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Gray–Wyner and Mutual Information Regions for
Doubly Symmetric Binary Sources and Gaussian

Sources
Lei Yu

Abstract—Nonconvex optimization plays a key role in multi-
user information theory and related fields, but it is usually
difficult to solve. The rate region of the Gray–Wyner source
coding system (or almost equivalently, the mutual information
region) is a typical example in nonconvex optimization, whose
single-letter expression was given by Gray and Wyner. However,
due to the nonconvexity of the optimization involved in this
expression, previously, there was none nontrivial discrete source
for which the analytic expression is known. In this paper,
we propose a new strategy to solve nonconvex optimization
problems. By this strategy, we provide the analytic expression
for the doubly symmetric binary source (DSBS), which confirms
positively a conjecture of Gray and Wyner in 1974. We also
provide the analytic expression of the mutual information region
for the Gaussian source, and provide (or recover) the analytic
expressions of the lossy Gray–Wyner region for both the DSBS
and Gaussian source. Our proof strategy relies on an auxiliary
measure technique and the analytical expression of the optimal-
transport divergence region.

Index Terms—Nonconvex optimization, Gray–Wyner rate re-
gion, mutual information region, conditional entropy region,
auxiliary measure method.

I. INTRODUCTION

The Gray–Wyner coding system illustrated in Fig. 1 was
initially investigated by Gray and Wyner in a seminal work [1],
and then widely investigated in the literature; see, e.g., [2]–[8].
In this system, two correlated memoryless sources Xn, Y n

are respectively required to be transmitted almost losslessly
from one sender to two receivers. The joint distribution of
these sources is denoted by PXY which is assumed to be
defined on finite alphabets. Both the decoders are connected
to the encoder by a common channel, and each decoder is
also connected to the encoder by its own private channel.
All these channels are noiseless. The common rate is denoted
by R0 and the private rates are respectively denoted by R1

and R2. The (lossless) Gray–Wyner rate region is the set of
(R0, R1, R2) such that the sources Xn, Y n can be transmitted
almost losslessly by using some code with rates (R0, R1, R2).
Gray and Wyner showed that the Gray–Wyner rate region is
equal to the set

R :=
{
(R0, R1, R2) : ∃PW |XY , R0 ≥ I(X,Y ;W ),

R1 ≥ H(X|W ), R2 ≥ H(Y |W )
}
.
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Figure 1. Gray–Wyner coding system.

The cardinality of the alphabet of W can be assumed no
larger than |X | |Y|+2. This is a single-letter characterization
which means the expression is independent of the dimension
(or blocklength). The region R is obviously determined by its
lower envelope which is given by

R0(R1, R2) := inf {R0 : (R0, R1, R2) ∈ R}
= inf

PW |XY :H(X|W )≤R1,

H(Y |W )≤R2

I(X,Y ;W ). (1)

Solving this optimization is in fact a difficult open question,
due to its nonconvexity. In fact, previously, there was even
none nontrivial case for which the analytic expression is
known. Gray and Wyner [1] tried to provide an analytic ex-
pression for the doubly symmetric binary source (DSBS), and
made a conjecture. Consider a DSBS with disagree probability
p ∈ (0, 1/2), whose distribution, denoted by DSBS(p), is
given in Table I. In other words, for (X,Y ) ∼ DSBS(p),
X is a Bernoulli random variable with parameter 1/2, and
Y is the output distribution of a binary symmetric channel
BSC(p) with crossover probability p when the input is X . For
such a DSBS, its rate distortion function under the Hamming
distortion dH is given by [1], [9]

R(D1, D2)

:= inf
PUV |XY :EdH(X,U)≤D1,

EdH(Y,U)≤D2

I(X,Y ;U, V )

=


1− (1− p)h

(
a+b−p
2(1−p)

)
−ph

(
a−b+p

2p

)
, a ∗ p ≥ b, a ∗ b ≥ p

1 + h(p)− h(a)− h(b), a ∗ b ≤ p

1− h(a), a ∗ p ≤ b

(2)
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Table I
THE DISTRIBUTION OF A DSBS WITH PARAMETER p ∈ (0, 1/2), WHICH IS

DENOTED BY DSBS(p).

X\Y 0 1

0 1− p

2

p

2

1
p

2
1− p

2

with b = D1∨D2, a = D1∧D2, where h : t 7→ −t log t−(1−
t) log(1−t) denotes the binary entropy function, and h−1 is the
inverse of the restriction of h to the set

[
0, 12

]
. Here, x∨ y :=

max{x, y}, x∧y = min{x, y}, and a∗b = a(1−b)+b(1−a)
is the binary convolution operation. Throughout this paper, for
the DSBS, we always use the logarithm with base 2, denoted
by log, and for Gaussian sources, always use the one with
natural base, denoted by ln. For the DSBS, Gray and Wyner
[1] made the following conjecture.

Conjecture 1. [1], [10] For the source DSBS(p), it holds
that for (R1, R2) ∈ [0, 1]2,

R0(R1, R2) = R(h−1(R1), h
−1(R2)).

This conjecture has been open for nearly 50 years since
1974. Although there are now a vast number of works existing
in the literature on the Gray–Wyner coding system, surpris-
ingly, there seems no progress on this conjecture until now.
The intuition behind this conjecture is that the sender first en-
codes the source into W = (U, V ) by using an optimal point-
to-point lossy compression code with distortions (D1, D2)
and rate R(D1, D2), and then compress X ⊕ U and Y ⊕ V
losslessly using rate h(D1) and h(D2) respectively. Here we
choose (D1, D2) = (h−1(R1), h

−1(R2)). In other words, the
Gray–Wyner conjecture above states that this layered coding
scheme is optimal for the Gray–Wyner system for the DSBS.

The Gray–Wyner region can be also expressed by the
mutual information region. Given an arbitrary (not necessarily
discrete) joint distribution PXY , define the mutual information
region as

I := I(PXY )

:= {(I(X;W ), I(Y ;W ), I(X,Y ;W ))}PW |XY
.

Its projection region on the plane of the first two coordinates
is

I0 := {(I(X;W ), I(Y ;W ))}PW |XY
.

The mutual information region is determined by its lower and
upper envelopes which are respectively defined as for (α, β) ∈
I0,

Υ(α, β) := inf {γ : (α, β, γ) ∈ I}
= inf

PW |XY :I(X;W )=α,I(Y ;W )=β
I(X,Y ;W ),

and

Υ(α, β) := sup {γ : (α, β, γ) ∈ I}
= sup

PW |XY :I(X;W )=α,I(Y ;W )=β

I(X,Y ;W ).

We also define the lower increasing envelope as

Υ(α, β) := inf {γ : (α, β, γ) ∈ I}
= inf

PW |XY :I(X;W )≥α,I(Y ;W )≥β
I(X,Y ;W ). (3)

Observe that R0(R1, R2) = Υ(H(X) − R1, H(Y ) −
R2), and hence, characterizing R0(R1, R2) is equivalent
to characterizing Υ(α, β). In this paper we only focus on
Υ(α, β) and also Υ(α, β) and Υ(α, β). In fact, the function
Υ(α, β) is determined by Υ(α, β). It should be also noted
that the function Υ(α, β) for Gaussian distributions was
already expressed in terms of optimizations over Gaussian
random variables by using the doubling trick [11], [12].
Furthermore, the mutual information region can be also ex-
pressed in terms of the conditional entropy region H :=
{(H(X|W ), H(Y |W ), H(X,Y |W ))}PW |XY

.

A. Our Contributions

The main difficulty in proving Conjecture 1 is that the
optimization problem in (1) (or (3)) is nonconvex. One routine
strategy to solve nonconvex optimization is to apply Karush–
Kuhn–Tucker (KKT) conditions to obtain several necessary
optimality equations, and then solve these equations to find
the optimal solution. However, it is a challenge to solve these
optimality equations in this setting, since logarithmic functions
are involved in them. Therefore, new techniques are required
to resolve Conjecture 1.

In fact, nonconvex optimization is very common in today’s
information theory, which originated with accompanied by
multi-user information theory; e.g., Mrs. Gerber’s lemma
[13]–[15] and Wyner’s common information [16] which both
involves nonconvex optimization. Although this kind of prob-
lems exist in the literature for a long time, nowadays relatively
little is known about them. In other words, finding new ideas
to solve nonconvex optimization is a very difficult task. During
the last decade, Nair and his collaborators have made some
significant contributions in this field; see e.g., [11], [17]–[19].
For example, the change of variables technique was exploited
by them to convert a nonconvex optimization problem to a
convex one. However, such a technique seems failed to be
applied directly to the optimization problem in (1) (or (3)).
Readers can refer to [20] for recent advances in this field,
especially for optimizations for discrete distributions.

In this paper, we propose a new strategy to solve nonconvex
optimization problems. By this strategy, we confirm Conjec-
ture 1 positively, which yields the first explicit expression for
the Gray–Wyner region of a certain source. We also prove
the analytic expression of the mutual information region for
the Gaussian source, and also prove (or recover) the analytic
expressions of the lossy Gray–Wyner region for both the
DSBS and Gaussian source. Our proof strategy integrates
an auxiliary measure technique with the convexity of the
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envelopes of the optimal-transport divergence region [21] for
the DSBS, and integrates the same auxiliary measure technique
with hypercontractivity inequalities for the Gaussian source.
For the Gaussian Gray–Wyner system, the lossy Gray–Wyner
region was previously presented in [22] and partially in [7]
by using methods different from ours. It is worth noting that
our convexity result derived in [21] turns out to be important,
since it is not only used in [21] as a key ingredient in the
proof of the Ordentlich–Polyanskiy–Shayevitz conjecture [23]
(which is a conjecture on the strong version of the small-set
expansion theorem), but also used in this paper to resolve the
Gray–Wyner conjecture. Both the auxiliary measure technique
and the convexity result in [21] are indispensable in our proofs,
which makes our proofs nontrivial.

B. Notations

We use X
PY |X−→ Y to denote that the random variable Y

is the output of the channel PY |X when the input is X . We
denote BSC(a) as a binary symmetric channel with crossover
probability a. We denote DSBS(p) as the DSBS with disagree
probability p, and Bern(a) as the Bernoulli distribution with
parameter a. For a real-valued function f, we denote convf
and concf respectively as the lower convex envelope and the
upper concave envelope of f .

II. MAIN RESULTS

A. Mutual Information Region for DSBS

In this subsection and in the corresponding proofs of results
stated in this subsection, we use the logarithm with base 2,
which is denoted by log.

For (α, β) ∈ [0, 1]2, denote a = h−1(1−α), b = h−1(1−β).
Define several disjoint sets

D1 := {(α, β) ∈ [0, 1]2 : a ∗ p ≥ b,

b ∗ p ≥ a, a ∗ b ≥ p},
D2 := {(α, β) ∈ [0, 1]2 : a ∗ b < p},
D3 := {(α, β) ∈ [0, 1]2 : a ∗ p < b},
D4 := {(α, β) ∈ [0, 1]2 : b ∗ p < a}.

For (α, β) ∈ [0, 1]2, define

Υ∗(α, β) :=



1− (1− p)h
(

a+b−p
2(1−p)

)
−ph

(
a−b+p

2p

)
, (α, β) ∈ D1

1 + h(p)− h(a)− h(b), (α, β) ∈ D2

1− h(a), (α, β) ∈ D3

1− h(b), (α, β) ∈ D4

.

(4)
In fact, Υ∗(α, β) is nothing but R(h−1(1− α), h−1(1− β)),
where R(·, ·) is the rate-distortion function for DSBS(p) given
in (2). The following is one of our main results, whose proof
is given in Section IV.

Theorem 1 (Gray–Wyner Region for DSBS). For the source
DSBS(p) with p ∈ (0, 1/2), it holds that for (α, β) ∈ [0, 1]2,

Υ(α, β) = Υ∗(α, β).

Observe that by definitions, R0(R1, R2) = Υ(1 − R1, 1 −
R2) and Υ∗(1−R1, 1−R2) = R(h−1(R1), h

−1(R2)), where
R0(·, ·) and R(·, ·) are respectively given in (1) and (2). So,
Theorem 1 implies R0(R1, R2) = R(h−1(R1), h

−1(R2)),
which confirms Conjecture 1 positively. The function Υ∗ is
plotted in Fig. 2.

As mentioned in Section I-A, the main difficulty to prove
Theorem 1 is the nonconvexity of the optimization involved in
the definition of Υ (see (3)). One might plan to use Karush–
Kuhn–Tucker (KKT) conditions to obtain several necessary
optimality equations, and then solve these equations to find
the optimal solution. However, solving these equations is
a challenge, due to the fact that logarithmic functions are
involved. Instead, we propose the following strategy to prove
Theorem 1, which consists of two steps.

1) Note that the optimization in (3) can be written as the one
over QWXY with the marginal constraint QXY = PXY .
In this step, we introduce an auxiliary probability mea-
sure RXY , and by the formula D(QZ|W ∥RZ |QW ) −
D(PZ∥RZ) with Z = X, Y , or (X,Y ), rewrite all
the mutual informations in the objective function or the
constraints as relative entropies (since the latter are easier
to deal with). Then, relax the optimization problem by
discarding the marginal constraint QXY = PXY . That
is, we obtain a new optimization problem which only
involves relative entropies (with fixed distribution R as
the second arguments).

2) The new optimization problem obtained above is in
fact an optimization over the time-sharing variable (or
convex-combination variable) W . In other words, the
value of this new optimization problem is determined by
the lower convex envelope of the relative entropy region
{(D(QX∥RX), D(QY ∥RY ), D(QXY ∥RXY ))}QXY

.
Hence, to solve this new optimization problem, more
specifically, to remove the time-sharing variables, it
suffices to prove the convexity of this lower convex
envelope. This part has been done in our another work
[21], or see Lemma 3 in Section III. The proof therein
relies on a new technique, called the first-order method,
which is based on the equivalence between the convexity
of a function and the convexity of the set of minimizers
of its Lagrangian dual. Denote the optimal solution to
the new optimization by Q∗

XY .

In Step 1, to make the optimization problem simpler, we would
like to discard the marginal constraint QXY = PXY . Although
we can discard it directly without introducing the auxiliary
measure RXY , the resultant bound would be far from optimal.
In other words, the role of the auxiliary measure is that by
properly choosing this measure, it enables us not to lose too
much when we discard the marginal constraint. To ensure that
the bound derived by the method above is tight, we need
choose the RXY as an optimal distribution (called shadow
measure), which can be specified in the following way.

For the DSBS, denote P ∗
W |XY as an optimal distribu-

tion attaining the infimum in (3) (i.e., the one in the
Gray–Wyner conjecture). In fact, the distribution P ∗

XY |W
induced by P ∗

WXY := P ∗
W |XY PXY satisfies certain symmetry
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so that given any DSBS SXY , D(P ∗
XY |W ∥SXY |P ∗

W ) =
D(P ∗

XY |W=w∥SXY ) holds for any w. In our proof, we choose
RXY as a DSBS for which the optimal solution Q∗

XY in Step
2 is exactly P ∗

XY |W=w for some w. Hence, the final bound
obtained in Step 2 is

D(Q∗
XY ∥RXY )−D(PXY ∥RXY )

= D(P ∗
XY |W=w∥RXY )−D(PXY ∥RXY )

= D(P ∗
XY |W ∥RXY |P ∗

W )−D(PXY ∥RXY )

= IP∗(X,Y ;W ),

where the last line follows since the (X,Y )-marginal of
P ∗
WXY is exactly PXY . Therefore, the bound induced by such
RXY is tight. In other words, such a choice of RXY is optimal.

As mentioned in Section I-A, our convexity result in [21]
was previously used as a key ingredient in the proof of
the Ordentlich–Polyanskiy–Shayevitz conjecture [23]; refer to
[21] for more details. Interestingly, it also can be used as a
key tool to resolve the Gray–Wyner conjecture (in Step 2)
in this paper. This forces us to re-examine the importance
of the convexity result in [21]. At the technical level, our
proof strategy in present paper integrates two techniques:
the auxiliary measure method (in Step 1) and the first-order
method (in Step 2). These two indispensable techniques are
nontrivial on their own, which hence in turn makes our
proof nontrivial. Furthermore, although we only consider the
optimization with marginal distributions fixed, we believe that
our strategy above can be also applied to many other similar
optimization problems, e.g., optimizations in which a channel
is fixed and the input of this channel is to be optimized.

As a consequence of Theorem 1, the rate-distortion region
of the lossy Gray–Wyner system can be obtained. In the
Gray–Wyner system, consider a distortion measure d. If the
reconstructions of the sources at two receivers are allowed
to be within distortion levels D1 and D2 respectively, then
the rate-distortion region is defined as the set of tuples
(R0, R1, R2, D1, D2). Such a region was shown by Gray and
Wyner [1] to be

Rlossy :=
{
(R0, R1, R2, D1, D2) :

∃PW |XY , PX̂|WX , PŶ |WY ,

R0 ≥ I(X,Y ;W ),

R1 ≥ I(X; X̂|W ), R2 ≥ I(Y ; Ŷ |W ),

Ed(X, X̂) ≤ D1,Ed(Y, Ŷ ) ≤ D2

}
.

Computing this region is equivalent to computing the follow-
ing function

R0(R1, R2, D1, D2)

:= inf
PW |XY ,PX̂|WX ,PŶ |WY :

I(X;X̂|W )≤R1,I(Y ;Ŷ |W )≤R2,

Ed(X,X̂)≤D1,Ed(Y,Ŷ )≤D2

I(X,Y ;W ). (5)

Using Theorem 1, we obtain the analytical expression for this
function.

Corollary 1 (Lossy Gray–Wyner Rate Region for DSBS). For
the source DSBS(p) with p ∈ (0, 1/2), under the Hamming
distortion measure, it holds that for R1, R2, D1, D2 ≥ 0,

R0(R1, R2, D1, D2)

= Υ∗([R(D1)−R1]
+
, [R(D2)−R2]

+
),

where Υ∗ is defined in (4), [x]+ := max{x, 0}, and R(D) :=
1− h(D) is the rate-distribution function of Bernoulli source
Bern( 12 ).

Proof: For a feasible tuple (PW |XY , PX̂|WX , PŶ |WY )
satisfying the constraints in (5), it holds that

I(X;W ) ≥
[
I(X; X̂W )−R1

]+
≥
[
I(X; X̂)−R1

]+
≥ [R(D1)−R1]

+
,

and similarly,

I(Y ;W ) ≥ [R(D2)−R2]
+
.

Therefore,

R0(R1, R2, D1, D2)

≥ inf
PW |XY :I(X;W )≥[R(D1)−R1]

+

I(Y ;W )≥[R(D2)−R2]
+

I(X,Y ;W )

= Υ([R(D1)−R1]
+
, [R(D2)−R2]

+
).

We now prove the other direction. From the proof of
Theorem 1, there is a conditional distribution PW |XY attain-
ing Υ([R(D1)−R1]

+
, [R(D2)−R2]

+
) (i.e., the infimum

in (3)) such that1 both (W,X) and (W,Y ) are DSBSes.
It is well known that for a DSBS (W,X), we can write

X
BSC(θ1)−→ X̂

BSC(θ2)−→ W for any parameters θ1, θ2 ∈ [0, 1]
such that θ1 ∗ θ2 = EdH(X,W ) where dH(x, y) = 1{x ̸= y}
denotes the Hamming distance. If EdH(X,W ) > D1, then
we choose θ1 = D1; otherwise, we choose X̂ = W . We
choose Ŷ in a similar way. This set of induced distributions
(PW |XY , PX̂|WX , PŶ |WY ) obviously satisfies the distortion
constraints in (5). Moreover, if R1 ≥ R(D1), then

I(X; X̂|W ) = H(X|W )−H(X|X̂)

≤ I(X; X̂) = R(D1) ≤ R1.

If R1 < R(D1), then I(X;W ) ≥ R(D1) − R1 (since
PW |XY attains Υ([R(D1)−R1]

+
, [R(D2)−R2]

+
)). So, for

this case,

I(X; X̂|W ) = I(X; X̂)− I(X;W )

= R(D1)− I(X;W ) ≤ R1.

So, it always holds that I(X; X̂|W ) ≤ R1 for any
cases. By symmetry, I(Y ; Ŷ |W ) ≤ R2 also holds. So,
(PW |XY , PX̂|WX , PŶ |WY ) also satisfies the rate constraints in

1Rigorously speaking, (W,X) and (W,Y ) are not always DSBSes, since

in some case of our proof, W = (U, V ) such that X
BSC(a)−→ U

BSC(c)−→
V

BSC(b)−→ Y , and hence (U,X) and (V, Y ) are DSBSes. However, for this
case, the argument given here with slight modification still works.
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(a) Υ∗ (b) Υ∗

(c) Υ∗

Figure 2. Illustration of Υ∗, Υ∗, and Υ
∗ for p = 0.05 (equivalently, the correlation coefficient ρ = 0.9). The boundaries of the graphs of Υ∗ and Υ

∗

coincide except at (α, β) belonging to a neighborhood of the origin.

(5). This implies that (PW |XY , PX̂|WX , PŶ |WY ) is a feasible
solution to (5), and hence,

R0(R1, R2, D1, D2)

≤ I(X,Y ;W )

= Υ([R(D1)−R1]
+
, [R(D2)−R2]

+
). (6)

This completes the proof.

Remark 1. A more straightforward way to show the inequality
in (6) is to use a specific coding scheme in which the sender
first encodes the source into W = (U, V ) by using an
optimal point-to-point lossy compression code with distortions
(D′

1, D
′
2) and common rate RXY (D

′
1, D

′
2) where D′

1 =

R−1
(
[R(D1)−R1]

+
)
, D′

2 = R−1
(
[R(D2)−R2]

+
)

, and
then further encodes X and Y with help of U, V by using suc-
cessively refinement codes with private rates h(D′

1)− h(D1)

and h(D′
2)− h(D2) respectively. Note that here

h(D′
1)− h(D1) = R(D1)−R(D′

1)

= R(D1)− [R(D1)−R1]
+

= min{R1, R(D1)}
≤ R1,

and similarly, h(D′
1)−h(D1) ≤ R2. This scheme is essentially

same as the lossless one given below Conjecture 1.

We next derive analytical expressions for Υ(α, β) and
Υ(α, β). Define

I∗
0 :=

{
(α, β) ∈ [0, 1]2 : β ≥ α− αh(p/α),

α ≥ β − βh(p/β)
}
.
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Define

D′
3 :=

{
(α, β) ∈ [0, 1]2 : a ∗ p < b, β ≥ (1− h(p))α

}
,

D′
4 :=

{
(α, β) ∈ [0, 1]2 : b ∗ p < a, α ≥ (1− h(p))β

}
,

D′′
3 :=

{
(α, β) ∈ [0, 1]2 : α− αh(p/α) ≤ β

< (1− h(p))α
}
,

D′′
4 :=

{
(α, β) ∈ [0, 1]2 : β − βh(p/β) ≤ α

< (1− h(p))β
}
.

Then, I∗
0 = D1 ∪D2 ∪D′

3 ∪D′′
3 ∪D′

4 ∪D′′
4 . For (α, β) ∈ I∗

0 ,
define

Υ∗(α, β)

:=



1− (1− p)h
(

a+b−p
2(1−p)

)
−ph

(
a−b+p

2p

)
, (α, β) ∈ D1

1 + h(p)− h(a)− h(b), (α, β) ∈ D2

α, (α, β) ∈ D′
3

h(p) + β

−(1− α)h
(

p−αh−1(1−β/α)
1−α

)
, (α, β) ∈ D′′

3

β, (α, β) ∈ D′
4

h(p) + α

−(1− β)h
(

p−βh−1(1−α/β)
1−β

)
, (α, β) ∈ D′′

4

,

where a = h−1(1 − α), b = h−1(1 − β). For (α, β) ∈ I∗
0 ,

define
Υ

∗
(α, β) := h(p) + α ∧ β.

We now provide analytical expressions for Υ(α, β) and
Υ(α, β) in the following theorem. Since Υ is determined by Υ,
this theorem can be seen as an improved version of Theorem
1.

Theorem 2 (Mutual Information Region for DSBS). For the
source DSBS(p) with p ∈ (0, 1/2), the following hold.

1) The projection region satisfies

I0 = I∗
0 .

2) For (α, β) ∈ I0, the lower and upper envelopes of the
mutual information region satisfy

Υ(α, β) = Υ∗(α, β),

Υ(α, β) = Υ
∗
(α, β).

The proof is provided in Section V which follows steps
same as those for Theorem 1. Note that Υ∗ and Υ∗ differ on
the regions D′′

3 and D′′
4 . The functions Υ∗ and Υ

∗
are plotted

in Fig. 2.

B. Mutual Information Region for Gaussian Source

We next consider Gaussian sources. In this subsection and
in the corresponding proofs of results stated in this subsection,
we always use the logarithm with base e, which is denoted by
ln.

Let PXY = N (0,Σ) with

Σ =

[
1 ρ
ρ 1

]

and ρ ∈ (0, 1). We next give the analytical expression for the
mutual information region for a Gaussian source. For α ≥ 0,
denote θα ∈ [0, π/2] such that

sin θα = e−α.

So, we also have sin θβ = e−β .
Denote

ρα,β :=
ρ−

√
(1− e−2α) (1− e−2β)

e−α−β

=
ρ− cos θα cos θβ
sin θα sin θβ

. (7)

Define several disjoint sets

DG,1 :=
{
(α, β) ∈ [0,∞)2 : cos θα cos θβ ≤ ρ

≤ min

{
cos θβ
cos θα

,
cos θα
cos θβ

}}
,

DG,2 :=
{
(α, β) ∈ [0,∞)2 :

ρ ≤ min

{
cos θα cos θβ ,

cos θβ
cos θα

,
cos θα
cos θβ

}}
,

DG,3 :=

{
(α, β) ∈ [0,∞)2 : ρ >

cos θβ
cos θα

}
,

DG,4 :=

{
(α, β) ∈ [0,∞)2 : ρ >

cos θα
cos θβ

}
.

Define a function for α, β ≥ 0,

Υ∗
G(α, β) :=


α+ β − 1

2 ln
1−ρ2

α,β

1−ρ2 (α, β) ∈ DG,1

α+ β − 1
2 ln

1
1−ρ2 (α, β) ∈ DG,2

α (α, β) ∈ DG,3

β (α, β) ∈ DG,4

. (8)

Theorem 3 (Mutual Information Region for Gaussian Source).
For the bivariate Gaussian source N (0,Σ), the following
hold.

1) The projection region satisfies I0 = [0,∞)2.
2) For (α, β) ∈ I0, the lower and upper envelopes of the

mutual information region satisfy

Υ(α, β) = Υ∗
G(α, β), (9)

Υ(α, β) = +∞. (10)

Moreover, Υ∗
G is increasing in one parameter given the

other one, and hence, the lower increasing envelope
satisfies Υ(α, β) = Υ∗

G(α, β).

The proof of Theorem 3 is provided in Section VI, which
is similar to those of Theorems 1 and 2. More specifically, it
is based on an auxiliary measure technique and the analytical
expression of the optimal-transport divergence region for the
Gaussian source. The analytical expression of the optimal-
transport divergence region for the Gaussian source is given
in Lemma 4 in Section III. Another possible way to prove
Theorem 3 is based on the fact [11], [12] that it suffices to
evaluate the mutual information region for the Gaussian source
by using a random variable W which is jointly Gaussian
with X,Y . By this fact, evaluating the mutual information
region over arbitrary auxiliary random variable W reduces
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Figure 3. Illustration of Υ∗
G for ρ = 0.9.

to evaluating it over the covariance matrix of (W,X, Y ) and
the mean of W . Note that the resultant optimization is still
nonconvex, and hence, solving it requires some additional
techniques.

The function Υ∗
G is plotted in Fig. 2. By the following

lemma, it holds that cos (θβ − θα) ≥ min
{

cos θβ
cos θα

, cos θαcos θβ

}
,

which implies 0 ≤ ρα,β < 1 for (α, β) ∈ DG,1.

Lemma 1. For 0 ≤ θ1 ≤ θ2 < π/2, it holds that cos θ2 ≤
cos (θ2 − θ1) cos θ1.

Proof: This lemma is obviously since
cos θ2 = cos (θ2 − θ1) cos θ1 − sin (θ2 − θ1) sin θ1 ≤
cos (θ2 − θ1) cos θ1.

Using Theorem 3, we obtain the analytical expression for
the lossy Gray–Wyner rate region of a Gaussian source. The
proof is similar to that of Corollary 1, and hence, omitted here.

Corollary 2 (Lossy Gray–Wyner Rate Region for Gaus-
sian Source). For the bivariate Gaussian source N (0,Σ),
under the quadratic distortion measure, it holds that for
R1, R2, D1, D2 ≥ 0,

R0(R1, R2, D1, D2)

= Υ∗
G([RG(D1)−R1]

+
, [RG(D2)−R2]

+
),

where Υ∗
G is defined in (8), [x]+ := max{x, 0}, and RG(D) =

1
2 ln

1
D is the rate-distribution function of the standard Gaus-

sian source N (0, 1).

A partial result of Corollary 2 was given in [7], where
the analytical expression for the function R0(Rs, D1, D2) :=
minR1+R2=Rs R0(R1, R2, D1, D2) was derived. Furthermore,
Corollary 2 in a different form was presented in [22] by using
a different method.

Note that RG(D1, D2) = Υ∗
G(R

−1
G (D1), R

−1
G (D2)) where

RG(·, ·) is the rate-distortion function for the bivariate Gaus-
sian source N (0,Σ) under the quadratic distortion measure
[24], [25]. Corollary 2 implicitly states that a layered coding
scheme similar to the one given in Remark 1 is optimal for the
lossy Gray–Wyner system for the bivariate Gaussian source.

C. Implications of Our Results

The Gray–Wyner rate region has many applications. It has
not only been used to characterize the rate region of the
Gray–Wyner coding system, but also used to characterize
many other problems, including the measure of common
information [16], the exponent of the maximal density of
the type graph [26], the optimal exponent in the Brascamp–
Lieb (BL) inequalities for uniform distributions over type
classes [26], [27], the hypercontractivity region [28]–[30],
Mrs. Gerber’s lemma and information bottleneck [13]–[15],
communication rate for channel synthesis [31], etc. See more
details in [5]. So, our characterizations of the Gray–Wyner
rate regions for the DSBS and the Gaussian source imply the
corresponding characterizations of these results for the same
sources, although some of them are already known.

Furthermore, in theoretical computer science, the DSBS is
usually described as a coin toss model. Such a source has
now attracted a lot of interest in theoretical computer science.
For example, the joint probability of A× A under the DSBS
corresponds to the generating function of the Fourier weights
of the Boolean function 1A, and hence, the DSBS (and also
its hypercontractivity inequalities) plays a key role in analysis
of Boolean functions; see, e.g., [32] for more details.

III. PRELIMINARIES ON OPTIMAL-TRANSPORT
DIVERGENCES

Before proving the main results, we first introduce some
preliminary lemmas that will be used in our proofs.

The set of all couplings with marginals QX and QY is
denoted as

C(PX , PY )

:=
{
QXY ∈ P(X × Y) : QX = PX , QY = PY

}
.

Definition 1. The optimal transport divergence (or minimum
relative entropy) between QX and QY with respect to a
probability measure PXY is defined as

D(QX , QY ∥PXY ) := inf
QXY ∈C(QX ,QY )

D(QXY ∥PXY ).

Define the optimal-transport-divergence (or minimum-
relative-entropy) region of PXY as

D (PXY ) :=
⋃

QX≪PX ,QY ≪PY

{
(D(QX∥PX), D(QY ∥PY ),

D(QX , QY ∥PXY ))
}
.

Define the lower and upper envelopes of the optimal diver-
gence region D (PXY ) as for α, β ≥ 0,

φ(α, β) := inf
QXY :D(QX∥PX)=α,

D(QY ∥PY )=β

D(QXY ∥PXY ) (11)

= inf
QX ,QY :D(QX∥PX)=α,

D(QY ∥PY )=β

D(QX , QY ∥PXY ) (12)

and

φ(α, β) := sup
QX ,QY :D(QX∥PX)=α,

D(QY ∥PY )=β

D(QX , QY ∥PXY ) (13)



8

Define the lower and upper increasing envelopes of D (PXY )
respectively as

ψ(α, β) := inf
s≥α,t≥β

φ(s, t) (14)

ψ(α, β) := sup
s≤α,t≤β

φ(s, t).

We also define for q < 0,

φq(α) := sup
QX :D(QX∥PX)=α

inf
QY

D(QX , QY ∥PXY )

− D(QY ∥PY )

q
.

For the DSBS, φq can be rewritten as

φq(α) = min
0≤β≤1

φ(α, β)− β

q
. (15)

The following lemma is obvious. Recall that, as mentioned
in the notation part (at the end of the introduction section),
convf and concf respectively denote the lower convex enve-
lope and the upper concave envelope of f .

Lemma 2. It holds that

convψ(α, β)

= inf
s≥α,t≥β

convφ(s, t)

= inf
QUXY :

D(QX|U∥PX |QU )≥α,

D(QY |U∥PY |QU )≥β

D(QXY |U∥PXY |QU ), (16)

and

concψ(α, β)

= sup
s≤α,t≤β

concψ(s, t)

= sup
QU ,QX|U ,QY |U :

D(QX|U∥PX |QU )≤α,

D(QY |U∥PY |QU )≤β

D(QX|U , QY |U∥PXY |QU ), (17)

where

D(QX|U , QY |U∥PXY |QU )

:= inf
QXY |U∈C(QX|U ,QY |U )

D(QXY |U∥PXY |QU )

with C(QX|U , QY |U ) denoting the set of conditional distribu-
tions QXY |U whose marginals are QX|U , QY |U . Furthermore,
the alphabet sizes of U in the last infimization in (16) and the
last supremization in (17) can be restricted to be no larger
than 3.

Proof: The bound on the alphabet sizes of U follows by
the support lemma [33]. Based on this, it is easily seen that

the last infimization in (16) is equal to

inf
(qi,Q

(i)
XY )i∈[3]:∑

i qi=1, qi≥0,∀i∈[3]∑
i qiD(Q

(i)
X ∥PX)≥α,∑

i qiD(Q
(i)
Y ∥PY )≥β

∑
i

qiD(Q
(i)
XY ∥PXY )

= inf
(qi,si,ti)i∈[3]:∑

i qi=1, qi≥0,∀i∈[3]∑
i qisi≥α,

∑
i qiti≥β

inf
(Q

(i)
XY )i∈[3]:

D(Q
(i)
X ∥PX)=si,

D(Q
(i)
Y ∥PY )=ti

∑
i

qiD(Q
(i)
XY ∥PXY )(18)

= inf
(qi,si,ti)i∈[3]:∑

i qi=1, qi≥0,∀i∈[3]∑
i qisi≥α,

∑
i qiti≥β

∑
i

qi inf
Q

(i)
XY :

D(Q
(i)
X ∥PX)=si,

D(Q
(i)
Y ∥PY )=ti

D(Q
(i)
XY ∥PXY )

(19)

= inf
(qi,si,ti)i∈[3]:∑

i qi=1, qi≥0,∀i∈[3]∑
i qisi≥α,

∑
i qiti≥β

∑
i

qiφ(si, ti),

where (qi)i∈[3] denotes the probability values of U , Q(i)
XY

denotes QXY |U=i, and (19) follows since the inner in-
fimization in (18) can be taken pointwise for each i. By
definition, it is easily verified that both convψ(α, β) and
infs≥α,t≥β convφ(s, t) are also equal to the last formula
above. So, equalities in (16) hold. Similarly, one can prove
that equalities in (17) hold as well.

The analytic expressions for various envelopes of the opti-
mal divergence region for the DSBS are given in the following
lemma.

Lemma 3. [21] For the source DSBS(p) with p ∈ (0, 1/2),
the following hold.

1) It holds that for α, β ∈ [0, 1]2, the optimal distribution
QXY attaining φ(α, β) (in (11)) is

QXY =

[
1 + q − a− b b− q

a− q q

]
,

where a = h−1(1− α), b = h−1(1− β), and

q = qa,b(p) :=
1

2 (κ− 1)
×
(
(κ− 1) (a+ b) + 1

−
√
((κ− 1) (a+ b) + 1)

2 − 4κ (κ− 1) ab
)

with κ =
(

1−p
p

)2
. Similarly, the optimal distribution

QXY attaining φ(α, β) (in (13)) is still QXY but with b
replaced by b = 1− h−1(1− β) (or alternatively, with a
replaced by a = 1− h−1(1− α)).

2) Given α ∈ [0, 1], β 7→ φ(α, β) is strictly decreasing for
β such that a ∗ p ≤ b and strictly increasing for β such
that a ∗ p ≥ b, and moreover, its minimum is α which
is attained by the β such that a ∗ p = b. Symmetrically,
given β ∈ [0, 1], α 7→ φ(α, β) is strictly decreasing for
α such that b ∗ p ≤ a and strictly increasing for α such
that b ∗ p ≥ a, and moreover, its minimum is β which is
attained by the α such that b ∗ p = a.
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3) It holds that for α, β ∈ [0, 1]2,

ψ(α, β) =


φ(α, β) a ∗ p ≥ b, b ∗ p ≥ a

α a ∗ p < b

β b ∗ p < a

.

Moreover, ψ is convex on [0, 1]2 and strictly convex
on {(α, β) : a ∗ p ≥ b, b ∗ p ≥ a}, where a = h−1(1 −
α), b = h−1(1− β).

4) It holds that for α, β ∈ [0, 1]2,

convφ(α, β)

=



φ(α, β), (α, β) ∈ D̂1

α, (α, β) ∈ D̂2

α+ αD
(
(1− h−1(1− β/α),

h−1(1− β/α))∥(1− p, p)
)
, (α, β) ∈ D̂4

β, (α, β) ∈ D̂3

β + βD
(
(1− h−1(1− α/β),

h−1(1− α/β))∥(1− p, p)
)
, (α, β) ∈ D̂5

(20)

where

D̂1 := D1 ∪ D2 =
{
(α, β) ∈ [0, 1]2 :

a ∗ p ≥ b, b ∗ p ≥ a
}
,

D̂2 := D′
3 =

{
(α, β) ∈ [0, 1]2 :

a ∗ p < b, β ≥ (1− h(p))α
}
,

D̂3 := D′
4 =

{
(α, β) ∈ [0, 1]2 :

b ∗ p < a, α ≥ (1− h(p))β
}
,

D̂4 :=
{
(α, β) ∈ [0, 1]2 : β < (1− h(p))α

}
,

D̂5 :=
{
(α, β) ∈ [0, 1]2 : α < (1− h(p))β

}
.

Moreover, convφ(α, β) for the second clause above is
attained by a convex combination of (0, 0) (with proba-
bility 1−θ) and (1−h(a′), 1−h(a′∗p)) (with probability
θ), where a′ ∈ [0, 1/2] is the unique solution to the
equation 1−h(a′∗p)

1−h(a′) = β
α , and θ = α

1−h(a′) . Similarly,
convφ(α, β) for the third clause above is attained by a
convex combination of (0, 0) (with probability 1−α) and
(1, β/α) (with probability α).

5) It holds that φ is increasing in one argument given the
other one. Moreover, φ is strictly concave on [0, 1]2.

6) For q < 0, φq is increasing and strictly concave on [0, 1].

Remark 2. In other words, the optimal distribution QWXY

(with W denoting the time-sharing random variable in the
convex combination operation) attaining convφ(α, β) for
the second clause in (20) is given by QW = Bern(θ),
QXY |W=0 = PXY , and QXY |W=1 = Bern(a′)PY |X ; the op-
timal distribution QWXY attaining convφ(α, β) for the third
clause in (20) is given by QW = Bern(α), QXY |W=0 = PXY ,
and

QXY |W=1 =

[
1− h−1(1− β/α) h−1(1− β/α)

0 0

]
.

The functions appearing in Lemma 3 are plotted in Fig. 4.
All statements in Lemma 3 were proven in [21] except for

Statements 2 and 4. The proofs of Statements 2 and 4 are
given in Appendix A.

As for the Gaussian source, the analytic expressions for
envelopes are given in the following lemma, which is a
consequence of classic hypercontractivity inequalities. See
details in Appendix B.

Lemma 4. For the bivariate Gaussian source N (0,Σ) with

Σ =

[
1 ρ
ρ 1

]
and ρ ∈ (0, 1), the following hold.

1) It holds that for α, β ≥ 0,

convφ(α, β)

= ψ(α, β)

=


φ(α, β) = α+β−2ρ

√
αβ

1−ρ2 , ρ2α ≤ β ≤ α
ρ2

α, β < ρ2α

β, α < ρ2β

.

Moreover, they are convex on [0,∞)2. An optimal distri-
bution attaining φ(α, β) for the case ρ2α ≤ β ≤ α

ρ2 is
QXY = N ((a, b),Σ), where a =

√
2α, b =

√
2β.

2) It holds that

φ(α, β) =
α+ β + 2ρ

√
αβ

1− ρ2
,

which is increasing in one argument given the other one.
Moreover, φ is strictly concave on [0,∞)2.

3) It holds that for q < 0,

φq(α) =
(1− q)α

1− q − ρ2
,

which is increasing and linear on [0,∞).

The functions appearing in Lemma 4 are plotted in Fig. 5.

IV. PROOF OF THEOREM 1

Proof of Υ(α, β) ≤ Υ∗(α, β): We denote U, V both

following Bern( 12 ) such that X
BSC(a)−→ U

BSC(c)−→ V
BSC(b)−→ Y ,

where a ∗ b ∗ c = p. Such (a, b, c) exists if a ∗ b ≤ p. If we set
W = (U, V ), then

I(X,Y ;W ) = 1 + h(p)− h(a)− h(b)

I(X;W ) = 1− h(a)

I(Y ;W ) = 1− h(b).

This leads to the desired result for (α, β) ∈ D2.
For the third clause, we set W ∼ Bern( 12 ) such that

W
BSC(a)−→ X

BSC(p)−→ Y . For such W , we have

I(X,Y ;W ) = 1− h(a)

I(X;W ) = 1− h(a)

I(Y ;W ) = 1− h (a ∗ p) .

If a ∗ p ≤ b, then I(Y ;W ) ≥ β, i.e., this W is feasible. This
leads to the desired result for (α, β) ∈ D3, and by symmetry,
also leads to the one for (α, β) ∈ D4.
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(a) φ (b) ψ

(c) ψ = φ (d) φq

Figure 4. Illustration of φ,ψ, ψ = φ, and φq for the DSBS(p) with p = 0.05 (equivalently, the correlation coefficient ρ = 0.9). Lemma 3 implies that ψ
is convex, ψ = φ is concave, and φq is convex for q < 0.

For (α, β) ∈ D1, we set W ∼ Bern( 12 ) such that W
BSC(a)−→

X and W
BSC(b)−→ Y , and moreover, PXY |W is a coupling of

two channels BSC(a) and BSC(b), given by

PXY |W=0 =

[
1− a+b+p

2
−a+b+p

2
a−b+p

2
a+b−p

2

]
,

PXY |W=1 =

[
a+b−p

2
a−b+p

2
−a+b+p

2 1− a+b+p
2

]
.

For such (W,X, Y ), the marginal distribution on (X,Y ) is

PXY =
1

2
PXY |W=0 +

1

2
PXY |W=1 =

[
1−p
2

p
2

p
2

1−p
2

]
,

which coincides with the given distribution. So, such W is
feasible. This leads to the desired result for (α, β) ∈ D1.

Proof of Υ(α, β) ≥ Υ∗(α, β): Observe that

Υ(α, β)− α− β

≥ inf
PW |XY :I(X;W )≥α,I(Y ;W )≥β

I(X,Y ;W )

− I(X;W )− I(Y ;W )

≥ inf
PW |XY

I(X,Y ;W )− I(X;W )− I(Y ;W )

= inf
PW |XY

−I(X;Y ) + I(X;Y |W )

≥ −I(X;Y ).

Hence,

Υ(α, β) ≥ α+ β − I(X;Y )

= 1 + h(p)− h(a)− h(b).

This implies the desired result for (α, β) ∈ D2.
Furthermore,

Υ(α, β)− α

≥ inf
PW |XY :I(X;W )≥α,I(Y ;W )≥β

I(X,Y ;W )− I(X;W )

≥ 0.

Hence, Υ(α, β) ≥ α = 1 − h(a), which implies the desired
result for (α, β) ∈ D3, and by symmetry, also implies the one
for (α, β) ∈ D4.
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(a) ψ (b) ψ = φ

(c) φq

Figure 5. Illustration of ψ, ψ = φ, and φq for the bivariate Gaussian source with the correlation coefficient ρ = 0.9. Lemma 4 implies that ψ is convex,
ψ = φ is concave, and φq is linear for q < 0. In fact, both the graphs of ψ and ψ = φ consist of half lines emanating from the origin.

We now consider (α, β) ∈ D1. Observe that for any RXY ,

Υ(α, β) = inf
PW |XY :I(X;W )≥α,I(Y ;W )≥β

I(X,Y ;W )

= inf
QWXY :QXY =PXY ,

D(QX|W ∥RX |QW )−D(PX∥RX)≥α,

D(QY |W ∥RY |QW )−D(PY ∥RY )≥β

D(QXY |W ∥RXY |QW )−D(PXY ∥RXY )

≥ inf
QWXY :

D(QX|W ∥RX |QW )−D(PX∥RX)≥α,

D(QY |W ∥RY |QW )−D(PY ∥RY )≥β

D(QXY |W ∥RXY |QW )−D(PXY ∥RXY )

= convψ(α+D(PX∥RX), β +D(PY ∥RY ))

−D(PXY ∥RXY ) (21)
= ψ(α+D(PX∥RX), β +D(PY ∥RY ))

−D(PXY ∥RXY ), (22)

where ψ is defined in (14) but for RXY , (21) follows by
Lemma 2 (recall that convψ denotes the lower convex en-
velope of ψ), and the last line follows by the convexity of ψ
shown in Statement 3 of Lemma 3.

We now choose RXY = DSBS(p̂) with p̂ ∈ (0, 1/2). The
value of p̂ will be specified later. For such RXY , it holds that

D(PX∥RX) = D(PY ∥RY ) = 0.

Moreover, by Lemma 3 again, for the case of b ≤ a ∗ p̂, a ≤
b ∗ p̂, it holds that

ψ(α, β) = φ(α, β)

= D

([
1 + q − a− b b− q

a− q q

]
∥
[
1−p̂
2

p̂
2

p̂
2

1−p̂
2

])
,

where a = h−1(1− α), b = h−1(1− β), and

q = qa,b(p̂) :=
1

2 (κ− 1)
×
(
(κ− 1) (a+ b) + 1

−
√
((κ− 1) (a+ b) + 1)

2 − 4κ (κ− 1) ab
)

with κ =
(

1−p̂
p̂

)2
.

Under the condition that a ≤ b, the conditions that b ≤
a ∗ p̂, a ≤ b ∗ p̂ are equivalent to p̂ ≥ b−a

1−2a . Observe that
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qa,b(p̂) is continuous in p̂. Moreover, by definition, it is easily
verified that

lim
p̂↑1/2

qa,b(p̂) = ab,

lim
p̂↓ b−a

1−2a

qa,b(ρ̂) =
a(1− a− b)

1− 2a
.

On the other hand, for the case of a∗p > b, a∗ b > p, it holds
that ab < a+b−p

2 < a(1−a−b)
1−2a . So, there is a p̂∗ ∈ ( b−a

1−2a , 1/2)

such that qa,b(p̂∗) = a+b−p
2 . For such p̂∗, the optimal distri-

bution QXY attaining φ(α, β) with RXY = DSBS(p̂∗) is

QXY =

[
1− a+b+p

2
−a+b+p

2
a−b+p

2
a+b−p

2

]
.

We choose p̂ = p̂∗, i.e., RXY = DSBS(p̂∗). We then obtain
that for (α, β) ∈ D1,

Υ(α, β) ≥ φ(α, β)−D(PXY ∥RXY )

= D(QXY ∥RXY )−D(PXY ∥RXY )

= −HQ(X,Y )− EQ logRXY (X,Y )

+HP (X,Y )− EP logRXY (X,Y )

= HP (X,Y )−HQ(X,Y )

= 1 + h (p)−H

([
1− a+b+p

2
−a+b+p

2
a−b+p

2
a+b−p

2

])
.

The last line is exactly the expression for (α, β) ∈ D1. This
proves the desired result for (α, β) ∈ D1. We hence complete
the proof.

V. PROOF OF THEOREM 2

A. Proof of Statement 2

We first prove Statement 2. That is, for (α, β) ∈ I∗
0 ,

Υ(α, β) = Υ∗(α, β), (23)

Υ(α, β) = Υ
∗
(α, β). (24)

Note that here (α, β) ∈ I∗
0 instead of (α, β) ∈ I0.

Proof of (23): We first consider the equality in (23).
By definition, Υ(α, β) ≥ Υ(α, β). Moreover, for (α, β) ∈
D1∪D2, Υ∗(α, β) = Υ∗(α, β). So, by Theorem 1, Υ(α, β) ≥
Υ(α, β) = Υ∗(α, β) = Υ∗(α, β). On the other hand, the
random variable W constructed in the proof of Theorem 1 in
fact satisfies I(X;W ) = α, I(Y ;W ) = β, and I(X,Y ;W ) =
Υ∗(α, β) = Υ∗(α, β). So, Υ(α, β) = Υ∗(α, β) for (α, β) ∈
D1 ∪ D2. We next consider (α, β) ∈ D′

3 ∪ D′′
3 ∪ D′

4 ∪ D′′
4 .

By replacing the inequality constraints in the infimizations
with the corresponding equality constraints in the equation
chain in (22), it holds that for any RXY ,

Υ(α, β) ≥ convφ(α+D(PX∥RX), β +D(PY ∥RY ))

−D(PXY ∥RXY ), (25)

where φ is defined in (12) but for RXY . We now choose
RXY = DSBS(p̂) with p̂ > 0. For such RXY , it holds that

D(PX∥RX) = D(PY ∥RY ) = 0.

We now consider the case (α, β) ∈ D′
3, i.e., h−1(1−β/α) ≤

p < b−a
1−2a . For this case, we choose p̂ in the same range

h−1(1 − β/α) ≤ p̂ < b−a
1−2a . For this case, we choose

p̂ ≤ h−1(1 − β/α). By Statement 4 in Lemma 3 (more
precisely, by Remark 2), the optimal distribution QWXY

attaining convφ(α, β) is given by QW = Bern(θ), and

QXY |W=0 =

[
1−p̂
2

p̂
2

p̂
2

1−p̂
2

]
,

QXY |W=1 =

[
(1− a′) (1− p̂) (1− a′)p̂

a′p̂ a′ (1− p̂)

]
.

where a′ ∈ [0, 1/2] is the unique solution to the equation
1−h(a′∗p̂)
1−h(a′) = β

α , and θ = α
1−h(a′) . This distribution satisfies

that

D(QX|W ∥RX) = α,

D(QY |W ∥RY ) = β,

D(QXY |W ∥RXY |QW ) = convφ(α, β).

For such a distribution,

QXY (0, 1) +QXY (1, 0) = (1− θ)p̂+ θp̂ = p̂.

We choose p̂ = p. Substituting such a choice of p̂ into the
inequality in (25) yields that

Υ(α, β) ≥ convφ(α, β)−D(PXY ∥RXY )

= D(QXY |W ∥RXY |QW )−D(PXY ∥RXY )

= −HQ(X,Y |W )− EQ logRXY (X,Y )

+HP (X,Y )− EP logRXY (X,Y )

= HP (X,Y )−HQ(X,Y |W )

= 1 + h(p)− (1− θ) (1 + h(p))

− θH

([
(1− a′) (1− p) (1− a′)p

a′p a′ (1− p)

])
= 1 + h(p)− (1− θ) (1 + h(p))

− θ (h(a′) + h(p))

= θ (1− h(a′))

= α.

This completes the proof of the case (α, β) ∈ D′
3. By

symmetry, the desired result still holds for (α, β) ∈ D′
4.

We next consider the case (α, β) ∈ D′′
3 , i.e., αh−1(1 −

β/α) ≤ p ≤ h−1(1 − β/α). For this case, we choose p̂
such that p̂ ≤ h−1(1 − β/α). By Statement 4 in Lemma 3
(more precisely, by Remark 2), the optimal distribution QWXY

attaining convφ(α, β) is given by QW = Bern(α), and

QXY |W=0 =

[
1−p̂
2

p̂
2

p̂
2

1−p̂
2

]
,

QXY |W=1 =

[
1− h−1(1− β/α) h−1(1− β/α)

0 0

]
.

This distribution satisfies that

D(QX|W ∥RX) = α,

D(QY |W ∥RY ) = β,

D(QXY |W ∥RXY |QW ) = convφ(α, β).

For such a distribution,

QXY (0, 1) +QXY (1, 0) = (1− α)p̂+ αh−1(1− β/α).
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We choose p̂ ∈ [0, h−1(1− β/α)] such that

p̂ (1− α) + αh−1(1− β/α) = p.

Such p̂ always exists for the case of (α, β) ∈ D′′
3 , since for

this case, αh−1(1− β/α) ≤ p ≤ h−1(1− β/α).
Substituting such a choice of p̂ into the inequality in (25)

yields that

Υ(α, β)

≥ convφ(α, β)−D(PXY ∥RXY )

= D(QXY |W ∥RXY |QW )−D(PXY ∥RXY )

= −HQ(X,Y |W )− EQ logRXY (X,Y )

+HP (X,Y )− EP logRXY (X,Y )

= HP (X,Y )−HQ(X,Y |W )

= 1 + h(p)− (1− α) (1 + h(p̂))− α (1− β/α)

= h(p) + β − (1− α)h

(
p− αh−1(1− β/α)

1− α

)
.

This completes the proof of the case (α, β) ∈ D′′
3 . By

symmetry, the desired result still holds for (α, β) ∈ D′′
4 .

Proof of (24): We next prove the equality in (24). On one
hand,

Υ(α, β) = sup
PW |XY :I(X;W )=α,

I(Y ;W )=β

I(X,Y ;W )

= sup
PW |XY :I(X;W )=α,

I(Y ;W )=β

H(X,Y )−H(X,Y |W )

≤ sup
PW |XY :I(X;W )=α,

I(Y ;W )=β

H(X,Y )−H(Y |W )

= sup
PW |XY :I(X;W )=α,

I(Y ;W )=β

H(X|Y ) + I(Y ;W )

= h(p) + β.

By symmetry, Υ(α, β) ≤ h(p)+α. That is, Υ(α, β) ≤ h(p)+
α ∧ β = Υ

∗
(α, β).

We set W ′ BSC(a)−→ X
BSC(p)−→ Y , or equivalently, X =W ′ ⊕

Z ′, Y = X ⊕ Z where W ′ ∼ Bern( 12 ), Z
′ ∼ Bern(a), and

Z ∼ Bern(p) are mutually independent. Here ⊕ denotes the
XOR operation (i.e., the module-2 sum). Set W = (W ′, Z).
For such W , we have

I(X,Y ;W ) = I(X;W ) + I(Y ;W |X)

= I(X;W ) +H(Y |X)

= 1− h(a) + h(p),

I(X;W ) = I(X;W ′, Z) = I(X;W ′)

= 1− h(a),

I(Y ;W ) = I(Y ;W ′, Z) = 1−H(Y |W ′, Z)

= 1−H(Z ′|W ′, Z) = 1−H(Z ′)

= 1− h(a).

So,
Υ(α, α) ≥ h(p) + α = Υ

∗
(α, α). (26)

Moreover, from the expression derived for the lower envelope,
we observe that for β = α− αh(p/α),

Υ(α, β) ≥ Υ(α, β) = Υ∗(α, β) = h(p) + β,

and for α = β − βh(p/β),

Υ(α, β) ≥ Υ(α, β) = Υ∗(α, β) = h(p) + α. (27)

Combining (26)-(27) yields Υ(α, β) ≥ h(p) + α ∧ β =
Υ

∗
(α, β). Hence, Υ(α, β) = Υ

∗
(α, β) for (α, β) ∈ I∗

0 .

B. Proof of Statement 1

Observe that the upper envelope Υ and the lower envelope
Υ coincide on the curves β = α − αh(p/α) and α = β −
βh(p/β). By the monotonicity of Υ and Υ, the projection
region I0 must be exactly I∗

0 , since, otherwise, Υ < Υ holds
on the region I0\I∗

0 which contradicts with the obvious fact
that Υ ≥ Υ.

VI. PROOF OF THEOREM 3

We first prove Statement 2. We now consider the equality
in (9). We first prove the “≤” part. We denote W ∼ N (0, 1)
and (X̂, Ŷ ) ∼ N ((a, b), Σ̂) with

Σ̂ =

[
1 ρ̂
ρ̂ 1

]
.

Assume W and (X̂, Ŷ ) are independent. Denote

X =
√

1−N1W +
√
N1X̂

Y =
√
1−N2W +

√
N2Ŷ

with N1, N2 ∈ [0, 1]. Then the correlation coefficient between
X and Y is

E
[
(
√

1−N1W +
√
N1X̂)(

√
1−N2W +

√
N2Ŷ )

]
=
√
(1−N1) (1−N2) + ρ̂

√
N1N2.

We choose ρ̂ ∈ [0, 1] such that the resultant correlation
coefficient is exactly ρ, i.e.,

ρ̂ =
ρ−

√
(1−N1) (1−N2)√

N1N2

.

For this case, the joint distribution of X,Y is exactly PXY .
The induced mutual informations are respectively

I(X,Y ;W ) =
1

2
ln

(
1− ρ2

N1N2 (1− ρ̂2)

)
I(X;W ) =

1

2
ln

1

N1

I(Y ;W ) =
1

2
ln

1

N2
.

Let I(X;W ) = α, I(Y ;W ) = β. Then, N1 = e−2α, N2 =
e−2β , which then implies

ρ̂ = ρα,β ,

I(X,Y ;W ) = α+ β +
1

2
ln

(
1− ρ2

1− ρ̂2

)
.
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Recall the definition of ρα,β in (7). Therefore,

Υ(α, β) ≤ α+ β +
1

2
ln

(
1− ρ2

1− ρ̂2α,β

)
(28)

as long as 0 ≤ ρα,β < 1. Hence, this inequality holds for
(α, β) ∈ DG,1.

For (α, β) ∈ DG,2, we choose ρ̂ = 0, which leads to
Υ(α, β) ≤ α+ β − 1

2 ln
1

1−ρ2 .

For (α, β) ∈ DG,3, although the bound in (28) still holds,
we can derive a better bound by choosing a better W . Note
that the curve

{
(α, β) : ρ2 = 1−e−2β

1−e−2α

}
⊆ DG,1 since β ≤ α

and ρα,β = eβ−αρ ∈ (0, 1) for (α, β) on the curve. So, as
proven above, Υ(α, β) = α on this curve. Rewrite the curve
equation as β = f(α) := − 1

2 ln
(
1− ρ2 + ρ2e−2α

)
, and note

that the derivative of f is

f ′(α) = − ρ2e−2α

1− ρ2 + ρ2e−2α

which decreases from ρ2 to 0 as α increases from 0
to +∞. Hence, the closed convex hull of the curve
{(α, f(α)) : α ≥ 0} (i.e., the graph of f ) is the set
{(α, β) : 0 ≤ β ≤ f(α), α ≥ 0}. By convex combination of
points on the curve, we obtain that Υ(α, β) = α on the set
{(α, β) : 0 ≤ β ≤ f(α), α ≥ 0}, i.e., on DG,3. By symmetry,
Υ(α, β) = β on DG,4.

We next prove the other direction, i.e., the “≥” part. Observe
that for any RXY ,

Υ(α, β) = inf
PW |XY :I(X;W )=α,I(Y ;W )=β

I(X,Y ;W )

= inf
QWXY :QXY =PXY ,

D(QX|W ∥RX |QW )−D(PX∥RX)=α,

D(QY |W ∥RY |QW )−D(PY ∥RY )=β

D(QXY |W ∥RXY |QW )−D(PXY ∥RXY )

≥ inf
QWXY :

D(QX|W ∥RX |QW )−D(PX∥RX)=α,

D(QY |W ∥RY |QW )−D(PY ∥RY )=β

D(QXY |W ∥RXY |QW )−D(PXY ∥RXY )

= convφ(α′, β′)−D(PXY ∥RXY )

= ψ(α′, β′)−D(PXY ∥RXY ), (29)

where α′ := α +D(PX∥RX), β′ := β +D(PY ∥RY ), and φ
and ψ are defined in (12) and (14) but for RXY . The last line
above follows by Statement 1 of Lemma 4.

We now choose RXY = N (0,ΣR) with ΣR =[
N1 ρ̂

√
N1N2

ρ̂
√
N1N2 N2

]
, N1 = e−2α, N2 = e−2β , and ρ̂ ≥ 0.

For such RXY , it holds that

D(PX∥RX) =
1

2

(
lnN1 +

1

N1
− 1

)
D(PY ∥RY ) =

1

2

(
lnN2 +

1

N2
− 1

)
D(PXY ∥RXY ) =

1

2

(
ln

|ΣR|
|Σ|

+ trace
(
Σ−1

R Σ
)
− 2

)
=

1

2

(
ln
N1N2

(
1− ρ̂2

)
1− ρ2

+
N1 +N2 − 2ρρ̂

√
N1N2

N1N2 (1− ρ̂2)
− 2
)
. (30)

So,

α′ =
1

2

(
e2α − 1

)
=

1

2

(
1

N1
− 1

)
,

β′ =
1

2

(
e2β − 1

)
=

1

2

(
1

N2
− 1

)
.

We now consider the case of (α, β) ∈ DG,1. For this case,
we choose ρ̂ ≥ 0 such that ρ̂2α′ ≤ β′ ≤ α′

ρ̂2 (the specific value
of ρ̂ will be given below), and by Statement 1 of Lemma
4, an optimal distribution attaining ψ(α′, β′) (or φ(α′, β′)) is
QXY = N ((a, b),ΣR) with a =

√
2α′N1, b =

√
2β′N2. The

value of ψ(α′, β′) is

ψ(α′, β′)

= D(QXY ∥RXY )

=
1

2

(
a2N2 + b2N1 − 2abρ̂

√
N1N2

N1N2 (1− ρ̂2)

)
=

1

2N1N2 (1− ρ̂2)

(
(1−N1)N2 + (1−N2)N1

− 2ρ̂
√
N1N2 (1−N1) (1−N2)

)
. (31)

We choose

ρ̂ = ρα,β , (32)

with ρα,β defined in (7), which satisfies 0 ≤ ρα,β < 1 for
(α, β) ∈ DG,1; see the argument below Theorem 3. Such ρ̂

also satisfies ρ̂2α′ ≤ β′ ≤ α′

ρ̂2 , i.e., ρ̂ ≤ min

{√
α′

β′ ,
√

β′

α′

}
,

as desired, since this condition is equivalent to that

ρ ≤ min

{
cos θβ
cos θα

,
cos θα
cos θβ

}
.

Substituting (30), (31), and (32) into (29) yields that

Υ(α, β) ≥ α+ β +
1

2
ln

(
1− ρ2

1− ρ2α,β

)
.

We now consider the case (α, β) ∈ DG,2 in which ρα,β ≤ 0.
For this case, we choose ρ̂ = 0 which yields

Υ(α, β) ≥ α+ β +
1

2
ln
(
1− ρ2

)
.

We now consider the case of (α, β) ∈ DG,3. For this case,
we choose ρ̂ = ρ, i.e., RXY = PXY . For this case, by
Statement 1 of Lemma 4, it holds that Υ(α, β) = ψ(α, β) ≥ α,
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since for this case, ρ > cos θβ
cos θα

=
√

1−e−2β

1−e−2α ≥
√

β
α by the

facts that t 7→ 1−e−2t

t is decreasing and β < α. By symmetry,
Υ(α, β) ≥ β for (α, β) ∈ DG,4.

Combining all cases above, (9) holds.
The finiteness of Υ(α, β) on [0,∞)2 implies the projection

region I0 = [0,∞)2,i.e., Statement 1.
We next prove (10). Denote

X =
√
1−NŴ +

√
NX̂

Y = ρX +
√
1− ρ2Ŷ

with N ∈ (0, 1) and independent standard Gaussian random
variables Ŵ, X̂, Ŷ . Denote W = (Ŵ, Ŷ ). For this case,

I(X;W ) = I(X; Ŵ )

=
1

2
ln

1

N
< +∞,

I(Y ;W ) = hd(Y )− hd(Y |Ŵ, Ŷ )

=
1

2
ln

1

Nρ2
< +∞,

I(X,Y ;W ) = I(X;W ) + I(Y ;W |X)

=
1

2
ln

1

N
+ hd(Y |X)− hd(Y |X, Ŵ, Ŷ )

= +∞,

where hd denotes the differential entropy. Hence, Υ(α, β) =
+∞ for some finite point (α, β). By the concavity of Υ, it
holds that Υ(α, β) = +∞ for all α, β ≥ 0, i.e., (10).

APPENDIX A
PROOFS OF STATEMENTS 2 AND 4 IN LEMMA 3

A. Proof of Statement 2 in Lemma 3

The monotonicity in fact follows by the convexity of the
relative entropy. Specifically, by the strict convexity of the
relative entropy, it holds that (a, b) 7→ D((1 − a, a), (1 −
b, b)∥PXY ) is strictly convex, since for Q(i)

XY attaining D((1−
ai, ai), (1− bi, bi)∥PXY ), i = 0, 1,

(1− λ)D(Q
(0)
XY ∥PXY ) + λD(Q

(1)
XY ∥PXY )

> D((1− λ)Q
(0)
XY + λQ

(1)
XY ∥PXY )

≥ D((1− aλ, aλ), (1− bλ, bλ)∥PXY ),

where aλ = (1−λ)a0+λa1, bλ = (1−λ)b0+λb1. So, given
α ∈ [0, 1] (or equivalently, given a = h−1(1− α) ∈ [0, 1/2]),
the function b 7→ D((1 − a, a), (1 − b, b)∥PXY ) is strictly
convex, and its minimum is α which is attained at b = a ∗ p.
On the other hand, observe that

inf
β̂≥β

φ(α, β̂)

= inf
b̂∈[0,1/2]:1−h(b̂)≥β

D((1− a, a), (1− b̂, b̂)∥PXY )

= inf
b̂∈[0,b]

D((1− a, a), (1− b̂, b̂)∥PXY ). (33)

By the strict convexity of the objective function at the last line,
the minimum is uniquely attained by b̂ = b when b ≤ a ∗ p.
Hence, φ(α, β̂) > φ(α, β) for all β̂, β such that β̂ > β and

b ≤ a ∗ p. That is, β 7→ φ(α, β) is strictly decreasing for β
such that a ∗ p ≤ b.

The strict monotonicity of β 7→ φ(α, β) on the interval
a∗p ≥ b can be proven similarly (by replacing the constraints
β̂ ≥ β, 1− h(b̂) ≥ β, and b̂ ∈ [0, b] in (33) respectively with
β̂ ≤ β, 1− h(b̂) ≤ β, and b̂ ∈ [b, 1/2]).

B. Proof of Statement 4 in Lemma 3

We first make the following claim.
Claim 1: convφ(α, β) = ψ(α, β) for (α, β) such that

β ≥ (1− h(p))α and α ≥ (1− h(p))β. In other words, the
formula in (20) holds for (α, β) ∈ D̂1 ∪ D̂2 ∪ D̂3.

We now prove this claim. On one hand, by Statement 3 and
the definition of ψ,

convφ(α, β) ≥ convψ(α, β) = ψ(α, β). (34)

On the other hand, convφ(α, β) ≤ φ(α, β) = ψ(α, β) for
(α, β) such that a ∗ p ≥ b, b ∗ p ≥ a (i.e., (α, β) ∈ D̂1). So,
(20) holds for (α, β) ∈ D̂1.

Denote β∗(α) as the value β such that a ∗ p = b where
a = h−1(1 − α), b = h−1(1 − β). By definition of φ,
it is easily verified that φ(α, β∗(α)) = α, and hence, all
points (α, β∗(α), φ(α, β∗(α))) with α ∈ [0, 1] are coplanar.
That is, they are on the plane {(α, β, α) : α, β ∈ [0, 1]}. So,
convφ(α, β) ≤ α for (α, β) such that a ∗ p ≤ b, β ≥
(1− h(p))α (i.e., (α, β) ∈ D̂2; see this region in the subfigure
(a) in Fig. 4). Since (34) still holds and ψ(α, β) = α for this
case (by Statement 3), it holds that convφ(α, β) = α for
(α, β) ∈ D̂2. Similarly, convφ(α, β) = β for (α, β) ∈ D̂3.
This completes the proof of the claim above.

We next consider the case (α, β) ∈ D̂4. By Statement 2,
given α, β 7→ φ(α, β) is strictly decreasing for a ∗ p ≤ b (and
hence also for β < (1− h(p))α). Based on these observations,
if we denote (1/u, 1/v) as a subgradient of convφ at (α, β)
with β < (1− h(p))α, then v < 0.

If (αi, βi, φ(αi, βi)), i ∈ [3] are on the supporting plane of
convφ at (α, β), then (αi, βi), i ∈ [3] must attain the following
minimum:,

Γ := min
s,t≥0

φ(s, t)− s

u
− t

v
.

We now make the second claim.
Claim 2: Any optimal (s∗, t∗) attaining the minimum above

must be either (0, 0) or (1, β′) for some β′ ∈ [0, 1].
We next prove this claim. By the definition of φq in (15),

we can rewrite

Γ = min
s≥0

φv(s)−
s

u
.

By Statement 5 in Lemma 3, for v < 0, φv is strictly concave
on [0, 1]. So, the infimum above is only attained at s = 0 or
1. Moreover, for s = 0, it holds that

φv(0) = min
0≤t≤1

φ(0, t)− t

v
= 0,



16

since φ(0, t) − t
v ≥ 0 (note v < 0) and this lower bound is

uniquely attained at t = 0. So, the unique minimizer above is
t = 0. For s = 1, it holds that

φv(1) = min
0≤t≤1

φ(1, t)− t

v

= min
0≤b≤1

D((1, 0), (1− b, b)∥PXY )

− D((1− b, b)∥PY )

v

= min
0≤b≤1

D

([
1− b b
0 0

]
∥PXY

)
− D((1− b, b)∥PY )

v

= min
0≤b≤1

(
1

v
− 1

)
h(b)− (1− b) log

(
1− p

2

)
− b log

p

2
− 1

v
.

Since v < 0, it holds that the objective function in the last
line is strictly convex, the minimum is attained by a unique b.
This completes the proof of Claim 2.

By Claim 2, (α, β, convφ(α, β)) is the convex combination
of (0, 0, 0) and (1, β′, φ(1, β′)) for some β′ ∈ [0, 1] (see the
subfigure (a) in Fig. 4 for better understanding this statement).
That is,

(α, β, convφ(α, β)) = (1− θ)(0, 0, 0) + θ(1, β′, φ(1, β′)),

which implies

β′ = β/α

θ = α.

These parameters induce the following optimal distribution
QWXY which attains convφ(α, β). Here W denotes the
time-sharing (or convex-combination) variable. The optimal
distribution QWXY is given by QW = Bern(α), and

QXY |W=0 =

[
1−p
2

p
2

p
2

1−p
2

]
,

QXY |W=1 =

[
1− h−1(1− β/α) h−1(1− β/α)

0 0

]
.

Hence, for this case,

convφ(α, β) = D(QXY |W ∥RXY |QW )

= α+ αD
(
(1− h−1(1− β/α),

h−1(1− β/α))∥(1− p, p)
)
.

This proves (20) for (α, β) ∈ D̂4. The case (α, β) ∈ D̂5

follows by symmetry.

APPENDIX B
PROOF OF LEMMA 4

The forward and reverse hypercontractivity regions for a
joint distribution PXY are respectively

RFH(PXY ) :=
{
(p, q) ∈ [1,∞)2 :

⟨f, g⟩ ≤ ∥f∥p∥g∥q, ∀ f, g ≥ 0
}

and

RRH(PXY ) :=
{
(p, q) ∈ (−∞, 1]2 :

⟨f, g⟩ ≥ ∥f∥p∥g∥q, ∀ f, g ≥ 0
}
,

where f : X → [0,∞) and g : Y → [0,∞) denote nonneg-
ative measurable functions, ⟨f, g⟩ := EP [f(X)g(Y )] denote
the inner product of f and g, and ∥f∥p := EP [fp(X)]

1/p

and ∥g∥q := EP [gq(Y )]
1/q are respectively the (pseudo) p-

norm of f and the (pseudo) q-norm of g. In other words, the
forward and reverse hypercontractivity regions are respectively
the sets of parameters (p, q) such that the forward and reverse
hypercontractivity inequalities hold.

We can write RRH(PXY ) as the disjoint union of four sets

R++
RH(PXY ) := (0, 1]2 ∩RRH(πXY ),

R+−
RH (PXY ) :=

(
(0, 1]× (−∞, 0)

)
∩RRH(πXY ),

R−+
RH (PXY ) :=

(
(−∞, 0)× (0, 1]

)
∩RRH(πXY ),

R−−
RH (PXY ) := (−∞, 0]2.

The forward and reverse hypercontractivity regions admit the
information-theoretic characterizations [12], [28], [30], [34]–
[37]:

RFH(PXY ) =
{
(p, q) ∈ [1,∞)2 :

ψ(α, β) ≥ α

p
+
β

q
, ∀α, β ≥ 0

}
,

R++
RH(PXY ) =

{
(p, q) ∈ (0, 1]2 :

φ(α, β) ≤ α

p
+
β

q
, ∀α, β ≥ 0

}
,

R+−
RH (PXY ) =

{
(p, q) ∈ (0, 1]× (−∞, 0) :

φq(α) ≤
α

p
, ∀α ≥ 0

}
. (35)

By symmetry, R−+
RH (PXY ) can be characterized in an analo-

gous manner to R+−
RH (PXY ) in (35).

Furthermore, for the bivariate Gaussian source PXY with
correlation coefficient ρ ∈ (0, 1), it is well known (e.g., [32])
that the forward and reverse hypercontractivity regions are
respectively explicitly given by

RFH(PXY ) =
{
(p, q) ∈ [1,∞)2 : (p− 1)(q − 1) ≥ ρ2

}
,

RRH(PXY ) =
{
(p, q) ∈ (−∞, 1]2 : (p− 1)(q − 1) ≥ ρ2

}
.

Therefore, by the information-theoretic characterizations



17

above, for such a source,

ψ(α, β) ≥ sup
(p,q)∈[1,∞)2:(p−1)(q−1)≥ρ2

α

p
+
β

q
(36)

=


α+β−2ρ

√
αβ

1−ρ2 ρ2α ≤ β ≤ α
ρ2

α β < ρ2α

β β > α
ρ2

,

φ(α, β) ≤ inf
(p,q)∈(0,1]2:(p−1)(q−1)≥ρ2

α

p
+
β

q
(37)

=
α+ β + 2ρ

√
αβ

1− ρ2
,

φq(α) ≤ inf
p∈(0,1]:(p−1)(q−1)≥ρ2

α

p
(38)

=
(1− q)α

1− q − ρ2
for q < 0. (39)

The optimal choice of (p, q) attaining the supremum in (36) is
p = (1−ρ2)

√
α√

α−ρ
√
β
, q = (1−ρ2)

√
β√

β−ρ
√
α

for the case of ρ2α < β < α
ρ2 .

The optimal choice of (p, q) attaining the infimum in (37) is
p = (1−ρ2)

√
α√

α+ρ
√
β
, q = (1−ρ2)

√
β√

β+ρ
√
α

for all α, β ≥ 0. The optimal

choice of p attaining the infimum in (38) is p = 1 + ρ2

1−q for
all α ≥ 0.

We now prove that the inequalities in (36)-(39) are in fact
equalities. For the Gaussian source PXY = N (0,Σ) with

Σ =

[
1 ρ
ρ 1

]
, if we choose QX = N (a, 1) and QY = N (b, 1),

then

D(QX∥PX) =
a2

2
(40)

D(QY ∥PY ) =
b2

2

D(QX , QY ∥PXY ) =
1

2

(
a2 + b2 − 2ρab

1− ρ2

)
. (41)

The last equality above follows since

D(QX , QY ∥PXY )

= inf
QXY ∈C(QX ,QY )

D(QXY ∥PXY )

≥ inf
ρ′∈[0,1]

D(Q
(Σ′)
XY ∥PXY )

= inf
ρ′∈[0,1]

D(Q
(Σ′)
XY ∥N ((a, b),Σ′))

+D(N ((a, b),Σ′)∥PXY )

≥ inf
ρ′∈[0,1]

D(N ((a, b),Σ′)∥PXY )

= D(N ((a, b),Σ)∥PXY )

=
1

2

(
a2 + b2 − 2ρab

1− ρ2

)
,

and this lower bound is attained at QXY = N ((a, b),Σ),

where Σ′ :=

[
1 ρ′

ρ′ 1

]
, and Q(Σ′)

XY denotes a joint distribution

with covariance matrix Σ′. For ρ2α ≤ β ≤ α
ρ2 , we choose

a =
√
2α, b =

√
2β and then obtain ψ(α, β) ≤ φ(α, β) ≤

α+β−2ρ
√
αβ

1−ρ2 , which, combined with (36), implies the equality
in (36) for the case of ρ2α ≤ β ≤ α

ρ2 (and also ψ(α, β) =

φ(α, β) for this case). By the monotonicity, the equality in
(36) also holds for the case of β < ρ2α or β > α

ρ2 . For the
inequality in (37), we choose a =

√
2α, b = −

√
2β which

verifies the inequality in (37).
Similarly, for QX = N (a, 1), it holds that for q < 0,

inf
QY

D(QX , QY ∥PXY )−
D(QY ∥PY )

q

= inf
QY |X

D(QXY ∥PXY )−
D(QY ∥PY )

q

≥ inf
b∈R,ρ′′∈[0,1],N2≥0

D(Q
(Σ′′)
XY ∥PXY )−

D(Q
(Σ′′)
Y ∥PY )

q

= inf
b∈R,ρ′′∈[0,1],N2≥0

D(Q
(Σ′′)
XY ∥N ((a, b),Σ′′))

+D(N ((a, b),Σ′′)∥PXY )

−
D(Q

(Σ′′)
Y ∥N (b,N2)) +D(N (b,N2)∥PY )

q

≥ inf
b∈R,ρ′′∈[0,1],N2≥0

D(N ((a, b),Σ′′)∥PXY )

− D(N (b,N2)∥PY )

q

= inf
b∈R

D(N ((a, b),Σ)∥PXY )−
D(N (b, 1)∥PY )

q

= inf
b∈R

1

2

(
a2 + b2 − 2ρab

1− ρ2
− b2

q

)
= inf

b∈R

1

2

(
a2 + b2 − 2ρab

1− ρ2

)
,

=
(1− q)a2

2(1− q − ρ2)
,

and this lower bound is attained at QXY = N ((a, b),Σ) with

b = −ρqa
1−q−ρ2 , where Σ′′ :=

[
1 ρ′′

√
N2

ρ′′
√
N2 N2

]
, and Q

(Σ′′)
XY

denotes a joint distribution with covariance matrix Σ′′. We
choose a =

√
2α here, which verifies the equality in (39).

We now prove convφ(α, β) = ψ(α, β). On one hand,
convφ(α, β) ≥ convψ(α, β) = ψ(α, β). On the other hand,
by choosing (40)-(41), convφ(α, β) ≤ φ(α, β) ≤ α+β−2ρ

√
αβ

1−ρ2

for ρ2α ≤ β ≤ α
ρ2 . So, convφ(α, β) = ψ(α, β) for

ρ2α ≤ β ≤ α
ρ2 .

For the case β < ρ2α, we choose QX = N (a,N), and
choose QY as the output distribution of channel PY |X when
the input distribution is QX . So, QY = N (ρa, 1−ρ2+ρ2N).
For this case,

D(QX∥PX) =
1

2

(
lnN +

1 + a2

N
− 1

)
,

D(QY ∥PY ) =
1

2

(
ln
(
1− ρ2 + ρ2N

)
+

1 + ρ2a2

1− ρ2 + ρ2N
− 1
)
,

D(QX , QY ∥PXY ) = D(QX∥PX).

For N ∈ (0, 1] and

β > g(ρ) :=
1

2

(
1

1− ρ2
+ ln

(
1− ρ2

)
− 1

)
,
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we choose

a =

√
(1− ρ2 + ρ2N) (1 + 2β − ln (1− ρ2 + ρ2N))− 1

ρ

which is positive and induces D(QY ∥PY ) = β. As N
decreases from 1 to 0, D(QX∥PX) increases from β

ρ2 to +∞.
So, it holds that φ(α, β) ≤ α for g(ρ) < β < ρ2α. Note that
φ(0, 0) = 0. By convex combination of (0, 0) and points in
the region g(ρ) < β < ρ2α, we obtain that convφ(α, β) ≤ α
for β < ρ2α. By symmetry, convφ(α, β) ≤ β for β > α

ρ2 . So,
convφ(α, β) = ψ(α, β).
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