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Abstract

In this paper, we construct systematic g-ary two-deletion correcting codes and burst-deletion correcting codes, where ¢ > 2 is
an even integer. For two-deletion codes, our construction has redundancy 5log n+O(log g log log n) and has encoding complexity
near-linear in n, where n is the length of the message sequences. For burst-deletion codes, we first present a construction of
binary codes with redundancy logn + 9loglogn + 7+ + o(loglogn) bits (¢ is a constant that depends only on ¢) and capable
of correcting a burst of at most ¢ deletions, which improves the Lenz-Polyanskii Construction (ISIT 2020). Then we give a
construction of g-ary codes with redundancy log n+ (8 log ¢+ 9) log log n + o(log ¢ log log n) 4+ v+ bits and capable of correcting
a burst of at most ¢ deletions.

I. INTRODUCTION

DNA-based data storage has been a hot topic in information theory society. As deletion/insertion are common in DNA data
storage [[I]], codes correcting such errors have attracted significant attention in recent years.

It was proved in [2] that the optimal redundancy of binary ¢-deletion correcting codes is asymptotically between tlogn +
o(logn) and 2tlogn + o(logn), where n is the length of the code and the redundancy of a binary code C is defined as
n —log|C | The well-known Varshamov-Tenengolts (VT) codes [3], which is defined as

VT,(n)= {(cl, .oy en) €40, 1}":21’@-5 a mod (n + 1)},
i=1
is a class of binary single-deletion correcting codes with asymptotically optimal redundancy. Construction of multiple-deletion
correcting codes with low redundancy were considered in [4]—[12]. By using the higher order VT syndromes and the syndrome
compression technique [[10], Sima er al. constructed a family of systematic ¢-deletion correcting codes with 4t logn + o(log n)
bits [11]]. The method in [11] was improved in [12] to give a construction of ¢-deletion correcting codes with redundancy
(4t — 1) logn 4 o(log n), which is the best known result in redundancy. For the special case of ¢ = 2, an explicit construction
of 2-deletion correcting codes with redundancy 4 logn + o(logn) was proposed by Guruswami and Héstad [[7], which matches
the existential upper bound of the asymptotically optimal codes.

As a special case of deletion errors, a burst of ¢ deletions (or a ¢-burst-deletion) refers to ¢ deletions that occur at consecutive
positions. It was proved in [13] that the redundancy of a ¢-burst-deletion-correcting code is approximately lower bounded by
logn + t — 1. Levenshtein [14] constructed a class of binary codes that can correct a burst of at most two deletions with
asymptotically optimal redundancy of logn + 1. Binary codes capable of correcting a burst of exact ¢t deletions for ¢ > 2 are
constructed in [13]], which also have an asymptotically optimal redundancy of logn + (t — 1) loglogn + ¢ — logt. In [13]],
binary codes capable of correcting a burst of atr most ¢ deletions are constructed, which also have an asymptotically optimal
redundancy of logn + (t(t — 1)/2)loglogn + 7¢, where 7; is a constant that depends only on ¢.

Besides binary codes, nonbinary deletion correcting codes are also investigated in the literature. In [16]], it was shown that the
optimal redundancy of a g-ary t-deletion correcting code is asymptotically lower bounded by tlogn + tlog ¢ + o(log glogn)
and upper bounded by 2tlogn + tlogq + o(logglogn) in bits (¢ > 2). A class of g-ary single-deletion correcting codes
with redundancy close to the asymptotic optimality was constructed in [I7]. For g-ary t-deletion correcting codes, the best
known construction is presented in [I8]], which achieve optimal redundancy up to a constant factor. Quaternary codes capable
of correcting a single edit error for DNA data storage were studied in [19]]. In [20]], a g-ary code that can correct a burst of at
most 2 deletions with redundancy logn + O(log g loglogn) bits was constructed, where ¢ > 2 is an even integer.

In this paper, we construct nonbinary two-deletion correcting codes and burst-deletion correcting codes. Our contributions
includes:

1) We construct a class of systematic g-ary two-deletion correcting codes, with redundancy 5 log n+O(log ¢ loglogn), where
q > 2 is an even integer and n is the length of the message sequences.

'In this paper, for any positive real number z, log, x is the logarithm of  with base g, where ¢ > 2 is a positive integer. If the base ¢ = 2, then for
simplicity, we write log, x = log x.
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2) We present a construction of binary codes with redundancy logn + 9loglogn + v; + o(loglogn) bits (v; is a constant
that depends only on t¢) and capable of correcting a burst of at most ¢ deletions, which improves the Lenz-Polyanskii
Construction (ISIT 2020).

2) We give a construction of g-ary codes with redundancy logn + (81log ¢ + 9)loglogn + o(log gloglogn) + ; bits and
capable of correcting a burst of at most ¢ deletions, where ¢ > 2 is an even integer.

Note that each symbol in Z, can be viewed as a binary string of length [logg¢], so a binary code of length [log¢]|n and
capable of correcting a burst of [log ¢|t deletions can also be viewed as a g-ary code of length n and capable of correcting a
burst of ¢ deletions. By this observation and by the construction in [I3]], we can obtain a g-ary code of length n and capable
of correcting a burst of ¢ deletions that has redundancy

tlogq(tlogq+1)
2

Our construction has improved redundancy than this naive construction.

The rest of this paper is organized as follows. In Section II, we introduce some basic concepts and notations of deletion
correcting codes, and review some related constructions in the literature. In Section III, we construct g-ary two-deletion
correcting codes. In Section IV, we present an improved construction of binary codes correcting a burst of at most ¢ deletions.
In Section V, we construct of g-ary codes correcting a burst of at most ¢ deletions. The paper is concluded in Section VI.

log(n log q) + loglog(nloggq) + 7+.

II. PRELIMINARIES

For any integers m and n such that m < n, we denote [m,n] = {m,m + 1,...,n} and call it an interval. If m > n, let
[m, n] = (. For simplicity, denote [n] = [1,n] for any positive integer n. For any positive real number z, log x is the logarithm
of x with base 2, i.e., logx = log, 2. The size (cardinality) of any set S is denoted by |S|. For any positive integer ¢ > 2,
denote Z, = {0,1,2,---,q — 1}, which will be used as the alphabet of g-ary codes.

For any string (also called a sequence) x € Z", n is called the length of « and denote || = n. Unless otherwise specified,
we use x; to denote the ith coordinate of @, where ¢ € [n]. Usually, we denote @ = (21, x2,...,2,) OF © = 2129 - - - Tp,. For
any I = {i1,42,...,iq} C [n] such that i1 < iz < -+ < ig, denote x; = x;, x;, - - - x;, and call xp a subsequence of x. If
I C [n] is an interval (i.e., I = [i, j] for some i, j € [1,n], i < j), then x; = x[; j) = xiTi41 - - x5 is called a substring of x.
In other words, a substring of x is a subsequence of x consisting of some consecutive symbols of . We say that  contains
p (or p is contained in «) if p is a substring of x. For two substrings x; and x;. of @, where I, I’ C [n] are two intervals,
we say that 2y and zy are disjoint if TN 1" = ().

Let ¢ < n be a nonnegative integer. For any x € Zy, let D:(x) denote the set of subsequences of x of length n — ¢, and
let B:(x) denote the set of subsequences y of @ that can be obtained from « by a burst of ¢ deletions, that is y = x; such
that I = [n]\D for some interval D C [n] of length ¢ (i.e., D = [i,i +t — 1] for some i € [n — ¢t + 1]). Moreover, let
B<i(x) = Ui/:o By (x) be the set of subsequences of x that can be obtained from x by a burst of at most ¢ deletions. Clearly,
Di(x) = Bi(x) = B<1(x). However, Bi(x) C Di(x) N B<y(x) for t > 2.

A code C C Zj is said to be a t-deletion correcting code if for any € C and any y € D;(x), « can be uniquely recovered
from y; the code C C Zj is said to be capable of correcting a burst of at most t deletions if for any « € C and any y € B<i(x),
x can be uniquely recovered from y.

A. Some Constructions Related to Binary Single-deletion and Two-deletion Correcting Codes

From the VT construction, we can obtain the following lemma about single-deletion correcting codes.

Lemma 1: For any integer n > 3, there exists a function VT : {0,1}" — {0,1}!°8", computable in linear time, such that
for any ¢ € {0,1}", given VT(c) and any b € D;(c), one can uniquely recover c.

The following lemma can be obtained from the results of [6], and so its proof is omitted.

Lemma 2: For any integer n > 3, there exists a function ¢ : {0, 1} — {0, 1}7%# nto(logn) computable in linear time, such
that for any ¢ € {0,1}", given {(c) and any b € Ds(c), one can uniquely recover c.

Lemma 2] can be used to construct systematic binary two-deletion correcting codes with redundancy not greater than 7 log n+
o(logn). Another construction, which uses the so-called regular strings and has lower redundancy, was proposed in [[7]], but it
is not systematic.

Definition 1 (Regularity): A binary string ¢ € {0,1}" is said to be regular if each (contiguous) sub-string of ¢ of length at
least dlogn contains both 00 and 11.

In Definition Il d is a constant that can be chosen properly. In this paper, we will always choose d = 7. The following two
lemmas are from [7]].

Lemma 3: [, Lemma 11] There exist an integer M > 2"~! and a one-to-one mapping RegEnc : {1,2,--- , M} — {0,1}"
such that its image is contained in the set of regular strings. Moreover, the function RegEnc can be computed in near-linear
time with a polynomial size lookup table.



Lemma 4: [, Theorem 7] There is a function 7, computable in linear time, that maps n bits to 4logn+ 10loglogn+ O(1)
bits such that for any regular ¢ € {0, 1}", given n(c) and any b € Dy(c), one can uniquely recover c.

B. Some Constructions Related to Binary Burst-Deletion Correcting Codes

The following lemma can be obtained from the results in Section IV of [10].
Lemma 5: Suppose t is a constant with respect to n. There is a function ¢ : {0,1}" — {0, 1}*lesntelogn) " computable in
time O(2¢n?), such that for any ¢ € {0,1}", given ¢(c) and any b € B<;(c), one can uniquely recover c.
Let m < § < n be positive integers and p € {0, 1}™, where p is called a pattern. A string ¢ € {0,1}" is called (p, 0)-dense,
if each substring of ¢ of length § contains at least one pattern p.
As in [13], in this paper, we take
§ =2ttt lognﬁ

and
p =017,

where (0 is the string consists of ¢ symbol Os, and 1¢ is the string consists of ¢ symbol 1s. In other words, p = pips - - - pa;
such that py = py = -+ = p; = 0 and pyy1 = pry2 = -+ = pa = 1. It was proven in [I3] that one bit of redundancy is
sufficient to construct (p, §)-dense string.

Lemma 6: [15, Lemma 1] For any n > 5, the number of (p, §)-dense strings of length n is at least

2n(1 _ nl—loge) > 271—1'

The following lemma can be obtained from Construction 1 and Lemma 2 of and so its proof is omitted.

Lemma 7: For any positive integer n, there is a function p, computable in linear time, that maps n bits to logn + 3 bits
such that for any (p, d)-dense ¢ € {0,1}", given u(c) and any b € B<;(c), one can find in time O(n) an interval L C [n] of
length at most 6 + ¢ such that b = cp,,)\ p for some interval D C L (i.e., the deletions are located in the interval L).

C. Matrix Representation of q-ary Strings

In the rest of this paper, we always assume g > 2 is a fixed even integer. As in [18]], each g-ary string * = z122 ... %, € Ly
can be represented by a [log¢] X n binary matrix

C1,1 e Cln
Mg = (cij) = ; M
Clogql, 1 " Cllogql,n
where ¢; ; € {0, 1}, such that the jth column of M, is the binary representation of z;. Specifically, z; = fof ql ;2071 We
call M, the matrix representation of x. For any i € {1,2,--- , [logq]} and any interval J = [j1,72] = {j1,j1+ 1, -+ ,j2} C
[n], where 1 < j; < ja2 < n, denote

Cid 2 Cijy Cigjy 41 Cijay )

which is a substring of the ith row of M, consisting of ¢; j,, ¢; j,+1, "+, Cij,. In particular, c; ) is the ith row of M.
Clearly, if y € ZZ*t is obtained from x by deleting x; ,--- ,x;,, then the matrix representation M, of y can be obtained
from M, by deleting columns ji, - - -, j; of Mg. Moreover,  can be recovered from y if and only if its matrix representation

My, can be recovered from M,,.

Lemma 8: Suppose & : {0,1}"~1 — {0,1}" is a one-to-one mapping and ¢ > 2 is an even integer. Then there is a
one-to-one mapping & : ngl — Zy, with the same computing time as &, such that for any u € ngl and x = &(u), if
Moy = (bi j)1og ] x (n—1) and Mg = (¢ j)log q] xn are the matrix representation of w and @ respectively, then

c1,in] = Eo(bi,fn-1])-

Proof: For each u € Zg_l, where the matrix representation of w is

b1 b1n—1
b2 1 b2 n—1
Mu - . 5
brioggl,1 *** biogeln—1

2In [I5], § is taken to be 2+ [logn]?. In this paper, for notational simplicity, we omit the ceiling function and write § = 2+ logn.



denote Ey(by,(n—1)) =€ =c11-*-C1n_1€1, and let

C1,1 o Cln—1 Cin
ba1 ban—1
M =
brogql,n  *+ blogqln—1 0

Specifically, M = (¢; ;) is a [log ¢] x n binary matrix satisfying the following three properties: i) the first row of M is equal
to ¢ i) c2j Cliogql,j = b2, Dliogq),j for each j € [n — 1]; ii) ca,n - Cliogq),n = 0/°8 7171, where 0M1°891=1 s the
string consisting of [logg] — 1 symbol Os.

Let &(u) = x such that the matrix representation of x is M, = M. It is easy to see that ¢ ) = &o(b1,[,—1)) and the
computing time of & is the same as that of &). Moreover, since & is a one-to-one mapping, it is also easy to see that & is
a one-to-one mapping.

It remains to prove that x € Z, equivalently, each column of M, is the binary representation of some integer in Z,.

According to property iii) of the constructed matrix M, we have c[iogq),n """ C2,nC1n = 0[log Q]_lclm, so the last column
of M is the binary representation of ¢1, € {0,1} C Z,. For each j € [n — 1], according to property ii) of M, we have
Cllog ql,5 " " €2,jC1,j = bﬂogq],j s bejClyj, SO T; = Zl—:lgq] CiﬁjQi_l e Zl—rgq] bi1j2i_1+617j = Uj—b17j+011j, where the last
equality holds because according to the definition of the matrix representation, byog 41,5 - - - b2,501,5 is the binary representation
of uj. If by j =1, then x; = u; — by j+c1; <u; <g—1.1f by ; = 0, then u; is even. Noticing that ¢ is even, so u; < g — 2,
and hence z; = u; — by ; +c1; = u; +c1; < ¢ — 1. In both cases, we have z; € Z,. Thus, each column of M is the binary
representation of some integer in Zg, and so x € Zy. |

III. NONBINARY TWO-DELETION CORRECTING CODES

In this section, we consider g-ary two-deletion correcting codes. We assume that ¢ > 2 is an even integer and is a constant with
respect to the code length n. Each binary sequence a will also be viewed as a non-negative integer whose binary representation
is a, and conversely, each non-negative integer m will also be viewed as a binary sequence with length [log(m 4+ 1)], i.e., the
binary representation of m. Therefore, summation and multiplication of binary strings and integers are performed in the set
of integers.

We need to introduce some concepts and notations for binary strings, which will be used in our construction.

Let ¢ € {0,1}" be a binary string of length n. A run of ¢ is a maximal substring of ¢ consisting of identical symbolsE A
substring cj;, ;,] of ¢, where iy < iy, is called an alternative substring of c if c;;1 # ¢; for all i € [iy, iy — 1].

Remark 1: From Definition [] it is easy to see that if ¢ € {0,1}" is regular, then each substring of ¢ of length dlogn can
not be a run or an alternative substring of ¢ because it contains both 00 and 11. Equivalently, each run and each alternative
substring of ¢ have length at most d logn.

Definition 2: For each ¢ € {0,1}", let ¢, be the ith run (counting from the left) of ¢, where I; C [n] is the index set of
cr,. Then we denote Z. = {cy,,--- ,cz,, } and call it the set of runs of c, where n’ is the number of runs of c.

Let VT, £ and 7 be the functions constructed by Lemma [l Lemma 2] and Lemma [ respectively. Denote

p = 3dlogn
and let
I = [(.] - 1)p+ 1a (.] =+ 1)p]7 fOI'j 6{17 ) ’Vn/p‘| - 2}5 (3)
"G = Dot 1., for j = [n/p] — 1.

Note that each interval J; has length 2p and the intersection of two successive intervals J; and J;4; is an interval of length
p. It is easy to see the following remark.
Remark 2: The intervals J;, j =1,---,[n/p| — 1 satisfies:

1) For any interval J C [n] of length at most p, we can find an jo € {1,2,---, [n/p] — 1} such that J C Jj,.
2) JinJj =0forall j,j’ € {1,2,---,[n/p] — 1} such that |j — j'| > 2.
For each g-ary string & € Z7, let My, = (c; ;) be the matrix representation of x as defined by (D and ¢4 p,,) be the first row
of M,. We construct a function f as follows.
Construction 1: For each x € Zy, let Z, = {ery, - ,C[n,} be the set of runs of ¢ = ¢; |, as defined in Definition [2 For
each i € [n/], let

gl(m) = (VT(CQJi)a VT(C3Ji)a e aVT(C(logq],Ii)) ,

3We say that a substring of ¢ satisfying a certain property is maximal if it is contained by no other substring of ¢ that satisfies the same property. Hence,
a maximal run of the string ¢ is not contained by any other run of c.



and for each £ € {0, 1}, let

9 (@) = i'gi(w) mod 2n' Ny, “
=1

where
_ _loglogn+3
N1 =q 608 .

Moreover, for each j € {1,---,[n/p] — 1}, let

hi(x) = (&(ca,a,),€(c3,0,),++ +&(Ciog q1,0,)) A
and for each £ € {0, 1}, let

hO) () = > hj(z) mod Ny 5)

je{l, . [n/p]—1}:
j=4¥¢ mod 2

where
Ny = q7 log log n+o(log log n)

Finally, let
@) = (1) 9@ @), 9V (@), hO (@), KD ()

Let R, denote the set of all x € Z; such that ¢; [, is a regular string with d = 7 (according to Definition [[). Then we
have the following Theorem.
Theorem 1: The function f(x) is computable in linear time and the length |f(x)| of f(x) satisfies

|f(x)] < 5logn + O(log qloglogn).

Moreover, if © € R,,, then & can be uniquely recovered from f(x) and any given y € Ds(x).

To prove Theorem [Il we need the following lemma.

Lemma 9: Suppose ¢ € {0,1}" is regular and b € {0,1}"2 such that b can be obtained from ¢ by deleting two symbols
of c. Then exact one of the following holds.

1) There are two distinct runs ¢z, and ¢, of ¢, uniquely determined by b and ¢, such that b can be obtained from ¢ by
deleting one symbol in ¢;; and one symbol in ¢y, .
2) There is an interval J C [n] of length at most p such that b can be obtained from ¢ by deleting two symbols in c.

Proof: This Lemma is proved in Appendix A. [ ]
Now, we can prove Theorem [Il
Proof of Theorem [ Note that by Lemma Il Lemma 2] and Lemma [ the functions VT, £ and 7 are all computable
in linear time. By Construction 1, the functions g()(x) and h(¥)(zx), £ € {0,1}, are computable in linear time. Hence,
f(@) = (n(er,pm), 99 (), gV (x), h) (z), hV(x)) is computable in linear time.
For each = € Zj/, by Construction 1, the length 19 ()| of g¥) (), £ € {0, 1}, satisfies
199 ()| < log(2n‘Ny)
= (logn + logqloglogn + 1

Similarly, the length |h(¥)(x)| of h(¥)(x), £ € {0, 1}, satisfies

9 ()] < log N2
= log q(7loglogn + o(loglogn))

Moreover, by Lemma @] the length of 7(cy [,,)) satisfies

In(c1,n))] < 4logn + 10loglogn + O(1).

“Note that Lemma 2] requires that each |I;| > 3. If |I;| < 3, we can just let 5(Ci,1j) = ¢;,1;- Then ¢; 1 can also be recovered from §(ciy1]. ). This is
feasible because in our construction, we only need that each &(c;, Ij) is a sequence of length not greater than 7loglogn + o(loglogn).



Thus, by Construction 1, the length of f(x) satisfies

[ (@)] = [n(er )] + 199 ()] + 9 ()]
+ RO (@)] + [hV ()]
< 5logn+ (16logg + 10) loglogn
+ o(log gloglogn)
= 5logn + O(log gloglogn).
It remains to prove that for each @ € R,,, given f(x) and any y € Dy(x), one can uniquely recover x. To prove this, we
first prove that gj(x) < Ny for each j € [n/] and hj(x) < N, for each j € {1,2,---,[n/p] — 1}.
Since « € R,,, by Remark [I each run of ¢; p,, has length at most 7logn (noticing that we take d = 7 in this paper), so

for each i € [2,[logq]] and j € [n/], we have ¢; 7, € {0,1}=71°8" By Lemma[Il for each j € [2, [logq]], the length of
VT(c;1,) satisfies [VT(c;,1,)| < log(7logn) < loglogn + 3. By Construction 1, the length of g;(x) satisfies

lg; () < ([logq] —1)(loglogn + 3)
< (log ¢)(loglogn + 3),

SO
gj(a) < q'°818 " = Ny

Similarly, for each i € [2,[logq]] and each j € {1,2,---,[n/p] — 1}, by @), the length of the interval ¢; j, satisfies
|ci,s;| < 2p = 42logn, so by Lemma[2l we have

|€(ci,1,)] < Tlog(42logn) + o(log(421ogn))
= Tloglogn + o(loglogn).

By Construction 1,

[hj(@)| < ([log q] — 1)(7loglogn + o(loglogn))
< (log q)(7loglogn + o(loglogn)).

Hence,
h](w) < q7loglogn+o(loglogn) _ Ng.

Now, we prove that each & € R,, can be uniquely recovered from f(x) = (1(c1,(n)), g9 (x), gV (x), h O (z), V) (z)) and
any given y € Da(x). Let
M, = (di,j)[logq]x(nfﬂ

be the matrix representation of y. Then M, can be obtained from M, by deleting two columns, so dy [, 9 € DQ(CLM),
where dy [,, o) is the first row of M,,. Since © € Ry, then ¢y f,) is regular. By Lemma[] ¢ £ €1,[n) can be correctly recovered
from d £ di,jn—2) and n(cy,[,)). Moreover, by Lemma [0 exact one of the following two cases holds:

Case I: There are two distinct runs ¢1,7,, and ¢y 1, of ¢y [,) such that d; [,, o) is obtained from ¢ [, by deleting one symbol
in ¢q,7;, and one symbol ¢; ;, . Correspondingly, M, can be obtained from A, by deleting one column in /;, and one column
in I;,. Without loss of generality, assume j; < jo. Denoting I; = [pj—1 + 1,p;], where pg =0 < p1 < ps < --- < ppr =,
then by comparing the symbols of M, and M, we have the following observation:

i) ¢i1, = di g, for 1 < j < j; and each i € [2, [logq]];

i) dip; 1 +1p;,-1) € Dilcyp;,) for each i € [2, [logq]];

iii) ¢;7; = ds,1;—1 for each j1 < j < jo and i € 2, [logq]], where I; —1={{—1:4¢€ I;} = [pj_1,p; — 1];

V) di p;, 1.ps,—2 € Dilcir,) for each i € [2, [logg]];

V) Ci,I; = di)]j_g for each Jo < g < n' and ¢ € [2, |_10gq-|], where Ij —2= {f— 2:0€ Ij} = [pj—l — 1,pj — 2]
Then c¢; [,,], @ € [2, [log ¢]], can be recovered by the following three steps.

Step 1: By observations i), iii) and v), ¢; 7, can be directly obtained from M, for all i € [2, [logq|] and j € [n']\{j1, 2}

Step 2: Compute g;(z) from ca 1, ,Cliogq),z; for all j € [n']\{j1,j2}. This is possible because for all i € [2, [logq]]
and j € [n/]\{j1, 2}, ci,1, have been obtained from M, in Step 1. Then by taking / = 0 in (@), we can obtain

i (w) + Gj» (w) = 9(0) (iL‘) - Z gj(w) mod 2N;.
j€mN{jr.j2}



Since gj(x) < Ny for all j € [n'], we in fact have

gi(@) +gip(@) = |gV(@) — > gi(@)] mod 2N, 6)
JE€M N\ {j1.52}

Similarly, taking ¢ = 1 in (@) and noticing that 0 < j1g;, (x) + j29;, () < 2nN;, we can obtain

jlgjl (:B) + j?gjz (:B)

gW@) - > jgi(@) | mod2nNy. (7
JEM N\ {1,352}

So, g;, (x) and gj,(x) can be solved from (6) and (7). By Construction 1, we have

3. (@) = (VT2 VT, ) VTeon.r, )

and
9jo (.’1}) = (VT(CQJD)a VT(CB’-,I]‘Q )a t aVT(C[log ql.1j, )) .

Step 3: By observation ii), di7[pj171+17pj1 1 €Dy (cu].1 ) for each i € [2, [log q]]. Then by Lemmal[ll ci,1;, can be recovered
from VT(c;,1;, ) and d; p, _,41,p;, —1)- Similarly, since by observation iv), d; .. _, p.. —2 € Di(ci,1;,) for each i € [2, [log q]],
then by Lemma [1] Ci,1;, can be recovered from VT(c;, IjQ) and diy[Pj2—1-,Pj2*2]'

Thus, for case 1, ¢; [, i € [2, [log q]], can be recovered from 7(cy,[)), g (x), g (x) and y.

Case 2: There is an interval J C [n] of length at most p = 3dlogn such that d =S dy [n—2) can be obtained from ¢ e C1,[n)
by deleting two symbols in ¢ ;. Correspondingly, M, can be obtained from M, by deleting two columns in J. By 1) of
Remark 2] we can always find an .Jj, for some jo € {1,2,---,[n/p] — 1} such that J C J;,. Denoting J;, = [A, \'], then by
comparing the symbols of M, and M, we obtain that for each i € [2, [log¢]],

Ci,[1,A—1] = d/i,[l,)\fl]a

Ci, N +1,n] = dij [\ —1,n—2]

and
dian—2) € D<a(ciang)-

Hence, c; 1, a—1) and ¢; [x/41,,) can be directly obtained from M,,. Moreover, each ¢; |5y can be recovered from d; [z ' —g)
and h9)(x), £ € {0,1}, as follows.

By 2) of Remark 2 J; € [1,A — 1] for all j € {1, 2, ---, jo — 2}, so ¢; j, can be obtained from d; 1 x—1] = ¢;,1,2—1)-
Similarly, ¢; j; can be obtained from d; xr41—¢n] = ¢i,[v41,0) for all j € {jo +2,---,[n/d"] — 1}. Hence, we can compute
hj(x) = (£(c2,0,),&(c3,0,)s++ €(Clog q1,4,)) for each j € {1,2,--+,[n/8'] — 1}\{jo}. Let £ € {0,1} be such that jo = ¢
mod 2. Then by (3), and noticing that h,, (x) < N2, we can obtain

hjo (:E) = h(é) (:E) — Z hj (:E) mod N2.
je{172)"'7|—n/6/~|_1}\{j0}:
j=¢ mod 2

Note that b; [x x'—2] € D<2(cia,x]) = D<a(ci,,, ), and by Construction 1,

hj, (x) = (5(02,Jj0)=§(03,Jj0)7 e aﬁ(Crlongjo)) :

Then by Lemma 2] for each i € [2, [log ], ¢; (x,n) = ¢i,1;, can be recovered from d; [y /—2) and hj, ().

Thus, for case 2, ¢; [}, i € [2, [logq]], can be recovered from 7(cy [,)), K () and y.

By the above discussions, we proved that M, (and so x) can be uniquely recovered from f(x) and y, which completes
the proof. |

By representing each binary string of length at most |log¢| as an integer in Z,, each binary string a can be represented
as a g-ary string of length [|a|/|log¢|]. We denote this g-ary string by Q(a) and call it the g-ary representation of a for
convenience of use. Specifically, divide a into [|a|/|logq]|] disjoint substrings, each having length |[logq| except the last
substring which has length |a| — ([|a|/[loggq|] — 1) |log¢|. Then by representing each of these substrings as an integer in
Zg4, we can obtain a g-ary string Q(a) of length [|a|/|logq]].



Let RegEnc : {1,2,---, M} — {0,1}" be the one-to-one mapping constructed in Lemma[3l Since M > 2"~1, then RegEnc
can also be viewed as a mapping from {0,1}"~! to {0, 1}". By Lemmal8] the mapping RegEnc can be extended to a one-to-one
mapping, denoted by

Ereg : Lyt — L7,

such that for any u € Zg_l and x = Ereg(w), if My = (bij)10g g1 x (n—1) ad Mz = (i j)[10g q] xn are the matrix representation
of uw and « respectively, then
Cl,[n] = RegEnc(bl)[n_l]).

By Lemma[3 ¢, [, = RegEnc(by [,,—1]) is regular, so for any u € Zg’l, we have © = Egeg(u) € Rp.

Using the mapping Ege, : Z;’_l — R, and the function f constructed in Construction 1, we can give an encoding function
of a g-ary two-deletion correcting code as follows.

Let £ be the function defined on fo—l of the form

E(u) = (v,v",v"), Vu € Z’q’_l, (8)

such that v = Eeg(u), V' = Eree(Q(f(v))) and v” = Reps(Q(f(v'))), where Rep,(+) is the encoding function of the 3-fold
repetition code.

Theorem 2: The code C = {E(u) : u € Z}~'}, where £ is given by (@), is a g-ary two-deletion correcting code with
redundancy 5 log n + O(log g loglogn) in bits. The encoding complexity of C is near-linear in n with a polynomial size lookup
table.

Proof: Let
xz =E(u) = (v,v',v") €C,

where u € Z) 7!, v = Epeg(u), v’ = Q(f(v)) and v” = Reps(Q(f(v'))) as in @). Given any y € Dy(x), we have y[1 ,,,, 9] €
D2(V), Yimy,ma—2) € D2(v') and Yy my—2) € D2(v”), where |[v| = my, |(v,v")| = my and |x| = |(v,v’,v")| = m3. First,
since v = Rep;(Q(f(v'))) is a codeword of a two-deletion code, then Q(f(v')) can be recovered from Y, y,—2), and
hence f(v’) can be recovered from Q(f(v’)). Then by Theorem[I} v’ can be recovered from ¥, 1, —2) and f(v’), and hence
f(v) can be recovered from v’ = Ereg(Q(f(v))). Finally, by Theorem [I] again, v can be recovered from (1 ;,,, —o) and f(v).
Thus, = (v,v’,v") can be recovered from any y € Dy(x), which proves that C is a two-deletion correcting code.

Since u € Zg’l and v = EReg(u) S ZZ, so v has log g bits redundancy. Moreover, by Theorem [ the length of v’ is

|v'| = 5logn + O(log qloglogn)

bits and the length of v is
[v"| = 3(5log|v’| + O(log qloglog |v'|)) = O(loglogn)

bits. So the total redundancy of x = &(u) is

redundancy of C = logq + |v'| + [0
= 5logn + O(log gloglogn)

in bits.

By Lemma [3] and Lemma [] the encoding complexity of v = Egeo(u) is near-linear in n with a polynomial size lookup
table. Moreover, by Theorem[I] the encoding complexity of v' = Eree(Q(f(v))) and v/ = Rep;(Q(f(v'))) is linear in n and
log n respectively. Therefore, the encoding complexity of £(u) = (v, v’,v”) is near-linear in n with a polynomial size lookup
table, which completes the proof. [ ]

IV. BINARY CODES CORRECTING A BURST OF AT MOST ¢ DELETIONS

In this section, we present a construction of binary codes that are capable of correcting a bursting of at most ¢ deletions
improving the Lenz-Polyanskii Construction in [[15]]. We assume that ¢ is a constant with respect to the code length n, and for
notational simplicity, we use <y; to denote any constant that depends only on ¢. As in Section III, each binary sequence a is
identified with the positive integer whose binary representation is a, and summation and multiplication of binary strings and
integers are performed in the set of integers.

Recall that a string ¢ € {0,1}" is called (p, d)-dense, if each substring of ¢ of length ¢ contains at least one pattern p. As
stated in Section II, we take

§ =2 logn

and
p=01"



The basic idea of our construction is to replace the shifted VT code in the Lenz-Polyanskii Construction with the function
¢ constructed in Lemma [3l To apply the function ¢, we need to divide each binary string into substrings of length at most
2(8 +t). Specifically, we denote &' = § + ¢ and let

G =1+ 1, (i +1)8"], fori €{1,---,[n/d"] -2}, ©
G =18+ 1,n), for i = [n/d'] — 1,
where i € {1,---,[n/8'] — 1}, be the index sets of the expected substrings. Then we can construct a function f° over {0, 1}"

as follows, which is the main component of our construction of binary burst-deletion correcting codes.
Construction 2: Let ¢ and p be the functions constructed in Lemma 3l and Lemma [7] respectively. For each ¢ € {0, 1}", let

such that for each £ € {0,1},

§9(e) = (cr,) mod N, (10)

(]

i€{1,2,,[n/[8'T] -1}

i = ¢ mod 2
where

Nb A 2410g(26/)+0(10g(25')) _ 9iloglogn+yi+o(log logn)

For Construction 2, we have the following theorem.
Theorem 3: For each ¢ € {0,1}", f®(c) is computable in linear time and the length |f°(c)| of f°(c) satisfies

|f°(c)| < logn + 8loglogn + v, + o(loglogn).

Moreover, if ¢ is (p, §)-dense, then given f°(c) and any b € B<;(c), one can uniquely recover c.

Before proving Theorem 3] we give some remark on the properties of the sets L;,j =1,2,---,[n/d'] — 1.

Remark 3: Similar to Remark 2] it is easy to see that

1) For each interval L C [n] of length at most ¢’ = § + ¢, we can always find an iy € {1,2,---,[n/d’| — 1} such that
LC L,

2) LynLy =0 forall i e{1,2,---,[n/d"] — 1} such that |i — | > 2.
Now, we can prove Theorem [3
Proof: Note that by Lemma [7} x(c) is computable in linear time. By Lemma [3 each ¢(cy,) is computable in time
0(21(26)%) = O((logn)?), so (39 (c),g"(c)) are also computable in linear time. Hence, by Construction 2, f°(c) =
(u(e), 39 (e), g (e)) is computable in linear time. Moreover, by Lemma [7] and (I0), the length |f®(c)| of f°(c) satisfies

11P(@)] = |u(e)l + 13 ()] + 13 (e)]
<logn+ 3+ 2(4loglogn + v, + o(loglogn))
= logn + 8loglogn + 7+ + o(loglogn).

Suppose ¢ is (p,§)-dense and b € B<;(c). We need to prove that ¢ can be uniquely recovered from b and f°(c).

By Lemma[7, we can find an interval L C [n] of length at most 6’ = 0 + ¢ such that b = ¢\ p for some interval D C L
of length ¢ = |¢| — |b|. By 1) of Remark [3] we can always find an ig € {1,2,---,[n/d’"] — 1} such that L C L;,. Denoting
L;, = [\, N'], then we can obtain

-1 = bp -1,

CIN+1,n] = Opv—p41,n]

and
b[)\,)\’ft’] S BSt(CP\y)\/] )

Therefore, c;;,x_1) and ¢[y/41,,) can be directly obtained from b. In the following, we will show how to recover c[y » from
bia,v - and g (c) for some ¢ € {0,1}.

SSince &' = § +t = 2t (logn + 27t~ 1), so more accurately, it should be N° £ dlog(28")+0(log(26")) — gdlog(logn+2 "~ ") fveto(loglogn)
However, because N is an integer, so for sufficiently large n, we can always obtain N° 2 9410g(26")+o0(log(26")) — galoglog ntryi-to(loglogn)



By 2) of Remark [ for all i € {1,2,--- 49 — 2}, we have L; C [1, A — 1], so cr, can be obtained from by »_1) and hence

#(cr,) can be computed. Similarly, for all i € {igp +2,---,[n/d"] — 1}, cr, can be obtained from by _s 41, and hence
¢(cr,) can be computed. Let ¢y € {0,1} be such that £, = i mod 2. By (I0), we have
_ —b
¢(CL«;U) = 9(20)(6) - Z ¢(0Li) mod N .

i€{l,,[n/[6'1] -1}

i # ip and i = £p mod 2

By @), |Li,| = 26" = 2(6 +t), so by Lemmall ¢(cy, ) < 24108200 +ollos(20)) — N". Therefore, we actually have

olen,) =3 )= Y ler) mod N
i€{l,,[n/[8'1] -1}
i # ip and i = £p mod 2
Since bpy x—¢] € B<i(ca,ag), again by Lemma [ we can recover ¢y yq from bjy y—y and ¢(cr, ). Note that we have
obtained ¢y x—1) = by1,a—1) and ¢[x/11,4] = bx'—¢41,n]> SO € can be uniquely recovered, which completes the proof. [ |
Let SY be the set of all (p,d)-dense binary strings ¢ € {0,1}", where p = 0'1% and § = t2/"![logn]. By Lemma [6
there is a one-to-one mapping that maps each binary string of length n — 1 to a string in S%. For convenience, we denote this
mapping by

Epen : {0,137 5 SP. (11)

Using the function f® constructed in Construction 2, we can construct an encoding function of a binary code capable of
correcting a burst of at most ¢ deletions.
Let £° be a function defined on {0,1}"~! of the form

Ea) = (b,¥,b"), Yae{0,1}" (12)

such that b = £8_ (a), b’ = &, (f°(b)) and b” = Rep,,, (f°(b')), where Rep, ,; (-) is the encoding function of the (¢+1)-fold
repetition code.

Theorem 4: The code C* = {£°(a) : a € {0,1}"" '}, where £° is given by (I2), is a binary code with redundancy
logn + 9loglogn + v: + o(loglog n) bits and capable of correcting a burst of at most ¢ deletions.

Proof: Let
c=Ea)=(bb,b") e,

where a € {0,1}"71, b = &, (a), b’ = 5., (f°(b)) and b” = Rep,, | (f°(b)). Given any d € B<(c), denoting t’ = |c|—b],
then ¢ < t and we have djy ,;,,—¢/] € B<t(b), djmy mo—v) € B<i(b') and dpyyy my—1) € B<t(b”), where my = |b|,ma =
|(b,b')| and ms3 = |c| = |(b,b’,b")|. First, since b” = Rep,,,(f°(¥')) is a codeword of a t-deletion code, then f°(b’) can
be recovered from djy,,, /|- Further, by Theorem Bl b" can be recovered from dj,,, ,,—¢) and f°(b), and so f°(b) can
be recovered from &' = &5 (f°(b)). Finally, by Theorem [3 again, b can be recovered from dj; ,,, 4 and f°(b). Thus,
c = (b,b',b") can be recovered from any d € B<;(c), which proves that C® is capable of correcting a burst of at most ¢
deletions.

Since @ € {0,1}""! and b = &5,,(a) € S% C {0,1}", so b has one bit redundancy. Moreover, by Theorem 3] the length
of b’ is

|b’'| = logn + 8loglogn + v + o(loglogn)

bits and the length of b" is

|b”| = log |b'| + 8loglog |b'| + 7: + o(log log |b'])
= loglogn + v+ + o(loglogn)

bits. So the total redundancy of ¢ = £°(a) is

redundancy of C = 1+ |b'| + b
=logn + 9loglogn + v + o(loglogn)

bits. |



V. g-ARY CODES CORRECTING A BURST OF AT MOST ¢ DELETIONS

In this section, we construct g-ary codes correcting a bursting of at most ¢ deletions, where ¢ > 2 is an even integer. We
assume that ¢ and ¢ are constant with respect to the code length n. As in Section III, we identify each binary string a with
the positive integer whose binary representation is a. As stated in Section II, we take

5§ =t2"tlogn

and
p=0'1"

A string ¢ € {0,1}" is called (p, d)-dense, if each substring of ¢ of length ¢ contains at least one pattern p.

For each x € Z7, let My = (cij)fiog q1xn be the matrix representation of x as defined by (I). Then for each t' € [t],
the deletion of x;,x; 11, - ,x;44 1 results in the deletion of the columns 7,7 + 1,--- i + ¢ — 1 of M. A basic idea is
to protect the first row ¢ = ¢y ) by a burst-deletion correcting code. However, in general, if ¢ can be recovered from a
d € B<(c), the location of the deleted symbols can not be determined. For example, consider ¢ = 0111011011010010 and
d =0111011010010. Then d can be obtained from ¢ by deleting c3cycs = 110, or deleting c4c5¢c6 = 101. In fact, d can be
obtained from ¢ by deleting ¢;c;41¢;42 for all ¢ € [3,10]. To proceed, we need to consider period of binary strings.

Let ¢ and m be two positive integers such that £ < m. A string @ € {0,1}™ is said to have period ¢ (or a is called a
period-¢ string) if a;4¢ = a; for all i € [m — €] = {1,2,--- ,m — £}. Clearly, a run of ¢ of length m has period ¢ for any
¢ € [m]; a period-2 substring of c¢ is either a run of ¢ or an alternative substring of c.

Lemma 10: Suppose ¢ € {0,1}" is (p, d)-dense. Given any d € B<;(c), it is possible to find an interval K C [n] of length
at most 6 — 1 such that if d = Cln)\D and D C [n] is an interval, then it always holds that D C K.

Proof: Since d € B<;(c), there is an interval D’ C [n] such that d = ¢}, ps. Let K C [n] be the interval such that cx
is the maximal substring of ¢ satisfying: 1) cx has period ¢’ = |c| — |d|; 2) ¢k contains ¢p,. We will prove that D C K for
any interval D C [n] such that d = cp,)\ p.

Suppose D = [iy,i14t'—1] and D’ = [ia, io+t'—1]. Without loss of generality, assume 7; < is. Since cj,)\p = d = [\ pr>
we have

C1 -0 Cip—1 Cig4t/ Cig4t/41 " Cig4t/—1 Cig4t’ " Cn

= C1 " Cip—1 Ciy Cii+1 ot Cig—1 Cigdt! «.. Cp.

By comparing the symbols of cp,\ p- and cp,)\ pr in each position, we can obtain ¢; = c;q¢ for each i € [i1,is — 1]. So,
Cliy is+t'—1] 18 a substring of ¢ of period ¢ and contains both cp and cpr. As ck is the maximal substring of ¢ of period ¢’
that contains cp/, So Cliy,in+t'—1] is contained in cg. Thus, cp is contained in cx, which implies that D C K.

Since ¢ is (p, §)-dense, where p = 0'1%, then each substring of ¢ of length § contains at least one pattern p. Note that for
each t' € [t], we have p; = 0 # 1 = p;y4s, so each substring of ¢ of length ¢ can not has period ¢'. In other words, the length

of any period-t’ substring of ¢ is at most § — 1. Thus, the length of ¢; (and the length of T) is at most 6 — 1. [ |
Let
T [(F—1)d+1,n], for j = [n/d] — 1.

Remark 4: Similar to Remark ] it is easy to see that

1) For any interval K C [n] of length at most ¢, there is an jy € {1,2,---,[n/d] — 1} such that K C K.
2) K;NKj =0 forall j,j7 € {1,2,---,[n/d] — 1} such that |j — j/| > 2.
Let ¢ be the function constructed by Lemma [3] and f® be the function constructed in Construction 2. For each x € Ly, let

M, = (Ci)j)l’]og q]xn be the matrix representation of x as defined by (. We have the following construction.
Construction 3: For each « € Zj and each j € {1,2,---,[n/d] — 1}, let

hj(x) = (¢(ca,k,), ek, ), > D (Cliog ql,k;))
and for each £ € {0, 1}, let

h () = > hj(z) mod N, (14)

Je{1,2,+,[n/6]—1}:
j=¥¢ mod 2

where
N = q4 log log n+o(log log )+~ )



Finally, let
@) = (Flerpm) hO (@), AV (@) (15)

We have the following theorem. -
_ Theorem 5: For any x € Zy, f(z) is computable in linear time, and when viewed as a binary string, the length |f(z)| of
f(x) satisfies

|f(x)| < logn + 8(logq + 1)loglogn + o(log gloglogn) + 7,

where 7, is a constant depending only on . Moreover, if ¢ = ¢ [, is (p, §)-dense, then given f(x) and any y € B<,(x), one
can uniquely recover x.

Proof: Note that by Theorem [3] ]ﬂ)(cl)[n]) is computable in linear time. Moreover, by Lemma [l and (I3, each ¢(c2 k) is
computable in time O(2¢(20)%) = O((logn)?), so by Construction 3, h¥)(x), ¢ = 1,2, are computable in linear time. Hence,
f(@) = (f°(cr i), KO (x), RV (x)) is computable in linear time.

By Theorem [3| the length of Jﬂ’(cLM) satisfies

|f—b(C17[n])| <logn + 8loglogn + v + o(loglogn).
Moreover, by Construction 3, the length of B(E)(:c), {=1,2, satisfy
|h9)(x)] < log N = logq(4loglogn + o(loglogn) + ).
Hence, the length of f(x) satisfies

[F@)] = | (el + 150 @) + 3 ()]
<logn + 8(logq + 1)loglogn + o(log g log logn)
+ Ve

It remains to prove that if ¢ = ¢; ] is (p,§)-dense, then given f(x) and any y € B<;(x), one can uniquely recover x. To
prove this, we first prove that B
h,j (.’B) <N
for each j € {1,2,---,[n/d] — 1}. In fact, by (I3), each ¢; ,, i € [2, [logq]], has length 26 = 2¢2"*!logn, so by Lemma
¢(c2,x;) has length 41og(20) + o(log(20)) = 4loglogn + 7; + o(loglogn). Hence, by Construction 3, we have

|B7(w)| = | (¢(C27K1)7¢(C3,Kj)7 T =¢(Cﬂogtﬂij)) |
= ([logq] — 1) (41oglogn + 7; + o(log log n))
< logq (4loglogn + v + o(loglogn)),

which implies that h;(x) < ¢*logloentyctelogloen) 7
Now, we prove that = can be uniquely recovered from f(x) and any given y € B<:(x), provided that ¢ = ¢, is
(p, d)-dense. Let

My = (di,j)]'log q] x(n—t")

be the matrix representation of y. Since y € B<;(x) can be obtained from @ by deleting ¢’ consecutive symbols from x,
where ¢ = n — |y| and ¢’ € [t], then M, can be obtained from M, by deleting ¢’ consecutive columns of M. The process
of recovering @ from f(z) = (f°(c1,(n)), 3 (z), gV (x)) and y consists of the following three steps.

Step 1: Since ¢ = ¢ J,) is (p, d)-dense, then by Theorem [ ¢; [, can be recovered from dy [, and ]ﬂj(cl)[n]).

Step 2: According to Lemma [IQ] there is an interval K C [n] of length at most § — 1 such that dy [n—¢) is obtained from
¢ = ¢,y by deleting ' consecutive symbols in K. Correspondingly, My, is obtained from M, by deleting ¢’ consecutive
columns in K. By 1) of Remark @] there is an jo € {1,2,---,[n/d] — 1} such that K C K . Denote K, = [\, \']. Then
we have the following observations:

i) ¢ a—1) = dii,a—1) for each i € [2, [logq]].

i) djn -] € B<i(cia,a for each i € [2, [logq]].
iii) ¢ (n41,n) = di,pv—p41,n—r) for each i € [2, [logq]].
By observations i) and iii), for each i € [2, [log q]], ¢; 1,2—1] and ¢; [x/11,, can be directly obtained from M,,.

Step 3: For j € {1,---,jo — 2}, we have K; N K, = 0, by 2) of Remark 4] so K; C [1,\ — 1] and by observation i),
hj(x) = (gb(cz_’Kj), d(es ;) 5 P(Cliog g1, K, )) can be computed from d; [ x_1] = ¢;j1,a-1], @ = 2, , [logq]. Similarly,
for j € {jo+2,---,[n/d] — 1}, by 2) of Remark @ we have K, N K;, = 0, so K; C [\ + 1,n] and by observation iii),



hi(x) = (gb(cz_’Kj), d(c3.r;)s s P(Cliog g1, K, )) can be computed from d; (x/—¢ 41 n—t/] = Cing1n]s @ = 2, , [logq]. Let
¢y € {0,1} be such that £y = jo mod 2. By (I4), we can obtain
hj, () = h)(z) — Z hj(x) mod N.
j€{172,j" ) n/‘ﬂ_l}\{j()}:

7 =4o mod 2
Note that we have proved that h;(xz) < N for each j € {1,2,---,[n/§] — 1}, so we actually have
hj, (x) = ) (z) — Z h;(z) mod N,
G€{1,2,-+,[n/0]1 =11\ {jo }:
j =4£op mod 2
where by Construction 3,

hio(@) = ($(carc, ), 0lea, ).+ Hlenosal i) -

By observation ii) in Step 2, and by Lemma 3 ¢; [y x}, @ = 2,---, [logq], can be recovered from hj,(z) and di 3\ =]
=2, [logql. )
By the above discussions, M, (and so ) can be uniquely recovered from f(x) and any given y € B<,(x). ]

Let S,, be the set of all g-ary strings = € Z;’ such that the first row ¢y [,) of My is (p, d)-dense, where Mz = (¢i j)[10g ¢ xn
is the matrix representation of x. Let

EBen 1 {0,137 5 S°

be the one-to-one mapping constructed as in (II), where S? is the set of all (p, §)-dense strings in {0,1}". By Lemma[8] the
mapping &£5,, can be extended to a one-to-one mapping, denoted by

—1
Epen : Z7 — 77,

such that for each u € Zg_l and & = Epen(u), if My = (bij)[ogq)x(n—1) and Mz = (Cij)iogq]xn are the matrix
representation of w and « respectively, then

C1,[n] = g]gen(bl,[nfl])-

Since EBe, (b1,[n—1)) is (P, d)-dense, then for any u € Z2 ', we have & = Epen(u) € Sp.

As in Section III, for each binary string a, let Q(a) be the g-ary representation of a. Note that Q(a) is a g-ary string of
length [|a|/[logq|]. Using the function f constructed in Construction 3 and the mapping Ep.,, We can construct an encoding
function of a g-ary code capable of correcting a burst of at most ¢ deletions.

Let & be a function defined on fo—l of the form

E(u) = (v,v',0"), Yu ez, (16)

where v = Epen(u), v/ = Epen(Q(f(v))) and v” = Rep,,,(Q(f(v'))) such that Rep,,,(-) is the encoding function of the
(t 4 1)-fold repetition code.

Theorem 6: The code C = {€(u) : u € Z7~'}, where £ is given by (I6), is a g-ary code capable of correcting a burst of
at most ¢ deletions. The redundancy of C is at most logn + (8log g+ 9) loglogn + o(log gloglog n) + ~; in bits, where ~; is
a constant depending only on ¢.

Proof: To prove that C is capable of correcting a burst of at most ¢ deletions, we adopt a similar strategy as in the proof
of Theorem 21 Specifically, let

x=E(u) = (v,v',v") €C,

where v = Epen(u), v = Epen(Q(f(v))) and v = Rep, ., (Q(f(v’))). Given any y € B<(x), denoting t' = |z| — |y|, then
t' <t and we have y(1 m,—¢] € B<t(V), Ypmy,mo—t/) € B<t (V') and Yy my—1) € B<i(v"), where my = |v],ma = [(v,v’)]
and m3 = |z| = |(v,v’,v")|. First, since v = Rep,,,(Q(f(v’))) is a codeword of a t-deletion code, then Q(f(v’)), and so
f(v'), can be recovered from ¥, i, Further, by Theorem [3l v’ can be recovered from ¥, i, and f(v’), and so
f(v) can be recovered from v" = Epen(Q(f(v))). Finally, by Theorem [J again, v can be recovered from yy ,,,, —4/) and f(v).
Thus, z = (v, v’,v”) can be recovered from any y € B<,(x), which proves that C is capable of correcting a burst of at most
t deletions.

Since u € Z?’l and v = Epen(u) € S,, C Z(’;, so v has log ¢ bits redundancy. Moreover, by Theorem 3 the length of v’ is

|v'| =logn + 8(log q + 1) loglog n + o(log q loglog n) + ~;



bits and the length of v is

[v"| = log|v'| + 8(log ¢ + 1) log log [v'| + o(log ¢ log log [b'])
+ Ve
= loglogn + v + o(log g loglogn)

in bits. So the total redundancy of ¢ = £°(a) is

redundancy of C = logq + |v'| + |[v”|

=logn + (8logq + 9)loglogn
+ o(log gloglogn) + v

bits. |

VI. CONCLUSIONS

We constructed systematic g-ary two-deletion correcting codes and g-ary burst-deletion correcting codes, where g > 2 is an
even integer. For g-ary two-deletion codes, the redundancy of our construction is log n higher than the best known explicit binary
codes and is lower than all existing explicit g-ary codes. For g-ary burst-deletion codes, our construction is scaling-optimal in
redundancy.

It is also an interesting problem to generalize our constructions to odd g. Another interesting problem is to construct explicit
g-ary t-deletion correcting codes that improves upon the state of the art constructions in redundancy.

APPENDIX A
PROOF OF LEMMA[0]

In this appendix, we prove Lemma [9) We first need to prove the following lemma.
Lemma 11: Suppose ¢ € {0,1}" and {ji1,j2},{j1,j5} € [n] such that j; < jo,j; < jy and jy < ji. If cpp\ (.o} =
Cln)\{j}.j}» then one of the following holds:

1) ¢j,, ¢y, are in the same run of ¢, and ¢;,, ¢j; are in the same run of c.
2) There is an alternative substring Cls1,50] of c of length > 3 such that ¢;, and c,, are in the same run of ¢, jo = 51 + 1,
Ji = s2 — 1 and ¢;; and ¢, are in the same run of c.
2

Proof: If {j1,j2} = {Jj1, 5}, then 1) holds. In the following, we assume that {j1,j2} # {j1,J2}. Since cpp\gj,.0) =

C[n]\{j{,jé}a we can denote b = C[n]\{j1 g2} = C[n]\{j{ ,jé}' From b = C[n]\{j1 a2} we can obtain

¢, forie(l,j; —1],
b = i, for i € [j1,j2 — 2], a7
Cit2, for iz € []2—1,TL—2]

Similarly, from b = ¢} (57 ;1 We can obtain

¢, forie(l,j1—1],
b, = Cit+1, for ¢ € [ji,jé — 2], (18)
Cit2, for € [jé—l,n—2]

Since j1 < jo, j1 < jb and j; < ji, then we can divide our discussions into the following three cases:
Case 1: j; < j2 < ji < j%. Combining (I7) and (I8), we can obtain

b= 1 Cj,16j,+1Cj 42 Cjo—1Cjo11Cjp42C)p+3Cjo+4 -+ Cjf—2Cj1 —1 it Cjt41Cj142Cj143 "~ Cjs—1 Cjy Cjsq1 - Cn
= Gt Ci—1 Gy G417 Cja—2Cja—1 Cjo Cjat1Cjat2 " Cji —aCjy —3Cj1 —2Cj1 —1Cj1 +1Cj1 42+ Cjs —2Cjt —1Cjy 41 * " Cn.

19)

We further need to divide this case into the following two subcases.
Case 1.1: jj — j2 is odd. By comparing the symbols of the corresponding positions in cp,\ (5, 5,3 and Cln)\{j}.j5}>» W€ can
obtain

Cjr = G+l = " = Cjo—2 = Cjp—1 = Cjio1 = Cjp43 = * -
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and
Cja = Cjat+2 = Cjiat4 = =" = Cj1 -3 = Cji—1 = Cji+1
= Cjl42 = Cjl43 = 0 = Gyl

Case 1.2: j; — jo is even. By comparing the symbols of the corresponding positions in cp,)\ g5, 5,1 and Cln)\{4}.j5}» We can
obtain

Cjp = Cji4+1 = Cjy42 = =+ = Cjy—2 = Cjp—1 = Cjy+1
= Cjo+3 = " = Cjr—3 = Cji—1 = Cji41 = Cji+42
=Cji43 = = Cjp—1 = Gy

and
Cja = Cjat+2 = Cjota = " = Cjl—4 = Cji—2 = C4f

For the both subcases, we can see that

o If ¢;, = ¢j,, then we have ¢;, = ¢j, 41 = -+ = ¢j;, S0 ¢j;,¢5,, ¢y and ¢y are in the same run of ¢, which implies that
1) of Lemma [{1] holds.

o If ¢cj, # cj,, then c[j, 1 jr 41y is an alternative substring of ¢ of length > 3. By letting s; = j» — 1 and s = j; + 1, we
obtain 2) of Lemma [[1]

Example [I)) is an illustration of this case.
Case 2: j; < j1 < ja < jb. In this case, combining (I7) and (I8), we can obtain
b=ci-Cjy1Cj+1CH 42 Cjf—1 Cjt Cji41Cii42 """ Cjo—1Cja+1Ci+2Ch+3 "~ Cjy—1 Cjj Cjg41° " Cn
=C1: 0 Cj—1 Cjy Cji1 - Cjr—2Cir1Cjr41Cjr g0 Cjg—1 Cjy Cja41Cjp42 Gy —2Cj4 —1Cj441 ** * Cn, (20)
from which we see that
Cj1 = Cji4+1 = =+ = Cj1
and
Cj2 :Cj2+1 = :cjé'
Hence, 1) of Lemma [[1] holds.
Case 3: j; < j1 < jb < jo. In this case, combining (I7) and (I8), we can obtain

b=ci-Cjy1Cj41CH 42 Cjr—1 Cj G142 Cip—1 Cjy Cigh1Cip42 7 Cjp—1Cjp41Cjp42 " " Cn
=C1cCji—1 GGy Cji1 € —2Ci—1Cj 41 G427 Gt 1G4 1C,42Cj5 43¢ Gy Cjp1Cjp42 7" Cn, 21
from which we can see that
Cjr = Cji+1 = 1 = Gy
and
Cjy = Cji41 =" = Cjy-
Hence, 1) of Lemma [[1] holds. ]
Example 1: To illustrate the Case 1 in the proof of Lemma [I1] let’s consider the following two examples.

« Consider ¢ = 01000101011110. Let ji = 3, j2 = 6, j{ = 9 and j5 = 12. Then c{u)\ (j,.2} = ]\ (1.7} = 010001011110

and ji —j2 = 9 — 6 = 3 is odd. We can find that ¢cj, = -+ = ¢j,~1 = Cj41 = Cjp43 = -+ = ¢y = 0 and
Cjp = Cjat2 = " = Cji—1 = Cji41 = " = Cjp = 1.
e Consider ¢ = 01000101010001. Let jl = 3,j2 = 6, ]i = 10 and jé = 12. Then C[n]\{jl,jz} = C[n]\{j{,jé} = 010001010001
and ji — jo = 10— 6 = 4 is even. We can find that ¢j, = -+ = ¢j,_1 = Cj,41 = Cjy43 =+ = Cjt—1 = Cji41 = Cjj 42 =
r=cjy =0and ¢, =c¢jp2 == ¢y = 1

Now, we can prove Lemma 9]

Proof of Lemma[9: Suppose ¢ € {0,1}" is regular and b € {0,1}"~2 such that b can be obtained from c by deleting
two symbols of c. Then we can always find two symbols of ¢, say c¢;, and c;, (j1 < j2), such that, b = cp)\ (5,503 -

First, suppose c;, and c;, are in the same run of c. Then for any {j,j5} C [n] such that b = cj,)\ (51 j5}- it is easy to see
that 2) of Lemma [T1] can’t hold. (Otherwise, there is an alternative substring Clsy, ] of ¢ of length > 3 such that ¢;,, ¢, are
in the same run of ¢ and jo = s; + 1, which implies that ¢;, = ¢s, # ¢s,+1 = ¢j,, Which contradicts to the assumption that
¢j, and ¢;, are in the same run of c.) Therefore, 1) of Lemma [[1] must hold, which implies that there is a run ¢, of ¢, where



J C [n] is an interval, such that b is obtained from ¢ by deleting two symbols in ¢;. Since ¢ € {0, 1}" is regular, by Remark
[ the length of ¢ is at most dlogn < p = 3dlogn. Thus, 2) of Lemma [9] holds.

In the following, we suppose that ¢;, and c;, (ji < j2) are in two different runs of c. Specifically, suppose ji; € J =
[i1,72] C [n] and j3 € J' = [i},i5] C [n] such that ¢; and ¢ are two different runs of c. Since j; < jo, then

i1 < g < iy <.

We need to consider the following two cases.

Case 1: 47 > iz + 1. Since jo € J' = [i},15], then ja > 4] > iz + 1. For any {ji,j5} C [n] such that b = cp,)\ 51 sy, it is
easy to see that 2) of Lemma [T1] can’t hold. (Otherwise, there is an alternative substring Cls1,s5] Of € of length > 3 such that
Cj,» Cs, are in the same run of ¢ and jo = s; + 1, which implies that s; = i2 and jo = s1 +1 = i3+ 1, which contradicts to the
fact that jo > i} > ia + 1.) Therefore, 1) of Lemma [[1] must hold, which implies that j{ € J = [i1,42] and j5 € J' = [i}, 5]
Thus, 1) of Lemma [9] holds.

Case 2: i) = iz + 1. We need to consider the following two subcases.

Case 2.1: |J| > 2 and |J’| > 2. Then for any {jj,j3} C [n] such that b = cp,,)\(j; 55} it is easy to see that 2) of Lemma
[I1] can’t hold because no such alternative substring Clsy1,s0) Of € can be found. Therefore, 1) of Lemma [I1] must hold, which
implies that j; € J = [i1,42] and j5 € J' = [i},45]". Thus, 1) of Lemma [P holds.

Case 2.2: |J| =1 or |J'| = 1. Without loss of generality, assume |J| = 1. Then i1 = iz and ¢;, _1¢;, ¢;, +1 18 an alternative
substring of c. Let c[y, ,] be the maximal alternative substring of ¢ that contains c;, —1¢;, ¢;, 1, Where [A1, A2] € [n] is an
interval. Let cpx, z,) (if A1 > 1) and ¢y, z,) (if A2 < n) be two runs of e. For any {j,j5} C [n] such that b = ¢\ 51,543
by Lemma [[1} we have {j{, 75} C [Ao, A3]. Since ¢ € {0,1}" is regular, by Remark [Tl the length of the alternative substring
C[n1 00 OF € is at most dlogn, and the lengths of the runs c|y, x,], C[x, 4] Of € are both at most dlogn. Hence, the length of
Clag,2g] 1S at most p = 3dlogn. Thus, 2) of Lemma [J holds.

By the above discussions, we proved that exact one of the two claims of Lemma [9] holds. [ ]

As an example, suppose ¢ = 011000101011110100. We consider the following cases.

o If b=0110101011110100, then b can be obtained from c by deleting two symbols in the run ¢4 6 = 000.

o If b =0110010011110100, then b can be obtained from c by deleting one symbol in the run cj4 6 = 000 and one symbol
in the run cfg g = 1. This case is an example of Case 1 in the proof of Lemma [0

o If b=0100101011110100, then b can be obtained from c by deleting one symbol in the run c[3 33 = 11 and one symbol
in the run cyy 6; = 000. This case is an example of Case 2.1 in the proof of Lemma [9

o If b =0110001011110100, then b can be obtained from ¢ by deleting two symbols in the substring c(4,14 = 00010101111,
which may be any of the following cases: i) one symbol in the run cj4 6 = 000 and the symbol c; = 1; ii) the symbols
¢i,cip1 for i € {7,8,9}; iii) one symbol in the run cf11,14) = 1111 and the symbol c19 = 0. This case is an example of
Case 2.2 in the proof of Lemma
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