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Divergence Estimation in Message Passing
algorithms

Nikolajs Skuratovs, Michael Davies, Fellow IEEE

Abstract—Many modern imaging applications can be modeled
as compressed sensing linear inverse problems. When the mea-
surement operator involved in the inverse problem is sufficiently
random, denoising Scalable Message Passing (SMP) algorithms
have a potential to demonstrate high efficiency in recovering
compressed data. One of the key components enabling SMP to
achieve fast convergence, stability and predictable dynamics is
the Onsager correction that must be updated at each iteration of
the algorithm. This correction involves the denoiser’s divergence
that is traditionally estimated via the Black-Box Monte Carlo
(BB-MC) method [1]. While the BB-MC method demonstrates
satisfying accuracy of estimation, it requires heuristic tuning and
executing the denoiser additional times at each iteration and
might lead to a substantial increase in computational cost of the
SMP algorithms. In this work we develop two Large System Limit
models of the Onsager correction for denoisers operating within
SMP algorithms and use these models to propose practical black-
box methods for divergence estimation that require no additional
executions of the denoiser and demonstrate similar correction
compared to the BB-MC method.

Index Terms—Message Passing, Divergence Estimation, De-
noiser, Onsager Correction, Expectation Propagation

I. INTRODUCTION

In this work we consider a particular sub-problem that arises
in certain iterative methods designed to recover a signal x ∈
RN from a set of linear measurements

y = Ax+w (1)

where y ∈ RM , w ∈ RM is a zero-mean i.i.d. Gaussian noise
vector w ∼ N (0, vwIM ) and A ∈ RM×N is a measurement
matrix that is assumed to be available. We consider the
large scale compressed sensing scenario M < N with a
subsampling factor δ = M

N = O(1).
While there are many first-order iterative methods for re-

covering x from the set of measurement (1) including [2]–[5]
and many others, in this work we focus on the family of
Scalable Message Passing (SMP) algorithms that includes
Approximate Message Passing (AMP) [6], Orthogonal AMP
(OAMP) [7], Vector AMP (VAMP) [8], Conjugate Gradient
VAMP (CG-VAMP) [9]–[11], Warm-Started CG-VAMP (WS-
CG-VAMP) [10], Convolutional AMP (CAMP) [12], Memory
AMP (MAMP) and others. When the measurement operator
A comes from a certain family of random matrices, which
may be different for each example of SMP, these algorithms
demonstrate high per-iteration improvement compared to other
first-order methods and stable and predictable dynamics. Ad-
ditionally, it is evidenced that SMP algorithms can recover

This work was supported by the ERC project C-SENSE (ERC-ADG-2015-
694888). MD is also supported by a Royal Society Wolfson Research Merit
Award.

complex signals like natural images by employing powerful
Plug-and-Play (PnP) denoisers like BM3D [13], Non-Local
Means [14], Denoising CNN [15] and others, and demonstrate
State-of-The-Art performance for certain examples of A [16].

On a general level, an SMP algorithm is an iterative method
with a linear step followed by a denoising step. It can be shown
[12], [15], [17], [18] that one can be flexible with the choice of
denoisers in SMP as long as the key ingredient, the divergence
of the denoiser at each iteration, can be computed to form a
so-called Onsager Correction for the denoiser. In the literature
on SMP algorithms [10], [15], [16], [19]–[21] and others,
the suggested method for computing the divergence of a PnP
denoiser is the Black-Box Monte Carlo (BB-MC) method [1].
The BB-MC method computes an estimate of the divergence
of a function f(x) that admits a well-defined second-order
Taylor expansion by executing this function again at the points
x + ϵn with the scalar ϵ approaching zero and where n is a
zero-mean i.i.d. random vector with a unit variance and finite
higher order moments. Then one can show that the divergence
1
N∇x · f(x) = 1

N

∑N
i=1

∂(f(x))i
∂xi

of f is equivalent to [1]

1

N
∇x · f(x) = lim

ϵ→0
En

[
nT

(
f(x+ ϵn)− f(x)

ϵ

)]
(2)

To approximate the expectation operator in (2), one can use
MC trials and implement the inner product inside of the
expectation multiple times and average the results. However,
given that the function f is of the appropriate class and the
dimension of x is sufficiently large, one can often obtain a
satisfactory accuracy of divergence estimation with only a
single trial.

While this approach provides a practical method for the
divergence estimation and leads to stable dynamics of SMP
algorithms, it has two drawbacks. First, it assumes that the
chosen denoiser f admits a well-defined second-order Taylor
expansion, which is not the case for denoisers like BM3D and
for ReLU based CNNs [15] that involve non-linear operations
like thresholding as subroutines. This violation might result
in unsatisfactory accuracy of the estimation and lead to the
necessity for additional MC trials. Additionally one can no
longer use too small values of ϵ as in this case the estimator
(2) becomes unstable [1], which leads to the necessity to
tune this parameter very carefully and, to the best of our
knowledge, there is no rigorous method for this. As a result,
often one needs to empirically tune the scalar ϵ for each
denoiser individually to ensure the stability of the estimator.
For example, from our experiments, the value of ϵ for which
BB-MC produces accurate divergence estimates varies by an
order for BM3D and for a DnCNN.
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The second problem with the BB-MC method is that it
requires executing the denoiser one or more additional times.
When the dimension of the inverse problem is large, as
in modern computational imaging tasks, executing powerful
denoisers can be the dominant cost of the algorithm and it is
desired to execute it as infrequently as possible.

In this work we study the dynamics of SMP algorithms and
develop two rigorous asymptotic models for the divergence
of a PnP denoiser used within the algorithm. These models
lead to two divergence estimation techniques that do not either
require additional executions of the denoisers, nor empirical
tuning. The first method works in a complete black-box
fashion and has a minimal computational cost dominated
by two inner-products of N -dimensional vectors, but has
inferior estimation accuracy compared to BB-MC and the
second method. The second method uses only the information
generated within any SMP algorithm, has a computational
complexity dominated by one matrix-vector product with A
and has a similar or superior accuracy of the divergence
estimation compared to the hand-tuned BB-MC method. When
an SMP algorithm incorporates a powerful denoiser such as
BM3D, using the proposed methods for divergence estimation
instead of BB-MC leads to almost halving the computational
time of the algorithm. We numerically compare the proposed
methods against the BB-MC method in the context of AMP,
VAMP, CG-VAMP and WS-CG-VAMP used for recovering
natural images from compressed measurements.

A. Notations

We use roman v for scalars, small boldface v for vectors
and capital boldface V for matrices. We frequently use the
identity matrix IN with a subscript to define that this identity
matrix is of dimension N or without a subscript where the
dimensionality is clear from the context. We define Tr

{
M

}
to

be the trace of a matrix M, κ(M) to be the condition number
of M and use M† to be the left pseudo-inverse matrix of a full-
rank matrix M, M† = (MTM)−1MT . We use ||·||k to define
the lk norm and || · || specifically for l2 norm. The divergence
of a function f(x) with respect to the vector x is defined as
∇x · f(x) =

∑N
i=1

∂i

∂xi
f(x). By writing q(x) = N (m,Σ)

we mean that the density q(x) is normal with mean vector m
and covariance matrix Σ. We reserve the letter t for the outer-
loop iteration number of the EP- and VAMP-based algorithms.
Lastly, we use the notation i.i.d. for a shorthand of independent
and identically distributed.

II. BACKGROUND ON SMP ALGORITHMS

In this section we briefly review the structure and the main
properties of SMP algorithms to set up the context of the paper.
For more details on a specific SMP algorithm, please refer to
[7], [10], [12], [15]–[17], [22] and the references therein.

A. General Message Passing framework

In this work, we consider SMP algorithms that alternate
between the following linear and denoising steps [17]

rt =
1

Cr

(
ATft(St+1,y)− St+1γt

)
(3)

st+1 =
1

Cs

(
gt(rt)− rtαt

)
(4)

which is initialized with s0 = 0 and where St+1 = (s0, ..., st).
The update of the denoising step st+1 involves a denoiser
gt(rt) that acts on the intrinsic channel rt = x+ ht, where

ht = rt − x (5)

is modeled as an i.i.d. Gaussian noise vector independent of x.
The denoiser output is corrected with the Onsager term rtαt

that involves the divergence αt of the denoiser gt(rt)

αt =
1

N
∇rt · gt(rt). (6)

The main purpose of the Onsager term is to ensure that the
input error ht is orthogonal to the resulting output error

qt+1 = st+1 − x. (7)

Ensuring the orthogonality between qt+1 and ht leads to stable
and efficient operation of the SMP algorithms. Lastly, except
for the AMP case where Cs = 1, the normalization scalar Cs

is usually chosen to be Cs = 1− αt [8].
Similarly, the linear step rt involves a linear function ft

and the Onsager term St+1γt. The structure of ft depends on
the chosen SMP algorithm and how it processes the residual
vector

zt = y −Ast. (8)

From the fixed point perspective, under certain assumptions
discussed below, assuming A is uniformly drawn from the set
of orthogonal matrices and given that the replica prediction is
correct for Haar matrices, the optimal choice of the function
ft is the LMMSE estimator

ft(St+1,y) = W−1
t zt (9)

that is proposed to use within the VAMP algorithm [8]. Here
the matrix Wt is

Wt = (vwI+ vqtAAT )−1 (10)

where vqt models the variance of the intrinsic error qt. The
other SMP algorithms incorporate a suboptimal but scalable
alternative to the optimal linear estimator (9). For example,
MF-OAMP implements the naive approximation W−1

t = I
so that ft(St+1,y) = zt, while in CG-VAMP [9], [10], the
function ft(St+1,y) approximates the linear mapping (9) with
i iterations of the zero-initialized Conjugate Gradient (CG)
algorithm. In these three cases, the update of rt is single-
memory since the function ft(St+1,y) depends on only the
last output of the denoising step so St+1 = st. On the
other hand, the algorithms like WS-CG-VAMP, MAMP and
CAMP approximate the LMMSE estimator (9) using the whole
history of vectors St+1 = (s0, ..., st) in order to achieve better
accuracy. These types of algorithms will be referred as long-
memory SMP algorithms. Lastly, we have the original AMP1

1Originally, AMP was formulated as a single-memory asymmetric algo-
rithm [6], but in this work we will use the unified error framework from [17]
that analyzes Message Passing algorithms that takes the symmetric form (3)-
(4). In [17], the authors showed that one can reformulate AMP in a symmetric
form with t-long memory update of rt, as in (3).
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algorithm, which can also be mapped into the long-memory
version following the structure (3)-(4) [17].

Similarly, to the denoising step, the update (3) involves an
Onsager term St+1γt, where γt = (γ0

t , γ
1
t , ..., γ

t
t)

T and

γτ
t =

1

N
∇sτ ·ATft(St+1,y) (11)

is the divergence of ATft(St+1,y) with respect to each
vector sτ that ft depends on. These Onsager terms perform a
similar role to αt for the denoising step st+1 – ensuring the
orthogonality between ht and sτ for τ = 0, ..., t. The closed-
form solution to these scalars can be found in the works related
to a specific SMP algorithm. Specifically, in [17] the authors
showed that when AMP is mapped into the structure (3)-(4),
we have γt = 0 and there is no Onsager correction required
for the linear step.

Lastly, the normalization scalar Cr in (3) is usually com-
puted as

Cr = −
t∑

τ=0

γτ
t , (12)

except for the AMP case, where Cr = 1.

B. Error dynamics of Message Passing algorithms

When an SMP algorithm follows the general structure (3)-
(4), the dynamics of the error vector ht and qt from (5) and
(7) can be rigorously defined under the following assumptions
[12], [17]

Assumption 1: The dimensions of the signal model N and
M approach infinity with a fixed ratio δ = M

N = O(1)
Assumption 2: A is normalized so that 1

N Tr
{
AAT

}
= 1.

Additionally,
1) For AMP: The measurement matrix A is orthogonally

invariant, such that in the SVD of A = USVT , the
matrices U and V are independent of other random terms
and are uniformly distributed on the set of orthogonal ma-
trices, while the matrix STS has the limiting eigenvalue
distribution with the first t moments equal to the first t
moments of Marc̆henko-Pastur distribution [23], where t
is the maximum number of iterations of AMP.

2) For the rest of the algorithms mentioned at the end of
Section II.A: The same condition on V, while U is
allowed to be any orthogonal matrix and the matrix STS
is allowed to have any Limiting Eigenvalue Distribution
with a compact support. For those cases, we say A is
right-orthogonally invariant (ROI).

Assumption 3: The denoiser gt is uniformly Lipschitz so
that the sequence of functions gt : RN 7→ RN indexed by N
are Lipschitz continuous with a Lipschitz constant LN < ∞
as N → ∞ [15], [24]. Additionally, we assume the following
limits exist almost surely [15]

lim
N→∞

1

N
gt(x+ d1)

Tgt(x+ d2), lim
N→∞

1

N
xTgt(x+ d1),

lim
N→∞

1

N
dT
1 gt(x+ d2), lim

N→∞

1

N
xTd1, lim

N→∞

1

N
||x||2

and the Stein’s Lemma [25] holds for gt

lim
N→∞

αt = lim
N→∞

1

C1,2

1

N
dT
2 gt(x+ d1). (13)

Here αt is the divergence of gt as in (6) and d1,d2 ∈ RN with
(d1,n,d2,n) ∼ N (0,C) for some positive definite C ∈ R2.

In the work [15] it is confirmed that the above assumptions
are satisfied by group-based denoisers, convolutional denois-
ers, Convolutional Neural Networks with a Lipschitz separable
activation function, such as sigmoid or ReLU, and singular-
value thresholding denoisers.

Under these assumptions, it is possible to establish the
following theorem.

Theorem 1. [15]: Let Assumptions 1-3 hold. For τ = 0, 1, ...
and τ ′ = 0, 1, ..., τ we have that

1) hτ and qτ ′ are asymptotically orthogonal

lim
N→∞

1

N
hT
τ qτ ′

a.s.
= 0 (14)

and qτ ′ satisfies

lim
N→∞

1

N
wTAqτ ′

a.s.
= 0 (15)

2) In the limit N → ∞, the matrices

Ht+1 = (h0, ...,ht) (16)
Qt+1 = (q0, ...,qt) (17)

are full rank almost surely.
3) hτ and bτ ′ = VTqτ ′ follow

hτ = h̆τ + o
(
Hτ ,Qτ+1

)
(18)

bτ ′ = b̆τ ′ + o
(
Hτ ′ ,Qτ ′

)
(19)

where h̆τ and b̆τ ′ are zero-mean i.i.d. Gaussian vectors
satisfying

lim
N→∞

1

N
||h̆τ ||2

a.s.
= lim

N→∞

1

N
||hτ ||2 = vhτ < ∞ (20)

lim
N→∞

1

N
||b̆τ ′ ||2 a.s.

= lim
N→∞

1

N
||bτ ′ ||2 = vqτ′ < ∞ (21)

and the vectors o
(
Hτ ,Qτ+1

)
∈ RN and o

(
Hτ ′ ,Qτ ′

)
∈

RN satisfy

lim
N→∞

1

N
||o

(
Hτ ,Qτ+1

)
||2 a.s.

= 0 (22)

lim
N→∞

1

N
||o

(
Hτ ′ ,Qτ ′

)
||2 a.s.

= 0. (23)

The above theorem confirms the intuition that gt should
be designed as a denoiser. Indeed, since we initialize the MP
algorithm with s0 = 0, from (7) we have that x = −q0 and
(14) implies

lim
N→∞

1

N
hT
t x

a.s.
= 0 (24)

This, and the fact that ht asymptotically behaves as a zero-
mean i.i.d. Gaussian vector, suggests to view rt as a Gaussian
channel and, therefore, to design the function gt to be a
denoiser.

Additionally, for most MP algorithms, it was shown that
there exists a State Evolution (SE) that defines the dynamics of
the magnitude of the error propagated in the SMP algorithms.
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In particular, for single-memory algorithms such as VAMP,
CG-VAMP etc one can establish the mapping

vht+1
= SEt+1(vht

) (25)

that defines how the intrinsic uncertainty evolves as the algo-
rithm iterates [8]–[10], [26]. The form of the function SEt+1

depends on the chosen SMP algorithm, but is independent of
particular realizations of x, w and A. A similar evolution can
be defined for the long-memory algorithms mentioned before,
although in these cases the new variance vht+1

will depend
on the variances of the whole history of vectors hτ for τ ≤ t
and their cross-correlations, i.e.

vht+1
= SEt+1(Cht+1

) (26)

with (Cht+1
)τ,τ ′ = limN→∞

1
N hT

τ hτ ′ . The SE provides the
means of optimizing the functions ft and gt to obtain the op-
timal performance of the algorithm and provides a theoretical
tool to study the stability and efficiency of SMP algorithms. In
particular, the SE was used in [8], [12], [18], [22] to show that
AMP, VAMP, CAMP and MAMP can achieve Bayes optimal
reconstruction under Assumptions 1-3 given the denoiser gt

is Bayes optimal, the subsampling factor δ is above a certain
threshold, and (except for AMP) conditioned on the validity of
the replica prediction for right-orthogonally invariant matrices.

III. EFFICIENT ESTIMATION OF THE DIVERGENCE IN SMP
ALGORITHMS

In SMP algorithms, the key ingredients ensuring stable,
efficient and predictable dynamics are the correction scalars{
γτ
t

}t

τ=0
and αt. For SMP algorithms discussed above, esti-

mating
{
γτ
t

}t

τ=0
is a well studied problem because the linear

function ft(St+1,y) has an explicit dependence on each input
vector. This allowed the authors of each algorithm to derive
the closed-form solution for every scalar γτ

t and use it to form
the corresponding estimator. Unfortunately, the same strategy
does not work for the denoising step (4) when there is a PnP
denoiser gt. For this case, there is only one available black-box
method for estimating the divergence αt – BB-MC method [1].
However, this method requires a hand-tuning and additional
executions of the denoiser in order to estimate αt. In this
section we develop two theoretical models for the divergence
αt within SMP and propose associated estimators that can be
computed using only the observed data in the algorithm and
do not require additional executions of the denoiser. We begin
with an intuition behind the methods and then move to the
formal results.

A. Intuition

In the center of the developed techniques is the following
parametrized denoiser and its oracle error

ŝt+1(α̂) = gt(rt)− α̂rt (27)
q̂t+1(α̂) = ŝt+1(α̂)− x (28)

where α̂ is a scalar parameter. Note that when α̂ = αt, (27)
is an instance of (4) with the normalization Cs = 1. However,
by using the fact that x = −q0 and expanding the error qt+1

in (14), we find that

lim
N→∞

1

N
hT
t qt+1

a.s.
= 0

lim
N→∞

1

N
hT
t st+1 −

1

N
hT
t x

a.s.
= 0

lim
N→∞

1

Cs

1

N
hT
t

(
gt(rt)− αtrt

)
a.s.
= 0 (29)

where in the last step we used (24). This result implies that the
orthogonality result (14) holds for any finite Cs ̸= 0, including
Cs = 1. One can verify that when α̂ = αt, the error vector
q̂t+1(αt) also follows the other main asymptotic properties of
the original vector qt+1 in SMP algorithms, including the fact
that VT q̂t+1(αt) acts as a zero-mean i.i.d. Gaussian vector
corrupted by an error that almost surely converges to zero.

The idea behind our method is to seek such a function
E(α̂) that has a root at αt and we could solve for it. As we
just discussed, when α̂ = αt, the error q̂t+1 is asymptotically
orthogonal to ht. Thus, a straightforward example of such a
function would be

E(α̂) =
1

N
hT
t q̂t+1(α̂) (30)

Then, one could recover αt by solving E(α̂) = 0. Unfor-
tunately, this example of E(α̂) cannot be implemented in
practice since it is explicitly formulated in terms of the error
vectors that are not available. In this work, we use the observed
quantities in the algorithm to construct two types of practical
functions E(α̂) that equated to zero can produce an estimate
α̃t such that

lim
N→∞

α̃t
a.s.
= lim

N→∞
αt (31)

Next, we can adapt Corollary 2 from [24] to our form of SMP
algorithms (3)-(4) to show that using such an estimate in SMP
algorithms preserves the properties stated in Theorem 1

Lemma 1. c.f. Corollary 2 [24]: Let Assumptions 1-3 hold.
Consider an SMP algorithm (3)-(4) but where at every iter-
ation t, the divergence αt is replaced by a scalar α̃t that
satisfies (31). Define these iterations as

r̃t =
1

C̃r

(
ATft(S̃t+1,y)− S̃t+1γt

)
(32)

s̃t+1 =
1

C̃s

(
gt(r̃t)− r̃tα̃t

)
(33)

where the rest of the components are the same as in (3)-(4).
Then, the results (14)-(17) from Theorem 1 hold when hτ and
qτ ′ are replaced by the error vectors

h̃t = r̃t − x

q̃t = s̃t − x

respectively.

Proof. See Appendix D. ■

This lemma suggests that the main asymptotic properties of
an SMP algorithm (3)-(4) are preserved when αt is replaced
by an estimate α̃t that asymptotically converges to αt at
every iteration t. Thus, in the following we can focus only
on designing a divergence estimator and showing that it is
asymptotically consistent under the assumption that Theorem
1 holds up to iteration t.
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B. Algebraic divergence estimator

The first class of estimators we propose is a practical
extension of the naive and unavailable estimator (30). Its
based on substituting the definitions q̂t+1 = ŝt+1(α̂)− x and
ht = rt − x into (30) and noting that

lim
N→∞

1

N
(rt−x)T (ŝt+1(α̂)−x)

a.s.
= lim

N→∞

1

N
(rt−x)T ŝt+1(α̂)

where we used (24) to obtain limN→∞
1
N (rt − x)Tx

a.s.
= 0.

Still, the above equation involves x explicitly, which can be
resolved by considering the difference rt − rt−1 instead of rt
alone

lim
N→∞

1

N
(rt − rt−1)

T (ŝt+1(α̂)− x)

= lim
N→∞

1

N
(ht + x− ht−1 − x)T (ŝt+1(α̂)− x)

= lim
N→∞

1

N
(ht − ht−1)

T (ŝt+1(α̂)− x)

a.s.
= lim

N→∞

1

N
(ht − ht−1)

T ŝt+1(α̂) (34)

where, again, we used (24) to obtain limN→∞
1
N (ht −

ht−1)
Tx

a.s.
= 0. This result suggests that if we define a scalar

function
Et+1(α̂) = (rt − rt−1)

T ŝt+1(α̂) (35)

and equate it to zero, then we can recover α̂ such that the
orthogonality between q̂t+1(α̂) and ht and ht−1 is insured.
The following theorem summarizes and generalizes this idea.

Theorem 2. Consider an SMP algorithm following (3)-(4).
Define a vector

rt =

t−1∑
τ=0

ktτrτ (36)

with scalar weights
∑t−1

τ=0 k
t
τ = 1. Then, under Assumptions

1-3, the inner-product (rt − rt)
T rt is asymptotically non-zero

and

α̂t =
(rt − rt)

Tgt(rt)

(rt − rt)T rt
(37)

almost surely converges to the divergence αt of the denoiser
gt(rt),

lim
N→∞

α̂t
a.s.
= lim

N→∞
αt. (38)

Proof. First, due to the normalization of the weights ktτ , we
have that

rt − x =

t−1∑
τ=0

ktτrτ −
t−1∑
τ=0

ktτx =

t−1∑
τ=0

ktτhτ =: ht (39)

where we defined a weighted error vector ht. From (18) we
have that this error vector is equivalent to

ht =

t−1∑
τ=0

ktτ h̆τ +

t−1∑
τ=0

ktτo
(
Hτ ,Qτ+1

)
(40)

=:

t−1∑
τ=0

ktτ h̆τ + o
(
Ht,Qt+1

)
(41)

where we defined a vector

o
(
Ht,Qt+1

)
:=

t−1∑
τ=0

ktτo
(
Hτ ,Qτ+1

)
(42)

Note that because each h̆τ is Gaussian, the first sum in (40)
is Gaussian as well, while the second sum represents a vector
whose magnitude almost surely converges to zero as follows
from (22). Then, because of the assumption about gt being
uniformly Lipschitz continuous, in the limit we have that

lim
N→∞

1

N
||gt(x+ ht)− gt(x+ h̆t)||2

= lim
N→∞

1

N
||gt

(
x+ h̆t + o

(
Ht,Qt+1

))
− gt(x+ h̆t)||2

≤ lim
N→∞

1

N

∣∣∣∣∣∣∣∣o(Ht,Qt+1

)∣∣∣∣∣∣∣∣2 a.s.
= 0 (43)

Then, since rt − rt = ht − ht as was seen in (34), we can
use (13) to obtain

lim
N→∞

1

N
(rt − rt)

Tgt(rt) = lim
N→∞

1

N
(ht − ht)

Tgt(x+ ht)

a.s.
= lim

N→∞

1

N

(
h̆t −

t−1∑
τ=0

ktτ h̆τ

)T

gt(x+ h̆t)

a.s.
= lim

N→∞

1

N

(
h̆t −

t−1∑
τ=0

ktτ h̆τ

)T

h̆tαt (44)

a.s.
= lim

N→∞

1

N
(ht − ht)

Thtαt (45)

Here, the step (44) follows from the fact that for each τ =
0, ..., t we have

lim
N→∞

1

N
h̆T
τ gt(x+ h̆t)

a.s.
= lim

N→∞

1

N
h̆T
τ h̆tαt (46)

since h̆τ for τ = 0, ..., t is i.i.d. Gaussian, and due to the
Stein’s identity (13). Next, we can use (24) to show

lim
N→∞

1

N
(rt − rt)

T rt = lim
N→∞

1

N
(ht − ht)

T (x+ ht)

a.s.
= lim

N→∞

1

N
(ht − ht)

Tht (47)

Combining the results (45) and (47) gives

lim
N→∞

1
N (rt − rt)

Tgt(rt)
1
N (rt − rt)T rt

a.s.
= lim

N→∞

1
N (ht − ht)

Thtαt

1
N (ht − ht)Tht

= αt (48)

Lastly, from Theorem 1 we know that in the limit, the matrix
Ht+1 = (h0, ...,ht) is full rank so the inner-product

1

N
(ht − ht)

Tht =
1

N

(
ht −

t−1∑
τ=0

ktτhτ

)T

ht (49)

is non zero almost surely. Again, noting that limN→∞
1
N (rt−

rt)
T rt

a.s.
= limN→∞

1
N (ht−ht)

Tht completes the proof. ■

In the following, we refer to the estimator based on (37) as
an algebraic estimator. By equating (35) to zero and solving
for α̂, one can show that the function Et+1 leads to the
algebraic estimator with rt = rt−1. While in the limit (37)
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holds for any set of weights ktτ as long as the normalization
is satisfied, in the finite dimensional case the asymptotic
identities used to derive Theorem 2 are no longer exact and
an additional error emerges. This error might be substantial
in the case if, for example, we use rt = rt−1. In this case,
the term 1

N (ht−ht)
Tx (assumed to be equal to zero in (47))

might have considerable magnitude due to the fact that the
magnitude of x remains the same throughout the algorithm
and might significantly exceed the magnitude of ht and of ht.
Then, any small alignment of these error vectors with x would
result in a substantial quantity that affects the accuracy of the
LSL approximation (47).

On the other hand, the finite dimensional model of ht devi-
ates from the asymptotic one and these deviations accumulate
as the algorithm progresses. One of the effects of this error is
that the asymptotic identity

lim
N→∞

1

N
hT
τ gt(rt)

a.s.
= lim

N→∞
αt

1

N
hT
τ ht (50)

used to prove Theorem 2 becomes less accurate for finite N
as the difference between t and τ increases. For this reason
we might observe poor quality of the divergence estimates if
we use rt = r0. The detailed analysis of the optimal choice
of weights ktτ is left for further study, while in this work we
consider the cases rt = rt−1 and rt = r0. The important
advantage of these two options is that the computational cost
of the resulting algebraic estimator is dominated by the cost
of two inner-products of N -dimensional vectors. Such a low
cost allows one to efficiently tune a parametrized denoiser
using the SURE technique [25] to optimize the performance
of the denoising block. In particular, let the denoiser gt(rt,θ)
be dependent on some free parameter vector θ, which, in
the context of BM3D denoiser, could be the patch size,
window size, distance between patches etc. Then, one could
optimize θ with respect to the estimate v̂(θ) of the MSE
v(θ) = 1

N ||gt(rt,θ)− x||2 as [1]

θopt = argmin
θ

v̂(θ)

= argmin
θ

1

N
||rt − gt(rt,θ)||2 − vht

+ 2vht
α̂t(rt,θ) (51)

where α̂t(rt,θ) is an estimate of the divergence αt(rt,θ)
of gt(rt,θ). Then, using the algebraic divergence estimator
makes the resulting cost of evaluating (51) negligible com-
pared to executing most of plug-and-play denoisers.

Yet, as it will be demonstrated in the simulation section,
these two special cases of the algebraic estimator are sensi-
tive to finiteness of N and M , and demonstrate satisfactory
accuracy only for inverse problems of dimension of order 106

and larger. While a rough estimate of the divergence might be
acceptable for tuning the denoiser, in order to ensure stable
performance of an SMP, we require more robust alternatives.
In the next section we present such an alternative.

C. Polynomial divergence estimator

In this section we present another way of constructing a
practical function E(α̂) that has a root almost surely converg-
ing to the divergence αt of the denoiser gt(rt). For this, we

switch the parametrized denoising step ŝt+1(α̂) from (27) to
the following more general form

st+1(α̂, τ) = gt(rt)− α̂(rt − sτ ) (52)

which is associated with the corresponding error vector

qt+1(α̂, τ) = st+1(α̂, τ)− x (53)

Note that ŝt+1(α̂) is a special case of st+1(α̂, τ) when the
parameter τ is set to 0. Another important property of (52) is
that the asymptotic orthogonality of qt+1(α̂, τ) and ht implies
the orthogonality of q̂t+1(α̂) and ht and vice versa, since

lim
N→∞

1

N
hT
t qt+1(α̂, τ) = lim

N→∞

1

N
hT
t

(
q̂t+1(α̂) + α̂sτ

)
a.s.
= lim

N→∞

1

N
hT
t q̂t+1(α̂) (54)

and this result is invariant with respect to τ . Here we used
(14) and the fact that x = −q0 to show that

lim
N→∞

1

N
hT
t sτ = lim

N→∞

1

N
hT
t (x+ qτ )

a.s.
= 0 (55)

Thus, one can equivalently use (52) to derive estimators for
αt, while the more general structure of st+1(α̂, τ) provides
additional flexibility that will be useful next.

To derive a new estimator of αt, consider the MSE of the
parametrized denoiser st+1(α̂, τ) and recall that rt = x+ ht

and st+1(α̂, τ) = x+qt+1(α̂, τ). Then, after simple algebraic
manipulations we obtain

1

N
||st+1(α̂, τ)− x||2 =

1

N
||st+1(α̂, τ)− x− ht + ht||2

=
1

N
||st+1(α̂, τ)− rt + ht||2

=
1

N

(
||st+1(α̂, τ)− rt||2 + 2hT

t (st+1(α̂, τ)− rt) + ||ht||2
)

=
1

N

(
||st+1(α̂, τ)− rt||2 + 2hT

t (qt+1(α̂, τ)− ht) + ||ht||2
)

=
1

N

(
||st+1(α̂, τ)− rt||2 − ||ht||2 + 2hT

t qt+1(α̂, τ)
)

Then, if we define a function

J1
t+1(α̂, τ) =

1

N

(
||st+1(α̂, τ)− rt||2 − ||ht||2

)
, (56)

this function would be equivalent to the MSE of parametrized
intrinsic measurement st+1(α̂, τ) plus an error

J1
t+1(α̂, τ) =

1

N
||st+1(α̂, τ)− x||2 + e1t+1(α̂) (57)

where

e1t+1(α̂) = −2hT
t qt+1(α̂, τ) (58)

As was discussed before, when α̂ = αt, the error vector
qt+1(α̂, τ) is asymptotically orthogonal to ht. This implies
that in the limit J1

t+1(ŝt+1(αt)) converges to the MSE of
st+1(αt, τ) when α̂ = αt, and is additionally corrupted by
the error e1t+1(α̂) when α̂ ̸= αt.

At the same time, the same MSE can be observed in a
different way. Using the definition of the vector y and that
st+1(α̂, τ) = x+ qt+1(α̂, τ), we can show that
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lim
N→∞

1

N
||y −Ast+1(α̂, τ)||2

= lim
N→∞

1

N
||w −Aqt+1(α̂, τ)||2

a.s.
= δvw + lim

N→∞

1

N
||Aqt+1(α̂, τ)||2 −

2

N
wTAqt+1(α̂, τ)

Next, we can use the conditioning technique [8], [17], [18]
for the random matrix A to study the interaction between
qt+1(α̂, τ) and A. In Appendix B we show that

lim
N→∞

1

N
||Aqt+1(α̂, τ)||2

a.s.
= lim

N→∞

1

N
||qt+1(α̂, τ)||2+ζt+1(α̂)

where ζt+1(α̂) depends on the whole history of vectors
(q0, ...,qt) when α̂ ̸= αt and almost surely converges to
zero for α̂ = αt. Similarly, in Appendix B we show that
1
NwTAqt+1(α̂, τ) almost surely converges to vw(αt − α̂),
which becomes zero for α̂ = αt. Therefore one can define
another MSE estimator

J2
t+1(α̂, τ) =

1

N
||y −Ast+1(α̂, τ)||2 − δvw (59)

which can be represented as

J2
t+1(α̂, τ) =

1

N
||qt+1(α̂, τ)||2 + e2t+1(α̂) (60)

where e2t+1(α̂) almost surely converges to zero for α̂ = αt.
The important observation, which we theoretically confirm

in Appendix B, about J1
t+1(α̂, τ) and J2

t+1(α̂, τ) is that their
errors, e1t+1(α̂) and e2t+1(α̂), behave differently for α̂ ̸= αt

and both almost surely converge to zero for α̂ = αt. Then, by
defining a new function

Et+1(α̂, τ) = J1
t+1(α̂, τ)− J2

t+1(α̂, τ) (61)

one could recover αt by finding the appropriate root to
Et+1(α̂, τ). The following theorem shows that (61) corre-
sponds to a particular quadratic polynomial

Lemma 2. Consider an SMP algorithm following (3)-(4) and
let vht =

1
N ||ht||2. Then Et+1(α̂, τ) from (61) is the following

quadratic polynomial
Et+1(α̂, τ) = u0 + u1(τ)α̂+ u2(τ)α̂

2 (62)

where the scalar coefficients are defined as

u0 =
1

N

(
||rt − gt||2 − vht

− ||y −Agt||2 + δvw

)
u1(τ) =

2

N
(rt − sτ )

T
(
rt − gt −AT (y −Agt)

)
u2(τ) =

1

N

(
||rt − sτ ||2 − ||A(rt − sτ )||2

)
with gt used as a shorthand for gt(rt).

Proof. See Appendix A. ■

Note that the coefficients of the equation (62) are formed
only from the data that is naturally circulated in any SMP
algorithm. Computational cost of evaluating u0, u1 and u2

is dominated by implementing two matrix-vector products
Agt(rt) and Art. However, this cost can be reduced by
reusing the calculations to form the next update. All the
algorithms mentioned at the end of section II.A compute the
vector

zt+1 = y −Ast+1 (63)

as part of the function ft in (3). Using the definition of st+1,
this vector can be equivalently represented as

zt+1 = y −Ast+1 = y −Agt(rt)− αtArt

Thus, one can reuse the results of the matrix-vector products
Agt(rt) and Art to update zt+1 and, consequently, reduce
the number of additional matrix-vector products down to 1.
Additionally, one can store the m-dimensional vector Asτ to
reuse this result in the implementation of u2 and u3.

Lemma 2 becomes useful in the light of the following
theorem that establishes the asymptotic behaviour of the roots
of Et+1(α̂, τ)

Theorem 3. Consider an SMP algorithm following (3)-(4).
Let st+1(α̂, τ) be defined as in (52) with τ ≤ t. Additionally,
let Qt+1 = (q0, ...,qt) and define a vector

βt+1 = lim
N→∞

Q†
t+1

(
gt(rt)− x

)
(64)

Then, under Assumptions 1-3, the function Et+1(α̂, τ) from
(61) has two roots α̂1 and α̂2 that satisfy

lim
N→∞

α̂1
a.s.
= αt (65)

lim
N→∞

α̂2(τ)
a.s.
= lim

N→∞

c0t + c2tαt

c2t − c1t (τ)
(66)

where

c0t = −2
(
vht

− vw +
1

N
βT
t+1Q

T
t+1A

TAht

)
(67)

c1t (τ) = −2
1

N
qT
τ A

TAht (68)

c2t = vht
− 1

N
||Aht||2 (69)

Proof. See Appendix B. ■

Then, one way to estimate αt is by computing the roots to
(62) and identifying which of the two roots is the correct one.
In the following, we refer to this estimator as a polynomial
estimator. As it will be demonstrated in the simulation section,
SMP algorithms with the polynomial estimator demonstrate
stable dynamics similar to the BB-MC estimator even for
N and M of order 104. To combine the advantages of the
algebraic and the polynomial estimators, one could use the
algebraic estimator to tune the denoiser via SURE and use the
polynomial estimator to compute the final correction scalar αt.
This approach combines the advantages of both methods and
results in a fast and efficient way of updating st+1.

D. Root identification for the polynomial estimator

While Theorem 3 relates the correction scalar αt to one
of the roots α̂1 and α̂2 of (62), it is still required to identify
which of the two roots is the right one. In this subsection, we
propose a method for assigning αt to either α̂1 or α̂2.

The idea is based on forming a pair of polynomials, P1(α̂)
and P2(α̂), that share one root at αt and the other two roots
would be different by a substantial amount. Let the pair α̂1

and α̂2 and the pair α̂3 and α̂4 be the roots of P1(α̂) and
P2(α̂) respectively. Additionally, assume that two roots from
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different pairs are the same. Then, one way to form an estimate
α̂t of the common root αt would be

α̂t =
α̂k∗ + α̂s∗

2
(k∗, s∗) = argmin

k∈{1,2},s∈{3,4}
|α̂k − α̂s|,

(70)

i.e. take the average of two roots that are from two different
polynomials and that are the closest ones.

In our context, the polynomial Et+1(α̂, τ) from (61) is a
function of τ . From (65) we know that the first root, α̂1, is
invariant with respect to τ , but its not the case for the second
root α̂2. Given that there is a pair of indices τ ̸= τ ′ such that
τ, τ ′ ≤ t and satisfies

lim
N→∞

1

N
qT
τ A

TAht ̸= lim
N→∞

1

N
qT
τ ′ATAht (71)

we can generate a pair of polynomials Et+1(α̂, τ) and
Et+1(α̂, τ

′) that share one root at αt and have distinct second
roots. While identifying when the condition (71) holds for a
general SMP framework (3)-(4) is a challenging theoretical
task that we leave for further work, we can test this condition
online. In Appendix D we show that finding a pair of indices
(τ, τ ′) that follows (71) is asymptotically equivalent to finding
the pair that ensures

lim
N→∞

1

N
zTτ (y −Art) ̸= lim

N→∞

1

N
zTτ ′(y −Art) (72)

Note that all the elements involved in this condition are avail-
able so one can test the condition at a negligible computational
cost.

Motivated by the above idea, we make the following pro-
posal

Proposal 1. Consider an SMP algorithm following (3)-(4). Let
τ, τ ′ ≤ t be a pair of indices that follow the condition (71).
Generate the pair of polynomials Et+1(α̂, τ) and Et+1(α̂, τ

′)
associated with the pair (τ, τ ′). Let α̂1 and α̂2 define the roots
of the first polynomials and α̂3 and α̂4 define the roots of the
second polynomial, respectively. Then, choose an estimate α̂t

of the divergence αt of the denoiser gt(rt) as in (70).

E. Implementation details of the polynomial estimator
As discussed in Section III.B, when we implement SMP

algorithms in practice, the finite dimensional model deviates
from the asymptotic one, which results in the emergence
of additional stochastic components in the algorithm. From
our experiments, we observed that sometimes after a few
iterations, the polynomial constructed from (62) might end
up having complex roots. However, since we assume gt is
a real-valued function, the divergence αt must be a real
value. Therefore, when the roots α̂1 and α̂2 of the polynomial
Et+1(α̂, τ) associated with the index τ are complex, we set
them to the stationary point of the quadratic function

α̂1(τ) = α̂2(τ) = − u2(τ)

2u3(τ)
(73)

where u2(τ) and u3(τ) are as in (62). The same we do with
the roots α̂3 and α̂4 of the second polynomial Et+1(α̂, τ

′)
associated with the index τ ′, if these roots are complex. Next,
regardless whether all the roots were originally real or not, we
proceed to the rule (70) to form the finale estimate α̂t.

IV. SIMULATION EXPERIMENTS

In this section we compare the proposed divergence es-
timators against the BB-MC method [1] within AMP [6],
VAMP [8], CG-VAMP [10] and WS-CG-VAMP [10] where
the denoiser is chosen to be BM3D2. We consider the problem
of recovering natural images shown on Figure 1 from the
measurement system (1), where the subsampling ratio is
chosen to be δ = M

N = 0.05 and we set the measurement noise
variance vw to achieve SNR ||x||2

||w||2 of 40dB. Additionally,
in the experiments with all the algorithms, except for AMP,
we set the condition number κ(A) = 1000, unless stated
otherwise. Furthermore, we choose A = SPHD to be the
Fast ill-conditioned Johnson-Lindenstrauss (FIJL) transform,
which is composed of the following matrices [15]: the values
of the diagonal matrix D are either −1 or 1 with equal
probability; the matrix H is some fast orthogonal transform.
In our simulations, we chose H to be the Discrete Cosine
Transform (DCT); The matrix P is a random permutation
matrix and the matrix S is an M by N matrix of zeros
except for the main diagonal, where the singular values follow
geometric progression leading to the desired condition number.
Although the FIJL operator is rather artificial, it is convenient
for evaluating the performance of algorithms since it acts
as a prototypical ill-conditioned Compressed Sensing matrix,
requires no storing of matrices and has a fast implementation.
Additionally, the FIJL operator that we consider enables us to
directly implement VAMP, since

AAT = SPHDDTHTPTST = SST (74)

and, therefore, the matrix inverse
W−1

t = (vwIM + vqtAAT )−1 = (vwIM + vqtSS
T )−1

requires inverting only a diagonal matrix. However, here we
emphasize that the AMP, CG-VAMP and WS-CG-VAMP
algorithms that we implement do not utilize the fact that Wt

is diagonal and operate as if W is an arbitrary matrix.
To the best of our knowledge, there is no general practice

for tuning the BB-MC divergence estimator for denoisers that
violate the continuity assumption like in the case of the BM3D
denoiser. In this work we use the heuristic for choosing the
scalar ϵ from (2) as in the GAMP library3

ϵ = 0.1min
(√

vht ,
1

N
||rt||1

)
+ e

where e is the the float point precision in MATLAB. This
choice of the parameter ϵ demonstrated stable estimation
throughout iterations t for all the considered algorithms and
in all the experiments involving BB-MC, we use a single
MC trial (additional execution of the denoiser) to estimate
the divergence.

Lastly, because there is no access to the exact value of the
divergence αt for the BM3D denoiser, we use the following
approximation

αoracle
t =

hT
t gt(rt)

hT
t ht

(75)

2The BM3D library used throughout the simulations can be downloaded
from the website of the authors of the denoiser http://www.cs.tut.fi/ foi/GCF-
BM3D/. For this particular implementation we used the ’profile’ to be ’np’.

3The link to the code is https://sourceforge.net/projects/gampmatlab/
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Fig. 1: The ground truth images

to measure the accuracy of the divergence estimates produced.
This estimator represents the finite dimensional approximation
of the Stein’s identity (13).

A. Setting up the polynomial divergence estimator

In all the simulation experiments discussed next, we ob-
served two tendencies of the polynomial divergence estimator.
The first one is supporting the idea that there is a pair τ ̸= τ ′

that satisfies (71). In fact, the experiments showed that this
condition was satisfied by any pair of indices and in the
following simulations we will stick to the pair (t, t−1), which
led to a slightly better overall performance of SMP algorithms.

The second tendency is related to the root assignment
problem. It is observed that when an SMP algorithm makes
substantial progress after each iteration, i.e. reduces the in-
trinsic variance substantially, the divergence αt is by a few
orders of magnitude closer (in the absolute value sense) to the
smallest root of the polynomial (61). This tendency is observed
up to roughly iteration t = 10, which depends on the chosen
SMP algorithm and how quickly the algorithms converges.
Note that the proposed method for identifying the right root of
the polynomial (61) cannot be implemented at the first iteration
since it requires a pair of indices τ ̸= τ ′. Therefore, motivated
by the empirical observation, at the first iteration of an SMP
algorithm, we generate only one polynomial with the roots α̂1

and α̂2, and use
α̂t = min(α̂1, α̂2) (76)

for the estimate of αt for t = 0.

B. Polynomial vs algebraic estimators

We begin with the comparison of the polynomial estimator
(70) against the algebraic estimators (37) with rt = r0 and
rt = rt−1. For this purpose, we consider the CG-VAMP algo-
rithm recovering a natural image shown on the right of Figure
1 of dimension 2048 by 2048. We run a single CG-VAMP
algorithm with i = 5 CG iterations and where αt is estimated
by the polynomial estimator and, additionally, the two alge-
braic estimators are computed in parallel (these two values are
not used within the algorithm and are only archived). For this
experiment, we computed the normalized error (α̂t−αoracle

t )2

(αoracle
t )2

,
where α̂t corresponds to either the estimate produced by the
polynomial or by the two algebraic estimators, and the “oracle”

Fig. 2: Divergence estimation error with the standard deviation
error bars of the polynomial and the algebraic estimators

correction αoracle
t is as in (75). The results averaged over 15

iterations are shown on Figure 2. As seen from the figure,
the polynomial estimator demonstrates the best accuracy of
estimating the “oracle” correction (75), while the algebraic
estimator with rt = rt−1 demonstrates second to the best
performance. On the other hand, the algebraic estimator with
rt = r0 turns out to perform considerably worse than the other
two and therefore is not recommended either for computing
αt or for estimating the divergence of the denoiser gt for its
optimization via SURE.

Next, we assess the stability of CG-VAMP that uses dif-
ferent proposed divergence estimation methods. For this, we
compare two CG-VAMP algorithms: one where αt is com-
puted based on the polynomial estimator as in the previous
experiment, and one where αt is estimated by the algebraic
estimator with rt = rt−1. Here, we computed the same
error for αt and the Normalized MSE (NMSE) ||gt(rt)−x||2

||x||2 .
The two error measures averaged over 15 realizations are
shown on Figure 3. As seen from the left plot depicting the
NMSE, the CG-VAMP algorithm with the algebraic estimator
with rt = rt−1 diverges halfway through the execution,
while the same algorithm but with the polynomial estimator
demonstrates high stability. This result in combination with
the previous experiment suggests that the algebraic estimator
is capable of producing a relatively accurate estimate of αt, if
it is not used as the main correction method.

C. Black Box Monte Carlo and the polynomial methods for
divergence estimation

Next we compare the performance of SMP algorithms
when two different divergence estimation methods – BB-MC
(2) and the proposed polynomial method (70), are used to
estimate αt. First, we compare these two methods in terms of
accuracy, by running two identical CG-VAMP algorithms but
with two different divergence estimators. For this, we consider
recovering the image ’man’ of dimensions 1024 by 1024
shown to the left on Figure 1 and measured by an operator
A with three condition numbers κ(A) = (100, 1000, 10000).
As in the previous experiment, we used the fixed number of
iterations for the CG algorithm i = 5. The NMSE of the
algorithms averaged over 15 realizations is shown on Figure
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Fig. 3: Top: the NMSE of CG-VAMP algorithms with the two
correction methods. Bottom: divergence estimation error with
the standard deviation error bars of the polynomial and the
algebraic estimators

4. As we see from the plot, the CG-VAMP algorithm with
the polynomial divergence estimator demonstrates a similar
reconstruction performance as CG-VAMP with the BB-MC
estimator. To demonstrate robustness of the method with
respect to other parameters of the inverse problem, we repeated
the same experiment but with the SNR of 20dB and with
higher subsampling factor δ = 0.2, and plotted the result on
Figure 5. Additionally, we computed the error of estimating
αoracle
t as in the first experiment. The averaged result over

15 realizations for κ(A) = 1000 is depicted on Figure 6.
As seen from the plot, the polynomial estimator demonstrates
higher accuracy of estimation for the initial iterations where
CG-VAMP has a substantial per-iteration improvement and
exhibits a similar accuracy when CG-VAMP is near the fixed
point.

Next we keep the same inverse problem as in the last
experiment with κ(A) = 1000 and compare the run time
and the estimation accuracy of several SMP algorithms when
the two divergence estimations methods are used. In partic-
ular, we consider the VAMP, CG-VAMP and WS-CG-VAMP
algorithms. Each of these algorithms is executed separately
with the BB-MC method and with the proposed polynomial
method, and the results are averaged over 40 realisations.
On Figure 7 we demonstrate the NMSE of the three pairs
algorithms and in Table 1 we show the time required for all
the algorithms to get to iteration t = 15. The first observation
is that all the SMP algorithms demonstrate almost identical
performance in terms of MSE when we choose different
methods for divergence estimation. Secondly, as seen from

Fig. 4: NMSE with the standard deviation error bars for two
CG-VAMP algorithms: with the BB-MC divergence estimator
(2) and with the polynomial divergence estimator (70).

the table, the run time of the algorithms4 with the polynomial
divergence estimator is almost twice as low as of the same
algorithms but with the BB-MC divergence estimator (2). This
confirms the initial goal of this work.

TABLE I: Time (in seconds) taken for SMP algorithms with
two different divergence estimation methods to execute 15
iterations.

Algorithm BB-MC estimator Polynomial estimator
VAMP 164.89 83.55
CG-VAMP 177.11 95.41
WS-CG-
VAMP 178.28 96.7

D. AMP

Lastly, we consider the AMP case. As mentioned in As-
sumption 2, the AMP dynamics is rigorously derived for

4Even though here VAMP demonstrates the fastest time-wise convergence,
implementing each iteration of the algorithm is only possible because we
specifically designed A as discussed at the beginning of the section. If A
was a general matrix, it would be intractable to implement even a single
iteration of VAMP when the size of the inverse problem is as large as in the
experiment considered. Yet, we left the run-time performance for VAMP to
illustrate the benefit of the proposed technique when one can design this type
of measurement matrices A.
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Fig. 5: The same experiments as in Figure 4, but with SNR
of 20dB and subsampling factor δ = 0.2.

Fig. 6: Mean error with the standard deviation error bars of
estimating the correction scalar αt within CG-VAMP

Fig. 7: NMSE of VAMP, CG-VAMP and WS-CG-VAMP
algorithms using two different divergence estimation methods.

Fig. 8: NMSE of AMP with two different divergence estima-
tion methods.

those measurement systems (1) where ATA has the empirical
eigenvalue distribution with the first t moments equivalent to
the same order moments of MP law [17]. In the following
experiment, we keep the FIJL transform, generate a sequence
of i.i.d. MP random values and assign the entries of the matrix
S to be the square root of those random values. The rest of
the parameters of the inverse problem are kept the same. The
NMSE averaged over 15 realizations of the two version of
AMP are shown on Figure 8. As seen from the plot, the two
algorithms demonstrate almost identical reconstruction results.
However, the AMP version with the polynomial estimator
takes 16.23 seconds on average to execute 15 iterations, while
the same algorithm but with BB-MC estimator (2) takes 32.1
seconds for the same work.

V. CONCLUSIONS

In this work we have proposed two alternatives to the
traditional Black-Box Monte Carlo (BB-MC) [1] methods for
estimating the divergence of denoisers within SMP algorithms.
Similarly to BB-MC, the proposed methods do not use any
additional information about the denoiser apart from its input
and output. However, contrary to the BB-MC method, the two
suggested estimators do not require executing the denoiser ad-
ditional times and, therefore, significantly accelerate the SMP
algorithm when an expensive denoiser such as BM3D is used.
The first method - the algebraic estimator – has a negligible
computational cost and can produce a rough estimate of the
divergence of a denoiser, which can be further used to, for
example, optimize the performance of the denoising block.
The second estimation method – the polynomial estimator –
complements the first one and demonstrates high robustness
with respect to the dimensionality of the inverse problem and
a similar accuracy of correction compared to the BB-MC
method.

While the two proposed estimators are exact in the large
system limit, for finite N their accuracy suffers from additional
stochastic error. In future work, we would like to understand
why the polynomial estimator is more robust with respect to
the decreased dimensionality and whether it is possible to
modify the fast algebraic estimator accordingly to increase its
robustness. Additionally, from the thorough numerical study
(not demonstrated here), we have found that in the polynomial
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estimator, the root associated with the divergence αt is the
smallest root and this tendency holds irrespectively of the
chosen SMP, denoiser or parameters of the inverse problem
(1). Yet, at the moment we do not have a rigorous explanation
for this and it would be interesting to get a better understanding
of this phenomena.

APPENDIX A

In this appendix we prove Lemma 2. Recall that we define
the vector st+1(α̂, τ) as

st+1(α̂, τ) = gt(rt)− α̂(rt − sτ ) (77)

For this vector, next, we aim to simplify the function
Et+1(α̂, τ) = J1

t+1(α̂, τ)− J2
t+1(α̂, τ) (78)

where

J1
t+1(α̂, τ) =

1

N
||rt − st+1(α̂, τ)||2 − vht

J2
t+1(α̂, τ) =

1

N
||y −Ast+1(α̂, τ)||2 − δvw

To increase the readability, in the following we use gt to refer
to gt(rt) and drop the dependence of st+1(α̂, τ) on α̂ and τ .
First, we expand the norm in J2

t+1(α̂, τ) to obtain

||rt − st+1||2 = ||rt − gt + α̂(rt − sτ )||2

= ||rt − gt||2 + 2(rt − gt)
T (rt − sτ )α̂+ ||rt − sτ ||2α̂2

Thus, J1
t+1(α̂, τ) is equivalent to

J1
t+1(α̂, τ) = k0 + k1α̂+ k2α̂

2 (79)

where

k0 =
1

N
||rt − gt||2 − vht

(80)

k1 = 2
1

N
(rt − gt)

T (rt − sτ ) (81)

k2 =
1

N
||rt − sτ ||2 (82)

In the same way, we can show that

||y −Ast+1(α̂, τ)||2 = ||y −Agt + α̂A(rt − sτ )||2

= ||y −Agt||2 + 2(y −Agt)
TA(rt − sτ )α̂

+ ||A(rt − sτ )||2α̂2 (83)

which implies
J2
t+1(α̂, τ) = d0 + d1α̂+ d2α̂

2 (84)

where

d0 =
1

N
||y −Agt||2 − δvw

d1 = 2
1

N
(y −Agt)

TA(rt − sτ )

d2 =
1

N
||A(rt − sτ )||2

Combining these results, we can show that (78) is equivalent
to

Et+1(α̂, τ) = u0 + u1α̂+ u2α̂
2 (85)

with

u0 = k0 − d0

=
1

N
||rt − gt||2 −

1

N
||y −Agt||2 − vht

+ δvw

u1 = k1 − d1 = 2
1

N
(rt − sτ )

T
(
rt − gt −AT (y −Agt)

)
u2 = k2 − d2 =

1

N
||rt − sτ ||2 −

1

N
||A(rt − sτ )||2

which completes the proof.

APPENDIX B

In the following we will study the interaction of the error
vectors

ht = rt − x qt = st − x

where rt and st are as in (3) and (4) respectively. Additionally,
we will frequently refer to the whole history of these vectors

Ht+1 =
(
h0,h1, ...,ht

)
Qt+1 =

(
q0,q1, ...,qt

)
and their mapped versions

Mt+1 = VTHt+1 (86)

Bt+1 = VTQt+1 (87)

Note that these four error vector matrices can be simultane-
ously represented as(

Mτ ′ ,Bτ

)
= VT

(
Hτ ′ ,Qτ

)
With this relationship between the error vectors, one can
represent the effect of applying the matrix V through the
so-called conditioning technique [6], [8]. For this, define two
vectors

βτ = Q†
τqτ (88)

ρτ = M†
τmτ (89)

and the set
Gt,t′ =

{
Bt,Qt,Mt′ ,Ht′ ,x, w̃,S

∣∣(Mt′ ,Bt

)
= VT

(
Ht′ ,Qt

)}
(90)

Lastly, for a matrix R, let Φ⊥
R be the set of the left-singular

vectors associated with the zero singular values of R. With
these definitions, one can obtain the following asymptotic
result for V and VT .

Lemma 3. [15]: Let Assumptions 1-3 hold. Define a vector
v ∈ RN such that limN→∞

1
N ||v||2 = σ ≤ ∞. Then, for

τ = 0, 1, ... and τ ′ = 0, 1, ..., τ we have
1) The matrix VT conditioned on the set Gτ,τ almost surely

converges to

lim
N→∞

VT
|Gτ,τ

a.s.
= lim

N→∞
(Mτ ,Bτ )

(
H†

τ

Q†
τ

)
+Φ⊥

(Mτ ,Bτ )
ṼΦ⊥

(Hτ ,Qτ )

(91)

with Ṽ being Haar distributed and independent of Gτ,τ .
Additionally, we have

p = Φ⊥
(Mτ ,Bτ )

ṼΦ⊥
(Hτ ,Qτ )

v = p̆+ o(v) (92)

where p̆ ∼ N (0, σI) is independent of Gτ,τ and the
vector o(v) ∈ RN satisfies limN→∞

1
N ||o(v)||2 a.s.

= 0.
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2) The matrix V conditioned on the set Gτ+1,τ almost surely
converges to

lim
N→∞

V|Gτ+1,τ

a.s.
= (Hτ ,Qτ+1)

(
M†

τ

B†
τ+1

)
+Φ⊥

(Ht,Qτ+1)
ṼΦ⊥

(Mt,Bτ+1)

(93)

with Ṽ being Haar distributed and independent of
Gτ+1,τ . Additionally, we have

p = Φ⊥
(Ht,Qτ+1)

ṼΦ⊥
(Mt,Bτ+1)

v = p̆+ o(v) (94)

where p̆ ∼ N (0, σI) is independent of Gτ+1,τ and the
vector o(v) ∈ RN satisfies limN→∞

1
N ||o(v)||2 a.s.

= 0.

With this lemma and Theorem 1, we aim to study the be-
haviour of the following parametrized denoising step and its
error

sτ+1(α̂, τ
′) = gτ (rτ )− α̂(rτ − sτ ′) (95)

qt+1(α̂, τ
′) = st+1(α̂, τ

′)− x (96)

In particular, we are interested in the roots of the function

Eτ+1(α̂, τ
′) = J̄1

τ+1(α̂, τ
′)− J̄2

τ+1(α̂, τ
′) (97)

where

J̄1
τ+1(α̂, τ

′) =
1

N

(
||sτ+1(α̂, τ

′)− rτ ||2 − ||hτ ||2
)

(98)

J̄2
τ+1(α̂, τ

′) =
1

N
||y −Asτ+1(α̂, τ

′)||2 − δvw (99)

Before beginning the analysis, we define two vectors that will
arise in the derivation

βt+1(α̂, τ
′) =

1

N
Q†

t+1qt+1(α̂, τ
′) (100)

νt+1(α̂, τ
′) =

1

N
H†

t+1qt+1(α̂, τ
′) (101)

From Theorem 1 we know that the matrices Qt+1 and Ht+1

are asymptotically full rank, so the pseudo-inverses above are
well-defined in the limit N → ∞. Additionally, we have that

lim
N→∞

1

N
||qτ+1(α̂, τ

′)||2 = lim
N→∞

1

N
||sτ+1(α̂, τ

′)− x||2

= lim
N→∞

1

N
||gτ (rτ )− α̂(rτ − sτ ′)− x||2

= lim
N→∞

1

N
||gτ (x+ hτ )− α̂(hτ − qτ ′)− x||2

≤ lim
N→∞

1

N
||gτ (x+ hτ )||2 − α̂2

( 1

N
||(hτ ||2 −

1

N
||qτ ′ ||2

)
− 1

N
||x||2 < ∞ (102)

where the bound comes from Theorem 1 stating that in the
limit hτ and qt have finite variances, and Assumption 3 in
combination with (18). Thus, in the limit, the vectors (100)
and (101) are almost surely finite.

In the following we simplify the notations and drop
the dependence of st+1(α̂, τ

′), qt+1(α̂, τ
′), βt+1(α̂, τ

′),
νt+1(α̂, τ

′), J̄1
τ+1(α̂, τ

′) and of J̄2
τ+1(α̂, τ

′) on α̂ and τ ′.

A. Analysis of J̄1
τ+1

First, we consider the function J̄1
τ+1 and its limiting be-

haviour. Since s = x+qt+1 and rτ = x+hτ , we can rewrite
(98) as

J̄1
τ+1(α̂, τ

′) =
1

N

(
||qτ+1 − hτ ||2 − ||hτ ||2

)
=

1

N
||qτ+1||2 − 2

1

N
hT
τ qτ+1 =

1

N
||qτ+1||2 + e1τ+1 (103)

Next we consider e1τ+1(α̂) in the last result given that N → ∞
and Theorem 1 holds up to iteration τ = t. First, we can follow
the same steps as in the proof of Theorem 2 to obtain

lim
N→∞

1

N
hT
t gt(rt)

a.s.
= lim

N→∞

1

N
h̆T
t gt(x+ h̆t)

a.s.
= vht

αt (104)

Following the same steps and the asymptotic independence
result (14), we can obtain

lim
N→∞

1

N
hT
t (rt − st′) = lim

N→∞

1

N
hT
t (ht − qt′)

a.s.
= lim

N→∞

1

N
hT
t ht

a.s.
= vht (105)

Combining (104) and (105) implies

lim
N→∞

e1t+1(α̂, t
′)

= − lim
N→∞

2
1

N
hT
t

(
gt(rt)− α̂(rt − st′)− x

)
a.s.
= −2vht(αt − α̂) (106)

Thus, the error term e1t+1(α̂) converges to a linear function of
(αt − α̂) in the limit N → ∞. We will return to this result
shortly.

B. Analysis of J̄2
τ+1

Next, we analyze J̄2
τ+1(α̂, τ

′) which involves the following
norm

1

N
||y −Asτ+1||2 =

1

N
||w −Aqτ+1||2

=
1

N
||w||2 + 1

N
||Aqτ+1||2 − 2

1

N
wTAqτ+1 (107)

where we used the fact that y = Ax + w. Similarly to the
analysis of J̄1

t+1, next we assume that N → ∞ and that
Theorem 1 holds up to iteration τ = t. Then, we can use
(91) to obtain

lim
N→∞

VT
|Gt+1,t+1

qt+1
a.s.
= (Mt+1,Bt+1)

(
H†

t+1qt+1

Q†
t+1qt+1

)
+Φ⊥

(Mt+1,Bt+1)
ṼΦ⊥

(Ht+1,Qt+1)
qt+1

= lim
N→∞

Mt+1ντ+1 +Bt+1βt+1 + pt+1 (108)

where we used (101) and (100), and defined
pt+1 = Φ⊥

(Mt+1,Bt+1)
ṼΦ⊥

(Ht+1,Qt+1)
qt+1 (109)

which asymptotically acts as a zero-mean i.i.d. Gaussian vector
independent of Mt+1, Bt+1, U, S and w, as follows from
Lemma 3. With this result we can obtain the following
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lim
N→∞

1

N
||Aqt+1||2 = lim

N→∞

1

N
||SVTqt+1||2

a.s.
= lim

N→∞

1

N
||S(Bt+1βt+1 +Mt+1νt+1 + pt+1)||2

a.s.
= lim

N→∞

1

N
||S(B̆t+1βt+1 +Mt+1νt+1 + pt+1)||2 (110)

a.s.
= lim

N→∞

1

N

(
||SB̆t+1βt+1||2 + ||Spt+1||2

+ ||SMt+1νt+1||2
)
+

2

N
β
T

t+1B̆
T
t+1S

TSMt+1νt+1 (111)

a.s.
= lim

N→∞

1

N

(
||B̆t+1βt+1||2 + ||pt+1||2

+ ||SMt+1νt+1||2
)
+

2

N
β
T

t+1B̆
T
t+1S

TSMt+1νt+1 (112)

where in (110) we used the asymptotic model of the error
vectors bτ from Theorem 1, (111) follows from the fact that
pt+1 is asymptotically independent of B̆t+1 and Mt+1 and in
(112) we used the normalization 1

N Tr{STS} = 1, the Stein’s
Lemma and the fact that the columns of B̆t+1 and the vector
pt+1 are i.i.d. Gaussian to obtain

lim
N→∞

1

N
||SB̆t+1βt+1||2

a.s.
= lim

N→∞

1

N
||B̆t+1βt+1||2 (113)

lim
N→∞

1

N
||Spt+1||2

a.s.
= lim

N→∞

1

N
||pt+1||2 (114)

To relate (112) to the MSE of qt+1, next we consider the later.
Again, by referring to (108) and following the same steps as
in (112), we can obtain

lim
N→∞

1

N
||qt+1||2

a.s.
= lim

N→∞

1

N
||Bt+1βt+1 +Mt+1νt+1 + pt+1||2

a.s.
= lim

N→∞

1

N
||B̆t+1βt+1 +Mt+1νt+1 + pt+1||2

a.s.
= lim

N→∞

1

N
||B̆t+1βt+1||2 +

1

N
||Mt+1νt+1||2 +

1

N
||pt+1||2

where we used the asymptotic independence of bτ and mτ ′ ,
which follows from (14). By comparing the last result to (112),
we find that limN→∞

1
N ||Aqt+1||2 is equivalent to

lim
N→∞

1

N
||Aqt+1||2

a.s.
= lim

N→∞

1

N
||qt+1||2

+
1

N
||SMt+1νt+1||2 −

1

N
||Mt+1νt+1||2

+
2

N
β
T

t+1B̆
T
t+1S

TSMt+1νt+1 (115)

Then, define a function

e2t+1(α̂) =
1

N
||SMt+1νt+1||2 −

1

N
||Mt+1νt+1||2

+
2

N
β
T

t+1B
T
t+1S

TSMt+1νt+1 − 2
1

N
wTAqt+1 (116)

Assuming N → ∞ and Theorem 1 holds up to iteration τ = t,
we can use (116), (115) and (107) to show that the function
J̄2
τ+1 from (99) almost surely converges to

lim
N→∞

J̄2
τ+1

a.s.
= lim

N→∞

1

N
||qt+1||2 + e2t+1(α̂) (117)

Next, we analyze the behaviour of the error e2t+1(α̂). First,
we consider the term 1

NwTAqt+1. Using the SVD of A =
USVT , the model (108) and defining w̃ = Uw, we can obtain

lim
N→∞

1

N
wTAqt+1

a.s.
= lim

N→∞

1

N
w̃TSVTqt+1

= lim
N→∞

1

N
w̃TS

(
Mt+1νt+1 +Bt+1βt+1 + pt+1

)
a.s.
= lim

N→∞

1

N
w̃TSMt+1νt+1 (118)

where we used the asymptotic independence of w̃ and pt+1

and of w̃ and Sbτ as follows from Theorem 3 and (15)
respectively. Next, we analyze the vector νt+1 in the large
system limit

lim
N→∞

νt+1 = H†
tqt+1

= lim
N→∞

(
1

N
HT

t+1Ht+1)
−1 1

N
HT

t+1qt+1 (119)

Here, the vector 1
NHT

t+1qt+1 is composed of the elements(
1
NHT

t+1qt+1

)
k
= 1

N hT
k qt+1. Following the same steps as in

(106), we can show that this element almost surely converges
to

lim
N→∞

1

N
hT
k qt+1

a.s.
= lim

N→∞

1

N
hT
k ht(αt − α̂) (120)

which together with (119) implies that

lim
N→∞

νt+1
a.s.
= et+1(αt − α̂) (121)

where et+1 ∈ Rt+1 is (t+1)th vector of the t+1 dimensional
natural basis. Since Mt+1et+1 = mt, substituting this result
into (118) leads to

lim
N→∞

1

N
wTAqt+1

a.s.
= lim

N→∞

1

N
w̃TSmt(αt − α̂)

a.s.
= vw(αt − α̂) (122)

where the the asymptotic result limN→∞
1
N w̃TSmt

a.s.
= vw

was proven in [10].
Following similar steps, we can show that

lim
N→∞

1

N
||SMt+1νt+1||2 −

1

N
||Mt+1νt+1||2

+
2

N
β
T

t+1B
T
t+1S

TSMt+1νt+1

a.s.
= lim

N→∞

1

N
||Smt||2(αt − α̂)2 − 1

N
||mt||2(αt − α̂)2

+
2

N
β
T

t+1B
T
t+1S

TSmt(αt − α̂) (123)

Combining this result with (122), we conclude that the error
e2 from (116) almost surely converges to

lim
N→∞

e2t+1(α̂)
a.s.
= lim

N→∞

( 1

N
||Smt||2 − vht

)
(αt − α̂)2

+ 2
( 1

N
β
T

t+1B
T
t+1S

TSmt − vw

)
(αt − α̂) (124)

C. Roots of Eτ+1(α̂, τ
′)

Combining (103) with (106) and (117) with (124), we can
obtain the following asymptotic result for Eτ+1(α̂, τ

′) from
(97) under the Assumptions 1-3 and assuming Theorem 1
holds up to iteration τ = t.



15

lim
N→∞

Et+1(α̂, τ
′)

a.s.
= lim

N→∞
e1t+1(α̂)− e2t+1(α̂)

a.s.
= lim

N→∞

(
vht

− 1

N
||Smt||2

)
(αt − α̂)2

− 2
(
vht +

1

N
β
T

t+1B
T
t+1S

TSmt − vw

)
(αt − α̂) (125)

From this result, we immediately notice that the first root α̂1

to Et+1(α̂, τ
′) almost surely converges to limN→∞ α̂1 = αt.

Next, we aim to obtain the closed-form solution for the second
root α̂2 to this function. Consider the asymptotic behaviour of
βt+1 from (100)

lim
N→∞

βt+1(α̂, τ
′) = lim

N→∞
Q†

t+1qt+1(α̂, τ
′)

= lim
N→∞

Q†
t+1

(
st+1(α̂, τ

′)− x
)

= lim
N→∞

Q†
t+1

(
gτ (rt)− α̂(rt − sτ ′)− x

)
= lim

N→∞
Q†

t+1

(
gt(rt)− α̂(ht − qτ ′)− x

)
a.s.
= lim

N→∞
Q†

t+1

(
gt(rt) + α̂qτ ′ − x

)
(126)

where in the last step we used the fact that Qt+1 = (q0, ...,qt)
and (14) to obtain

lim
N→∞

Q†
t+1ht = lim

N→∞
(
1

N
QT

t+1Qt+1)
−1 1

N
Qt+1ht

a.s.
= 0

Additionally, note that
Q†

t+1qτ ′ = eτ ′+1 (127)

where ei ∈ Rt+1 is the i-th vector of the natural basis.
Therefore (126) is equivalent to

βt+1(α̂, τ
′) = lim

N→∞
Q†

t+1

(
gt(rt)− x

)
+ α̂eτ ′+1

=: βt+1 + α̂eτ ′+1 (128)

where we defined
βt+1 := lim

N→∞
Q†

t+1

(
gt(rt)− x

)
(129)

Using (128) and grouping terms together, we can rewrite the
cost function Et+1(α̂, τ

′) from (125) as

lim
N→∞

Et+1(α̂, τ
′)

a.s.
= lim

N→∞
(c0t + α̂c1t (τ

′))(αt − α̂) + c2t (αt − α̂)2

= lim
N→∞

(
c0t + α̂c1t (τ

′) + c2t (αt − α̂)
)
(αt − α̂) (130)

where

c0t = −2
(
vht − vw +

1

N
βT
t+1B

T
t+1S

TSmt

)
(131)

c1t (τ
′) = −2

1

N
bT
τ ′STSmt (132)

c2t = vht
− 1

N
||Smt||2 (133)

Thus, the second root α̂2 of this function follows
lim

N→∞
c0t + α̂2c

1
t (τ

′) + c2t (αt − α̂2) = 0 (134)

Solving for α̂2 gives

lim
N→∞

α̂2(τ
′)

a.s.
= lim

N→∞

c0t + c2tαt

c2t − c1t (τ
′)

(135)

which completes the proof.

APPENDIX C

In this section, we prove Lemma 1 which states that
Theorem 1 holds for the error vectors h̃t = r̃t − x and
q̃t = s̃t − x, where

r̃t =
1

C̃r

(
ATft(S̃t+1,y)− S̃t+1γt

)
(136)

s̃t+1 =
1

C̃s

(
gt(r̃t)− r̃tα̃t

)
(137)

and α̃t satisfies
lim

N→∞
α̃t

a.s.
= lim

N→∞
αt (138)

at ever iteration. The proof is by induction: we assume that
1
N ||rt − r̃t||2

a.s.
= 0 holds and that this implies 1

N ||st+1 −
s̃t+1||2

a.s.
= 0. The implication that 1

N ||st+1 − s̃t+1||2
a.s.
= 0

leads to 1
N ||rt+1 − r̃t+1||2

a.s.
= 0 is proved in the same way.

Using the triangular inequality, we can bound the difference
of st+1 and s̃t+1 from (4) and (137) as

||st+1 − s̃t+1||2

=
∣∣∣∣∣∣ 1

Cs

(
gt(rt)− rtαt

)
− 1

C̃s

(
gt(r̃t) + r̃tα̃t

)∣∣∣∣∣∣2
≤

∣∣∣∣∣∣ 1

Cs
gt(rt)−

1

C̃s

gt(r̃t)
∣∣∣∣∣∣2 + ∣∣∣∣∣∣ 1

C̃s

r̃tα̃t −
1

Cs
rtαt

∣∣∣∣∣∣2
(139)

Similarly, we can show the following for the first inner-product
from above∣∣∣∣∣∣ 1

Cs
gt(rt)−

1

C̃s

gt(r̃t)
∣∣∣∣∣∣2

=
∣∣∣∣∣∣ 1

Cs
gt(rt)−

1

C̃s

gt(r̃t)−
1

Cs
gt(r̃t) +

1

Cs
gt(r̃t)

∣∣∣∣∣∣2
=

∣∣∣∣∣∣ 1

Cs
(gt(rt)− gt(r̃t)) +

( 1

Cs
− 1

C̃s

)
gt(r̃t)

∣∣∣∣∣∣2
≤

∣∣∣∣∣∣ 1

Cs
(gt(rt)− gt(r̃t))

∣∣∣∣∣∣2 + ∣∣∣∣∣∣( 1

Cs
− 1

C̃s

)
gt(r̃t)

∣∣∣∣∣∣2
(140)

Here, we can use Assumption 3 about gt being a Lipschitz
continuous function, which implies

lim
N→∞

1

C2
s

1

N

∣∣∣∣∣∣gt(rt)− gt(r̃t)
∣∣∣∣∣∣2 ≤ lim

N→∞

L

C2
s

1

N
||rt − r̃t||2

a.s.
= 0 (141)

where L = O(1) is some constant and the last step follows
from the induction hypothesis. Recall that the definition of the
scalars Cs and C̃s are [8], [15]

Cs = 1− αt C̃s = 1− α̃t

so that 1
Cs

− 1
C̃s

= α̃t−αt

(1−αt)(1−α̃t)
. Then we can use Assumption

3 stating that the norm 1
N ||gt(r̃t)||2 is bounded and (138) to

obtain

lim
N→∞

( 1

Cs
− 1

C̃s

)2 1

N

∣∣∣∣∣∣gt(r̃t)
∣∣∣∣∣∣2

= lim
N→∞

(
α̃t − αt

(1− αt)(1− α̃t)

)2
1

N

∣∣∣∣∣∣gt(r̃t)
∣∣∣∣∣∣2 a.s.

= 0 (142)
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Thus, the first component of (139) almost surely converges to
zero. In the same way, we can analyze the second component.
Following the same steps, we obtain∣∣∣∣∣∣ 1

C̃s

r̃tα̃t −
1

Cs
rtαt

∣∣∣∣∣∣2
=

∣∣∣∣∣∣ 1

C̃s

r̃tα̃t −
1

Cs
rtαt −

1

Cs
r̃tα̃t +

1

Cs
r̃tα̃t

∣∣∣∣∣∣2
=

∣∣∣∣∣∣( 1

C̃s

− 1

Cs

)
r̃tα̃t +

1

Cs

(
r̃tα̃t − rtαt

)∣∣∣∣∣∣2
≤

( 1

C̃s

− 1

Cs

)2

α̃2||r̃t||2 +
1

C2
s

∣∣∣∣∣∣r̃tα̃t − rtαt

∣∣∣∣∣∣2 (143)

Since rt = x + ht, and both of these vectors have bounded
second moments as follows from Theorem 1 and Assumption
3, we have that

lim
N→∞

( 1

C̃s

− 1

Cs

)2

α̃2 1

N
||r̃t||2

a.s.
= 0 (144)

Similarly, we have

||r̃tα̃t − rtαt||2

= ||r̃tα̃t − rtαt + rtα̃t − rtα̃t||2

= ||(r̃t − rt)α̃t + (α̃t − αt)rt||2

≤ α̃2
t ||r̃t − rt||2 + (α̃t − αt)

2||rt||2
a.s.
= 0 (145)

where we used the induction hypothesis and (138). Combin-
ing all the above results confirms that (139) almost surely
converges to zero under the induction hypothesis. Since
ft(S̃t+1,y) is a linear mapping, which further implies that
γt is Lipschitz continues as follows from the definition
(11), the proof of that 1

N ||st+1 − s̃t+1||2
a.s.
= 0 implies

1
N ||rt+1 − r̃t+1||2

a.s.
= 0 follows exactly the same steps as

above.

APPENDIX D

Next, we show that for a pair of indices τ ̸= τ ′, (τ, τ ′) ≤ t,
the condition

lim
N→∞

1

N
qT
τ A

TAht ̸= lim
N→∞

1

N
qT
τ ′ATAht (146)

is asymptotically equivalent to

lim
N→∞

1

N
zTτ (y −Art) ̸= lim

N→∞

1

N
zTτ ′(y −Art). (147)

Here y and A are from (1), zτ = y − Ast and the error
vectors are

qt = st − x ht = rt − x (148)

where rt and st are from (3)-(4). First, note that from the
definition of zt, y and qt, we have

zt = w −Aqt

Then, we can show that the left hand side of (146) is equivalent
to

lim
N→∞

1

N
qT
τ A

TAht

= lim
N→∞

− 1

N
(w −Aqτ )

TA(rt − x) +
1

N
wTAht

a.s.
= lim

N→∞
− 1

N
zTτ A(rt − x) + vw (149)

= lim
N→∞

− 1

N
zTτ (Art −Ax+w −w) + vw

= lim
N→∞

− 1

N
zTτ (Art − y) + vw − 1

N
zTτ w

a.s.
= lim

N→∞

1

N
zTτ (y −Art) + vw − δvw (150)

where (149) uses the result limN→∞
1
NwTAht

a.s.
= vw from

[10], while the last step is based on the fact that

lim
N→∞

1

N
wT zτ = lim

N→∞

1

N
wT (w −Aqτ )

a.s.
= lim

N→∞

1

N
wTw

a.s.
= δvw (151)

where we used the asymptotic orthogonality of w and Aqτ

from (15). Finally, applying (150) to both sides of (146) gives
(147).
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