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How to Sample From The Limiting Distribution of a

Continuous-Time Quantum Walk

Javad Doliskani
∗

Abstract

We introduce ε-projectors, using which we can sample from limiting distributions of
continuous-time quantum walks. The standard algorithm for sampling from a distribution that
is close to the limiting distribution of a given quantum walk is to run the quantum walk for
a time chosen uniformly at random from a large interval, and measure the resulting quantum
state. This approach usually results in an exponential running time.

We show that, using ε-projectors, we can sample exactly from the limiting distribution. In
the black-box setting, where we only have query access to the adjacency matrix of the graph,
our sampling algorithm runs in time proportional to ∆−1, where ∆ is the minimum spacing
between the distinct eigenvalues of the graph. In the non-black-box setting, we give examples of
graphs for which our algorithm runs exponentially faster than the standard sampling algorithm.
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1 Introduction

Continuous-time quantum walks, first considered by Farhi and Gutmann [21], are quantum ana-
logues of continuous-time classical random walks. The dynamics of a continuous-time classical walk
on an undirected graph Γ is described by the differential equation

d

dt
p(t) = Lp(t) (1)

where p(t) is the state of the walk at time t and L is the Laplacian of Γ. The entries of p(t) are
indexed by the set of vertices of Γ. In the quantum walk on Γ, equation (1) is replaced by the
Schrödinger equation

i
d

dt
|ψt〉 = H|ψt〉 (2)

where the Hamiltonian H = L, and |ψt〉 is a quantum state whose amplitudes encode a probability
distribution. Quantum walks have found many applications in quantum computing and quantum
information. It was shown by Childs [10] that universal quantum computation can be implemented
using quantum walks on low degree graphs. There are many algorithms based on quantum walk that
achieve polynomial speedup over classical algorithms, e.g., [13, 20, 3, 4]. There are also black-box
problems for which quantum walks achieve exponential speedup over classical algorithms [12, 14].

A classical continuous-time random walk has a unique stationary distribution, assuming its
underlying Markov chain is irreducible [34]. Regardless of the initial state, the walk converges to
this stationary distribution as t→∞, and therefore, the stationary distribution is the same as the
limiting distribution. This, however, does not hold for quantum walks, since quantum evolutions are
unitary and preserve distance. Nevertheless, one can define a time-averaged probability distribution
of a quantum walk by choosing a time t ∈ [0, T ] uniformly at random, running the walk for a total
time t and measuring the resulting state. When T → ∞, this distribution converges to a limiting
distribution which is what we will consider in this paper. This limiting distribution generally
depends on the initial state of the walk.

If the graph Γ is connected and simple, i.e., has no self loops and multiple edges, then the
limiting distribution of the classical walk on Γ is always the uniform distribution. In contrast,
the limiting distribution of the quantum walk on Γ depends on the initial state and is often not
uniform. For example, the quantum walk on the hypercube [40] or the Symmetric group [24], or
more generally G-circulant graphs [1] does not converge to the uniform distribution.

The mixing time Mδ of a quantum (or classical) walk is the minimum time after which the
distribution of the walk is within distance δ of the limiting distribution. The mixing time of a
classical walk depends inversely on the spectral gap of the transition matrix of the walk, while for a
quantum walk, the mixing time depends inversely on the minimum gap between all pairs of distinct
eigenvalues of the Hamiltonian H. The mixing time of quantum walks have been studied for specific
graphs such as hypercubes, cycles and lattices [40, 22, 41], and for Erdős-Rényi random graphs [9, 8].
The bounds on the quantum mixing time for some graphs imply quadratic speedup over classical
walks, while for some other graphs these bounds are larger than their classical counterparts.

The problem of sampling from the limiting distribution of a classical walk is an important
problem and has been the focus of much research. The underlying randomness strategy in many
algorithms of practical interest reduces to sampling from a limiting distribution. Much like in the
classical case, sampling from the limiting distribution of a quantum walk is of both practical and
theoretical interest. For example, Richter [41] proposed a “double-loop” quantum walk algorithm
for sampling from a distribution that is close to the uniform distribution over a given graph Γ. The
inner loop in Richter’s algorithm samples from a distribution that is close to the limiting distribution
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Π of the quantum walk. Therefore, an efficient algorithm for sampling from Π results in an efficient
algorithm for sampling uniformly from the vertex set of Γ. The black-box graph problem proposed
by Childs et al. [12], which is interesting from a theoretical perspective, is based on sampling from
the limiting distribution of a quantum walk. They prove that no classical algorithm can efficiently
solve the proposed problem.

Given the importance of sampling from the limiting distribution of a quantum walk, it is natural
to ask whether there are efficient algorithms for sampling from such distributions, at least for specific
graphs. There has not been much research explicitly addressing this question. The standard way
of sampling from the limiting distribution of a quantum walk is by mixing: set a large value for T ,
run the walk for a uniformly random time t ∈ [0, T ], and measure. Chakraborty et al. [8] considered
sampling over the Erdős-Rényi graphs by mixing. They obtained an upper bound on the mixing
time of these graphs through analyzing their spectrum. Their bound implies an exponential time
sampling algorithm.

1.1 Sampling without mixing

In this work, we propose an algorithm for sampling from the limiting distribution of a given
continuous-time quantum walk, that is not based on mixing. The idea behind our algorithm is
to uniquely “tag” the eigenspaces of the adjacency matrix using polynomially long binary strings.
More precisely, give a graph Γ with N vertices and adjacency matrix A, let |φj〉 be an eigenstate
of A that belongs to an eigenspace Xj of A. Then, we will see that sampling from the limiting
distribution Π on Γ reduces to performing the transform

|0〉|φj〉 7→ |tj〉|φj〉 (3)

where tj is a string of length poly(logN) that uniquely identifies Xj .
To perform the transform (3), we introduce the general idea of ε-projectors. Informally, an ε-

projector for the adjacency matrix A is a set of hermitian matrices that have the same eigenspaces
as A, and can be efficiently simulated as Hamiltonians. Moreover, the set of matrices in an ε-
projector have to satisfy a separation condition with respect to their eigenvalues. A set of matrices
satisfying such a separation condition is called an ε-separated set. A specific ε-projector was first
implicitly used by Kane, Sharif and Silverberg [29] for constructing a quantum money scheme based
on quaternion algebras. Their ε-projector is a set of sparse Brandt matrices, which they use to
verify an alleged bill.

Technique. Given an ε-projector A for A, we use phase estimation to store, in a separate register,
an estimate of the eigenvalues of each operator in A. More precisely, we perform the transform

|0〉|φj〉 7→ |λ̃1,j〉|λ̃2,j〉 · · · |λ̃r,j〉|φj〉

where the λ̃k,j are approximate eigenvalues corresponding to the eigenstate |φj〉. It follows from
the ε-separatedness of A that the vectors λj = (λ̃1,j , . . . , λ̃r,j) uniquely identify the eigenspaces of
A. This means the binary representation of the λj can be used as the binary strings tj in (3).
Therefore, efficient sampling from the limiting distribution Π reduces to finding a good ε-projector
for A. In general, a good ε-projector for A is an ε-projector for which ε−1 and r are both at most
poly(logN). In specific cases where the operators in the ε-projector can be simulated efficiently
even for large powers, it is not necessary for ε−1 to be bounded by poly(logN).
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Black-box vs non-black-box. When the graph Γ is given as a black-box, we can only see the
structure of Γ locally. In other words, we can only access the nonzero entries of each row of the
adjacency matrix A of Γ through queries to an oracle. When we are restricted to query access to
A, the global structure of Γ is not known, and we do not have any other information on A as an
operator. In this case, we are essentially left with one choice for an ε-projector for A: A itself.
Consequently, we always have ε ≤ ∆, where ∆ is the minimum distance between any two distinct
eigenvalues of A. The complexity of our sampling algorithm will then be bounded below by a
multiple of ∆−1.

In the non-black-box setting, we often have some knowledge of the global structure of Γ that
enables us to find nontrivial ε-projectors for A. In this paper, we give two examples of graphs for
which we can find good ε-projectors, Winnie Li graphs and Supersingular Isogeny graphs.

Winnie Li graphs [35] are special cases of quasi-abelian graphs which are a subclass of Cayley
graphs. We give a general strategy for finding ε-projectors for quasi-abelian graphs, and apply it
to Winnie Li graphs. Without the use of an ε-projector, one could sample from the limiting distri-
bution of quantum walks on Winnie Li graphs using two different methods. The first method is by
mixing, which takes exponential time because the eigenvalues of the (normalized) adjacency matrix
are very close. The second method is to use the quantum Fourier transform. For that, we need
to be able to approximate the eigenvalues of A efficiently. When the dimension of the underlying
space is odd, these eigenvalues are multiples of some exponential sums called Kloosterman sums.
There is no known efficient classical or quantum algorithm for approximating these sums. We will
see that using a specific ε-projector, we can efficiently sample from the limiting distributions on
these graphs.

A supersingular isogeny graphs is a regular graph in which the set of vertices is the set of
supersingular elliptic curves and the edges are isogenies between these curves. Isogeny graphs
have found many applications in cryptography [36, 37]. The adjacency matrices of these graphs
are called Hecke operators. The minimum distance between the eigenvalues of a Hecke operator is
exponentially small, so the quantum mixing time for these graphs is exponentially large. It is known
that the set of Hecke operators form a commutative algebra over C. Using this fact, and assuming
some standard heuristics, we will see that a small set of these operators form an ε-projector with
high probability. Using this ε-projector, we can efficiently sample from the limiting distribution
on these graphs. As an application, the sampling algorithm can be used to generate honest hard
curves. There is no known classical algorithm for efficiently generating such curves.

2 Preliminaries

2.1 Continuous-time quantum walk

Let Γ = (V,E) be an undirected graph with N = |V | vertices, and let X = CV be the complex
euclidean space with basis V . We will refer to this basis as the vertex basis and denote its elements
by |v〉, v ∈ V . Let A be the adjacency matrix of Γ. The continuous-time quantum walk on Γ is
described by the differential equation (2) where the Hamiltonian is the Laplacian of Γ. Another
common choice (which we also use in this paper) for the Hamiltonian of the walk is the adjacency
matrix A. Then, the continuous-time quantum walk on G at time t is defined by the operator

W (t) = eiAt

on X . For an initial quantum state |ψ0〉 and a real number T > 0, define the following probability
distribution on V : choose t ∈ [0, T ] uniformly at random, evolve the state |ψ0〉 under W (t), i.e.,
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computeW (t)|ψ0〉, and measure the resulting state in the vertex basis. The probability of measuring
a vertex v ∈ V is

PT (v|ψ0) =
1

T

∫ T

0
|〈v|W (t)|ψ0〉|2dt. (4)

Let {|φj〉}1≤j≤N be a set of eigenstates of A that form an orthonormal basis for X , and let
{λj}1≤j≤N be the set of corresponding eigenvalues. Let {Xj}1≤j≤M , where M ≤ N , be the set of
eigenspaces of A, and define Ij = {k : |φk〉 ∈ Xj}. Therefore, Ij is the set of indices k for which the
eigenstates |φk〉 correspond to the same eigenvalue. A straightforward calculation shows that

PT (v|ψ0) =

M∑

j=1

∣∣∣
∑

k∈Ij

〈v|φk〉〈φk|ψ0〉
∣∣∣
2
+

N∑

k,ℓ=1:λk 6=λℓ

〈v|φk〉〈φk|ψ0〉〈ψ0|φℓ〉〈φℓ|v〉
ei(λk−λℓ)T − 1

i(λk − λℓ)T
(5)

Letting T →∞, the second term in the above expansion will vanish, and we get the distribution

P∞(v|ψ0) := lim
T→∞

PT (v|ψ0) =

M∑

j=1

∣∣∣
∑

k∈Ij

〈v|φk〉〈φk|ψ0〉
∣∣∣
2
. (6)

This is called the limiting distribution of the quantum walk W (t). Given a real number δ ≥ 0, the
mixing time Mδ of the walk W (t), with respect to the initial state |ψ0〉, is defined as

Mδ = min{T ′ : ‖PT (·|ψ0)− P∞(·|ψ0)‖1 ≤ δ,∀T ≥ T ′}, (7)

where PT (·|ψ0) and P∞(·|ψ0) are the probability vectors defined by (4) and (6), respectively. Denote
by ∆ the minimum distance between all pairs of distinct eigenvalues of A, i.e.,

∆ = min
λk 6=λℓ

|λk − λℓ|, 1 ≤ k, ℓ ≤ N. (8)

Using the same analysis as in [2], it can be shown that

‖PT (·|ψ0)− P∞(·|ψ0)‖1 ≤
2 lnM + 2

T∆
. (9)

A proof of this bound is given in Appendix A for completeness. From the definition of Mδ and the
bound (9), we see that

Mδ ≤
2 lnM + 2

δ∆
. (10)

2.2 Representation theory

For an introduction to representation theory see [15, 45]. Let V be a C-vector space of finite
dimension, and let GL(V ) be the group of automorphisms of V . Let G be a finite group. A linear
representation of G in V is a homomorphism of groups ρ : G→ GL(V ). The degree of ρ, denoted
by dρ, is the dimention of V as a C-vector space. The character of ρ is the function χρ : G → C

defined by χρ(a) = Tr ρ(a). A morphism of representations ρ1 : G→ GL(V1) and ρ2 : G→ GL(V2)
is a C-linear map φ : V1 → V2 such that for every a ∈ G the diagram
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V1 V2

V2 V2

ρ1(a)

φ φ

ρ2(a)

commutes. The representations ρ1 and ρ2 are said to be isomorphic if φ is an isomorphism. A
subrepresentation of ρ is a representation ρW : G → GL(W ) where W ⊆ V is linear subspace.
A representation that has no subrepresentations except for W = 0, V is called an irreducible
representation. We denote by Ĝ the set of isomorphism classes of irreducible representations of G.
Any representation ρ of G can be decomposed as a direct sum of irreducible representations: If
̺1, . . . , ̺k is a complete set of irreducible representations of G then ρ = n1̺1 ⊕ · · · ⊕ nk̺k for some
integers nj ≥ 0. Here, nj̺j means a direct sum of nj copies of ̺j .

Let V = CG, i.e., the space of functions f : G → C. The (left) regular representation of G is
a representation ρreg in V defined by ρreg(s)f(a) = f(s−1a) for any function f ∈ V . The regular
representation decomposes as

ρreg ∼=
⊕

̺∈Ĝ

d̺̺, (11)

which also shows that
∑

̺ d
2
̺ = |G|.

A representation ρ of G is called unitary if ρ(a) is a unitary matrix for all a ∈ G. Given any
representation ρ of G, there always exists an inner product on V with respect to which ρ is unitary.
Therefore, in this paper, we assume that all representations are unitary. In particular, any unitary
representation can be decomposed as a sum of unitary irreducible representations.

The Fourier transform of a function f : G→ C at a representation ̺ ∈ Ĝ is defined by

f̂(̺) =

√
d̺
|G|

∑

a∈G

̺(a)f(a).

The Fourier transform of f is given by ⊕̺f̂(̺). The quantum Fourier transform of a state |ψ〉 =∑
x∈G αx|x〉 is given by

|ψ̂〉 =
∑

̺∈Ĝ

∑

1≤j,k≤d̺

α̂(̺)j,k|̺, j, k〉 (12)

where α : G→ C is defined by α(x) = αx, and α̂(̺)j,k is the (i, j) entry of the matrix α̂(̺).

3 Sampling Using ε-Projectors

Let Γ = (V,E) be a graph with N vertices and let A be the adjacency matrix of Γ. Assume the
same notation as in Section 2.1. A closer look at the sum in (6) suggests the following simple
approach to sampling from the limiting distribution P∞. Since {|φj〉} is an orthonormal basis for
X , given any initial state |ψ0〉, we can always write

|ψ0〉 =
N∑

j=1

〈φj |ψ0〉|φj〉.

Suppose we have a quantum algorithm Q that can uniquely “tag” the eigenspaces of A in the above
superposition, using an extra register. More precisely, Q performs the following operation

N∑

j=1

〈φj |ψ0〉|0〉|φj〉 7−→
N∑

j=1

〈φj |ψ0〉|tj〉|φj〉 =
M∑

j=1

∑

k∈Ij

〈φk|ψ0〉|tj〉|φk〉 (13)
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where the strings tj are unique with respect to the eigenspaces of A. If we measure the second
register in the vertex basis, we obtain a vertex v ∈ V with the probability given by (6).

A naive choice for the tags tj are the eigenvalues of A. These eigenvalues can be approximated
using phase estimation on the walk operator W (t). However, to be able to uniquely identify the
eigenspaces of A, one might need to compute the eigenvalues with exponential accuracy. Any such
computation generally takes exponential time unless W (t) can be applied efficiently for exponen-
tially large t. In particular, if we treat A as a black-box, the complexity of performing (13) is going
to be exponential in t. Therefore, any successful attempt at efficiently performing (13) will require
some extra information or assumptions on A.

In the following we present the main idea of the paper, an algorithm for performing (13) that
uses a specific set of operators that commute with A. We call such a set of operators an ε-projector.
For many classes of graphs, we can find ε-projectors that enable us to efficiently perform (13). We
need to adapt the definition of an ε-separated set from [29] to a set of operators.

Definition 3.1. For an integer r > 0, let A = {Aj}1≤j≤r be a set of hermitian operators, act-
ing on X , that have the same eigenspaces. For an eigenstate |φj〉, let λ1,j, λ2,j , . . . , λr,j be the
eigenvalues of the operators A1, A2, . . . , Ar associated with |φj〉, respectively. Define the vector
λj = (λ1,j , λ2,j , . . . , λr,j) for each j = 1, . . . , N . For a real number ε > 0, the set of operators A is
said to be ε-separated if

‖λj − λk‖2 ≥ ε, for all λj 6= λk, 1 ≤ j, k ≤ N.

Definition 3.2. Let A be a hermitian operator on X . An ε-projector for A is an ε-separated set
A = {Aj}1≤j≤r such that for all j = 1, . . . , r

• the walk eiAjt can be performed in F (t) poly(logN) operations, where F (t) ∈ O(t), and

• Aj has the same eignenspaces as A.

The function F (t) in Definition 3.2 determines how efficient the walks eiAjt can be performed
for different values of t. For an ε-projector we require that F (t) be bounded above by a linear
function in t. Also, here operations refer to elementary quantum gate operations. We now give an
algorithm for sampling from the limiting distribution of the quantum walk on Γ. The algorithm
takes as input an ε-projector for the adjacency matrix A.

Algorithm 1 (Sampling).
Input: An adjacency matrix A of a graph Γ = (V,E), an ε-projector A = {Aj}1≤j≤r for A, an

initial state |ψ0〉 ∈ X .
Output: A sample from the limiting distribution of the walk W (t) = eiAt on Γ.

1. Perform phase estimation on the unitaries eiA1 , . . . , eiAr and the input state |ψ0〉 with accuracy
ε/2
√
r, and store the approximate phases in extra registers. Denote by λ̃k,j the approximation

of the eigenvalue λk,j of Ak corresponding to the eigenstate |φj〉. Then the resulting state of
this step is

N∑

j=1

〈φj |ψ0〉|λ̃1,j〉|λ̃2,j〉 · · · |λ̃r,j〉|φj〉. (14)

where |λi,j − λ̃i,j| < ε/2
√
r for all i = 1, . . . , r. If we group the content of the first r registers as

a vector λ̃j then the state (14) can be written as

N∑

j=1

〈φj |ψ0〉|λ̃j〉|φj〉 (15)
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2. Measure the last register in the vertex basis.
3. Return the measured vertex.

Algorithm 1 proposes to use the (binary representations) of the phase vectors λ̃j as the tags tj
in (13). The correctness of the algorithm follows from the next lemma.

Lemma 3.3. The vectors λ̃j uniquely determine the eigenspaces of A. More precisely, λ̃j = λ̃k if
and only if j and k both belong to Iℓ for some ℓ.

Proof. Let λj = (λ1,j , λ2,j , . . . , λr,j) be the vectors of the exact eigenvalues of A1, . . . , Ar corre-
sponding to the eigenstate |φj〉. Then for all j = 1, . . . , N we have

‖λj − λ̃j‖22 =
r∑

i=1

|λi,j − λ̃i,j|2 <
ε2

4
(16)

where the last inequality follows from the bound |λi,j − λ̃i,j| < ε/2
√
r. Now, suppose λ̃j = λ̃k

where k ∈ Ih and j ∈ Iℓ and h 6= ℓ. Then

‖λj − λk‖2 = ‖(λj − λ̃j)− (λk − λ̃k)‖2
≤ ‖λj − λ̃j‖2 + ‖λk − λ̃k‖2
< ε by (16)

which contradicts the ε-separatedness of A.

The following theorem records the main result of this section.

Theorem 3.4. Let Γ = (V,E) be a graph with N vertices and adjacency matrix A. Given an
ε-projector A = {Aj}1≤j≤r for A such that the walks eiAjt can be performed in F (t) poly(logN)
operations, there is a quantum algorithm that can sample from the limiting distribution of the walk
W (t) = eiAt in O(rF (2

√
rε−1) poly(logN)) operations.

Proof. The time consuming part of the algorithm is the phase estimation for the operators Wj =
eiAj for j = 1, . . . , r. Each of these phase estimations is done with accuracy ε/2

√
r, and therefore

requires O(F (2
√
rε−1) poly(logN)) operations [31, Chapter 7]. Since there are r phase estimations,

the claimed running time follows.

From Theorem 3.4 we see that the complexity of Algorithm 1 is mostly determined by the
“quality” of the given ε-projector A. If the number r of the operators in A and the separation
parameter ε are poly(logN) and 1/poly(logN), respectively, then the algorithm is efficient, i.e.,
runs in poly(logN) operations. Otherwise, there is a natural trade-off between the sizes of the two
parameters. Also note that, by definition, we always have F (t) ∈ O(t) for any ε-projector, so the
running time in Theorem 3.4 is always upper bounded by O(r3/2ε−1 poly(logN)).

An immediate special case of Theorem 3.4 is when the ε-projector is a singleton set A = {B},
that is, when r = 1. If we only have black-box access to B we can only perform the walk eiBt

with a running time that scales linearly in t. In this case, the running time of Algorithm 1 scales
linearly in ε−1. On the other hand, if we can perform the walk eiBt with a running time that scales
polynomially in log t, then the running time of Algorithm 1 scales polynomially in log(ε−1). A
lower bound for the running time of Algorithm 1 can be obtained using the fact that for any such
ε-projector A we must have ε ≤ ∆, where ∆, defined in (8), is the minimum spacing between the
distinct eigenvalues of A. Let us record these observations for the sake of referencing.
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Corollary 3.5. Let Γ = (V,E) be a graph with N vertices and adjacency matrix A. Given an
ε-projector A = {B} for A, we have the following:

(a) If the unitary eiB can be applied in poly(logN) operations, then there is a quantum algorithm
that can sample from the limiting distribution of the walk W (t) = eiAt in O(ε−1 poly(logN))
operations.

(b) If the unitary eiBt can be applied in O((log t) poly(logN)) operations, then there is a quan-
tum algorithm that can sample from the limiting distribution of the walk W (t) = eiAt in
O(log(ε−1) poly(logN)) operations.

Moreover, if ∆ is known or can be approximated efficiently, then the above running times can be
improved to O(∆−1 poly(logN)) in case (a) and O(log(∆−1) poly(logN)) in case (b).

In the black-box setting, we are usually given access to the adjacency matrix A of Γ such that
we can apply the unitary eiA in time poly(logN). In this setting, we can just take the ε-projector
A = {A} for a small enough ε. This makes the complexity of sampling from the limiting distribution
of the walkW (t) fundamentally dependent on ∆. If we use the naive way of runningW (t) for a large
t and measuring the resulting state, the bound (10) suggests that we should take T proportional
to (2 lnM + 2)/δ∆ to be within distance δ of the limiting distribution. In comparison, Corollary
3.5 says we only need to run W (t) for t ≈ 1/∆ (and perform some other negligible operations) to
sample exactly from the limiting distribution.

In the non-black-box setting, we have the opportunity to exploit some extra information on A
to find ε-projectors that allow us to efficiently sample from the limiting distribution of W (t). In
the following sections, we give examples of graphs for which we can find such ε-projectors.

4 Quasi-Abelian Graphs

As a first application of our sampling algorithm we consider a class of graphs, called quasi-abelian
graphs, in this section. Quasi-abelian graphs, as we will see, are a potential source of concrete
examples for which Algorithm 1 runs in polynomial time. In the following, we first review some
general properties of quasi-abelian graphs, and then look more closely at a specific example called
Winnie Li graphs.

Let G be a finite group of size N , and let the subset S ⊆ G be such that 1 /∈ S. The Cayley
digraph Γ = Γ(G,S) of the pair (G,S) is a directed graph in which the vertex set is the set of
elements in G and the edge set is {(a, as) : a ∈ G, s ∈ S}. If S is symmetric, i.e., s ∈ S if and only
if s−1 ∈ S, then Γ is an undirected graph called the Cayley graph. In this paper, we always assume
that S generates the entire group G, which means that Γ is connected. Denote by fS : G→ {0, 1}
the characteristic function of S defined by fS(a) = 1 if a ∈ S and fS(a) = 0 if a /∈ S. We will also
denote by A(Γ) the adjacency matrix of Γ.

Definition 4.1. A quasi-abelian graph is a Cayley graph Γ(G,S) in which S is the union of some
conjugacy classes of G.

A class function is a function f : G → C that is constant on conjugacy classes of G. It is not
hard to show that the Fourier transform of a class function f is a diagonal matrix, e.g., see [17,
Chapter 2]. From the definition of quasi-abelian graphs we see that fS is always a class function.
For any irreducible representation ̺ ∈ Ĝ we obtain

f̂S(̺) =
1√
d̺|G|

∑

s∈S

χ̺(s)1d̺ (17)

9



where d̺ is the dimension of ̺ and χ̺ is the character of ̺. The following proposition is partially
proved in [17] and [42] with different notations. Here, we give a short proof consistent with our
notations.

Theorem 4.2. Let Γ(G,S) be a quasi-abelian graph on a finite group G. Denote by FG the Fourier
transform over G. Then

(a) The adjacency matrix A(Γ) is diagonalized by FG,

(b) The eigenvectors of A(Γ) are given by F ∗
G|̺, j, k〉 for ̺ ∈ Ĝ and 1 ≤ j, k ≤ d̺,

(c) The eigenvalue corresponding to the eigenvector F ∗
G|̺, j, k〉 is given by

λ̺ =
1

d̺

∑

s∈S

χ̺(s).

From part (c) of the theorem we see that the eigenvalues of A(Γ) are only determined by the
irreducible representations of G and the set S. Each irreducible representation ̺ corresponds to d2̺
eigenvectors. This means an eigenvalue λ̺ has multiplicity at least d2̺. If G is abelian, we always

have d̺ = 1, but that does not mean the eigenvalues λ̺ are distinct for different ̺ ∈ Ĝ.

Proof of Theorem 4.2. Let ρreg be the regular representation of G. Then we can write

A(Γ) =
∑

s∈S

ρreg(s) =
∑

a∈G

fS(a)ρreg(a).

The Fourier transform FG decomposes ρreg as

FGρreg(a)F
∗
G =

⊕

̺∈Ĝ

(̺(a) ⊗ 1d̺).

It follows from this decomposition that

FGA(Γ)F
∗
G =

∑

a∈G

⊕

̺∈Ĝ

(fS(a)̺(a) ⊗ 1d̺)

=
⊕

̺∈Ĝ

√
|G|
d̺

(f̂S(̺)⊗ 1d̺)

=
⊕

̺∈Ĝ

(λ̺1d̺ ⊗ 1d̺),

where the last equality follows from the fact that fS is a class function. This proves (a). Parts (b)
and (c) follow from the definition of the quantum Fourier transform (12) and the identity (17) for
the characteristic function fS.

According to Theorem 4.2, for a quasi-abelian graph Γ(G,S) we can write the adjacency matrix
A = A(Γ) as

A =
∑

̺∈Ĝ

∑

1≤j,k≤d̺

λ̺F
∗
G|̺, j, k〉〈̺, j, k|FG . (18)

Therefore,

eiAt =
∑

̺∈Ĝ

∑

1≤j,k≤d̺

eiλ̺tF ∗
G|̺, j, k〉〈̺, j, k|FG . (19)

The expansion (19) suggest that we could perform the walk eiAt using the following three steps:
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1. Apply the quantum Fourier transform FG,

2. Apply the phase operator U̺ : |̺, j, k〉 7→ eiλ̺t|̺, j, k〉,
3. Apply the inverse quantum Fourier transform F ∗

G.

Of course, this is only efficient if both the Fourier transform FG and the phase operator U̺ can
be applied efficiently. Suppose we can apply FG efficiently for a given group G. Then a general
strategy for constructing ε-projectors for A is as follows. For any function g : Ĝ→ C the operator

Ag =
∑

̺∈Ĝ

∑

1≤j,k≤d̺

g(̺)F ∗
G|̺, j, k〉〈̺, j, k|FG

commutes with A. Suppose that g satisfies the following condition:

g(̺1) = g(̺2) if and only if λ̺1 = λ̺2 for all ̺1, ̺2 ∈ Ĝ (20)

Then Ag has the same eigenspaces as A. If we can efficiently approximate g with exponential
accuracy, then A = {Ag} is an ε-projector that satisfies the conditions of Corollary 3.5 (b). If
we can only approximate g with polynomial accuracy, then we might need many more of these
functions g that satisfy (20). Ideally, we need to find g1, g2, . . . , gr : Ĝ→ C, with r = poly(logN),
such that A = {Agj}1≤j≤r is an ε-projector for A for some ε = 1/poly(logN). In this case, A
satisfies the conditions of Theorem 3.4, and we can efficiently sample from the limiting distribution
of the walk W (t) = eiAt using A.

4.1 Winnie Li graphs

Let Fp be a finite field of characteristic p ≥ 3. For an extension F/Fp of degree n, the norm map
NF/Fp

: F → Fp is defined by NF/Fp
(a) = a(p

n−1)/(p−1), which is a homomorphism between the
multiplicative groups F× and F×

p . Let S = ker(NF/Fp
), i.e., the set of elements of F of norm 1.

The Winnie Li graph of F over Fp is the Cayley digraph Γ(F, S) where the vertex set is F and the
edge set is {(a, a + s) : a ∈ F, s ∈ S}.

Before we get into the specifics of the structures of these graphs, recall the quantum Fourier
transform over F . The set of additive characters of F is given by

χF,a(x) = ω
TrF/Fp(ax)
p , a ∈ F,

where TrF/Fp
(x) = x + xp + · · · + xp

n−1

is the trace map from F to Fp. The quantum Fourier
transform of the basis element |a〉, where a ∈ F , is given by

|â〉 = 1√
|F |

∑

x∈F

χF,a(x)|x〉

For even n, the graph Γ is undirected, since NF/Fp
(−a) = NF/Fp

(a). Let us look at the simple
case where n = 2. The extension F/Fp is a quadratic extension, and if we assume that −1 is a
quadratic nonresidue in Fp, we can take F = Fp(i) where i2 = −1. The elements of Fp(i) can be
written in the form x+ iy for x, y ∈ Fp, so the norm map takes the simple form

NFq(i)/Fp
(x+ iy) = x2 + y2.

11



Therefore, the set S of elements of norm 1 is the set of Fp-points of the circle x2 + y2 = 1. The
Winnie Li graph Γ(Fp(i), S) is a (p+ 1)-regular graph of p2 vertices. It follows from (18) that the
adjacency matrix of Γ can be written as

A(Γ) =
∑

a∈F

λa|â〉〈â|,

For an element a = u+ iv ∈ Fp(i), Theorem 4.2 (c) gives

λa =
∑

NF/Fp(b)=1

χF,a(b) =
∑

x2+y2=1

ω2(ux−vy)
p =

{
q + 1 if a = 0,

−K(1, u2 + v2) if a 6= 0.
(21)

Here, K(a, b) is the Kloosterman sum with parameters a, b, which we will briefly talk about next.

Kloosterman sums. For a, b ∈ Fp, the exponential sum

K(a, b) =
∑

x∈F×

p

ωax+bx−1

p (22)

is called the Kloosterman sum with respect to a, b. The last equality in (21) follows from the
definition (22). Since K(a, b) = K(a, b), these sum are real numbers. A well known result of Weil
[50] gives the bound |K(a, b)| ≤ 2

√
p. When p is large, estimating K(a, b) is an open problem;

there are no known classical or quantum algorithms that can efficiently estimate K(a, b). For a
multiplicative character χ of F×

p , the χ-twisted Kloosterman sum is defined by

K(χ, a, b) =
∑

x∈F×

p

χ(x)ωax+bx−1

p . (23)

Interestingly, when χ is the quadratic character of F×
p , the sum (23) has a closed form, and is easy

to estimate [43, 7].

Euclidean graphs. The construction of the Winnie Li graph Γ(Fp(i), S) can be directly gener-
alized to obtain the so called Euclidean graphs [39]. Let n > 0 be an integer and b ∈ Fp. Define the
quadratic form Q(x) = x21 + x22 + · · · + x2n over Fp. An Euclidean graph for n and b is the Cayley
graph Γ(Fn

p , Sb) where Sb is the set of solutions of Q(x) = b in Fn
p . For simplicity, assume b = 1.

The adjacency matrix of Γ is

A(Γ) =
∑

a∈Fn
p

λa|â〉〈â|

where

|â〉 = 1√
pn

∑

x∈Fn
p

ω〈a,x〉
p |x〉

is the quantum Fourier transform of |a〉, and 〈a, x〉 = a1x1 + · · · + anxn for a = (a1, . . . , an) and
x = (x1, . . . , xn). The eigenvalues λa are [39]

λa =
∑

x∈S1

ω〈a,x〉
p =

{
|S1| if a = 0,
Gn

1

p K
(
χn, 1, Q(a)

4

)
if a 6= 0,

(24)
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where χ is the quadratic character of F×
p , and where

G1 =

{√
p if p ≡ 1 mod 4,

i
√
p if p ≡ 3 mod 4.

When n is odd, it is easy to approximate the eigenvalues λa with exponential accuracy, since it
is easy to approximate (23) when χ is the quadratic character. So, it is easy to perform the walk

eiA(Γ)t =
∑

a∈Fn
p

eiλat|â〉〈â|

for exponentially large t. Therefore, we can easily sample from the limiting distribution of W (t)
by running the walk for random values of t ∈ [0, T ] for a large T . However, when n is even, we
do not know how to perform W (t) for large t. In fact, there is no known way to even perform
W (1) = eiA(Γ) efficiently. We now use the general strategy introduced at the beginning of Section 4
to efficiently sample from the limiting distribution of W (t) when n is even. Note that since G = Fn

p

is an abelian group, we have Ĝ ∼= G. Therefore, we need to find functions g : G → C that satisfy
the condition in (20).

Proposition 4.3. Define the function g : G→ C as g(x) = (Q(x) mod p)/p. Then the operator

Ag =
∑

a∈Fn
p

g(a)|â〉〈â|

is an ε-projector for A(Γ) for ε = 1/p.

Proof. We first need to show that Ag has the same eigenspaces as A(Γ). It is known that the
Kloosterman sums K(1, b), b ∈ Fp, are distinct [23]. Therefore, according to (24), two eigenvalues
λa and λb of A(Γ) are the same if and only if Q(a) = Q(b). But we also trivially have g(a) = g(b)
if and only if Q(a) = Q(b). Note that the eigenspace corresponding to λa is the set of all vectors
|x̂〉 such that Q(x) = Q(a).

Now, for λa 6= λb we have Q(a) 6= Q(b), hence

|g(a) − g(b)| = 1

p

∣∣(Q(a)−Q(b)) mod p
∣∣ ≥ 1

p
,

and since we can efficiently compute g with exponential accuracy, it follows that Ag is a
1
p -projector

for A(Γ).

With g as in Proposition 4.3, we can perform the walk

eiAgt =
∑

a∈Fn
p

eig(a)t|â〉〈â|

in O((log t) poly(logN)) operations. Corollary 3.5 (b) and Proposition 4.3 now give

Theorem 4.4. Let Γ(Fn
p , S) be an Euclidean graph with adjacency matrix A(Γ). For a given initial

state |ψ0〉 we have

(a) The limiting distribution of the walk W (t) = eiA(Γ)t on Γ is given by

P∞(v|ψ0) =

p−1∑

j=0

∣∣∣
∑

k∈Sj

〈v|k̂〉〈k̂|ψ0〉
∣∣∣
2
.

(b) There is a quantum algorithm that can sample from P∞(·|ψ0) in poly(n log p) operations.
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5 Isogeny Graphs

As another application of Algorithm 1 we consider a class of graphs, called isogeny graphs, in this
section. Isogeny graphs have attracted much attention in last two decade mainly because of their
applications in cryptography [36, 37]. We will see in the following how the beautiful theory of Hecke
algebras give us natural ε-projectors that make it possible to efficiently sample from the limiting
distributions of quantum walks on these graphs.

The ε-projectors considered in this section, were first implicitly used by Kane, Sharif and
Silverberg [29]. They considered the same set of operators we use here but in the context of
quaternion algebras. In here, we consider the space of supersingular elliptic curves over the finite
fields Fp2 , whereas in [29] they considered the space of ideals in an ideal class of the quaternion
algebra Bp,∞. These two spaces are mathematically essentially the same, in a precise sense, but
they are vastly different from a cryptographic perspective. In particular, the isogeny problem is
easy in the latter space, but believed to be hard in the former [32]. Working with the ε-projectors
in the space of elliptic curves yields a potential solution to the problem of generating an honest
curve, as we will explain in Section 5.3.

Let Fq = Fp2 be a finite field of characteristic p ≥ 5. An elliptic curve E over Fq is a projective
smooth curve of genus one. For the definition of these terms and an extensive introduction to
elliptic curve see [28]. The affine version of E is usually written as the cubic y2 = x3 + ax + b,
a, b ∈ Fq, known as the Weierstrass equation of E. The set of points on E in any extension of Fp

form an abelian group. An elliptic curve E over Fq is called supersingular if it has no nontrivial
points of order p. It can be shown that any supersingular elliptic curves over the algebraic closure
Fp can be defined over Fq, or, more precisely, is isomorphic to a curve over Fq. Therefore, we always
assume that any supersingular elliptic curve E has its coefficients a, b in Fq.

An isogeny φ : E1 → E2 between two elliptic curves E1 and E2 is a rational function that is
also a homomorphism of groups of points on E1 and E2. An isogeny φ induces an embedding of
function fields φ∗ : K(E2)→ K(E1) defined by φ∗(f) = f ◦ φ. The degree of φ is the degree of the
extension K(E1)/φ

∗K(E2). An isogeny of degree ℓ is called an ℓ-isogeny. For any isogeny φ there is
a unique isogeny φ̂ : E2 → E1 called the dual of φ. Let ℓ be a prime different from the characteristic
p. Define a graph Gℓ with vertices the set of all Fp-isomorphism classes of supersingular elliptic
curves, and edges the set of ℓ-isogenies between the curves. Gℓ is called the supersingular ℓ-isogeny
graph. Since the dual of an ℓ-isogeny is again an ℓ-isogeny but in the opposite direction, we usually
consider Gℓ as an undirected graph. For simplicity, assume that p ≡ 1 mod 12. Then Gℓ is an
(ℓ+ 1)-regular graph with N = ⌊p/12⌋ vertices and no self loops. The adjacency matrix of Gℓ is a
symmetric matrix denoted by Tℓ and is called the Hecke operator.

5.1 Simulating the Hecke operators

Let S be the set of vertices of Gℓ, i.e., the set of isomorphism classes of supersingular elliptic curves
in characteristic p. The Hecke operator Tℓ acts on the formal abelian group

M =
⊕

E∈S

ZE

by sending each curve E to a sum of its neighbours in Gℓ. In the quantum setting, we consider
the action of Tℓ on the complex Euclidean space X = M ⊗Z C with the basis {|E〉}E∈S . The
operators Tℓ, for different values of ℓ, are closely related to the Hecke operators acting on the space
of modular forms [19, 33, 5], so the terminology we use here is mostly adopted from the theory of
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modular forms. For example, the trivial eigenvector

|E〉 = 1√
N

∑

E∈S

|E〉

of Tℓ is called the Eisenstein eigenform and corresponds to the eigenvalue λE = ℓ+1. Deligne’s proof
of the Riemann hypothesis for function fields [16, 30] implies that the nontrivial eigenvalues of Tℓ
are contained in the interval [−2

√
ℓ, 2
√
ℓ]. We make the heuristic assumption that the eigenvalues

of Tℓ are distinct. This assumption is in fact a consequence of (the well known) Maeda’s conjecture
[26] which states that the characteristic polynomial of Tℓ is irreducible over Q. We refer the reader
to [38, 46, 25], and the references therein, for results on the computational verification of Maeda’s
conjecture.

An ℓ-isogeny can be computed in O(ℓ) operations over Fq using the Vélu formulas [47]. When
ℓ is small, i.e., ℓ = poly(logN), it is easy to compute the list of all the neighbours of a given curve
E in Gℓ. In particular, we can efficiently implement the isometry

T : |E〉 → 1√
ℓ+ 1

ℓ∑

j=0

|E〉|Ej〉

from X to X ⊗ X , where E1, . . . , Eℓ are the ℓ + 1 neighbours of E. Therefore, we can use the
existing Hamiltonian simulation techniques [11, 49] to efficiently approximate the unitary eiTℓ .

Proposition 5.1. For any prime ℓ = poly(logN), the walk W (t) = eiTℓt on the ℓ-isogeny graph
Gℓ can be performed in O(t poly(logN)) operations.

5.2 Distribution of eigenvalues

For different primes ℓ we have different isogeny graphs Gℓ over Fq; the set of vertices is always the
same but the set of edges change with ℓ. Therefore, we get different Hecke operators Tℓ acting on
the same space X . More generally, Hecke operators can be defined for any integer n > 0. The
operator Tn represent the adjacency matrix of the n-isogeny graph Gn, although for non-prime n
one needs to be more careful about some definitions. The algebra TZ = Z[{Tn}n∈Z], generated
by all Hecke operators acting on X , is called the Hecke algebra. Let T = TZ ⊗Z C be the Hecke
algebra over C. It can be shown that T is a commutative ring [48, Chapter 41]. In particular, for
any m,n, the operators Tn and Tm commute. This means all Hecke operators are simultaneously
diagonalizable.

It was proved by Serre [44] that for large p, the eigenvalues of the normalized Hecke operator
Tℓ/
√
ℓ are equidistributed in [−2, 2] with respect to the measure

µℓ =
ℓ+ 1

π

(1− x2/4)1/2dx
(ℓ1/2 + ℓ−1/2)2 − x2 .

Let |φ1〉, |φ2〉, . . . , |φN 〉 ∈ X be a simultaneous basis for all Hecke operators, and let ℓ1, ℓ2, . . . , ℓr be
a set of distinct primes each bounded by poly(logN). For all 1 ≤ k ≤ r and 1 ≤ j ≤ N we have

1√
ℓk
Tℓk |φj〉 = λj,k|φj〉

for some λj,k ∈ [−2, 2]. Define λj = (λj,1, λj,2, . . . , λj,r). It was also proved in [44] that for large p,
the vectors λj are equidistributed in [−2, 2]r with respect to the product measure µ =

∏r
k=1 µℓk .
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This means that asymptotically we can treat the λj as independent samples from the distribution
given by the measure µ.

For large N , µℓ approaches the measure µ = 1
2π

√
4− x2dx, the semicircle distribution on

[−2, 2]. So, when the characteristic p is large enough, it is natural to assume that the vectors λj

are independent random samples from µr. We now prove that for r ∈ O(logN) and ε = 1/
√
logN ,

the set of Hecke operators T = {Tℓk/
√
ℓk}1≤k≤r is an ε-projector for any Hecke operator Tℓ with ℓ

a prime number. The following proves the ε-separatedness of T .

Lemma 5.2. Let r ≥ 32 logN , let ℓ1, ℓ2, . . . , ℓr be a set of distinct primes each bounded by
poly(logN), and let ε = 1/

√
logN . Then the set of operators T = {Tℓk/

√
ℓk}1≤k≤r is ε-separated

with overwhelming probability.

Proof. Let Z = (X − Y )2 where X and Y are distributed according to µ. We have Var(X) =
Var(Y ) = 1 and E[X] = E[Y ] = 0. So

E[Z] = Var(X − Y ) + E[X − Y ]2 = 2.

Now define Zk = (λj,k − λl,k)2 for k = 1, . . . , r, and W = Z1 +Z2 + · · ·+Zr. Then E[W ] = 2r. We
have

Pr[‖λj − λl‖2 ≤ ε] = Pr[W ≤ ε2]
= Pr[W − 2r ≤ ε2 − 2r]

≤ exp
(−2(2r − ε2)2

256r

)
(25)

≤ 1

N1.4

where the inequality (25) is the Hoeffding’s inequality [27].

Lemma 5.2 and Theorem 3.4 now give

Theorem 5.3. Let ℓ 6= p be prime, and let Gℓ be the ℓ-isogeny graph with vertices the set of
supersingular elliptic curves over Fp2. For a given initial state |ψ0〉 we have

(a) The limiting distribution of the walk W (t) = eiTℓt on Gℓ is given by

P∞(E|ψ0) =

N∑

j=1

|〈E|φj〉〈φj |ψ0〉|2 (26)

(b) There is a quantum algorithm that can sample from P∞(·|ψ0) in poly(log p) operations.

5.3 Honest hard curves

A hard problem in isogeny based cryptography is to compute the endomorphism ring End(E) of a
given supersingular elliptic E. The majority of other computational assumptions can be reduced
to the endomorphism ring problem [51]. Informally, a hard curve is a random curve on Gℓ with
an unknown endomorphism ring. To classically generate a random curve on Gℓ, one can do the
following:

1. Start with a known curve E0 on Gℓ,

2. Take a random walk of length at least 2 log p, and
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3. Return the final curve

For small ℓ, taking classical random walks on Gℓ can be done very efficiently [18]. Also, it is well
known that Gℓ has a small diameter, and taking a walk of length ≈ 2 log p is enough to get close
to the uniform distribution on Gℓ.

At the first glance, it seems that the above classical random walk on Gℓ can be used to efficiently
generate a hard curve. However, there is an issue with this approach that seems to be unavoid-
able: the random walk explicitly generates a path on Gℓ. This path can be used to compute the
endomorphism ring of the returned curve. More precisely, if the endomorphism ring of the initial
curve E0 is known and we are given a path φ : E0 → E (which is an isogeny) then we can use φ to
compute End(E). Any such path φ is called a backdoor for E. A hard curve without a backdoor
is called an honest hard curve.

There is no known efficient classical solution for generating an honest hard curve. A potential
solution using quantum walks was first discussed in [6]. The idea is to sample from the limiting
distribution of the walk W (t) = eiTℓt on Gℓ. According to Theorem 5.3, this can be done efficiently,
and in contrast to the classical walk, the quantum walk does not generate any path on Gℓ. Two
important questions about the quantum walk solution in [6] remained unresolved. We briefly
address those questions here.

The first question is weather the distribution (26) is close to uniform. Intuitively, there is no
reason to believe that the eigenvectors |φj〉 are localized1. In particular, the action of the Hecke
operator Tℓ on X implies that each entry of |φj〉 is an average of a set of ℓ+1 other entries. Since |φj〉
is an eigenvector for all Hecke operators, these averages involve all the other entries for large enough
ℓ. Therefore, one would expect that the entries of |φj〉 are not too small or too large, and that the
distribution P∞(·|ψ0) is not concentrated on a small subset of vertices. In fact, it is not hard to
show, using general techniques in the theory of Markov chains, that P∞(E1|E2) ≥ N−2 for every
two curves E1, E2 [41]. Notwithstanding, a rigorous proof that P∞(·|ψ0) is close to the uniform
distribution does not seem straightforward. Maybe there are ways to analyze the amplitudes of
the vectors |φj〉 through their close connection to complex modular forms, but we are not aware of
any work regarding this in the literature. Instead, this question can be approached algorithmically
using the double-loop technique of [41]. The double-loop algorithm for our case is:

1. Set E to a known curve E0 on Gℓ

2. Repeat for k times
(a) Run Algorithm 1 with initial state |E〉 to obtain a curve E1

(b) Set E ← E1

3. Return E

Assuming that the maximum column distance

α = max
E1,E2∈S

‖P∞(·|E1)− P∞(·|E2)‖1

of P∞ is bounded by a constant smaller than 1, we need to only set k = ⌈log1/α δ−1⌉ for the
distribution of the final curve E to be within distance δ of the uniform distribution. Again, the
assumption that α is always bounded by a constant c < 1 is not rigorously proved, but it is more
plausible than the assumption that P∞(·|φ0) is close to uniform.

The second question is only specific to the sampling algorithm proposed in [6]. In that algorithm,
after preparing the state (15), the first register is measured. The measurement outcome is a random
vector λ̃j , and the post-measurement state is the corresponding eigenstate |φj〉. The state |φj〉 is

1A unit vector is localized if the mass of the vector is concentrated on a small subset of entries.
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then measured in the vertex basis to obtain a curve E. The question is whether the vector λ̃j

reveals any information about the endomorphism ring End(E) of the curve E. This situation is
entirely avoided in Algorithm 1; we never measure the first register. The post-measurement state of
Algorithm 1 is a superposition of all the vectors λ̃j, j = 1, . . . , N , which does not seem to provide
any useful information about End(E).

Remark 1. In a cryptography scenario, if Alice presents Bob with an alleged hard curve E, there
is no way for Bob to know whether E is an honest hard curve, or that Alice is in possession of
a backdoor for E. In other words, Bob is unable to determine which algorithm Alice has used to
generate E. This kind of trust issue is normally solved by a higher level cryptographic construction.
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A Bound on the mixing time

In this section, we bound the mixing time Mδ defined in (7). Our analysis closely follows that of
[2]. We have

|PT (v|ψ0)− P∞(v|ψ0)| =
∣∣∣∣∣

N∑

k,ℓ=1:λk 6=λℓ

〈v|φk〉〈φk|ψ0〉〈ψ0|φℓ〉〈φℓ|v〉
ei(λk−λℓ)T − 1

i(λk − λℓ)T

∣∣∣∣∣

≤
N∑

k,ℓ=1:λk 6=λℓ

2

|λk − λℓ|T
|〈v|φk〉〈φℓ|v〉| · |〈φk|ψ0〉〈ψ0|φℓ〉|. (27)

Using the inequality 2|ab| ≤ |a|2 + |b|2 we can bound (27) by

N∑

k,ℓ=1:λk 6=λℓ

1

|λk − λℓ|T
(|〈v|φk〉|2 + |〈φℓ|v〉|2) ·

1

2
(|〈φk|ψ0〉|2 + |〈ψ0|φℓ〉|2).

Summing over all v ∈ V we obtain

‖PT (·|ψ0)− P∞(·|ψ0)‖1 ≤
N∑

k,ℓ=1:λk 6=λℓ

|〈φk|ψ0〉|2 + |〈ψ0|φℓ〉|2
|λk − λℓ|T

=
M∑

h,j:h 6=j

∑

k∈Ih,ℓ∈Ij

|〈φk|ψ0〉|2 + |〈ψ0|φℓ〉|2
|λk − λℓ|T

Define βj =
∑

k∈Ij
|〈φk|ψ0〉|2 for all j = 1, . . . ,M . Then we have

∑M
j=1 βj = 1. Also, without loss

of generality, assume that λ1 ≥ λ2 ≥ · · · ≥ λN . Then for h 6= j and any k ∈ Ih and ℓ ∈ Ij we have
|λk − λℓ| ≥ |h− j|∆ where ∆ is defined in (8). Putting the above together we have

‖PT (·|ψ0)− P∞(·|ψ0)‖1 =
∑

v∈V

|PT (v|ψ0)− P∞(v|ψ0)|

≤
M∑

h,j=1:h 6=j

βh + βj
|h− j|T∆

=

M−1∑

r=1

1

rT∆

∑

h,j:|h−j|=r

βh + βj

≤ 2 lnM + 2

T∆
,

where in the last inequality we have used the bound
∑n

i=1 1/n ≤ lnn+ 1 for harmonic sums, and
the fact that the inner sum is always ≤ 2.

22


	1 Introduction
	1.1 Sampling without mixing

	2 Preliminaries
	2.1 Continuous-time quantum walk
	2.2 Representation theory

	3 Sampling Using epsilon-Projectors
	4 Quasi-Abelian Graphs
	4.1 Winnie Li graphs

	5 Isogeny Graphs
	5.1 Simulating the Hecke operators
	5.2 Distribution of eigenvalues
	5.3 Honest hard curves

	A Bound on the mixing time

