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A VARIATIONAL PRINCIPLE FOR THE METRIC MEAN

DIMENSION OF LEVEL SETS

LUCAS BACKES AND FAGNER B. RODRIGUES

Abstract. We prove a variational principle for the upper and lower metric
mean dimension of level sets







x ∈ X : lim
n→∞

1

n

n−1
∑

j=0

ϕ(fj (x)) = α







associated to continuous potentials ϕ : X → R and continuous dynamics
f : X → X defined on compact metric spaces and exhibiting the specification
property. This result relates the upper and lower metric mean dimension of the
above mentioned sets with growth rates of measure-theoretic entropy of par-
titions decreasing in diameter associated to some special measures. Moreover,
we present several examples to which our result may be applied to. Similar re-
sults were previously known for the topological entropy and for the topological

pressure.

1. Introduction

One of the most important notions in Dynamical Systems is that of topological
entropy. It is a topological invariant and, roughly speaking, measures how chaotic
a system is. In particular, it is an effective tool to decide whether two systems are
conjugated or not. Nevertheless, there are plenty of systems with infinite topological
entropy (for instance, they form a C0-generic set in the space of homeomorphisms
of a compact manifold [39] with dimension greater than one) and thus, in this
context, the entropy is not useful anymore. Therefore, in order to study these
types of systems, new dynamical quantities are required and an example of such a
quantity is the metric mean dimension.

The notion of metric mean dimension was introduced by Lindenstrauss andWeiss
in [24] as metric-dependent analog of the mean dimension, a topological invariant
associated to a dynamical system which was introduced by Gromov [12]. This last
notion has several applications, like in the study of embedding problems [18], and
the metric mean dimension presents an upper bound to it. But more than that,
the metric mean dimension turned out to be useful in several contexts like in the
study of compression [15, 16].

In the present paper we give a modest contribution to the study of ergodic theo-
retical aspects of the metric mean dimension by presenting a variational principle.
Previous connections between ergodic theory and metric mean dimension were pre-
sented, for instance, by Lindenstrauss and Tsukamoto [23], Velozo and Velozo [35],

Tsukamoto [34], Shi [29], Gutman and Śpiewak [17] and Yang, Chen and Zhou
[36]. For more on these works, see Section 2.8. The main novelty of our work with
respect to the previously mentioned ones is that our variational principle holds for
special subsets and not only for the whole phase space. More precisely, we consider
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level sets

Kα =







x ∈ X : lim
n→∞

1

n

n−1
∑

j=0

ϕ(f j(x)) = α







associated to continuous potentials ϕ : X → R and continuous dynamics f : X → X
defined on compact metric spaces exhibiting the specification property and present
a relation between the upper and lower metric mean dimension of the above men-
tioned sets and growth rates of measure-theoretic entropy of partitions decreasing
in diameter associated to some special measures. This is the content of Theorem
A. In Section 4 we present several examples to which our result is applicable.

1.1. Mutlifractal analysis. The general idea of multifractal analysis consists in
decomposing the phase space into subsets of points with similar dynamical behavior,
for instance, in sets of points with the same Birkhoff average, the same Lyapunov
exponents or the same local entropies, and to describe the size of each of such
subsets from a geometrical or topological viewpoint. The information (collection
of numbers) obtained via this procedure for one such decomposition of the phase
space is called a multifractal spectrum. Then, in the best-case scenario the idea
is that if one knows some of these spectra one could fully recover the dynamics
(see for instance [2, 3]). This phenomenon is sometimes called multifractal rigidity.
But even when we are not in such a nice world, we still can get useful information
about the dynamics from these various spectra (see for instance [11, 25, 30, 31]).
Our main result, Theorem A, may be seen as a small contribution to the study of
one such spectra, namely, the one obtained by measuring the size of level sets of
Birkhoff averages with respect to the metric mean dimension. In particular, as a

consequence of our result we get that the map α 7→ mdimM

(

Kα, f, d
)

is concave

when restricted to the set of parameters α ∈ R for which Kα 6= ∅. As far as we
know, this is the first time this spectrum was considered and we hope that our
results may be of some more help in the study of multifractal analysis of systems
with infinite topological entropy.

2. Definitions and Statements

Let (X, d) be a compact metric space and f : X → X be a continuous map.
Given n ∈ N, we define the dynamical metric dn : X ×X → [0,∞) by

dn(x, z) = max
{

d(x, z), d(f(x), f(z)), . . . , d(fn−1(x), fn−1(z))
}

.

It is easy to see that dn is indeed a metric and, moreover, generates the same
topology as d. Furthermore, given ε > 0, n ∈ N and a point x ∈ X , we define the
open (n, ε)-ball around x by

Bn(x, ε) = {y ∈ X ; dn(x, y) < ε}.
We sometimes call these (n, ε)-balls dynamical balls of radius ε and length n. We
say that a set E ⊂ X is (n, ε)–separated by f if dn(x, z) > ε for every x, z ∈ E.

2.1. The metric mean dimension. Given n ∈ N and ε > 0, let us denote by
s(f, n, ε) the maximal cardinality of all (n, ε)–separated subsets of X by f which,
due to the compactness of X , is finite.

The upper metric mean dimension of f with respect to d is given by

mdimM

(

X, f, d
)

= lim sup
ε→ 0

h(f, ε)

| log ε|
where

h(f, ε) = lim sup
n→∞

1

n
log s(f, n, ε).
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Similarly, the lower metric mean dimension of f with respect to d is given by

mdimM

(

X, f, d
)

= lim inf
ε→ 0

h(f, ε)

| log ε| .

In the case when mdimM

(

X, f, d
)

= mdimM

(

X, f, d
)

this common value is called

the metric mean dimension of f with respect to d and is denoted simply by

mdimM

(

X, f, d
)

.

Recall that the topological entropy of the map f is given by

htop(f) = lim
ε→ 0

h(f, ε).

Consequently, mdimM

(

X, f, d
)

= mdimM

(

X, f, d
)

= 0 whenever the topological

entropy of f is finite. In particular, the metric mean dimension is a suitable quantity
to study systems with infinite topological entropy. For more on these quantities see
[24, 23, 34] and references therein.

2.2. The metric mean dimension for non-compact subset. We now present
the notion of metric mean dimension on non-compact sets introduced in [10]. Given
a set Z ⊂ X , let us consider

m(Z, s,N, ε) = inf
Γ

{

∑

i∈I

exp (−sni)

}

,

where the infimum is taken over all covers Γ = {Bni
(xi, ε)}i∈I of Z with ni ≥ N .

We also consider

m(Z, s, ε) = lim
N→∞

m(Z, s,N, ε).

One can show (see for instance [26]) that there exists a certain number s0 ∈ [0,+∞)
such that m(Z, s, ε) = 0 for every s > s0 and m(Z, s, ε) = +∞ for every s < s0. In
particular, we may consider

h
(

Z, f, ε
)

= inf{s : m(Z, s, ε) = 0} = sup{s : m(Z, s, ε) = +∞}.

The upper metric mean dimension of f on Z is then defined as the following limit

mdimM

(

Z, f, d
)

= lim sup
ε→0

h
(

Z, f, ε
)

| log ε| .

Similarly, the lower metric mean dimension of f on Z is defined as

mdimM

(

Z, f, d
)

= lim inf
ε→0

h
(

Z, f, ε
)

| log ε| .

In the case when Z = X one can check that the two definitions of upper/lower
metric mean dimension given above actually coincide.

2.3. Level sets of a continuous map. Let C(X,R) denote the set of all contin-
uous maps ϕ : X → R and take ϕ ∈ C(X,R). For α ∈ R, let

Kα =







x ∈ X : lim
n→∞

1

n

n−1
∑

j=0

ϕ(f j(x)) = α







. (1)

We also consider the set

Lϕ = {α ∈ R : Kα 6= ∅}.
It is easy to see that Lϕ is a bounded and non-empty set [32, Lemma 2.1]. Moreover,
if f satisfies the so called specification property (see Section 2.6) then Lϕ is an
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interval of R and, moreover, Lϕ = {
∫

ϕdµ;µ ∈ Mf(X)} where Mf(X) stands for
the set of all invariant measures (see [33, Lemma 2.5]).

2.4. The auxiliary quantities ΛϕmdimM (f, α, d) and ΛϕmdimM (f, α, d). Fix
α ∈ R and ϕ ∈ C(X,R). For δ > 0 and n ∈ N define the set

P (α, δ, n) =







x ∈ X :

∣

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

ϕ(f j(x)) − α

∣

∣

∣

∣

∣

∣

< δ







.

LetN(α, δ, n, ε) denote the minimal number of (n, ε)-balls needed to cover P (α, δ, n).
Define

Λϕ(α, ε) = lim
δ→0

lim inf
n→∞

1

n
logN(α, δ, n, ε)

and

ΛϕmdimM (f, α, d) = lim sup
ε→0

Λϕ(α, ε)

| log ε| ,

ΛϕmdimM (f, α, d) = lim inf
ε→0

Λϕ(α, ε)

| log ε| .
(2)

Remark 2.1. Observe that, if M(α, δ, n, ε) denotes the maximal cardinality of a
(n, ε)-separated set contained in P (α, δ, n), then we have that

N(α, δ, n, ε) ≤M(α, δ, n, ε) ≤ N(α, δ, n, ε/2).

In particular,

Λϕ(α, ε) = lim
δ→0

lim inf
n→∞

1

n
logM(α, δ, n, ε). (3)

2.5. The main quantities HϕmdimM(f, α, d) and HϕmdimM(f, α, d). Given ϕ ∈
C(X,R) and α ∈ R, let us consider

Mf(X,ϕ, α) =

{

µ is f -invariant and

∫

ϕ dµ = α

}

.

A simple observation is that Mf(X,ϕ, α) 6= ∅ for every α ∈ Lϕ (see [32, Lemma
4.1]).

Let µ ∈ Mf (X). We say that ξ = {C1, . . . , Ck} is a measurable partition of X
if every Ci is a measurable set, µ

(

X \ ∪k
i=1Ci

)

= 0 and µ (Ci ∩ Cj) = 0 for every
i 6= j. The entropy of ξ with respect to µ is given by

Hµ(ξ) = −
k
∑

i=1

µ(Ci) log(µ(Ci)).

Given a measurable partition ξ, we consider ξn =
∨n−1

j=0 f
−jξ. Then, the metric

entropy of (f, µ) with respect to ξ is given by

hµ(f, ξ) = lim
n→+∞

1

n
Hµ(ξ

n).

Using this quantity we define

HϕmdimM (f, α, d) = lim sup
ε→0

1

| log ε| sup
µ∈Mf (X,ϕ,α)

inf
|ξ|<ε

hµ(f, ξ) (4)

and

HϕmdimM (f, α, d) = lim inf
ε→0

1

| log ε| sup
µ∈Mf (X,ϕ,α)

inf
|ξ|<ε

hµ(f, ξ)
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where |ξ| denotes the diameter of the partition ξ and the infimum is taken over all
finite measurable partitions of X satisfying |ξ| < ε.

We also recall that the metric entropy of (f, µ) is given by

hµ(f) = sup
ξ
hµ(f, ξ)

where the supremum is taken over all finite measurable partitions ξ of X .

2.6. Specification property. We say that f satisfies the specification property if
for every ǫ > 0, there exists an integer m = m(ǫ) such that for any collection of
finite intervals Ij = [aj , bj] ⊂ N, j = 1, . . . , k, satisfying aj+1 − bj ≥ m(ǫ) for every
j = 1, . . . , k − 1 and any x1, . . . , xk in X , there exists a point x ∈ X such that

d(fp+ajx, fpxj) < ǫ for all p = 0, . . . , bj − aj and every j = 1, . . . , k.

The specification property is present in many interesting examples. For instance,
every topologically mixing locally maximal hyperbolic set has the specification prop-
erty and factors of systems with specification have specification (see for instance
[22]). Other examples of systems satisfying this property which are more adapted
to our purposes will appear in Section 4.

2.7. Main result. Our main result may be seen as an extension of [32, Theorem
5.1] to the infinite entropy setting.

Theorem A. Suppose f : X → X is a continuous transformation with the specifi-
cation property. Let ϕ ∈ C(X,R) and α ∈ R be such that Kα 6= ∅. Then

mdimM

(

Kα, f, d
)

= ΛϕmdimM (f, α, d) = HϕmdimM (f, α, d).

Similarly,

mdimM

(

Kα, f, d
)

= ΛϕmdimM (f, α, d) = HϕmdimM (f, α, d).

We consider the equalities between mdimM

(

Kα, f, d
)

and HϕmdimM (f, α, d)

and between mdimM

(

Kα, f, d
)

and HϕmdimM (f, α, d) to be the most important

part of our result because it relates a topological quantity with one that has an
ergodic-theoretical flavor. Moreover, in some cases it allow us to obtain some
interesting properties about the multifractal spectrum. For instance, will show
bellow that

Proposition 2.2. Under the assumptions of Theorem A, the map

Lϕ ∋ α 7→ HϕmdimM (f, α, d)

is concave.

Consequently, combining this result with Theorem A we get that

Corollary 2.3. Under the assumptions of Theorem A, the map

Lϕ ∋ α 7→ mdimM

(

Kα, f, d
)

is concave.

An interesting question is whether we can change the order between the limit and
the supremum in the definition of HϕmdimM (f, α, d) and HϕmdimM (f, α, d). This
would allow, for instance, to talk about the existence of “maximizing measures”:
measures that realize the supremum. Such a measure would capture the complexity
of the system over all scales ε > 0. It was observed in [23, Section VIII] that a similar
question involving different ergodic quantities is, in general, false. Nevertheless,
under the additional assumption that f has the marker property, one can do such a
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change (in the setting of [23]) as observed by Yang, Chen and Zhou [36]. As for our
hypothesis that f satisfies the specification property, we do not know whether it is
actually required for Theorem A to hold or if it is just an artefact of the technique.

2.8. Related results. As already mentioned, for the topological entropy a result
similar to Theorem A was obtained in [32]. In fact, our result was inspired by that
one. Moreover, [32] was extended to the framework of topological pressure in [33].

As for variational results involving the upper metric mean dimension, there are
several works dealing with this problem. For instance, [23] presented a variational
principle relating the metric mean dimension with the supremum of certain rate
distortion functions over invariant measures of the system. This was further ex-
plored in [35]. More recently, [29] obtained variational principles for the metric
mean dimension in terms of Brin-Katok local entropy and Shapira’s entropy of an
open cover. One result that is more connected to ours is the one obtained in [17]
which says that

mdimM (X, f, d) = lim sup
ε→0

1

| log ε| sup
µ∈Mf (X)

inf
|ξ|<ε

hµ(f, ξ) (5)

and

mdimM (X, f, d) = lim inf
ε→0

1

| log ε| sup
µ∈Mf (X)

inf
|ξ|<ε

hµ(f, ξ). (6)

These are variational results for the upper/lower metric mean dimension of the
entire space X while Theorem A applies also to level sets of continuous maps ϕ.
Observe that in the case when ϕ is a constant map equal to α, the α-level set of
it coincides with X . In particular, whenever f has the specification property, (5)
and (6) may be seen as particular cases of our result. We stress however that the
results in [17] do not assume such property.

3. Proofs of Theorem A and Proposition 2.2

In this section we present the proofs of Theorem A and Proposition 2.2 starting
with the latter one which is much simpler.

Proof of Proposition 2.2. Given measures µ1, µ2 ∈ Mf (X), using that the map
µ → Hµ(ξ) is concave for any finite and measurable partition ξ (see [8, Lemma
9.5.1]), it follows that for any t ∈ [0, 1],

thµ1(f, ξ) + (1 − t)hµ2(f, ξ) ≤ htµ1+(1−t)µ2
(f, ξ).

In particular,

t inf
|ξ|<ε

hµ1(f, ξ) + (1− t) inf
|ξ|<ε

hµ2(f, ξ) ≤ inf
|ξ|<ε

htµ1+(1−t)µ2
(f, ξ). (7)

Now, given α1, α2 ∈ Lϕ, by the comments in Section 2.3 there exist invariant
measures µ1, µ2 ∈ Mf (X) such αi =

∫

ϕdµi, i = 1, 2. For any t ∈ [0, 1], consider
µ = tµ1 + (1 − t)µ2 and α = tα1 + (1− t)α2. Then, µ ∈ Mf (X,ϕ, α). Combining
this observation with (7) we get that

t sup
µ1∈Mf (X,ϕ,α1)

inf
|ξ|<ε

hµ1(f, ξ) + (1 − t) sup
µ2∈Mf (X,ϕ,α2)

inf
|ξ|<ε

hµ2(f, ξ)

≤ sup
µ1∈Mf (X,ϕ,α1),µ2∈Mf (X,ϕ,α2)

inf
|ξ|<ε

htµ1+(1−t)µ2
(f, ξ)

≤ sup
µ∈Mf (X,ϕ,α)

inf
|ξ|<ε

hµ(f, ξ).
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Then, dividing everything by | log ε|, taking “lim infε→0” and using that lim inf(a)+
lim inf(b) ≤ lim inf(a+ b) we get that

tHϕmdimM (f, α1, d)+(1−t)HϕmdimM (f, α2, d) ≤ HϕmdimM (f, tα1+(1−t)α2, d).

Consequently, the map Lα ∋ α 7→ HϕmdimM (f, α, d) is concave concluding the
proof of the proposition. �

Remark 3.1. It is not clear to us whether a version of Proposition 2.2 holds for the
map Lα ∋ α 7→ HϕmdimM (f, α, d). In fact, in order to get the desired conclusion
in the aforementioned proposition we have used the property that lim inf(a) +
lim inf(b) ≤ lim inf(a+ b) which obviously does not hold for the lim sup.

We now present the the poof of Theorem A. We start considering the first claim
of the theorem and, for the sake of clarity of the presentation, we split it into
three main propositions. We emphasize that this proof is an adaptation of the
proof of Theorem 5.1 of [32] to our setting. Fix ϕ ∈ C(X,R) and α ∈ R such

that Kα 6= ∅. Moreover, assume initially that all the quantities mdimM

(

Kα, f, d
)

,

ΛϕmdimM (f, α, d) and HϕmdimM (f, α, d) are finite.

Proposition 3.2. Under the hypotheses of Theorem A we have that

mdimM (Kα, f, d) ≤ ΛϕmdimM (f, α, d).

Proof. Let {εj}j∈N be a sequence of positive numbers converging to zero such that

mdimM (Kα, f, d) = lim
j→∞

h(Kα, f, εj)

| log εj |
.

In particular we have that

lim sup
j→∞

Λϕ(α, εj)

| log εj |
≤ lim sup

ε→0

Λϕ(α, ε)

| log ε| = ΛϕmdimM (f, α, d).

Given δ > 0 and k ∈ N, let us consider the set

G(α, δ, k) =
∞
⋂

n=k

P (α, δ, n)

=

∞
⋂

n=k







x ∈ X :

∣

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

ϕ(f j(x))− α

∣

∣

∣

∣

∣

∣

< δ







.

As a consequence of the definition we have that Kα ⊂ ⋃k∈N
G(α, δ, k).

Now, given k ∈ N, sinceG(α, δ, k) ⊂ P (α, δ, n) for n ≥ k, it follows thatG(α, δ, k)
may be covered by N(α, δ, n, εj) dynamical balls of radius εj and length n. Thus,
for every s ≥ 0 and n ≥ k we have

m(G(α, δ, k), s, εj) ≤ N(α, δ, n, εj) exp(−ns).
Let s = s(εj) > Λϕ(α, εj) and γ(εj) = (s−Λϕ(α, εj))/2. Then, if δj > 0 is small

enough, there exists an increasing sequence {nℓ}ℓ∈N ⊂ N such that

N(α, δj , nℓ, εj) ≤ exp(nℓ(Λϕ(α, εj) + γ(εj))).

Thus, assuming without lost of generality that n1 ≥ k and combining the previous
observations we conclude that

m(G(α, k, δj), s(εj), εj) ≤ exp(−nℓγ(εj)).

In particular, as γ(εj) > 0, letting nℓ → ∞ we obtain m(G(α, k, δj), s(εj), εj) = 0.
Consequently,

h(G(α, k, δj), f, εj) ≤ s(εj)
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which implies that

h(Kα, f, εj) ≤ sup
k
h(G(α, k, δj), f, εj) ≤ s(εj).

Hence,

mdimM (Kα, f, d) = lim sup
j→∞

h(Kα, f, εj)

| log εj |

≤ lim sup
j→∞

s(εj)

| log εj |

≤ lim sup
j→∞

2γ(εj)

| log εj |
+ lim sup

j→∞

Λϕ(α, εj)

| log εj |

≤ lim sup
j→∞

2γ(εj)

| log εj |
+ ΛϕmdimM (f, α, d).

Therefore, as we can choose s(εj) arbitrarily close to Λϕ(α, εj), the limsup in

the last step is zero for an adequate choice of s(εj). Then, mdimM (Kα, f, d) ≤
ΛϕmdimM (f, α, d) completing the proof of the proposition. �

Proposition 3.3. Under the hypotheses of Theorem A we have that

HϕmdimM (f, α, d) ≤ mdimM (Kα, f, d).

The strategy of the proof consists in constructing a fractal set F contained in Kα

and a special probability measure η supported on F that satisfies the hypothesis of
the so called Entropy Distribution Principle (see Lemma 3.10). This will be enough
to get the desired inequality. As a step towards the definition of F , we introduce a
family of finite sets Sk which play a major role in the construction.

In order to prove Proposition 3.3 we will need the following auxiliary quantity.
For µ ∈ Mf (X), δ > 0 and n ∈ N, let us denote by Nµ(δ, ε, n) the minimal number
(n, ε)-balls needed to cover a set of µ-measure bigger than 1− δ. Then, we define

hµ(f, ε, δ) = lim sup
n→∞

1

n
logNµ(δ, ε, n). (8)

Proof of Proposition 3.3. Fix γ > 0 and let {δk}k∈N be a decreasing sequence con-
verging to 0. Take ε = ε(γ) > 0 and µ ∈ Mf (X,ϕ, α) so that

inf |ξ|<5ε hµ(f, ξ)

| log 5ε| ≥ HϕmdimM (f, α, d)− γ

2

and
h(Kα, f, ε/2)

| log ε/2| ≤ mdimM (Kα, f, d) + γ. (9)

Let U be a finite open cover of X with diameter diam(U) ≤ 5ε and Lebesgue
number Leb(U) ≥ 5ε

4 . We now construct an auxiliary measure which is a finite
combination of ergodic measures and “approximates” µ. To prove this lemma we
follow the idea from [37, p. 535]. In what follows, ∂ξ will denote the boundary of
the partition ξ which is just the union of the boundaries of all the elements of the
partition and ξ ≻ U means that ξ refines U , that is, each element of ξ is contained
in an element of U .
Lemma 3.4. For each k ∈ N, there exists a measure νk ∈ Mf(X) satisfying

(a) νk =

j(k)
∑

i=1

λiν
k
i , where λi > 0,

j(k)
∑

i=1

λi = 1 and νki ∈ Merg

f (X);

(b) inf
ξ≻U

hµ (f, ξ) ≤ inf
ξ≻U

hνk (f, ξ) + δk/2;
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(c)

∣

∣

∣

∣

∫

X

ϕ dνk −
∫

X

ϕ dµ

∣

∣

∣

∣

< δk.

Proof of Lemma 3.4. Given k ∈ N, let βk > 0 be such that for every τ1, τ2 ∈
Mf (X),

dMf (X)(τ1, τ2) < βk =⇒
∣

∣

∣

∣

∫

ϕdτ1 −
∫

ϕdτ1

∣

∣

∣

∣

< δk

where dMf (X) is a metric in Mf (X). Let P = {P1, . . . , Pj(k)} be a partition
of Mf (X) whose diameter with respect to dMf (X) is smaller than βk. By the
Ergodic Decomposition Theorem there exists a measure µ̂ on Mf(X) satisfying
µ̂(Merg

f (X)) = 1 such that

∫

ψ(x)dµ(x) =

∫

Mf (X)

(∫

X

ψ(x)dτ(x)

)

dµ̂(τ) for every ψ ∈ C(X,R).

Let us consider now λi = µ̂(Pi) and take νki ∈ Pi∩Merg
f (X) such that infξ≻U hνk

i
(f, ξ) ≥

infξ≻U hτ (f, ξ) − δk/2 for µ̂-almost every τ ∈ Pi ∩ Merg
f (X). Observe that such

a measure νki exists because supτ∈Merg
f

(X) infξ≻U hτ (f, ξ) < +∞. This latter fact

follows from Lemma 3 and Theorem 5 of [29] and the fact that the upper metric

mean dimension is finite. Finally, define νk =
∑j(k)

i=1 λiν
k
i . It is easy to see that

νk satisfies properties a) and c) from the statement. Let us now check that it also
satisfies b). By [19, Proposition 5] we know that

inf
ξ≻U

hµ (f, ξ) =

∫

Mf (X)

inf
ξ≻U

hτ (f, ξ) dµ̂(τ).

Thus, by our choice of the measures νki it follows that

inf
ξ≻U

hµ (f, ξ) =

∫

Mf (X)

inf
ξ≻U

hτ (f, ξ) dµ̂(τ)

≤
j(k)
∑

i=1

λi inf
ξ≻U

hνk
i
(f, ξ) + δk/2

≤ inf
ξ≻U

hνk (f, ξ) + δk/2

completing the proof of the lemma. �

Let νk be as in the previous lemma. Using the fact that each measure νki is
ergodic, by the proof of [29, Theorem 9] there exists a finite Borel measurable
partition ξk which refines U so that

hνk
i
(f, 5ε, γ) ≤ hνk

i
(f, ξk) ≤ hνk

i
(f, 5ε/4, γ) + δk. (10)

Now, take a finite Borel partition ξ refining U with µ(∂ξ) = 0 such that

hµ (f, ξ)− δk ≤ inf
ζ≻U

hνk (f, ζ) .

In particular, since ξk ≻ U ,

hµ (f, ξ)− δk ≤ hνk (f, ξk) . (11)

Moreover, since ξ ≻ U it follows that |ξ| < 5ε and thus

hµ(f, ξ)

| log 5ε| ≥ HϕmdimM (f, α, d)− γ. (12)
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Again, since each νki is ergodic, there exists ℓk ∈ N large enough for which the
set

Yi(k) =







x ∈ X :

∣

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

ϕ(f j(x))−
∫

X

ϕ dνki

∣

∣

∣

∣

∣

∣

< δk ∀ n ≥ ℓk







has νki -measure bigger than 1− γ for every k ∈ N and i ∈ {1, . . . , j(k)}.
By [33, Lemma 3.6], there exists n̂k → ∞ with [λin̂k] ≥ ℓk so that the maximal

cardinality of an ([λin̂k], 5ε/4)-separated set in Yi(k), denoted by Mk,i, satisfies

Mk,i ≥ exp

(

[λin̂k]

(

hνk
i
(f, 5ε/4, γ)− 4γ

j(k)

))

. (13)

Furthermore, the sequence n̂k can be chosen such that n̂k ≥ 2mk where mk =
m(ε/2k+2) is as in the definition of the specification property. Let nk := mk(j(k)−
1) +

∑

i[λin̂k]. Observe that nk/n̂k → 1.
Denote by Ei,k([λin̂k], 5ε/4) a maximal ([λin̂k], 5ε/4)-separated set in Yi(k). By

the specification property, for each

x1 ∈ E1,k(n1, 5ε/4), x2 ∈ E2,k(n2, 5ε/4), . . . , xj(k) ∈ Ej(k),k(nj(k), 5ε/4),

there exists y = y(x1, . . . , xj(k)) ∈ X so that the pieces of orbits

{xi, f(xi), . . . , f [λin̂k]−1(xi); i = 1, . . . , j(k)}

are ε/2k-shadowed by y with gapmk. We claim that if (x1, . . . , xj(k)) 6= (x′1, . . . , x
′
j(k))

then y(x1, . . . , xj(k)) 6= y′(x′1, . . . , x
′
j(k)). Indeed, if xi 6= x′i,

5ε

4
< d[λin̂k](xi, x

′
i)

≤ d[λin̂k](xi, f
[λ1n̂k]+···+[λi−1n̂k]+(i−1)mk(y))

+ d[λin̂k](x
′
i, f

[λ1n̂k]+···+[λi−1n̂k]+(i−1)mk(y′))

+ d[λin̂k](f
[λ1n̂k]+···+[λi−1n̂k]+(i−1)mk(y), f [λ1n̂k]+···+[λi−1n̂k]+(i−1)mk(y′))

< 2
ε

2k+2
+ d[λin̂k](f

[λ1n̂k]+···+[λi−1n̂k]+(i−1)mk(y), f [λ1n̂k]+···+[λi−1n̂k]+(i−1)mk(y′)),

which implies that dnk
(y, y′) > 9ε/8 proving our claim. Moreover, as a by-product

of this observation we get that

Sk = {y(x1, . . . , xj(k)) : xi ∈ Ei,k([λin̂k], 5ε/4) for i = 1, . . . , j(k)}

is a (nk, 9ε/8)-separated set with cardinality Mk :=
∏j(k)

i=i Mk,i. Combining (10),
(11) and (13) with the the choices of ε, γ and nk and recalling that nk/n̂k → 1 we
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get that for k sufficiently large

Mk =

j(k)
∏

i=i

♯Ei,k([λin̂k], 9ε/8) ≥ exp





j(k)
∑

i=1

[λin̂k]

(

hνk
i
(f, 5ε/4, γ)− 4γ

j(k)

)



 (14)

≥ exp



n̂k

j(k)
∑

i=1

λihνk
i
(f, 5ε/4, γ)− 4n̂kγ





≥ exp



n̂k

j(k)
∑

i=1

λihνk
i
(f, ξk)− 4n̂kγ − n̂kδk





≥ exp (n̂k(hνk(f, ξk)− 4γ − δk))

≥ exp (Rknk(hνk(f, ξk, γ)− 4γ − δk))

≥ exp (Rknk(hµ(f, ξ)− 4γ − 2δk))

≥ exp (Rknk(hµ(f, ξ)− 5γ))

for some Rk ∈ (0, 1).
Let y = y(x1, . . . , xk) ∈ Sk. Then,

|Snk
ϕ(y)− nkα| ≤

∣

∣

∣

∣

Snk
ϕ(y)− nk

(∫

ϕdνk − δk

)∣

∣

∣

∣

≤
j(k)−1
∑

i=1

∣

∣

∣

∣

S[λin̂k]ϕ(f
∑i−1

t=1[λtn̂k]+(i−1)mk(y))− nkλi

∫

ϕdνki

∣

∣

∣

∣

+ nkδk +mk(j(k)− 1)‖ϕ‖

≤
j(k)−1
∑

i=1

∣

∣

∣

∣

S[λin̂k]ϕ(xi)− [λink]

∫

ϕdνki

∣

∣

∣

∣

+ nkδk +mkj(k)‖ϕ‖+ nkVar(ϕ, ε/2
k)

< δk

j(k)−1
∑

i=1

[λin̂k] +mkj(k)‖ϕ‖ + nkδk + nkVar(ϕ, ε/2
k).

Thus, for sufficiently large k,
∣

∣

∣

∣

1

nk
Snk

ϕ(y)− α

∣

∣

∣

∣

≤ δk +Var(ϕ, ε/2k) +
1

k
. (15)

We now choose a sequence {Nk}k∈N of positive integers such that N1 = 1 and

(1) [RkNk] ≥ 2nk+1+mk+1 , for k ≥ 2;
(2) [Rk+1Nk+1] ≥ 2[R1N1n1]+···+[RkNk(nk+mk)], for k ≥ 1.

Observe that this sequence {Nk}k∈N grows very fast and

lim
k→∞

nk+1 +mk+1

RkNk
= 0 and lim

k→∞

R1N1n1 + · · ·+RkNk(nk +mk)

Rk+1Nk+1
= 0. (16)

Moreover, we enumerate the points in Sk as

Sk = {xki : i = 1, . . . ,Mk}.
For any (i1, . . . , iNk

) ∈ {1, 2, . . . ,Mk}[RkNk], let y(i1, . . . , i[RkNk]) ∈ X be given

by the specification property so that its orbit ε/2k-shadows, with gapmk, the pieces
of orbits {xkij , f(xkij ), . . . , fnk−1(xkij )}, j = 1, 2, . . . , [RkNk]. Then, define

Ck = {y(i1, . . . , i[RkNk]) ∈ X : (i1, . . . , i[RkNk]) ∈ {1, 2, . . . ,Mk}[RkNk]}.
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Moreover, consider
ck = [RkNk]nk + ([RkNk]− 1)mk.

We now observe that different sequences in {1, 2, . . . ,Mk}[RkNk] give rise to dif-
ferent points in Ck and that such points are uniformly separated with respect to
dck .

Lemma 3.5 (Lemma 5.1 of [32]). If (i1, . . . , i[RkNk]) 6= (j1, . . . , j[RkNk]), then

dck(y(i1, . . . , i[RkNk]), y(j1, . . . , j[RkNk])) > ε.

In particular ♯Ck =M
[RkNk]
k .

Our next step is to construct inductively an auxiliary sequence of finite sets Tk.
Let T1 = C1 and t1 = c1. Now, suppose that we have already constructed the set
Tk and we will describe how to construct Tk+1. Consider

tk+1 = tk +mk+1 + ck+1

= [R1N1]n1 + [R2N2](n2 +m2) + · · ·+ [Rk+1Nk+1](nk+1 +mk+1). (17)

For x ∈ Tk and y ∈ Ck+1, let z = z(x, y) be some point such that

dtk(x, z) <
ε

2k+1
and dck+1

(y, f tk+mk+1(z)) <
ε

2k+1
. (18)

Observe that the existence of such a point is guaranteed by the specification prop-
erty of f . Then, let us consider

Tk+1 = {z(x, y) : x ∈ Tk, y ∈ Ck+1}.
By proceeding as in the proof of the Lemma 3.5 we can see that different pairs
(x, y), x ∈ Tk, y ∈ Ck+1, produce different points z = z(x, y). In particular,
♯Tk+1 = ♯Tk · ♯Ck+1. Therefore, proceeding inductively,

♯Tk = ♯C1 . . . ♯Ck =M
[R1N1]
1 . . .M

[RkNk]
k .

In particular, by Lemma 3.5 and (18) we have that for every x ∈ Tk and y, y′ ∈ Ck+1

with y 6= y′,

dtk(z(x, y), z(x, y
′)) <

ε

2k+2
and dtk+1

(z(x, y), z(x, y′)) >
3ε

4
. (19)

For every k ∈ N let us consider

Fk :=
⋃

x∈Tk

Btk(x, ε/2
k+1),

where Btk(x, ε/2
k+1) denotes the closure of the open ball Btk(x, ε/2

k+1). As a
simple consequence of (19) we have the following observation.

Lemma 3.6 (Lemma 5.2 of [32]). For every k the following is satisfied:
(1) for any x, x′ ∈ Tk, x 6= x′, the sets Btk(x, ε/2

k+1) and Btk(x
′, ε/2k+1) are

disjoint;
(2) if z ∈ Tk+1 is such that z = z(x, y) for some x ∈ Tk and y ∈ Ck+1, then

Btk+1

(

z,
ε

2k+2

)

⊂ Btk

(

x,
ε

2k+1

)

.

Hence, Fk+1 ⊂ Fk.

Consider
F :=

⋂

k∈N

Fk.

Observe that, since each Fk is a closed and non-empty set and, moreover, Fk+1 ⊂
Fk, the set F is a non-empty and closed set too. Furthermore, using (15) we may
prove that



A VARIATIONAL PRINCIPLE FOR THE METRIC MEAN DIMENSION OF LEVEL SETS 13

Lemma 3.7 (Lemma 5.3 of [32]). Under the above conditions,

F ⊂ Kα.

Now, for every k ≥ 1, let us consider the probability measure ηk given by

ηk =
1

♯Tk
∑

z∈Tk

δz.

Observe that, as Tk ⊂ Fk, ηk(Fk) = 1. Moreover,

Lemma 3.8 (Lemma 5.4 of [32]). The sequence of probability measures (ηk)k∈N

converges in the weak∗-topology to some probability measure η. Furthermore, the
limiting measure η satisfies η(F ) = 1.

An important feature of the measure η that can be obtained by exploring its
definition and (14) is that the η-measure of some appropriate dynamical balls decay
exponentially fast. More precisely,

Lemma 3.9 (Lemma 5.5 of [32]). For every n sufficiently large and q ∈ X so that
Bn

(

q, ε2
)

∩ F 6= ∅ one has

η
(

Bn

(

q,
ε

2

))

≤ exp (−n(hµ(f, ξ)− 8γ)).

In order to conclude our proof we need a simple yet interesting fact whose proof
we include for the sake of completeness. This is a version of the Entropy Distribution
Principle of [32] (see [32, Theorem 3.6]). Observe that for this result, the measure
involved does not need to be invariant, as it is the case of the measure η obtained
in the previous lemmas.

Lemma 3.10. Let f : X → X be a continuous transformation and ε > 0. Given a
set Z ⊂ X and a constant s ≥ 0, suppose there exist a constant C > 0 and a Borel
probability measure η satisfying:

(i) η(Z) > 0;
(ii) η(Bn(x, ε)) ≤ Ce−ns for every ball Bn(x, ε) such that Bn(x, ε) ∩ Z 6= ∅.

Then h(Z, f, ε) ≥ s.

Proof of Lemma 3.10. Let Γ = {Bni
(xi, ε)}i be some cover of Z. Without loss of

generality we may assume that Bni
(xi, ε)∩Z 6= ∅ for every i. In such case we have

that

∑

i

exp(−sni) ≥ C−1
∑

i

η(Bni
(x, ε)) ≥ C−1η

(

⋃

i

Bni
(x, ε)

)

≥ C−1η(Z) > 0.

Therefore, m(Z, s, ε) > 0 and hence h(Z, f, ε) ≥ s. �

By Lemma 3.7 we have that h(Kα, f, ε/2) ≥ h(F, f, ε/2). Lemmas 3.9 and 3.10
gives us that h(F, f, ε/2) ≥ hµ(f, ξ)− 8γ. Consequently,

h(Kα, f, ε/2) ≥ hµ(f, ξ)− 8γ.

Thus, combining this observation with (9) and (12) we get that

HϕmdimM (f, α, d) − 9γ ≤ hµ(f, ξ)− 8γ

| log 5ε|

≤ h(Kα, f, ε/2)

| log ε/2|+ log 10

≤ mdimM (Kα, f, d) + γ.
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Thus, since γ > 0 is arbitrary, the proof of the proposition is complete. �

Proposition 3.11. Under the hypotheses of Theorem A we have that

HϕmdimM (f, α, d) ≥ ΛϕmdimM (f, α, d).

Proof. Fix γ > 0. Let {εj}j∈N be a sequence of positive numbers which converges
to zero and satisfies

ΛϕmdimM (f, α, d) = lim
j→∞

Λϕ(α, εj)

| log εj|
.

Then, there exists ε0 > 0 so that for all εj ∈ (0, ε0] we have

Λϕ(α, εj)

| log εj |
> ΛϕmdimM (f, α, d) − 1

3
γ.

In particular, for every εj ∈ (0, ε0],

Λϕ(α, εj) >

(

ΛϕmdimM (f, α, d)− 1

3
γ

)

· | log εj |.

Fix j ∈ N such that εj ∈ (0, ε0]. By the alternative expression of Λϕ(α, εj)
given in (3) it follows that there exists a sequence of positive numbers (δj,k)k∈N

converging to zero and such that for every k ∈ N,

lim inf
n→∞

1

n
logM(α, δj,k, n, εj) > Λϕ(α, εj)−

2

3
γ

>

(

ΛϕmdimM (f, α, d) − 1

3
γ

)

· | log εj| −
2

3
γ.

Similarly, there exists a sequence (nj,k)k∈N in N satisfying limk→∞ nj,k = +∞ and

Mj,k :=M(α, δj,k, nj,k, εj) (20)

> exp

(

nj,k

((

ΛϕmdimM (f, α, d)− 1

3
γ

)

· | log εj| − γ

))

.

Consider a maximal (nj,k, εj)-separated set Cj,k of P (α, δj,k, nj,k). For each
j, k ∈ N consider

σ
(j)
k =

1

Mj,k

∑

x∈Cj,k

δx,

and

µ
(j)
k =

1

nj,k

nj,k−1
∑

i=0

(f i)∗(σ
(j)
k ) =

1

Mj,k

∑

x∈Cj,k

1

nj,k

nj,k−1
∑

i=0

δfi(x).

It is not difficult to see that any accumulation point of {µ(j)
k }k∈N, say µ

(j), is f -

invariant (see [38, Theorem 6.9]). Moreover,

∫

X

ϕ dµ(j) = α for every j ∈ N.

Indeed, we may assume without loss of generality that lim
k→∞

µ
(j)
k = µ(j). Then, for

every j and k in N we have

∣

∣

∣

∣

∫

X

ϕ dµ
(j)
k − α

∣

∣

∣

∣

≤ 1

Mj,k

∑

x∈Cj,k

∣

∣

∣

∣

∣

∣

1

nj,k

nj,k−1
∑

i=0

ϕ(f i(x)) − α

∣

∣

∣

∣

∣

∣

≤ δj,k.

Thus,
∣

∣

∣

∣

∫

X

ϕ dµ(j) − α

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

X

ϕ dµ(j) −
∫

X

ϕ dµ
(j)
k

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

X

ϕ dµ
(j)
k − α

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

X

ϕ dµ(j) −
∫

X

ϕ dµ
(j)
k

∣

∣

∣

∣

+ δj,k.
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Consequently, making k → +∞ we conclude that

∫

X

ϕ dµ(j) = α for every j ∈ N

as claimed.
For every j ∈ N choose a Borel partition ξ(j) = {A1, . . . , Aℓ} of X so that

diam(ξ(j)) < εj and µ(j)(∂Ai) = 0 for 0 ≤ i ≤ ℓ (see [38, Lemma 8.5(ii)]). Then,

H
σ
(j)
k





nj,k−1
∨

i=0

f−iξ(j)



 = logM(α, δj,k, nj,k, εj).

Indeed, observe that if x and y belong to the same element of
∨nk−1

i=0 f−iξ(j) then

dnj,k
(x, y) < εj . In particular, no element of

∨nk−1
i=0 f−iξ(j) can contain more than

one point of a maximal (nj,k, εj)-separated set. Thus, exactly M(α, δj,k, nj,k, εj)

elements of
∨nj,k−1

i=0 f−iξ(j) have σ
(j)
k -measure equal to 1

M(α,δj,k,nj,k,εj)
. All others

have zero σ
(j)
k -measure.

Fix natural numbers q and nj,k with 1 < q < nj,k and define, for 0 ≤ s ≤ q − 1,
a(s) = [(nj,k − s)/q] where [p] denotes the integer part of p. Fix 0 ≤ s ≤ q − 1.
Then, by [38, Remark 2(ii), p. 188] we have that

nj,k−1
∨

i=0

f−iξ(j) =

a(s)−1
∨

r=0

f−(rq+s)

(

q−1
∨

i=0

f−iξ(j)

)

∨
∨

t∈L

f−tξ(j)

where L is a set with cardinality at most 2q. Therefore, using [38, Theorem 4.3(viii)]
and [38, Corollary 4.2.1],

logM(α, δj,k, nj,k, εj) = H
σ
(j)
k





nj,k−1
∨

i=0

f−iξ(j)





≤
a(s)−1
∑

i=0

H
σ
(j)
k

f−(rq+s)

(

q−1
∨

i=0

f−iξ(j)

)

+
∑

t∈L

H
σ
(j)
k

(f−tξ(j))

≤
a(s)−1
∑

i=0

H
σ
(j)
k

◦f−(rq+s)

(

q−1
∨

i=0

f−iξ(j)

)

+ 2q log(ℓ).

Summing the previous inequality over s from 0 to q − 1 and using [38, Remark
2(iii), p. 188], we get that that

q logM(α, δj,k, nj,k, εj) ≤
nj,k−1
∑

p=0

H
σ
(j)
k

◦f−p

(

q−1
∨

i=0

f−iξ(j)

)

+ 2q2 log(ℓ).

Thus, dividing everything by nj,k in the above inequality and using (20) and the
concavity of the map µ→ Hµ(ξ) we obtain

q

((

ΛϕmdimM (f, α, d)− 1

3
γ

)

· | log εj | − γ

)

<
q

nj,k
logM(α, δj,k, nj,k, εj)

≤ H
µ
(j)
k

(

q−1
∨

i=0

f−iξ(j)

)

+
2q2 log(ℓ)

nj,k
. (21)

Now, since the elements of
∨q−1

i=0 f
−iξ(j) have boundaries of µ(j)-measure zero, it

follows from the weak convergence of the measures µ
(j)
k to µ(j) that lim

k→∞
µ
(j)
k (B) =
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µ(j)(B) for each element B of
∨q−1

i=0 f
−iξ(j) and, therefore,

lim
k→∞

H
µ
(j)
k

(

q−1
∨

i=0

f−iξ(j)

)

= Hµ(j)

(

q−1
∨

i=0

f−iξ(j)

)

.

Thus, by (21) we have that

q

((

ΛϕmdimM (f, α, d)− 1

3
γ

)

· | log εj | −
2

3
γ

)

≤ Hµ(j)

(

q−1
∨

i=0

f−iξ(j)

)

.

Dividing both sides of the previous inequality by q and letting q go to +∞ we
obtain

(

ΛϕmdimM (f, α, d) − 1

3
γ

)

· | log εj| −
2γ

3
≤ hµ(j)(f, ξ(j)), for all j ∈ N,

which implies that

ΛϕmdimM (f, α, d)− 1

3
γ ≤ hµ(j)(f, ξ(j)) + 2

3γ

| log εj|
, for all j ∈ N.

Therefore,

ΛϕmdimM (f, α, d) − 1

3
γ ≤ inf |ξ|<εj hµ(j)(f, ξ) + γ

| log εj|
for all j ∈ N

and consequently,

ΛϕmdimM (f, α, d) − 1

3
γ ≤ lim sup

j→∞

supν∈Mf (X,α,d) inf |ξ|<εj hν(f, ξ)

| log εj |

≤ lim sup
ε→0

supν∈Mf (X,α,d) inf |ξ|<ε hν(f, ξ)

| log ε|
= HϕmdimM (f, α, d)

completing the proof of the proposition. �

Finally, the first claim of Theorem A follows directly by combining Propositions
3.2, 3.3 and 3.11. For the general case, that is, without the assumption that the

quantities mdimM

(

Kα, f, d
)

, ΛϕmdimM (f, α, d) and HϕmdimM (f, α, d) are finite,

we observe that a simple modification of our proof show us that if one of the
quantities is infinite then the other two must also be infinite and, therefore, the
first claim of Theorem A is still true. As for the second claim in Theorem A, again
one can easily see that simple adaptations of the previous proof yield the desired
conclusion. The proof of Theorem A is complete.

4. Examples

In this section we present some examples of settings with positive upper/lower
metric mean dimension where our results may be applied. Moreover, we also present

a simple application of Theorem A to calculate mdimM

(

Kα, f, d
)

.

Example 4.1. Let (Z,D) be a compact metric space with upper box-counting

dimension dimB Z <∞. Let us consider X = ZN endowed with the metric

d((xn)n∈N, (yn)n∈N) =

∞
∑

n=1

1

2n
D(xn, yn)

and let σ : X → X be the shift map. It is well known that σ has the specification
property and mdimM (X, σ, d) = dimB Z and mdimM (X, σ, d) = dimB Z (see for
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instance [28]). In particular, we may apply Theorem A to it getting, for instance,
that for any ϕ ∈ C0(X,R) and α ∈ R,

mdimM

(

Kα, σ, d
)

= ΛϕmdimM (σ, α, d) = HϕmdimM (σ, α, d).

Example 4.2. Let X = [0, 1]N be endowed with the metric induced by the Euclid-
ian distance in [0, 1] as in the previous example and consider the set

E =

{

{x(i,j)}i,j∈N ∈ X : x(i,j)n =
1

2j
if i = n and x(i,j)n = 0 if i 6= n

}

∪ {e},

where e = (0, 0, . . . ), which is closed and shift invariant. If 2E denotes the space of
subsets of X endowed with the Hausdorff distance dH , by [20, Proposition 3.6] we
have that

mdimM

(

E, σ, d
)

= 0 and mdimM

(

2E, σ♯, dH

)

= 1,

where σ♯ is the induced map by σ on the hyperspace 2E . By [6, Proposition 4] we
have that σ♯ has the specification property and then Theorem A may be applied.

Example 4.3. It was proved in [1, 9] that for C0-generic homeomorphisms act-
ing on a compact and smooth manifold X with dimension greater than one, the
upper metric mean dimension with respect to the smooth metric coincides with
the dimension of the manifold. Moreover, they also proved that the set of home-
omorphisms with positive lower metric mean dimension is C0 dense in the set of
homeomorphisms of X . Now, in order to be able to apply Theorem A to elements of
those sets, we need to guarantee that they have the specification property. For this
purpose we restrict ourselves to the set of conservative homeomorphisms, where the
specification property holds C0-generically.

We fix a good Borel probability measure µ ∈ M(X), i.e., a probability measure
that satisfies the following conditions:

(C1) [Non-atomic] For every x ∈ X one has µ({x}) = 0;

(C2) [Full support] For every nonempty open set U ⊂ X one has µ(U) > 0;

(C3) [Boundary with zero measure] µ(∂X) = 0.

In a forthcoming paper by S. Romaña and G. Lacerda it is proved that there exists
a Baire generic subset of Homeoµ(X, d) (the set of conservative homeomorphisms
on X) with metric mean dimension equal to the dimension of X . Consequently,
since according to [14] the specification property is a Baire generic property in
Homeoµ(X, d), there exists a C0-open and dense subset of Homeoµ(X, d) whose
elements have positive upper metric mean dimension and the specification property
and, in particular, Theorem A may be applied to those elements.

In the next two examples we consider the specification property for linear oper-
ators acting on Banach spaces and we start by recalling the appropriate definition
for this setting. Let B be a Banach space over K (= R or C) and T : B → B
be a linear operator. We say that T has the operator specification property if
there exists a sequence of T -invariant sets {Km}m∈N with B = ∪m∈NKm for which
T |Km

: Km → Km satisfies the specification property. We emphasize that the
sets Km do not need be compact, although in the all known examples we have
compactness for such sets.
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Example 4.4. Fix ν = (νn)n∈N ∈ RN so that νn > 0 for all n ∈ N and

∞
∑

n=1

νn <∞.

Given 1 ≤ p < +∞, consider

ℓp(ν) =







(xn)n∈N ∈ K
N : ‖(xn)n∈N‖ℓp(ν) :=

( ∞
∑

n=1

|xn|pνn
)

1
p

<∞







,

which is a Banach space, and the shift map σ : ℓp(ν) → ℓp(ν). By [5, Theorem
2.1] we have that σ : ℓp(ν) → ℓp(ν) has the operator specification property with
Km = mK, m ∈ N, where K is the compact set K = {(xn)n∈N ∈ ℓp(ν) : |xn| ≤
1 for all n ∈ N}. We now observe that T |K : K → K has positive metric mean
dimension. More precisely,

Lemma 4.5.

mdimM

(

K,σ, ‖ · ‖ℓp(ν)
)

= mdimM

(

K,σ, ‖ · ‖ℓp(ν)
)

= 1.

Proof. Given ε > 0 and n ∈ N, we observe that
{

x ∈ K : xi ∈
{

0,
ε

p
√
ν1
,

2ε
p
√
ν1
, . . . ,

⌊

1/
ε

p
√
ν1

⌋

ε
p
√
ν1

}

for all 1 ≤ i ≤ n

}

is a (n, ε)-separated set in K. In particular,

mdimM

(

K,σ, ‖ · ‖ℓp(ν)
)

= lim inf
ε→0

h(σ, ε)

| log ε|

≥ lim inf
ε→0

lim supn→∞
1
n

∣

∣

∣log
(⌊

1/ ε
p
√
ν1

⌋)n∣
∣

∣

| log ε| = 1.

(22)

In order to get the reverse inequality, let ℓ ∈ N be so that
∑

n≥ℓ

νn <
ε

2
and define

M =

(

∑

k∈N

νk

)1/p

> 0. We consider an open cover of [−1, 1] by

Ik =

(

(k − 1)ε

12M
,
(k + 1)ε

12M

)

, for − ⌊12M/ε⌋ ≤ k ≤ ⌊12M/ε⌋.

Note that each Ik has length
ε

6M
. Given n ≥ 1, let us consider the following open

cover of KN:
{x : x1 ∈ Ik1 , x2 ∈ Ik2 , . . . , xn+ℓ ∈ Ikn+ℓ

},
where −⌊12M/ε⌋ ≤ k1, . . . , kn+ℓ ≤ ⌊12M/ε⌋. Observe that each element of this
open cover has diameter less than ε with respect to the metric dn (induced by
‖ · ‖ℓp(ν)). So,

lim sup
ε→0

h(σ, ε)

| log ε| ≤ lim sup
ε→0

lim supn→∞
1
n log (2 ⌊12M/ε⌋)n+ℓ+1

| log ε| = 1.

Hence,

mdimM

(

K,σ, ‖ · ‖ℓp(ν)
)

≤ 1. (23)

Finally, combining (22) and (23) we get the desired result. �

As a consequence of the previous proof we also get that

mdimM

(

Km, σ, ‖ · ‖ℓp(ν)
)

= 1

for all m ∈ N. In particular, we may apply Theorem A to σ|Km : Km → Km for
every m ∈ N.
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Example 4.6. Another class of examples is given by the weighted shifts. Let
ν = (νn)n∈N = (1)n∈N and consider ℓp(ν) as in the previous example. Observe that
in this case ℓp(ν) = ℓp. Let w = (wn)n∈N be a weight sequence and define the
weighted shift on ℓp as Bw((xn)n∈N) = (wn+1xn+1)n∈N. It was observed in [5, p.
602] that if one considers a = (an)n∈N given by

a1 = 1 and an := w2 . . . wn, for all n > 1,

and ν̄ = (ν̄n)n∈N given by

ν̄n =
1

∏n
j=2 |wj |p

, for all n ∈ N,

then
φa : (xn)n∈N ∈ ℓp 7→ φa((xn)n∈N) = (a1x1, a2x2, . . . ) ∈ ℓp(ν̄)

defines a topological conjugacy between the weighted shift and the backward shift
given in the previous example. Moreover, they observed that this topological con-
jungacy is also an isometry, which implies that

mdimM

(

φ−1
a (Km), Bw, ‖ · ‖ℓp

)

= mdimM

(

φ−1
a (Km), Bw, ‖ · ‖ℓp

)

= 1

for all m ∈ N. Furthermore, if
∑∞

n=1 ν̄n < ∞ we have that Bw has the operator
specification property (see [5, Theorem 2.3]) and then we are in the context of
Theorem A.

Example 4.7. Let us consider X = [0, 1]Z endowed with the metric

d((xn)n∈Z, (yn)n∈Z) =
∑

n∈Z

1

2|n|
|xn − yn|

and let σ : X → X be the left shift map. Similarly to Example 4.1, σ has the
specification property and, moreover, mdimM (X, σ, d) = 1. In particular, Theorem
A may be applied in this setting. Let λ be the Lebesgue measure on [0, 1] and
consider µ = λZ. Then, it is a well known fact that µ is ergodic. Given ϕ ∈
C0(X,R), take α =

∫

ϕdµ. We will show that mdimM (Kα, σ, d) = 1. In order to
do it we recall the definition of Brin-Katok local entropy: for an ergodic measure
µ ∈ Mσ(X), ε > 0 and a point x ∈ X , let us consider

hBK
µ (ε, x) = lim sup

n→∞
− 1

n
logµ(Bn(x, ε)),

where Bn(x, ε) is defined as in Section 2. Since µ is ergodic, the map x 7→ hBK
µ (ε, x)

is constant µ-almost everywhere. Denote this constant by hBK
µ (ε). Then, we have

the following observation.

Lemma 4.8 (See [17].). For any ergodic measures µ ∈ Mσ(X) and any ε > 0,

hBK
µ (ε) ≤ inf

|ξ|<ε
hµ(σ, ξ),

where the infimum is taken over all finite measurable partitions of X with diameter
smaller than ε.

Therefore, considering the measure µ = λZ given above and using Theorem A
we get that

mdimM

(

Kα, σ, d
)

= HϕmdimM (f, α, d)

≥ lim inf
ε→0

1

| log ε| inf
|ξ|<ε

hµ(f, ξ)

≥ lim inf
ε→0

1

| log ε|h
BK
µ (ε).
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Now, in [29, Example 12] it is proved that lim infε→0
1

| log ε|h
BK
µ (ε) ≥ 1. Conse-

quently,

1 = mdimM (X, σ, d) = mdimM (X, σ, d)

≥ mdimM (Kα, σ, d) ≥ mdimM

(

Kα, σ, d
)

≥ 1

and thus, mdimM (Kα, σ, d) = mdimM (Kα, σ, d) = mdimM (Kα, σ, d) = 1 as
claimed. We observe that our Theorem A combined with Lemma 4.8 may be very

useful for giving lower bounds for mdimM

(

Kα, σ, d
)

and mdimM

(

Kα, σ, d
)

. In

fact, it is enough to take an ergodic measure µ satisfying α =
∫

ϕdµ and estimate
hBK
µ (ε) which, in general, may be easier than estimating inf |ξ|<ε hµ(σ, ξ).
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[15] Y. Gutman, A. Śpiewak, New uniform bounds for almost lossless analog compression, In
2019 IEEE International Symposium on Information Theory (ISIT), pages 1702–1706, 2019.

[16] Y. Gutman, A. Śpiewak, Metric mean dimension and analog compression, IEEE Transactions
on Information Theory, 66 (2020), 6977–6998.
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