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Abstract

In this paper, we construct systematic q-ary two-deletion correcting codes and burst-deletion correcting codes, where q ≥ 2 is
an even integer. For two-deletion codes, our construction has redundancy 5 log n+O(log q log log n) and has encoding complexity
near-linear in n, where n is the length of the message sequences. For burst-deletion codes, we first present a construction of
binary codes with redundancy log n+ 9 log log n+ γt + o(log log n) bits (γt is a constant that depends only on t) and capable
of correcting a burst of at most t deletions, which improves the Lenz-Polyanskii Construction (ISIT 2020). Then we give a
construction of q-ary codes with redundancy log n+(8 log q+9) log log n+o(log q log log n)+γt bits and capable of correcting
a burst of at most t deletions.

I. INTRODUCTION

DNA-based data storage has been a hot topic in information theory society. As deletion/insertion are common in DNA data

storage [1], codes correcting such errors have attracted significant attention in recent years.

It was proved in [2] that the optimal redundancy of binary t-deletion correcting codes is asymptotically between t logn+
o(log n) and 2t logn + o(log n), where n is the length of the code and the redundancy of a binary code C is defined as

n− log |C|.1 The well-known Varshamov-Tenengolts (VT) codes [3], which is defined as

VTa(n)=

{

(c1, . . . , cn)∈{0, 1}n :
n
∑

i=1

ici≡ a mod (n+ 1)

}

,

is a class of binary single-deletion correcting codes with asymptotically optimal redundancy. Construction of multiple-deletion

correcting codes with low redundancy were considered in [4]−[12]. By using the higher order VT syndromes and the syndrome

compression technique [10], Sima et al. constructed a family of systematic t-deletion correcting codes with 4t logn+ o(logn)
bits [11]. The method in [11] was improved in [12] to give a construction of t-deletion correcting codes with redundancy

(4t− 1) logn+ o(log n), which is the best known result in redundancy. For the special case of t = 2, an explicit construction

of 2-deletion correcting codes with redundancy 4 logn+ o(logn) was proposed by Guruswami and Håstad [7], which matches

the existential upper bound of the asymptotically optimal codes.

As a special case of deletion errors, a burst of t deletions (or a t-burst-deletion) refers to t deletions that occur at consecutive

positions. It was proved in [13] that the redundancy of a t-burst-deletion-correcting code is approximately lower bounded by

logn + t − 1. Levenshtein [14] constructed a class of binary codes that can correct a burst of at most two deletions with

asymptotically optimal redundancy of logn+ 1. Binary codes capable of correcting a burst of exact t deletions for t ≥ 2 are

constructed in [13], which also have an asymptotically optimal redundancy of logn + (t − 1) log logn + t − log t. In [15],

binary codes capable of correcting a burst of at most t deletions are constructed, which also have an asymptotically optimal

redundancy of logn+ (t(t− 1)/2) log logn+ γt, where γt is a constant that depends only on t.
Besides binary codes, nonbinary deletion correcting codes are also investigated in the literature. In [16], it was shown that the

optimal redundancy of a q-ary t-deletion correcting code is asymptotically lower bounded by t logn+ t log q + o(log q logn)
and upper bounded by 2t logn + t log q + o(log q logn) in bits (q ≥ 2). A class of q-ary single-deletion correcting codes

with redundancy close to the asymptotic optimality was constructed in [17]. For q-ary t-deletion correcting codes, the best

known construction is presented in [18], which achieve optimal redundancy up to a constant factor. Quaternary codes capable

of correcting a single edit error for DNA data storage were studied in [19]. In [20], a q-ary code that can correct a burst of at

most 2 deletions with redundancy logn+O(log q log logn) bits was constructed, where q ≥ 2 is an even integer.

In this paper, we construct nonbinary two-deletion correcting codes and burst-deletion correcting codes. Our contributions

includes:

1) We construct a class of systematic q-ary two-deletion correcting codes, with redundancy 5 logn+O(log q log logn), where

q ≥ 2 is an even integer and n is the length of the message sequences.

1In this paper, for any positive real number x, logq x is the logarithm of x with base q, where q ≥ 2 is a positive integer. If the base q = 2, then for
simplicity, we write log2 x = log x.
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2) We present a construction of binary codes with redundancy log n+ 9 log logn + γt + o(log logn) bits (γt is a constant

that depends only on t) and capable of correcting a burst of at most t deletions, which improves the Lenz-Polyanskii

Construction (ISIT 2020).

2) We give a construction of q-ary codes with redundancy logn + (8 log q + 9) log logn + o(log q log logn) + γt bits and

capable of correcting a burst of at most t deletions, where q ≥ 2 is an even integer.

Note that each symbol in Zq can be viewed as a binary string of length ⌈log q⌉, so a binary code of length ⌈log q⌉n and

capable of correcting a burst of ⌈log q⌉t deletions can also be viewed as a q-ary code of length n and capable of correcting a

burst of t deletions. By this observation and by the construction in [15], we can obtain a q-ary code of length n and capable

of correcting a burst of t deletions that has redundancy

log(n log q) +
t log q(t log q + 1)

2
log log(n log q) + γt.

Our construction has improved redundancy than this naive construction.

The rest of this paper is organized as follows. In Section II, we introduce some basic concepts and notations of deletion

correcting codes, and review some related constructions in the literature. In Section III, we construct q-ary two-deletion

correcting codes. In Section IV, we present an improved construction of binary codes correcting a burst of at most t deletions.

In Section V, we construct of q-ary codes correcting a burst of at most t deletions. The paper is concluded in Section VI.

II. PRELIMINARIES

For any integers m and n such that m ≤ n, we denote [m,n] = {m,m + 1, . . . , n} and call it an interval. If m > n, let

[m,n] = ∅. For simplicity, denote [n] = [1, n] for any positive integer n. For any positive real number x, log x is the logarithm

of x with base 2, i.e., log x = log2 x. The size (cardinality) of any set S is denoted by |S|. For any positive integer q ≥ 2,

denote Zq = {0, 1, 2, · · · , q − 1}, which will be used as the alphabet of q-ary codes.

For any string (also called a sequence) x ∈ Z
n
q , n is called the length of x and denote |x| = n. Unless otherwise specified,

we use xi to denote the ith coordinate of x, where i ∈ [n]. Usually, we denote x = (x1, x2, . . . , xn) or x = x1x2 · · ·xn. For

any I = {i1, i2, . . . , id} ⊆ [n] such that i1 < i2 < · · · < id, denote xI = xi1xi2 · · ·xid and call xD a subsequence of x. If

I ⊆ [n] is an interval (i.e., I = [i, j] for some i, j ∈ [1, n], i ≤ j), then xI = x[i,j] = xixi+1 · · ·xj is called a substring of x.

In other words, a substring of x is a subsequence of x consisting of some consecutive symbols of x. We say that x contains

p (or p is contained in x) if p is a substring of x. For two substrings xI and xI′ of x, where I, I ′ ⊆ [n] are two intervals,

we say that xI and xI′ are disjoint if I ∩ I ′ = ∅.

Let t ≤ n be a nonnegative integer. For any x ∈ Z
n
q , let Dt(x) denote the set of subsequences of x of length n − t, and

let Bt(x) denote the set of subsequences y of x that can be obtained from x by a burst of t deletions, that is y = xI such

that I = [n]\D for some interval D ⊆ [n] of length t (i.e., D = [i, i + t − 1] for some i ∈ [n − t + 1]). Moreover, let

B≤t(x) =
⋃t

t′=0 Bt′(x) be the set of subsequences of x that can be obtained from x by a burst of at most t deletions. Clearly,

D1(x) = B1(x) = B≤1(x). However, Bt(x) ⊆ Dt(x) ∩ B≤t(x) for t ≥ 2.

A code C ⊆ Z
n
q is said to be a t-deletion correcting code if for any x ∈ C and any y ∈ Dt(x), x can be uniquely recovered

from y; the code C ⊆ Z
n
q is said to be capable of correcting a burst of at most t deletions if for any x ∈ C and any y ∈ B≤t(x),

x can be uniquely recovered from y.

A. Some Constructions Related to Binary Single-deletion and Two-deletion Correcting Codes

From the VT construction, we can obtain the following lemma about single-deletion correcting codes.

Lemma 1: For any integer n ≥ 3, there exists a function VT : {0, 1}n → {0, 1}logn, computable in linear time, such that

for any c ∈ {0, 1}n, given VT(c) and any b ∈ D1(c), one can uniquely recover c.

The following lemma can be obtained from the results of [6], and so its proof is omitted.

Lemma 2: For any integer n ≥ 3, there exists a function ξ : {0, 1}n → {0, 1}7 logn+o(logn), computable in linear time, such

that for any c ∈ {0, 1}n, given ξ(c) and any b ∈ D2(c), one can uniquely recover c.

Lemma 2 can be used to construct systematic binary two-deletion correcting codes with redundancy not greater than 7 logn+
o(log n). Another construction, which uses the so-called regular strings and has lower redundancy, was proposed in [7], but it

is not systematic.

Definition 1 (Regularity): A binary string c ∈ {0, 1}n is said to be regular if each (contiguous) sub-string of c of length at

least d logn contains both 00 and 11.

In Definition 1, d is a constant that can be chosen properly. In this paper, we will always choose d = 7. The following two

lemmas are from [7].

Lemma 3: [7, Lemma 11] There exist an integer M ≥ 2n−1 and a one-to-one mapping RegEnc : {1, 2, · · · ,M} → {0, 1}n

such that its image is contained in the set of regular strings. Moreover, the function RegEnc can be computed in near-linear

time with a polynomial size lookup table.



Lemma 4: [7, Theorem 7] There is a function η, computable in linear time, that maps n bits to 4 logn+10 log logn+O(1)
bits such that for any regular c ∈ {0, 1}n, given η(c) and any b ∈ D2(c), one can uniquely recover c.

B. Some Constructions Related to Binary Burst-Deletion Correcting Codes

The following lemma can be obtained from the results in Section IV of [10].

Lemma 5: Suppose t is a constant with respect to n. There is a function φ : {0, 1}n → {0, 1}4 log n+o(logn), computable in

time O(2tn3), such that for any c ∈ {0, 1}n, given φ(c) and any b ∈ B≤t(c), one can uniquely recover c.

Let m ≤ δ ≤ n be positive integers and p ∈ {0, 1}m, where p is called a pattern. A string c ∈ {0, 1}n is called (p, δ)-dense,

if each substring of c of length δ contains at least one pattern p.

As in [15], in this paper, we take

δ = t2t+1 logn2

and

p = 0t1t,

where 0t is the string consists of t symbol 0s, and 1t is the string consists of t symbol 1s. In other words, p = p1p2 · · · p2t
such that p1 = p2 = · · · = pt = 0 and pt+1 = pt+2 = · · · = p2t = 1. It was proven in [15] that one bit of redundancy is

sufficient to construct (p, δ)-dense string.

Lemma 6: [15, Lemma 1] For any n ≥ 5, the number of (p, δ)-dense strings of length n is at least

2n(1− n1−log e) ≥ 2n−1.

The following lemma can be obtained from Construction 1 and Lemma 2 of [15] and so its proof is omitted.

Lemma 7: For any positive integer n, there is a function µ, computable in linear time, that maps n bits to logn + 3 bits

such that for any (p, δ)-dense c ∈ {0, 1}n, given µ(c) and any b ∈ B≤t(c), one can find in time O(n) an interval L ⊆ [n] of

length at most δ + t such that b = c[n]\D for some interval D ⊆ L (i.e., the deletions are located in the interval L).

C. Matrix Representation of q-ary Strings

In the rest of this paper, we always assume q > 2 is a fixed even integer. As in [18], each q-ary string x = x1x2 . . . xn ∈ Z
n
q

can be represented by a ⌈log q⌉ × n binary matrix

Mx = (ci,j) =







c1,1 · · · c1,n
...

. . .
...

c⌈log q⌉,1 · · · c⌈log q⌉,n






, (1)

where ci,j ∈ {0, 1}, such that the jth column of Mx is the binary representation of xj . Specifically, xj =
∑⌈log q⌉

i=1 ci,j2
i−1. We

call Mx the matrix representation of x. For any i ∈ {1, 2, · · · , ⌈log q⌉} and any interval J = [j1, j2] = {j1, j1 +1, · · · , j2} ⊆
[n], where 1 ≤ j1 < j2 ≤ n, denote

ci,J , ci,j1ci,j1+1 · · · ci,j2 , (2)

which is a substring of the ith row of Mx consisting of ci,j1 , ci,j1+1, · · · , ci,j2 . In particular, ci,[n] is the ith row of Mx.

Clearly, if y ∈ Z
n−t
q is obtained from x by deleting xj1 , · · · , xjt , then the matrix representation My of y can be obtained

from Mx by deleting columns j1, · · · , jt of Mx. Moreover, x can be recovered from y if and only if its matrix representation

Mx can be recovered from My.

Lemma 8: Suppose E0 : {0, 1}n−1 → {0, 1}n is a one-to-one mapping and q > 2 is an even integer. Then there is a

one-to-one mapping Ē0 : Zn−1
q → Z

n
q , with the same computing time as E0, such that for any u ∈ Z

n−1
q and x = Ē0(u), if

Mu = (bi,j)⌈log q⌉×(n−1) and Mx = (ci,j)⌈log q⌉×n are the matrix representation of u and x respectively, then

c1,[n] = E0(b1,[n−1]).

Proof: For each u ∈ Z
n−1
q , where the matrix representation of u is

Mu =











b1,1 · · · b1,n−1

b2,1 · · · b2,n−1

...
. . .

...

b⌈log q⌉,1 · · · b⌈log q⌉,n−1











,

2In [15], δ is taken to be t2t+1⌈logn⌉2 . In this paper, for notational simplicity, we omit the ceiling function and write δ = t2t+1 logn.



denote E0(b1,[n−1]) = c = c1,1 · · · c1,n−1c1,n and let

M =











c1,1 · · · c1,n−1 c1,n
b2,1 · · · b2,n−1 0

...
. . .

...
...

b⌈log q⌉,1 · · · b⌈log q⌉,n−1 0











.

Specifically, M = (ci,j) is a ⌈log q⌉ × n binary matrix satisfying the following three properties: i) the first row of M is equal

to c; ii) c2,j · · · c⌈log q⌉,j = b2,j · · · b⌈log q⌉,j for each j ∈ [n − 1]; iii) c2,n · · · c⌈log q⌉,n = 0⌈log q⌉−1, where 0⌈log q⌉−1 is the

string consisting of ⌈log q⌉ − 1 symbol 0s.

Let Ē0(u) = x such that the matrix representation of x is Mx = M . It is easy to see that c1,[n] = E0(b1,[n−1]) and the

computing time of Ē0 is the same as that of E0. Moreover, since E0 is a one-to-one mapping, it is also easy to see that Ē0 is

a one-to-one mapping.

It remains to prove that x ∈ Z
n
q , equivalently, each column of Mx is the binary representation of some integer in Zq .

According to property iii) of the constructed matrix M , we have c⌈log q⌉,n · · · c2,nc1,n = 0⌈log q⌉−1c1,n, so the last column

of M is the binary representation of c1,n ∈ {0, 1} ⊆ Zq . For each j ∈ [n − 1], according to property ii) of M , we have

c⌈log q⌉,j · · · c2,jc1,j = b⌈log q⌉,j · · · b2,jc1,j , so xj =
∑⌈log q⌉

i=1 ci,j2
i−1 =

∑⌈log q⌉
i=2 bi,j2

i−1+c1,j = uj−b1,j+c1,j , where the last

equality holds because according to the definition of the matrix representation, b⌈log q⌉,j · · · b2,jb1,j is the binary representation

of uj . If b1,j = 1, then xj = uj − b1,j + c1,j ≤ uj ≤ q− 1. If b1,j = 0, then uj is even. Noticing that q is even, so uj ≤ q− 2,

and hence xj = uj − b1,j + c1,j = uj + c1,j ≤ q − 1. In both cases, we have xj ∈ Zq . Thus, each column of M is the binary

representation of some integer in Zq , and so x ∈ Z
n
q .

III. NONBINARY TWO-DELETION CORRECTING CODES

In this section, we consider q-ary two-deletion correcting codes. We assume that q > 2 is an even integer and is a constant with

respect to the code length n. Each binary sequence a will also be viewed as a non-negative integer whose binary representation

is a, and conversely, each non-negative integer m will also be viewed as a binary sequence with length ⌈log(m+1)⌉, i.e., the

binary representation of m. Therefore, summation and multiplication of binary strings and integers are performed in the set

of integers.

We need to introduce some concepts and notations for binary strings, which will be used in our construction.

Let c ∈ {0, 1}n be a binary string of length n. A run of c is a maximal substring of c consisting of identical symbols.3 A

substring c[i1,i2] of c, where i1 < i2, is called an alternative substring of c if ci+1 6= ci for all i ∈ [i1, i2 − 1].
Remark 1: From Definition 1, it is easy to see that if c ∈ {0, 1}n is regular, then each substring of c of length d logn can

not be a run or an alternative substring of c because it contains both 00 and 11. Equivalently, each run and each alternative

substring of c have length at most d log n.

Definition 2: For each c ∈ {0, 1}n, let cIi be the ith run (counting from the left) of c, where Ii ⊆ [n] is the index set of

cIi . Then we denote Ic = {cI1 , · · · , cIn′
} and call it the set of runs of c, where n′ is the number of runs of c.

Let VT, ξ and η be the functions constructed by Lemma 1, Lemma 2 and Lemma 4, respectively. Denote

ρ = 3d logn

and let

Jj =

{

[(j − 1)ρ+ 1, (j + 1)ρ], for j ∈{1, · · · , ⌈n/ρ⌉ − 2},

[(j − 1)ρ+ 1, n], for j = ⌈n/ρ⌉ − 1.
(3)

Note that each interval Jj has length 2ρ and the intersection of two successive intervals Jj and Jj+1 is an interval of length

ρ. It is easy to see the following remark.

Remark 2: The intervals Jj , j = 1, · · · , ⌈n/ρ⌉ − 1 satisfies:

1) For any interval J ⊆ [n] of length at most ρ, we can find an j0 ∈ {1, 2, · · · , ⌈n/ρ⌉ − 1} such that J ⊆ Jj0 .

2) Jj ∩ Jj′ = ∅ for all j, j′ ∈ {1, 2, · · · , ⌈n/ρ⌉ − 1} such that |j − j′| ≥ 2.

For each q-ary string x ∈ Z
n
q , let Mx = (ci,j) be the matrix representation of x as defined by (1) and c1,[n] be the first row

of Mx. We construct a function f as follows.

Construction 1: For each x ∈ Z
n
q , let Ic = {cI1 , · · · , cIn′

} be the set of runs of c = c1,[n] as defined in Definition 2. For

each i ∈ [n′], let

gi(x) =
(

VT(c2,Ii),VT(c3,Ii), · · · ,VT(c⌈log q⌉,Ii )
)

,

3We say that a substring of c satisfying a certain property is maximal if it is contained by no other substring of c that satisfies the same property. Hence,
a maximal run of the string c is not contained by any other run of c.



and for each ℓ ∈ {0, 1}, let

g(ℓ)(x) =

n′

∑

i=1

iℓgi(x) mod 2nℓN1, (4)

where

N1 = qlog logn+3.

Moreover, for each j ∈ {1, · · · , ⌈n/ρ⌉ − 1}, let

hj(x) =
(

ξ(c2,Jj
), ξ(c3,Jj

), · · · , ξ(c⌈log q⌉,Jj
)
)

, 4

and for each ℓ ∈ {0, 1}, let

h(ℓ)(x) =
∑

j∈{1,··· ,⌈n/ρ⌉−1}:
j ≡ ℓ mod 2

hj(x) mod N2 (5)

where

N2 = q7 log logn+o(log logn).

Finally, let

f(x) =
(

η(c1,[n]), g
(0)(x), g(1)(x), h(0)(x), h(1)(x)

)

.

Let Rn denote the set of all x ∈ Z
n
q such that c1,[n] is a regular string with d = 7 (according to Definition 1). Then we

have the following Theorem.

Theorem 1: The function f(x) is computable in linear time and the length |f(x)| of f(x) satisfies

|f(x)| ≤ 5 logn+O(log q log logn).

Moreover, if x ∈ Rn, then x can be uniquely recovered from f(x) and any given y ∈ D2(x).
To prove Theorem 1, we need the following lemma.

Lemma 9: Suppose c ∈ {0, 1}n is regular and b ∈ {0, 1}n−2 such that b can be obtained from c by deleting two symbols

of c. Then exact one of the following holds.

1) There are two distinct runs cIj1 and cIj2 of c, uniquely determined by b and c, such that b can be obtained from c by

deleting one symbol in cIj1 and one symbol in cIj2 .

2) There is an interval J ⊆ [n] of length at most ρ such that b can be obtained from c by deleting two symbols in cJ .

Proof: This Lemma is proved in Appendix A.

Now, we can prove Theorem 1.

Proof of Theorem 1: Note that by Lemma 1, Lemma 2 and Lemma 4, the functions VT, ξ and η are all computable

in linear time. By Construction 1, the functions g(ℓ)(x) and h(ℓ)(x), ℓ ∈ {0, 1}, are computable in linear time. Hence,

f(x) =
(

η(c1,[n]), g
(0)(x), g(1)(x), h(0)(x), h(1)(x)

)

is computable in linear time.

For each x ∈ Z
n
q , by Construction 1, the length |g(ℓ)(x)| of g(ℓ)(x), ℓ ∈ {0, 1}, satisfies

|g(ℓ)(x)| ≤ log(2nℓN1)

= ℓ logn+ log q log logn+ 1

Similarly, the length |h(ℓ)(x)| of h(ℓ)(x), ℓ ∈ {0, 1}, satisfies

|h(ℓ)(x)| ≤ logN2

= log q(7 log logn+ o(log logn))

Moreover, by Lemma 4, the length of η(c1,[n]) satisfies

|η(c1,[n])| ≤ 4 logn+ 10 log logn+O(1).

4Note that Lemma 2 requires that each |Ij | ≥ 3. If |Ij| < 3, we can just let ξ(ci,Ij ) = ci,Ij . Then ci,Ij can also be recovered from ξ(ci,Ij ). This is

feasible because in our construction, we only need that each ξ(ci,Ij ) is a sequence of length not greater than 7 log logn+ o(log logn).



Thus, by Construction 1, the length of f(x) satisfies

|f(x)| = |η(c1,[n])|+ |g(0)(x)|+ |g(1)(x)|

+ |h(0)(x)|+ |h(1)(x)|

≤ 5 logn+ (16 log q + 10) log logn

+ o(log q log logn)

= 5 logn+O(log q log logn).

It remains to prove that for each x ∈ Rn, given f(x) and any y ∈ D2(x), one can uniquely recover x. To prove this, we

first prove that gj(x) < N1 for each j ∈ [n′] and hj(x) < N2 for each j ∈ {1, 2, · · · , ⌈n/ρ⌉ − 1}.

Since x ∈ Rn, by Remark 1, each run of c1,[n] has length at most 7 logn (noticing that we take d = 7 in this paper), so

for each i ∈ [2, ⌈log q⌉] and j ∈ [n′], we have ci,Ij ∈ {0, 1}≤7 logn. By Lemma 1, for each j ∈ [2, ⌈log q⌉], the length of

VT(cj,Ii) satisfies |VT(cj,Ii)| ≤ log(7 logn) ≤ log logn+ 3. By Construction 1, the length of gj(x) satisfies

|gj(x)| ≤ (⌈log q⌉ − 1)(log logn+ 3)

< (log q)(log logn+ 3),

so

gj(x) < qlog logn+3 = N1.

Similarly, for each i ∈ [2, ⌈log q⌉] and each j ∈ {1, 2, · · · , ⌈n/ρ⌉ − 1}, by (3), the length of the interval ci,Jj
satisfies

|ci,Jj
| ≤ 2ρ = 42 logn, so by Lemma 2, we have

|ξ(ci,Ij )| ≤ 7 log(42 logn) + o(log(42 logn))

= 7 log logn+ o(log logn).

By Construction 1,

|hj(x)| ≤ (⌈log q⌉ − 1)(7 log logn+ o(log logn))

< (log q)(7 log logn+ o(log log n)).

Hence,

hj(x) < q7 log logn+o(log logn) = N2.

Now, we prove that each x ∈ Rn can be uniquely recovered from f(x) =
(

η(c1,[n]), g
(0)(x), g(1)(x), h(0)(x), h(1)(x)

)

and

any given y ∈ D2(x). Let

My = (di,j)⌈log q⌉×(n−2)

be the matrix representation of y. Then My can be obtained from Mx by deleting two columns, so d1,[n−2] ∈ D2(c1,[n]),

where d1,[n−2] is the first row of My. Since x ∈ Rn, then c1,[n] is regular. By Lemma 4, c , c1,[n] can be correctly recovered

from d , d1,[n−2] and η(c1,[n]). Moreover, by Lemma 9, exact one of the following two cases holds:

Case 1: There are two distinct runs c1,Ij1 and c1,Ij2 of c1,[n] such that d1,[n−2] is obtained from c1,[n] by deleting one symbol

in c1,Ij1 and one symbol c1,Ij2 . Correspondingly, My can be obtained from Mx by deleting one column in Ij1 and one column

in Ij2 . Without loss of generality, assume j1 < j2. Denoting Ij = [pj−1 + 1, pj], where p0 = 0 < p1 < p2 < · · · < pn′ = n,

then by comparing the symbols of Mx and My , we have the following observation:

i) ci,Ij = di,Ij for 1 ≤ j < j1 and each i ∈ [2, ⌈log q⌉];
ii) di,[pj1−1+1,pj1

−1] ∈ D1(ci,Ij1 ) for each i ∈ [2, ⌈log q⌉];
iii) ci,Ij = di,Ij−1 for each j1 < j < j2 and i ∈ [2, ⌈log q⌉], where Ij − 1 = {ℓ− 1 : ℓ ∈ Ij} = [pj−1, pj − 1];
iv) di,[pj2−1,pj2

−2] ∈ D1(ci,Ij2 ) for each i ∈ [2, ⌈log q⌉];
v) ci,Ij = di,Ij−2 for each j2 < j ≤ n′ and i ∈ [2, ⌈log q⌉], where Ij − 2 = {ℓ− 2 : ℓ ∈ Ij} = [pj−1 − 1, pj − 2].

Then ci,[n], i ∈ [2, ⌈log q⌉], can be recovered by the following three steps.

Step 1: By observations i), iii) and v), ci,Ij can be directly obtained from My for all i ∈ [2, ⌈log q⌉] and j ∈ [n′]\{j1, j2}.

Step 2: Compute gj(x) from c2,Ij , · · · , c⌈log q⌉,Ij for all j ∈ [n′]\{j1, j2}. This is possible because for all i ∈ [2, ⌈log q⌉]
and j ∈ [n′]\{j1, j2}, ci,Ij have been obtained from My in Step 1. Then by taking ℓ = 0 in (4), we can obtain

gj1(x) + gj2(x) ≡



g(0)(x)−
∑

j∈[n′]\{j1,j2}

gj(x)



mod 2N1.



Since gj(x) < N1 for all j ∈ [n′], we in fact have

gj1(x) + gj2(x) =



g(0)(x)−
∑

j∈[n′]\{j1,j2}

gj(x)



mod 2N1. (6)

Similarly, taking ℓ = 1 in (4) and noticing that 0 < j1gj1(x) + j2gj2(x) < 2nN1, we can obtain

j1gj1(x) + j2gj2(x)

=



g(1)(x)−
∑

j∈[n′]\{j1,j2}

jgj(x)



 mod 2nN1. (7)

So, gj1(x) and gj2(x) can be solved from (6) and (7). By Construction 1, we have

gj1(x) =
(

VT(c2,Ij1 ),VT(c3,Ij1 ), · · · ,VT(c⌈log q⌉,Ij1
)
)

and

gj2(x) =
(

VT(c2,Ij2 ),VT(c3,Ij2 ), · · · ,VT(c⌈log q⌉,Ij2
)
)

.

Step 3: By observation ii), di,[pj1−1+1,pj1
−1] ∈ D1(ci,Ij1 ) for each i ∈ [2, ⌈log q⌉]. Then by Lemma 1, ci,Ij1 can be recovered

from VT(ci,Ij1 ) and di,[pj1−1+1,pj1
−1]. Similarly, since by observation iv), di,[pj2−1,pj2

−2] ∈ D1(ci,Ij2 ) for each i ∈ [2, ⌈log q⌉],
then by Lemma 1, ci,Ij2 can be recovered from VT(ci,Ij2 ) and di,[pj2−1,pj2

−2].

Thus, for case 1, ci,[n], i ∈ [2, ⌈log q⌉], can be recovered from η(c1,[n]), g
(0)(x), g(1)(x) and y.

Case 2: There is an interval J ⊆ [n] of length at most ρ = 3d logn such that d , d1,[n−2] can be obtained from c , c1,[n]
by deleting two symbols in c1,J . Correspondingly, My can be obtained from Mx by deleting two columns in J . By 1) of

Remark 2, we can always find an Jj0 for some j0 ∈ {1, 2, · · · , ⌈n/ρ⌉− 1} such that J ⊆ Jj0 . Denoting Jj0 = [λ, λ′], then by

comparing the symbols of Mx and My, we obtain that for each i ∈ [2, ⌈log q⌉],

ci,[1,λ−1] = di,[1,λ−1],

ci,[λ′+1,n] = di,[λ′−1,n−2]

and

di,[λ,λ′−2] ∈ D≤2(ci,[λ,λ′]).

Hence, ci,[1,λ−1] and ci,[λ′+1,n] can be directly obtained from My. Moreover, each ci,[λ,λ′] can be recovered from di,[λ,λ′−2]

and h(ℓ)(x), ℓ ∈ {0, 1}, as follows.

By 2) of Remark 2, Jj ⊆ [1, λ − 1] for all j ∈ {1, 2, · · · , j0 − 2}, so ci,Jj
can be obtained from di,[1,λ−1] = ci,[1,λ−1].

Similarly, ci,Jj
can be obtained from di,[λ′+1−t,n] = ci,[λ′+1,n] for all j ∈ {j0 + 2, · · · , ⌈n/δ′⌉ − 1}. Hence, we can compute

hj(x) =
(

ξ(c2,Jj
), ξ(c3,Jj

), · · · , ξ(c⌈log q⌉,Jj
)
)

for each j ∈ {1, 2, · · · , ⌈n/δ′⌉ − 1}\{j0}. Let ℓ ∈ {0, 1} be such that j0 ≡ ℓ
mod 2. Then by (5), and noticing that hj0(x) < N2, we can obtain

hj0(x) = h(ℓ)(x)−
∑

j∈{1,2,··· ,⌈n/δ′⌉−1}\{j0}:

j ≡ ℓ mod 2

hj(x) mod N2.

Note that bi,[λ,λ′−2] ∈ D≤2(ci,[λ,λ′]) = D≤2(ci,Jj0
), and by Construction 1,

hj0(x) =
(

ξ(c2,Jj0
), ξ(c3,Jj0

), · · · , ξ(c⌈log q⌉,Jj0
)
)

.

Then by Lemma 2, for each i ∈ [2, ⌈log q⌉], ci,[λ,λ′] = ci,Jj0
can be recovered from di,[λ,λ′−2] and hj0(x).

Thus, for case 2, ci,[n], i ∈ [2, ⌈log q⌉], can be recovered from η(c1,[n]), h
(ℓ)(x) and y.

By the above discussions, we proved that Mx (and so x) can be uniquely recovered from f(x) and y, which completes

the proof.

By representing each binary string of length at most ⌊log q⌋ as an integer in Zq , each binary string a can be represented

as a q-ary string of length ⌈|a|/⌊log q⌋⌉. We denote this q-ary string by Q(a) and call it the q-ary representation of a for

convenience of use. Specifically, divide a into ⌈|a|/⌊log q⌋⌉ disjoint substrings, each having length ⌊log q⌋ except the last

substring which has length |a| − (⌈|a|/⌊log q⌋⌉ − 1) ⌊log q⌋. Then by representing each of these substrings as an integer in

Zq , we can obtain a q-ary string Q(a) of length ⌈|a|/⌊log q⌋⌉.



Let RegEnc : {1, 2, · · · ,M} → {0, 1}n be the one-to-one mapping constructed in Lemma 3. Since M ≥ 2n−1, then RegEnc

can also be viewed as a mapping from {0, 1}n−1 to {0, 1}n. By Lemma 8, the mapping RegEnc can be extended to a one-to-one

mapping, denoted by

EReg : Zn−1
q → Z

n
q ,

such that for any u ∈ Z
n−1
q and x = EReg(u), if Mu = (bi,j)⌈log q⌉×(n−1) and Mx = (ci,j)⌈log q⌉×n are the matrix representation

of u and x respectively, then

c1,[n] = RegEnc(b1,[n−1]).

By Lemma 3, c1,[n] = RegEnc(b1,[n−1]) is regular, so for any u ∈ Z
n−1
q , we have x = EReg(u) ∈ Rn.

Using the mapping EReg : Zn−1
q → Rn and the function f constructed in Construction 1, we can give an encoding function

of a q-ary two-deletion correcting code as follows.

Let E be the function defined on Z
n−1
q of the form

E(u) = (v,v′,v′′), ∀u ∈ Z
n−1
q , (8)

such that v = EReg(u), v
′ = EReg(Q(f(v))) and v′′ = Rep3(Q(f(v′))), where Rep3(·) is the encoding function of the 3-fold

repetition code.

Theorem 2: The code C = {E(u) : u ∈ Z
n−1
q }, where E is given by (8), is a q-ary two-deletion correcting code with

redundancy 5 logn+O(log q log logn) in bits. The encoding complexity of C is near-linear in n with a polynomial size lookup

table.

Proof: Let

x = E(u) = (v,v′,v′′) ∈ C,

where u ∈ Z
n−1
q , v = EReg(u), v

′ = Q(f(v)) and v′′ = Rep3(Q(f(v′))) as in (8). Given any y ∈ D2(x), we have y[1,m1−2] ∈
D2(v), y[m1,m2−2] ∈ D2(v

′) and y[m2,m3−2] ∈ D2(v
′′), where |v| = m1, |(v,v′)| = m2 and |x| = |(v,v′,v′′)| = m3. First,

since v′′ = Rep3(Q(f(v′))) is a codeword of a two-deletion code, then Q(f(v′)) can be recovered from y[m2,m3−2], and

hence f(v′) can be recovered from Q(f(v′)). Then by Theorem 1, v′ can be recovered from y[m1,m2−2] and f(v′), and hence

f(v) can be recovered from v′ = EReg(Q(f(v))). Finally, by Theorem 1 again, v can be recovered from y[1,m1−2] and f(v).
Thus, x = (v,v′,v′′) can be recovered from any y ∈ D2(x), which proves that C is a two-deletion correcting code.

Since u ∈ Z
n−1
q and v = EReg(u) ∈ Z

n
q , so v has log q bits redundancy. Moreover, by Theorem 1, the length of v′ is

|v′| = 5 logn+O(log q log logn)

bits and the length of v′′ is

|v′′| = 3(5 log |v′|+O(log q log log |v′|)) = O(log logn)

bits. So the total redundancy of x = E(u) is

redundancy of C̄ = log q + |v′|+ |v′′|

= 5 logn+O(log q log log n)

in bits.

By Lemma 3 and Lemma 8, the encoding complexity of v = EReg(u) is near-linear in n with a polynomial size lookup

table. Moreover, by Theorem 1, the encoding complexity of v′ = EReg(Q(f(v))) and v′′ = Rep3(Q(f(v′))) is linear in n and

logn respectively. Therefore, the encoding complexity of E(u) = (v,v′,v′′) is near-linear in n with a polynomial size lookup

table, which completes the proof.

IV. BINARY CODES CORRECTING A BURST OF AT MOST t DELETIONS

In this section, we present a construction of binary codes that are capable of correcting a bursting of at most t deletions

improving the Lenz-Polyanskii Construction in [15]. We assume that t is a constant with respect to the code length n, and for

notational simplicity, we use γt to denote any constant that depends only on t. As in Section III, each binary sequence a is

identified with the positive integer whose binary representation is a, and summation and multiplication of binary strings and

integers are performed in the set of integers.

Recall that a string c ∈ {0, 1}n is called (p, δ)-dense, if each substring of c of length δ contains at least one pattern p. As

stated in Section II, we take

δ = t2t+1 logn

and

p = 0t1t.



The basic idea of our construction is to replace the shifted VT code in the Lenz-Polyanskii Construction with the function

φ constructed in Lemma 5. To apply the function φ, we need to divide each binary string into substrings of length at most

2(δ + t). Specifically, we denote δ′ = δ + t and let

Li =

{

[(i− 1)δ′+ 1, (i+ 1)δ′], for i ∈{1, · · · , ⌈n/δ′⌉ − 2},

[(i− 1)δ′+ 1, n], for i = ⌈n/δ′⌉ − 1,
(9)

where i ∈ {1, · · · , ⌈n/δ′⌉− 1}, be the index sets of the expected substrings. Then we can construct a function f̄ b over {0, 1}n

as follows, which is the main component of our construction of binary burst-deletion correcting codes.

Construction 2: Let φ and µ be the functions constructed in Lemma 5 and Lemma 7 respectively. For each c ∈ {0, 1}n, let

f̄ b(c) =
(

µ(c), ḡ(0)(c), ḡ(1)(c)
)

,

such that for each ℓ ∈ {0, 1},

ḡ(ℓ)(c) =
∑

i∈{1,2,··· ,⌈n/⌈δ′⌉⌉−1}:

i ≡ ℓ mod 2

φ(cLi
) mod N

b
, (10)

where

N
b
, 24 log(2δ′)+o(log(2δ′)) = 24 log logn+γt+o(log logn).5

For Construction 2, we have the following theorem.

Theorem 3: For each c ∈ {0, 1}n, f̄ b(c) is computable in linear time and the length |f̄ b(c)| of f̄ b(c) satisfies

|f̄ b(c)| ≤ logn+ 8 log logn+ γt + o(log log n).

Moreover, if c is (p, δ)-dense, then given f̄ b(c) and any b ∈ B≤t(c), one can uniquely recover c.

Before proving Theorem 3, we give some remark on the properties of the sets Lj , j = 1, 2, · · · , ⌈n/δ′⌉ − 1.

Remark 3: Similar to Remark 2, it is easy to see that

1) For each interval L ⊆ [n] of length at most δ′ = δ + t, we can always find an i0 ∈ {1, 2, · · · , ⌈n/δ′⌉ − 1} such that

L ⊆ Li0 .

2) Li ∩ Li′ = ∅ for all i, i′ ∈ {1, 2, · · · , ⌈n/δ′⌉ − 1} such that |i− i′| ≥ 2.

Now, we can prove Theorem 3.

Proof: Note that by Lemma 7, µ(c) is computable in linear time. By Lemma 5, each φ(cLi
) is computable in time

O(2t(2δ)3) = O((log n)3), so (ḡ(0)(c), ḡ(1)(c)) are also computable in linear time. Hence, by Construction 2, f̄ b(c) =
(

µ(c), ḡ(0)(c), ḡ(1)(c)
)

is computable in linear time. Moreover, by Lemma 7 and (10), the length |f̄ b(c)| of f̄ b(c) satisfies

|f̄ b(c)| = |µ(c)|+ |ḡ(0)(c)|+ |ḡ(1)(c)|

≤ logn+ 3 + 2
(

4 log logn+ γt + o(log logn)
)

= logn+ 8 log logn+ γt + o(log logn).

Suppose c is (p, δ)-dense and b ∈ B≤t(c). We need to prove that c can be uniquely recovered from b and f̄ b(c).
By Lemma 7, we can find an interval L ⊆ [n] of length at most δ′ = δ + t such that b = c[n]\D for some interval D ⊆ L

of length t′ = |c| − |b|. By 1) of Remark 3, we can always find an i0 ∈ {1, 2, · · · , ⌈n/δ′⌉ − 1} such that L ⊆ Li0 . Denoting

Li0 = [λ, λ′], then we can obtain

c[1,λ−1] = b[1,λ−1],

c[λ′+1,n] = b[λ′−t′+1,n]

and

b[λ,λ′−t′] ∈ B≤t(c[λ,λ′]).

Therefore, c[1,λ−1] and c[λ′+1,n] can be directly obtained from b. In the following, we will show how to recover c[λ,λ′] from

b[λ,λ′−t′] and ḡ(ℓ)(c) for some ℓ ∈ {0, 1}.

5Since δ′ = δ + t = t2t+1(logn + 2−t−1), so more accurately, it should be N
b
, 24 log(2δ′)+o(log(2δ′)) = 24 log(logn+2−t−1)+γt+o(log log n).

However, because N
b

is an integer, so for sufficiently large n, we can always obtain N
b
, 24 log(2δ′)+o(log(2δ′)) = 24 log log n+γt+o(log log n) .



By 2) of Remark 3, for all i ∈ {1, 2, · · · , i0 − 2}, we have Li ⊆ [1, λ− 1], so cLi
can be obtained from b[1,λ−1] and hence

φ(cLi
) can be computed. Similarly, for all i ∈ {i0 + 2, · · · , ⌈n/δ′⌉ − 1}, cLi

can be obtained from b[λ′−t′+1,n] and hence

φ(cLi
) can be computed. Let ℓ0 ∈ {0, 1} be such that ℓ0 ≡ i0 mod 2. By (10), we have

φ(cLi0
) ≡ ḡ(ℓ0)(c)−

∑

i∈{1,··· ,⌈n/⌈δ′⌉⌉−1}:

i 6= i0 and i ≡ ℓ0 mod 2

φ(cLi
) mod N

b
.

By (9), |Li0 | = 2δ′ = 2(δ + t), so by Lemma 5, φ(cLi0
) ≤ 24 log(2δ′)+o(log(2δ′)) = N

b
. Therefore, we actually have

φ(cLi0
) = ḡ(ℓ0)(c)−

∑

i∈{1,··· ,⌈n/⌈δ′⌉⌉−1}:

i 6= i0 and i ≡ ℓ0 mod 2

φ(cLi
) mod N

b
.

Since b[λ,λ′−t′] ∈ B≤t(c[λ,λ′]), again by Lemma 5, we can recover c[λ,λ′] from b[λ,λ′−t] and φ(cLi0
). Note that we have

obtained c[1,λ−1] = b[1,λ−1] and c[λ′+1,n] = b[λ′−t+1,n], so c can be uniquely recovered, which completes the proof.

Let Sb
n be the set of all (p, δ)-dense binary strings c ∈ {0, 1}n, where p = 0t1t and δ = t2t+1⌈logn⌉. By Lemma 6,

there is a one-to-one mapping that maps each binary string of length n− 1 to a string in Sb
n. For convenience, we denote this

mapping by

Eb
Den : {0, 1}

n−1 → Sb
n. (11)

Using the function f̄ b constructed in Construction 2, we can construct an encoding function of a binary code capable of

correcting a burst of at most t deletions.

Let Ēb be a function defined on {0, 1}n−1 of the form

Ēb(a) = (b, b′, b′′), ∀a ∈ {0, 1}n−1, (12)

such that b = Eb
Den(a), b

′ = Eb
Den(f̄

b(b)) and b′′ = Rept+1(f̄
b(b′)), where Rept+1(·) is the encoding function of the (t+1)-fold

repetition code.

Theorem 4: The code C̄b = {Ēb(a) : a ∈ {0, 1}n−1}, where Ēb is given by (12), is a binary code with redundancy

logn+ 9 log logn+ γt + o(log log n) bits and capable of correcting a burst of at most t deletions.

Proof: Let

c = Ēb(a) = (b, b′, b′′) ∈ C̄b,

where a ∈ {0, 1}n−1, b = Eb
Den(a), b

′ = Eb
Den(f̄

b(b)) and b′′ = Rept+1(f̄
b(b′)). Given any d ∈ B≤t(c), denoting t′ = |c|−|b|,

then t′ ≤ t and we have d[1,m1−t′] ∈ B≤t(b), d[m1,m2−t′] ∈ B≤t(b
′) and d[m2,m3−t′] ∈ B≤t(b

′′), where m1 = |b|,m2 =
|(b, b′)| and m3 = |c| = |(b, b′, b′′)|. First, since b′′ = Rept+1(f̄

b(b′)) is a codeword of a t-deletion code, then f̄ b(b′) can

be recovered from d[m2,m3−t′]. Further, by Theorem 3, b′ can be recovered from d[m1,m2−t′] and f̄ b(b′), and so f̄ b(b) can

be recovered from b′ = Eb
Den(f̄

b(b)). Finally, by Theorem 3 again, b can be recovered from d[1,m1−t′] and f̄ b(b). Thus,

c = (b, b′, b′′) can be recovered from any d ∈ B≤t(c), which proves that C̄b is capable of correcting a burst of at most t
deletions.

Since a ∈ {0, 1}n−1 and b = Eb
Den(a) ∈ Sb

n ⊆ {0, 1}n, so b has one bit redundancy. Moreover, by Theorem 3, the length

of b′ is

|b′| = logn+ 8 log logn+ γt + o(log logn)

bits and the length of b′′ is

|b′′| = log |b′|+ 8 log log |b′|+ γt + o(log log |b′|)

= log logn+ γt + o(log logn)

bits. So the total redundancy of c = Ēb(a) is

redundancy of C̄ = 1 + |b′|+ |b′′|

= logn+ 9 log logn+ γt + o(log logn)

bits.



V. q-ARY CODES CORRECTING A BURST OF AT MOST t DELETIONS

In this section, we construct q-ary codes correcting a bursting of at most t deletions, where q > 2 is an even integer. We

assume that q and t are constant with respect to the code length n. As in Section III, we identify each binary string a with

the positive integer whose binary representation is a. As stated in Section II, we take

δ = t2t+1 logn

and

p = 0t1t.

A string c ∈ {0, 1}n is called (p, δ)-dense, if each substring of c of length δ contains at least one pattern p.

For each x ∈ Z
n
q , let Mx = (ci,j)⌈log q⌉×n be the matrix representation of x as defined by (1). Then for each t′ ∈ [t],

the deletion of xi, xi+1, · · · , xi+t′−1 results in the deletion of the columns i, i + 1, · · · , i + t′ − 1 of Mx. A basic idea is

to protect the first row c = c1,[n] by a burst-deletion correcting code. However, in general, if c can be recovered from a

d ∈ B≤t(c), the location of the deleted symbols can not be determined. For example, consider c = 0111011011010010 and

d = 0111011010010. Then d can be obtained from c by deleting c3c4c5 = 110, or deleting c4c5c6 = 101. In fact, d can be

obtained from c by deleting cici+1ci+2 for all i ∈ [3, 10]. To proceed, we need to consider period of binary strings.

Let ℓ and m be two positive integers such that ℓ ≤ m. A string a ∈ {0, 1}m is said to have period ℓ (or a is called a

period-ℓ string) if ai+ℓ = ai for all i ∈ [m − ℓ] = {1, 2, · · · ,m − ℓ}. Clearly, a run of c of length m has period ℓ for any

ℓ ∈ [m]; a period-2 substring of c is either a run of c or an alternative substring of c.

Lemma 10: Suppose c ∈ {0, 1}n is (p, δ)-dense. Given any d ∈ B≤t(c), it is possible to find an interval K ⊆ [n] of length

at most δ − 1 such that if d = c[n]\D and D ⊆ [n] is an interval, then it always holds that D ⊆ K .

Proof: Since d ∈ B≤t(c), there is an interval D′ ⊆ [n] such that d = c[n]\D′ . Let K ⊆ [n] be the interval such that cK
is the maximal substring of c satisfying: 1) cK has period t′ = |c| − |d|; 2) cK contains cD′ . We will prove that D ⊆ K for

any interval D ⊆ [n] such that d = c[n]\D.

Suppose D = [i1, i1+t′−1] and D′ = [i2, i2+t′−1]. Without loss of generality, assume i1 ≤ i2. Since c[n]\D = d = c[n]\D′ ,

we have

c1 · · · ci1−1 ci1+t′ ci1+t′+1 · · · ci2+t′−1 ci2+t′ · · · cn

= c1 · · · ci1−1 ci1 ci1+1 · · · ci2−1 ci2+t′ . . . cn.

By comparing the symbols of c[n]\D′ and c[n]\D′′ in each position, we can obtain ci = ci+t′ for each i ∈ [i1, i2 − 1]. So,

c[i1,i2+t′−1] is a substring of c of period t′ and contains both cD and cD′ . As cK is the maximal substring of c of period t′

that contains cD′ , so c[i1,i2+t′−1] is contained in cK . Thus, cD is contained in cK , which implies that D ⊆ K .

Since c is (p, δ)-dense, where p = 0t1t, then each substring of c of length δ contains at least one pattern p. Note that for

each t′ ∈ [t], we have pt = 0 6= 1 = pt+t′ , so each substring of c of length δ can not has period t′. In other words, the length

of any period-t′ substring of c is at most δ − 1. Thus, the length of cI (and the length of I) is at most δ − 1.

Let

Kj =

{

[(j − 1)δ+ 1, (j + 1)δ], for j ∈{1, · · · , ⌈n/δ⌉ − 2},

[(j − 1)δ+ 1, n], for j = ⌈n/δ⌉ − 1.
(13)

Remark 4: Similar to Remark 2, it is easy to see that

1) For any interval K ⊆ [n] of length at most δ, there is an j0 ∈ {1, 2, · · · , ⌈n/δ⌉ − 1} such that K ⊆ Kj0 .

2) Kj ∩Kj′ = ∅ for all j, j′ ∈ {1, 2, · · · , ⌈n/δ⌉ − 1} such that |j − j′| ≥ 2.

Let φ be the function constructed by Lemma 5 and f̄ b be the function constructed in Construction 2. For each x ∈ Z
n
q , let

Mx = (ci,j)⌈log q⌉×n be the matrix representation of x as defined by (1). We have the following construction.

Construction 3: For each x ∈ Z
n
q and each j ∈ {1, 2, · · · , ⌈n/δ⌉ − 1}, let

h̄j(x) =
(

φ(c2,Kj
), φ(c3,Kj

), · · · , φ(c⌈log q⌉,Kj
)
)

and for each ℓ ∈ {0, 1}, let

h̄(ℓ)(x) =
∑

j∈{1,2,··· ,⌈n/δ⌉−1}:
j ≡ ℓ mod 2

h̄j(x) mod N, (14)

where

N = q4 log logn+o(log logn)+γt .



Finally, let

f̄(x) =
(

f̄ b(c1,[n]), h̄
(0)(x), h̄(1)(x)

)

. (15)

We have the following theorem.

Theorem 5: For any x ∈ Z
n
q , f̄(x) is computable in linear time, and when viewed as a binary string, the length |f̄(x)| of

f̄(x) satisfies

|f̄(x)| ≤ logn+ 8(log q + 1) log logn+ o(log q log logn) + γt,

where γt is a constant depending only on t. Moreover, if c = c1,[n] is (p, δ)-dense, then given f̄(x) and any y ∈ B≤t(x), one

can uniquely recover x.

Proof: Note that by Theorem 3, f̄ b(c1,[n]) is computable in linear time. Moreover, by Lemma 5 and (13), each φ(c2,Kj
) is

computable in time O(2t(2δ)3) = O((log n)3), so by Construction 3, h̄(ℓ)(x), ℓ = 1, 2, are computable in linear time. Hence,

f̄(x) =
(

f̄ b(c1,[n]), h̄
(0)(x), h̄(1)(x)

)

is computable in linear time.

By Theorem 3, the length of f̄ b(c1,[n]) satisfies

|f̄ b(c1,[n])| ≤ log n+ 8 log logn+ γt + o(log logn).

Moreover, by Construction 3, the length of h̄(ℓ)(x), ℓ = 1, 2, satisfy

|h̄(ℓ)(x)| ≤ logN = log q(4 log logn+ o(log logn) + γt).

Hence, the length of f̄(x) satisfies

|f̄(x)| = |f̄ b(c1,[n])|+ |ḡ(0)(x)|+ |ḡ(1)(x)|

≤ logn+ 8(log q + 1) log log n+ o(log q log logn)

+ γt.

It remains to prove that if c = c1,[n] is (p, δ)-dense, then given f̄(x) and any y ∈ B≤t(x), one can uniquely recover x. To

prove this, we first prove that

h̄j(x) < N

for each j ∈ {1, 2, · · · , ⌈n/δ⌉ − 1}. In fact, by (13), each ci,Kj
, i ∈ [2, ⌈log q⌉], has length 2δ = 2t2t+1 logn, so by Lemma

5, φ(c2,Kj
) has length 4 log(2δ) + o(log(2δ)) = 4 log logn+ γt + o(log logn). Hence, by Construction 3, we have

|h̄j(x)| = |
(

φ(c2,Kj
), φ(c3,Kj

), · · · , φ(c⌈log q⌉,Kj
)
)

|

= (⌈log q⌉ − 1) (4 log logn+ γt + o(log logn))

< log q (4 log logn+ γt + o(log logn)) ,

which implies that h̄j(x) < q4 log logn+γt+o(log logn) = N .

Now, we prove that x can be uniquely recovered from f̄(x) and any given y ∈ B≤t(x), provided that c = c1,[n] is

(p, δ)-dense. Let

My = (di,j)⌈log q⌉×(n−t′)

be the matrix representation of y. Since y ∈ B≤t(x) can be obtained from x by deleting t′ consecutive symbols from x,

where t′ = n− |y| and t′ ∈ [t], then My can be obtained from Mx by deleting t′ consecutive columns of Mx. The process

of recovering x from f̄(x) =
(

f̄ b(c1,[n]), ḡ
(0)(x), ḡ(1)(x)

)

and y consists of the following three steps.

Step 1: Since c = c1,[n] is (p, δ)-dense, then by Theorem 3, c1,[n] can be recovered from d1,[n−t′] and f̄ b(c1,[n]).
Step 2: According to Lemma 10, there is an interval K ⊆ [n] of length at most δ − 1 such that d1,[n−t′] is obtained from

c = c1,[n] by deleting t′ consecutive symbols in K . Correspondingly, My is obtained from Mx by deleting t′ consecutive

columns in K . By 1) of Remark 4, there is an j0 ∈ {1, 2, · · · , ⌈n/δ⌉ − 1} such that K ⊆ Kj0 . Denote Kj0 = [λ, λ′]. Then

we have the following observations:

i) ci,[1,λ−1] = di,[1,λ−1] for each i ∈ [2, ⌈log q⌉].
ii) di,[λ,λ′−t′] ∈ B≤t(ci,[λ,λ′ ] for each i ∈ [2, ⌈log q⌉].

iii) ci,[λ′+1,n] = di,[λ′−t′+1,n−t′] for each i ∈ [2, ⌈log q⌉].

By observations i) and iii), for each i ∈ [2, ⌈log q⌉], ci,[1,λ−1] and ci,[λ′+1,n] can be directly obtained from My.

Step 3: For j ∈ {1, · · · , j0 − 2}, we have Kj ∩Kj0 = ∅, by 2) of Remark 4, so Kj ⊆ [1, λ − 1] and by observation i),

h̄j(x) =
(

φ(c2,Kj
), φ(c3,Kj

), · · · , φ(c⌈log q⌉,Kj
)
)

can be computed from di,[1,λ−1] = ci,[1,λ−1], i = 2, · · · , ⌈log q⌉. Similarly,

for j ∈ {j0 + 2, · · · , ⌈n/δ⌉ − 1}, by 2) of Remark 4, we have Kj ∩Kj0 = ∅, so Kj ⊆ [λ′ + 1, n] and by observation iii),



h̄j(x) =
(

φ(c2,Kj
), φ(c3,Kj

), · · · , φ(c⌈log q⌉,Kj
)
)

can be computed from di,[λ′−t′+1,n−t′] = ci,[λ′+1,n], i = 2, · · · , ⌈log q⌉. Let

ℓ0 ∈ {0, 1} be such that ℓ0 ≡ j0 mod 2. By (14), we can obtain

h̄j0(x) ≡ h̄(ℓ0)(x)−
∑

j∈{1,2,··· ,⌈n/δ⌉−1}\{j0}:
j ≡ ℓ0 mod 2

h̄j(x) mod N.

Note that we have proved that h̄j(x) < N for each j ∈ {1, 2, · · · , ⌈n/δ⌉ − 1}, so we actually have

h̄j0(x) = h̄(ℓ0)(x)−
∑

j∈{1,2,··· ,⌈n/δ⌉−1}\{j0}:
j ≡ ℓ0 mod 2

h̄j(x) mod N,

where by Construction 3,

h̄j0(x) =
(

φ(c2,Kj0
), φ(c3,Kj0

), · · · , φ(c⌈log q⌉,Kj0
)
)

.

By observation ii) in Step 2, and by Lemma 5, ci,[λ,λ′], i = 2, · · · , ⌈log q⌉, can be recovered from h̄j0(x) and di,[λ,λ′−t′],

i = 2, · · · , ⌈log q⌉.

By the above discussions, Mx (and so x) can be uniquely recovered from f̄(x) and any given y ∈ B≤t(x).

Let Sn be the set of all q-ary strings x ∈ Z
n
q such that the first row c1,[n] of Mx is (p, δ)-dense, where Mx = (ci,j)⌈log q⌉×n

is the matrix representation of x. Let

Eb
Den : {0, 1}n−1 → Sb

n

be the one-to-one mapping constructed as in (11), where Sb
n is the set of all (p, δ)-dense strings in {0, 1}n. By Lemma 8, the

mapping Eb
Den can be extended to a one-to-one mapping, denoted by

EDen : Zn−1
q → Z

n
q ,

such that for each u ∈ Z
n−1
q and x = EDen(u), if Mu = (bi,j)⌈log q⌉×(n−1) and Mx = (ci,j)⌈log q⌉×n are the matrix

representation of u and x respectively, then

c1,[n] = Eb
Den(b1,[n−1]).

Since Eb
Den(b1,[n−1]) is (p, δ)-dense, then for any u ∈ Z

n−1
q , we have x = EDen(u) ∈ Sn.

As in Section III, for each binary string a, let Q(a) be the q-ary representation of a. Note that Q(a) is a q-ary string of

length ⌈|a|/⌊log q⌋⌉. Using the function f̄ constructed in Construction 3 and the mapping EDen, we can construct an encoding

function of a q-ary code capable of correcting a burst of at most t deletions.

Let Ē be a function defined on Z
n−1
q of the form

Ē(u) = (v,v′,v′′), ∀u ∈ Z
n−1
q , (16)

where v = EDen(u), v
′ = EDen(Q(f̄(v))) and v′′ = Rept+1(Q(f̄(v′))) such that Rept+1(·) is the encoding function of the

(t+ 1)-fold repetition code.

Theorem 6: The code C̄ = {Ē(u) : u ∈ Z
n−1
q }, where Ē is given by (16), is a q-ary code capable of correcting a burst of

at most t deletions. The redundancy of C̄ is at most logn+ (8 log q+9) log logn+ o(log q log log n) + γt in bits, where γt is

a constant depending only on t.
Proof: To prove that C̄ is capable of correcting a burst of at most t deletions, we adopt a similar strategy as in the proof

of Theorem 2. Specifically, let

x = Ē(u) = (v,v′,v′′) ∈ C̄,

where v = EDen(u), v
′ = EDen(Q(f̄(v))) and v′′ = Rept+1(Q(f̄(v′))). Given any y ∈ B≤t(x), denoting t′ = |x| − |y|, then

t′ ≤ t and we have y[1,m1−t′] ∈ B≤t(v), y[m1,m2−t′] ∈ B≤t(v
′) and y[m2,m3−t′] ∈ B≤t(v

′′), where m1 = |v|,m2 = |(v,v′)|
and m3 = |x| = |(v,v′,v′′)|. First, since v′′ = Rept+1(Q(f̄(v′))) is a codeword of a t-deletion code, then Q(f̄(v′)), and so

f̄(v′), can be recovered from y[m2,m3−t′]. Further, by Theorem 5, v′ can be recovered from y[m1,m2−t′] and f̄(v′), and so

f̄(v) can be recovered from v′ = EDen(Q(f̄(v))). Finally, by Theorem 5 again, v can be recovered from y[1,m1−t′] and f̄(v).
Thus, x = (v,v′,v′′) can be recovered from any y ∈ B≤t(x), which proves that C̄ is capable of correcting a burst of at most

t deletions.

Since u ∈ Z
n−1
q and v = EDen(u) ∈ Sn ⊆ Z

n
q , so v has log q bits redundancy. Moreover, by Theorem 5, the length of v′ is

|v′| = log n+ 8(log q + 1) log logn+ o(log q log logn) + γt



bits and the length of v′′ is

|v′′| = log |v′|+ 8(log q + 1) log log |v′|+ o(log q log log |b′|)

+ γt

= log logn+ γt + o(log q log log n)

in bits. So the total redundancy of c = Ēb(a) is

redundancy of C̄ = log q + |v′|+ |v′′|

= logn+ (8 log q + 9) log log n

+ o(log q log logn) + γt

bits.

VI. CONCLUSIONS

We constructed systematic q-ary two-deletion correcting codes and q-ary burst-deletion correcting codes, where q ≥ 2 is an

even integer. For q-ary two-deletion codes, the redundancy of our construction is logn higher than the best known explicit binary

codes and is lower than all existing explicit q-ary codes. For q-ary burst-deletion codes, our construction is scaling-optimal in

redundancy.

It is also an interesting problem to generalize our constructions to odd q. Another interesting problem is to construct explicit

q-ary t-deletion correcting codes that improves upon the state of the art constructions in redundancy.

APPENDIX A

PROOF OF LEMMA 9

In this appendix, we prove Lemma 9. We first need to prove the following lemma.

Lemma 11: Suppose c ∈ {0, 1}n and {j1, j2}, {j′1, j
′
2} ⊆ [n] such that j1 < j2, j

′
1 < j′2 and j1 ≤ j′1. If c[n]\{j1,j2} =

c[n]\{j′
1
,j′

2
}, then one of the following holds:

1) cj1 , cj′1 are in the same run of c, and cj2 , cj′2 are in the same run of c.

2) There is an alternative substring c[s1,s2] of c of length ≥ 3 such that cj1 and cs1 are in the same run of c, j2 = s1 + 1,

j′1 = s2 − 1 and cj′
2

and cs2 are in the same run of c.

Proof: If {j1, j2} = {j′1, j
′
2}, then 1) holds. In the following, we assume that {j1, j2} 6= {j′1, j

′
2}. Since c[n]\{j1,j2} =

c[n]\{j′
1
,j′

2
}, we can denote b = c[n]\{j1,j2} = c[n]\{j′

1
,j′

2
}. From b = c[n]\{j1,j2} we can obtain

bi =











ci, for i ∈ [1, j1 − 1],

ci+1, for i ∈ [j1, j2 − 2],

ci+2, for i ∈ [j2 − 1, n− 2].

(17)

Similarly, from b = c[n]\{j′
1
,j′

2
} we can obtain

bi =











ci, for i ∈ [1, j′1 − 1],

ci+1, for i ∈ [j′1, j
′
2 − 2],

ci+2, for i ∈ [j′2 − 1, n− 2].

(18)

Since j1 < j2, j′1 < j′2 and j1 ≤ j′1, then we can divide our discussions into the following three cases:

Case 1: j1 < j2 ≤ j′1 < j′2. Combining (17) and (18), we can obtain

b = c1 · · · cj1−1cj1+1cj1+2 · · · cj2−1cj2+1cj2+2cj2+3cj2+4 · · · cj′
1
−2cj′

1
−1 cj′

1
cj′

1
+1cj′

1
+2cj′

1
+3 · · · cj′

2
−1 cj′

2
cj′

2
+1 · · · cn

= c1 · · · cj1−1 cj1 cj1+1 · · · cj2−2cj2−1 cj2 cj2+1cj2+2 · · · cj′
1
−4cj′

1
−3cj′

1
−2cj′

1
−1cj′

1
+1cj′

1
+2 · · · cj′

2
−2cj′

2
−1cj′

2
+1 · · · cn.

(19)

We further need to divide this case into the following two subcases.

Case 1.1: j′1 − j2 is odd. By comparing the symbols of the corresponding positions in c[n]\{j1,j2} and c[n]\{j′
1
,j′

2
}, we can

obtain

cj1 = cj1+1 = · · · = cj2−2 = cj2−1 = cj2+1 = cj2+3 = · · ·

= cj′
1
−4 = cj′

1
−2 = cj′

1



and

cj2 = cj2+2 = cj2+4 = · · · = cj′
1
−3 = cj′

1
−1 = cj′

1
+1

= cj′
1
+2 = cj′

1
+3 = · · · = cj′

2
.

Case 1.2: j′1 − j2 is even. By comparing the symbols of the corresponding positions in c[n]\{j1,j2} and c[n]\{j′
1
,j′

2
}, we can

obtain

cj1 = cj1+1 = cj1+2 = · · · = cj2−2 = cj2−1 = cj2+1

= cj2+3 = · · · = cj′
1
−3 = cj′

1
−1 = cj′

1
+1 = cj′

1
+2

= cj′
1
+3 = · · · = cj′

2
−1 = cj′

2

and

cj2 = cj2+2 = cj2+4 = · · · = cj′
1
−4 = cj′

1
−2 = cj′

1

For the both subcases, we can see that

• If cj1 = cj2 , then we have cj1 = cj1+1 = · · · = cj′
2
, so cj1 , cj2 , cj′1 and cj′

2
are in the same run of c, which implies that

1) of Lemma 11 holds.

• If cj1 6= cj2 , then c[j2−1,j′
1
+1] is an alternative substring of c of length ≥ 3. By letting s1 = j2 − 1 and s2 = j′1 + 1, we

obtain 2) of Lemma 11.

Example 1) is an illustration of this case.

Case 2: j1 ≤ j′1 < j2 ≤ j′2. In this case, combining (17) and (18), we can obtain

b =c1 · · · cj1−1cj1+1cj1+2 · · · cj′
1
−1 cj′

1
cj′

1
+1cj′

1
+2 · · · cj2−1cj2+1cj2+2cj2+3 · · · cj′

2
−1 cj′

2
cj′

2
+1 · · · cn

=c1 · · · cj1−1 cj1 cj1+1 · · · cj′
1
−2cj′

1
−1cj′

1
+1cj′

1
+2 · · · cj2−1 cj2 cj2+1cj2+2 · · · cj′

2
−2cj′

2
−1cj′

2
+1 · · · cn, (20)

from which we see that

cj1 = cj1+1 = · · · = cj′
1

and

cj2 = cj2+1 = · · · = cj′
2
.

Hence, 1) of Lemma 11 holds.

Case 3: j1 ≤ j′1 < j′2 < j2. In this case, combining (17) and (18), we can obtain

b =c1 · · · cj1−1cj1+1cj1+2 · · · cj′
1
−1 cj′

1
cj′

1
+1cj′

1
+2 · · · cj′

2
−1 cj′

2
cj′

2
+1cj′

2
+2 · · · cj2−1cj2+1cj2+2 · · · cn

=c1 · · · cj1−1 cj1 cj1+1 · · · cj′
1
−2cj′

1
−1cj′

1
+1cj′

1
+2 · · · cj′

2
−1cj′

2
+1cj′

2
+2cj′

2
+3 · · · cj2 cj2+1cj2+2 · · · cn, (21)

from which we can see that

cj1 = cj1+1 = · · · = cj′
1

and

cj′
2
= cj′

2
+1 = · · · = cj2 .

Hence, 1) of Lemma 11 holds.

Example 1: To illustrate the Case 1 in the proof of Lemma 11, let’s consider the following two examples.

• Consider c = 01000101011110. Let j1 = 3, j2 = 6, j′1 = 9 and j′2 = 12. Then c[n]\{j1,j2} = c[n]\{j′
1
,j′

2
} = 010001011110

and j′1 − j2 = 9 − 6 = 3 is odd. We can find that cj1 = · · · = cj2−1 = cj2+1 = cj2+3 = · · · = cj′
1
= 0 and

cj2 = cj2+2 = · · · = cj′
1
−1 = cj′

1
+1 = · · · = cj′

2
= 1.

• Consider c = 01000101010001. Let j1 = 3, j2 = 6, j′1 = 10 and j′2 = 12. Then c[n]\{j1,j2} = c[n]\{j′
1
,j′

2
} = 010001010001

and j′1− j2 = 10− 6 = 4 is even. We can find that cj1 = · · · = cj2−1 = cj2+1 = cj2+3 = · · · = cj′
1
−1 = cj′

1
+1 = cj′

1
+2 =

· · · = cj′
2
= 0 and cj2 = cj2+2 = · · · = cj′

1
= 1.

Now, we can prove Lemma 9.

Proof of Lemma 9: Suppose c ∈ {0, 1}n is regular and b ∈ {0, 1}n−2 such that b can be obtained from c by deleting

two symbols of c. Then we can always find two symbols of c, say cj1 and cj2 (j1 < j2), such that, b = c[n]\{j1,j2}.

First, suppose cj1 and cj2 are in the same run of c. Then for any {j′1, j
′
2} ⊆ [n] such that b = c[n]\{j′

1
,j′

2
}, it is easy to see

that 2) of Lemma 11 can’t hold. (Otherwise, there is an alternative substring c[s1,s2] of c of length ≥ 3 such that cj1 , cs1 are

in the same run of c and j2 = s1 + 1, which implies that cj1 = cs1 6= cs1+1 = cj2 , which contradicts to the assumption that

cj1 and cj2 are in the same run of c.) Therefore, 1) of Lemma 11 must hold, which implies that there is a run cJ of c, where



J ⊆ [n] is an interval, such that b is obtained from c by deleting two symbols in cJ . Since c ∈ {0, 1}n is regular, by Remark

1, the length of cJ is at most d logn < ρ = 3d logn. Thus, 2) of Lemma 9 holds.

In the following, we suppose that cj1 and cj2 (j1 < j2) are in two different runs of c. Specifically, suppose j1 ∈ J =
[i1, i2] ⊆ [n] and j2 ∈ J ′ = [i′1, i

′
2] ⊆ [n] such that cJ and cJ′ are two different runs of c. Since j1 < j2, then

i1 ≤ i2 < i′1 ≤ i′2.

We need to consider the following two cases.

Case 1: i′1 > i2 + 1. Since j2 ∈ J ′ = [i′1, i
′
2], then j2 ≥ i′1 > i2 + 1. For any {j′1, j

′
2} ⊆ [n] such that b = c[n]\{j′

1
,j′

2
}, it is

easy to see that 2) of Lemma 11 can’t hold. (Otherwise, there is an alternative substring c[s1,s2] of c of length ≥ 3 such that

cj1 , cs1 are in the same run of c and j2 = s1+1, which implies that s1 = i2 and j2 = s1+1 = i2+1, which contradicts to the

fact that j2 ≥ i′1 > i2 +1.) Therefore, 1) of Lemma 11 must hold, which implies that j′1 ∈ J = [i1, i2] and j′2 ∈ J ′ = [i′1, i
′
2]

′.

Thus, 1) of Lemma 9 holds.

Case 2: i′1 = i2 + 1. We need to consider the following two subcases.

Case 2.1: |J | ≥ 2 and |J ′| ≥ 2. Then for any {j′1, j
′
2} ⊆ [n] such that b = c[n]\{j′

1
,j′

2
}, it is easy to see that 2) of Lemma

11 can’t hold because no such alternative substring c[s1,s2] of c can be found. Therefore, 1) of Lemma 11 must hold, which

implies that j′1 ∈ J = [i1, i2] and j′2 ∈ J ′ = [i′1, i
′
2]

′. Thus, 1) of Lemma 9 holds.

Case 2.2: |J | = 1 or |J ′| = 1. Without loss of generality, assume |J | = 1. Then i1 = i2 and ci1−1ci1ci1+1 is an alternative

substring of c. Let c[λ1,λ2] be the maximal alternative substring of c that contains ci1−1ci1ci1+1, where [λ1, λ2] ⊆ [n] is an

interval. Let c[λ0,λ1] (if λ1 > 1) and c[λ2,λ3] (if λ2 < n) be two runs of c. For any {j′1, j
′
2} ⊆ [n] such that b = c[n]\{j′

1
,j′

2
},

by Lemma 11, we have {j′1, j
′
2} ⊆ [λ0, λ3]. Since c ∈ {0, 1}n is regular, by Remark 1, the length of the alternative substring

c[λ1,λ2] of c is at most d logn, and the lengths of the runs c[λ0,λ1], c[λ2,λ3] of c are both at most d log n. Hence, the length of

c[λ0,λ3] is at most ρ = 3d logn. Thus, 2) of Lemma 9 holds.

By the above discussions, we proved that exact one of the two claims of Lemma 9 holds.

As an example, suppose c = 011000101011110100. We consider the following cases.

• If b = 0110101011110100, then b can be obtained from c by deleting two symbols in the run c[4,6] = 000.

• If b = 0110010011110100, then b can be obtained from c by deleting one symbol in the run c[4,6] = 000 and one symbol

in the run c[9,9] = 1. This case is an example of Case 1 in the proof of Lemma 9.

• If b = 0100101011110100, then b can be obtained from c by deleting one symbol in the run c[2,3] = 11 and one symbol

in the run c[4,6] = 000. This case is an example of Case 2.1 in the proof of Lemma 9.

• If b = 0110001011110100, then b can be obtained from c by deleting two symbols in the substring c[4,14] = 00010101111,

which may be any of the following cases: i) one symbol in the run c[4,6] = 000 and the symbol c7 = 1; ii) the symbols

ci, ci+1 for i ∈ {7, 8, 9}; iii) one symbol in the run c[11,14] = 1111 and the symbol c10 = 0. This case is an example of

Case 2.2 in the proof of Lemma 9.
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