with the global truth as NA

and NA respectively, such that N = NA ∪ NA. The goal
of all agents is to learn the global truth by cooperation with
their neighbors. We note that we are not going to discuss the
multi-task decision-making problem where different groups of
agents in the network try to identify different hypotheses. The
interested readers are referred to [24].

The optimal hypothesis set for the group NA is defined as
the common hypotheses shared by all agents k ∈ NA:

Θ⋆ =
⋂

k∈NA

Θ⋆
k. (7)

We impose the following identifiability assumption of the
global truth on the group NA.

Assumption 3 (Identifiability). Hypothesis θ1 is the unique
optimal hypothesis for the group NA, i.e., Θ⋆ = {θ1}.

For the accurate signal model (4)–(5), we have NA = N, and
thus Assumption 3 becomes the standard global identifiability
assumption, namely, {θ1} = ∩N

k=1Θ
⋆
k, as considered in [3]–

[6], [11]–[14].

B. Adaptive social learning strategy

We first introduce the basic framework of social learning.
Motivating example [7]: Consider a distributed source local-

ization problem, where a network of N agents receives noisy
measurements of the distance to the source. Specifically, the
private signal ξk,i received by agent k at time instant i is
expressed as

ξk,i = dk,i + nk,i (8)

where dk,i denotes the distance between agent k and the
target measured at time instant i, and nk,i is some zero-
mean Gaussian noise. In the stationary environment where
the target is assumed to be static, dk,i is a constant for each
agent k. The geographic region is partitioned into a collection
of H disjoint areas, and the hypothesis space Θ include all
these possible locations. Each agent k constructs likelihood
functions {Lk(·|θ)} based on its sensor model. In principle,
each agent could estimate its distance to the target from its
local observations. However, their information is not enough
to arrive at the coordinates for the target, since each agent
can only conclude that the target lies on a circle of radius
dk,i around it. To achieve the goal of source localization, the
agents would need to cooperate with each other.

In social learning solutions, each agent k holds a local belief
vector µk,i that represents a pmf over the set of hypotheses
Θ. Each component µk,i(θ) indicates the confidence of agent
k at time instant i that θ is the true state of nature. In the
context of source localization, µk,i(θ) denotes the agent k’s
estimate of the probability that the target is located in area
θ. The belief vector is updated through the continuous flow
of information in the network through an adaptation step and
a combination step. More specifically, at each time instant i,
agent k receives a new signal ξk,i and uses it to compute an
intermediate belief vector ψk,i. In the non-adaptive learning
scenario, the Bayes rule is employed, which computes ψk,i

according to

ψk,i(θ) =
µk,i−1(θ)Lk(ξk,i|θ)∑

θ′∈Θ µk,i−1(θ′)Lk(ξk,i|θ′)
(9)

for each θ ∈ Θ. Eq. (9) describes how the agents refine their
estimates of the target’s location with the latest measurement
in the source localization example. After this adaptation step,
agent k aggregates the intermediate beliefs of its neighbors fol-
lowing a certain pooling protocol in order to update the local
belief vector µk,i. Different protocols for belief aggregation
lead to various social learning algorithms in the literature [3]–
[11]. Examples of useful pooling rules appear in [30]. Next,
we describe one fusion rule in the context of non-stationary
environments.

First, we note that the ASL algorithm introduced in [12]
is an important variant of social learning developed for non-
stationary conditions. Within the previous distributed source
localization example, the target might move to another location
at some time instant i0 and consequently, the distance dk,i in
(8) becomes a different value after i ≥ i0. It is necessary for
the network to quickly track the new location of the target
in practice. Adaptation is a desirable feature of distributed
learning strategies [25], [28]. To improve the adaptation ability,
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a modified adaptive update (compared with (9)) is proposed
in the ASL algorithm, where the weights assigned to the past
and new information for constructing the intermediate belief
are controlled through a small positive parameter δ:

ψk,i(θ) =
µ1−δ

k,i−1(θ)L
δ
k(ξk,i|θ)∑

θ′∈Θ µ
1−δ
k,i−1(θ

′)Lδ
k(ξk,i|θ′)

. (10)

The motivation for this adaptation formula has been elaborated
from different perspectives in [12]. In particular, we can get
(10) as the solution to the following optimization problem:

ψk,i = argmin
p∈∆θ

{
(1− δ)DKL(p∥µk,i−1) + δDKL(p∥µlik

k,i)
}

(11)
where ∆θ is the set of all pmfs on the hypothesis set Θ, and
µlik

k,i is the likelihood pmf involving the new observation ξk,i:

µlik
k,i(θ) =

Lk(ξk,i|θ)∑
θ′∈Θ Lk(ξk,i|θ′)

, ∀θ ∈ Θ. (12)

The first and second KL divergences in (11) describe respec-
tively the consistency between the intermediate belief and the
past information (captured by µk,i−1), and the consistency
between the intermediate belief and the new information (rep-
resented by µlik

k,i). The trade-off between these two consistency
costs is adjusted through the parameter δ. Following (10),
the belief aggregation step employs the log-linear rule, which
generates the local belief vector µk,i as follows:

µk,i(θ) =
exp
{∑

ℓ∈Nk
aℓk logψℓ,i(θ)

}∑
θ′∈Θ exp

{∑
ℓ∈Nk

aℓk logψℓ,i(θ′)
} (13)

for each θ ∈ Θ. This pooling rule (13) can be obtained as the
solution to the following optimization problem:

µk,i = argmin
p∈∆θ

{
N∑
ℓ=1

aℓkDKL(p∥ψℓ,i)

}
. (14)

Since its inception, the ASL algorithm has been applied to
different tasks, such as discovering influencers in opinion
formation over online social networks [31] and solving im-
age classification problems involving heterogeneous classifiers
[32].

To avoid trivial cases, we assume that for all agents, the
initial belief on each hypothesis θ ∈ Θ is non-zero, i.e.,
µk,0(θ) > 0,∀k ∈ N. This is because if µℓ,0(θ) = 0 for
some ℓ ∈ N and θ ∈ Θ, then from (10) and (13), we
have µk,N−1(θ) = 0 for all agents due to Assumption 1.
Hence, hypothesis θ will end up being excluded from the social
learning process.

Assumption 4 (Positive initial belief). For each hypothesis
θ ∈ Θ and for each agent k ∈ N, the initial belief µk,0(θ) is
positive.

Under Assumptions 1–4, we discuss the steady-state learning
performance of the ASL strategy for the general signal model
(3)–(4).

C. Steady-state learning performance

We start by introducing the log-belief ratios νk,i(θ) and
λk,i(θ) for all k ∈ N and θ ∈ Θ:

νk,i(θ) ≜ log
ψk,i(θ1)

ψk,i(θ)
, λk,i(θ) ≜ log

µk,i(θ1)

µk,i(θ)
. (15)

Each agent makes a decision about the underlying state based
on its belief. One natural option is to select the hypothesis that
maximizes the belief. For each agent k ∈ N, the instantaneous
error probability of social learning at time instant i is defined
as

pk,i ≜ P
[
argmax

θ∈Θ
µk,i(θ) ̸= θ1

]
= P

[
∃θ ̸= θ1 : λk,i(θ) ≤ 0

]
.

(16)
We also introduce the log-likelihood ratio xk,i(θ) for all k ∈ N

and θ ∈ Θ:

xk,i(θ) ≜ log
Lk(ξk,i|θ1)
Lk(ξk,i|θ)

. (17)

Using the variables νk,i(θ), λk,i(θ) and xk,i(θ) in the loga-
rithmic domain, the ASL algorithm represented by (10) and
(13) can be rewritten as a two-step linear recursion:νk,i(θ) = (1− δ)λk,i−1(θ) + δxk,i(θ)

λk,i(θ) =
∑

ℓ∈Nk

aℓkνℓ,i(θ)
(18)

which has the form of a standard diffusion learning rule [25],
[28]. Iterating the recursion in (18), we obtain

λk,i(θ) = (1− δ)i
N∑
ℓ=1

[Ai]ℓkλℓ,0(θ)

+ δ

i−1∑
m=0

N∑
ℓ=1

(1− δ)m[Am+1]ℓkxℓ,i−m(θ). (19)

The first term in (19) involves the initial belief vector and it
decays as i grows. In order to evaluate the steady-state learning
performance, it suffices to focus on the second term:

λ̂k,i(θ) ≜ δ

i−1∑
m=0

N∑
ℓ=1

(1− δ)m[Am+1]ℓkxℓ,i−m(θ). (20)

Given that the random variables xk,i(θ) are i.i.d. across time,
and that our analysis concerns only the distribution of partial
sums associated with these terms, it is useful to introduce the
following random variable:

λ̃k,i(θ) ≜ δ

i−1∑
m=0

N∑
ℓ=1

(1− δ)m[Am+1]ℓkxℓ,m+1(θ) (21)

where the summation in (20) is taken in reversed order. By
repeating the same arguments used in [12], [22], [23], we can
show that λ̂k,i(θ) and λ̃k,i(θ) share the same distribution.
Formally,

λ̂k,i(θ)
d
= λ̃k,i(θ) (22)

where the symbol d
= denotes equality in distribution. Further-

more, the random variable λ̃k,i(θ) converges almost surely
as i → ∞ under Assumptions 1–2. Therefore, there exists a
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steady-state random variable termed as steady-state log-belief
ratio:

λ̃k,∞(θ) ≜ δ

∞∑
m=0

N∑
ℓ=1

(1− δ)m[Am+1]ℓkxℓ,m+1(θ) (23)

such that
λ̂k,i(θ)

i→∞
⇝ λ̃k,∞(θ) (24)

where the symbol ⇝ means convergence in distribution. In
view of (16), the relation in (24) allows us to define the steady-
state error probability for each agent k as:

pk ≜ P
[
∃θ ̸= θ1 : λ̃k,∞(θ) ≤ 0

]
. (25)

Using similar analytical tools to the ones employed in [12], we
can prove that for small δ, the steady-state error probability
pk obeys a Large Deviations Principle (LDP) [33], [34] for
some error exponent that is related to the combination policy.
For the benefit of the reader, we recall here that a process yδ
is said to obey an LDP if the following limit exists [33], [34]:

lim
δ→0

δ lnP
[
yδ ∈ Γ

]
= − inf

γ∈Γ
I(γ) ≜ −IΓ (26)

for some I(γ) that is called the rate function, where Γ is an
arbitrary set. Equivalently,

P [yδ ∈ Γ]
.
= e−(1/δ)IΓ (27)

where the symbol .
= denotes equality to the leading order

in the exponent as δ goes to zero. For the social learning
problem, the leading-order exponent IΓ corresponding to the
error probability is also referred to as error exponent.

For our subsequent analysis on the error exponent, we also
need to introduce the network average log-likelihood ratio for
all θ ∈ Θ:

xave,i(π, θ) ≜
N∑

k=1

πkxk,i(θ). (28)

We note that the combination policy, which is the main subject
of interest in this work, plays a key role in weighting the
network average quantity defined above. Let E and P denote
the expectation and probability operators relative to the joint
signal model f , respectively. The expectation of xk,i(θ) is
given by

dk(θ) ≜ E [xk,i(θ)] = DKL(fk∥Lk(·|θ))−DKL(fk∥Lk(·|θ1)).
(29)

Assumption 2 ensures that dk(θ) is finite, i.e., |dk(θ)| < ∞
for all k ∈ N and for all θ ∈ Θ. By definition (6), we know
that if dk(θ) ≥ 0 for all θ ̸= θ1, then the global truth θ1 is also
a local truth for agent k, i.e., θ1 ∈ Θ⋆

k. Otherwise, it conflicts
with the local truth at agent k, i.e., θ1 /∈ Θ⋆

k. From (28), the
expectation of xave,i(π, θ) can be written as

mave(π, θ) ≜ E [xave,i(π, θ)] =

N∑
k=1

πkdk(θ). (30)

Let Λk(t; θ) and Λave(t;π, θ) denote the Logarithmic Mo-
ment Generating Functions (LMGFs) of variables xk,i(θ) and
xave,i(π, θ), respectively:

Λk(t; θ) ≜ logE
[
etxk,i(θ)

]
, (31)

Λave(t;π, θ) ≜ logE
[
etxave,i(π,θ)

]
=

N∑
k=1

Λk(πkt; θ). (32)

We note that since the random variables xk,i(θ) are i.i.d.
across time, Λk(t; θ) and Λave(t;π, θ) are independent of time.
For this reason, the subscript i pertaining to the time instant
is not required. One fundamental property of LMGFs states
that Λk(t; θ) is an alternative representation for the probability
distribution of xk,i(θ). Hence, it captures the informativeness
of agent k on learning the global truth θ1.

In the following theorem, we extend two important results
on the steady-state learning performance in the small-δ regime
to the general signal model; these results were previously
established, albeit only for the accurate signal model in [12].

Theorem 1 (Steady-state learning performance2). Under
Assumptions 1–4 for the general signal model (3)–(4), we
consider a combination policy with Perron eigenvector π. In
the small-δ regime, the steady-state log-belief ratio λ̃k,∞(θ)
converges to mave(π, θ) in probability as δ approaches 0:

λ̃k,∞(θ)
δ→0−−−→ mave(π, θ) in probability (33)

for all θ ∈ Θ. Therefore, if the Perron eigenvector π satisfies

mave(π, θ) > 0, ∀θ ̸= θ1, (34)

we have:
i) Consistency of learning3: The steady-state error prob-

ability pk converges to 0 as δ goes to 0 by definition
(25). This means that all agents learn the global truth
successfully.

ii) Error exponent: Assume Λk(t; θ) < ∞,∀t ∈ R for all
k ∈ N and θ ̸= θ1. The steady-state error probability
pk obeys an LDP with rate 1

δ and error exponent Φ(π),
i.e.,

pk
.
= e−Φ(π)/δ, (35)

where
Φ(π) ≜ min

θ ̸=θ1
Φ(π, θ). (36)

The θ-related error exponent Φ(π, θ) is given by

Φ(π, θ) ≜ − inf
t∈R

ϕ(t;π, θ) (37)

with

ϕ(t;π, θ) ≜
∫ t

0

Λave(τ ;π, θ)

τ
dτ. (38)

Proof. The performance analysis on the ASL strategy for the
accurate signal model (4)–(5) has been established in [12].
From the analysis there, the steady-state learning performance
is determined by the statistical properties of the log-likelihood
ratio involving the true hypothesis and an alternative one. We
note that there are some differences in notation between [12]
and this work. For instance, the H hypotheses are numbered
from 0 to H − 1, and the true state is denoted by θ0 in [12].
Using the notation introduced in this paper, the key condition

2The asymptotic normality of steady-state log-beliefs in the small-δ regime
provided in [12] can also be established for the general signal model.

3We note that the assumption on the independence of local observations
over space is not necessary for the consistency of learning [12].
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to the proof in [12] is that the log-likelihood ratio xk,i(θ) has
a finite mean for all k ∈ N and θ ∈ Θ (see Lemma 1 in [12]).
That is,

E
[
xk,i(θ)

]
≜ ELk(·|θ1)

[
xk,i(θ)

]
< ∞, (39)

which is ensured by the assumption of finite KL divergences
(i.e., Assumption 1 in [12]). The only difference in the analysis
for a general signal model (3)–(4) is that, we need to examine
the statistical properties of xk,i(θ) conditioned on a general
model fk which might be different from the likelihood model
Lk(·|θ1). However, under Assumption 2, we have E[xk,i(θ)] <
∞ as shown in (29). Therefore, the finite-mean condition (39)
continues to hold for the general signal model:

E
[
xk,i(θ)

]
≜ Efk

[
xk,i(θ)

]
< ∞. (40)

Consequently, Theorem 1 is established by repeating the proof
of the steady-state learning performance developed in [12] by
substituting the expectation w.r.t. Lk(·|θ1) by that w.r.t. fk.

III. MAXIMIZING ERROR EXPONENT

In this section, we discuss the effect of combination policies
on the steady-state learning accuracy of the ASL strategy.
From Theorem 1, the error exponent Φ(π) plays a crucial role
in the steady-state error probability. According to (36)–(38),
Φ(π) is influenced by the Perron eigenvector of the combi-
nation policy through the LMGF Λave(t;π, θ) defined in (32).
A Perron eigenvector that delivers a larger error exponent is
beneficial for reducing the steady-state error probability in the
slow adaptation regime. To find the best Perron eigenvectors
that provide the largest error exponent for the given learning
task, we formulate the following optimization problem:

max
π

Φ(π) (41)

s.t. 1⊤π = 1, πk > 0, ∀k ∈ N, (42)
mave(π, θ) > 0, ∀θ ̸= θ1. (43)

Here, constraints (42) and (43) are imposed to guarantee the
strong connectivity of the network and the successful learning
of the global truth according to Theorem 1. We denote the set
of all feasible solutions to the optimization problem (41)–(43)
by Π:

Π = {π : π satisfies (42) and (43)} . (44)

It is clear from (36)–(38) that the design of π relates to
the individual LMGFs Λk(t; θ), which measure the ability of
every agent k to learn the global truth θ1, namely, its level
of informativeness. Before solving the optimization problem
above, we first provide some useful definitions and preliminary
results for the subsequent analysis.

A. Preliminary definitions

We classify the N agents into different groups according to
their informativeness. Agents in different groups play different
roles in the learning performance. For each wrong hypothesis
θ ̸= θ1, we denote the sets NU (θ), NI(θ), and NC(θ) as

the collections of uninformative agents, informative agents and
conflicting agents with respect to θ, respectively:

NU (θ) ≜ {k ∈ N : Λk(t; θ) ≡ 0} , (45)

NI(θ) ≜ {k ∈ N : Λk(t; θ) ̸≡ 0, dk(θ) > 0} , (46)

NC(θ) ≜ {k ∈ N : Λk(t; θ) ̸≡ 0, dk(θ) ≤ 0} , (47)

where the symbol ≡ denotes that Λk(t; θ) = 0 for all t ∈ R,
and the symbol ̸≡ means that Λk(t; θ) ̸= 0 for some t ∈ R. Ac-
cording to the definitions above, an agent k is θ-uninformative
if the likelihoods conditioned on hypotheses θ1 and θ are
the same for all local observations (i.e., Lk(·|θ) = Lk(·|θ1)
almost everywhere), and is θ-informative if hypothesis θ1 is
more consistent with its local observations than hypothesis θ.
It is θ-conflicting if its information associated to hypothesis
θ is detrimental for learning the global truth θ1. This point
will be self-evident later when we discuss the bounds of
error exponents. Moreover, it is clear that if k ∈ NA (i.e.,
θ1 ̸∈ Θ⋆

k), then agent k must be a conflicting agent for some
hypothesis θ. Another observation is that definition (45) of a
θ-uninformative agent k requires a more stringent condition
(i.e., Λk(t; θ) ≡ 0) than the observational equivalence of θ1
and θ from the perspective of agent k (i.e., dk(θ) = 0).
In particular, due to the non-negativeness of KL divergence,
Λk(t; θ) ≡ 0 implies that dk(θ) = 0 under the accurate signal
model (4)–(5). We provide the following example to illustrate
the aforementioned sets of agents.

Example: Consider a network of 4 sensor agents tasked with
a binary detection problem. In practice, the likelihood models
are usually constructed from a finite number of samples
collected under the corresponding hypothesis. Assume that the
signal model is fk = N(0, 1) for all agents, where N(a, b)
denotes the Gaussian pdf with mean a and variance b. Due to
the limited number of samples, the likelihood models might be
inaccurate and thus differ from the underlying signal model.
Let us consider a group of unit-variance Gaussian likelihood
models: Lk(·|θ1) = N(0.1, 1) for all k, and

L1(·|θ2) = N(−0.1, 1), L2(·|θ2) = N(0.2, 1), (48)
L3(·|θ2) = N(0, 1), L4(·|θ2) = N(0.1, 1). (49)

Under the ASL protocol, the expectations dk(θ2) are given by
d1(θ2) = d4(θ2) = 0, d2(θ2) = 0.03 and d3(θ2) = −0.01.
The LMGFs Λk(t; θ2) for all k ∈ N are presented in Fig. 2.
According to definitions (45)–(47), we have NU (θ2) = {4},
NI(θ2) = {2} and NC(θ2) = {1, 3}. Therefore, the learning
performance of this network will be affected by the eigenvector
centrality of different types of agents.

Next, we introduce two important quantities related to the
learning performance in the non-cooperative scenario, where
the ASL algorithm update (18) at agent k becomes

λnc
k,i(θ) = ν

nc
k,i(θ) = (1− δ)λnc

k,i−1(θ) + δxk,i(θ). (50)

Here and in the following, we use the superscript ‘nc’ for
variables associated with the non-cooperative scenario. Similar
to (23) in the social learning setting, we introduce the steady-
state log-belief ratio for agent k:

λ̃nc
k,∞(θ) ≜ δ

∞∑
m=0

(1− δ)mxk,m+1(θ). (51)
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Fig. 2. LMGFs Λk(t; θ2) for k ∈ N in the example.

Accordingly, we define the θ-related steady-state error proba-
bility as

pnck (θ) ≜ P[λ̃nc
k,∞(θ) ≤ 0]. (52)

Let Φnc
k (θ) denote the θ-related error exponent for agent k in

this single-agent setup for each θ ̸= θ1:

pnck (θ)
.
= e−Φnc

k (θ)/δ. (53)

It is clear that Φnc
k (θ) ≥ 0 for all k ∈ N. Similar to (38), we

define the function ϕnc
k (t; θ):

ϕnc
k (t; θ) ≜

∫ t

0

Λk(τ ; θ)

τ
dτ. (54)

Let tnck (θ) ≤ 0 be the critical value to attain Φnc
k (θ) for each

agent k ∈ N:

Φnc
k (θ) = −ϕnc

k (tnck (θ); θ). (55)

We will show that tnck (θ) is essential to characterize the optimal
solution of the error exponent maximization problem (41)–
(43). The value of tnck (θ) for agent k in different groups NI(θ),
NU (θ) and NC(θ) is derived as follows.

For each θ-informative agent k ∈ NI(θ), Φnc
k (θ) can be

expressed as
Φnc

k (θ) = − inf
t∈R

ϕnc
k (t; θ) (56)

by using the results from Theorem 1. With the properties of
Λk(t; θ) and ϕnc

k (t; θ) established in Lemma 1 (Appendix A),
we have Φnc

k (θ) > 0. The existence and uniqueness of tnck (θ)
for each θ-informative agent is proved in Appendix B. If agent
k is θ-uninformative, we have Λk(t; θ) ≡ 0 from (45). Hence,
we obtain Φnc

k (θ) = 0 and tnck (θ) can be any non-positive
value. We assume tnck (θ) = −C for simplicity, where C is an
arbitrary positive constant that can be dependent on k and θ.
In addition, if agent k is θ-conflicting, then as δ approaches
0, it rejects hypothesis θ1 (if dk(θ) < 0) or cannot distinguish
between hypotheses θ1 and θ (if dk(θ) = 0) with probability
1 in steady state. From (53), Φnc

k (θ) = 0 is obtained in this
case. Moreover, according to Lemma 1 in Appendix A, the
following condition holds for any θ-conflicting agent k:

ϕnc
k (t; θ) > 0, ∀t < 0, (57)

which yields tnck (θ) = 0 in (55). Based on the above analysis,
we obtain

tnck (θ) :


< 0, if k ∈ NI(θ),

= −C, if k ∈ NU (θ),

= 0, if k ∈ NC(θ).

(58)

Consider the previous example with LMGFs shown in Fig. 2.
We have tnc2 (θ2) = −3 and tnc1 (θ2) = tnc3 (θ2) = 0. Since agent
4 is θ2-uninformative, tnc4 (θ2) can take arbitrary value −C.

B. General results

Let Φnc∑(θ) denote the sum of individual Φnc
k (θ) in the non-

cooperative scenario:

Φnc∑(θ) ≜
N∑

k=1

Φnc
k (θ). (59)

Then, we can derive the following bound for the error exponent
Φ(π) for any feasible Perron eigenvector π ∈ Π.

Theorem 2 (Benefit of cooperation). For any Perron eigen-
vector π ∈ Π, the θ-related error exponent Φ(π, θ) defined in
(37) is bounded by

min
k∈N

Φnc
k (θ) ≤ Φ(π, θ) ≤ Φnc∑(θ), ∀θ ̸= θ1. (60)

Correspondingly, the error exponent Φ(π) of the steady-state
error probability is bounded by

min
θ ̸=θ1

min
k∈N

Φnc
k (θ) ≤ Φ(π) ≤ min

θ ̸=θ1
Φnc∑(θ). (61)

Proof. See Appendix B.

Theorem 2 shows that the error exponent under adaptive
social learning is no less than the worst error exponent in the
single-agent setup. Therefore, the cooperation among agents
is always beneficial for the agent that has the worst learning
performance in the non-cooperative scenario. In addition, the
best error exponent that can be achieved by the ASL strategy
is given by the minimum aggregated quantity Φnc∑(θ) among
all wrong hypotheses θ ̸= θ1. Since the centralized solution
of the adaptive social learning problem is equivalent to a fully
connected network, (61) applies to the centralized case as well.
Furthermore, the upper bound in (61) satisfies

min
θ ̸=θ1

Φnc∑(θ) ≜ min
θ ̸=θ1

N∑
k=1

Φnc
k (θ) ≥

N∑
k=1

min
θ ̸=θ1

Φnc
k (θ), (62)

which reveals that the cooperation among agents enables each
agent in the network to obtain an error exponent that could
be even larger than the sum of individual error exponents in
the non-cooperative scenario. However, the achievability of
the upper bound in (61) is related to the specific setting of
learning tasks. For instance, the existence of some conflicting
agents may lead to a smaller error exponent. We will describe
next when this upper bound is achievable and how to reach
this upper bound with proper combination policies.



8

Let θ† be the wrong hypothesis4 corresponding to the upper
bound in (61):

θ† ≜ argmin
θ ̸=θ1

Φnc∑(θ). (63)

From Theorem 2, we have Φ(π) ≤ Φnc∑(θ†) for all Perron
eigenvectors π ∈ Π. Therefore, any Perron eigenvector π ∈ Π
that gives Φ(π) = Φnc∑(θ†) must be an optimal solution to the
optimization problem in (41)–(43). In view of constraint (43),
mave(π, θ

†) > 0 for any π ∈ Π. Then, we have

Φ(π, θ†)
(37)
= − inf

t∈R
ϕ(t;π, θ†) = −ϕ(t∗π;π, θ

†) (64)

for some t∗π < 0 due to properties v) and vi) in Lemma 1. By
definitions (32), (38), and (54), the following inequality holds:

Φ(π, θ†) = −
∑

k∈NC(θ†)

ϕnc
k (πkt

∗
π; θ)−

∑
k/∈NC(θ†)

ϕnc
k (πkt

∗
π; θ)

(57)
≤ −

∑
k/∈NC(θ†)

ϕnc
k (πkt

∗
π; θ)

(56)
≤ Φnc∑(θ†). (65)

Due to the constraint πk > 0,∀k ∈ N in (42), the first
inequality in (65) becomes equality if and only if NC(θ†) = ∅.
Hence, the upper bound in (61) cannot be attained if there
are some θ†-conflicting agents in the network. Eqs. (57) and
(65) illustrate our definition (47) of the θ-conflicting agents.
In the following, we discuss the design of optimal Perron
eigenvectors for the cases NC(θ†) = ∅ and NC(θ†) ̸= ∅,
respectively.

1) Case 1: NC(θ†) = ∅: In this case, the quantity tnck (θ†)
defined in (58) is negative for all k ∈ N. With this property,
we construct the following candidate Perron eigenvector π†:

π†
k =

tnck (θ†)∑N
ℓ=1 t

nc
ℓ (θ†)

, ∀k ∈ N. (66)

It is easy to see that 1⊤π† = 1 and π†
k > 0,∀k ∈ N. Under

Perron eigenvector π†, the θ†-related error exponent Φ(π†, θ†)
equals to the upper bound in (61):

Φnc∑(θ†)
(60)
≥ Φ(π†, θ†)

(37)
= − inf

t∈R
ϕ(t;π†, θ†)

≥ −ϕ

(
N∑

k=1

tnck (θ†);π†, θ†

)
(a)
= −

N∑
k=1

ϕnc
k (tnck (θ†); θ†)

(55)
=

N∑
k=1

Φnc
k (θ†) ≜ Φnc∑(θ†) (67)

where in (a) we used the definitions given in (32), (38), (54),
and (66). From Theorem 1, the error exponent Φ(π†) under
Perron eigenvector π† is determined by the minimum θ-related
error exponent Φ(π†, θ). If π† is feasible for the truth learning

4Here, we have assumed that the set Θnc
min ≜ {θ : argminθ ̸=θ1

Φnc∑(θ)}
is a singleton. If Θnc

min contains more than one element, we can repeat our
analysis for each element in Θnc

min.

(i.e., π† ∈ Π) and satisfies Φ(π†, θ†) ≤ Φ(π†, θ), ∀θ ̸= θ1,
then we have

Φ(π†) ≜ min
θ ̸=θ1

Φ(π†, θ) = Φ(π†, θ†)
(67)
= Φnc∑(θ†), (68)

which proves that π† is an optimal solution. Let Π1 denote
the following set of Perron eigenvectors:

Π1 =
{
π ∈ Π : Φ(π, θ†) ≤ Φ(π, θ),∀θ ̸= θ1

}
. (69)

In the following theorem, we formally establish the achiev-
ability of the upper bound in (61) for the error exponent max-
imization problem in (41)–(43), and characterize the optimal
Perron eigenvectors corresponding to this upper bound.

Theorem 3a (Optimal Perron eigenvector). Consider
NC(θ†) = ∅. Let Φ⋆ be the maximum error exponent in the
optimization problem (41)–(43) and Π⋆ be the set of optimal
Perron eigenvectors. Define

Π2 =
{
π : πk = απ†

k,∀k /∈ NU (θ†),∀α > 0
}
, (70)

Π† =Π1 ∩Π2. (71)

If Π† ̸= ∅, then the upper bound of the error exponent can be
achieved for the given learning task, i.e., Φ⋆ = Φnc∑(θ†), and
the corresponding optimal set is given by Π⋆ = Π†. Otherwise,
we have Φ⋆ < Φnc∑(θ†).

Proof. see Appendix C-A.

Theorem 3a asserts that if the upper bound of the error
exponent is achievable for the given learning task, the optimal
Perron eigenvectors can be derived with tnck (θ†) following
(66). Since tnck (θ†) is unique for all k ∈ NI(θ†), we have
Π2 = {π†} if NU (θ†) = ∅. In this circumstance, Π† is either
a singleton, i.e., Π† = {π†}, or an empty set. The definition
of Π2 in (70) reveals a basic feature of the optimal Perron
eigenvectors: the centralities of θ†-informative agents should
be distributed in a proportional manner that depends on the
values of tnck (θ†). For example, let us consider a learning
task with N = 3, NI(θ†) = {1, 2}, NU (θ†) = {3} and
tnc1 (θ†) = 2tnc2 (θ†). Assume Π† ̸= ∅ for the given learning
task, then the conditions π⋆

1 = 2π⋆
2 and π⋆

3 = 1 − 3π⋆
2 must

be satisfied for any optimal solution π⋆ ∈ Π⋆. This implies
that the optimality of a Perron eigenvector requires keeping a
balance among the information from the θ†-informative agents.

2) Case 2: NC(θ†) ̸= ∅: From (65), we already know that
the upper bound of the error exponent cannot be attained in this
case. Since ϕ(t;π, θ) defined in (38) is a weighted quantity of
the individual ϕnc

k (t; θ), in principle, we would set πk = 0 for
all k ∈ NC(θ†) to improve the learning accuracy. However,
a zero centrality of an agent means that the information from
this agent cannot spread over the network, which violates the
assumption of the strongly connected communication network
(Assumption 1).5 Therefore, only combination policies that
deliver an error exponent close to the upper bound can be

5Consider the communication network after removing all θ†-conflicting
agents. If it is still strongly connected, then Theorems 1–3a can be applied
to this smaller network. Since Φnc

k (θ†) = 0, ∀k ∈ NC(θ†), the upper bound
of the error exponent in this smaller network is still Φnc∑(θ†).
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pursued. For a small ϵ > 0, we say that a Perron eigenvector π
is ϵ-optimal if the difference between the corresponding error
exponent Φ(π) and the upper bound in (61) is not larger than
ϵ:

Φ(π) ≥ Φnc∑(θ†)− ϵ. (72)

Next, we proceed to derive the ϵ-optimal Perron eigenvectors.
Let

∣∣NC(θ†)
∣∣ be the number of θ†-conflicting agents, then for

any given ϵ > 0, we define tϵ as

tϵ = inf

{
t < 0 : ϕnc

k (t; θ†) ≤ ϵ

|NC(θ†)|
,∀k ∈ NC(θ†)

}
.

(73)
This yields

0 <
∑

k∈NC(θ†)

ϕnc
k (tϵ; θ

†) ≤ ϵ. (74)

In view of (57), ϕnc
k (t; θ†) > 0,∀t < 0 for all θ†-conflicting

agents. By definition (54), tϵ converges to 0 as ϵ approaches
0. Furthermore, we define

t̃nck (ϵ) =

{
tnck (θ†), if k /∈ NC(θ†),

tϵ, if k ∈ NC(θ†),
(75)

then t̃nck (ϵ) < 0 for all k ∈ N. Similar to (66), we construct
the following candidate Perron eigenvector π†(ϵ) using t̃nck (ϵ):

π†
k(ϵ) =

t̃nck (ϵ)∑N
ℓ=1 t̃

nc
ℓ (ϵ)

, ∀k ∈ N. (76)

Following the same analytical steps employed in the case
NC(θ†) = ∅, we can prove that the θ†-related error exponent
under Perron eigenvector π†(ϵ) satisfies

Φ(π†(ϵ), θ†) ≥ Φnc∑(θ†)− ϵ. (77)

Hence, π†(ϵ) is an ϵ-optimal Perron eigenvector if it satisfies
the conditions given by set Π1 in (69). Likewise, we can
establish the following theorem for the ϵ-optimal Perron
eigenvectors.

Theorem 3b (ϵ-optimal Perron eigenvector). Consider
NC(θ†) ̸= ∅. For a given small ϵ > 0, we define the sets:

Π2(ϵ) =
{
π : πk = απ†

k(ϵ),∀k /∈ NU (θ†),∀α > 0
}
, (78)

Π†
ϵ = Π1 ∩Π2(ϵ). (79)

If Π†
ϵ ̸= ∅, then any Perron eigenvector π ∈ Π†

ϵ is ϵ-optimal.

Proof. See Appendix C-B.

Theorems 3a and 3b describe the optimal Perron eigenvectors
of combination policies that deliver error exponents which are,
respectively, equal to the upper bound or close enough to it.
To illustrate our conclusions in this part, we will discuss next
some interesting cases within the framework of adaptive social
learning.

C. Interesting cases
In the following, we consider three learning cases:
1) Distributed detection: The local likelihood models are

identical for all agents and the local observations ξk,i are
i.i.d., which is often assumed in the distributed detection
problem [19], [20], [22], [23].

2) Social learning with accurate signal model: The local
likelihood models are accurate, i.e., fk = Lk(·|θ1) for all
agents, which is often considered in the social learning
literature (e.g., [3]–[6], [11]–[14]).

3) Social learning under Gaussian noises: The shift-in-
mean Gaussian model [22] with zero-mean Gaussian
noises is considered to test the impact of noises on the
optimal Perron eigenvector.

Corollary 1 (Distributed detection). If {fk, Lk(·|θ)} are
identical for all agents, then the uniform Perron eigenvector
1
N 1 is the unique optimal solution to the error exponent opti-
mization problem. The corresponding optimal error exponent
has an N -fold improvement in comparison to that in the non-
cooperative scenario, i.e., Φ⋆ = Φnc∑(θ†) = NΦnc

k (θ†).

Proof. Since all agents have the same signal and likelihood
models, mave(π, θ) = dk(θ),∀θ ∈ Θ holds for any Perron
eigenvector π. In view of Assumption 3, we have dk(θ) > 0
for all k ∈ N and thus NI(θ) = N,∀θ ̸= θ1. Moreover, it is
clear that Φnc

k (θ) and tnck (θ) will be identical for all agents.
Then, the candidate Perron eigenvector π† is given by π† =
1
N 1 according to (66). Since NU (θ†) = ∅, Π2 is a singleton
with Π2 = { 1

N 1}. Moreover, it is easy to derive Φ( 1
N 1, θ) =

NΦnc
k (θ) for all θ ̸= θ1. By the definition of θ†, we know

Φ( 1
N 1, θ

†) < Φ( 1
N 1, θ),∀θ ̸= θ1 and thus 1

N 1 belongs to set
Π1. This guarantees that the set Π† in (71) is not empty with
Π† = { 1

N 1}. The claim follows thereby.

We note that Corollary 1 actually answers the question
posed in [23], regarding the optimal combination policy. In
the simulation part of [23], the authors had provided an
important intuitive answer for this question with a “first-order
analysis”. They claimed that doubly-stochastic combination
matrices may be preferred, while this statement remains to be
theoretically proved. Our results now establish formally that
their intuition about this non-trivial problem was correct.

Corollary 2 (Social learning with accurate signal model).
Assume the accurate signal model (4)–(5), then the upper
bound of the error exponent can be achieved by the uniform
Perron eigenvector. That is, Φ⋆ = Φnc∑(θ†) and 1

N 1 ∈ Π⋆.

Proof. When fk = Lk(·|θ1) for all agents k ∈ N, the ex-
pectation dk(θ) becomes the KL divergence between Lk(·|θ1)
and Lk(·|θ). For any wrong hypothesis θ ̸= θ1, due to the
non-negativeness of KL divergences, either dk(θ) > 0 or
Λk(t; θ) ≡ 0 for all k ∈ N. This yields NC(θ) = ∅. Under
Assumption 3, we obtain

mave(π, θ) > 0, ∀θ ̸= θ1, (80)

for any Perron eigenvector π. In addition, from property ii) in
Lemma 1, we have

tnck (θ) = −1, ∀k ∈ NI(θ), (81)
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for all θ ̸= θ1. Although different θ-informative agents may
possess distinct likelihood models, which would endow those
agents with different learning abilities when working in a non-
cooperative way, we still obtain an identical tnck (θ) for all θ-
informative agents. Hence, it is clear that the uniform Perron
eigenvector 1

N 1 belongs to Π2.
An important consequence of (81) is that for any hypothesis

θ ̸= θ1, the uniform Perron eigenvector 1
N 1 corresponds to the

upper bound of the θ-related error exponent Φ(π, θ) given in
Theorem 2. That is,

Φ(
1

N
1, θ) = Φnc∑(θ), ∀θ ̸= θ1. (82)

Then by the definition of θ† in (63), we obtain Φ( 1
N 1, θ

†) <
Φ( 1

N 1, θ) for all θ ̸= θ1. Moreover, since mave(π, θ) > 0 in
(80), we know that 1

N 1 ∈ Π1. Therefore, Π† is not empty
and 1

N 1 ∈ Π† is an optimal solution to the error exponent
maximization problem.

Since the uniform Perron eigenvector corresponds to a
doubly-stochastic combination policy, we can conclude from
Corollary 2 that any doubly-stochastic combination policy will
be optimal for the social learning tasks with accurate signal
model (4)–(5). Importantly, this result is in contrast to the
analogous results in the context of distributed optimization
[25], [28], when the agents have access to data of varying
quality. This is because, in the adaptive social learning prob-
lem, the agents want to learn an optimal decision from the
received data, rather than a specific parameter. From (36), the
performance of learning is determined by the distribution of
xave,i(θ), which captures the information of local observations
across the network. When the signal model is accurate, the log-
likelihood ratio xk,i(θ) provides the full information of each
piece of independent observation ξk,i for the decision-making
task. Therefore, the optimality of a uniform Perron eigenvector
is expected. The conclusion here has been demonstrated in the
conference version [1] of this paper.

Corollary 3 (Social learning under Gaussian noises).
Consider the canonical shift-in-mean Gaussian problem [22]
where the local likelihood models of each agent k are given
by a family of Gaussian distributions with different means:

Lk(·|θ) = N(mk(θ), σ
2
k), ∀θ ∈ Θ. (83)

Assume that the measurements ξk,i are corrupted by some
noise nk,i following a zero-mean Gaussian model N(0, υ2

k),
and define the ratio between υ2

k and σ2
k as the noise level εk

at agent k:

εk ≜
υ2
k

σ2
k

. (84)

An optimal Perron eigenvector π⋆ ∈ Π⋆ for this learning task
(83) is given by

π⋆
k =

(1 + εk)
−1∑N

ℓ=1(1 + εℓ)−1
, ∀k ∈ N. (85)

If all agents are θ†-informative, then π⋆ is unique, i.e., Π⋆ =
{π⋆}. The corresponding maximum error exponent Φ⋆ is given
by

Φ⋆ = Φnc∑(θ†) ≜ min
θ ̸=θ1

N∑
k=1

(mk(θ1)−mk(θ))
2

4σ2
k(1 + εk)

. (86)

Proof. See Appendix D.

In this noisy environment, the log-likelihood ratio xk,i(θ)
is calculated based on a perturbed signal. From (85), the
optimal centrality of agents is determined by the quality
of their observations. To obtain better steady-state learning
performance, an agent with a lower noise level should be
placed in a more centralized position such that it receives more
effective attentions from other agents. Moreover, π⋆ = 1

N 1 is
obtained in the noiseless environment, which is consistent with
Corollary 2. An adverse impact of the noisy observations on
the steady-state learning performance is captured by (86).

D. Practical aspects on the design of combination policies

In this section, we discuss some practical issues related
to designing the combination policy in real-world systems.
As demonstrated in Sections III-A and III-B, developing an
optimal combination policy relies on first finding an optimal
Perron eigenvector π⋆ and then constructing the combination
matrix with the given Perron eigenvector π⋆. Therefore, one
critical aspect concerns learning the optimal Perron eigenvec-
tor π⋆.

In Section III-C, we discussed some interesting cases where
the explicit expression for π⋆ is obtained. Nevertheless, a
closed form for π⋆ is not available in general cases. According
to Theorem 3a, π⋆ is defined by the critical value tnck (θ)
associated with each agent k. From (55), tnck (θ) is determined
by solving an equation involving the LMGF Λk(t; θ). By
definition (31), Λk(t; θ) is characterized by the signal model
fk, which is unknown to the agents in practice. This raises the
question of how to estimate tnck (θ) in social learning.

1) Estimation of tnck (θ): According to (58), the critical
value tnck (θ) for k /∈ NI(θ) can be obtained once we know the
type (i.e., uninformative, informative, or conflicting) of agent
k for hypothesis θ. It is more demanding to derive the critical
value for a θ-informative agent. According to definition (119)
given in Appendix B, tnck (θ) is found by solving the following
equation for each θ-informative agent k:

Λk(t; θ) = 0, t < 0. (87)

Therefore, the evaluation of tnck (θ) depends on our approxi-
mation of the LMGF. Since Λk(t; θ) is the logarithm of the
MGF, it is more convinient to estimate the MGF directly. Let
Mk(t; θ) denote the MGF of variable xk,i(θ):

Mk(t; θ) ≜ E[etxk,i(θ)]. (88)

Eq. (87) is equivalent to solving (assume that the signal space
Xk is continuous):

Mk(t; θ) =

∫
ξ∈Xk

fk(ξ)

[
Lk(ξ|θ1)
Lk(ξ|θ)

]t
dξ = 1. (89)
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In the following, we propose two methods for MGF approxi-
mation within different settings.

i) Data-based MGF approximation: Since the signal model
fk is unknown, a direct approach for MGF approximation is
to estimate Mk(t; θ) from empirical data. Consider a finite
set of S realizations {xk,m}Sm=1, the estimator of Mk(t; θ) is
constructed as

M̂
(S)
k (t; θ) ≜

1

S

S∑
m=1

etxk,m(θ). (90)

Due to the assumption of Λk(t; θ) < ∞ in Theorem 1, accord-
ing to the law of large numbers, we know that M̂ (S)

k (t; θ) con-
verges pointwise to Mk(t; θ) as the sample size S increases.
The convergence rate of this estimate is discussed in [35]. In
the context of social learning where the observations arrive in
a streaming manner, the estimator in (90) can be updated by
the following recursion:

M̂
(i)
k (t; θ) =

1

i
etxk,i(θ) +

i− 1

i
M̂

(i−1)
k (t; θ) (91)

where M̂
(i)
k (t; θ) denotes the agent k’s estimation of Mk(t; θ)

at time instant i, i.e., after collecting i observations. Therefore,
in addition to performing the ASL protocol (18), the agents
also run an MGF estimation (91) at each time instant. One is-
sue in the MGF approximation is that Mk(t; θ) is a function of
the continuous variable t. Consequently, we need to discretize
the estimated quantity over variable t, which introduces an
unavoidable discretization error. Since the ultimate goal is to
obtain a good estimate for tnck (θ), the properties of tnck (θ) can
be helpful for the discretization design. From Lemma 1 in
Appendix A, we know that tnck (θ) lies in the region where
Mk(t; θ) is decreasing. This suggests that agent k can choose
a finer discretization of t around the region where its estimator
M̂

(i)
k (t; θ) decreases with t and takes values close to 1. After

enough observations, it can focus on this critical region. When
the random variable xk,i(θ) is bounded, the estimator in (91)
converges quickly for any t [35]. Even if xk,i(θ) is unbounded,
this estimator can be useful for finding tnck (θ) as only a small
region of t needs to be considered. For ease of reference,
the approach being discussed where agents first evaluate their
MGF using estimator (91) and then approximate tnck (θ) as the
solution of (89) involving the estimated MGF, will be referred
to as the direct estimation method.

ii) Model-based MGF approximation: If the statistical mod-
els (i.e., the signal model fk and likelihood models {Lk(·|θ)})
belong to the same exponential family, then tnck (θ) can be
approximated by estimating the natural parameter of the
signal model fk. Similar ideas were employed in [36] for
approximating numerically the critical value (i.e., Chernoff
point) that determines the Chernoff information associated
with the Bayesian decision rule in binary hypothesis testing
problems. An exponential family FE with natural parameter
β is a set of distributions of the form [37]:

pβ(ξ) = exp
(
β⊤T (ξ)− F (β) +K(ξ)

)
(92)

for β belonging to the natural parameter space

B =

{
β ∈ RD |

∫
pβ(ξ)dξ = 1

}
(93)

where D is the dimension of B, namely, the order of the
family FE . The term T (ξ) is a sufficient statistic, and the
map K(ξ) : Xk 7→ R is an auxiliary function. Function F (β)
characterizes the family and is known as a partition function
or the log-normalizer in the literature. With

∫
pβ(ξ)dξ = 1, it

follows that

F (β) = log

∫
exp
(
β⊤T (ξ) +K(ξ)

)
dξ. (94)

Suppose that fk and {Lk(·|θ)} belong to the same exponential
family with fk = pβ∗ and

Lk(·|θh) = pβh
, ∀h = 1, 2, . . . ,H. (95)

Then, (89) can be rewritten as

Mk(t; θ) =

∫
ξ∈Xk

pβ∗(ξ)

[
pβ1

(ξ)

pβ(ξ)

]t
dξ

=

∫
ξ∈Xk

exp
(
β∗⊤T (ξ)− F (β∗) +K(ξ)

)
×
[
exp
(
(β1 − β)⊤T (ξ)− F (β1) + F (β)

)]t
dξ

= exp(−F (β∗)− tF (β1) + tF (β))

×
∫
ξ∈Xk

exp
(
(β∗ + t(β1 − β))⊤T (ξ) +K(ξ)

)
dξ

(a)
= exp(−F (β∗)− tF (β1) + tF (β) + F (β∗ + t(β1 − β)))

= 1 (96)

where in (a) we used the definition of F (β) in (94). Therefore,
tnck (θ) can be found by solving the following equation:

F (β∗ + t(β1 − β))− F (β∗)− t(F (β1)− F (β)) = 0. (97)

Since the likelihood models are available to the agents, β and
β1 are known parameters in (97). If we can estimate the natural
parameter β∗ corresponding to the signal model fk with β̂∗,
then tnck (θ) can be approximated by solving

F (β̂∗ + t(β1 − β))− F (β̂∗)− t(F (β1)− F (β)) = 0. (98)

This method will be referred to as the indirect estimation
method, since we approximate tnck (θ) by an implicit function
instead of evaluating the possible value pointwise. Compared
with the direct estimation method, the indirect approach only
requires to estimate the natural parameter of the signal model,
which is more straightforward in practice. Next, we provide
the example of Gaussian distributions to explain the quantities
in (98).

Gaussian Example: Consider the Gaussian distributions
N(m, σ2) with the general formula:

f(ξ,m, σ2) =
1√
2πσ2

exp

(
− (ξ −m)2

2σ2

)
. (99)

It is easy to verify that Gaussian distributions belong to the
exponential family with

T (ξ) =

[
ξ
ξ2

]
, β =

[
β(1)
β(2)

]
=

[
m
σ2

− 1
2σ2

]
, K(ξ) = 0,

(100)
and

F (β) =
m2

2σ2
+ log

√
2πσ2
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= −β(1)2

4β(2)
− 1

2
log(−β(2)) +

1

2
log π. (101)

For the social learning with statistical models (95) described
by Gaussian distributions, the critical equation (97) can be ex-
pressed explicitly by using (101). Particularly, if the likelihood
models share the same variance, i.e., β1(2) = β(2), as seen in
the shift-in-mean Gaussian models (83), Eq. (97) is simplified
as
β∗(1)2 − (β∗(1) + t(β1(1)− β(1))2

4β∗(2)
+ t

β1(1)
2 − β(1)2

4β1(2)
= 0

(102)
In this case, the expression for tnck (θ) admits a closed form:

tnck (θ) =
β∗(2)(β1(1) + β(1))− 2β1(2)β

∗(1)

β1(2)(β1(1)− β(1))
. (103)

Therefore, once we have obtained an estimate β̂∗ of the natural
parameter β∗, an approximate tnck (θ) can be derived explicitly.

Given a prescribed Perron eigenvector, the next question is
how to construct the combination policy for the given Perron
eigenvector. In the following, we comment on some useful
results pertaining to this problem.

2) Construction of combination policies: First, our objec-
tive is to design the combination weights of a left-stochastic
matrix A that generates a specified Perron eigenvector π for
the given communication network. Therefore, there are two
constraints in the design: i) the required Perron eigenvector and
ii) the fixed directed graph. If we relax the second constraint
and assume that the structure of the communication network
can be freely designed, then this combination policy construc-
tion problem can be cast into a special case of the canonical
partially described inverse eigenvalue problem (PDIEP), which
we describe next.

The PDIEP is one kind of the general IEP that involves the
reconstruction of a matrix for the given spectral data, i.e., the
partial or complete information of eigenvalues or eigenvectors
[38]. In PDIEPs, the spectral constraint consists of only one
or few eigenpairs (i.e., the pair of an eigenvalue and the
corresponding eigenvector). In the traditional approach to
solving PDIEPs, both analytical and numerical methods have
conventionally been tailored to address specific structured
matrices, including Jacobi, Toeplitz, or quadratic pencils. From
[38], there is a lack of general systematic studies for PDIEPs in
the literature. Further investigation on PDIEPs for most other
matrix structures are still needed.

There are two fundamental questions associated with any
PDIEP (and indeed, any IEP): the theory of solvability and
the practice of computability. The solvability concerns deter-
mining the condition under which a PDIEP has a solution.
Provided that the given spectral data is feasible, the com-
putability involves developing numerical methods to construct
a desirable matrix. According to the conclusion drawn in [38],
both questions are difficult and challenging, and complete an-
swers are yet to find. Some important attempts have been made
in [39]–[41] to numerically solve PDIEPs for the particular
structured matrices, such as Jacobi, Toeplitz, and quadratic
pencil.

Returning to our problem of combination policy construc-
tion, we know that constraint i) is a special case of the spectral

constraint for PDIEPs. This suggests that without constraint ii),
one solution to our problem could be first designing a suitable
matrix structure within the solvability theory of PDIEPs, and
then resorting to the numerical methods proposed in [39]–
[41] to find a desirable combination policy. However, if the
topology of the communication network is predetermined and
constraint ii) must be satisfied, we cannot directly apply the
results from [39]–[41]. This is because constraint ii) defines
a generic and specific matrix structure for the PDIEP, which
remains an open question in the literature according to [38].

Overall, as we described above, constructing a combination
policy with the prescribed Perron eigenvector for a given di-
rected graph is a challenging task. Nonetheless, one exception
to this is when the graph is undirected and the agents all have
self-loops. In this scenario, we can employ a particular rule to
generate a desired combination policy A for any given Perron
eigenvector π, which complies with the predetermined network
topology [42]:

aℓk =


0, if ℓ /∈ Nk,

πℓ, if ℓ ∈ Nk \ {k},
1−

∑
m∈Nk\{k} amk, if ℓ = k.

(104)

It is worth noting that the existence of a self-loop means that
the agent will use its local observations for the belief updating
in (13), which is a common assumption in distributed learning
over graphs. Therefore, if possible, we can always assume the
network structure to be undirected and utilize rule (104) for the
combination policy design in the implementation of adaptive
social learning.

IV. MINIMIZING ADAPTATION TIME

Section III derived the optimal Perron eigenvectors for
combination policies that minimize the steady-state error prob-
ability. In this section, we investigate the effect of combination
policies on the adaptation time of social learning (i.e., on the
transient learning performance). The adaptation time is defined
as the critical time instant i after which the instantaneous error
probability is decaying with an error exponent (1 − ω)Φ(π)
for some small ω > 0 [12]:

pk,i ≤ e−
1
δ [(1−ω)Φ(π)+O(δ)], ∀k ∈ N, (105)

where the notation O(δ) signifies that the ratio O(δ)/δ stays
bounded as δ → 0. To avoid confusion, we note that in
expression (105), the parameter ω is free and can be designed
by the user. Basically, ω describes the user’s perception of
the transient period, i.e., the moment from which the learning
process has entered into the steady-state region. A smaller ω
requires that the instantaneous error probability of each agent
is dominated by a larger error exponent when the the steady-
state region is reached, which entails a larger adaptation time.
Since the error exponent Φ(π) is associated with the slow
adaptation regime, we note that the following discussion on the
adaptation time are also within this regime. In order to avoid
some redundancy, this dependence will not be emphasized in
the remainder of this part.

Due to the term O(δ) in definition (105), there exist different
approximations for the adaptation time that satisfy (105). One
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approximation for the adaptation time, denoted by TASL(π, ω),
is provided in [12]. Consider the unfavorable case such as the
uniform initial belief condition, the expression of TASL(π, ω)
is given by

TASL(π, ω) ≜
1

log(1− δ)
−1 log

K1(π)

ωΦ(π)
(106)

for all ω < K1(π)
Φ(π) , where

K1(π) ≜ max
θ ̸=θ1

|t⋆θ(π)|mave(π, θ) (107)

with t⋆θ(π) defined by the forthcoming (122). For our purpose
of comparing different combination policies in this work, an
approximation that decouples the influence of the combination
policy from other factors would be preferred. However, this is
generally unattainable due to the difficulty in calculating the
instantaneous error probability of each agent and the intricate
relation between the error exponent and the Perron eigenvector
embedded in the LMGF Λave(t;π, θ). In the following, we
examine the learning tasks in the low SNR regime where the
error probabilities need not be too small [22] and Λave(t;π, θ)
can be approximated by a second-order polynomial for t ∈
[t⋆θ(π), 0]. That is,

Λave(t;π, θ) =

∞∑
n=1

κn(π, θ)t
n

n!
≈ κ1(π, θ)t+

κ2(π, θ)

2
t2

(108)
with κ1(π, θ) = mave(π, θ) and κ2(π, θ) = cave(π, θ). Here,
cave(π, θ) is the variance of xave,i(π, θ):

cave(π, θ) ≜ E
[
(xave,i(π, θ)−mave(π, θ))

2
]
=

N∑
k=1

π2
kρk(θ),

(109)
where ρk(θ) denotes the variance of xk,i(θ):

ρk(θ) ≜ E
[
(xk,i(θ)− dk(θ))

2
]
. (110)

Since the parabolic approximation of an LMGF is actually a
Gaussian approximation, the approximation in (108) becomes
an equality if, and only if, the log-likelihood ratio xave,i(π, θ)
follows a Gaussian distribution (e.g., in the canonical shift-in-
mean Gaussian problems discussed in Section III-C). For non-
Gaussian cases, (108) will be a valid approximation only for
learning tasks in the low SNR regime [22]. The exact definition
of the low SNR regime depends on the specific learning setup,
but it generally includes the scenarios where the hypotheses
are close to each other, i.e., when the learning task is difficult.
For instance, this regime is related to detecting weak signals
in the framework of locally optimum detection [43], [44]. In
the low SNR regime, we can derive an explicit approximation
result for the adaptation time of the ASL strategy.

Theorem 4 (Adaptation time for the low SNR regime).
Suppose the uniform initial belief condition λk,0(θ) = 0,∀k ∈
N,∀θ ∈ Θ, and the low SNR regime. The adaptation time of
the ASL strategy can be approximated by Tadap(ω) expressed
as

Tadap(ω) ≜
log
(
1−

√
1− ω

)
log(1− δ)

(111)

for any combination policy π ∈ Π.

Proof. See Appendix E.

Theorem 4 indicates that when the hypotheses are hard to
distinguish, the combination policy does not play an important
role in the adaptation time of the ASL strategy. Instead, it is
the step-size δ that plays the dominant role in the time of
adaptation, which is consistent with the analysis in [12]. This
result also differs from the analogous results for non-adaptive
social learning found in [13], [14], where the importance of
the combination policy in the transient learning performance
is highlighted. Theorem 4 ensures that choosing a combination
policy with better steady-state learning performance, as sug-
gested by optimizing the error exponent in Theorems 3a–3b,
does not negatively impact the transient learning performance
in the low SNR regime. Furthermore, Tadap(ω) depends only
on ω and δ in (111), so it is applicable for all learning models
that admit the parabolic approximation in (108).

Recalling the definition of adaptation time in (105), an
identical adaptation time means that at any time instant i,
the instantaneous error probability pk,i corresponding to a
larger error exponent Φ(π) has a smaller upper bound. Hence,
combining the conclusions from Theorems 3a, 3b, and 4 for
the learning tasks in the low SNR regime, we can expect that
when the learning step-size δ is small, both the steady-state
and the instantaneous error probability of an adaptive social
learning process will be reduced by employing a combination
policy corresponding to a larger error exponent. This point
will be further illustrated in the simulations.

As a final remark, we would like to make some comments
on the influence of combination policies in the high SNR
regime. It is important to note that there is no uniform
definition for a low or high SNR regime within social learning
tasks. However, the accuracy of the Gaussian approximation
(108) is a key factor in distinguishing these regimes. It turns
out that the error probability in the low SNR regime does
not need to be too small, and its evolution can be simulated
by an affordable number of Monte Carlo runs. In the high
SNR regime, the hypotheses are more distinguishable and
accordingly, the error probability decreases too rapidly to be
captured by inexpensive simulations. To examine the effect
of combination policies on the adaptation time in the high
SNR regime, we can refer to the approximation TASL(π, ω)
provided in (106). Although the influence of the combination
policy is intertwined with that of the agent’s signal structure
in TASL(π, ω), a finer analysis presented in [12] reveals that
the step-size δ still maintains a dominant role in the adaptation
time. One exception is the favorable case where the agent’s
initial belief is already biased towards the true hypothesis. In
this case, the adaptation time is essentially determined by the
mixing rate of agent’s beliefs, which is related to the second
largest-magnitude eigenvalue of combination policy A.

V. COMPUTER SIMULATIONS

In this section, we present simulation results to illustrate
our findings. We consider both the learning task with accurate
signal model (i.e., Case 2 in Section III-C) and that with the
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Fig. 3. The undirected graph of the network (left) and the local likelihood
models of each agent (right).

noisy shift-in-mean Gaussian model (i.e., Case 3 in Section
III-C). For these two tasks, we can see from (80) and (149)
that the consistency condition in (34) holds for all Perron
eigenvectors in (2). Moreover, according to (82) and (154),
the optimal Perron eigenvectors provided in Corollaries 2 and
3 are independent of the choice of the global truth. This means
that they are optimal in the non-stationary environment with
time-varying true states. We will furthermore examine the
influence of the combination policy on both the learning and
adaptation abilities of the ASL strategy.

A. Social learning with accurate signal model

In this part, we consider an Erdös-Rényi random network
[26] of 10 agents where each edge is generated with prob-
ability 0.5. The undirected graph of the resulting network is
shown in the left panel of Fig. 3. We also assume that all
agents have self-loops (not shown in Fig. 3). The agents in
the network will perform the ASL protocol (10) and (13) with
three hypotheses {θ1, θ2, θ3}. We consider a family of Laplace
likelihood functions with scale parameter 1 for all agents:

Fh(ξ) ≜ 0.5 exp{−|ξ − 0.1h|}, ∀ξ ∈ Xk (112)

with h ∈ {0, 1, 2}. The local likelihood models of each agent
are shown in the right panel of Fig. 3. According to Corollary
2, the uniform Perron eigenvector is an optimal solution
to the error exponent maximization problem (41)–(43). To
compare the performance of the ASL strategy under different
combination policies, we employ 5 left-stochastic combination
matrices A1–A5 and 5 doubly-stochastic combination matrices
A6–A10. These matrices are generated by an iterative method
based on the given network topology. For each matrix Ai, the
iterative method starts by generating an initial matrix A0 that
conforms to the network topology, i.e., [A0]ℓk > 0 if ℓ ∈ Nk

and [A0]ℓk = 0 otherwise. A left-stochastic combination
matrix Ai is then constructed by normalizing each column of
A0. If Ai should be doubly-stochastic, then row and column
normalization is performed alternatively until convergence.
All the combination matrices A1–A10 are checked to have
a positive Perron eigenvector for truth learning.

First, we study the influence of combination policies on the
error exponent. To evaluate the steady-state error probability,
we consider a stationary environment where the true hypothe-
sis is selected as θ1. We further assume that all agents hold a
uniform initial belief. Table I lists the θ-related error exponents

TABLE I
Φ(π, θ) AND Φ̂(π, θ) FOR DIFFERENT COMBINATION MATRICES

Matrix A Φ(π, θ2) Φ̂(π, θ2) Φ(π, θ3) Φ̂(π, θ3)

A1 0.0578 0.0582 0.0392 0.0394
A2 0.0464 0.0467 0.0377 0.0379
A3 0.0536 0.0539 0.0360 0.0362
A4 0.0567 0.0571 0.0329 0.0331
A5 0.0543 0.0546 0.0352 0.0354

A6–A10 0.0656 0.0660 0.0447 0.0450
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Fig. 4. Average steady-state error probability.

Φ(π, θ) and their approximation Φ̂(π, θ) based on (108) (see
expression in (163)). It is observed that for all 10 combination
matrices, the error exponent in this learning task is determined
by the wrong hypothesis θ3. Moreover, the doubly-stochastic
matrices deliver a larger error exponent than all left-stochastic
ones. Therefore, we can expect that as δ → 0, the steady-state
error probability vanishes to zero with a larger decaying rate
when the doubly-stochastic combination policy is employed.

In Fig. 4, the steady-state error probability averaged across
agents, is presented for 10 combination polices and different
step-sizes. For each step-size, we select the terminal time as
3000 and run 1000000 Monte Carlo simulations to obtain the
average results. It can be observed that the doubly-stochastic
combination matrices A6–A10 lead to a similar steady-state
error probability that is smaller than those corresponding to
left-stochastic combination matrices A1–A5. In Fig. 5, we pro-
vide the steady-state error probability of 4 agents. Despite the
slight differences for different agents, the advantage of doubly-
stochastic combination matrices becomes more pronounced as
δ decreases. This is consistent with our conclusion in Corollary
2.

Next, we study the effect of combination policies on the
adaptation time. Here, we consider a non-stationary environ-
ment where the true state changes from θ1 to θ2 at i = 1000
and from θ2 to θ3 at i = 2000. Under a small step-size
δ = 0.01 and a uniform initial belief condition, the transient
dynamics of the average instantaneous error probability over
i ∈ [0, 3000] is depicted in Fig. 6. An important observation
is that, in the non-stationary environment, the adaptation time
related to different combination matrices is very close to each
other. To derive a quantitative comparison, we calculate the
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Fig. 5. Steady-state error probability of 4 agents. Blue (green) lines denote
left (doubly)-stochastic matrices.

simulated adaptation time when the true state is θ1. Let pave,i
and pave denote the average instantaneous error probability at
time instant i and the average steady-state error probability,
respectively. According to the definition of adaptation time in
(105), we record the time instant i0 after which the average
instantaneous error probability pave,i satisfies

log pave,i ≤ (1− ω) log pave, i ≥ i0. (113)

The simulated adaptation time calculated by (113) and its ap-
proximation Tadap(ω) under different values of ω is presented
in Fig. 7. We also include the approximation TASL(π, ω) (106)
provided in [12]. It is clear that the difference in adaptation
time for all considered combination matrices is almost neg-
ligible irrespective of ω in our simulations. Consequently, as
observed in Fig. 6, the doubly-stochastic combination policies
contribute to a smaller instantaneous error probability during
the learning process. This provides a solid foundation for em-
ploying a doubly-stochastic combination policy in this learning
task. Moreover, we see from Fig. 7 that both approximations
Tadap(ω) and TASL(π, ω) provide an upper bound on the
simulated adaptation time. Compared with TASL(π, ω), which
applies to all learning tasks, Tadap(ω) discussed for the low
SNR regime defines a better bound and illuminates the minor
role of combination policies.

B. Social learning with noisy shift-in-mean Gaussian model

In this part, we illustrate the learning performance of the
ASL strategy (Theorem 1) and the optimal Perron eigenvector
π⋆ given by (85) for the noisy shift-in-mean Gaussian model
(83). As discussed in Section III-D2, it is not always pos-
sible to construct a combination policy with the predefined
Perron eigenvector for a given network topology. To avoid
this inconvenience, we consider an undirected network (shown
in Fig. 3) by adding more edges to the Erdös-Rényi random
network considered in Section V-A. Since we have assumed
previously that each agent has a self-loop, the construction rule
in (104) can be employed to generate a combination policy
with any prescribed Perron eigenvector π for this undirected
network. We also consider a social learning protocol with three
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Fig. 6. Average instantaneous error probability with δ = 0.01. The variation
of the true state is depicted in the bottom panel.
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Fig. 7. Adaptation time under different combination matrices.

hypotheses. The parameters of the considered noisy shift-in-
mean Gaussian model are listed in Table II.

First, we show the learning behavior of the ASL strategy
in this task when the true hypothesis is θ1. We consider the
uniform averaging rule aℓk = 1/|Nk|,∀ℓ ∈ Nk where |Nk|
is the cardinality of set Nk. Let πu be the Perron eigenvector
corresponding to the uniform averaging rule, we can derive
mave(π

u, θ2) = 0.0052 and mave(π
u, θ3) = 0.0064 based on

Table II. With δ = 0.002 and a uniform initial belief, the
time evolution of log-belief ratios λk,i(θ) in one realization is
shown in Fig. 8. We can see that for this small step-size, the
steady-state log-belief ratios of each agent concentrate around
the expectation values mave(π

u, θ). This shows the consistency
of learning with the ASL strategy for the noisy shift-in-mean
Gaussian model, as predicted by Theorem 1. Furthermore,
we evaluate the estimation performance of the two methods
proposed in Section III-D1 on the quantity tnck (θ), whose value
can be calculated by using (150). The theoretical values of

TABLE II
PARAMETERS OF THE NOISY SHIFT-IN-MEAN GAUSSIAN MODEL

Agent k mk(θ1) mk(θ2) mk(θ3) σ2
k εk tnck (θ)

1–3 0 0.1 0.1 1 1 −0.5,−0.5
4–7 0.2 0 0.2 2 0.1 −0.9091,−C

8–10 0.3 0.3 0 3 0.001 −C,−0.9990
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Fig. 8. Evolution of log-belief ratios of each agent in one realization.

2000 4000 6000 8000 10000
i

-2

-1

0
Agents 1{3

2000 4000 6000 8000 10000
i

-2

-1

0
Agents 4{7

2000 4000 6000 8000 10000
i

-1.5

-1

-0.5
Agents 8{10

direct estimation indirect estimation

Fig. 9. Estimation of tnck (θ) after every 500 observations with the direct and
indirect estimation methods. The dotted red lines represent the theoretical
values of tnck (θ). The discretization step-size is 0.01 in the direct estimation
method. Curves related to the θ-uninformative agents are removed for clarity.

tnck (θ) are listed in Table II. We note that under the given
parameter configuration, there are no conflicting agents in the
network. For one realization, we plot the estimates of tnck (θ)
for each agent within the first 10000 observations in Fig. 9.
Under the considered noisy shift-in-mean Gaussian model, the
estimate of tnck (θ) in the indirect estimation method admits a
closed-form expression (103). It is clear from Fig. 9 that the
indirect estimation method is more efficient than the direct one
in our simulations. Since xk,i(θ) is unbounded in Gaussian
models, a substantial number of observations will be needed
to obtain a good approximation with the direct estimation
method.

Next, we consider the effect of combination policies on the
error exponent in this noisy learning environment. According
to Corollary 3, the maximum error exponent can be achieved
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Fig. 10. Average steady-state error probability.
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Fig. 11. Steady-state error probability of each agent. The curve labels are the
same as Fig. 10.

by the Perron eigenvector π⋆ in (85). Based on the parameter
setting in Table II, we obtain π⋆

k = 0.0615 for agents 1–
3, π⋆

k = 0.1118 for agents 4–7, and π⋆
k = 0.1228 for

agents 8–10. A left-stochastic combination matrix with Perron
eigenvector π⋆ is constructed by following rule (104) and is
denoted by A⋆. For comparison, we introduce another 5 left-
stochastic matrices A1–A5 with different Perron eigenvectors
and 5 doubly-stochastic matrices A6–A10. All 11 combination
matrices have a positive Perron eigenvector. With a uniform
initial belief, the steady-state error probability of the network
and 4 agents for different small step-sizes are presented in
Figs. 10 and 11. For each step-size, the terminal time is 3000
and the number of Monte Carlo simulations is 1000000. It is
seen that the combination matrix A⋆ with Perron eigenvector
π⋆ leads to a larger error exponent than that of all other
combination policies in comparison. This is consistent with
Corollary 3.

Then, we compare the adaptation time of the ASL strategy
under different combination policies. From (146), the parabolic
approximation (108) holds for the noisy shift-in-mean Gaus-
sian model. We expect that Tadap(ω) in Theorem 4 will be a
reasonable approximation of the adaptation time in the slow
adaptation regime. With δ = 0.01 and different ω, we calculate
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Fig. 12. Adaptation time under different combination matrices.

the simulated adaptation time for each combination matrix
based on (113) and then compare them with the approximated
values TASL(π, ω) and Tadap(ω) given by (106) and (111)
respectively. Corresponding results are presented in Fig. 12.
It is shown that the effect of combination policies on the
adaptation time of the ASL strategy is not significant under
the given step-size. The difference between the simulated
adaptation time and the theoretical one in (111) comes from
the sub-exponential term O(δ) in (105). Similar to the obser-
vation in Fig. 7, Tadap(ω) provides a better characterization
of the adaptation time than TASL(π, ω) for this learning task.
Fig. 13 presents the time evolution of the instantaneous error
probability in a non-stationary environment, where the true
state changes from θ1 to θ2 and from θ2 to θ3 at i = 1000 and
2000, respectively. Similar to Fig. 6, the curve related to the
optimal combination matrix A⋆ is lower than all other curves
during the whole learning process. Therefore, it is beneficial to
employ a combination policy with the best Perron eigenvector
for the steady-state learning performance.

Finally, we examine the case where the optimal combination
policy changes with the true state of nature. To simulate this
scenario, we assume that the noise level in the private signals
is dependent on the underlying state. Specifically, we consider
εk = 0.1 (or 0.001) for agents 1–3, εk = 0.001 (or 1) for
agents 4–7, and εk = 1 (or 0.1) for agents 8–10 when the
true state is θ2 (or θ3). Based on (85), we compute an optimal
Perron eigenvector associated with each hypothesis, which is
then used to design the combination policy according to (104).
The three resulting optimal combination matrices are denoted
by A⋆

1, A⋆
2 and A⋆

3. We study a non-stationary environment
similar to Fig. 13, where the true hypothesis changes from θ1
to θ2 at i = 1000 and then to θ3 at i = 2000. The evolution
of the instantaneous error probabilities associated with A⋆

1–A⋆
3

is presented in Fig. 14. Since the optimization problem (41)–
(43) is formulated to maximize the error exponent, the optimal
combination policy pertaining the underlying state will deliver
a smaller steady-state error probability in the small-δ regime.
On the other hand, we note that our analysis of the adaptation
time does not depend on the true hypothesis. Therefore, the
conclusion from Theorem 4 is still valid, which implies that
the optimal combination policy for the steady-state learning
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Fig. 13. Average instantaneous error probability with δ = 0.01. The variation
of the true state is depicted in the bottom panel.
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Fig. 14. Average instantaneous error probability with δ = 0.01. The noise
level changes with the variation of the true state depicted in the bottom panel.

performance does not harm the transient behavior. This is in
line with our observations in Fig. 14.

VI. CONCLUDING REMARKS

Combination policies play an important role in the behav-
ior of social learning strategies. In this work, we discussed
the effect of combination policies on two key performance
metrics: the error exponent (i.e., steady-state learning ability)
and the adaptation time (i.e., transient learning behavior) in
the slow adaptation regime. For a general signal model, we
characterized the performance limits of the error exponent
and provided the set of optimal Perron eigenvectors. More-
over, we showed that the difference of the adaptation time
under different combination policies is almost negligible if
the hypotheses are close to each other. Our findings reveal
the important relation between the learning performance of
the ASL strategy and the combination policy among agents,
which can be useful for the network design of many inference
problems.

Several useful extensions and generalizations are possible.
One extension refers to the online learning of the optimal
combination policy. From Theorems 3a and 3b, we know
that the optimal combination policy depends on the critical
value tnck (θ) that is determined by the LMGF of the log-
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likelihood ratio variable xk,i(θ). Therefore, full knowledge of
the agents’ signal models are needed to construct the optimal
combination policy. This raises the question of how to learn the
combination policy in an online manner, where the agents infer
the underlying truth and estimate tnck (θ) with their observations
in the same time. This online setting is especially important in
the non-stationary environment where the optimal combination
policy changes with the true state of nature as shown in Fig.
14.

Another useful generalization concerns the compact space
of hypotheses. In this work, we consider a finite number of
hypotheses. It will be worthwhile to investigate the cases
where the hypothesis is characterized by a continuous pa-
rameter. A good reference along these lines for the non-
adaptive social learning is [45]. Using the similar variational
interpretation of the adaptation step (10), it is straightforward
to generalize the ASL algorithm (18) to the continuous space.
However, new analytical approaches need to be developed for
the performance analysis.

APPENDIX A
USEFUL PROPERTIES FOR THE PROOFS

For the forthcoming proofs, we need some useful properties
of the LMGFs Λk(t; θ) and functions ϕnc

k (t; θ) under the
general signal model (3)–(4) as listed in Lemma 1. Similar
properties for the accurate signal model (4)–(5) can be found
in [12], [22], [33], [34]. The first and second derivatives of a
function f(t) will be denoted by f ′(t) and f ′′(t), respectively.

Lemma 1 (Useful properties). For each wrong hypothesis
θ ̸= θ1, the following properties associated with the LMGF
Λk(t; θ) and function ϕnc

k (t; θ) hold for all agents k /∈ NU (θ):
i) Λk(t; θ) is infinitely differentiable in R. Also, it is strictly

convex for all t ∈ R.
ii) Λk(t; θ) has a zero-point at t = 0. If dk(θ) = 0, this

zero-point is unique, i.e., Λk(t; θ) > 0 for all t ̸= 0;
If dk(θ) < 0, Λk(t; θ) has a positive zero-point t0,
i.e., ∃t0 > 0 such that Λk(t0; θ) = 0; If dk(θ) > 0,
Λk(t; θ) has a negative zero-point t0. In particular, if
fk = Lk(·|θ1), we have

t0 = −1. (114)

iii) The function Λk(t;θ)
t is continuous for all t ∈ R, with

lim
t→0

Λk(t; θ)

t
= Λ′

k(0; θ) = dk(θ). (115)

iv) ϕnc
k (t; θ) is strictly convex for all t ∈ R.

Furthermore, the following properties in regard to the LMGF
Λave(t;π, θ) and function ϕ(t;π, θ) hold for all feasible Perron
eigenvectors π ∈ Π:

v) Λave(t;π, θ) and ϕ(t;π, θ) are strictly convex for all t ∈
R.

vi) Λave(t;π, θ) has a negative zero-point.

Proof. The strict convexity of the LMGF Λk(t; θ) in property
i) is the basis of the subsequent properties ii)–vi). We assume
that xk,i(θ) is non-degenerate under the general signal model

(3)–(4). Property i) is established by using Cauchy–Schwarz
inequality, and the proof can be found in [22], [33], [34].

Since Λk(0; θ) = 0 and Λ′
k(0; θ) = dk(θ) for all k and θ,

t = 0 is a zero-point of Λk(t; θ) for all k and θ. Furthermore,
the first-order condition of the strictly convex function Λk(t; θ)
gives us

Λk(t; θ) > dk(θ)t. (116)

Obviously, Λk(t; θ) > 0 for all t ̸= 0 when dk(θ) = 0. Since
the signal and likelihood models share the same support, we
have limt→±∞ Λk(t; θ) = ∞. If dk(θ) ̸= 0, then there exists
a unique non-zero zero-point t0 ̸= 0 such that Λk(t0; θ) =
0. If dk(θ) < 0, we have Λk(t; θ) ≥ dk(θ)t > 0 for all
t < 0 according to (116). Hence, Λk(t; θ) has a positive zero-
point in this case. Likewise, Λk(t; θ) has a negative zero-point
t0 for the case of dk(θ) > 0. If fk = Lk(·|θ1), we obtain
Λk(−1; θ) = 0, and thus t0 = −1 is the unique negative zero-
point of Λk(t; θ) as demonstrated in [12].

Property iii) can be proved by applying L’Hôpital’s rule to
the continuous function Λk(t; θ) at t = 0 [22]. This property
further ensures that the function ϕnc

k (t; θ) defined in (54) is
well-posed. The second-order derivative of ϕnc

k (t; θ) satisfies

[ϕnc
k (t; θ)]

′′ ≜
d

dt

Λk(t; θ)

t
=

Λ′
k(t; θ)t− Λk(t; θ)

t2
> 0 (117)

due to the first-order condition of the strictly convex function
Λk(t; θ). Property iv) follows (117).

Under the independence assumption of local observations
over space, the strict convexity of individual LMGF Λk(t; θ)
for all agents k /∈ NU (θ) (property i)) ensures that Λave(t;π, θ)
is also a strictly convex function for t ∈ R. The strict convexity
of ϕ(t;π, θ) can be established in the same way as (117).
Property vi) is guaranteed by the consistency condition (34),
i.e., mave(π, θ) > 0 for all θ ̸= θ1. Similar to the proof
of property ii), we can prove property vi) using the strict
convexity of Λave(t;π, θ) established in property v).

APPENDIX B
PROOF OF THEOREM 2

First, we show that for each θ-informative agent k ∈ NI(θ),
tnck (θ) defined in (55) corresponds to a negative zero-point of
Λk(t; θ). According to property iv) in Lemma 1, ϕnc

k (t; θ) is
a strictly convex function for t ∈ R. Therefore, the infimum
of ϕnc

k (t; θ) is achieved at its unique stationary point:

[ϕnc
k (t; θ)]′ =

Λk(t; θ)

t
= 0. (118)

From definition (46), we have dk(θ) > 0 for all k ∈ NI(θ).
Property iii) shows that the stationary point in (118) corre-
sponds to the negative zero-point of Λk(t; θ), whose existence
and uniqueness are guaranteed by property ii) in Lemma 1.
Therefore, tnck (θ) is given by

tnck (θ) = {t ̸= 0 : Λk(t; θ) = 0} < 0. (119)

Next, we prove the bound of the error exponent established in
Theorem 2. Based on the definition of tnck (θ) in (58), we have
tnck (θ) ≤ 0 and

Λk(t; θ) ≤ 0, ∀t ∈ [tnck (θ), 0], (120)
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for all agents k ∈ N. Moreover, Φnc
k (θ) = 0 holds for each

k /∈ NI(θ). This yields

Φnc∑(θ) ≜
N∑

k=1

Φnc
k (θ) =

∑
k∈NI(θ)

Φnc
k (θ), ∀θ ̸= θ1. (121)

For any Perron eigenvector π ∈ Π, we have mave(π, θ) > 0,
∀θ ̸= θ1 from (43). Due to properties v) and vi) in Lemma
1, the infimum of ϕ(t;π, θ) is achieved at its unique sta-
tionary point that corresponds to the negative zero-point of
Λave(t;π, θ). Let t⋆θ(π) be the critical value corresponding to
the θ-related error exponent Φ(π, θ) in (37), i.e., Φ(π, θ) =
−ϕ(t⋆θ(π);π, θ). Then, t⋆θ(π) is the unique non-zero solution
to Λave(t;π, θ) = 0:

t⋆θ(π) = {t ̸= 0 : Λave(t;π, θ) = 0} < 0. (122)

Therefore,

Φ(π, θ) ≜ − inf
t∈R

ϕ(t;π, θ)
(122)
= − inf

t<0
ϕ(t;π, θ)

(a)
= − inf

t<0

N∑
k=1

ϕnc
k (πkt; θ) ≤

N∑
k=1

− inf
t<0

ϕnc
k (πkt; θ)

(b)
=

∑
k∈NI(θ)

− inf
t<0

ϕnc
k (t; θ) =

∑
k∈NI(θ)

Φnc
k (θ)

(121)
= Φnc∑(θ). (123)

where (a) is due to the definitions given in (32), (38), and (54),
and (b) comes from (45) and (57). Since the error exponent
Φ(π) is determined by the minimum Φ(π, θ) among all wrong
hypotheses θ ̸= θ1, we can derive from (123) that

Φ(π) = min
θ ̸=θ1

Φ(π, θ)≤min
θ ̸=θ1

Φnc∑(θ). (124)

This implies that each aggregated quantity Φnc∑(θ) is an upper
bound of the error exponent Φ(π) for all feasible combination
policies. On the other hand, for a given Perron eigenvector
π ∈ Π, we can define the following quantities:

kθm = argmax
k∈N

tnck (θ)

πk
, tθm = max

k∈N

tnck (θ)

πk
. (125)

This yields πkθ
m
tθm = tnckθ

m
(θ) and Φnc

kθ
m
(θ) = −ϕnc

kθ
m
(πkθ

m
tθm; θ).

Since tnck (θ) ≤ 0,∀k ∈ N by definition (58), (125) gives

tnck (θ) ≤ πkt
θ
m ≤ 0, ∀k ∈ N. (126)

Then, for each θ ̸= θ1, we have

Φ(π, θ) ≜ − inf
t∈R

ϕ(t;π, θ) ≥ −ϕ(tθm;π, θ)

(125)
= −ϕnc

kθ
m
(πkθ

m
tθm; θ)−

∑
ℓ ̸=kθ

m

ϕnc
ℓ (πℓt

θ
m; θ)

(a)
≥ Φnc

kθ
m
(θ) ≥ min

k∈N
Φnc

k (θ) (127)

where the inequality (a) comes from (120) and (126):

ϕnc
ℓ (πℓt

θ
m; θ) ≜

∫ πℓt
θ
m

0

Λℓ(τ ; θ)

τ
dτ ≤ 0, ∀ℓ ̸= kθm. (128)

Therefore, the error exponent Φ(π) is lower bounded by

Φ(π) = min
θ ̸=θ1

Φ(π, θ)≥min
θ ̸=θ1

min
k∈N

Φnc
k (θ). (129)

The bounds for Φ(π, θ) and Φ(π) are established using (123),
(124), (127) and (129).

APPENDIX C
PROOF OF THEOREMS 3A AND 3B

A. Proof of Theorem 3a

In this case, we need to prove that Π† ̸= ∅ is a sufficient and
necessary condition for achieving the upper bound Φnc∑(θ†),
and that the set of optimal Perron eigenvectors is given by
Π⋆ = Π† when Φ⋆ = Φnc∑(θ†). First, we show that Π† ̸= ∅
is a sufficient condition for delivering Φ⋆ = Φnc∑(θ†). From
Theorem 2, Φnc∑(θ†) is an upper bound of the error exponent,
and thus Φ⋆ ≤ Φnc∑(θ†). Consider any Perron eigenvector
π ∈ Π†, by definition of Π1 in (69), we have Φ(π, θ†) ≤
Φ(π, θ), ∀θ ̸= θ1. This means that the error exponent under
π is determined by hypothesis θ†, i.e., Φ(π) = Φ(π, θ†).
According to definition (45), we have Λk(t; θ

†) ≡ 0 for
all agents k ∈ NU (θ†). This implies that the centrality of
the θ†-uninformative agents has no impact on the value of
Φ(π, θ†). Recalling the definitions of tnck (θ†) in (58) and
denoting tnc∑ =

∑N
k=1 t

nc
k (θ†), we have

Φ(π, θ†) ≜ − inf
t∈R

ϕ(t;π, θ†) = − inf
t∈R

∑
k/∈NU (θ†)

ϕnc
k (πkt; θ

†)

(a)
≥ −

∑
k/∈NU (θ†)

ϕnc
k (πk

tnc∑
α

; θ†)

(70)
= −

∑
k/∈NU (θ†)

ϕnc
k (tnck (θ†); θ†) = −ϕ(tnc∑;π†, θ†)

(130)

where (a) follows by letting t = tnc∑/α. From (67), we obtain
Φ(π†, θ†) = −ϕ(tnc∑;π†, θ†) = Φnc∑(θ†). Then, the optimality
of π for the error exponent maximization problem (41)–(43)
is established by

Φnc∑(θ†)
(61)
≥ Φ⋆ ≥ Φ(π)

(71)
= Φ(π, θ†)

(130)
≥ Φnc∑(θ†). (131)

This implies that if Π† is nonempty, any Perron eigenvector
π ∈ Π† will deliver an error exponent Φnc∑(θ†). Therefore, the
largest error exponent for the optimization problem (41)–(43)
is Π⋆ = Φnc∑(θ†).

Next, we show that in this case (i.e., Π† ̸= ∅), the set Π⋆ of
optimal Perron eigenvectors is given by (71). We noted that in
(131), we have shown that any Perron eigenvector π ∈ Π† is an
optimal solution to the error exponent maximization problem
(41)–(43). Therefore, Π† is contained in the optimal set Π⋆.
That is,

Π† ⊆ Π⋆. (132)

It remains to establish the condition in the other direction:
Π⋆ ⊆ Π†. To this end, we analyze the necessary conditions
for an optimal Perron eigenvector. Since Π is the set of all
feasible solutions to the optimization problem (41)–(43), we
have Π⋆ ⊆ Π. By the definition of θ† in (63), the upper bound
Φ⋆ = Φnc∑(θ†) can be attained if and only if the error exponent
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Φ(π) is determined by hypothesis θ†. Therefore, the following
inequality

Φ(π, θ†) ≤ Φ(π, θ), ∀θ ̸= θ1, (133)

needs to be satisfied for any Perron eigenvector π ∈ Π⋆.
Hence, we obtain a necessary condition:

Π⋆ ⊆ Π1 ≜
{
π ∈ Π : Φ(π, θ†) ≤ Φ(π, θ),∀θ ̸= θ1

}
. (134)

We next prove that the following proportional relation among
all θ†-informative agents, as captured by π† in (66):

πkt
nc
ℓ (θ†) = πℓt

nc
k (θ†), ∀k, ℓ ∈ NI(θ†), (135)

must be satisfied for reaching the upper bound Φnc∑(θ†). For
any Perron eigenvector π that violates (135), there must exist
two θ†-informative agents m and n such that

πmtncn (θ†) ̸= πnt
nc
m(θ†). (136)

Then, for any t ̸= 0, the two equations πmt = tncm(θ†) and
πnt = tncn (θ†) cannot be both satisfied. Under Assumption
3, there is at least one θ†-informative agent in the network.
Recalling the definition of t⋆θ(π) in (122), we obtain t⋆θ†(π) <
0 for any Perron eigenvector π ∈ Π in this case. Hence, at
least one of the following two conditions is true:

πmt⋆θ†(π) ̸= tncm(θ†) or πnt
⋆
θ†(π) ̸= tncn (θ†). (137)

Assume that πmt⋆θ†(π) ̸= tncm(θ†) is satisfied, then

Φnc
m(θ†)

(55)
= −ϕnc

m(tncm(θ†); θ†)
(56)
= − inf

t∈R
ϕnc
m(t; θ†)

(a)
> −ϕnc

m(πmt⋆θ†(π); θ
†), (138)

where (a) is due to the strict convexity of ϕnc
m(t; θ) provided

by property iv) in Lemma 1. Since

Φ(π, θ†) ≜ −ϕ(t⋆θ†(π);π, θ
†)

= −
∑
k ̸=m

ϕnc
k (πkt

⋆
θ†(π); θ

†)− ϕnc
m(πmt⋆θ†(π); θ

†)

(56)
≤
∑
k ̸=m

Φnc
k (θ†)− ϕnc

m(πmt⋆θ†(π); θ
†)

(138)
<
∑
k∈N

Φnc
k (θ†) ≜ Φnc∑(θ†), (139)

we obtain Φ(π) ≤ Φ(π, θ†) < Φ⋆, which implies that
π /∈ Π⋆. Therefore, the proportional relation (135) among θ†-
informative agents is necessary for the optimality of a Perron
eigenvector. Let ΠI be the collection of all Perron eigenvectors
that satisfy (135):

ΠI =
{
π : πkt

nc
ℓ (θ†) = πℓt

nc
k (θ†),∀k, ℓ ∈ NI(θ†)

}
, (140)

then the following condition holds:

Π⋆ ⊆ ΠI . (141)

In view of the definition of π† in (66), ΠI can be rewritten as

ΠI =
{
π : πk = απ†

k,∀k ∈ NI(θ†),∀α > 0
}
≜ Π2. (142)

Combining the necessary conditions (134) and (141) yields

Π⋆ ⊆ {Π1 ∩Π2} ≜ Π†. (143)

Together with (132), (143) gives Π⋆ = Π†. This proves that if
Π† ̸= ∅, the optimization problem (41)–(43) has the solution:
Φ⋆ = Φnc∑(θ†), and Π⋆ = Π†. Furthermore, if Π† = ∅, there
is no Perron eigenvector π ∈ Π that satisfies both necessary
conditions (134) and (141). Therefore, the upper bound of the
error exponent is not achievable for the given learning task.
This completes the proof of Theorem 3a.

B. Proof of Theorem 3b

In this case, we need to prove that if Π†
ϵ is not empty,

any Perron eigenvector π ∈ Π†
ϵ is ϵ-optimal. In other words,

Π†
ϵ ̸= ∅ is a sufficient condition for deriving an ϵ-optimal

Perron eigenvector. This can be established by repeating our
analysis in (130) and (131).

APPENDIX D
PROOF OF COROLLARY 3

In this noisy environment, each agent k will receive a noisy
private signal at each time instant i, which is denoted by ξ̂k,i:

ξ̂k,i = ξk,i + nk,i. (144)

With the shift-in-mean Gaussian model (83), the log-likelihood
ratio xk,i(θ) of the noisy observation ξ̂k,i is given by

xk,i(θ) ≜ log
Lk(ξ̂k,i|θ1)
Lk(ξ̂k,i|θ)

=
mk(θ1)−mk(θ)

σ2
k

(
ξ̂k,i −

mk(θ) +mk(θ1)

2

)
(144)
=

mk(θ1)−mk(θ)

σ2
k

(
ξk,i + nk,i −

mk(θ) +mk(θ1)

2

)
.

(145)
The random variable xk,i(θ) follows a Gaussian distribution:

xk,i(θ) ∼ N(ak(θ), b
2
k(θ)) (146)

with ak(θ) =
(mk(θ1)−mk(θ))

2

2σ2
k

,

b2k(θ) =
(mk(θ1)−mk(θ))

2

σ2
k

(1 + εk) .
(147)

It is straightforward to see that dk(θ) = ak(θ) ≥ 0. Since the
LMGF of a Gaussian random variable y ∼ N(a, b) is given
by at+ bt2/2, (146) yields

Λk(t; θ) = ak(θ)t+
b2k(θ)

2
t2. (148)

From (147), we know that Λk(t; θ) ≡ 0 if ak(θ) = 0. This
implies NC(θ) = ∅ according to definition (47). Furthermore,
the consistency condition (34) is not impacted by the Gaussian
noises. That is,

mave(π, θ) > 0, ∀θ ̸= θ1, (149)

for all Perron eigenvector π. For any wrong hypothesis θ ̸= θ1,
the quantities tnck (θ) and Φnc

k (θ) of each θ-informative agent
k now admit an explicit expression:

tnck (θ) = −2ak(θ)

b2k(θ)
= − 1

1 + εk
, (150)
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Φnc
k (θ) =

ak(θ)
2

b2k(θ)
=

(mk(θ1)−mk(θ))
2

4σ2
k(1 + εk)

. (151)

It can be observed from (150) that tnck (θ) is determined only
by the noise level εk, and thus it is identical for all hypothesis
θ ̸= θ1. Moreover, according to (58), the critical value tnck (θ)
associated with a θ-uninformative agent k can be set to any
value. Assume that tnck (θ) = −1/(1 + εk) (i.e., following the
same expression as (150)) for each θ-uninformative agent k ∈
NU (θ), then from (66), we obtain

π†
k =

(1 + εk)
−1∑N

ℓ=1 (1 + εℓ)
−1

, (152)

Φnc(θ†) = min
θ ̸=θ1

N∑
k=1

(mk(θ1)−mk(θ))
2

4σ2
k(1 + εk)

. (153)

It is noted that based on above definitions, the critical value
tnck (θ) does not depend on the associated hypothesis θ. This
means that the Perron eigenvector π† is feasible to reach the
upper bound Φnc∑(θ) corresponding to any wrong hypothesis
θ. That is, by repeating the same arguments used in (67), we
have

Φ(π†, θ) = Φnc∑(θ), ∀θ ̸= θ1. (154)

By definition (63), we obtain Φ(π†, θ†) < Φ(π†, θ), ∀θ ̸= θ1,
and thus π† ∈ Π1. Since π† is always an element of set Π2, we
have Π† ̸= ∅ and π† ∈ Π†. Therefore, π⋆ = π† is an optimal
solution to the the error exponent maximization problem (41)–
(43), with Φ⋆ = Φnc∑(θ†) given by (153).

APPENDIX E
PROOF OF THEOREM 4

Under the uniform initial belief condition (i.e., λk,0(θ) = 0
for all k ∈ N and θ ∈ Θ), we can obtain from (19) that

λk,i(θ) = δ

i−1∑
m=0

N∑
ℓ=1

(1− δ)m[Am+1]ℓkxℓ,i−m(θ)

= λ̂k,i(θ)
d
= λ̃k,i(θ) (155)

where λ̂k,i(θ) and λ̃k,i(θ) are respectively defined in (20) and
(21), and the equality in distribution is due to (22). According
to (16), the instantaneous error probability of agent k at time
instant i associated with θ ̸= θ1 is given by

P [λk,i(θ) ≤ 0] = P
[
λ̃k,i(θ) ≤ 0

]
(a)
= P

[
t⋆θ(π)

δ
λ̃k,i(θ) ≥ 0

]
(b)
≤ E

[
exp

(
t⋆θ(π)

δ
λ̃k,i(θ)

)]
, (156)

where (a) is due to t⋆θ(π) < 0 from (122) and (b) follows by
applying Markov’s inequality. Denoting the LMGF of λ̃k,i(θ)
as

Λk,i(t; θ) ≜ logE
[
etλ̃k,i(θ)

]
, (157)

the independence assumption of the local observations over
time and space gives

Λk,i(t; θ) =

i−1∑
m=0

N∑
ℓ=1

Λℓ

(
δ(1− δ)m[Am+1]ℓkt; θ

)
. (158)

Let bi = [Ai+1]ℓk and using Eqs. (85) and (86) from [23], we
have

Λk,i(t; θ)
(158)
=

N∑
ℓ=1

i−1∑
m=0

Λℓ

(
δ(1− δ)m[Am+1]ℓkt; θ

)
=

N∑
ℓ=1

1

δ

[∫ δt

δ(1−δ)it

Λℓ(πℓτ ; θ)

τ
dτ + O(δ)

]

=
1

δ

[∫ δt

δ(1−δ)it

Λave(τ ;π, θ)

τ
dτ + O(δ)

]
. (159)

Let t = t⋆θ(π)/δ, we obtain the following expression:

Λk,i

(
t⋆θ(π)

δ
; θ

)
=

1

δ

[∫ t⋆θ(π)

(1−δ)it⋆θ(π)

Λave(τ ;π, θ)

τ
dτ + O(δ)

]
.

(160)
Applying the parabolic approximation (108) in the low SNR
regime, we have

Λave(t;π, θ)

t
≈ κ1(π, θ) +

κ2(π, θ)

2
t (161)

for t ∈ [t⋆θ(π), 0]. Therefore, we can approximate t⋆θ(π) and
Φ(π, θ) as

t̂⋆θ(π) ≜ −2κ1(π, θ)

κ2(π, θ)
= −2mave(π, θ)

cave(π, θ)
, (162)

Φ̂(π, θ) ≜ −κ1(π, θ)
2

κ2(π, θ)
= −mave(π, θ)

2

cave(π, θ)
. (163)

With the expressions of t̂⋆θ(π) and Φ̂(π, θ), an approximation
for (160) is obtained:

Λk,i

(
t⋆θ(π)

δ
; θ

)
≈ 1

δ

[∫ t̂⋆θ(π)

(1−δ)i t̂⋆θ(π)

{
κ1(π, θ) +

κ2(π, θ)

2
τ

}
dτ + O(δ)

]
= −1

δ

{[
1− (1− δ)i

]2
Φ̂(π, θ) + O(δ)

}
≈ −1

δ

{[
1− (1− δ)i

]2︸ ︷︷ ︸
denoted as η(δ,i)

Φ(π, θ) + O(δ)

}
. (164)

Combining (156) and (164), the instantaneous error probability
of agent k at time instant i associated with θ ̸= θ1 is upper
bounded by

P [λk,i(θ) ≤ 0] ≤ exp

[
Λk,i

(
t⋆θ(π)

δ
; θ

)]
≈ exp

{
−1

δ

[
η(δ, i)Φ(π, θ) + O(δ)

]}
.

(165)

For a given small ω > 0 in (105), we let η(δ, i) ≥ 1− ω and
then obtain

i ≥
log
(
1−

√
1− ω

)
log(1− δ)

. (166)
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The right-hand side of (166) is exactly the definition of
Tadap(ω) given in Theorem 4. Using Boole’s inequality, the
instantaneous error probability pk,i satisfies

pk,i = P

[ ⋃
θ ̸=θ1

λk,i(θ) ≤ 0

]
≤
∑
θ ̸=θ1

P [λk,i(θ) ≤ 0]

(165)
≈

∑
θ ̸=θ1

exp

{
−1

δ
[η(δ, i)Φ(π, θ) + O(δ)]

}
(166)
≤

∑
θ ̸=θ1

e−
1
δ

[
(1−ω)Φ(π,θ)+O(δ)

]
.
= e−

1
δ

[
(1−ω)Φ(π)+O(δ)

]
(167)

for i ≥ Tadap(ω), which shows that the condition in (105)
is satisfied. Hence, Tadap(ω) provides a reasonable estimate
for the adaptation time of the ASL strategy in the low SNR
regime.
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