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Stability of Bernstein’s Theorem and

Soft Doubling for Vector Gaussian Channels
Mohammad Mahdi Mahvari, Student Member, IEEE and Gerhard Kramer, Fellow, IEEE

Abstract—The stability of Bernstein’s characterization of
Gaussian distributions is extended to vectors by utilizing char-
acteristic functions. Stability is used to develop a soft doubling
argument that establishes the optimality of Gaussian vectors for
certain communications channels with additive Gaussian noise,
including two-receiver broadcast channels. One novelty is that
the argument does not require the existence of distributions that
achieve capacity.

Index Terms—additive Gaussian noise, Bernstein’s theorem,
random vectors, stability, statistical independence

I. INTRODUCTION

The following characterization of vector Gaussian distribu-

tions builds on the work of Kac [1] and Bernstein [2] and is

a particular case of the main results in [3]–[5].

Theorem 1. Consider the independent1 d-dimensional random

vectors X1 and X2. If X1 + X2 and X1 − X2 are also

independent, then X1 and X2 are Gaussian and have the same

covariance matrix.

We refer to Theorem 1 as Bernstein’s theorem. The result

has been used to establish the optimality of Gaussian functions

and Gaussian random vectors for several inequalities, includ-

ing inequalities with applications to reliable communications

over channels with additive Gaussian noise (AGN). The fol-

lowing sections review applications of Bernstein’s theorem and

motivate stability theorems.

A. Applications of Bernstein’s Theorem

Lieb [6] used the “O(2) rotation invariance of products of

centered Gaussians” to show that Gaussian functions achieve

equality in the generalized Brascamp-Lieb inequality [7].

Lieb’s method is closely related to Bernstein’s theorem as it

considers products of a function with the vector arguments

(x1 + x2)/
√
2 and (x1 − x2)/

√
2. A particular case of the

generalized Brascamp-Lieb inequality is Young’s inequality

which is met with equality by Gaussian functions. Carlen [8]

used Lieb’s technique to prove that Gaussian functions achieve
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1By “independent,” we mean statistical independence instead of, e.g., linear
independence.

equality in the logarithmic Sobolev inequalities; he refers to

the technique as a “doubling trick”.

More recently, two doubling tricks were used to prove

inequalities related to communications problems [9]: one

based on Bernstein’s theorem and another on the central limit

theorem (CLT); see also [10]–[16]. These doubling tricks help

to characterize the capacity region, or capacity points, of vector

Gaussian broadcast channels [17]–[21], multiaccess channels

with feedback [22], relay channels [23], Z-interference chan-

nels [24], [25], Gray-Wyner networks [26], source coding

problems [27], [28], and two-way wiretap channels [29]. The

proof using Bernstein’s theorem is stronger since it establishes

the uniqueness of the capacity-achieving distribution. How-

ever, the CLT-based proof seems to apply more generally, e.g.,

the CLT was needed to determine the sum-rate capacity for

multiaccess channels with feedback [22].

B. Motivation

A key step in applying Bernstein’s theorem to communi-

cations problems is establishing the existence of distributions

achieving rate tuples on the boundaries of capacity regions.

The primary motivation for this paper was to investigate

the necessity of this step because it has several restrictive

traits. First, in practice, one can only approach rather than

achieve the capacity of noisy channels, so requiring a capacity

supremum to be a maximum seems more of mathematical than

engineering relevance. Second, if a maximizing distribution is

continuous, there is no guarantee that practical (moderate-size

finite) modulation alphabets achieve rates close to capacity.

A third limitation is that the existence proof in [17] re-

quires several technical theorems on the convergence of se-

quences of distributions, including Prokhorov’s theorem [30],

the converse [31] of the Scheffé-Riesz theorem [32], Lévy’s

continuity theorem, and a theorem of Godavarti-Hero [33].

As a consequence, proving existence can be tedious, and most

papers [18], [19], [23]–[28] simplify exposition by referring

to [17] for the approach. Instead, we wish to have an accessible

proof that requires only basic theory and considers individual

distributions rather than sequences.

A second motivation for this paper was to extend the stabil-

ity of Bernstein’s theorem from scalars to vectors. For scalars,

this stability is based on the stability of the Cauchy functional

equation for bi-infinite [34] and finite [35] intervals; treating

vectors requires extensions to multivariate functions [36]. We

also use stability results for vector differential entropies based

on individual distributions [37].
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C. Stability of Cramér’s Theorem

Stability for statistical independence has a long history [38].

For example, a theorem of Cramér [39] states that the sum

X = X1 +X2 of independent X1 and X2 is Gaussian if and

only if X1 and X2 are Gaussian. A corresponding stability

theorem is due to Sapogov [40], [41], see also [38, Sec. 3] that

cites [42, p. 100]. To state his result, consider the Gaussian

cumulative distribution function (c.d.f.) with zero mean and

unit variance, namely

F(x) = 1√
2π

∫ x

−∞
e−y2/2 dy, x ∈ R. (1)

Similarly, define the Gaussian c.d.f.s Fi with means mi

and variances σ2
i , i = 1, 2. Let E [X ] and Var [X ] =

E
[
(X − E [X ])2

]
denote the expectation and variance of X .

Consider the uniform distance, or Kolmogorov distance [38,

eq. (2.1)], between between the c.d.f.s F and G:

d(F,G) = sup
x∈R

|F (x) −G(x)|. (2)

Now if X = X1+X2 is approximately Gaussian, in the sense

that its c.d.f. FX satisfies d(FX ,F) < ǫ for some ǫ satisfying

0 < ǫ < 1, then for i = 1, 2 we have

d (FXi
,Fi) < cσ

−3/4
i (− ln ǫ)−1/8 (3)

where c is a positive constant independent of ǫ, mi ≈ E [Xi]
and σ2

i ≈ Var [Xi]; see [38, Eq. (3.1)] for the precise

definitions. Sapogov later [43] improved the right-hand side

of (3) to scale as (− ln ǫ)−1/2 rather than (− ln ǫ)−1/8 with ǫ,
and this scaling is the best possible in general [44].

D. Stability of Bernstein’s Theorem

Turning to Bernstein’s theorem, several stability results for

scalars are described in [38, Sec. 4] with different assumptions

on the sums and differences of independent X1 and X2. For

example, consider [38, Thm. 4.4] that uses the uniform metric,

i.e., X1 +X2 and X1 −X2 are said to be ǫ-dependent2 if

d (FX1+X2,X1−X2
, FX1+X2

FX1−X2
) < ǫ (4)

where the supremum in (4) is over both real arguments of the

c.d.f.s. Now suppose 0 < ǫ < 1 and E
[
|Xi|2(1+δ)

]
< ∞ for

i = 1, 2 and some δ satisfying 0 < δ ≤ 1. Then [38, Thm. 4.4]

states that (4) implies

d (FXi
,Fi) < c (− ln ǫ)−1/2 (5)

for i = 1, 2, where c is independent of ǫ, mi = E [Xi], and

σ2
i = (Var [X1] + Var [X2])/2; see the text following (3).

The discussion in [38] describes several other stability

metrics, including the Lévy metric [42] that measures the

distance between c.d.f.s F and G as

dL(F,G) = inf
{
h ≥ 0 :F (x− h)− h ≤ G(x)

≤ F (x+ h) + h for all x
}
. (6)

2This property is called ǫ-independent in [38, Sec. 2] but it seems more nat-
ural to identify independence with 0-dependence rather than 0-independence.

We instead follow Klebanov-Yanushkyavichyus [45], [46] (see

also [47]) and consider the uniform metric in the characteristic

function (c.f.) domain. Let j =
√
−1 and let

fX(t) = E
[
ejtX

]
, fX1,X2

(t1, t2) = E
[
ejt1X1+jt2X2

]
(7)

be the c.f.s of X and the pair (X1, X2), respectively. For

example, the c.f. of a Gaussian distribution with mean m and

variance σ2 is

Φ(t) = ejmt− 1
2
σ2t2 , t ∈ R. (8)

X1 and X2 are said to be ǫ-dependent in the c.f. domain if

d (fX1,X2
, fX1

fX2
) ≤ ǫ (9)

where the supremum in (9) is over both real arguments of the

c.f.s. The paper [46] develops the following stability theorem.

Let Pǫ be the class of (X1, X2) for which X1 and X2 are

independent and X1 + X2 and X1 − X2 are ǫ-dependent in

the c.f. domain. Then we have (see [46, Thm. 1])

c1ǫ ≤ sup
(X1,X2)∈Pǫ

max
i=1,2

d (fXi
,Φi) ≤ c2ǫ (10)

for Gaussian c.f.s Φi, i = 1, 2, where c1 and c2 are positive

constants independent of ǫ. The bounds (10) imply that the

scaling proportional to ǫ is generally the best possible.

E. Multivariate Stability

Gabovič [48] established stability for a vector form of the

Darmois-Skitovič theorem [3], [4] that generalizes Bernstein’s

theorem. However, there are several differences to the models

and metrics of Sec. I-D. Consider the d-dimensional random

vectors X1 and X2.

• Gabovič [48] defines ǫ-dependence for a vector form of

the Lévy metric (6) rather than a vector form of (9);

• X1 and X2 are permitted to be ǫ-dependent (in the Lévy

metric) and not only X1 + X2 and X1 − X2; we also

treat this case in Sec. IV-D below;

• the joint distribution of X1,X2 is shown to be near-

Gaussian, whereas for independent X1 and X2 one may

show that X1 and X2 are individually near-Gaussian;

• the random vectors must satisfy a special condition “to

prevent the ‘leakage’ of a significant probabilistic mass

to infinity” [48, p. 5]; this restriction seems to prevent

the theory from fully generalizing Bernstein’s theorem;

• the stability in the Lévy metric converges slowly in ǫ and

behaves as
[
log log log(1/ǫ)

](d+3)/4

[
log log(1/ǫ)

]1/8 ; (11)

• there is no claim of an identical covariance matrix for

X1 and X2.

Thus, there are several advantages of studying stability in

the c.f. domain. First, we need not a-priori exclude certain ran-

dom vectors, i.e., the stability theory generalizes Theorem 1.

Second, we prove a common covariance matrix for sufficiently

small ǫ. Third, convergence is proportional to ǫ which is the

best possible scaling, see (10) and Theorems 9 and 10 below.

Finally, we can relate ǫ-dependence to mutual information; see

Lemma 3 below. It is unclear whether one can improve the

approach in [48] to give such properties.
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F. Organization

This paper has two main parts. The first part deals with the

stability of Bernstein’s theorem for random vectors. Sec. II

develops notation and reviews properties of multivariate c.f.s

(Lemmas 2 and 3). Sec. III develops several stability results

for c.f.s and p.d.f.s (Lemmas 4-8). Sec. IV states and proves

our main stability theorems (Theorems 9-12).

The second part of the paper applies the stability theory

to AGN channels. Sec. V develops “soft” versions (Propo-

sition 13 to Theorem 19) of the “hard” doubling arguments

in [17] for point-to-point channels, product channels, and two-

receiver broadcast channels. Sec. VI concludes the paper.

Appendixes A-B develop results on the stability of Cauchy’s

functional equation (Lemmas 20-25) including for multivariate

biadditive functions. Appendices C-E prove Lemmas 5, 7,

and 8, respectively. Appendix F treats a metric that is more

restrictive than ǫ-dependence (Lemma 26).

II. PRELIMINARIES

A. Basic Notation

The p-norm for d-dimensional vectors is written as

‖x‖p =

(
d∑

i=1

|xi|p
)1/p

(12)

and we write ‖x‖∞ = max1≤i≤d |xi|. We usually consider

the 1-norm that we write as ‖x‖ = ‖x‖1. We have the bounds

‖x‖2 ≤ ‖x‖ ≤
√
d ‖x‖2 (13)

‖x‖∞ ≤ ‖x‖ ≤ d ‖x‖∞. (14)

For complex-valued functions on Rd we write

‖f‖p =

(∫

Rd

|f(t)|p dt
)1/p

. (15)

The ℓp distance of f from g is ‖f − g‖p. The volume of a

ball of radius r in d dimensions with respect to the p-norm is

Vp,d(r) =

∫

‖t‖p≤r

dt =
(2Γ(1 + 1/p))d

Γ(1 + d/p)
rd (16)

where Γ is the gamma function. For example, if p = 1, then

V1,d(r) =
2d

d!
rd ⇒ V1,d(r) ≤ 2 rd. (17)

For a square matrix Q, we write detQ for the determinant

of Q, and Q′ � Q if Q −Q′ is positive semi-definite. The

d × d identity matrix is written as Id. The vector with zero

entries except for a 1 in entry i is written as ei.

We write sets with calligraphic letters such as E . Set

complements and direct products are written as Ec and E1×E2,

respectively.

The distribution, c.d.f., mean, and covariance matrix of X

are written as PX, FX, mX = E [X], and

QX = E
[
(X−mX)(X−mX)T

]
(18)

respectively, where tT is the transpose of t. The distribution

PX is absolutely continuous (a.c.) with respect to the Lebesgue

measure if and only if a p.d.f. exists that we write as pX.

The notation h(p), h(X), I(X;Y), and D(p||q) refers to the

differential entropy of the p.d.f. p, the differential entropy of

X, the mutual information of X and Y, and the informational

divergence of the p.d.f.s p and q, respectively. We often discard

subscripts on probability distributions and other functions for

notational convenience.

B. Multivariate Characteristic Functions

The characteristic function (c.f.) of the d-dimensional real-

valued X evaluated at t ∈ Rd is

fX(t) = E
[
ejt

T X
]
. (19)

If the p.d.f. pX exists then (pX, fX) can be interpreted as a

Fourier transform pair. We will also consider

gX(t) = ln fX(t) (20)

and gX is sometimes called the second c.f. of X. If these

functions have derivatives of all orders, then one may use a

multivariate version of Taylor’s theorem to write fX(t) as an

expansion of the moments of X, and one can write gX(t) as

an expansion of the cumulants of X.

The c.f. of the pair X1,X2 evaluated at t1, t2 is

fX1,X2
(t1, t2) = E

[
ejt

T
1 X1+jtT2 X2

]
(21)

and similarly gX1,X2
(t1, t2) = ln fX1,X2

(t1, t2). Note that

X1 and X2 need not have the same dimension.

C. Properties of Characteristic Functions

Four basic properties of c.f.s are as follows; see [49, p. 55]:

fX(0) = 1; |fX(t)| ≤ 1; fX(−t) = fX(t)∗ where x∗ is

the complex conjugate of x; fX is uniformly continuous and

therefore non-vanishing in a region around t = 0. We thus

also have: |gX(0)| = 0; Re{gX(t)} ≤ 0; gX(−t) = gX(t)∗;

Re{gX(t)} > −∞ for a region around t = 0.

Another property is the following upper bound on |fX(t)|
for a region around t = 0.

Lemma 2 (See [49, p. 114, Theorem 2.7.1]). Let fX be the c.f.

of a non-degenerate distribution in Rd, i.e., the distribution is

not concentrated on a hyperplane of dimension smaller than

d. Then there exist positive constants c, T such that

|fX(t)| ≤ 1− c‖t‖2 for ‖t‖ ≤ T. (22)

Proof. See [49, Theorem 2.7.1]. Note that [49] uses the 2-

norm. However, since c, T are generic, the bound (13) permits

using the 1-norm.

We next state two properties of pairs of random vectors and

define two versions of ǫ-dependence. The first property is that

X1 and X2 are statistically independent if and only if fX1,X2

factors as fX1
fX2

. Second, the following lemma relates the

c.f.s of pairs of random vectors and their mutual information.

Lemma 3. Suppose X1,X2 have dimensions d1, d2 and joint

p.d.f. pX1,X2
. Then for all t1 ∈ Rd1 and t2 ∈ Rd2 we have

|fX1,X2
(t1, t2)− fX1

(t1)fX2
(t2)|

≤ ‖pX1,X2
− pX1

pX2
‖

≤
√

2I(X1;X2) (23)
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where the mutual information is measured in nats.

Proof. One may write

|fX1,X2
(t1, t2)− fX1

(t1)fX2
(t2)|

=

∣∣∣∣
∫

Rd1+d2

ejt
T
1 x1ejt

T
2 x2
[
p(x1,x2)− p(x1)p(x2)

]
dx1dx2

∣∣∣∣

≤
∫

Rd1+d2

|p(x1,x2)− p(x1)p(x2)| dx1dx2

≤
√
2D(pX1,X2

||pX1
pX2

)

where the final step is Pinsker’s inequality [50, p. 44] and the

informational divergence is measured in nats.

Definition 1. Let ǫ and T be non-negative constants. The

random vectors X1 and X2 are (ǫ, T )-dependent if

sup
‖t1‖≤T,‖t2‖≤T

|fX1,X2
(t1, t2)− fX1

(t1)fX2
(t2)| ≤ ǫ. (24)

Similarly, X1 and X2 are ǫ-dependent if they are (ǫ, T )-
dependent for all non-negative T .

The ǫ-dependence of Definition 1 can be interpreted as

(ǫ,∞)-dependence. Also, X1 and X2 are 0-dependent (or

(0,∞)-dependent) if and only if they are independent.

D. Gaussian Vectors

We write X ∼ N (mX,QX) if X is Gaussian with mean

mX and covariance matrix QX, i.e., the p.d.f of X is

φX(x) =
1

det (2πQX)1/2
e−

1
2
(x−mX)TQ

−1

X
(x−mX) (25)

where we assumed that QX is invertible. More generally, the

Gaussian c.f. is

ΦX(t) = et
T (jmX− 1

2
QX t) (26)

and we have |ΦX(t)| = 1 if and only if t lies in the null space

of QX. Otherwise, |ΦX(c · t)| strictly decreases from 1 to 0

as c increases from c = 0 to c =∞. Furthermore, we have

ΦX(2t) = ΦX(t)2 |ΦX(t)|2 (27)

so that for the integer k ≥ 0 we have |ΦX(2k ·t)| = |ΦX(t)|4k
which decreases rapidly with k if t 6= 0.

Finally, a common approach to smooth an X, e.g., having

a degenerate distribution or having Dirac-delta components, is

to add a non-degenerate Gaussian Z with small covariances.

The distribution of Y = X+Z is then a.c. with respect to the

Lebesgue measure, since

pY(y) =

∫

Rd

φZ(y − x)PX(dx) (28)

serves as a p.d.f. of Y.3

3Some authors prefer to write dPX(x) or dPX instead of PX(dx) in (28).
Also, the vector Z need not be Gaussian, but it should be non-degenerate and
have a p.d.f.

III. STABILITY LEMMAS

This section states several stability lemmas. The first is a

local stability of Cauchy’s functional equation that we use to

prove Theorem 9; see (68) and (85) below. The second is a

multivariate version of a theorem from [46] that we use to

prove Theorem 10; see (98) below.

Lemma 4 (See [36, Theorem 1]). Let g : [−T, T )d → C,

T > 0, be a continuous4 function satisfying

|g(x+ y)− g(x)− g(y)| ≤ θ (29)

for all x,y ∈ [−T, T )d such that x + y ∈ [−T, T )d, θ > 0.

Then there is a continuous and linear function G : Rd → C

such that

|g(x) −G(x)| ≤ (4d− 1)θ, ∀ x ∈ [−T, T )d . (30)

Moreover, if (29) is valid for all T > 0 (or T = ∞) then G
is unique.

Proof. See Lemma 23 in Appendix A.

In the following, to simplify notation we write fi and gi for

fXi
and gXi

, respectively, and similarly for mi and Qi. We

generally consider d-dimensional vectors.

Lemma 5 (See [46, Eq. (7)]). Suppose X1 and X2 are

independent and X1+X2 and X1−X2 are (ǫ, T )-dependent.

Then for ‖t‖ ≤ T and i = 1, 2 we have

fi(2t) = fi(t)
2|fi(t)|2 + r

(3)
ǫ,i (t) (31)

where

∣∣∣r(3)ǫ,i (t)
∣∣∣ ≤ 5ǫ.

Proof. For general (perhaps dependent) X1,X2 we have

fX1+X2,X1−X2
(t1, t2) = fX1,X2

(t1 + t2, t1 − t2) (32)

fX1+X2
(t1)fX1−X2

(t2) = fX1,X2
(t1, t1)fX1,X2

(t2,−t2)
(33)

and hence for independent X1,X2, according to (24) we have

f1(t1 + t2)f2(t1 − t2)

= f1(t1)f1(t2)f2(t1)f2(−t2) + rǫ(t1, t2) (34)

where

|rǫ(t1, t2)| ≤ ǫ and ‖ti‖ ≤ T, i = 1, 2. (35)

For the remaining steps of the proof, see Appendix C.

We next state a result from [37] on the existence and conti-

nuity of differential entropy in the 1-norm. Given α,m, ν > 0,

define (α, ν,m)−ACd to be the class of d-dimensional vectors

whose distributions are a.c. with respect to the Lebesgue

measure, and for which the corresponding p.d.f. pY satisfies

ess sup
y∈Rd

pY(y) < m and E [‖Y‖αα] < ν. (36)

Lemma 6 (See [37, Theorem 1]). Let p and q be the p.d.f.s of

two random vectors in (α, ν,m)−ACd. Then the differential

4It suffices that the projections of g onto each coordinate have at least one
continuous point, see Lemma 23.
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entropies h(p) and h(q) exist. Moreover, if the ℓ1 distance

satisfies ‖p− q‖ ≤ m then

|h(p)− h(q)| ≤ ‖p− q‖ ·
(
c1 − c2 log ‖p− q‖

)
(37)

where

c1 =
d

α

∣∣∣∣log
2αν

d

∣∣∣∣+ | log(me)|+ log
e

2

+ d log
[
2Γ
(
1 + α−1

)]
+

d

α
+ 1 (38)

c2 =
d

α
+ 2. (39)

Finally, we develop two lemmas that convert a pointwise

bound in the c.f. domain to bounds in the p.d.f. domain.

Lemma 7. Consider Y = X + Z where Z ∼ N (0,QZ)
is non-degenerate and independent of X. Let λZ,min be the

smallest eigenvalue of QZ. Suppose ǫ < 1 − e−λZ,min/2 and

|fY(t)− Φ(t)| ≤ ǫ for all t ∈ Rd and for some Gaussian c.f.

Φ with Fourier transform φ. Then for all y ∈ Rd we have

|pY(y) − φ(y)| ≤ B1(ǫ) (40)

where B1(ǫ)→ 0 as ǫ→ 0 and B1(ǫ) = 0 if ǫ = 0.

Proof. See Appendix D.

Lemma 8. Consider Yp and Yq with finite second moments

and respective p.d.f.s p and q. Suppose we have

|p(y)− q(y)| ≤ B1(ǫ) (41)

for all y ∈ Rd where B1(ǫ)→ 0 as ǫ → 0 and B1(ǫ) = 0 if

ǫ = 0. Then we have

‖p− q‖ ≤ B2(ǫ) (42)

where B2(ǫ)→ 0 as ǫ→ 0 and B2(ǫ) = 0 if ǫ = 0. Moreover,

if the fourth moments5 of Yq are also bounded then

E
[
YqY

T
q

]
� E

[
YpY

T
p

]
+B3(ǫ) Id (43)

where B3(ǫ)→ 0 as ǫ→ 0 and B3(ǫ) = 0 if ǫ = 0.

Proof. See Appendix E.

IV. STABILITY THEOREMS

This section proves stability theorems for d-dimensional

random vectors. Theorem 9 considers local stability for a

finite interval around t = 0. Theorem 10 extends Bernstein’s

Theorem to include local stability by generalizing the scalar

theory in [46] to vectors. Theorem 11 gives two stability

results: one for differential entropy and one for correlation

matrices. We emphasize that these theorems have a common

covariance matrix Q̂, which is not the case in [46], [48] and

is important to develop further results for product channels in

Sec. V-B and for broadcast channels in Sec. V-C.

5The fourth moments arise because we applied the Cauchy-Schwarz in-
equality in step (a) of (246) below. Instead, using Hölder’s inequality, one
can weaken the requirement and permit the 2 + δ moments to be bounded
for any δ > 0, see the final paragraph of Appendix E.

Theorem 9. Suppose X1 and X2 are independent random

vectors, and X1 + X2 and X1 − X2 are (ǫ, T )-dependent.

Also, suppose there is a constant p > 0 such that

|fi(t)| ≥ p for ‖t‖ ≤ T and i = 1, 2. (44)

Then for 0 < ǫ ≤ p4/[360d2(d+ 1)] and ‖t‖ ≤ T/2 we have

|fi(t) − Φi(t)| ≤ C(ǫ) · |Φi(t)|, i = 1, 2 (45)

where for some mean vectors m̂i, i = 1, 2, and for some

common covariance matrix Q̂ we have the Gaussian c.f.s

Φi(t) = et
T (jm̂i− 1

2
Q̂ t), i = 1, 2 (46)

and the error term is

C(ǫ) =
720d2(d+ 1)

p4
ǫ. (47)

Proof. See Sec. IV-A.

Theorem 10. Suppose X1 and X2 are independent random

vectors, and X1 + X2 and X1 − X2 are ǫ-dependent. Then

for all ǫ below some positive threshold, for all t ∈ R
d, and

for i = 1, 2 we have

|fi(t)− Φi(t)| ≤ C̃ǫ (48)

for the Gaussian c.f.s (46), and for a constant C̃ independent

of ǫ and t. In particular, if ǫ = 0, then X1 and X2 are

Gaussian with the same covariance matrix.

Proof. See Sec. IV-B.

Theorem 11. Consider the random vectors Y1 = X1 + Z1

and Y2 = X2 + Z2 where X1,X2,Z1,Z2 are mutually

independent, Y1,Y2 have finite second moments, and the

noise vectors Zi ∼ N (0,QZi
), i = 1, 2, are non-degenerate.

Suppose Y1+Y2 and Y1−Y2 are ǫ-dependent. Then for all

ǫ below some positive threshold and for i = 1, 2 we have

|h(Yi)− h(Yg,i)| ≤ B(ǫ) (49)

where the Yg,i are Gaussian with the same covariance matrix,

and thus h(Yg,1) = h(Yg,2), and

E
[
Yg,iY

T
g,i

]
� E

[
YiY

T
i

]
+B(ǫ) Id (50)

where B(ǫ)→ 0 as ǫ→ 0 and B(ǫ) = 0 if ǫ = 0.

Proof. See Sec. IV-C.

A. Proof of Theorem 9

We modify the proof steps of [45], [46] who attribute their

approach to [51]–[53]. Several steps require considerations

particular to multivariate distributions, e.g., Lemma 2 and

properties of covariance matrices such as their null spaces,

symmetry, and positive semi-definite ordering.

Consider again (34)-(35) and define the functions

g3(t) = −g1(t)− g2(t) (51)

g4(t) = −g1(t)− g2(−t). (52)
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Taking logarithms in (34), we have (see [45, Eq. (8)])

g1(t1 + t2) + g2(t1 − t2) + g3(t1) + g4(t2) = Rǫ(t1, t2)
(53)

for ‖ti‖ ≤ T , i = 1, 2, where

Rǫ(t1, t2) = ln

(
1 +

rǫ(t1, t2)

f1(t1)f1(t2)f2(t1)f2(−t2)

)
. (54)

We may bound

|Rǫ(t1, t2)| ≤
3

2p4
ǫ (55)

which follows from |z|/2 ≤ | ln(1+ z)| ≤ 3|z|/2 for complex

z with |z| ≤ 1/2 [54, p. 165].

Next, define

g′i,t(x) := gi(x+ t)− gi(x)− gi(t), i = 1, 2, 3 (56)

and observe that (53) is the same as

g′1,t1(t2) + g′2,t1(−t2)=Rǫ(t1, t2). (57)

Also, substituting t1 ← t1 + t in (53), and subtracting (53)

from the resulting expression, we have (see [45, Eq. (10)])

g′1,t(t1 + t2) + g′2,t(t1 − t2) + g′3,t(t1) = R(1)
ǫ (t, t1, t2)

(58)

for ‖t1‖ ≤ T , ‖t2‖ ≤ T , ‖t1 + t‖ ≤ T , where

|R(1)
ǫ (t, t1, t2)| ≤

3

p4
ǫ. (59)

By replacing t1 ← t, t2 ← t2 − t1 in (57) and t2 ← t1 in

(58) we have the respective

g′2,t(t1 − t2) = −g′1,t(t2 − t1) +Rǫ(t, t2 − t1) (60)

g′3,t(t1) = −g′1,t(2t1) +R(1)
ǫ (t, t1, t1) (61)

where the following inequalities should be satisfied:

‖t‖ ≤ T/2, ‖t1‖ ≤ T, ‖t2‖ ≤ T,

‖t+ t1‖ ≤ T, ‖t2 − t1‖ ≤ T. (62)

Now substitute (60) and (61) in (58) to obtain

g′1,t(t1 + t2)− g′1,t(t2 − t1) +Rǫ(t, t2 − t1)

− g′1,t(2t1) +R(1)
ǫ (t, t1, t1) = R(1)

ǫ (t, t1, t2). (63)

Then substituting x := t2 − t1, and y := 2t1 gives (see [45,

Eq. (14)])

g′1,t(x+ y)− g′1,t(x) − g′1,t(y)

= R(1)
ǫ (t,y/2,x+ y/2)−Rǫ(t,x) −R(1)

ǫ (t,y/2,y/2)

:= R(2)
ǫ (t,x,y) (64)

where

|R(2)
ǫ (t,x,y)| ≤ 15

2p4
ǫ (65)

for

‖t‖ ≤ T/2, ‖x‖ ≤ T, ‖y‖ ≤ 2T, (66)

‖t+ y/2‖ ≤ T, ‖x+ y/2‖ ≤ T. (67)

Now apply Lemma 4 to (64) to obtain (see [45, Eq. (22)])

∣∣g′1,t(x)− cTt x
∣∣ ≤ 15(4d− 1)

2p4
ǫ (68)

for ‖t‖ ≤ T/2, ‖x‖ ≤ T/2 and where ct ∈ Cd depends on t.

Moreover, the relation (57) implies

∣∣g′2,t(x) − cTt x
∣∣ ≤ 15(4d− 1) + 3

2p4
ǫ ≤ 30d

p4
ǫ. (69)

Inserting (56) into (68) and (69) gives

gi(x+ t)− gi(x) − gi(t)− cTt x = R
(3)
ǫ,i,1(t,x) (70)

gi(x+ t)− gi(x) − gi(t)− cTx t = R
(3)
ǫ,i,2(t,x) (71)

for i = 1, 2 and ‖t‖ ≤ T/2, ‖x‖ ≤ T/2, where (71) follows

because g′1,t(x) is symmetric with respect to x and t, and

where for i = 1, 2 we have

∣∣∣R(3)
ǫ,i,1(t,x)

∣∣∣ ≤ 30d

p4
ǫ,

∣∣∣R(3)
ǫ,i,2(t,x)

∣∣∣ ≤ 30d

p4
ǫ. (72)

We emphasize that the vectors ct and cx in (70)-(71) do

not depend on i, which is important to establish a common

covariance matrix for X1 and X2 in what follows.

We continue to work with g1(t) since the same steps follow

for g2(t). Equations (70)-(71) suggest that the symmetric

function

g̃1(t,x) := g′1,t(x) = g1(x+ t)− g1(x) − g1(t) (73)

has an “almost” symmetric bilinear form, namely

g̃1(t,x) =
d∑

k=1

d∑

ℓ=1

tk xℓ g̃1(ek, eℓ)︸ ︷︷ ︸
:= −Q̃k,ℓ

= −tT Q̃x (74)

where Q̃T = Q̃. More precisely, note that ‖Tek/2‖ = T/2
and we have (discarding the dependence of the errors on t,x
where convenient)

g̃1(t,x)
(a)
= R

(3)
ǫ,1,2 + cTx

(
d∑

k=1

2tk
T

T

2
ek

)

(b)
= R

(3)
ǫ,1,2 +

d∑

k=1

2tk
T

[
R̃

(3)
ǫ,1,k + cTTek/2

(
d∑

ℓ=1

xℓeℓ

)]
(75)

where step (a) follows by (71) and step (b) follows by using

(70)-(71) to write

cTx

(
Tek
2

)
= cTTek/2

x+ R̃
(3)
ǫ,1,k(x) (76)

for R̃
(3)
ǫ,1,k(x) := R

(3)
ǫ,1,1(Tek/2,x) − R

(3)
ǫ,1,2(Tek/2,x). Ob-

serve that

∣∣∣R̃(3)
ǫ,1,k(x)

∣∣∣ ≤ 60d

p4
ǫ. (77)
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Repeating the same steps for g̃1(x, t) and averaging, we get

the symmetric bilinear form6 (see [45, Eq. (24)])

g̃1(t,x) = R(4)
ǫ +

d∑

k=1

d∑

ℓ=1

tk xℓ
1

T

(
cTTek/2

eℓ + cTTeℓ/2
ek

)

︸ ︷︷ ︸
:= −Q̃k,ℓ

= R(4)
ǫ − tTQ̃ x (78)

where ‖t‖ ≤ T/2 gives

∣∣∣
∑d

k=1
2tk
T R̃

(3)
ǫ,1,k

∣∣∣ ≤ 60d
p4 ǫ and thus

∣∣∣R(4)
ǫ (t,x)

∣∣∣ ≤ 90d

p4
ǫ. (79)

Let Q̃R, Q̃I be the real and imaginary parts of Q̃. Note that

g̃1(−t,−x)∗ = g̃1(t,x) so taking complex-conjugates in (78)

gives

−tTQ̃ x+R(4)
ǫ (t,x) = −(tTQ̃ x)∗ +R(4)

ǫ (−t,−x)∗. (80)

We thus have

−j tT Q̃Ix =
1

2

(
R(4)

ǫ (−t,−x)∗ −R(4)
ǫ (t,x)

)
(81)

and therefore (78) is

g1(x + t)− g1(x) − g1(t)

= −tTQ̃Rx+
1

2

(
R(4)

ǫ (−t,−x)∗ +R(4)
ǫ (t,x)

)
(82)

where Q̃R is symmetric. Now write the solution of (82) in the

form

g1(t) = tT m̃1 −
1

2
tTQ̃Rt+ g(t) (83)

where m̃1 ∈ Cd and g(t) is some function.7 Inserting (83)

into (82) gives

|g(x+ t)− g(x)− g(t)| ≤ 90d

p4
ǫ. (84)

Again applying Lemma 4 we obtain

g1(t) = tT m̂1 −
1

2
tTQ̃Rt+R(5)

ǫ (t) (85)

where m̂1 ∈ Cd and
∣∣∣R(5)

ǫ (t)
∣∣∣ ≤ 90d(4d− 1)

p4
ǫ. (86)

Let m̂1,R, m̂1,I be the real and imaginary parts of m̂1. Since

g1(−t)∗ = g1(t) we have

tTm̂1,R =
1

2

(
R(5)

ǫ (−t)∗ − R(5)
ǫ (t)

)
. (87)

Combining (85) and (87), we obtain (see [45, Eq. (32)])

g1(t) = jtTm̂1,I −
1

2
tTQ̃Rt+R(6)

ǫ (t) (88)

6One may alternatively prove the symmetry and bilinearity by using the
stability of quadratic functional equations, see Appendix B. In particular, one
can apply Lemma 25 to (64) and obtain an expression like (78) directly.

7The subscript of m̃1 emphasizes that this vector is specific to g1(t) while
for g2(t) one may choose a vector m̃2 other than m̃1. On the other hand, the

matrix Q̃R is common to g1(t) and g2(t) since ct and cx are independent
of i in (70)-(71).

where ‖t‖ ≤ T/2 and

∣∣∣R(6)
ǫ (t)

∣∣∣ ≤ 360d2

p4
ǫ. (89)

Next, although Q̃R is symmetric, it might not be a covari-

ance matrix, i.e., it might not be positive semi-definite. To

address this issue, note that |f1(t)| ≤ 1 implies Re{g1(t)} ≤ 0
and therefore (88)-(89) give

tTQ̃Rt ≥ 2Re{R(6)
ǫ (t)} ≥ −720d2

p4
ǫ. (90)

We use d‖t‖22/‖t‖2 ≥ 1 to bound

min
‖t‖=T/2

tT
(
Q̃R +

d

(T/2)2
720d2

p4
ǫ Id

)

︸ ︷︷ ︸
:= Q̂R

t ≥ 0 (91)

and thus have Q̂R � 0. We now rewrite (88) as

g1(t) = jtTm̂1,I −
1

2
tTQ̂Rt+R(7)

ǫ (t) (92)

where we use ‖t‖2 ≤ ‖t‖ ≤ T/2 to bound

∣∣∣R(7)
ǫ (t)

∣∣∣ ≤ 360d2(d+ 1)

p4
ǫ. (93)

We thus have

360d2(d+ 1)

p4
ǫ ≥

∣∣∣∣g1(t)− tT
(
jm̂1,I −

1

2
Q̂Rt

)∣∣∣∣
(a)
= |ln f1(t)− lnΦ1(t)|
(b)

≥ ln

(
1 +

∣∣∣∣
f1(t)

Φ1(t)
− 1

∣∣∣∣
)

(94)

where (a) follows by choosing Φ1(t) to be the Gaussian c.f.

(46) with i = 1, m̂1 = m̂1,I and Q̂ = Q̂R; (b) follows since

| ln z| ≥ ln(1 + |z − 1|) for any complex value z.8 We obtain

a similar result for g2(t) and thus have
∣∣∣∣
fi(t)− Φi(t)

Φi(t)

∣∣∣∣ ≤ exp

(
360d2(d+ 1)

p4
ǫ

)
− 1 (95)

for i = 1, 2, ‖t‖ ≤ T/2, and the Gaussian c.f.s (46).

To obtain (45), observe that for 0 ≤ x ≤ 1 we have 1+x ≤
ex ≤ 1 + 2x. Thus, if

ǫ ≤ p4

360d2(d+ 1)
(96)

then we obtain C(ǫ) as in (47).

B. Proof of Theorem 10

Consider first ǫ = 0. If we follow the steps of Sec. IV-A, in

(55) we may set Rǫ(t1, t2) = 0 and can therefore follow all

the remaining steps as if p > 0 even if |f1(t)| = 0 for some

t. In other words, we can discard the constraint (44) and set

T =∞ in Theorem 9 to recover Theorem 1.

Consider next ǫ > 0 for which we study two cases. First,

if |fi(t)| ≥ p > 0 for all t then we can choose T = ∞
8The series expansion of exp(z′) gives | exp(z′)−1| ≤ exp |z′|−1. Now

choose z′ = ln z, rearrange, and take logarithms.
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in Theorem 9 and obtain (48) because |Φi(t)| ≤ 1 in (45).

The more difficult case is if we cannot find a p for which

|fi(t)| ≥ p > 0 for all t. The following proof is based on a

recursive argument similar to the one in [46]. One novelty is

applying Lemma 2 to deal with random vectors.

To begin, suppose that the distributions of Xi, i = 1, 2,

are concentrated on two hyperplanes Si + mi ⊆ Rd, where

Si is a linear subspace of Rd. Let t be in the subspace S⊥1
orthogonal to S1. We then have f1(t) = ejt

T m1 and (45)

gives e−tT Q̂t/2 ≥ 1 − C(ǫ). Suppose next that t /∈ S⊥2 so

that |f2(t)| < 1 and (45) gives e−tT Q̂t/2 ≤ |f2(t)| + C(ǫ).
However, for sufficiently small ǫ, this is a contradiction. We

may thus assume that S⊥1 ⊆ S⊥2 and hence S2 ⊆ S1.

Repeating the argument for t ∈ S⊥2 we find that S1 ⊆ S2
and hence S1 = S2.

Next, if S1 has dimension d′ with d′ < d, then we may study

the d′-dimensional distributions on this hyperplane9. That is,

we may as well choose Φi(t) so that |Φi(t)| = |fi(t)| = 1
for t ∈ S⊥1 by selecting Q̂ such that tT Q̂t = 0 if t ∈ S⊥1 .

So suppose the distributions of Xi, i = 1, 2, are concen-

trated on the same hyperplane of dimension at least one. Since

fi(0) = 1 and fi is continuous, we may choose T > 0
sufficiently small such that the bounds of (22) and (44) are

valid. For example, we will be interested in ‖t‖ = T/4 for

which there are positive c, p such that

p < |fi(t)| ≤ 1− c T 2

16
. (97)

Moreover, for sufficiently small ǫ we have C(ǫ) ≤ c T 2/32
and (45) gives |Φi(t)| ≤ 1− c T 2/32.

Define rǫ,i(t) := fi(t) − Φi(t) and consider the following

steps based on [46, Eq. (13)]:

|rǫ,i(2t)|
(a)

≤
∣∣∣f2

i |fi|2 − Φ2
i |Φi|2

∣∣∣+ 5ǫ

=
∣∣∣ (fi − Φi) ·

(
fi|fi|2 + |fi|2Φi + f∗

i Φ
2
i

)

+ (fi − Φi)
∗ · Φ3

i

∣∣∣+ 5ǫ

≤
(
|fi|3 + |fi|2|Φi|+ |fi||Φi|2 + |Φi|3

)
· |rǫ,i(t)| + 5ǫ

≤ (|fi|+ |Φi|)3 |rǫ,i(t)| + 5ǫ

≤ (2|Φi|+ |rǫ,i(t)|)3 |rǫ,i(t)| + 5ǫ (98)

where step (a) follows from (27) and Lemma 5 with T =∞,

and where we have written fi = fi(t) and Φi = Φ(t) for

notational convenience.

Under the conditions of Theorem 9, and using |Φi(t)| ≤ 1,

we proved that

|rǫ,i(t)| ≤ C(ǫ), ‖t‖ ∈ [0, T/2] (99)

for i = 1, 2. Recall also that |Φi(c
′t)| is non-increasing in

c′ ≥ 0 for any t. Now consider ‖t‖ = T/4 and define

t0 := argmax
t: t∈S, ‖t‖=T/4

|Φi(t)| (100)

9For example, if d′ = 0 then the distribution is a single point mass which
is a Gaussian distribution with zero variance. As a more interesting example,
if d ≥ 2 and the distribution is two distinct point masses, then the distribution
is concentrated on a line, and we have d′ = 1.

and note that |Φi(t0)| ≤ 1 − c T 2/32 < 1. Further define

C0(ǫ) := C(ǫ) so that using (98) we have

|rǫ,i(t)| ≤ C1(ǫ), ‖t‖ ∈ [T/2, T ] (101)

where

C1(ǫ) := (2|Φi(t0)|+ C0(ǫ))
3
C0(ǫ) + 5ǫ. (102)

By induction, we have

|rǫ,i(t)| ≤ Ck(ǫ), ‖t‖ ∈ [2k−2T, 2k−1T ] (103)

for k ≥ 1 where

Ck(ǫ) :=
(
2|Φi(2

k−1t0)|+ Ck−1(ǫ)
)3

Ck−1(ǫ) + 5ǫ. (104)

Note that since C0(ǫ) = C(1) ǫ, the error term Ck(ǫ) is a

polynomial in ǫ with constant coefficient zero and all other

coefficients positive.

Next, since |Φi(2
k−1t0)| is non-increasing with k, if

Ck(ǫ) ≤ Ck−1(ǫ) then by induction Cℓ(ǫ) ≤ Ck−1(ǫ) for

all ℓ ≥ k.10 More generally, if Ck(ǫ) ≤ Ci(ǫ) for any k > i
then by induction Ck+ℓ(ǫ) ≤ Ci+ℓ(ǫ) for ℓ ≥ 0. We use these

bounds to complete the proof.

Recall that |Φi(t0)| < 1 and |Φi(2
k−1t0)| = |Φi(t0)|4

k−1

(see (27)). Thus, for any x > 0 there is a smallest positive k
such that 2|Φi(2

k−1t0)| ≤ x, and this k is independent of ǫ.11

For x < 2−1/3 ≈ 0.7937, we can therefore determine k and

also a sufficiently small ǫ such that

(2|Φi(2
k−1t0)|+ Ck−1(ǫ))

3 ≤ 1

2
. (105)

Now, if Ck(ǫ) ≤ Ck−1(ǫ) then we have the desired result (48)

with

C̃ = max
0≤i≤k−1

Ci(1). (106)

But if Ck(ǫ) > Ck−1(ǫ) then (104) and (105) give the bound

Ck−1(ǫ) < 10ǫ ≤ C0(ǫ). We thus again have (106).

C. Proof of Theorem 11

The fourth moments of Yg,i are bounded if the second

moments of Yg,i are bounded [55, p. 148]. Thus, Theorem 10,

Lemma 7, and Lemma 8 with Yq = Yg,i give (50) with

B(ǫ) = B3(C̃ǫ).
To prove (49), we apply Lemma 6 with (see (28))

ess sup
y∈Rd

pYi
(y) ≤ φZi

(0) = det (2πQZi
)
−1/2

(107)

ess sup
y∈Rd

φi(y) ≤ det (2πQZi
)
−1/2

+B1(C̃ǫ) (108)

and α = 2 for which (50) gives

E
[
‖Yg,i‖22

]
≤ E

[
‖Yi‖22

]
+B3(C̃ǫ) d. (109)

10For example, for d = 1 we have C0(ǫ) = 1440ǫ/p4. Thus, if the cubic
term satisfies (2|Φi(t0)|+C0(ǫ))3 ≤ (1435/1440)p4 then C1(ǫ) ≤ C0(ǫ)
and also Cℓ(ǫ) ≤ C0(ǫ) for all ℓ ≥ 0.

11This argument does not work if |fi(t0)| = 1 because then ǫ → 0 requires
|Φi(t0)| → 1.
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The random vectors with p.d.f.s pYi
and φi are thus in the

class (2, ν,m)−ACd of Lemma 6 where for sufficiently small

ǫ we may choose

m = det (2πQZi
)−1/2 + 1, ν = max

i=1,2
E
[
‖Yi‖22

]
+ 1.

Lemmas 8 and 6 now give

|h(pYi
)− h(φi)|

≤ ‖pYi
− φi‖ ·

(
c1 − c2 log ‖pYi

− φi‖
)

≤ B2(ǫ)
(
c1 − c2 logB2(ǫ)

)
:= B4(ǫ) (110)

where

c1 =
d

2

∣∣∣∣log
4νπe

d

∣∣∣∣ + log
me2

2
+ 1, c2 =

d

2
+ 2 (111)

and where we choose B2(ǫ) large enough to be valid for both

i = 1, 2. We thus have B4(ǫ)→ 0 as ǫ→ 0 and B4(ǫ) = 0 if

ǫ = 0. Finally, we may choose B(ǫ) = max(B3(C̃ǫ), B4(ǫ)).

D. Discussion

1) Extending Existing Results: Theorems 9 and 10 include

Bernstein’s Theorem as a special case, and they extend its

stability from scalars to vectors. Note that [46] treats d = 1 but

does not prove a common variance for X1 and X2. Moreover,

the scaling of Theorems 9 and 10 is proportional to ǫ which

is the best possible in general; see [46] and (10).

2) Common Covariance Matrix: We could have chosen

different covariance matrices Q̂i for i = 1, 2 in the proof and

statement of Theorem 9. The bound (57) then ensures that

Q̂1 is close to Q̂2. In contrast, choosing Q̂1 = Q̂2 requires

reducing ǫ to maintain the same approximation precision. One

advantage of the former approach is that one can treat each

covariance matrix separately, e.g., one can select the Q̂i so

that tT Q̂it = 0 if t ∈ S⊥i without requiring S1 = S2.

3) Potential Pitfalls: The proof of Theorem 10 had two

potential problematic cases permitted by perturbing Cauchy’s

functional equation:

• |fi(t)| = 1 but Φi in Theorem 9 has tT Q̂t > 0;

• |fi(t)| < 1 but Φi in Theorem 9 has tT Q̂t = 0.

These two cases could have invalidated Theorem 10 because,

in either case, fi is not stable with respect to the chosen Φi.

Fortunately, however, Lemma 2 lets one resolve both cases.

The first case must correspond to a degenerate distribution

for which one can choose Q̂ to have zero eigenvalues in the

subspace orthogonal to the non-degenerate hyperplane. The

second case can be avoided because Lemma 2 lets one choose

a sufficiently small ǫ for which tT Q̂t > 0.

4) δ-Dependent X1 and X2: Theorems 9-11 generalize to

X1 and X2 that are δ-dependent for δ > 0 by replacing ǫ with

ǫ+4δ. We state this formally as an extension of Theorem 10.

Theorem 12. Suppose X1 and X2 are δ-dependent random

vectors, and X1 + X2 and X1 −X2 are ǫ-dependent. Then

for all ǫ + 4δ below some positive threshold, for all t ∈ Rd,

and for i = 1, 2 we have

|fi(t) − Φi(t)| ≤ C̃(ǫ+ 4δ) (112)

for the Gaussian c.f.s (46), and for a constant C̃ independent

of ǫ + 4δ and t. In particular, if δ = 0 then we recover

Theorem 10, and if ǫ = δ = 0 then X1 and X2 are Gaussian

with the same covariance matrix.

Proof. Consider the proof of Theorem 9 and assume that X1

and X2 are (δ, 2T )-dependent. For the three c.f.s on the right

hand sides of (32) and (33) we have

|fX1,X2
(t1 + t2, t1 − t2)

−fX1
(t1 + t2)fX2

(t1 − t2)| ≤ δ (113)

|fX1,X2
(t1, t1)− fX1

(t1)fX2
(t1)| ≤ δ (114)

|fX1,X2
(t2,−t2)− fX1

(t2)fX2
(−t2)| ≤ δ (115)

for all ‖t1‖ ≤ T , ‖t2‖ ≤ T . Similar to (34) and (35), by

combining (32), (33) with (113)-(115) we have

f1(t1 + t2)f2(t1 − t2)

= f1(t1)f1(t2)f2(t1)f2(−t2) + rǫ,δ(t1, t2) (116)

where

|rǫ,δ(t1, t2)| ≤ ǫ+ 4δ and ‖ti‖ ≤ T, i = 1, 2. (117)

The remaining steps follow by replacing ǫ ← ǫ + 4δ in the

proofs of Theorems 9 and 10.

V. SOFT DOUBLING FOR AGN CHANNELS

This section shows how to combine the stability of Bern-

stein’s theorem with the doubling argument in [17] to obtain

a soft doubling argument that does not require the existence

of maximizers. We consider point-to-point channels, product

channels, and broadcast channels with AGN that have appli-

cations to cellular wireless networks [56].

A. Point-to-Point Channels

An AGN channel has output

Y = X+ Z (118)

where X,Y,Z ∈ Rd and Z ∼ N (0,QZ) is independent of

X. Consider the optimization problem:

V (Q) := sup
X: E[XXT ]�Q

I(X;Y). (119)

We use Theorem 11 and a soft doubling argument to prove

the following known result.

Proposition 13. For the AGN channel (118) we have

I(X;Y) ≤ 1

2
log

det (QX +QZ)

detQZ

(120)

with equality if X is Gaussian.

Proof. Equality holds in (120) if X is Gaussian, so it remains

to prove the inequality. Note that we may assume E [X] = 0

because I(X;Y) does not depend on translation of X.

Now consider Y1 = X1 + Z1 and Y2 = X2 + Z2, where

X1,X2 ∼ PX and Z1,Z2 ∼ PZ are mutually independent.

Further, define the vectors

X+ :=
1√
2
(X1 +X2), X− :=

1√
2
(X1 −X2). (121)

9



Note that E
[
X+X

T
+

]
� Q and E

[
X−XT

−
]
� Q. Also, define

Y+ :=
1√
2
(Y1 +Y2), Y− :=

1√
2
(Y1 −Y2) (122)

Z+ :=
1√
2
(Z1 + Z2), Z− :=

1√
2
(Z1 − Z2) (123)

so that Y+ = X++Z+ and Y− = X−+Z− where the noise

vectors Z+,Z− ∼ PZ are independent.

Now suppose ǫ > 0 and

I(X;Y) = V (QX)− ǫ. (124)

We then have

2V (QX) = I(X1;Y1) + I(X2;Y2) + 2ǫ

= I(X1X2;Y1Y2) + 2ǫ

= I(X+X−;Y+Y−) + 2ǫ

(a)
= I(X+;Y+)︸ ︷︷ ︸
≤ V (QX)

+ I(X−;Y−)︸ ︷︷ ︸
≤ V (QX)

−I(Y+;Y−) + 2ǫ

≤ 2V (QX)− I(Y+;Y−) + 2ǫ (125)

where step (a) follows by

p(y+,y−|x+,x−) = p(y+|x+) p(y−|x−)

for all x+,x−,y+,y−. Lemma 3 and (125) give

∣∣fY+,Y−
(t1, t2)− fY+

(t1)fY−
(t2)

∣∣

≤
√
2I(Y+;Y−) ≤ 2

√
ǫ (126)

so Y+ and Y− are (2
√
ǫ)-dependent.

For sufficiently small ǫ, Theorem 11 gives

I(X;Y) = h(Y1)− h(Z)

≤ h(Yg,1)−
1

2
log det(2πQZ) +B

(
2
√
ǫ
)

=
1

2
log

detQYg,1

detQZ

+B
(
2
√
ǫ
)

(127)

where for some mean vector mg,1 we have

QYg,1
= E

[
Yg,1Y

T
g,1

]
−mg,1m

T
g,1

� E
[
Y1Y

T
1

]
+B

(
2
√
ǫ
)
Id

(a)
= QX +QZ +B

(
2
√
ǫ
)
Id (128)

and step (a) follows by E [X] = 0. Moreover, the ǫ in (124)

can be chosen as close to zero as desired because V (QX) is

a supremum. Finally, observe that if I(X;Y) ≤ J + ǫ for all

ǫ > 0 then I(X;Y) ≤ J .

Note that the proof of the inequality (120) does not require

the existence of a maximizer. Also, a maximizer may not be

unique. Proving existence and uniqueness is interesting but not

crucial for the communications problem.

B. Product Channels

The proof of Proposition 13 uses an AGN product channel

with two outputs Y1 = X1 + Z1 and Y2 = X2 + Z2 where

Z1 and Z2 have the same covariance matrix. More generally,

suppose the covariance matrices are different, i.e., consider the

AGN product channel

Y1 = X1 + Z1 (129)

Y2 = X2 + Z2 (130)

where Z1 ∼ N (0,QZ1
) and Z2 ∼ N (0,QZ2

) are non-

degenerate and independent, and (X1,X2) is independent of

(Z1,Z2). Since the noise is non-degenerate, this channel is

equivalent to the AGN product channel considered in [17,

Sec. I.A], namely12

Y11 = G1X1 + Z11 (131)

Y22 = G2X2 + Z22 (132)

where G1 = Q
−1/2
Z1

, G2 = Q
−1/2
Z2

, the noise vectors

Z11,Z22 ∼ N (0, Id) are independent, and (X1,X2) is in-

dependent of (Z11,Z22).
We need a statement similar to Proposition [17, Prop. 2]

which states that Y11,Y22 are independent if and only if

X1,X2 are independent. This is important because X1,X2 are

required to be independent to apply Bernstein’s theorem. So

the question is whether a similar result holds for ǫ-dependence.

Unfortunately, this does not seem to work. Observe that

fGX(t) = fX(GT t) and therefore

|fY11,Y22
(t1, t2)− fY11

(t1)fY22
(t2)|

=
∣∣fX1,X2

(
GT

1 t1,G
T
2 t2
)
− fX1

(
GT

1 t1
)
fX2

(
GT

2 t2
)∣∣

· |ΦZ11
(t11)| · |ΦZ22

(t2)| (133)

where ΦZii
(t) = e−

1
2
‖t‖2 ≤ 1 for i = 1, 2. Thus, if X1,X2

are ǫ-dependent then Y11,Y22 are ǫ-dependent. However, the

converse statement, namely that if Y11,Y22 are ǫ-dependent

then X1,X2 are ǫ-dependent, is not valid in general.13

We therefore take a different approach. Consider the noise

Z′
1 ∼ N (0,QZ1

) and Z′
2 ∼ N (0,QZ2

) and suppose

X1,X2,Z1,Z2,Z
′
1,Z

′
2 are mutually independent. Define the

physically degraded channels

Ỹ1 = Y1 + Z′
2 = X1 + Z̃1 (134)

Ỹ2 = Y2 + Z′
1 = X2 + Z̃2 (135)

where Z̃1 := Z1+Z′
2 and Z̃2 := Z2+Z′

1 are independent and

have the same covariance matrix Q12 = QZ1
+QZ2

. Observe

that Ỹ1, Ỹ2 are independent.

Next, consider X+,X− as in (121) and define

Y1,+ = X+ + Z1, Y2,− = X− + Z2 (136)

Y11,+ = G1X+ + Z11, Y22,− = G2X− + Z22 (137)

Ỹ+ =
1√
2
(Ỹ1 + Ỹ2), Ỹ− =

1√
2
(Ỹ1 − Ỹ2). (138)

12We replace the G11,G22 in [17, Sec. I.A] with G1,G2.
13The robust ǫ-dependence in Appendix F does apply in both directions:

Lemma 26 states that Y11,Y22 are robustly ǫ-dependent if and only if
X1,X2 are robustly ǫ-dependent.
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We have

I(Y11,+;Y22,−)
(a)
= I(Y1,+;Y2,−)

(b)

≥ I(Ỹ+; Ỹ−) (139)

where step (a) follows because Y11,+ = G1Y1,+ and

Y22,− = G2Y2,− for invertible G1,G2, and step (b) follows

because Ỹ+, Ỹ− are degraded versions of Y1,+,Y2,−. Note

that one cannot write the distributions of Y11,+ and Y22,−
as the distributions of the respective 1√

2
(Y11 + Y22) and

1√
2
(Y11 − Y22) since G1 and G2 are different in general.

This is why we introduced Ỹ1, Ỹ2 for which we can write

the forms (138).

We now use the ǫ-dependence of Y11,+,Y22,− to show

that X1,X2 are approximately Gaussian without considering

X+,X− directly. We refine the proof of Theorem 9 to obtain

modified versions of Theorems 10 and 11 for the general AGN

product channel of interest.

Theorem 14. Consider the AGN product channel (131)-(132)

and suppose I(Y11,+;Y22,−) ≤ ǫ. Then for all ǫ below some

positive threshold, for all t ∈ Rd, and for i = 1, 2 we have

|fXi
(t) − Φi(t)| ≤ C̃

√
2ǫ (140)

for the Gaussian c.f.s (46), and for a constant C̃ independent

of ǫ and t.

Proof. The bound (139) gives I(Ỹ+; Ỹ−) ≤ ǫ and Lemma 3

implies that Ỹ+ and Ỹ− are
√
2ǫ-dependent. We now apply

the steps of the proof of Theorem 9 with Ỹ1, Ỹ2 replacing

X1,X2. Moreover, observe that g
Ỹi

(t) = gXi
(t)− 1

2t
TQ12t

so that (88) becomes

gX1
(t) = jtTm̂1,I −

1

2
tT
(
Q̃R −Q12

)
t+R

(6)√
2ǫ
(t).

(141)

Following the same steps starting with (90), we may write

(92) as

gX1
(t) = jtTm̂1,I −

1

2
tTQ̂Rt+R

(7)√
2ǫ
(t) (142)

where Q̂R � 0 is a covariance matrix that is perturbed version

of Q̃R−Q12 rather than Q̃R. Continuing as for the proofs of

Theorems 9 and 10, we obtain (140).

Observe that the X1,X2 in Theorem 14 do not necessar-

ily have densities. However, the following result shows that

once the X1,X2 are characterized as approximately Gaussian

with the same covariance matrix Q̂, then the Y11,Y22 are

approximately Gaussian with covariance matrices based on Q̂.

Moreover, both Y11 and Y22 have densities.

Corollary 15. Under the conditions of Theorem 14, we have

∣∣∣fYii
(t) − Φ̃i(t)

∣∣∣ ≤ C̃
√
2ǫ (143)

for all t ∈ Rd, for Gaussian c.f.s Φ̃i(t) with covariance

matrices GiQ̂GT
i + Id, i = 1, 2, and for the C̃ in (140).

Proof. Using (140), we have

∣∣fYii
(t)− Φi

(
GT

i t
)
ΦZii

(t)
∣∣

=
∣∣fXi

(
GT

i t
)
− Φi

(
GT

i t
)∣∣

︸ ︷︷ ︸
≤ C̃
√
2ǫ

· |ΦZi
(t)|︸ ︷︷ ︸
≤ 1

(144)

where for some mean vectors m̂i we have (see (46))

Φi

(
GT

i t
)
ΦZii

(t) = et
TGi(jm̂i− 1

2
Q̂GT

i t) · e− 1
2
‖t‖2

. (145)

The covariance matrix of (145) is GiQ̂GT
i + Id.

Theorem 16. Consider the AGN product channel (131)-

(132) and suppose X1,X2 have finite second moments and

I(Y11,+;Y22,−) ≤ ǫ. Then for all ǫ below some positive

threshold and for i = 1, 2 and ǫ′ =
√
2ǫ we have

|h(Yii)− h(Yg,i)| ≤ B (ǫ′) (146)

where Yg,i ∼ N
(
mi,GiQ̂GT

i + Id

)
and

E
[
Yg,iY

T
g,i

]
� E

[
YiiY

T
ii

]
+B (ǫ′) Id (147)

where B(ǫ′)→ 0 as ǫ′ → 0 and B(ǫ′) = 0 if ǫ′ = 0.

Proof. Use the same steps as for the proof of Theorem 11 in

Sec. IV-C but for (143). For example, Lemmas 7 and 8 give

(147) with B(ǫ′) = B3(C̃ǫ′).

C. Broadcast Channels

The two-receiver AGN broadcast channel has

Y1 = G1X+ Z1 (148)

Y2 = G2X+ Z2 (149)

where G1,G2 are invertible, and Z1,Z2 ∼ N (0, Id) are

independent. Note that the input X is common to both sub-

channels and Z1,Z2 have the same covariance matrix. Define

the expressions (see [17])

sλ(X) := I(X;Y1)− λI(X;Y2) (150)

sλ(X|V) := I(X;Y1|V)− λI(X;Y2|V) (151)

Sλ(X) := sup
p(v|x):V−X−Y1Y2

sλ(X|V) (152)

Vλ(Q) := sup
X: E[XXT ]�Q

Sλ(X) (153)

where Sλ(X) is the upper concave envelope of sλ(X) as a

function of p(x). We will need the following results concern-

ing sλ(X) and sλ(X|V).

Lemma 17. If λ ≥ 1 then

sλ(X) ≤ 1

2
log

det (Q′
1 +Q′

2)

detQ′
1

(154)

where Q′
k = (GT

k Gk)
−1 for k = 1, 2.
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Proof. Let Z′
k = G−1

k Zk so that Q′
k = (GT

kGk)
−1 is the

covariance matrix of Z′
k for k = 1, 2. We have

sλ(X) ≤ I(X;X+ Z′
1)− I(X;X+ Z′

2)

= [h(X+ Z′
1)− h(X+ Z′

2)]−
1

2
log

detQ′
1

detQ′
2

≤ [h(X+ Z′
1 + Z′

2)− h(X+ Z′
2)]︸ ︷︷ ︸

= I(X+ Z′
1 + Z′

2;Z
′
1)

−1

2
log

detQ′
1

detQ′
2

≤ I(Z′
1 + Z′

2;Z
′
1)−

1

2
log

detQ′
1

detQ′
2

(155)

and evaluating (155) gives (154).

Lemma 18. For every pair (V,X) there is a pair (V′,X′)
with sλ(X

′|V′) = sλ(X|V) and E
[
X′(X′)T

]
= E

[
XXT

]
,

and where V′ has alphabet of cardinality d(d + 1)/2 + 1.

Proof. The result follows by the support lemma in [50,

Lemma 15.4] that we rephrase with our notation (see also [17,

pp. 2099-2100]). Let P(Rd) be the family of distributions on

Rd and consider the following D = d(d+1)/2+1 real-valued

continuous functions on P(Rd):

fkℓ(PX) = E [XkXℓ] , 1 ≤ k ≤ d, 1 ≤ ℓ ≤ k (156)

sλ(PX) = sλ(X) (157)

where PX ∈ P(Rd) and where we have abused notation by

writing sλ(PX) with argument PX rather than X. Then for any

probability distribution PV on the Borel σ-algebra of P(Rd)
there are D distributions PX(i), i = 1, . . . , D, in P(Rd) and

a random variable V′ with alphabet {1, . . . , D} such that

E [XkXℓ] =

∫

P(Rd)

fkℓ(P )PV(dP )

=

D∑

i=1

PV′ (i) fkℓ(PX(i)) (158)

for 1 ≤ k ≤ d, 1 ≤ ℓ ≤ k and

sλ(X|V) =

∫

P(Rd)

sλ(P )PV(dP )

=

D∑

i=1

PV′(i) sλ(PX(i)). (159)

The right-hand side of (159) is sλ(X
′|V′) where the distribu-

tion of X′ conditioned on the event {V′ = i} is PX(i).

We now re-prove a key result from [57], which states that a

Gaussian X is optimal for the problem (153) and one does not

require V. This theorem was also re-proved in [17, Thm. 1]

through a series of propositions. Our proof follows similar

steps, but we do not require the existence of a maximizer,

and we replace the independence result [17, Prop. 2] with

Theorems 14 and 16.

Theorem 19 (See [57, Thm. 8]). If λ > 1 then we have

Vλ(Q) = sλ(Xg) for some Xg ∼ N (0, Q̂) with Q̂ � Q.

Proof. We may again assume E [X] = 0. Consider a product

AGN broadcast channel with sub-channels i = 1, 2 for which

the channel outputs are

Y1i = G1Xi + Z1i (160)

Y2i = G2Xi + Z2i (161)

where X1,X2 ∼ N (0,QX) and Z11,Z12,Z21,Z22 ∼
N (0, Id) are mutually independent. Define (see (125) and [17,

p. 2091])

sλ(X|V) = Vλ (Q)− ǫ (162)

(Vi,Xi) ∼ PV,X, i = 1, 2 (163)

V12 = (V1,V2) (164)

where (V1,X1) and (V2,X2) are independent. Also consider

the X+,X− in (121) and define

Yk+ :=
1√
2
(Yk1 +Yk2), Yk− :=

1√
2
(Yk1 −Yk2)

(165)

Zk+ :=
1√
2
(Zk1 + Zk2), Zk− :=

1√
2
(Zk1 − Zk2)

(166)

for k = 1, 2 so that

Yk+ = GkX+ + Zk+, Yk− = GkX− + Zk− (167)

and the noise vectors Z1+,Z1−,Z2+,Z2− ∼ N (0, Id) are

mutually independent. As a final definition, consider the

expression

sλ(Xℓ,Xm|V)

:= I(Xℓ,Xm;Y1ℓ,Y1m|V)− λI(Xℓ,Xm;Y2ℓ,Y2m|V)
(168)

for (ℓ,m) = (1, 2) and (ℓ,m) = (+,−). We study cases

where given V we have the Markov chain

(Y1ℓ,Y2ℓ)−Xℓ −Xm − (Y1m,Y2m). (169)

We can thus expand (168) as (see [17, p. 2090])

I(Xℓ;Y1ℓ|V,Y2m) + I(Xm;Y1m|V,Y1ℓ)

− λI(Xℓ;Y2ℓ|V,Y2m)− λI(Xm;Y2m|V,Y1ℓ)

− (λ− 1)I(Y1ℓ;Y2m|V). (170)

With the above definitions, we have

2Vλ(Q) = sλ(X1|V1) + sλ(X2|V2) + 2ǫ

= sλ(X1,X2|V12) + 2ǫ

= sλ(X+,X−|V12) + 2ǫ

(a)
= sλ(X+|V12,Y2−) + sλ(X−|V12,Y1+)

− (λ− 1)I(Y1+;Y2−|V12) + 2ǫ

≤ Sλ(X+)︸ ︷︷ ︸
≤ Vλ(Q)

+ Sλ(X−)︸ ︷︷ ︸
≤ Vλ(Q)

−(λ− 1)I(Y1+;Y2−|V12) + 2ǫ

(b)

≤ 2Vλ(Q)− (λ− 1)I(Y1+;Y2−|V12) + 2ǫ (171)
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where step (a) follows from (170) and step (b) follows by

E
[
X+X

T
+

]
� Q and E

[
X−XT

−
]
� Q. We thus have

I(Y1+;Y2−|V12) ≤ 2ǫ.

Lemma 18 states that V can have a finite alphabet with

d(d + 1)/2 + 1 letters. We are now faced with the prob-

lem that I(Y1+;Y2−|V12) is the expectation of I(v12) :=
I(Y1+;Y2−|V12 = v12) with respect to P (v12), and some

I(v12) could be large. We wish to bound the probability of

large I(v12), so define the event E := {I(V12) ≥ γ · ǫ}. The

Markov inequality gives

Pr [E ] ≤ E [I(V12)]

γ · ǫ ≤ 2

γ(λ− 1)
(172)

where the second step follows by (171). We can choose γ, ǫ
so that γ is large, ǫ is very small and γ · ǫ is small, e.g., we

choose γ = 1/
√
ǫ.

Next, if I(v12) is small then X1 and X2 are approximately

Gaussian conditioned on V12 = v12. However, we wish to

find a significant subset of such v12 for which the covariance

matrices of X1,X2 are the same, and for this we require the

subset to have the form S × S. Consider the following set of

high-probability letters:

S =

{
v : P (v) >

√
2

γ(λ− 1)

}
(173)

where γ is sufficiently large so that S has at least one letter.

The pairs v12 = (v1,v2) in S ×S thus have high probability:

Pr [V12 ∈ S × S] = Pr [V ∈ S]2

≥ 1− 2
∑

v∈Sc

P (v)

(a)

≥ 1− d(d+ 1)

√
2

γ(λ− 1)
(174)

where step (a) follows because there are at most d(d + 1)/2
letters in Sc. Moreover, for all v12 ∈ S × S we have

P (v12) >
2

γ(λ− 1)

(a)

≥ Pr [E ] =
∑

v′

12
:I(v′

12
)≥γ·ǫ

P (v′
12)

(175)

where (a) follows by (172). We thus have I(v12) < γ · ǫ so

that I(v12) is small, as desired.

So suppose v12 ∈ S × S. By Theorem 14 the c.f.s of X1

(conditioned on V1 = v1) and X2 (conditioned on V2 = v2)

are close to two Gaussian c.f.s with the same covariance matrix

Q̂. Moreover, since v1 and v2 are arbitrary in S, we can

choose the same Q̂ for all v12 ∈ S × S, but in general we

must decrease
√
ǫ for the same approximation precision.14 We

14Formally, this follows in two steps. First, fix ǫ and apply Theorem 9 with

the same Q̂ for a fixed v1 ∈ S and for any v2 ∈ S . In a second step, apply

Theorem 9 with the same Q̂ for each fixed v2 ∈ S and any v1 ∈ S . This
second step requires reducing ǫ for the same approximation precision, for the
same reason that the approximation (69) is weaker than (68).

abuse notation by continuing to use the same
√
ǫ. The bound

(146) of Theorem 16 gives

h(Y11|V12 = v12) ≤
1

2
log det

(
G1Q̂GT

1 + Id

)

+
d

2
log(2πe) + B(ǫ′) (176)

h(Y21|V12 = v12) ≥
1

2
log det

(
G2Q̂GT

2 + Id

)

+
d

2
log(2πe)− B(ǫ′) (177)

where we now must choose ǫ′ = 2ǫ1/4.

By (147) with E [X] = 0 we have

GkQ̂GT
k + Id + m̂km̂

T
k

� E
[
Yk1Y

T
k1|V12 = v12

]
+B(ǫ′)Id

= GkE
[
X1X

T
1 |V12 = v12

]
GT

k + (1 +B(ǫ′)) Id (178)

for k = 1, 2. The bounds (176)-(177) give

sλ(X1|V12 = v12)

= h(Y11|V12 = v12)− λh(Y21|V12 = v12)

− (d/2)(1− λ) log(2πe)

≤ sλ(Xg) +B(ǫ′)(1 + λ) (179)

where Xg ∼ N
(
m̂, Q̂

)
and thus

sλ(Xg) :=
1

2
log det

(
G1Q̂GT

1 + Id

)

− λ

2
log det

(
G2Q̂GT

2 + Id

)
. (180)

Moreover, we can re-write (178) as

Q̂ � E
[
X1X

T
1 |V12 = v12

]
+B(ǫ′)

(
GT

kGk

)−1
. (181)

Taking an expectation w.r.t. V12 = v12 and applying the

constraint E
[
X1X

T
1

]
� Q we have

Q̂ � E
[
X1X

T
1

]
+B(ǫ′)

(
GT

kGk

)−1

� Q+B(ǫ′)
(
GT

kGk

)−1
. (182)

Combining the above results, we have

sλ(X1|V1)
(a)
= sλ(X1|V12)

(b)

≤
∑

v12∈S×S
P (v12)sλ(X1|V12 = v12)

+
∑

v12∈(S×S)c

P (v12) ·
1

2
log

det (Q′
1 +Q′

2)

detQ′
1

(c)

≤ sλ(Xg) +B(ǫ′)(1 + λ)

+ d(d+ 1)

√
2

γ(λ− 1)
· 1
2
log

det (Q′
1 +Q′

2)

detQ′
1

(183)

where step (a) follows because (X1,V1) and V2 are inde-

pendent; step (b) follows by Lemma 17; and step (c) follows

by (174) and (179). Since (182)-(183) are valid for any ǫ > 0,

we find that

Vλ(Q) ≤ max
Q̂�Q

sλ(Xg) (184)
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which is the desired result.

Theorem 19 can be used to show that Gaussian signaling

is optimal for two-receiver broadcast channels with dedicated

(also called private) messages for each receiver; see [57,

Sec. IV.A] and [17, Sec. III.A]. Moreover, the method de-

scribed above extends to two-receiver broadcast channels with

a common message since the proof of Theorem 2 in [17] again

relies on bounding a term of the form I(Y1+;Y2−|V12).
We remark that [17, Sec. II.B] and Theorem 19 treat the

case λ > 1 while [57, Thm. 8] includes λ = 1. However, as

pointed out in [17, Remark 9], the case λ = 1 can be treated

by showing that a capacity function is convex and bounded

while the case λ < 1 can be treated by reversing the roles of

Y1 and Y2.

VI. CONCLUSIONS

The stability of Bernstein’s characterization of Gaussian

distributions was extended to vectors. Refined stability results

were derived for vectors with AGN. The theory was used

to develop a soft doubling argument that establishes the

optimality of Gaussian vectors for point-to-point and product

channels with AGN, and for a classic extremal inequality.

We conclude with a few remarks.

• It seems that soft doubling can replace hard doubling

in general. However, whether soft doubling can pro-

vide new inequalities and capacity theorems that hard

doubling cannot remains to be seen. For example, if a

communications model has a strict cost constraint such

as E
[
‖X‖2

]
< P , then one can turn to stability (as in

Theorems 10, 11, 14, 16) rather than, e.g., relaxing the

constraint to E
[
‖X‖2

]
≤ P , proving the existence of

a maximizer (if possible) and applying Theorem 1. In

this sense, stability is more flexible than requiring the

existence of maximizing distributions, just as suprema

are more flexible than maxima.

• Soft doubling provides capacity bounds for non-Gaussian

distributions, such as those for finite modulation alpha-

bets. For example, a non-Gaussian X will require ǫ
in (126) to be lower bounded by a positive number.

However, the constants C(ǫ) and C̃ in Theorems 9 and 10

will be large in general, so the new capacity bound will

hardly improve the bound with Gaussian X.

• One disadvantage of soft doubling is that one must

work with inequalities and perturbations, which leads

to additional proof steps. For example, in Sec. V-A the

bound (125) with ǫ = 0 shows that the best X is

Gaussian, while a few more steps are needed for ǫ > 0.

Similarly, in Sec. V-B we needed to develop a new device

to transfer ǫ-dependence of the channel output vectors to

the input vectors, and in Sec. V-C we needed to treat

conditioning more carefully than for ǫ = 0.

The above remarks point out that hard and soft doubling each

have their advantages and disadvantages, and which one to use

to prove capacity theorems is a matter of preference. Finally,

future work includes proving stability for generalizations of

Bernstein’s theorem such as in [3]–[5].

APPENDIX A

PROOF OF LEMMA 4

This appendix reviews results from [34]–[36] on the stability

of Cauchy’s functional equation. For a non-negative θ, the

complex-valued function g is called θ-additive in E ⊆ Rd if

|g(x+ y)− g(x)− g(y)| ≤ θ (185)

for all x,y ∈ E such that x+ y ∈ E . The function g is called

additive in E if it is 0-additive in E .

The following Lemmas prove the existence of a linear

function that is θ-additive in various sets E . Lemma 20 is a

classic result of Hyers for E = R that answered a question of

Ulam. Lemmas 21 and 22 use “tiling” to apply Hyers’ result

to E = R+ := {x ∈ R : x ≥ 0} and E = [−T, T ), T > 0.

Finally, Lemma 23 extends Lemma 22 to multiple dimensions

and is slightly more general than Lemma 4.

Lemma 20 (See [34]). If g is θ-additive in R then the limit

G(x) := lim
n→∞

2−ng(2nx) (186)

exists for each x ∈ R and G is the unique additive function

in R such that

|g(x)−G(x)| ≤ θ, ∀ x ∈ R. (187)

Moreover, if g is continuous in at least one point, then G is

continuous and linear in R.15

Lemma 21 (See [35]). If g is θ-additive in R+ then there is

an additive function G in R such that

|g(x)−G(x)| ≤ θ, ∀ x ∈ R
+. (188)

Moreover, if g is continuous in at least one point in R+ \ {0}
then G is continuous and linear in R.

Proof. Define the function g̃ : R → C such that g̃(x) = g(x)
for x ≥ 0, and g̃(x) = −g(−x) for x < 0. If x and y have

the same sign, then we have

|g̃(x+ y)− g̃(x) − g̃(y)| ≤ θ. (189)

It remains to check the case x ≥ 0 and y < 0, so the left-hand

side of (189) is one of

|g(x+ y)− g(x) + g(−y)|, x+ y ≥ 0
| − g(−x− y)− g(x) + g(−y)|, x+ y < 0.

(190)

Now define ỹ = −y, z = x + y, and z̃ = −z and write the

two expressions in (190) as

|g(ỹ + z)− g(ỹ)− g(z)| ≤ θ, ỹ, z ≥ 0
|g(x+ z̃)− g(x)− g(z̃)| ≤ θ, x, z̃ ≥ 0

(191)

where the inequalities follow because g is θ-additive in R+.

Thus, g̃ is θ-additive in R and by Lemma 23 there is a unique

additive function G with G(x) = limn→∞ 2−ng̃(2nx) such

that

|g̃(x) −G(x)| ≤ θ, ∀ x ∈ R. (192)

15From [34, Theorem 2], if g is continuous in at least one point, then G
is continuous in R. Moreover, if G is additive and continuous in R, then G
is linear in R.
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Moreover, if g is continuous in at least one point in R+ \ {0},
then g̃ is continuous in at least one point. From Lemma 20,

G is continuous and linear in R.

Lemma 22 (See [35]). If g is θ-additive in [−T, T ) then there

is an additive function G in R such that

|g(x)−G(x)| ≤ 3θ, ∀ x ∈ [−T, T ) . (193)

Moreover, if g is continuous in at least one point in (−T, T ),
then G is continuous and linear in R.

Proof. Write x ∈ R in the form x = kxT + rx, kx ∈ Z,

0 ≤ rx < T . Now define g̃ : R→ C as

g̃(x) := −kxg(−T ) + g(rx), ∀ x ∈ R. (194)

First, notice that if x ∈ [0, T ) then

|g̃(x)− g(x)| = |g(rx)− g(x)| = 0 (195)

and if x ∈ [−T, 0) then

|g̃(x) − g(x)| = |g(−T ) + g(rx)− g(x)| ≤ θ (196)

where the inequality follows because x = −T + rx and g is

θ-additive. Hence we have

|g̃(x)− g(x)| ≤ θ, ∀ x ∈ [−T, T ) . (197)

Now consider y = kyT + ry , ky ∈ Z, 0 ≤ ry < T , and

suppose we have 0 ≤ rx + ry < T . We may then write

|g̃(x+ y)− g̃(x)− g̃(y)| = |g(rx + ry)− g(rx)− g(ry)|
≤ θ. (198)

Next, if T ≤ rx + ry < 2T then

|g̃(x+ y)− g̃(x) − g̃(y)|
= |g̃(rx + ry)− g(rx)− g(ry)|
= |g̃(rx + ry)− g(rx + ry) + g(rx + ry)− g(rx)− g(ry)|
≤ 2θ (199)

where the inequality follows by (197) and because g is θ-

additive. Thus, from (198) and (199), g̃ is 2θ-additive in R.

Applying Lemma 20, there is a unique additive function G
with G(x) = limn→∞ 2−ng̃(2nx) such that

|g̃(x)−G(x)| ≤ 2θ, ∀ x ∈ R. (200)

Combining (197) and (200) gives the inequality (193). From

Lemma 20, if g is continuous in at least one point in (−T, T ),
then g̃ is also, and hence G is continuous and linear in R.

Lemma 23 (See [36]). If g is θ-additive in [−T, T )d then

there is an additive function G : Rd → C such that

|g(x)−G(x)| ≤ (4d− 1)θ, ∀ x ∈ [−T, T )d . (201)

Moreover, if the projections of g onto each coordinate have at

least one continuous point, then G is continuous and linear

in Rd.

Proof. Define the functions gi, i = 1, . . . , d, as

gi(x) := g(x ei), x ∈ [−T, T ) (202)

and observe that these functions are θ-additive in [−T, T ).
Lemma 22 ensures that there are additive functions Gi : R→
C such that

|gi(x) −Gi(x)| ≤ 3θ, ∀ x ∈ [−T, T ) (203)

for i = 1, . . . , d. Now define G : Rd → C as G(x) :=∑d
i=1 Gi(xi) and bound

|G(x)− g(x)| ≤
d∑

i=1

|Gi(xi)− gi(xi)|

+

∣∣∣∣∣

(
d∑

i=1

gi(xi)

)
− g(x)

∣∣∣∣∣
(a)

≤ 3dθ + (d− 1)θ (204)

where step (a) follows by applying the following steps d− 1
times:

∣∣∣∣∣

(
d∑

i=1

gi(xi)

)
− g(x)

∣∣∣∣∣

≤
∣∣∣∣∣

(
d−1∑

i=1

gi(xi)

)
− g(x1, . . . , xd−1, 0)

∣∣∣∣∣
+ |g(x1, . . . , xd−1, 0) + gd(xd)− g(x)|

(b)

≤
∣∣∣∣∣

(
d−1∑

i=1

gi(xi)

)
− g(x1, . . . , xd−1, 0)

∣∣∣∣∣+ θ (205)

and step (b) follows because g is θ-additive in [−T, T ).
Considering Lemma 22, the functions Gi are continuous and

linear in R if the functions gi are continuous in at least one

point in [−T, T ). In other words, if the projection of g onto

each coordinate has at least one continuous point, then G is

continuous and linear in Rd.

APPENDIX B

STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS

For θ ≥ 0, the complex-valued function g is called θ-

biadditive in E × E ⊆ Rd × Rd if

|g(x1 + x2,y) − g(x1,y) − g(x2,y)| ≤ θ (206)

|g(x,y1 + y2)− g(x,y1)− g(x,y2)| ≤ θ (207)

for all x1,x2,y ∈ E and x,y1,y2 ∈ E such that x1 +x2 ∈ E
and y1 +y2 ∈ E . The function g is called biadditive in E ×E
if it is 0-biadditive in E × E . Finally, g is symmetric in E if

g(x,y) = g(y,x) for all x,y ∈ E .

Lemma 24 (See [58], [59, Theorem 3.3]). Let g be θ-

biadditive in [−T, T )× [−T, T ). Then there exists a function

G which is biadditive in [−T, T )× [−T, T ) and such that

|g(x, y)−G(x, y)| ≤ 6θ, x, y ∈ [−T, T ) . (208)

Moreover, if g is symmetric in [−T, T )× [−T, T ), then G is

symmetric in [−T, T )× [−T, T ), and if g(x, y) is continuous

in at least one point with respect to (w.r.t.) both arguments,

then G(x, y) is continuous and bilinear in [−T, T )× [−T, T ).
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Proof. Using similar steps as in the proof of Lemma 22, write

x ∈ R in the form x = kxT + rx, kx ∈ Z, 0 ≤ rx < T . For a

fixed y ∈ [−T, T ), define the function

g̃y(x) := −kxgy(−T ) + gy(rx), ∀x ∈ R (209)

where gy(x) := g(x, y) is θ-additive in [−T, T ). By the proof

of Lemma 22 there is a unique additive function G∗
y : R→ C

such that

|g̃y(x)−G∗
y(x)| ≤ 3θ, ∀x ∈ R, y ∈ [−T, T ) (210)

where

G∗
y(x) = lim

n→∞
2−ng̃y(2

nx). (211)

Also, if gy(x) is continuous in at least one point x ∈ [−T, T )
then G∗

y(x) is continuous and linear in x ∈ R.

Next, we prove that G∗
y(x) is θ-additive in [−T, T ) w.r.t y.

Defining G∗(x, y) := G∗
y(x) and xn = 2nx we have

|G∗(x, y1 + y2)−G∗(x, y1)−G∗(x, y2)|
=
∣∣∣ lim
n→∞

2−n (g̃y1+y2
(2nx)− g̃y1

(2nx)− g̃y2
(2nx))

∣∣∣

≤
∣∣∣ lim
n→∞

2−nkxn
(gy1+y2

(−T )− gy1
(−T )− gy2

(−T ))
∣∣∣

+
∣∣∣ lim
n→∞

2−n (gy1+y2
(rxn

)− gy1
(rxn

)− gy2
(rxn

))
∣∣∣

︸ ︷︷ ︸
=0

(a)

≤
∣∣∣ x
T

(gy1+y2
(−T )− gy1

(−T )− gy2
(−T ))

∣∣∣

+

∣∣∣∣ limn→∞
2−nrxn

T
(gy1+y2

(−T )− gy1
(−T )− gy2

(−T ))
∣∣∣∣

︸ ︷︷ ︸
=0

(212)

where step (a) follows because 2−nkxn
= x/T − 2−nrxn

/T .

Thus, since gy(x) is additive w.r.t. y in [−T, T ) we have

|G∗(x, y1 + y2)−G∗(x, y1)−G∗(x, y2)| ≤ θ (213)

for all x, y1, y2 ∈ [−T, T ) such that y1 + y2 ∈ [−T, T ).
Define the function G̃(x, y) := kyG

∗(x,−T ) + G∗(x, ry)
where y ∈ R is written as y = kyT +ry , ky ∈ Z, 0 ≤ ry < T .

By the proof of Lemma 22, for each x ∈ [−T, T ) there is a

unique additive function G(x, y) = limn→∞ 2−nG̃(x, 2ny)
such that

|G∗(x, y)−G(x, y)| ≤ 3θ, x ∈ [−T, T ) , y ∈ R. (214)

Combining (210) and (214) we have (208).

To address symmetry, define g′y(x) := G(x, y)−G(y, x). If

g is symmetric in [−T, T )× [−T, T ) then by (208) we have

|g′y(x)| =
∣∣[G(x, y) − g(x, y)

]
−
[
G(y, x)− g(y, x)

]∣∣
≤ |g(x, y)−G(x, y)|+ |g(y, x)−G(y, x)|
≤ 12θ, x ∈ [−T, T ) . (215)

Since the function g′y(x) is additive and bounded in [−T, T ),
it is linear in [−T, T ), i.e., we can write g′y(x) := a(y) ·x for

some function a(y); see [60], [61]. But since g′y(y) = 0 for

all y ∈ [−T, T ), we have a(y) = 0 and G(x, y) is symmetric

in [−T, T )× [−T, T ).

As stated above, if g(x, y) is continuous in at least one point

w.r.t. x, then G∗(x, y) (and hence G̃(x, y)) is continuous and

linear in x ∈ R. Now let δ, ǫ > 0, consider a ∆x with |∆x| <
δ, and define yn = 2ny. Using the definition of G̃(x, y), for

x, x+∆x ∈ [−T, T ) we have

|G(x +∆x, y)−G(x, y)|
=
∣∣∣ lim
n→∞

2−n
(
G̃(x+∆x, yn)− G̃(x, yn)

)∣∣∣

=

∣∣∣∣ lim
n→∞

2−n
[
kyn

(G∗(x+∆x,−T )−G∗(x,−T ))︸ ︷︷ ︸
≤ ǫ by continuity of G∗(x, y) in x

+G∗(x+∆x, ryn
)−G∗(x, ryn

)
]∣∣∣∣

(a)

≤
∣∣∣ lim
n→∞

2−nkyn
ǫ
∣∣∣
(b)

≤ ǫ (216)

where step (a) follows by the continuity of G∗(x, y) in x and

step (b) follows because 2−nkyn
= y/T − 2−nryn

/T . This

establishes the continuity of G(x, y) for x ∈ [−T, T ). Next,

from (211), if g(x, y) is continuous in at least one point w.r.t.

y then G∗(x, y) is continuous in at least one point w.r.t. y.

Thus, by Lemma 22 G(x, y) is continuous and linear w.r.t y.

Summarizing, the continuity of g(x, y) in at least one point

w.r.t. both arguments ensures the continuity and bilinearity of

G(x, y).

Lemma 25. Suppose g is symmetric and θ-biadditive in

[−T, T )d × [−T, T )d. Then there is a symmetric, biadditive

function G in [−T, T )d × [−T, T )d such that

|g(x,y) −G(x,y)| ≤ (7d2 − 1)θ (217)

for all x,y ∈ [−T, T )d. Moreover, if the projections of g(x,y)
onto each coordinate are continuous in at least one point (for

both arguments), then G(x,y) is continuous and bilinear in

[−T, T )d × [−T, T )d.

Proof. Define the complex-valued functions

gij(x, y) := g(xei, yej), i, j = 1, . . . , d. (218)

Note that gij is not necessarily symmetric but it is θ-biadditive

in [−T, T )× [−T, T ). By Lemma 24, there is a (perhaps non-

symmetric) biadditive function Gij such that

|gij(x, y)−Gij(x, y)| ≤ 6θ, ∀ x, y ∈ [−T, T ) . (219)

Define the symmetric, biadditive function

G(x,y) :=

d∑

i,j=1

1

2
[Gij(xi, yj) +Gji(yj , xi)] (220)

16



and consider

|G(x,y) − g(x,y)|

≤

∣∣∣∣∣∣

d∑

i,j=1

1

2
[Gij(xi, yj) +Gji(yj , xi)]− gij(xi, yj)

∣∣∣∣∣∣

+

∣∣∣∣∣∣




d∑

i,j=1

gij(xi, yj)


− g(x,y)

∣∣∣∣∣∣
(a)

≤
d∑

i,j=1

1

2
|Gij(xi, yj)− gij(xi, yj)|

+

d∑

i,j=1

1

2
|Gji(yj , xi)− gji(yj , xi)|

+

∣∣∣∣∣∣

d∑

j=1

(
d∑

i=1

gij(xi, yj)

)
− g(x, yjej)

∣∣∣∣∣∣

+

∣∣∣∣∣∣




d∑

j=1

g(x, yjej)


− g(x,y)

∣∣∣∣∣∣
(b)

≤ 3d2θ + 3d2θ + d(d − 1)θ + (d− 1)θ (221)

where step (a) follows by gij(x, y) = gji(y, x) and step

(b) follows from (205) and (219). Finally, by Lemma 24, if

the projection of g(x,y) onto each coordinate is continuous

in at least one point (for both arguments), then G(x,y) is

continuous and bilinear.

APPENDIX C

PROOF OF LEMMA 5

Take t1 = t2 = t and t1 = −t2 = t in (34) to obtain the

respective

f1(2t) = f1(t)
2|f2(t)|2 + rǫ(t, t) (222)

f2(2t) = |f1(t)|2f2(t)2 + rǫ(t,−t) (223)

where

|rǫ(t, t)| ≤ ǫ, |rǫ(t,−t)| ≤ ǫ. (224)

By taking absolute values in (222)-(223), we have

|f1(2t)− rǫ(t, t)| = |f2(2t)− rǫ(t,−t)|. (225)

and therefore
∣∣|f1(2t)| − |f2(2t)|

∣∣ ≤ 2ǫ. (226)

Next for i = 1, 2 we expand
∣∣fi(t)2

(
|f1(t)|2 − |f2(t)|2

)∣∣

= |fi(t)|2︸ ︷︷ ︸
≤ 1

·
∣∣ |f1(t)| − |f2(t)|

∣∣
︸ ︷︷ ︸

≤ 2ǫ

· (|f1(t)| + |f2(t)|)︸ ︷︷ ︸
≤ 2

(227)

where we used (226) with 2t replaced with t. The expression

(227) implies

f1(t)
2|f1(t)|2 = f1(t)

2|f2(t)|2 + r(1)ǫ (t) (228)

f2(t)
2|f1(t)|2 = f2(t)

2|f2(t)|2 + r(2)ǫ (t) (229)

where |r(i)ǫ (t)| ≤ 4ǫ. By combining (228)-(229) and (222)-

(223), we have

fi(2t) = fi(t)
2|fi(t)|2 + r

(3)
ǫ,i (t) (230)

where |r(3)ǫ,i (t)| ≤ 5ǫ, for i = 1, 2.

APPENDIX D

PROOF OF LEMMA 7

The lemma is clearly true if ǫ = 0, so suppose ǫ > 0. Let

ΦZ(t) = exp(−tTQZ t/2) where QZ is invertible. We have

fY(t) = fX(t)ΦZ(t) and

|Φ(t)|
(a)

≤ |fY(t)|+ ǫ
(b)

≤ |ΦZ(t)|+ ǫ (231)

where step (a) follows by assumption and step (b) follows

by |fX(t)| ≤ 1. Consider |Φ(t)| = exp(−tTQt/2) and let

λmin and λZ,min be the smallest eigenvalues of Q and QZ,

respectively. We then have λZ,min > 0 and

λmin = min
‖t‖2=1

tTQt

‖t‖22
(a)

≥ min
‖t‖2=1

−2 ln
(
e−tTQZ t/2 + ǫ

)

‖t‖22
= −2 ln

(
e−λZ,min/2 + ǫ

)

:= λZ,ǫ (232)

where step (a) follows by (231). We require λZ,ǫ > 0 for this

bound to be useful, i.e., we require

ǫ < 1− e−λZ,min/2. (233)

Observe that λZ,ǫ → λZ,min as ǫ→ 0. Using (232) we have

|fY(t)− Φ(t)| ≤ |fY(t)|+ |Φ(t)|
≤ e−λZ,min‖t‖2

2/2 + e−λmin‖t‖2
2/2

≤ 2e−‖t‖2
2 λZ,ǫ/2. (234)

For any T1 ≥ 0 define

T̃1 = T1

√
λZ,ǫ, t̃ = t

√
λZ,ǫ (235)

and consider

(2π)d |p(y) − φ(y)| =
∣∣∣∣
∫

Rd

e−jtT y(fY(t)− Φ(t)) dt

∣∣∣∣
(a)

≤
∫

‖t‖≤T1

ǫ dt+

∫

‖t‖>T1

2e−‖t‖2
2λZ,ǫ/2 dt

(b)

≤ 2T d
1 ǫ+ 2

(
2π

λZ,ǫ

)d/2 ∫

‖t̃‖∞>
T̃1
d

e−
1
2
‖t̃‖2

2

(2π)d/2
dt̃

= 2T d
1 ǫ+ 2

(
2π

λZ,ǫ

)d/2

Pr

[
max
1≤i≤d

|Zi| ≥ T̃1/d

]

= 2T d
1 ǫ+ 2

(
2π

λZ,ǫ

)d/2 [
1−

(
1− 2Q

(
T̃1/d

))d]

(c)

≤ 2T d
1 ǫ+ 4d

(
2π

λZ,ǫ

)d/2

Q
(
T̃1/d

)

(d)

≤ 2T d
1 ǫ+ 4d

(
2π

λZ,ǫ

)d/2

e−(T̃1/d)
2/2 (236)
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where step (a) follows by the assumption and (234); step

(b) follows by (14) and (17); step (c) follows by Bernoulli’s

inequality; and step (d) follows from the Chernoff bound for

the Q-function. We may choose T̃1 so that

e−(T̃1/d)
2/2 = ǫ or T̃1 = d

√
−2 ln ǫ. (237)

The pointwise bound (236) thus becomes

|p(y)− φ(y)| ≤ 2(d
√
−2 ln ǫ)dǫ+ 4d(2π)d/2ǫ

(2π)d
(
−2 ln

(
e−λZ,min/2 + ǫ

))d/2

:= B1(ǫ) (238)

and we have B1(ǫ)→ 0 as ǫ→ 0.

APPENDIX E

PROOF OF LEMMA 8

The lemma is clearly true if ǫ = 0, so suppose ǫ > 0. We

first prove (42). Consider the bound

|p(y)− q(y)| ≤ p(y) + q(y) (239)

and for any T2 ≥ 0 use (41) to write

Pr [‖Yq‖ > T2] = 1−
∫

‖y‖≤T2

q(y) dy

≤ Pr [‖Yp‖ > T2] +

∫

‖y‖≤T2

B1(ǫ) dy.

(240)

We also have

E
[
‖Yp‖2

]
≥
∫

‖y‖>T2

p(y) ‖y‖22︸ ︷︷ ︸
≥ ‖y‖2/d

dy

≥ T 2
2

d
Pr [‖Yp‖ > T2] (241)

and therefore

‖p− q‖
(a)

≤
∫

‖y‖≤T2

B1(ǫ) dy +

∫

‖y‖>T2

(p(y) + q(y)) dy

(b)

≤ 4T d
2B1(ǫ) +

2dE
[
‖Yp‖2

]

T 2
2

(242)

where (a) follows by (41) and (239) and (b) follows by (240)-

(241). We may choose T2 so that B1(ǫ) = T
−(d+3)
2 and

‖p− q‖ ≤ 4

T 3
2

+
2dE

[
‖Yp‖2

]

T 2
2

:= B2(ǫ) (243)

and we have B2(ǫ)→ 0 as ǫ→ 0.

We next prove (43). Let x ∈ R
d and consider the expression

xT
(
E
[
YqY

T
q

]
− E

[
YpY

T
p

])
x

=

∫

Rd

(
q(y) − p(y)

)
|xTy|2 dy. (244)

We split the integral in (244) into two integrals over the regions

‖y‖ ≤ T2 and ‖y‖ > T2. For the first region, we have
∫

‖y‖≤T2

(
q(y) − p(y)

)
|xTy|2 dy ≤ 2T d+2

2 B1(ǫ) ‖x‖22
(245)

where we used the Cauchy-Schwarz inequality and ‖y‖2 ≤
‖y‖ to write |xTy|2 ≤ ‖x‖22‖y‖22 ≤ ‖x‖22 T 2

2 . We also have

∫

‖y‖>T2

(
q(y) − p(y)

)
|xTy|2 dy

≤ E
[
|xTYq|2 · 1(‖Yq‖ > T2)

]

(a)

≤
√
E [|xTYq|4] ·

√
Pr [‖Yq‖ > T2]

(b)

≤ ‖x‖22

√√√√E

[∣∣∣∣
xT

‖x‖2
Yq

∣∣∣∣
4
]
·
√

dE [‖Yp‖2]
T 2
2

+ 2T d
2B1(ǫ)

(246)

where step (a) follows by the Cauchy-Schwarz inequality,

and step (b) follows by (240)-(241). Observe that the first

expectation in (246) is the fourth moment of a projection of

Yq onto a unit vector, which is bounded by assumption. For

B1(ǫ) = T
−(d+3)
2 as above we thus have

xTE
[
YqY

T
q

]
x ≤ xT

(
E
[
YpY

T
p

]
+B3(ǫ) Id

)
x (247)

where

B3(ǫ) :=
2

T2
+

√√√√E

[∣∣∣∣
xT

‖x‖2
Yq

∣∣∣∣
4
]
·
√

dE [‖Yp‖2]
T 2
2

+
2

T 3
2

(248)

and B3(ǫ)→ 0 as ǫ→ 0.

We remark that the Cauchy-Schwarz inequality is a partic-

ular case (with r = s = 2) of Hölder’s inequality which states

that E [|XY |] ≤ E [|X |r]1/r E [|Y |s]1/s where r, s ≥ 1 and

1/r+1/s = 1. If one chooses r = 1+ δ/2 and s = (2+ δ)/δ
in step (a) of (246), then one can weaken the requirement of

the existence of a fourth moment and permit the r = 2 + δ
moments of Yq to be bounded for any δ > 0.

APPENDIX F

ROBUST ǫ-DEPENDENCE

The Cauchy-Schwarz inequality gives

|fX1,X2
(t1, t2)|2 ≤ |fX1

(t1)|2 · |fX2
(t2)|2 (249)

so the joint c.f. fX1,X2
is a.c. with respect to the product c.f.

fX1
fX2

. One can now strengthen Definition 1 as follows, in

analogy to how weak typicality can be strengthened to robust

typicality [62, Ch. 3.3], [63, Ch. 2.4].

Definition 2. The random vectors X1 and X2 are robustly

ǫ-dependent if

|fX1,X2
(t1, t2)− fX1

(t1)fX2
(t2)|

≤ ǫ · |fX1
(t1)| · |fX2

(t2)| (250)

for all t1, t2, i = 1, 2.

Observe that Definition 2 implies

log
|fX1,X2

(t1, t2)|
|fX1

(t1)| · |fX2
(t2)|

≤ log(1 + ǫ) ≤ ǫ log(e) (251)
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so a log ratio (or log difference) must be small and not only

an additive difference. For example, if (250) is valid then one

may replace the bound in (35) with

|rǫ(t1, t2)| ≤ ǫ · |f1(t1)| · |f1(t2)| · |f2(t1)| · |f2(−t2)|.
(252)

Inserting (252) in (54) and using | ln(1+z)| ≤ 3|z|/2 we may

rewrite (55) as

|Rǫ(t1, t2)| ≤ 3ǫ/2 (253)

so the p effectively becomes one. We can thus choose T =∞,

thereby avoiding to split the analysis into restricted (‖t‖ ≤ T ,

Theorem 9) and unrestricted (Theorem 10) domains. Robust

ǫ-dependence also gives a stronger bound than (48), namely

|fi(t)− Φi(t)| ≤ C(ǫ) · |Φi(t)| (254)

for all t where C(ǫ) is as in (47) with p = 1.

Note that small mutual information does not necessarily

imply robust ǫ-dependence with small ǫ, which is why we use

the weaker ǫ-dependence; see Lemma 3. However, Definition 2

might be of independent interest. For example, the bound (254)

gives a simple pointwise bound in the probability domain (cf.

Lemma 7):

|pi(x)− φi(x)| =
∣∣∣∣

1

(2π)d

∫

Rd

e−jtTx [fi(t) − Φi(t)] dt

∣∣∣∣

≤ 1

(2π)d

∫

Rd

|fi(t) − Φi(t)| dt

≤ 1

(2π)d

∫

Rd

C(ǫ) |Φi(t)| dt

= C(ǫ) det
(
2πQ̂

)−1/2

(255)

where Q̂ is the covariance matrix of the Gaussian c.f. Φi.

Also, we have the following lemma for the Gaussian product

channel (131)-(132).

Lemma 26. Y11,Y22 are robustly ǫ-dependent if and only if

X1,X2 are robustly ǫ-dependent.

Proof. The result follows by (133) that we re-state here for

convenience. Recall that fGX(t) = fX(GT t) and therefore

fYii
(ti) = fXi

(GT
i ti) e

− 1
2
‖t‖2

, i = 1, 2

fY11,Y22
(t1, t2) = fX1,X2

(GT
1 t1,G

T
2 t2) e

−‖t‖2

(256)

so that

|fY11,Y22
(t1, t2)− fY11

(t1)fY22
(t2)|

=
∣∣fX1,X2

(
GT

1 t1,G
T
2 t2
)
− fX1

(
GT

1 t1
)
fX2

(
GT

2 t2
)∣∣

· e−‖t‖2

. (257)

The lemma now follows by the identity (257).
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no. 1, pp. 423–427, 1985.

19
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