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Abstract

We study stochastic gradient descent (SGD) with local iterations in the presence of malicious/Byzantine
clients, motivated by the federated learning. The clients, instead of communicating with the central
server in every iteration, maintain their local models, which they update by taking several SGD iterations
based on their own datasets and then communicate the net update with the server, thereby achieving
communication-efficiency. Furthermore, only a subset of clients communicate with the server, and this
subset may be different at different synchronization times. The Byzantine clients may collaborate and
send arbitrary vectors to the server to disrupt the learning process. To combat the adversary, we employ
an efficient high-dimensional robust mean estimation algorithm from Steinhardt et al. [SCV18, ITCS
2018] at the server to filter-out corrupt vectors; and to analyze the outlier-filtering procedure, we develop
a novel matrix concentration result that may be of independent interest.

We provide convergence analyses for strongly-convex and non-convex smooth objectives in the
heterogeneous data setting, where different clients may have different local datasets, and we do not make
any probabilistic assumptions on data generation. We believe that ours is the first Byzantine-resilient
algorithm and analysis with local iterations. We derive our convergence results under minimal assumptions
of bounded variance for SGD and bounded gradient dissimilarity (which captures heterogeneity among
local datasets). We also extend our results to the case when clients compute full-batch gradients.

1 Introduction
In the federated learning (FL) paradigm [Kon17,KMRR16,MMR+17,MSS19], several clients (e.g., mobiles
devices, organizations, etc.) collaboratively learn a machine learning model, where the training process is
facilitated by the data held by the participating clients (without data centralization) and is coordinated
by a central server (e.g., the service provider). Due to its many advantages over the traditional centralized
learning [DCM+12] (e.g., training a machine learning model without collecting the clients’ data, which, in
addition to reducing the communication load on the network, provides a basic level of privacy to clients’ data),
FL has emerged as an active area of research recently; see [K+19] for a detailed survey. Stochastic gradient
descent (SGD) has become a de facto standard in optimization for training machine learning models at such
a large scale [Bot10,MMR+17,K+19], where clients iteratively communicate the gradient updates with the
central server, which aggregates the gradients, updates the learning model, and sends the aggregated gradient
back to the clients. The promise of FL comes with its own set of challenges [K+19]: (i) optimizing with
heterogeneous data at different clients, who may have different local datasets, which may be “non-i.i.d.”, i.e.,
can be thought of as being generated from different underlying distributions; (ii) slow and unreliable network
connections between the server and the clients, so communication in every iteration may not be feasible; (iii)
availability of only a subset of clients for training at a given time (maybe due to low connectivity, as clients
may be located in different geographic locations); and (iv) robustness against the malicious/Byzantine clients
who may send incorrect gradient updates to the central server to disrupt the training process. In this paper,
we propose and analyze a single SGD algorithm that addresses all these challenges together. First we setup
the problem, put our work in context with the related work, and then summarize our contributions.

We consider an empirical risk minimization problem, where data is stored at R clients, each having
a different dataset (with no probabilistic assumption on data generation); client r ∈ [R] has dataset Dr.
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Let Fr : Rd → R denote the local loss function associated with the dataset Dr, which is defined as
Fr(x) , Ei∈U [nr][Fr,i(x)], where nr = |Dr|, i is uniformly distributed over [nr] , {1, 2, . . . , nr}, and Fr,i(x)
is the loss associated with the i’th data point at client r with respect to (w.r.t.) x. Our goal is to solve the
following minimization problem:

arg min
x∈Rd

(
F (x) ,

1

R

R∑
r=1

Ei∈U [nr][Fr,i(x)]
)
. (1)

Let x∗ ∈ arg minx∈Rd F (x) denote a minimizer of the global loss function F (x). In absence of the above-
mentioned FL challenges, we can minimize (1) using distributed vanilla SGD, where in any iteration, server
broadcasts the current model parameters to all the clients, each of them then computes a stochastic gradient
from its local dataset and sends it back to the server, who aggregates the received gradients and updates the
global model parameters. However, this simple solution does not satisfy the FL challenges, as every client
communicates with the server (i.e., no sampling of clients) in every SGD iteration (i.e., no local iterations),
and furthermore, this solution breaks down even with a single malicious client [BMGS17].

1.1 Related Work
Recent work has proposed variants of the above-described vanilla SGD that address some of the FL challenges.
The algorithms in [HKMC19,HM19,KKM+19,KMR19, LHY+20, SLS+20,YYZ19, BDKD19] work under
different heterogeneity assumptions but do not provide any robustness to malicious clients. On the other
hand, [CSX17,BMGS17,YCRB18,AAL18,SX19,XKG19b,YCRB19] provide robustness, but with no local
iterations or sampling of clients; furthermore, they assume homogeneous (either same or i.i.d.) data across all
clients. A different line of work [CWCP18,RWCP19,DSD19b,DD19,DSD19a,LXC+19,GHYR19,DD20,HKJ20]
provides robustness with heterogeneous data, but without local iterations or sampling of clients, which we
briefly explain in the following. [CWCP18,RWCP19,DSD19b,DD19,DSD19a] use coding across datasets,
which is hard to implement in FL. [LXC+19] changes the objective function and adds a regularizer term to
combat the adversary. [GHYR19] effectively reduces the heterogeneous problem to a homogeneous problem
by clustering, and then learning happens within each cluster having homogeneous data. [HKJ20] proposed a
resampling technique that effectively adapts existing robust algorithms (which might have been designed
to work with homogeneous – identical or i.i.d. – datasets) to work with heterogeneous datasets. Note
that [HKJ20] provides convergence guarantees of their resampling techniques applied to only Krum, which is
the robust aggregation rule from [BMGS17].

[DD20] is the closest related work to ours, in the sense that they also proposed an SGD algorithm on
heterogeneous data that uses robust mean estimation subroutines to filter out corrupt gradients and analyzed
it under the same minimal assumptions as ours. We want to emphasize that [DD20] does not incorporate local
iterations and sampling of clients in their algorithm and analyses, which makes our analyses fundamentally
different from theirs. We had to develop new tools (a matrix concentration inequality) to analyze our
algorithm, and also the convergence analyses in our paper are very different from those in literature, including
that in [DD20]. Our analyses differ from those of local SGD without adversaries, as (apart from differing in
other technical details) our method requires establishing two separate recurrences, one at synchronization
indices and the other one for the rest of the indices. Our analyses also differ from those of SGD without
local iterations and without adversaries, as local SGD causes drift in the local parameter vectors at clients in
between any two synchronization indices – this drift occurs even when all clients have identical data. Note
that bounding this drift is necessary for convergence but is non-trivial with heterogeneous data and without
having strong assumptions. Our matrix concentration result and its analysis is also very different from that
of [DD20], as we need to prove it in the presence of local iterations.

We believe that ours is the first work that combines local iterations with Byzantine-resilience for SGD.1
Not only that, we also analyze our algorithm on heterogeneous data and allow sampling of clients. Note that,

1At the completion of our work, we found that [XKG19a] also analyzed SGD in the FL setting, but with the following major
differences: Not only do they make bounded gradient assumption, the approximation error (even in the Byzantine-free setting)
of their solution could be as large as O(D2 +G2), where G is the gradient bound and D is the diameter of the parameter space
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apart from the notable exception of [DD20], the earlier work that provides robustness (without local iterations
or sampling of clients) either assume homogeneous data across clients [CSX17,BMGS17,YCRB18,AAL18,
SX19,YCRB19] or require strong assumptions, such as the bounded gradient assumption on local functions
(i.e., ‖∇Fr(x)‖ ≤ G for some finite G) [XKG19b]. Note that even without robustness, assuming bounded
gradients is a common way to make the analysis on heterogeneous data simple [YYZ19,LHY+20], as under this
assumption, we can trivially bound the heterogeneity among local datasets by ‖∇Fr(x)−∇Fs(x)‖ ≤ 2G,2
which makes handling heterogeneity vacuous.

1.2 Our Contributions
In this paper, we tackle heterogeneity assuming only that the gradient dissimilarity among local datasets
is bounded (see (6)), and propose and analyze a Byzantine-resilient SGD algorithm with local iterations
and sampling of clients under the bounded variance assumption for SGD (see (2)); see Algorithm 1. We
provide convergence analyses for strongly-convex and non-convex smooth objectives. Our convergence results
are summarized below, where b is the mini-batch size for stochastic gradients, σ2 is the variance bound,
κ2 captures the gradient dissimilarity, H is the number of local iterations in between any two consecutive
synchronization indices, K is the number of clients sampled at synchronization times, ε < K

4R is the fraction
of Byzantine clients, and ε′ is any constant such that (ε+ ε′) ≤ K

4R .
For strongly-convex objectives, our algorithm can find approximate optimal parameters within an error

of Γ = O
(
Hσ2

bε′

(
1 + d

K

)
(ε+ ε′) +Hκ2

)
exponentially (in T

H ) fast, and for non-convex objectives, it can

reach to a stationary point within the same error Γ with a speed of 1
T/H . Note that the convergence rate of

vanilla SGD (i.e., without local iterations and in Byzantine-free settings) decays exponentially (in T ) fast
for strongly-convex objectives and with a speed of 1

T for non-convex objectives, whereas, our convergence
rates are affected by the number of local iterations H. This is a result of working with weak assumptions – if
we work with the bounded gradient assumption, then we can also get exponential (in T ) convergence in the
strongly-convex case and 1

T convergence in the non-convex case.
In the approximation error Γ , the first error term Hσ2

bε′

(
1 + d

K

)
(ε + ε′) mainly arises because of the

stochasticity in gradients due to SGD and is equal to zero if we work with full-batch gradients (which gives
σ = 0), and the second error term Hκ2 arises because of heterogeneity in local datasets. Note that Γ only
has a linear dependence on H.

We also give a simplified analysis of our algorithm with full-batch gradients for all three objectives. See
Theorem 1 and Theorem 2 for our mini-batch SGD and full-batch GD convergence results, respectively. See
a detailed discussion on the approximation error analysis and the convergence rates in Section 2.4.

To tackle the malicious behavior of Byzantine clients, we borrow tools from recent advances in high-
dimensional robust statistics [LRV16,SCV18,DKK+19,DK19]; in particular, we use the polynomial-time
outlier-filtering procedure from [SCV18], which was developed for robust mean estimation in high dimensions.
In order to use this algorithm, we develop a novel matrix concentration result (see Theorem 3) which may
be of independent interest. For full-batch gradients, we give our matrix concentration result with better
guarantees, which can be proved by a much simplified analysis than its mini-batch counterpart; see Theorem 4.

1.3 Paper Organization
We describe our algorithm and state the main convergence results in Section 2. We describe the core part of
our algorithm, the robust accumulated gradient estimation (RAGE), and our new matrix concentration result

that contains the optimal parameters x∗ and all the local parameters xtr ever emerged at any client r ∈ [R] in any iteration
t ∈ [T ]; this, in our opinion, makes the bound vacuous. In optimization, one would ideally like to have the convergence rates
depend on diameter of the parameter space with a factor that decays with the number of iterations, e.g., with 1

T
or 1√

T
, and

also see Theorem 1.
2See [KMR19] for a detailed discussion on the inappropriateness of making bounded gradient assumption in heterogeneous

data settings and examine the effect of heterogeneity on convergence rates (even without robustness).
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in Section 3 and also prove it there. We prove our main convergence results for mini-batch SGD in Section 4
and Section 5 and for full-batch SGD in Section 6.

1.4 Notation
For any n ∈ N, we denote the set {1, 2, . . . , n} by [n], and for any n1, n2 ∈ N such that n1 ≤ n2, we denote
the set {n1, n1 + 1, . . . , n2} by [n1 : n2]. We denote vectors by bold small letters x,y, etc., and matrices by
bold capital letters A,B, etc. For any finite set K, we write k ∈U K to denote that k is chosen uniformly at
random from K. All vector norms in this paper are `2 norms, and for convenience, we simply denote them by
‖ · ‖. For a square matrix A, we write λmax(A) to denote the largest eigenvalue of A.

2 Problem Setup and Our Results
In this section, we state our assumptions, describe the adversary model and our algorithm, and state our
main convergence results.

2.1 Assumptions
As mentioned in Section 1, we make minimal assumptions to analyze our algorithm. Our first assumption is
a standard one in SGD, which assumes bounded variance for stochastic gradients. Our second assumption is
for heterogeneous data and assumes that the heterogeneity in different local datasets is bounded.

Assumption 1 (Bounded local variances). The stochastic gradients sampled from any local dataset have
uniformly bounded variance over Rd, i.e., there exists a finite σ ≥ 0, such that

Ei∈U [nr]‖∇Fr,i(x)−∇Fr(x)‖2 ≤ σ2, ∀x ∈ Rd, r ∈ [R]. (2)

It will be helpful to formally define mini-batch stochastic gradients, where instead of computing stochastic
gradients based on just one data point, each client selects a subset of size b uniformly at random from its
own local dataset and computes the average of b gradients. For any x ∈ Rd, r ∈ [R], b ∈ [nr], consider the
following set

F⊗br (x) :=

{
1

b

∑
i∈Hb

∇Fr,i(x) : Hb ∈
(

[nr]

b

)}
. (3)

Note that gr(x) ∈U F⊗br (x) is a mini-batch stochastic gradient with batch size b at client r. It is not hard to
see the following:

E [gr(x)] = ∇Fr(x), ∀x ∈ Rd, r ∈ [R] (4)

E ‖gr(x)−∇Fr(x)‖2 ≤ σ2

b
, ∀x ∈ Rd, r ∈ [R] (5)

where (4) says that gr(x) is an unbiased gradient and (5) says that the variance of mini-batch stochastic
gradients reduces by the same factor as the batch size. Though the bound in (5) goes down with b, it does
not become zero when we compute full-batch gradients, which uses all nr data points. This is because (5)
only uses that the clients sample b data points with replacement. However, in reality, since this sampling is
done without replacement, we can show a finer variance bound of E ‖gr(x)−∇Fr(x)‖2 ≤ (nr−b)

b(nr−1)σ
2; see [Sa]

for a proof. We can slightly improve our results by using this finer variance bound instead of (5) everywhere
in this paper, but, for simplicity, we only use the weaker bound (5) throughout.

Assumption 2 (Bounded gradient dissimilarity). The difference between the local gradients ∇Fr(x), r ∈ [R]

and the global gradient ∇F (x) = 1
R

∑R
r=1∇Fr(x) is uniformly bounded over Rd for all clients, i.e., there

exists a finite κ, such that

‖∇Fr(x)−∇F (x)‖2 ≤ κ2, ∀x ∈ Rd, r ∈ [R]. (6)
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In Assumption 2, κ quantifies the bounded deviation between the local loss functions Fr, r ∈ [R] and the
global loss function F ; see also [YJY19,LYWZ19], where this assumption has been used in heterogeneous
data settings in decentralized SGD without Byzantine clients. The gradient dissimilarity bound in (6) can be
seen as a deterministic condition on local datasets, under which we derive our results.

2.1.1 Need of Assumption 2

For any method that filters out malicious updates from the clients and work with heterogeneous (“non i.i.d.”)
data, as the server does not know the identities of the adversarial clients, we need to have some regularity
condition relating the datasets, and we believe Assumption 2 is a natural way to model that. Assumption 2
intuitively captures the heterogeneity among local datasets, without making any statistical assumptions on
the data. To see the necessity of bounding heterogeneity even without adversary, note that we allow clients to
perform local SGD steps, where, in between any two synchronization indices, clients compute gradients from
their local datasets and update their local parameter vectors; as a result, their local parameter vectors can
drift away from each other. This drift needs to be bounded for convergence analyses, and if we do not assume
bounded heterogeneity, it is impossible to bound this drift. As we have discussed at the end of Section 1.1,
Assumption 2 is much weaker than the bounded gradient assumption, which not only makes bounding the
drift (and the convergence analyses) trivial, but also obscure the dependence of the convergence bounds on
the heterogeneity of datasets, which is clearly brought out in our convergence results.

2.1.2 Bounds on σ2 and κ2 in the statistical heterogeneous model

Since all results (matrix concentration and convergence) in this paper are given in terms of σ2 and κ2,
to show the clear dependence of our results on the dimensionality of the problem, we can bound these
quantities in the statistical heterogeneous data model under different distributional assumptions on local
gradients. For the variance bound (2), it was shown in [DD20, Theorem 7] that if local gradients have
sub-Gaussian distribution, then σ = O

(√
d log(d)

)
. For the gradient dissimilarity bound (6), it was shown

in [DD20, Theorem 6] that if either the local gradients have sub-exponential distribution and each client
has at least n = Ω (d log(nd)) data points or local gradients have sub-Gaussian distribution and n ∈ N is

arbitrary, then κ ≤ κmean +O
(√

d log(nd)
n

)
, where κmean denotes the distance of the expected local gradients

from the global gradient.

2.2 Adversary Model
We assume that an ε fraction of R clients are malicious; as we see later, we can tolerate ε < K

4R ,
3 where

K ≤ R is the number of clients sampled at synchronization indices. The malicious clients can collaborate and
arbitrarily deviate from their pre-specified programs: In any SGD iteration, instead of sending true stochastic
gradients, corrupt clients may send adversarially chosen vectors (they may not even send anything if they
wish, in which case, the server can treat them as erasures and replace them with a fixed value). Note that, in
the erasure case, server knows which clients are corrupt; whereas, in the Byzantine problem, server does not
have this information.

2.3 Main Results
Let IT = {t1, t2, . . . , tk, . . .}, with t1 = 0, denote the set of synchronization indices at which clients communi-
cate their net updates with the server. Let H denote the difference between any two consecutive indices, i.e.,
every worker performs the same number H of local iterations between any two consecutive synchronization
indices. At synchronization indices, server samples a subset of K clients (denoted by K ⊆ [R]) and sends the
global model (denoted by x) to them; each client r ∈ K updates its local model xr by taking SGD steps

3Actually, we can tolerate ε < 1
4
fraction of malicious clients from the K clients that we select; so, ε < K

4R
is a worst case

bound in case we sample all the malicious clients in a selection, which is an unlikely event.
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Algorithm 1 Byzantine-Resilient SGD with Local Iterations

1: Initialize. Set t := 0, x0
r := 0,∀r ∈ [R], and x := 0. Here, x denotes the global model and x0

r denotes
the local model at client r at time 0. Fix a constant step-size η and a mini-batch size b.

2: while (t ≤ T ) do
3: Server selects an arbitrary subset of clients K ⊆ [R] of size |K| = K and sends x to all clients in K.
4: All clients r ∈ K do in parallel:
5: Set xtr = x.
6: while (true) do
7: Take a mini-batch stochastic gradient gr(xtr) ∈U F⊗br (xtr) and update the local model:

xt+1
r ← xtr − ηgr(xtr); t← (t+ 1).

8: if (t ∈ IT ) then
9: Let x̃tr = xtr, if client r is honest, otherwise x̃tr can be an arbitrary vector in Rd.

10: Send x̃tr to the server and break the inner while loop.
11: end if
12: end while
13: At Server:
14: Receive {x̃r, r ∈ K} from the clients in K.
15: For every r ∈ K, let g̃r,accu := (x̃r − x)/η.
16: Apply the decoding algorithm RAGE (see Algorithm 2 in Section 3.2) on {g̃r,accu, r ∈ K}. Let

ĝaccu := RAGE(g̃r,accu, r ∈ K).

17: Update the global model x← x− ηĝaccu.
18: end while

based on its local dataset until the next synchronization time, when all clients in K send their local models to
the server. Note that some of these clients may be corrupt and may send arbitrary vectors. Server employs a
decoding algorithm RAGE4 and update the global model x based on that.

Remark 1. Note that the only disruption that the corrupt clients can cause in the training process is during
the gradient aggregation at synchronization indices by sending adversarially chosen vectors to the server, and
we give unlimited power to the adversary for that. Because of this and for the purpose of analysis, we can
assume, without loss of generality, that in between the synchronization indices, the corrupt clients sample
stochastic gradients and update their local parameters honestly.

We present our Byzantine-resilient SGD algorithm with local iterations in Algorithm 1.
Before we present our results, we need some definitions.

• L-smoothness: A function F : Rd → R is called L-smooth over Rd, if for every x,y ∈ Rd, we have
‖∇F (x) − ∇F (y)‖ ≤ L‖x − y‖ (this property is also known as L-Lipschitz gradients). This is also
equivalent to F (y) ≤ F (x) + 〈∇F (x),y − x〉+ L

2 ‖x− y‖
2.

• µ-strong convexity: A function F : Rd → R is called µ-strongly convex over Rd for µ ≥ 0, if for every
x,y ∈ Rd, we have F (y) ≥ F (x) + 〈∇F (x),y − x〉+ µ

2 ‖x− y‖
2.

4Our decoding algorithm, which we call RAGE, is the same as the robust mean estimation algorithm proposed by Steinhardt
et al. [SCV18]. We gave it a different name, as we use it in a much more general FL setting of running SGD with local iterations
on heterogeneous data. Note that the same algorithm has also been used in [SX19,YCRB19] in the context of Byzantine-robust
full batch gradient descent without local iterations, assuming homogeneous i.i.d. data, whereas, we employ that algorithm in the
FL setting, which makes its analysis significantly more challenging.
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All convergence results in this paper only require properties of the global loss function F ; the local loss
functions Fr, r ∈ [R] may be arbitrary. For example, in the smooth strongly-convex case, we only require F
to be smooth and strongly-convex, and Fr, r ∈ [R] may be arbitrary. Similarly for the non-convex case.

Our convergence results are for strongly-convex and non-convex smooth objectives.

Theorem 1 (Mini-Batch Local Stochastic Gradient Descent). Suppose an ε > 0 fraction of clients are
adversarially corrupt. Let Kt denote the set of K clients that are active at any given time t ∈ [0 : T ]. For a
global objective function F : Rd → R, let Algorithm 1 generate a sequence of iterates {xtr : t ∈ [0 : T ], r ∈ Kt}
when run with a fixed step-size η = 1

8HL . Fix an arbitrary constant ε′ > 0. If ε ≤ K
4R − ε

′, then with probability
at least 1− T

H exp(− ε
′2(1−ε)K

16 ), the sequence of average iterates {xt = 1
K

∑
r∈Kt x

t
r : t ∈ [0 : T ]} satisfy the

following convergence guarantees:

• Strongly-convex: If F is L-smooth for L ≥ 0 and µ-strongly convex for µ > 0, we get:

E
∥∥xT − x∗∥∥2 ≤ (1− µ

16HL

)T ∥∥x0 − x∗
∥∥2 +

13

µ2
Γ. (7)

• Non-convex: If F is L-smooth for L ≥ 0, we get:

1

T

T∑
t=0

E
∥∥∇F (xt)

∥∥2 ≤ 16HL

T

[
E[F (x0)]− E[F (x∗)]

]
+

9

2
Γ. (8)

In (7), (8), Γ =
(

3Υ 2

H + 11Hσ2

b + 36Hκ2
)
with Υ 2 = O

(
σ2
0(ε+ ε′)

)
, where σ2

0 = 25H2σ2

bε′

(
1 + 4d

3K

)
+ 28H2κ2,

and expectation is taken over the sampling of mini-batch stochastic gradients.

We prove (7) and (8) in Section 4 and Section 5, respectively. In addition to other complications arising
due to handing Byzantine clients together with local iterations, our proof deviates from the standard proofs
for local SGD without adversary, as we need to show two recurrences, one at synchronization indices and the
other at non-synchronization indices. This is because at synchronization indices, server performs decoding to
filter-out the corrupt clients, while at other indices there is no decoding, as there is no communication.

The failure probability of our algorithm is at most T
H exp(− ε

′2(1−ε)K
16 ), which though scales linearly with

T , also goes down exponentially with K. As a result, in settings such as federated learning, where number of
clients could be very large (e.g., in millions) and server samples a few thousand clients, we can get a very
small probability of error, even if we run our algorithm for a very long time. Note that the error probability is
due to the stochastic sampling of gradients, and if we want a “zero” probability of error, we can run full-batch
gradient descent, for which we get the following result, which we prove in Section 6 with a much simplified
analysis than that of Theorem 1.

Theorem 2 (Full-Batch Local Gradient Descent). In the same setting as that of Theorem 1, except for that
we run Algorithm 1 with a fixed step-size η = 1

5HL , and in any iteration, instead of sampling mini-batch
stochastic gradients, every honest client takes full-batch gradients from their local datasets. If ε ≤ K

4R , then
with probability 1, the sequence of average iterates {xt = 1

K

∑
r∈Kt x

t
r : t ∈ [0 : T ]} satisfy the following

convergence guarantees:

• Strongly-convex: If F is L-smooth for L ≥ 0 and µ-strongly convex for µ > 0, we get:

‖xT − x∗‖2 ≤
(

1− µ

10HL

)T
‖x0 − x∗‖2 +

14

µ2
ΓGD. (9)

• Non-convex: If F is L-smooth for L ≥ 0, we get:

1

T

T∑
t=0

∥∥∇F (xt)
∥∥2 ≤ 10HL

T

[
F (x0)− F (x∗)

]
+

24

5
ΓGD. (10)

In (9), (10), ΓGD =
2Υ 2

GD
H + 25Hκ2, where ΥGD = O (Hκ

√
ε).
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2.4 Important Remarks About Theorem 1 and Theorem 2

Analysis of the approximation error. In Theorem 1, the approximation error Γ essentially consists of
two types of error terms: Γ1 = O

(
Hσ2

bε′

(
1 + 4d

3K

)
(ε+ ε′)

)
and Γ2 = O(Hκ2), where Γ1 arises due to stochastic

sampling of gradients and Γ2 arises due to dissimilarity in the local datasets. Observe that Γ1 decreases as
we increase the batch size b of stochastic gradients and becomes zero if we take full-batch gradients (which
implies σ = 0), as is the case in Theorem 2. Note that both Γ1 and Γ2 have a linear dependence on the
number of local iterations H. Observe that since we are working with heterogeneous datasets, the presence of
gradient dissimilarity bound κ2 (which captures the heterogeneity) in the approximation error is inevitable,
and will always show up when bounding the deviation of the true “global” gradient from the decoded one in
the presence of Byzantine clients, even when H = 1.
Convergence rates. In the strongly-convex case, Algorithm 1 approximately finds the optimal parameters
x∗ (within Γ error) with

(
1− µ

cHL

)T speed, where c = 16 for SGD and c = 10 for GD. Note that
(
1− µ

cHL

)T ≤
exp−

µ
cL

T
H , where the inequality follows from (1− 1

x )x ≤ 1
e . This implies that the convergence rate in this case

is exponentially fast (but in T
H ). In the non-convex case, Algorithm 1 reaches to a stationary point (within Γ

error) with a speed of 1
T/H . Note that the convergence rate of vanilla SGD (i.e., without local iterations and

in Byzantine-free settings) is exponentially fast (in T ) for strongly-convex objectives and with a speed of 1
T

for non-convex objectives, whereas, our convergence rates are affected by the number of local iterations H.
The reason for this is precisely because, under standard SGD assumptions we need η ≤ 1

8HL to bound the
drift in local parameters across different clients; see Lemma 2. Instead, if we had assumed a stronger bounded
gradient assumption (which trivially bound the heterogeneity, as explained at the end of Section 1.1), then
Lemma 2 would hold for a constant step-size that does not depend on H (e.g., η = 1

2L would suffice), which
would lead to an exponentially fast (in T ) convergence for strongly-convex objectives and 1

T convergence rate
for non-convex objectives.

3 Robust Accumulated Gradient Estimation (RAGE)
In this section, we provide our main result on robust accumulated gradient estimation (RAGE), which is the
subroutine for robustly estimating the average of uncorrupted accumulated gradients at every synchronization
index; see Footnote 4. First we setup the notation. Let Algorithm 1 generate a sequence of iterates
{xtr : t ∈ [0 : T ], r ∈ Kt} when run with a fixed step-size η satisfying η ≤ 1

8HL , where Kt denotes the set of K
clients that are active at time t ∈ [0 : T ]. Take any two consecutive synchronization indices tk, tk+1 ∈ IT .
Note that |tk+1 − tk| ≤ H. For an honest client r ∈ Ktk , let g

tk,tk+1
r,accu :=

∑tk+1−1
t=tk

gr(x
t
r) denote the sum of

local mini-batch stochastic gradients sampled by client r between time tk and tk+1, where gr(xtr) ∈U F⊗br (xtr)

satisfies (4), (5). At iteration tk+1, every honest client r ∈ Ktk reports its local model xtk+1
r to the server,

from which server computes gtk,tk+1
r,accu (see line 15 of Algorithm 1), whereas, the corrupt clients may report

arbitrary and adversarially chosen vectors in Rd. Server does not know the identity of the corrupt clients,
and its goal is to produce an estimate ĝtk,tk+1

accu of the average accumulated gradients from honest clients as
best as possible.

To this end, first we show that there exists a large subset S ⊆ Ktk of accumulated gradients from honest
clients that are concentrated around their average, i.e., have bounded empirical covariance. Once we have
shown that, then we will use the polynomial-time outlier-filtering algorithm from [SCV18] to estimate the
average of the accumulated gradients in S. Our main result on RAGE is as follows:

Theorem 3 (Robust Accumulated Gradient Estimation). Suppose an ε fraction of K clients that communicate
with the server are corrupt. In the setting described above, suppose we are given K ≤ R accumulated gradients
g̃
tk,tk+1
r,accu , r ∈ Ktk in Rd, where g̃tk,tk+1

r,accu = g
tk,tk+1
r,accu if the r’th client is honest, otherwise can be arbitrary. For

any constant ε′ > 0, if (ε+ ε′) ≤ 1
4 , then we have:

1. Matrix concentration: With probability 1 − exp(− ε
′2(1−ε)K

16 ), there exists a subset S ⊆ Ktk of

8



uncorrupted gradients of size (1− (ε+ ε′))K ≥ 3K
4 , such that

λmax

(
1

|S|
∑
i∈S

(gi − gS) (gi − gS)
T

)
≤ 25H2σ2

bε′

(
1 +

4d

3K

)
+ 28H2κ2, (11)

where, for i ∈ S, gi = g
tk,tk+1

i,accu , gS = 1
|S|
∑
i∈S g

tk,tk+1

i,accu ; and λmax denotes the largest eigenvalue.

2. Outlier-filtering algorithm: We can find an estimate ĝ of gS in polynomial-time with probability 1,
such that ‖ĝ − gS‖ ≤ O

(
σ0
√
ε+ ε′

)
, where σ2

0 = 25H2σ2

bε′

(
1 + 4d

3K

)
+ 28H2κ2.

Proving the matrix concentration bound stated in the first part of Theorem 3 is non-trivial and we prove
it separately in Section 3.1. For the second part, we use the polynomial-time outlier-filtering procedure
of [SCV18], which is a robust mean estimation algorithm, that takes a collection of vectors as input, out of
which an unknown large subset (at least a 3

4 -fraction) is promised to be well-concentrated around its sample
mean (i.e., has a bounded covariance), and outputs an estimate of the sample mean of the vectors in that
subset. For completeness, we describe this procedure in Section 3.2 and refer the reader to [DD20, Appendices
E, F] for more details.

Note that the same filtering procedure has also been used in [SX19,YCRB19] in the context of Byzantine-
robust full batch gradient descent without local iterations for minimizing the population risk, assuming
homogeneous i.i.d. data. Our setting is very different from theirs, as we minimize the empirical risk by
mini-batch stochastic gradient descent with local iterations on heterogeneous data. They also derived a matrix-
concentration result, whose need arises because they minimize the population risk, whereas, we need a matrix
concentration bound because we use SGD. On top of that our setting is much more complicated than theirs,
as clients have heterogeneous data and do not communicate with the server in every iteration. As a result, as
opposed to their matrix concentration bound (which they proved assuming sub-exponential/sub-Gaussian
distribution on local gradients and also assuming i.i.d. data across clients), our matrix concentration result is
of a very different nature, and we use entirely different tools to derive that.

3.1 Matrix Concentration
Now we prove the first part of Theorem 3. For that, we need to show an existence of a subset S of the
K accumulated gradients (out of which an ε < 1

4 fraction is corrupted) that has good concentration, as
quantified by the matrix concentration bound in (11). To prove this, we use a separate matrix concentration
result stated in the following lemma from [DD20].

Lemma 1 (Lemma 1 in [DD20]). Suppose there are m independent distributions p1, p2, . . . , pm in Rd such
that Ey∼pi [y] = µi, i ∈ [m] and each pi has a bounded variance in all directions, i.e., Ey∼pi [〈y − µi,v〉2] ≤
σ2
pi ,∀v ∈ Rd, ‖v‖ = 1. Take any ε′ > 0. Then, given m independent samples y1,y2, . . . ,ym, where yi ∼ pi,

with probability 1− exp(−ε′2m/16), there is a subset S of (1− ε′)m points such that

λmax

(
1

|S|
∑
i∈S

(yi − µi) (yi − µi)T
)
≤

4σ2
pmax

ε′

(
1 +

d

(1− ε′)m

)
, where σ2

pmax
= max
i∈[m]

σ2
pi .

Now we prove the first part of Theorem 3 with the help of Lemma 1.
Let tk, tk+1 ∈ IT be any two consecutive synchronization indices. For i ∈ Ktk corresponding to an honest

client, let Y tki , Y tk+1
i , . . . , Y

tk+1−1
i be a sequence of (tk+1 − tk) ≤ H (dependent) random variables, where,

for any t ∈ [tk : tk+1 − 1], the random variable Y ti is distributed as

Y ti ∼ Unif
(
F⊗bi

(
xti
(
xtki , Y

tk
i , . . . , Y t−1i

)))
. (12)

Here, Y ti is a random variable that corresponds to the stochastic sampling of mini-batch gradients from the
set F⊗bi

(
xti
(
xtki , Y

tk
i , . . . , Y t−1i

))
, which itself depends on the local parameters xtki (which is a deterministic
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quantity) at the last synchronization index and the past realizations of Y tki , . . . , Y t−1i . This is because the
evolution of local parameters xti depends on x

tk
i and the choice of gradients in between time indices tk and

t− 1. Now define Yi :=
∑tk+1−1
t=tk

Y ti ; and let pi be the distribution of Yi. This is the distribution pi we will
take when using Lemma 1.

Claim 1. For any honest client i ∈ Ktk , we have E‖Yi − E[Yi]‖2 ≤ H2σ2

b , where expectation is taken over
sampling stochastic gradients by client i between synchronization indices tk and tk+1.

Claim 1 is proved in Appendix A.
It is easy to see that the hypothesis of Lemma 1 is satisfied with µi = E[Yi], σ

2
pi = H2σ2

b for all honest
clients i ∈ Ktk (note that pi is the distribution of Yi):

Eyi∼pi [〈yi − E[yi],v〉2]
(d)
≤ E[‖yi − Eyi∼pi [yi]‖2] · ‖v‖2

(e)
≤ H2σ2

b
,

where (d) follows from the Cauchy-Schwarz inequality and (e) follows from Claim 1 and ‖v‖ ≤ 1.
We are given K different (summations of H) gradients, out of which at least (1− ε)K are according to the

correct distribution. By considering only the uncorrupted gradients (i.e., taking m = (1− ε)K), we have from
Lemma 1 that there exists a subset S ⊆ Ktk of K gradients of size (1− ε′)(1− ε)K ≥ (1− (ε+ ε′))K ≥ 3K

4
(where in the last inequality we used (ε+ ε′) ≤ 1

4 ) that satisfies

λmax

(
1

|S|
∑
i∈S

(yi − E[yi]) (yi − E[yi])
T

)
≤ 4H2σ2

bε′

(
1 +

4d

3K

)
. (13)

Note that (13) bounds the deviation of the points in S from their respective means E[yi]. However, in (11),
we need to bound the deviation of the points in S from their sample mean 1

|S|
∑
i∈S yi. As it turns out, due

to our use of local iterations, bounding this requires a substantial amount of technical work, which we do in
the rest of this subsection.

From the alternate definition of the largest eigenvalue of symmetric matrices A ∈ Rd×d, we have

λmax(A) = sup
v∈Rd,‖v‖=1

vTAv. (14)

Applying this with A = 1
|S|
∑
i∈S (yi − E[yi]) (yi − E[yi])

T , we can equivalently write (13) as

sup
v∈Rd:‖v‖=1

(
1

|S|
∑
i∈S
〈yi − E[yi],v〉2

)
≤ σ̂2

0 :=
4H2σ2

bε′

(
1 +

4d

3K

)
. (15)

Define yS := 1
|S|
∑
i∈S yi to be the sample mean of the points in S. Take an arbitrary v ∈ Rd such that

‖v‖ = 1.

1

|S|
∑
i∈S
〈yi − yS ,v〉2 =

1

|S|
∑
i∈S

[〈yi − E[yi],v〉+ 〈E[yi]− yS ,v〉]2

≤ 2

|S|
∑
i∈S
〈yi − E[yi],v〉2 +

2

|S|
∑
i∈S
〈E[yi]− yS ,v〉2 (using (a+ b)2 ≤ 2a2 + 2b2)

Using (15) to bound the first term, we get

≤ 2σ̂2
0 +

2

|S|
∑
i∈S

〈
E[yi]−

1

|S|
∑
j∈S

yj ,v
〉2

= 2σ̂2
0 +

2

|S|
∑
i∈S

[ 1

|S|
∑
j∈S
〈yj − E[yi],v〉

]2
≤ 2σ̂2

0 +
2

|S|
∑
i∈S

1

|S|
∑
j∈S
〈yj − E[yi],v〉2 (using the Jensen’s inequality)

10



= 2σ̂2
0 +

2

|S|
∑
i∈S

1

|S|
∑
j∈S

[〈yj − E[yj ],v〉+ 〈E[yj ]− E[yi],v〉]2

≤ 2σ̂2
0 +

2

|S|
∑
i∈S

2

|S|
∑
j∈S
〈yj − E[yj ],v〉2 +

2

|S|
∑
i∈S

2

|S|
∑
j∈S
〈E[yj ]− E[yi],v〉2

(using (a+ b)2 ≤ 2a2 + 2b2)

≤ 2σ̂2
0 +

4

|S|
∑
j∈S
〈yj − E[yj ],v〉2 +

4

|S|
∑
i∈S

1

|S|
∑
j∈S
‖E[yj ]− E[yi]‖2

(using the Cauchy-Schwarz inequality and that ‖v‖ ≤ 1)

≤ 6σ̂2
0 +

4

|S|
∑
i∈S

1

|S|
∑
j∈S
‖E[yj ]− E[yi]‖2 (16)

Claim 2. For any r, s ∈ Ktk , we have

‖E[yr]− E[ys]‖2 ≤ H
tk+1−1∑
t=tk

(
6κ2 + 3L2E‖xtr − xts‖2

)
, (17)

where expectations in E[yr] and E[ys] are taken over sampling stochastic gradients between the synchronization
indices tk, . . . , tk+1 by client r and client s, respectively.

Proof. Note that we can equivalently write E[yr] = E[Yr] and E[ys] = E[Ys].

‖E[Yr]− E[Ys]‖2 = ‖E[Yr]− E[Ys]‖2 =

∥∥∥∥∥
tk+1−1∑
t=tk

(
E[Y tr ]− E[Y ts ]

)∥∥∥∥∥
2

≤ (tk+1 − tk)

tk+1−1∑
t=tk

∥∥E[Y tr ]− E[Y ts ]
∥∥2 (18)

By definition of Y ts from (12), we have Y ts ∼ Unif
(
F⊗bs

(
xts
(
xtks , Y

tk
s , . . . , Y t−1s

)))
, which implies using (4) that

E[Y ts ] = E
[
∇Fs

(
xts
(
xtks , Y

tk
s , . . . , Y t−1s

))]
, where on the RHS, expectation is taken over (Y tks , . . . , Y t−1s ). To

make the notation less cluttered, in the following, for any s ∈ Ktk , we write xts to denote xts
(
xtks , Y

tk
s , . . . , Y t−1s

)
with the understanding that expectation is always taken over the sampling of stochastic gradients between tk
and tk+1. With these substitutions, the t’th term from (19) can be written as:∥∥E[Y tr ]− E[Y ts ]

∥∥2 =
∥∥E [∇Fr(xtr)−∇Fs(xts)]∥∥2

(a)
≤ E

∥∥∇Fr (xtr)−∇Fs (xts)∥∥2 (19)
(b)
≤ 3E

∥∥∇Fr (xtr)−∇F (xtr)∥∥2 + 3E
∥∥∇Fs (xts)−∇F (xts)∥∥2

+ 3E
∥∥∇F (xtr)−∇F (xts)∥∥2

(c)
≤ 6κ2 + 3L2E‖xtr − xts‖2. (20)

Here, (a) and (b) both follow from the Jensen’s inequality. (c) used the gradient dissimilarity bound from (6)
to bound the first two terms5 and L-Lipschitzness of ∇F to bound the last term.

Substituting the bound from (20) back in (18) and using (tk+1 − tk) ≤ H proves Claim 2.

5Note that though xtr’s are random quantities, we can still bound E
∥∥∇Fr(xtr)−∇Fs(xts)∥∥2 ≤ κ2 because the gradient

dissimilarity bound (6) holds uniformly over the entire domain.
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Using the bound from (17) in (16) gives

1

|S|
∑
i∈S
〈yi − yS ,v〉2 ≤ 6σ̂2

0 +
4

|S|
∑
i∈S

1

|S|
∑
j∈S

H

tk+1−1∑
t=tk

(
6κ2 + 3L2E‖xtr − xts‖2

)
= 6σ̂2

0 + 24H2κ2 +
12HL2

|S|
∑
i∈S

1

|S|
∑
j∈S

tk+1−1∑
t=tk

E‖xtr − xts‖2 (21)

Now we bound the last term of (21), which is the drift in local parameters at different clients in between
any two synchronization indices.

Lemma 2. For any r, s ∈ Ktk , if η ≤ 1
8HL , we have

tk+1−1∑
t=tk

E
∥∥xtr − xts∥∥2 ≤ 7H3η2

(
σ2

b
+ 3κ2

)
, (22)

where expectation is taken over sampling stochastic gradients at clients r, s between the synchronization indices
tk and tk+1.

Proof. For any t ∈ [tk : tk+1 − 1] and r, s ∈ Ktk , define Dt
r,s = E ‖xtr − xts‖

2. Note that at synchronization
time tk, all clients in the active set Ktk have the same parameters, i.e., xtkr = xtk for every r ∈ Ktk .

Dt
r,s = E

∥∥xtr − xts∥∥2 = E

∥∥∥∥∥∥
xtkr − η t−1∑

j=tk

gr(x
j
r)

−
xtks − η t−1∑

j=tk

gs(x
j
s)

∥∥∥∥∥∥
2

= η2E

∥∥∥∥∥∥
t−1∑
j=tk

(
gr(x

j
r)− gs(xjs)

)∥∥∥∥∥∥
2

(Since xtkr = xtk ,∀r ∈ Ktk)

≤ η2(t− tk)

t−1∑
j=tk

E
∥∥gr(xjr)− gs(xjs)∥∥2

≤ η2H
t−1∑
j=tk

(
3E
∥∥gr(xjr)−∇Fr(xjr)∥∥2 + 3E

∥∥gs(xjs)−∇Fs(xjs)∥∥2
+3E

∥∥∇Fr(xjr)−∇Fs(xjs)∥∥2) (23)

To bound the first and the second terms we use the variance bound from (5).6 We can bound the third term
in the same way as we bounded it in (19) and obtained (20). This gives

Dt
r,s ≤ η2H

t−1∑
j=tk

(
6σ2

b
+ 18κ2 + 9L2E‖xjr − xjs‖2

)

≤ 6H2σ2η2

b
+ 18H2η2κ2 + 9L2Hη2

t−1∑
j=tk

Dj
r,s (Since Dj

r,s = E
∥∥xjr − xjs∥∥2)

Taking summation from t = tk to tk+1 − 1 gives

tk+1−1∑
t=tk

Dt
r,s ≤

tk+1−1∑
t=tk

6H2σ2η2

b
+ 18H2η2κ2 + 9L2Hη2

t−1∑
j=tk

Dj
r,s


6Note that xjr’s are random quantities, however, since the variance bound (5) holds uniformly over the entire domain,

E
∥∥∥gr(xjr)−∇Fr(xjr)∥∥∥2 ≤ σ2

b
holds for a random xjr ∈ Rd.
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≤ 6H3σ2η2

b
+ 18H3η2κ2 + 9L2H2η2

tk+1−1∑
t=tk

Dt
r,s.

After rearranging terms, we get

(1− 9L2H2η2)

tk+1−1∑
t=tk

Dt
r,s ≤

6H3σ2η2

b
+ 18H3η2κ2. (24)

If we take η ≤ 1
8HL , we get

(
1− 9η2L2H2

)
≥ 6

7 . Substituting this in the LHS of (24) yields
∑tk+1−1
t=tk

Dt
r,s ≤

7H3σ2η2

b + 21H3η2κ2, which proves Lemma 2.

Substituting the bound from (22) for the last term in (21) gives

1

|S|
∑
i∈S
〈yi − yS ,v〉2 ≤ 6σ̂2

0 + 24H2κ2 +
12HL2

|S|
∑
i∈S

1

|S|
∑
j∈S

(
7H3η2

(
σ2

b
+ 3κ2

))

= 6σ̂2
0 + 24H2κ2 + 84H4L2η2

(
σ2

b
+ 3κ2

)
≤ 6σ̂2

0 + 28H2κ2 +
21H2σ2

16b
(Using η ≤ 1

8LH )

≤ 24H2σ2

bε′

(
1 +

4d

3K

)
+

21H2σ2

16b
+ 28H2κ2 (Since σ̂2

0 = 4H2σ2

bε′

(
1 + 4d

3K

)
)

≤ 25H2σ2

bε′

(
1 +

4d

3K

)
+ 28H2κ2. (25)

In the last inequality we used 21
16 ≤

1
ε′ ≤

1
ε′

(
1 + 4d

3K

)
, where the first inequality follows because ε′ ≤ 1

4 . Note
that (25) holds for every unit vector v ∈ Rd. Using this and substituting gtk,tk+1

i,accu = yi, g
tk,tk+1

S,accu = yS in (25),
we get

sup
v∈Rd:‖v‖=1

1

|S|
∑
i∈S

〈
g
tk,tk+1

i,accu − g
tk,tk+1

S,accu ,v
〉2
≤ 25H2σ2

bε′

(
1 +

4d

3K

)
+ 28H2κ2.

This, in view of the alternate definition of the largest eigenvalue given in (14), is equivalent to (11), which
proves the first part of Theorem 3.

3.2 Proof of the Second Part of Theorem 3
In this section, we describe the procedure for robust mean estimation in high dimensions from [SCV18]

that we use in the second part of Theorem 3 to filter-out corrupt vectors and compute an estimate of the
average of uncorrupted accumulated gradients. We refer the reader to [DD20, Section 4] to get an intuition
on why filtering-out corrupt gradients (even when H = 1, i.e., without local iterations) is difficult in high
dimensions.

We describe the procedure in Algorithm 2 and refer the reader to [DD20, Appendix E] to get an intuition
behind Algorithm 2 and its running-time analysis. Though our algorithm for robust accumulated gradient
estimation (RAGE) is the same as the one proposed by Steinhardt et al. [SCV18] for high-dimensional robust
mean estimation, we give it a different name, as we are applying the procedure in a much more general
federated learning setting; see Footnote 4.

For simplicity, we reorder the received gradient indices from 1, 2, . . . ,K. Now, the proof of the second
part of Theorem 3 follows from [SCV18, Proposition 16], which we state below for completeness.
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Algorithm 2 Robust Accumulated Gradient Estimation (RAGE) [SCV18]

1: Initialize. ci := 1, i ∈ [K], α := (1− ε̃) ≥ 3/4, A := {1, 2, . . . ,K}; G := [g1, g2, . . . , gK ] ∈ Rd×K .
2: while true do
3: Let W∗ ∈ R|A|×|A| and Y∗ ∈ Rd×d be the minimizer/maximizer of the saddle point problem:

max
Y�0,

tr(Y)≤1

min
0≤Wji≤ 4−α

α(2+α)R
,∑

j∈AWji=1,∀i∈A

Φ(W,Y), (26)

where the cost function Φ(W,Y) is defined as

Φ(W,Y) :=
∑
i∈A

ci(gi −GAwi)
TY(gi −GAwi), (27)

To avoid cluttered notation, we index the |A| rows/columns of W by the elements of A; GA denotes
the restriction of G to the columns in A; for i ∈ A, wi denotes the column of W indexed by i.

4: For i ∈ A, let

τi = (gi −GAw
∗
i )TY∗(gi −GAw

∗
i ) (28)

5: if
∑
i∈A ciτi > 4Rσ2

0 then

6: For i ∈ A, ci ←
(

1− τi
τmax

)
ci, where τmax = maxj∈A τj .

7: For all i with ci < 1
2 , remove i from A.

8: else
9: Break while-loop

10: end if
11: end while
12: return ĝ = 1

|A|
∑
i∈A gi.

Lemma 3 (Proposition 16 in [SCV18]). Suppose we are given K arbitrary vectors g1, . . . , gK ∈ Rd with
the promise that there exists a subset S of these K vectors such that |S| = (1 − ε̃)K for some ε̃ > 0 and
S satisfies λmax

(
1
|S|
∑
i∈S (gi − gS) (gi − gS)

T
)
≤ σ2

0, where gS = 1
|S|
∑
i∈S gi denotes the sample mean of

the vectors in S. Then, if ε̃ ≤ 1
4 , Algorithm 2 can find an estimate ĝ of gS in polynomial-time, such that

‖ĝ − gS‖ ≤ O(σ0
√
ε̃).

Note that Lemma 3 takes arbitrary vectors as inputs, which are not required to have been generated from
a probability distribution.

We refer the reader to [DD20, Appendix F] for a comprehensive proof of Lemma 3. To analyze the
running time complexity of Algorithm 2, first note that (26) can be solved by computing the singular value
decomposition (SVD) of a certain d×K matrix (see [SCV18, Appendix F] for more details), and second, that
Algorithm 2 removes at least one vector in each iteration of the while loop. So, in the worst case, Algorithm 2
requires O(dK2 min{d,K}) time to execute; see [DD20, Appendix E] for more details on the running time
analysis of Algorithm 2. Note that this running time does not depend on the total number R of clients
(which may be in millions), and only depends on K, which is the number of clients selected by the server at
synchronization indices. In federated learning, R may be in millions, but K is typically a small number, in
1000’s.

This completes the proof of the second part of Theorem 3.
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4 Convergence Proof of the Strongly-Convex Part of Theorem 1
At any iteration t ∈ [T ], let Kt ⊆ [R] denote the set of clients that are active at time t. Let xt := 1

K

∑
r∈Kt x

t
r

denote the average parameter vector of the clients in the active set Kt. Note that, for any ti ∈ IT , the clients
in Kti remain active at all t ∈ [ti : ti+1 − 1].

In the following, we denote the decoded gradient at the server at any synchronization time ti+1 by ĝti,ti+1
accu ,

which is an estimate of the average of the accumulated gradients between time ti and ti+1 of the honest
clients in Kti , as in Theorem 3. From Algorithm 1, we can write the parameter update rule for the global
model at the synchronization indices as:

xti+1 = xti − ηĝti,ti+1
accu .

Note that at any synchronization index ti ∈ IT , when the server selects a subset Kti of clients and sends
the global parameter vector xti , all clients in Kti set their local model parameters to be equal to the global
model parameters, i.e., xtir = xti holds for every r ∈ Kti .

First we derive a recurrence relation for the synchronization indices and then for non-synchronization
indices. Consider the (i+ 1)’st synchronization index ti+1 ∈ IT . We have

xti+1 = xti − ηĝti,ti+1
accu

= xti − η 1

K

∑
r∈Kti

ti+1−1∑
t=ti

∇Fr(xtr)− η

ĝti,ti+1
accu − 1

K

∑
r∈Kti

ti+1−1∑
t=ti

∇Fr(xtr)


For simplicity of notation, define E ,

(
ĝ
ti,ti+1
accu − 1

K

∑
r∈Kti

∑ti+1−1
t=ti

∇Fr(xtr)
)
. Substituting this in the above

and using xti = 1
K

∑
r∈Kti

xtir gives

xti+1 =
1

K

∑
r∈Kti

xtir − η
1

K

∑
r∈Kti

ti+1−1∑
t=ti

∇Fr(xtr)− ηE

=
1

K

∑
r∈Kti

(
xtir − η

ti+1−1∑
t=ti

∇Fr(xtr)

)
− ηE

=
1

K

∑
r∈Kti

(
xti+1−1
r − η∇Fr(xti+1−1

r )
)
− ηE

= xti+1−1 − η 1

K

∑
r∈Kti

∇Fr(xti+1−1
r )− ηE

= xti+1−1 − η∇F (xti+1−1) + η
1

K

∑
r∈Kti

(
∇F (xti+1−1)−∇Fr(xti+1−1

r )
)
− ηE (29)

Subtracting x∗ from both sides gives:

xti+1 − x∗ = xti+1−1 − x∗ − η∇F (xti+1−1)︸ ︷︷ ︸
=: u

+η
1

K

∑
r∈Kti

(
∇F (xti+1−1)−∇Fr(xti+1−1

r )
)

︸ ︷︷ ︸
=: v

−ηE (30)

This gives xti+1 − x∗ = u+ η(v − E). Taking norm on both sides and then squaring gives∥∥xti+1 − x∗
∥∥2 = ‖u‖2 + η2‖v − E‖2 + 2η〈u,v − E〉 (31)
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Now we use a simple but powerful trick on inner-products together with the inequality 2〈a, b〉 ≤ ‖a‖2 + ‖b‖2
and get:

2η〈u,v − E〉 = 2

〈√
ηµ

2
u,

√
2η

µ
(v − E)

〉
≤ ηµ

2
‖u‖2 +

2η

µ
‖v − E‖2 (32)

Substituting this back into (31) gives∥∥xti+1 − x∗
∥∥2 ≤ (1 +

ηµ

2

)
‖u‖2 + η

(
η +

2

µ

)
‖v − E‖2

≤
(

1 +
ηµ

2

)
‖u‖2 + 2η

(
η +

2

µ

)
‖v‖2 + 2η

(
η +

2

µ

)
‖E‖2

Substituting the values of u,v, E and taking expectation w.r.t. the stochastic sampling of gradients by clients
in Kti between iterations ti and ti+1 (while conditioning on the past) gives:

E
∥∥xti+1 − x∗

∥∥2 ≤ (1 +
µη

2

)
E
∥∥xti+1−1 − η∇F (xti+1−1)− x∗

∥∥2
+ 2η

(
η +

2

µ

)
E

∥∥∥∥∥∥ 1

K

∑
r∈Kti

(
∇F (xti+1−1)−∇Fr(xti+1−1

r )
)∥∥∥∥∥∥

2

+ 2η

(
η +

2

µ

)
E

∥∥∥∥∥∥ĝti,ti+1
accu − 1

K

∑
r∈Kti

ti+1−1∑
t=ti

∇Fr(xtr)

∥∥∥∥∥∥
2

(33)

Now we bound each of the three terms on the RHS of (33) separately in Claim 3, Claim 4, and Claim 5
below. We prove these claims in Appendix B.

Claim 3. For η < 1
L , we have

E
∥∥xti+1−1 − η∇F (xti+1−1)− x∗

∥∥2 ≤ (1− µη)E
∥∥xti+1−1 − x∗

∥∥2 . (34)

Claim 4. For η ≤ 1
8HL , we have

E

∥∥∥∥∥∥ 1

K

∑
r∈Kti

(
∇Fr(xti+1−1

r )−∇F (xti+1−1)
)∥∥∥∥∥∥

2

≤ 2κ2 +
7H

32

(
σ2

b
+ 3κ2

)
. (35)

Claim 5. If η ≤ 1
8HL , then with probability at least 1− exp

(
− ε
′2(1−ε)K

16

)
, we have

E

∥∥∥∥∥∥ĝti,ti+1
accu − 1

K

∑
r∈Kti

ti+1−1∑
t=ti

∇Fr(xtr)

∥∥∥∥∥∥
2

≤ 3Υ 2 +
8H2σ2

b
+ 30H2κ2, (36)

where Υ 2 = O
(
σ2
0(ε+ ε′)

)
and σ2

0 = 25H2σ2

bε′

(
1 + 4d

3K

)
+ 28H2κ2.

Substituting the bounds from (34), (35), (36) into (33) and using
(
1 + µη

2

)
(1− µη) ≤

(
1− µη

2

)
for the

first term gives

E
∥∥xti+1 − x∗

∥∥2 ≤ (1− µη

2

)
E
∥∥xti+1−1 − x∗

∥∥2 + 2η

(
η +

2

µ

)(
2κ2 +

7H

32

(
σ2

b
+ 3κ2

))
+ 2η

(
η +

2

µ

)(
3Υ 2 +

8H2σ2

b
+ 30H2κ2

)
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≤
(

1− µη

2

)
E
∥∥xti+1−1 − x∗

∥∥2 +
6η

µ

(
3Υ 2 +

9H2σ2

b
+ 33H2κ2

)
, (37)

where Υ 2 = O
(
σ2
0(ε+ ε′)

)
and σ2

0 = 25H2σ2

bε′

(
1 + 4d

3K

)
+ 28H2κ2. In the last inequality (37) we used η ≤

1
8LH ≤

1
L ≤

1
µ , which implies (η+ 2

µ ) ≤ 3
µ . Note that (37) holds with probability at least 1−exp

(
− ε
′2(1−ε)K

16

)
.

Note that the above recurrence in (37) holds only at the synchronization indices ti ∈ IT for i = 1, 2, 3, . . ..
However, in order to establish a recurrence that we can use to prove convergence, we need to show a recurrence
relation for all t. Now we give a recurrence at non-synchronization indices.

Take an arbitrary t ∈ [T ] and let ti ∈ IT be such that t ∈ [ti : ti+1 − 1]; when H ≥ 2, such t’s exist. Note
that xt = 1

K

∑
r∈Kti

xtr. We have

xt+1 = xt − η 1

K

∑
r∈Kti

gr(x
t
r)

= xt − η 1

K

∑
r∈Kti

∇Fr(xtr)− η

 1

K

∑
r∈Kti

gr(x
t
r)−

1

K

∑
r∈Kti

∇Fr(xtr)


= xt − η∇F (xt) +

η

K

∑
r∈Kti

(
∇F (xt)−∇Fr(xtr)

)
− η

K

∑
r∈Kti

(
gr(x

t
r)−∇Fr(xtr)

)
(38)

Now, subtracting x∗ from both sides and following the same steps that we used to go from (30) to (33), we
get (in the following, expectation is taken w.r.t. the stochastic sampling of gradients at the t’th iteration
while conditioning on the past):

E
∥∥xt+1 − x∗

∥∥2 ≤ (1 +
µη

2

)
E
∥∥xt − x∗ − η∇F (xt)

∥∥2
+ 2η

(
η +

2

µ

)
E

∥∥∥∥∥∥ 1

K

∑
r∈Kti

(
∇F (xt)−∇Fr(xtr)

)∥∥∥∥∥∥
2

+ 2η

(
η +

2

µ

)
E

∥∥∥∥∥∥ 1

K

∑
r∈Kti

(
gr(x

t
r)−∇Fr(xtr)

)∥∥∥∥∥∥
2

(39)

We can bound the first and the second terms on the RHS of (39) using (34) and (35), respectively,

as E ‖xt − η∇F (xt)− x∗‖2 ≤ (1− µη)E ‖xt − x∗‖2 and E
∥∥∥ 1
K

∑
r∈Kti

(∇F (xt)−∇Fr(xtr))
∥∥∥2 ≤ 2κ2 +

7H
32

(
σ2

b + 3κ2
)
. To bound the third term on the RHS of (39), we use the fact that variance of the sum of

independent random variables is equal to the sum of the variances and that clients sample stochastic gradients

gr(x
t
r) independent of each other; using this fact and (5), we have E

∥∥∥ 1
K

∑
r∈Kti

(gr(x
t
r)−∇Fr(xtr))

∥∥∥2 ≤ σ2

bK .

Substituting these in (39) and using
(
1 + µη

2

)
(1− µη) ≤

(
1− µη

2

)
for the first term and (η + 2

µ ) ≤ 3
µ (which

follows because η ≤ 1
8HL ≤

1
L ≤

1
µ ) give

E
∥∥xt+1 − x∗

∥∥2 ≤ (1− µη

2

)
E
∥∥xt − x∗∥∥2 +

6η

µ

(
2κ2 +

7H

32

(
σ2

b
+ 3κ2

)
+
σ2

bK

)
≤
(

1− µη

2

)
E
∥∥xt − x∗∥∥2 +

6η

µ

(
3Hκ2 +

2Hσ2

b

)
(40)

Note that (40) holds with probability 1.
Now we have a recurrence at the synchronization indices given in (37) and at non-synchronization indices

given in (40). Let α =
(
1− µη

2

)
, β1 =

(
3Υ 2 + 9H2σ2

b + 33H2κ2
)
, and β2 =

(
3Hκ2 + 2Hσ2

b

)
. Substituting
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these and using (37) for the synchronization indices and (40) for the rest of the indices, we get:

E
∥∥xT − x∗∥∥2 ≤ αT ∥∥x0 − x∗

∥∥2 +
6η

µ

T/H∑
i=0

H−1∑
j=1

αiH+jβ2 +

T/H∑
i=0

αiHβ1

 (41)

≤ αT
∥∥x0 − x∗

∥∥2 +
6η

µ

( ∞∑
i=0

αiβ2 +

∞∑
i=0

αiHβ1

)

= αT
∥∥x0 − x∗

∥∥2 +
6η

µ

(
1

1− α
β2 +

1

1− αH
β1

)
(42)

Since α =
(
1− µη

2

)
, we have αH =

(
1− µη

2

)H (a)
≤ exp(−µηH2 )

(b)
≤ 1− µηH

2 +
(
µηH
2

)2 (c)
≤ 1− µηH

2 + 1
16
µηH
2 =

1 − 15
16
µηH
2 . In (a) we used the inequality (1 − 1

x )x ≤ 1
e which holds for any x > 0; in (b) we used

exp(−x) ≤ 1− x+ x2 which holds for any x ≥ 0; in (c) we used η ≤ 1
8HL and µ ≤ L, which together imply

µηH
2 ≤ 1

16 . Substituting these in (42) gives

E
∥∥xT − x∗∥∥2 ≤ (1− µη

2

)T ∥∥x0 − x∗
∥∥2 +

6η

µ

(
2

µη
β2 +

32

15µηH
β1

)
≤
(

1− µη

2

)T ∥∥x0 − x∗
∥∥2 +

6× 32

15µ2

(
15

16
β2 +

1

H
β1

)
≤
(

1− µη

2

)T ∥∥x0 − x∗
∥∥2 +

13

µ2

(
3Υ 2

H
+

11Hσ2

b
+ 36Hκ2

)
(43)

Note that the last term on the RHS of (43) is independent of η, which together with the dependence of η
on the first term implies that bigger the η, faster the convergence. Since we need η ≤ 1

8HL for Claim 4 and
Claim 5 to hold, we choose η = 1

8HL . Substituting this in (43) yields the convergence rate (7) of Theorem 1.

Error probability analysis. Note that (37) holds with probability at least 1− exp
(
− ε
′2(1−ε)K

16

)
and (40)

holds with probability 1. Since to arrive at (41) (which leads to our final bound (43)), we used (37) T
H times

and (40)
(
T − T

H

)
times; as a consequence, by union bound, we have that (43) holds with probability at least

1− T
H exp

(
− ε
′2(1−ε)K

16

)
, which is at least (1− δ), for any δ > 0, provided we run our algorithm for at most

T ≤ δH exp( ε
′2(1−ε)K

16 ) iterations.
This concludes the proof of the strongly-convex part of Theorem 1.

5 Convergence Proof of the Non-Convex Part of Theorem 1
Let Kt ⊆ [R] denote the subset of clients of size |Kt| = K sampled at the t’th iteration. For any t ∈ [ti : ti+1−1],
let xt = 1

K

∑
k∈Kti

xtk denote the average of the local parameters of clients in the sampling set Kti .
Similar to the proof given in Section 4, here also, first we derive a recurrence for the synchronization

indices and then for non-synchronization indices. For the synchronization indices t1, t2, . . . , tk, . . . ∈ IT , from
(29), we have

xti+1 = xti+1−1 − η∇F (xti+1−1) + ηC (44)

where

C =
1

K

∑
r∈Kti

(
∇F (xti+1−1)−∇Fr(xti+1−1

r )
)
−

ĝti,ti+1
accu − 1

K

∑
r∈Kti

ti+1−1∑
t=ti

∇Fr(xtr)

 . (45)
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Now, using the definition of L-smoothness in (44), we have

F (xti+1) ≤ F (xti+1−1) +
〈
∇F (xti+1−1),xti+1 − xti+1−1

〉
+
L

2

∥∥xti+1 − xti+1−1
∥∥2

= F (xti+1−1)− η
〈
∇F (xti+1−1),∇F (xti+1−1)− C

〉
+
η2L

2

∥∥∇F (xti+1−1)− C
∥∥2

= F (xti+1−1)− η
∥∥∇F (xti+1−1)

∥∥2 + η
〈
∇F (xti+1−1), C

〉
+
η2L

2

∥∥∇F (xti+1−1)− C
∥∥2

(a)
≤ F (xti+1−1)− η

∥∥∇F (xti+1−1)
∥∥2 + η

(∥∥∇F (xti+1−1)
∥∥2

4
+ ‖C‖2

)

+
η2L

2

∥∥∇F (xti+1−1)− C
∥∥2

(b)
≤ F (xti+1−1)− 3η

4

∥∥∇F (xti+1−1)
∥∥2 + η‖C‖2 + η2L

(∥∥∇F (xti+1−1)
∥∥2 + ‖C‖2

)
= F (xti+1−1)− η

(
3

4
− ηL

)∥∥∇F (xti+1−1)
∥∥2 + η (1 + ηL) ‖C‖2 (46)

In (a), we used the inequality 2〈a, b〉 ≤ τ‖a‖2 + 1
τ ‖b‖

2, which holds for every τ > 0, and we used τ = 1
2 in (a).

In (b), we used the inequality ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2). For η ≤ 1
8HL ≤

1
8L , we have (3/4− ηL) ≥ 1/2 and

(1 + ηL) ≤ 9
8 . Substituting these in (46) and taking expectation w.r.t. the stochastic sampling of gradients at

clients in Kit between iterations ti and ti+1 (while conditioning on the past) gives:

E[F (xti+1)] ≤ E[F (xti+1−1)]− η

2
E
∥∥∇F (xti+1−1)

∥∥2 +
9η

8
E‖C‖2. (47)

Now we bound E‖C‖2. Substituting the value of C from (45) gives:

E‖C‖2 ≤ 2E

∥∥∥∥∥∥ 1

K

∑
r∈Kti

(
∇F (xti+1−1)−∇Fr(xti+1−1

r )
)∥∥∥∥∥∥

2

+ 2E

∥∥∥∥∥∥ĝti,ti+1
accu − 1

K

∑
r∈Kti

ti+1−1∑
t=ti

∇Fr(xtr)

∥∥∥∥∥∥
2

≤ 2

(
2κ2 +

7H

32

(
σ2

b
+ 3κ2

))
+ 2

(
3Υ 2 +

8H2σ2

b
+ 30H2κ2

)
≤ 2

(
3Υ 2 +

9H2σ2

b
+ 33H2κ2

)
(48)

Here, the first inequality used ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2) and the second inequality used the bounds from
(35) and (36).

Substituting the bound from (48) into (47) gives

E[F (xti+1)] ≤ E[F (xti+1−1)]− η

2
E
∥∥∇F (xti+1−1)

∥∥2 +
9η

4

(
3Υ 2 +

9H2σ2

b
+ 33H2κ2

)
(49)

where Υ 2 = O
(
σ2
0(ε+ ε′)

)
and σ2

0 = 25H2σ2

bε′

(
1 + 4d

3K

)
+ 28H2κ2. Note that (49) holds with probability at

least 1− exp
(
− ε
′2(1−ε)K

16

)
.

Note that the above recurrence in (49) holds only at the synchronization indices ti ∈ IT for i = 1, 2, 3, . . ..
Now we give a recurrence at non-synchronization indices.

We have done a similar calculation in the strongly-convex part of Theorem 1 in Section 4. Take an
arbitrary t ∈ [T ] and let ti ∈ IT be such that t ∈ [ti : ti+1 − 1]; when H ≥ 2, such t’s exist. Note that
xt = 1

K

∑
r∈Kti

xtr.

19



From (38), we have xt+1 = xt − η∇F (xt) + ηD, where

D =
1

K

∑
r∈Kti

(
∇F (xt)−∇Fr(xtr)

)
− 1

K

∑
r∈Kti

(
gr(x

t
r)−∇Fr(xtr)

)
.

Using L-smoothness of F , and then performing similar algebraic manipulations that we used in order to
arrive at (47), we get:

E[F (xt+1)] ≤ E[F (xt)]− η

2
E
∥∥∇F (xt)

∥∥2 +
9η

8
E‖D‖2 (50)

Now we bound E‖D‖2:

E‖D‖2 ≤ 2E

∥∥∥∥∥∥ 1

K

∑
r∈Kti

(
∇F (xt)−∇Fr(xtr)

)∥∥∥∥∥∥
2

+ 2E

∥∥∥∥∥∥ 1

K

∑
r∈Kti

(
gr(x

t
r)−∇Fr(xtr)

)∥∥∥∥∥∥
2

≤ 2

(
2κ2 +

7H

32

(
σ2

b
+ 3κ2

)
+
σ2

bK

)
≤ 2

(
3Hκ2 +

2Hσ2

b

)
(51)

Here, the second inequality used the same bounds on both the quantities on the RHS of the first inequality
that we used to go from (39) to (40).

Substituting the bound on E‖D‖2 from (51) into (50) gives

E[F (xt+1)] ≤ E[F (xt)]− η

2
E
∥∥∇F (xt)

∥∥2 +
9η

4

(
3Hκ2 +

2Hσ2

b

)
(52)

Note that (52) holds with probability 1.
Now we have a recurrence at synchronization indices given in (49) and at non-synchronization indices

given in (52). Adding (49) and (52) from t = 0 to T (use (49) for the synchronization indices and (52) for
the rest of the indices) gives:

T∑
t=0

E[F (xt+1)] ≤
T∑
t=0

E[F (xt)]− η

2

T∑
t=0

E
∥∥∇F (xt)

∥∥2 +
9η

4

[
T

H

(
3Υ 2 +

9H2σ2

b
+ 33H2κ2

)
+

(
T − T

H

)(
3Hκ2 +

2Hσ2

b

)]
(53)

We can simplifying the constant term in the RHS of (53) as follows:

1

H

(
3Υ 2 +

9H2σ2

b
+ 33H2κ2

)
+

(
1− 1

H

)(
3Hκ2 +

2Hσ2

b

)
≤ 1

H

(
3Υ 2 +

9H2σ2

b
+ 33H2κ2

)
+

(
3Hκ2 +

2Hσ2

b

)
≤ 3Υ 2

H
+

11Hσ2

b
+ 36Hκ2

Substituting this in (53) and then rearranging, we get:

1

T

T∑
t=0

E
∥∥∇F (xt)

∥∥2 ≤ 2

ηT

[
E[F (x0)]− E[F (xT+1)]

]
+

9

2

(
3Υ 2

H
+

11Hσ2

b
+ 36Hκ2

)
(54)
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Note that the last term in (54) is a constant. So, it would be best to take the step-size η to be as large as possible
such that it satisfies η ≤ 1

8HL . We take η = 1
8HL . Substituting this in (54) and using F (xT+1) ≥ F (x∗) gives

1

T

T∑
t=0

E
∥∥∇F (xt)

∥∥2 ≤ 16HL

T

[
E[F (x0)]− E[F (x∗)]

]
+

9

2

(
3Υ 2

H
+

11Hσ2

b
+ 36Hκ2

)
, (55)

where Υ 2 = O
(
σ2
0(ε+ ε′)

)
and σ2

0 = 25H2σ2

bε′

(
1 + 4d

3K

)
+ 28H2κ2. Note that (55) is the convergence rate (8)

in Theorem 1.
Error probability analysis. Note that (49) holds with probability at least 1− exp

(
− ε
′2(1−ε)K

16

)
and (52)

holds with probability 1. Since to arrive at (53) (which leads to our final bound (55)), we used (49) T
H times

and (52)
(
T − T

H

)
times; as a consequence, by union bound, we have that (55) holds with probability at least

1− T
H exp

(
− ε
′2(1−ε)K

16

)
, which is at least (1− δ), for any δ > 0, provided we run our algorithm for at most

T ≤ δH exp( ε
′2(1−ε)K

16 ) iterations.
This concludes the proof of the non-convex part of Theorem 1.

6 Convergence Proof of Theorem 2
In this section, we focus on the case when in each local iteration clients compute full-batch gradients (instead
of computing mini-batch stochastic gradients) in Algorithm 1 and prove Theorem 2. Note that the robust
accumulated gradient estimation (RAGE) result of Theorem 3 (which is for stochastic gradients) is one of the
main ingredients behind the convergence analyses of Theorem 1. So, in order to prove Theorem 2, first we
need to show a RAGE result for full-batch gradients. Note that we can obtain such a result by substituting
σ = 0 in both the parts of Theorem 3; however, this would give a loose bound on the approximation error
in the second part. In the following, we get a tighter bound (both for RAGE and the convergence rates in
Theorem 2) by working directly with full-batch gradients. To get a RAGE result for full-batch gradients, we
do a much simplified analysis than what we did before to prove Theorem 3, and the resulting result is stated
and proved below in Theorem 4.

Note that, in order to prove Theorem 3, we showed an existence of a subset S of honest clients (from
the set K of clients who communicate with the server) from whom the accumulated stochastic gradients are
well-concentrated, as stated in form of a matrix concentration bound (11) in the first part of Theorem 3. It
turns out that for full-batch gradients, an analogous result can be proven directly (as there is no randomness
due to stochastic gradients); and below we provide such a result. Note that Theorem 3 is a probabilistic
statement, where we show that with high probability, there exists a large subset S ⊆ K of honest clients
whose stochastic accumulated gradients are well-concentrated. In contrast, in the following result, we can
deterministically take the set of all honest clients in K to be that subset for which we can directly show the
concentration.

First we setup the notation to state our main result on RAGE for full-batch gradients. Let Kt ⊆ [R]
denote the subset of clients of size K that are active at any time t ∈ [0 : T ]. Let Algorithm 1 generate a
sequence of iterates {xtr : t ∈ [0 : T ], r ∈ Kt} when run with a fixed step-size η satisfying η ≤ 1

5HL while
minimizing a global objective function F : Rd → R, where in any iteration, instead of sampling mini-batch
stochastic gradients, every honest client takes full-batch gradients from their local datasets. Take any two
consecutive synchronization indices tk, tk+1 ∈ IT . Note that |tk+1 − tk| ≤ H. For an honest client r ∈ Ktk ,
let ∇F tk,tk+1

r,accu :=
∑tk+1−1
t=tk

∇Fr(xtr) denote the sum of local full-batch gradients taken by client r between
time tk and tk+1. Note that at iteration tk+1, every honest client r ∈ Ktk reports its local parameters xtk+1

r

to the server, from which server can compute ∇F tk,tk+1
r,accu , whereas, corrupt clients may report arbitrary and

adversarially chosen vectors in Rd. The goal of the server is to produce an estimate ∇F̂ tk,tk+1
accu of the average

accumulated gradients from honest clients as best as possible.
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Theorem 4 (Robust Accumulated Gradient Estimation for Full-Batch Gradient Descent). Suppose an
ε fraction of clients who communicate with the server are corrupt. In the setting and notation described
above, suppose we are given K ≤ R accumulated full-batch gradients ∇F̃ tk,tk+1

r,accu , r ∈ Ktk in Rd, where
∇F̃ tk,tk+1

r,accu = ∇F tk,tk+1
r,accu if the r’th client is honest, otherwise can be arbitrary. Let S ⊆ Ktk be the subset of

all honest clients in Ktk and ∇F tk,tk+1

S,accu := 1
|S|
∑
i∈S ∇F

tk,tk+1

i,accu be the sample average of uncorrupted full-batch

gradients. If ε ≤ 1
4 , then with probability 1, we can find an estimate ∇F̂ tk,tk+1

accu of ∇F tk,tk+1

S,accu in polynomial-time,

such that
∥∥∥∇F̂ tk,tk+1

accu −∇F tk,tk+1

S,accu

∥∥∥ ≤ O (Hκ
√
ε).

Proof. First we prove that

λmax

(
1

|S|
∑
i∈S

(
∇F tk,tk+1

i,accu −∇F tk,tk+1

S,accu

)(
∇F tk,tk+1

i,accu −∇F tk,tk+1

S,accu

)T)
≤ 11H2κ2. (56)

In view of the alternate characterization the largest eigenvalue given in (14), this is equivalent to showing

sup
v∈Rd:‖v‖=1

1

|S|
∑
i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1

S,accu ,v
〉2
≤ 11H2κ2, (57)

which we prove below. Define F tk,tk+1
accu :=

∑tk+1−1
t=tk

F (xt), where xt = 1
K

∑
r∈Ktk

xtr for any t ∈ [tk : tk+1− 1].
Take an arbitrary unit vector v ∈ Rd.

1

|S|
∑
i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1

S,accu ,v
〉2

=
1

|S|
∑
i∈S

[〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu +∇F tk,tk+1

accu −∇F tk,tk+1

S,accu ,v
〉]2

≤ 2

|S|
∑
i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉2
+

2

|S|
∑
i∈S

〈
∇F tk,tk+1

S,accu −∇F
tk,tk+1
accu ,v

〉2
(Using ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2)

=
2

|S|
∑
i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉2
+ 2

〈
∇F tk,tk+1

S,accu −∇F
tk,tk+1
accu ,v

〉2
=

2

|S|
∑
i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉2
+ 2

[
1

|S|
∑
i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉]2
≤ 2

|S|
∑
i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉2
+

2

|S|
∑
i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉2
=

4

|S|
∑
i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉2
≤ 4

|S|
∑
i∈S

∥∥∥∇F tk,tk+1

i,accu −∇F tk,tk+1
accu

∥∥∥2
(Using Cauchy-Schwarz inequality 〈u,v〉 ≤ ‖u‖‖v‖ and that ‖v‖ = 1)

=
4

|S|
∑
i∈S

∥∥∥∥∥
tk+1−1∑
t=tk

(
∇Fi(xti)−∇F (xt)

)∥∥∥∥∥
2

(Since F tk,tk+1
accu =

∑tk+1−1
t=tk

F (xt))

≤ 4

|S|
∑
i∈S

(tk+1 − tk)

tk+1−1∑
t=tk

∥∥∇Fi(xti)−∇F (xt)
∥∥2 (Using Jensen’s inequality)
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≤ 4H

|S|
∑
i∈S

tk+1−1∑
t=tk

(
2
∥∥∇Fi(xti)−∇F (xti)

∥∥2 + 2
∥∥∇F (xti)−∇F (xt)

∥∥2)
(a)
≤ 4H

|S|
∑
i∈S

tk+1−1∑
t=tk

(
2κ2 + 2L2

∥∥xti − xt∥∥2)

≤ 8H2κ2 + 8HL2

tk+1−1∑
t=tk

1

|S|
∑
i∈S

∥∥∥xti − 1

K

∑
j∈Ktk

xtj

∥∥∥2 (Since xt = 1
K

∑
j∈Ktk

xtj)

≤ 8H2κ2 + 8HL2

tk+1−1∑
t=tk

1

|S|
∑
i∈S

1

K

∑
j∈Ktk

∥∥xti − xtj∥∥2 (58)

The last inequality follows from the Jensen’s inequality. In (a) we used (6) to bound ‖∇Fi(xti)−∇F (xti)‖
2 ≤

κ2 and L-Lipschitz gradient property of F to bound ‖∇F (xti)−∇F (xt)‖ ≤ L‖xti − xt‖.
Now we bound the last term of (58).

Lemma 4. For any r, s ∈ Ktk , if η ≤ 1
5HL , we have

tk+1−1∑
t=tk

∥∥xtr − xts∥∥2 ≤ 7η2H3κ2. (59)

Proof. Note that we have shown a similar result (but, in expectation) in Lemma 2 (on page 12), which is
for stochastic gradients. We will simplify that proof to prove Lemma 4, which is for full-batch deterministic
gradients.

Take an arbitrary t ∈ [tk : tk+1 − 1]. Following the proof of Lemma 2 until (23) and removing the factor
of 3 inside the summation (the factor of 3 appeared because we applied the Jensen’s inequality earlier to
separate the deterministic gradient term and the stochastic gradient terms) would give

∥∥xtr − xts∥∥2 ≤ η2H t−1∑
j=tk

∥∥∇Fr(xjr)−∇Fs(xjs)∥∥2 . (60)

Following the remaining proof of Lemma 2 from (23) until the end and substituting σ = 0 gives the desired
result.

Substituting the bound from (59) into (58) gives

1

|S|
∑
i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1

S,accu ,v
〉2
≤ 8H2κ2 + 56H4L2η2κ2

≤ 8H2κ2 +
56

25
H2κ2 (Substituting η ≤ 1

5HL )

≤ 11H2κ2. (61)

Note that (61) holds for an arbitrary unit vector v ∈ Rd, implying that (57) holds true. Since (57) and (56)
are equivalent, we have thus shown (56).

Now apply the second part of Theorem 3 with S being the set of all honest clients, and gtk,tk+1

i,accu = ∇F tk,tk+1

i,accu ,
g
tk,tk+1

S,accu = ∇F tk,tk+1

S,accu ĝ
tk,tk+1
accu = ∇F̂ tk,tk+1

accu , ε′ = 0, and σ2
0 = 11H2κ2. We would get that we can find an

estimate ∇F̂ tk,tk+1
accu of ∇F tk,tk+1

S,accu in polynomial-time, such that
∥∥∥∇F̂ tk,tk+1

accu −∇F tk,tk+1

S,accu

∥∥∥ ≤ O (Hκ
√
ε) holds

with probability 1.

Theorem 2 can be proved with appropriate modifications in the proof of Theorem 1, and we prove it in
Appendix C.
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A Omitted Details from Section 3.1
In this section, we prove Claim 1.

Claim (Restating Claim 1). For any honest client i ∈ Ktk , we have E‖Yi−E[Yi]‖2 ≤ H2σ2

b , where expectation
is taken over sampling stochastic gradients by client i between the synchronization indices tk and tk+1.

Proof. Take an arbitrary honest client i ∈ Ktk .

E‖Yi − E[Yi]‖2 = E

∥∥∥∥∥
tk+1−1∑
t=tk

(
Y ti − E[Y ti ]

)∥∥∥∥∥
2

(a)
≤ (tk+1 − tk)

tk+1−1∑
t=tk

E‖Y ti − E[Y ti ]‖2
(b)
≤ H2σ2

b
,

where (a) follows from the Jensen’s inequality; in (b) we used (tk+1− tk) ≤ H and that E‖Y ti −E[Y ti ]‖2 ≤ σ2

b
for all j ∈ [H], which follows from the explanation below:

E‖Y ti − E[Y ti ]‖2 =
∑

y
tk
i ,...,yt−1

i

Pr
[
Y ji = yji , j ∈ [tk : t− 1]

]
× E

[
‖Y ti − E[Y ti ]‖2 |Y ji = yji , j ∈ [tk : t− 1]

]
(c)
≤

∑
y
tk
i ,...,yt−1

i

Pr
[
Y ji = yji , j ∈ [tk : t− 1]

]
· σ

2

b

=
σ2

b
.

Note that Y ti ∼ Unif
(
F⊗bi

(
xti
(
xtki , Y

tk
i , . . . , Y t−1i

)))
. So, when we fix the values Y tki = ytki , . . . , Y

t−1
i = yt−1i ,

the parameter vector xti
(
xtki , Y

tk
i . . . , Y t−1i

)
becomes a deterministic quantity. Now we can use the variance

bound (5) in order to bound E
[
‖Y ti − E[Y ti ]‖2 |Y ji = yji , j ∈ [tk : t− 1]

]
≤ σ2

b . This is what we used in
(c).
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B Omitted Details from Section 4
In this section, we prove Claim 3, Claim 4, and Claim 5.

Claim (Restating Claim 3). For η < 1
L , we have

E
∥∥xti+1−1 − η∇F (xti+1−1)− x∗

∥∥2 ≤ (1− µη)E
∥∥xti+1−1 − x∗

∥∥2 .
Proof. Expand the LHS.

E
∥∥xti+1−1 − x∗ − η∇F (xti+1−1)

∥∥2 = E
∥∥xti+1−1 − x∗

∥∥2 + η2E
∥∥∇F (xti+1−1)

∥∥2
+ 2ηE

〈
x∗ − xti+1−1,∇F (xti+1−1)

〉
(62)

We can bound the second term on the RHS using L-smoothness of F , which implies that ‖∇F (x)‖2 ≤
2L(F (x)−F (x∗)) holds for every x ∈ Rd; see Fact 1 on page 30. We can bound the third term on the RHS using
µ-strong convexity of F as follows:

〈
x∗ − xti+1−1,∇F (xti+1−1)

〉
≤ F (x∗)− F (xti+1−1)− µ

2 ‖x
ti+1−1 − x∗‖2.

Substituting these back in (62) gives:

E
∥∥xti+1−1 − x∗ − η∇F (xti+1−1)

∥∥2 ≤ (1− µη)E
∥∥xti+1−1 − x∗

∥∥2
− 2η(1− ηL)E

(
F (xti+1−1)− F (x∗)

)
(63)

Since η < 1
L , we have (1− ηL) > 0. We also have F (xti+1−1) ≥ F (x∗). Using these together, we can ignore

the last term in the RHS of (63). This proves Claim 3.

Claim (Restating Claim 4). For η ≤ 1
8HL , we have

E

∥∥∥∥∥∥ 1

K

∑
r∈Kti

(
∇Fr(xti+1−1

r )−∇F (xti+1−1)
)∥∥∥∥∥∥

2

≤ 2κ2 +
7H

32

(
σ2

b
+ 3κ2

)
.

Proof. By definition, we have xti+1−1 = 1
K

∑
r∈Kti

xti+1−1.

E

∥∥∥∥∥∥ 1

K

∑
r∈Kti

(
∇Fr(xti+1−1

r )−∇F (xti+1−1)
)∥∥∥∥∥∥

2

≤ 1

K

∑
r∈Kti

E
∥∥∇Fr(xti+1−1

r )−∇F (xti+1−1)
∥∥2

≤ 2

K

∑
r∈Kti

(
E
∥∥∇Fr(xti+1−1

r )−∇F (xti+1−1
r )

∥∥2 + E
∥∥∇F (xti+1−1

r )−∇F (xti+1−1)
∥∥2)

(a)
≤ 2

K

∑
r∈Kti

(
κ2 + L2E

∥∥xti+1−1
r − xti+1−1

∥∥2)
= 2κ2 +

2L2

K

∑
r∈Kti

E
∥∥∥xti+1−1

r − 1

K

∑
s∈Kti

xti+1−1
s

∥∥∥2
≤ 2κ2 +

2L2

K

∑
r∈Kti

1

K

∑
s∈Kti

E
∥∥xti+1−1

r − xti+1−1
s

∥∥2 (64)

(b)
≤ 2κ2 +

2L2

K

∑
r∈Kti

1

K

∑
s∈Kti

(
7H3η2

(
σ2

b
+ 3κ2

))

= 2κ2 + 14L2H3η2
(
σ2

b
+ 3κ2

)
(c)
≤ 2κ2 +

7H

32

(
σ2

b
+ 3κ2

)
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In (a) we used the gradient dissimilarity bound from (6) to bound the first term and L-Lipschitz gradient
property of F to bound the second term. For (b), note that we have already bounded

∑ti+1−1
t=ti

E ‖xtr − xts‖
2 ≤

7H3η2
(
σ2

b + 3κ2
)

in (22) in Lemma 2. Since each term in the summation is trivially bounded by the

same quantity, which we used in (b) to bound E
∥∥∥xti+1−1

r − xti+1−1
s

∥∥∥2 ≤ 7H3η2
(
σ2

b + 3κ2
)
. In (c) we used

η ≤ 1
8HL .

Claim (Restating Claim 5). If η ≤ 1
8HL , then with probability at least 1− exp

(
− ε
′2(1−ε)K

16

)
, we have

E

∥∥∥∥∥∥ĝti,ti+1
accu − 1

K

∑
r∈Kti

ti+1−1∑
t=ti

∇Fr(xtr)

∥∥∥∥∥∥
2

≤ 3Υ 2 +
8H2σ2

b
+ 30H2κ2,

where Υ 2 = O
(
σ2
0(ε+ ε′)

)
and σ2

0 = 25H2σ2

bε′

(
1 + 4d

3K

)
+ 28H2κ2.

Proof. Let S ⊆ Kti denote the subset of honest clients of size (1− (ε+ ε′))K, whose average accumulated
gradient between time ti and ti+1 that server approximates at time ti+1 in Theorem 3. Let the average
accumulated gradient be denoted by gti,ti+1

S,accu = 1
|S|
∑
r∈S g

ti,ti+1
r,accu , where gti,ti+1

r,accu =
∑ti+1−1
t=ti

gr(x
t
r), and server

approximates it by ĝti,ti+1
accu . Note that S exists with probability at least 1− exp

(
− ε
′2(1−ε)K

16

)
. To make the

notation less cluttered, for every r ∈ Kti , define ∇F
ti,ti+1
r :=

∑ti+1−1
t=ti

∇Fr(xtr).

E

∥∥∥∥∥∥ĝti,ti+1
accu − 1

K

∑
r∈Kti

∇F ti,ti+1
r

∥∥∥∥∥∥
2

≤ 3E

∥∥∥∥∥ĝti,ti+1
accu − 1

|S|
∑
r∈S

gti,ti+1
r,accu

∥∥∥∥∥
2

3E

∥∥∥∥∥ 1

|S|
∑
r∈S

gti,ti+1
r,accu −

1

|S|
∑
r∈S
∇F ti,ti+1

r

∥∥∥∥∥
2

+ 3E

∥∥∥∥∥∥ 1

|S|
∑
r∈S
∇F ti,ti+1

r − 1

K

∑
s∈Kti

∇F ti,ti+1
s

∥∥∥∥∥∥
2

(65)

Now we bound each term on the RHS of (65).
Bounding the first term on the RHS of (65). We can bound this using the second part of Theorem 3
as follows (note that given the first part of Theorem 3 is satisfied, the second part provides deterministic
approximation guarantees, which implies that it also holds in expectation):

E

∥∥∥∥∥ĝti,ti+1
accu − 1

|S|
∑
r∈S

gti,ti+1
r,accu

∥∥∥∥∥
2

≤ Υ 2, (66)

where Υ 2 = O
(
σ2
0(ε+ ε′)

)
and σ2

0 = 25H2σ2

bε′

(
1 + 4d

3K

)
+ 28H2κ2.

Bounding the second term on the RHS of (65). We can bound this using the variance bound (5).

E

∥∥∥∥∥ 1

|S|
∑
r∈S

(
gti,ti+1
r,accu −∇F ti,ti+1

r

)∥∥∥∥∥
2

= E

∥∥∥∥∥
ti+1−1∑
t=ti

1

|S|
∑
r∈S

(
gr(x

t
r)−∇Fr(xtr)

)∥∥∥∥∥
2

(a)
≤ (ti+1 − ti)

ti+1−1∑
t=ti

E

∥∥∥∥∥ 1

|S|
∑
r∈S

(
gr(x

t
r)−∇Fr(xtr)

)∥∥∥∥∥
2
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(b)
≤ H

ti+1−1∑
t=ti

1

|S|2
E

∥∥∥∥∥∑
r∈S

(
gr(x

t
r)−∇Fr(xtr)

)∥∥∥∥∥
2

(c)
= H

ti+1−1∑
t=ti

1

|S|2
∑
r∈S

E
∥∥gr(xtr)−∇Fr(xtr)∥∥2

(d)
≤ H

ti+1−1∑
t=ti

1

|S|
σ2

b

(e)
≤ 4H2σ2

3bK
. (67)

In (a) we used the Jensen’s inequality. In (b) used |ti+1 − ti| ≤ H. In (c) we used (4) (which states that
E[gr(x)] = ∇Fr(x) holds for every honest client r ∈ [R] and x ∈ Rd) together with that the stochastic gradients
at different clients are sampled independently, and then we used the fact that the variance of independent
random variables is equal to the sum of the variances. Note that Var(gr(xtr)) = E ‖gr(xtr)−∇Fr(xtr)‖

2. In
(d) we used the variance bound (5). In (e) we used |S| ≥ (1− (ε+ ε′))K ≥ 3K

4 , where the last inequality uses
(ε+ ε′) ≤ 1

4 .
Bounding the third term on the RHS of (65).

E

∥∥∥∥∥∥ 1

|S|
∑
r∈S
∇F ti,ti+1

r − 1

K

∑
s∈Kti

∇F ti,ti+1
s

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥
ti+1−1∑
t=ti

( 1

|S|
∑
r∈S
∇Fr(xtr)−

1

K

∑
s∈Kti

∇Fs(xts)
)∥∥∥∥∥∥

2

(a)
≤ H

ti+1−1∑
t=ti

E

∥∥∥∥∥∥ 1

|S|
∑
r∈S
∇Fr(xtr)−

1

K

∑
s∈Kti

∇Fs(xts)

∥∥∥∥∥∥
2

(68)

In (a), first we used the Jensen’s inequality and then substituted |ti+1 − ti| ≤ H. In order to bound (68), it

suffices to bound E
∥∥∥ 1
|S|
∑
r∈S ∇Fr(xtr)−

1
K

∑
s∈Kti

∇Fs(xts)
∥∥∥2 for every t ∈ [ti : ti+1 − 1]. We bound this in

the following. Take an arbitrary t ∈ [ti : ti+1 − 1].

E

∥∥∥∥∥∥ 1

|S|
∑
r∈S
∇Fr(xtr)−

1

K

∑
s∈Kti

∇Fs(xts)

∥∥∥∥∥∥
2

≤ 3E

∥∥∥∥∥ 1

|S|
∑
r∈S

(
∇Fr(xtr)−∇F (xtr)

)∥∥∥∥∥
2

+ 3E

∥∥∥∥∥∥ 1

|S|
∑
r∈S
∇F (xtr)−

1

K

∑
s∈Kti

∇F (xts)

∥∥∥∥∥∥
2

+ 3E

∥∥∥∥∥∥ 1

K

∑
s∈Kti

(
∇F (xts)−∇Fs(xts)

)∥∥∥∥∥∥
2

≤ 3

|S|
∑
r∈S

E
∥∥∇Fr(xtr)−∇F (xtr)

∥∥2 +
3

K

∑
s∈Kti

E
∥∥∇F (xts)−∇Fr(xtr)

∥∥2

+ 3E

∥∥∥∥∥∥ 1

|S|
∑
r∈S

(
∇F (xtr)−∇F (xt)

)
− 1

K

∑
s∈Kti

(
∇F (xts)−∇F (xt)

)∥∥∥∥∥∥
2

≤ 3κ2 + 3κ2 + 6E

∥∥∥∥∥ 1

|S|
∑
r∈S
∇F (xtr)−∇F (xt)

∥∥∥∥∥
2

+ 6E

∥∥∥∥∥∥ 1

K

∑
s∈Kti

(
∇F (xts)−∇F (xt)

)∥∥∥∥∥∥
2

≤ 6κ2 +
6

|S|
∑
r∈S

E
∥∥∇F (xtr)−∇F (xt)

∥∥2 +
6

K

∑
s∈Kti

E
∥∥∇F (xts)−∇F (xt)

∥∥2
≤ 6κ2 +

6

|S|
∑
r∈S

L2E
∥∥xtr − xt∥∥2 +

6

K

∑
s∈Kti

L2E
∥∥xts − xt∥∥2
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= 6κ2 +
6L2

|S|
∑
r∈S

E
∥∥∥xtr − 1

K

∑
s∈Kti

xts

∥∥∥2 +
6L2

K

∑
r∈Kti

E
∥∥∥xtr − 1

K

∑
s∈Kti

xts

∥∥∥2
≤ 6κ2 +

6L2

|S|
∑
r∈S

1

K

∑
s∈Kti

E
∥∥xtr − xts∥∥2 +

6L2

K

∑
r∈Kti

1

K

∑
s∈Kti

E
∥∥xtr − xts∥∥2

Substituting this back in (68) gives:

E

∥∥∥∥∥∥ 1

|S|
∑
r∈S
∇F ti,ti+1

r − 1

K

∑
s∈Kti

∇F ti,ti+1
s

∥∥∥∥∥∥
2

≤ H
ti+1−1∑
t=ti

6κ2

+H

ti+1−1∑
t=ti

6L2

|S|
∑
r∈S

1

K

∑
s∈Kti

E
∥∥xtr − xts∥∥2 +

6L2

K

∑
r∈Kti

1

K

∑
s∈Kti

E
∥∥xtr − xts∥∥2


(a)
≤ 6H2κ2 + 6HL2

(
7H3η2

(
σ2

b
+ 3κ2

))
+ 6HL2

(
7H3η2

(
σ2

b
+ 3κ2

))
= 6H2κ2 + 84L2H4η2

(
σ2

b
+ 3κ2

)
(b)
≤ 10H2κ2 +

21H2σ2

16b
. (69)

In (a) we used ti+1 − ti ≤ H and the bound
∑ti+1−1
t=ti

E ‖xtr − xts‖
2 ≤ 7H3η2

(
σ2

b + 3κ2
)
, which holds when

η ≤ 1
8HL ; we have already shown this in (22) in Lemma 2. In (b) we used η ≤ 1

8HL .
Substituting the bounds from (66), (67), (69) into (65) gives

E

∥∥∥∥∥∥ĝti,ti+1
accu − 1

K

∑
r∈Kti

∇F ti,ti+1
r

∥∥∥∥∥∥
2

≤ 3Υ 2 +
4H2σ2

bK
+ 3

(
10H2κ2 +

21H2σ2

16b

)

≤ 3Υ 2 +
4H2σ2

bK
+ 30H2κ2 +

4H2σ2

b

= 3Υ 2 +
8H2σ2

b
+ 30H2κ2,

where Υ 2 = O
(
σ2
0(ε+ ε′)

)
and σ2

0 = 25H2σ2

bε′

(
1 + 4d

3K

)
+ 28H2κ2.

This completes the proof of Claim 5.

Fact 1. Let F : Rd → R be an L-smooth function with a global minimizer x∗. Then, for every x ∈ Rd, we
have

‖∇F (x)‖2 ≤ 2L(F (x)− F (x∗)).

Proof. By definition of L-smoothness, we have F (y) ≤ F (x) + 〈∇F (x),y − x〉+ L
2 ‖y − x‖

2 holds for every
x,y ∈ Rd. Fix an arbitrary x ∈ Rd and take infimum over y on both sides:

inf
y
F (y) ≤ inf

y

(
F (x) + 〈∇F (x),y − x〉+

L

2
‖y − x‖2

)
(a)
= inf

v:‖v‖=1
inf
t

(
F (x) + t〈∇F (x),v〉+

Lt2

2

)
(b)
= inf

v:‖v‖=1

(
F (x)− 1

2L
〈∇F (x),v〉2

)
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(c)
=

(
F (x)− 1

2L
‖∇F (x)‖2

)
The value of t that minimizes the RHS of (a) is t = − 1

L 〈∇F (x),v〉, this implies (b); (c) follows from the
Cauchy-Schwarz inequality: 〈u,v〉 ≤ ‖u‖‖v‖, where equality is achieved whenever u = v. Now, substituting
inf
y
F (y) = F (x∗) yields the result.

C Omitted Details from Section 6
In this section, we prove Theorem 2. This can be proved along the lines of the proof of Theorem 1. Here we
only write what changes in those proofs. We prove the strongly-convex and non-convex parts of Theorem 2
in Appendix C.1 and Appendix C.2, respectively.

C.1 Strongly-convex
Let Kt ⊆ [R] denote the subset of clients of size |Kt| = K that are active at the t’th iteration. For any
t ∈ [ti : ti+1 − 1], let xt = 1

K

∑
k∈Kti

xtk denote the average of the local parameters of clients in the sampling
set Kti .

Following the proof of the strongly-convex part of Theorem 1 given in Section 4 until (33) gives∥∥xti+1 − x∗
∥∥2 ≤ (1 +

µη

2

)∥∥xti+1−1 − η∇F (xti+1−1)− x∗
∥∥2

+ 2η

(
η +

2

µ

)∥∥∥∥∥∥ 1

K

∑
r∈Kti

(
∇F (xti+1−1)−∇Fr(xti+1−1

r )
)∥∥∥∥∥∥

2

+ 2η

(
η +

2

µ

)∥∥∥∥∥∥F̂ ti,ti+1
accu − 1

K

∑
r∈Kti

ti+1−1∑
t=ti

∇Fr(xtr)

∥∥∥∥∥∥
2

(70)

We have already bounded the first term in Claim 3 (on page 16) by∥∥xti+1 − η∇F (xti+1−1)− x∗
∥∥2 ≤ (1− ηµ)

∥∥xti+1−1 − x∗
∥∥2 . (71)

In order to bound the second term, we follow the proof of Claim 4 exactly until (64), and then to bound∥∥∥xti+1−1
r − xti+1−1

s

∥∥∥2 for every r, s ∈ Kti , we use the bound from (59) in Lemma 4 and use η ≤ 1
5HL , which

gives ∥∥∥∥∥∥ 1

K

∑
r∈Kti

(
∇Fr(xti+1−1)−∇Fr(xti+1−1

r )
)∥∥∥∥∥∥

2

≤ 3Hκ2. (72)

To bound the third term in the RHS of (70), we can simplify the proof of Claim 5: Firstly, note that with
full-batch gradients, the variance σ2 becomes zero; secondly, as shown in Theorem 4, the robust estimation of
accumulated gradients holds with probability 1. Following the proof of Claim 5 with these changes and using
η ≤ 1

5HL , we get ∥∥∥∥∥∥F̂ ti,ti+1
accu − 1

K

∑
r∈Kti

ti+1−1∑
t=ti

∇Fr(xtr)

∥∥∥∥∥∥
2

≤ 2Υ 2
GD + 20H2κ2, (73)
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where ΥGD = O (Hκ
√
ε). Substituting all these bounds from (71)-(73) into (70) and simplifying further using(

1 + µη
2

)
(1− µη) ≤

(
1− µη

2

)
and

(
η + 2

µ

)
≤ 3

µ gives

∥∥xti+1 − x∗
∥∥2 ≤ (1− µη

2

)∥∥xti+1−1 − x∗
∥∥2 +

6η

µ

(
2Υ 2

GD + 23H2κ2
)

(74)

Note that (74) gives a recurrence at the synchronization indices. Now we give a recurrence at non-
synchronization indices. Take an arbitrary t ∈ [T ] and let ti ∈ IT be such that t ∈ [ti : ti+1 − 1];
when H ≥ 2, such t’s exist. Following the steps that we used to arrive at (39), we get the following (note
that the last term on the RHS of (39) is zero, as gr(xtr) = ∇Fr(xtr) holds for every r ∈ [R] and t ∈ [T ]; this
will also save us the factor of 2 in the previous term as we don’t have to use the Jensen’s inequality to get to
(39)):

∥∥xt+1 − x∗
∥∥2 ≤ (1 +

µη

2

)∥∥xt − x∗ − η∇F (xt)
∥∥2 + η

(
η +

2

µ

)∥∥∥∥∥ 1

K

∑
r∈Kt

(
∇F (xt)−∇Fr(xtr)

)∥∥∥∥∥
2

(75)

Substituting the bounds from (71) and (72) into (75) and simplifying the coefficients as above, we get∥∥xt+1 − x∗
∥∥2 ≤ (1− µη

2

)∥∥xt − x∗∥∥2 +
3η

µ
(3Hκ2) (76)

Now we have a recurrence at the synchronization indices given in (74) and at non-synchronization indices
given in (76). Let α =

(
1− µη

2

)
, β1 =

(
2Υ 2

GD + 23H2κ2
)
, and β2 =

(
3
2Hκ

2
)
. Following the same steps that

we used to arrive at (42) gives:∥∥xT − x∗∥∥2 ≤ αT ∥∥x0 − x∗
∥∥2 +

6η

µ

(
1

1− α
β2 +

1

1− αH
β1

)
(77)

Since α =
(
1− µη

2

)
, we have αH =

(
1− µη

2

)H (a)
≤ exp(−µηH2 )

(b)
≤ 1− µηH

2 +
(
µηH
2

)2 (c)
≤ 1− µηH

2 + 1
10
µηH
2 =

1 − 9
10
µηH
2 . In (a) we used the inequality (1 − 1

x )x ≤ 1
e which holds for any x > 0; in (b) we used

exp(−x) ≤ 1− x+ x2 which holds for any x ≥ 0; in (c) we used η ≤ 1
5HL and µ ≤ L, which imply µηH

2 ≤ 1
10 .

Substituting these in (77) gives∥∥xT − x∗∥∥2 ≤ (1− µη

2

)T ∥∥x0 − x∗
∥∥2 +

6η

µ

(
2

µη
β2 +

20

9µηH
β1

)
≤
(

1− µη

2

)T ∥∥x0 − x∗
∥∥2 +

6× 20

9µ2

(
9

10
β2 +

1

H
β1

)
≤
(

1− µη

2

)T ∥∥x0 − x∗
∥∥2 +

14

µ2

(
2Υ 2

GD
H

+ 25Hκ2
)
, (78)

where ΥGD = O (Hκ
√
ε). Substituting the value of η = 1

5HL yields the convergence rate (9) in the strongly-
convex part of Theorem 2. Note that (78) holds with probability 1.

C.2 Non-convex
Following the proof of the non-convex part of Theorem 1 given in Section 5 until (47) and using η ≤ 1

5HL
gives:

F (xti+1) ≤ F (xti+1−1)− η

2

∥∥∇F (xti+1−1)
∥∥2 +

6η

5
‖C‖2, (79)

where C = 1
K

∑
r∈Kti

(
∇F (xti+1−1)−∇Fr(xti+1−1

r )
)
−
(
F̂
ti,ti+1
accu − 1

K

∑
r∈Kti

∑ti+1−1
t=ti

∇Fr(xtr)
)
.
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Using the bounds from (72) and (73), together with the Jensen’s inequality, we can bound ‖C‖2 as follows:

‖C‖2 ≤ 2(3Hκ2) + 2(2Υ 2
GD + 20H2κ2) ≤ 2(2Υ 2

GD + 23H2κ2) (80)

Substituting the bound from (80) into (79) gives:

F (xti+1) ≤ F (xti+1−1)− η

2

∥∥∇F (xti+1−1)
∥∥2 +

12η

5

(
2Υ 2

GD + 23H2κ2
)
, (81)

where ΥGD = O (Hκ
√
ε).

Note that above recurrence in (81) holds only at the synchronization indices. Now we give a recurrence at
non-synchronization indices.

We have done a similar calculations in the non-convex part of Theorem 1 in Section 5.
Take an arbitrary t ∈ [T ] and let ti ∈ IT be such that t ∈ [ti : ti+1 − 1]; when H ≥ 2, such t’s exist.

Following the same steps until (50) and using η ≤ 1
5HL gives:

F (xt+1) ≤ F (xt)− η

2

∥∥∇F (xt)
∥∥2 +

6η

5
‖D‖2, (82)

where D = 1
K

∑
r∈Kti

(∇F (xt)−∇Fr(xtr)).
Using the bound from (72), we have ‖D‖2 ≤ 3Hκ2. Substituting this in (82) gives:

F (xt+1) ≤ F (xt)− η

2

∥∥∇F (xt)
∥∥2 +

6η

5
(3Hκ2) (83)

Now we have a recurrence at the synchronization indices given in (81) and at non-synchronization indices
given in (83). Adding (81) and (83) from t = 0 to T (use (81) for the synchronization indices and (83) for
the rest of the indices) gives:

T∑
t=0

F (xt+1) ≤
T∑
t=0

F (xt)− η

2

T∑
t=0

∥∥∇F (xt)
∥∥2 +

12η

5

[
T

H

(
2Υ 2

GD + 23H2κ2
)

+

(
T − T

H

)(
3

2
Hκ2

)]
(84)

After rearranging and simplifying the last constant terms, we get:

1

T

T∑
t=0

∥∥∇F (xt)
∥∥2 ≤ 2

ηT

[
F (x0)− F (xT+1)

]
+

24

5

(
2Υ 2

GD
H

+ 25Hκ2
)

(85)

Note that the last term in (85) is a constant. So, it would be best to take the step-size η to be as large as possible
such that it satisfies η ≤ 1

5HL . We take η = 1
5HL . Substituting this in (85) and using F (xT+1) ≥ F (x∗) gives

1

T

T∑
t=0

∥∥∇F (xt)
∥∥2 ≤ 10HL

T

[
F (x0)− F (x∗)

]
+

24

5

(
2Υ 2

GD
H

+ 25Hκ2
)
, (86)

where ΥGD = O (Hκ
√
ε). This yields the convergence rate (10) in the non-convex part of Theorem 2. Note

that (86) holds with probability 1.
This concludes the proof of Theorem 2.
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