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Multi-Armed Bandits with

Self-Information Rewards

Nir Weinberger1 and Michal Yemini2

Abstract

This paper introduces the informational multi-armed bandit (IMAB) model in which at each round, a player

chooses an arm, observes a symbol, and receives an unobserved reward in the form of the symbol’s self-

information. Thus, the expected reward of an arm is the Shannon entropy of the probability mass function of

the source that generates its symbols. The player aims to maximize the expected total reward associated with

the entropy values of the arms played. Under the assumption that the alphabet size is known, two UCB-based

algorithms are proposed for the IMAB model which consider the biases of the plug-in entropy estimator. The

first algorithm optimistically corrects the bias term in the entropy estimation. The second algorithm relies on

data-dependent confidence intervals that adapt to sources with small entropy values. Performance guarantees are

provided by upper bounding the expected regret of each of the algorithms. Furthermore, in the Bernoulli case,

the asymptotic behavior of these algorithms is compared to the Lai-Robbins lower bound for the pseudo regret.

Additionally, under the assumption that the exact alphabet size is unknown, and instead the player only knows

a loose upper bound on it, a UCB-based algorithm is proposed, in which the player aims to reduce the regret

caused by the unknown alphabet size in a finite time regime. Numerical results illustrating the expected regret

of the algorithms presented in the paper are provided.

Index Terms

Multi-armed bandits, self-information rewards, entropy estimation, upper confidence bounds, support size

estimation.

I. INTRODUCTION

Multi-armed bandit (MAB) problems are sequential decision problems where a player makes iterative decisions

in an unfamiliar environment to optimize a total outcome. More specifically, at every round the player is given a

choice of K arms, each affiliated with an unknown probability mass function (PMF) for its reward. The player
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chooses an arm to play based on its previous arm choices and received rewards, and then receives a random

reward generated by the chosen arm. The player’s objective is to maximize the total expected reward it receives

from all the rounds it has played. If the player knew the expected reward of each arm, it could maximize

its total expected reward by repeatedly choosing the arm with the highest expected reward. However, since

the player does not know in advance the expected reward of each arm, it must balance two conflicting acts,

namely, exploration and exploitation. When making an arm choice, the player wants to exploit the knowledge

it accumulated and choose the arm with the highest expected reward, however, naively choosing repeatedly the

arm with the highest estimated reward can be sub-optimal since this estimate can be erroneous. To that end, the

player periodically dedicates rounds to exploration, aiming to increase the estimation precision of the expected

rewards. Balancing the wish to exploit current observations and maximize the immediate reward with the need

to explore other arms to increase estimation precision and thus future rewards lies at the heart of MAB decision

algorithms; it is known as the exploration-exploitation trade-off.

In the classical MAB problem [2], the reward of an arm is independently and identically distributed over

different rounds, and so the expected reward of each arm is the mean of its reward distribution. Furthermore,

it can be estimated by the sample mean of the observed rewards which is an unbiased estimator. The classical

model has been extended in numerous ways to include, among other models, MAB with linear reward functions

[3]–[6], Markovian dynamics and rewards [7]–[12], and combinatorial bandits with monotone reward functions

[13]. In these models, the prevalent measure for the performance of the player’s arm choices is the total expected

regret, which measures the cumulative difference between the expected reward of the optimal arm and that of

the arms that were sequentially chosen by the player.

In this paper, we consider a different reward structure, which is based on the informativness of the arm. If

we consider each of the K arms as an information source emitting independent and identically distributed (IID)

symbols, a player may have the goal of sampling from the source which is most informative. Clearly, there could

be different ways to measure this quantity, and in this work we focus on the natural choice of Shannon’s entropy.

This is motivated both by the standard interpretation of entropy as a measure of uncertainty, the convenient

analytic properties of the entropy functional, and its practical applicability in applications such as anomaly

detection [14]–[17]. We thus henceforth refer to a MAB problem with entropy rewards as informational MAB

(IMAB). At each round the player observes a random symbol generated from the PMF of its chosen arm. Letting

the true probability of the generated symbol x playing arm i be pi(x), the instantaneous reward associated with

this symbol is its self-information − log pi(x). Using the symbol observations from the previously played arms,

the player aims to choose the arm with maximal entropy. Evidently, this model is different from standard MAB

since the expected reward of each arm, to wit, its entropy, is a non-linear functional of the PMF, rather than its

mean (which is a linear functional). Moreover, at each round t, the instantaneous reward function depends on the

probability of a symbol and not its value x(t). Therefore, the player does not directly observe the instantaneous
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rewards − log pi(x(t)), but can only estimate it based on its previous observations. As a result, and as we next

discuss, the IMAB problem is intimately related to the problem of confidence bounds in entropy estimation.

A highly successful algorithmic approach to MAB problems is optimism in the face of uncertainty, where the

uncertainty in the reward estimation of each arm is replaced by an optimistic estimate that is based on upper

confidence bounds (UCB) [18], [19]. The performance guarantees of the expected regret of UCB algorithms

are achieved by utilizing concentration inequalities (see primers in [20], [21]), which bound the probability that

the unbiased sampled mean of the reward is outside a chosen distance, known as the confidence interval, of the

expected reward of an arm. For the entropy functional, the plug-in estimator of the entropy is well-known to be

biased, and in fact, there are no finite variance unbiased estimators of the entropy in general alphabet discrete

settings [22]. However, it is also known that the bias of the plug-in estimator is upper bounded by log(1+ |X |
n )

where |X | is the alphabet size and n is the number of samples used for estimation [22]. Moreover, the entropy

functional satisfies a bounded-difference inequality with respect to (w.r.t.) to the samples, and so an application

of McDiarmid’s inequality [23] resulted in a concentration inequality bound for the plug-in entropy estimator

w.r.t. its (biased) mean. Therefore, our first approach for confidence intervals in entropy estimation is to use a

bias-corrected plug-in entropy estimator. Nonetheless, the drawback of this approach is that the additional bias

term in the confidence interval leads to a large interval in case the alphabet of the arm is large, even if the

entropy of this arm is very low. Therefore, we develop a second type of confidence interval bounds that is based

on a total variation bound on the entropy difference of a pair of PMFs [24], [25]. This bound further hinges on

a concentration inequality for the total variation, which depends on a functional of the arm’s PMF (denoted ζ(p)

in what follows), which essentially quantifies the effective alphabet size of the arm (given by ζ(p)|X |). We then

show that ζ(p) itself can be estimated from the samples at the previous rounds, and this estimate can be used

in a UCB algorithm in lieu of the true value. Our upper confidence intervals directly depend on the alphabet

size. In practice, the alphabet size may not be known to the player in advance and only a loose upper bound

on the support size can be available. Therefore, we additionally propose a UCB algorithm that incorporates

support size estimation. For the sake of simplicity of presentation, we derive these bounds for the bias-corrected

estimator approach, but it can nonetheless be similarly applied to confidence interval bounds that are based on

a total variation bound.

Main Contributions and paper outline: In Sec. II we formulate the IMAB problem, and in Sec. III we

state a generic UCB algorithm for the IMAB problem, which takes a choice of an entropy estimator and a

choice of an upper confidence bound (on that estimator) as inputs. In later sections we specify this algorithm

for particular choices, and derive regret bounds. First, in Sec. IV we bound the regret of a UCB algorithm that

is based on a bias-corrected plug-in estimator, and obtain a regret upper bound, which roughly scales as the

standard UCB bound (for mean-based rewards), yet only after a large number of rounds O(exp
√

|X |) where

here X is the maximal alphabet size of the arms. Then, in Sec. V we present a UCB algorithm that is based on
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concentration of total variation distance, with the goal of ameliorating this dependence on the alphabet size in

case the PMFs of the arms are close to the vertices of the simplex (to wit, there exist a letter whose probability

is close to 1). This regime is where elaborated UCB algorithms may lead to improved regret bounds. From

a practical point of view, this fits anomaly detection scenarios, in which the arms are mostly "idle", and thus

most of the time emit the high probability symbol, and only occasionally a different symbol ("anomaly"). The

player then needs to find the arm which is the "least idle". The UCB algorithms in this section are based on

data-dependent confidence intervals, similarly to variance-UCB, which has the merit of adapting the bound to

cases in which the entropy of the source is much smaller compared to its maximal value. While our motivation

is the large alphabet case, in order to facilitate ideas in a clean way, we first consider Bernoulli arms, for

which the probability of the symbol ′1′ being close to zero indicates that the source is mostly idle. In addition,

this setting can also be compared with the Lai-Robbins lower bound [2, Thm. 1], which reveals the asymptotic

optimality of the proposed UCB algorithm. We then extend the analysis to alphabets of arbitrary size. Afterward,

in Sec. VI we relax the assumption that the support sizes |Xi| are known to the player, and assume a bound of

κ−1 on the minimal probability in the support. This leads to an upper bound of κ on the support size, which

may significantly overestimate the true support size. In turn, this leads to an overestimate of the bias of the

entropy estimator, then to an overestimate of the confidence interval used by the player, and consequently, to

an excessively large regret. To ameliorate this phenomenon, we propose a confidence interval bound that is

based on online support size estimation, and analyze the corresponding regret. The proposed algorithm leads

to improved regret bound that can be smaller by a factor of
√
κ compared to using the naive bias-corrected

plug-in estimator (with κ used for the alphabet size). Finally, in Sec. VII we provide a few numerical examples

that support the theoretical findings, and in Sec. VIII we summarize the paper.

Related work: We conclude the introduction by mentioning related work in the entropy estimation and

bandit problem literature. The general problem of entropy estimation is well studied [22]–[24], [26]–[33]. These

papers lead to tight (and even optimal) entropy estimators, and here we build upon their ideas to obtain a

confidence interval bound, which is both tailored to the IMAB problem and can also be efficiently estimated

from data. In the multi-armed bandit literature, information-theoretic functionals have been used in recent

years to decrease the expected regret of several MAB models [34]–[36]. Using the mutual information of the

probabilities for arm sampling at two consecutive rounds, information-directed sampling (IDS) outperforms

both UCB-based algorithms and Thompson sampling [37], [38] in problems with special structures, such as

dependent on prior models [34], and bandits with arm-dependent heteroscedastic noise [35]. Nonetheless, these

works utilize informational measures to create exploration-exploitation trade-offs, and the reward structure is

standard. Extending reward estimation for reward functions whose mean depends on the higher moments, or

even the complete knowledge of distribution function is the focus on the works [13], [39]. However, the work

[39] is limited to a known parametric family of distributions with unknown parameters. Moreover, [13] relies on
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stochastically dominant confidence bounds that requires monotonically increasing instantaneous reward function,

however the self-information − log(pi(x)) is monotonically decreasing in pi(x). Furthermore, it is assumed in

[13], [39] that the instantaneous reward is directly known, however, in our case the instantaneous reward is

unknown to the player and is not a function of the symbol outcome but rather of its probability.

II. PROBLEM FORMULATION

We first define a few notation conventions that will be used in the rest of the paper. For a, b ∈ R, we denote

max{a, b} := a ∨ b and min{a, b} := a ∧ b, as well as (t)+ = t ∨ 0. Furthermore, we denote by X ∪ Y the

concatenation of the vector X and the vector Y . To focus the reader on the first-order terms we denote the

linear-times-polylogarithmic function by

Λk(s) := s logk s, (1)

(which can be thought of as an almost linear function). For a discrete alphabet Y , we denote the entropy of

a PMF p over an alphabet Y by H(p) := −
∑

y∈Y p(y) log p(y), where logarithms are arbitrarily taken to the

natural base. We denote the total variation distance between two PMFs p and q on a finite alphabet Y by

dTV(p, q) :=
∑

y∈Y |p(y)− q(y)|. We remark at this point that in what follows, as customary, we have opted

for the simplicity of our bounds over obtaining the tightest constants possible.

Consider the following IMAB problem. Let {Xi}Ki=1 be a set of K ≥ 2 memoryless sources, each defined on

a possibly different alphabet Xi, such that pi(x) := P[Xi = x]. We further denote by pi = {pi(x)}x∈Xi
the full

PMF of the ith source. The IMAB problem is a game in which at each round t, the player chooses one of the

sources i ∈ [K] := {1, 2 . . . ,K} and observes the t-th symbol Xi(t) from that source. In the context of MAB,

each of the sources is referred to as an arm. In this paper, we assume that the random reward associated with this

arm choice and this observation is the self-information − log pi(Xi(t)), and so the expected reward of sampling

only arm i is −E[log pi(X)] = H(pi) := Hi, which is the entropy of the ith source. The goal of the player

is to choose the arm with the maximal expected reward, that is, the maximal entropy, i∗ ∈ argmaxi∈[K]Hi.

The player, which does not know in advance the PMFs pi (and so also not the entropy values Hi) estimates

the expected reward Hi of each arm from its previous actions and observations. The first part of the paper, i.e.,

Sections IV-V assumes that the player knows in advance the alphabet size of the sampled random variables.

Later on, in Section VI, the scenario in which the player does not know in advance the exact alphabet size is

considered, and instead it only has access to a loose upper bound on it. This models the scenario in which the

alphabet size is considerably larger than the actual support size.

We denote the arm choice of the player at round t by I(t), and we let Ni(t) =
∑t

τ=1 1[I(τ) = i] be the

number of times in which arm i was sampled up to round t. To measure the performance of the policies used
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by the player, we will adopt the standard expected pseudo-regret [19, Ch. 1]

R(t) := t ·Hi∗ −
∑

i∈[K]

E(Ni(t)) ·Hi. (2)

Letting ∆i := Hi∗−Hi denote the gap of the ith arm, we may equivalently represent the expected pseudo-regret

as

R(t) =
∑

i∈[K]:∆i>0

E(Ni(t)) ·∆i. (3)

III. THE UPPER CONFIDENCE BOUND ALGORITHM FOR ENTROPY REWARDS

In this section, we present a generic UCB algorithm for the IMAB problem. Similarly to the UCB algorithm

with standard rewards [19, Sec. 2.2] [40, Ch. 1], the algorithm is based on an entropy estimator for which an

upper confidence bound is known to hold with high probability. In general, let Y := {Yℓ}ℓ∈[n] be n IID samples

from a PMF p over a finite alphabet Y . Suppose that there exists an entropy estimator Ĥ(Y , n) and an upper

confidence deviation (UCD) function UCD(Y , n, δ) (for δ ∈ (0, 1)) for which the upper confidence bound

H(p) ≤ Ĥ(Y , n) + UCD(Y , δ, n) (4)

holds with probability larger than 1 − δ. Note that both the estimator Ĥ(Y , n) and the confidence deviation

UCD(Y , δ, n) may depend on the observed source symbols Y . The algorithm keeps a set of observed samples

from each of the arms up to any round t. Based on the samples of each arm, the algorithm computes the

value of the estimator and the upper confidence deviation for each of the arms. The played arm is then the one

maximizing the estimated entropy plus the confidence deviation, that is, the right-hand side (RHS) of (4) for

the set of observations of each of the arms. The new observed sample is then added to the set of observations

of that played arm.

The algorithm takes as input the following:

• The parameters of the information sources, namely, the number of arms K and the alphabet sizes {Xi}i∈[K].

When these exact values are not known in advance, with a slight abuse of notations, we use the input

parameters {κi}i∈[K] such that |Xi|≤ κi for all i ∈ [K]. These inputs are used in Section VI which

considers the unknown alphabet case;

• A sequence of entropy estimators {Ĥ(·, n)}n∈N+
and a sequence of upper confidence deviation functions

{UCD(·, ·, n)}n∈N+
;

• A real confidence parameter α > 2 and a confidence function δ(t) ≡ δα(t) which determines the required

reliability of the confidence interval at any round t.

At each round t ∈ N+, the algorithm plays a chosen arm i ∈ [K] and observes the sample Xi(t). The output

of the algorithm is {Ni(t)}i∈[K], t∈N+
the number of times each of the arm have been played up to each of the
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rounds t (or, equivalently, the played arm at each round {I(t)}t∈N+
). Given this output, the pseudo-regret at

round t is given by
∑

i∈[K]:∆i>0Ni(t)∆i whose expected value is R(t), as in (3). The input, the actions and

the policy of the player are summarized in Algorithm 1. Therein, X i(t) is the set of samples available to the

player at round t from the ith arm.

Algorithm 1 A general UCB-entropy algorithm

1: procedure AN UPPER CONFIDENCE BOUND ALGORITHM(K, {Xi}i∈[K], Ĥ(·, n) ,UCD(·, ·, n), α, δα(t))
2: set Xi(0) = φ and Ni(0) = 0 for all i ∈ [K]

⊲ The observation set of each arms is empty at round t = 0
3: for t = 1, 2, . . . do

4: play I(t) ∈ argmaxi∈[K]{Ĥ(X i(t− 1), Ni(t− 1))) + UCD(Xi(t− 1), δα(t), Ni(t− 1))}
5: set XI(t)(t) = XI(t)(t− 1) ∪XI(t)(t) and NI(t)(t) = NI(t)(t− 1) + 1

⊲ The observation of the chosen arm is concatenated to the sequence of observations

6: set Xi(t) = Xi(t− 1) and Ni(t) = Ni(t− 1) for all i ∈ [K]\I(t)
⊲ The observation set of others arms is unchanged

7: end for

8: return {Ni(t)}i∈[K], t∈N+

⊲ The number of times each arm i ∈ [K] have been played up to each round t ∈ N+

9: end procedure

Table I summarizes the entropy estimators Ĥ(·, n), upper confidence bounds UCB(·, ·, n), and functions δα(t)

that we develop for Algorithm 1. Additionally, Table I refers to the relevant theorems that provide performance

guarantees for the chosen inputs.

Thm. Alphabet Ĥ(Y , n) δα(t) UCB(Y , δ, n)
PMF based

UCB
Pseudo
regret

Thm. 2

discrete,
finite,
known H(p̂(n)) t−α (7) no (10)

Thm. 6

binary,

known H(p̂(n)) 6t−α (12) yes (18)

Thm. 9

binary,

known H(p̂(n)) 4t−α (20) yes (24)

Thm. 11

discrete,
finite,
known H(p̂(n)) t−α (28) yes (30)

Thm. 14
finite but

unknown support H(p̂(n)) t−α (40) no (43)

TABLE I

SUMMARY OF INPUTS FOR ALGORITHM 1 AND RESULTS.

IV. UPPER CONFIDENCE BOUNDS WITH BIAS-CORRECTED ENTROPY ESTIMATION

A straightforward idea for estimating entropy is the plug-in estimator, in which the PMF of the source is

estimated via the empirical PMF of the samples, and then the entropy of the empirical PMF is used to estimate
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the entropy of the source. As discussed in the introduction, the plug-in estimator for the entropy concentrates

around its expected value [23], yet suffers from a negative bias [22]. Thus, a natural method of obtaining an

upper confidence bound is by correcting this bias. Specifically, let Y = {Yℓ}ℓ∈[n] be a sequence of IID samples

from some distribution p over the alphabet Y , and let (with a slight abuse of notation) p̂(n) = {p̂(y, n)}y∈Y
be the empirical mean of the n samples, where p̂(y, n) := 1

n

∑n
ℓ=1 1{Yℓ = y} for all y ∈ Y . Then, the plug-in

estimator H(p̂(n)) is biased, and, as was proved in [22],

H(p)−B(n) ≤ E[H(p̂(n))] ≤ H(p), (5)

where

B(n) := log

(

1 +
|Y|−1

n

)

(6)

for n ≥ 1. Therefore, the bias-corrected estimator H(p̂(n)) +B(n) has a nonnegative bias. Let

UCDbias(δ, n) := B(n) +

√

2 log2(n)

n
log

(
2

δ

)

. (7)

The concentration result of the plug-in estimator from [23, p. 168] implies the following confidence interval

bound. For the sake of clarity of exposition, we present all the relevant proofs for this section in Appendix B.

Proposition 1. Let Y = {Yℓ}ℓ∈[n] be IID from a discrete distribution p over a finite alphabet Y such that

p(y) := P[Y = y]. Then, assuming n ≥ 2, it holds for any δ ∈ (0, 1) that

|H(p̂(n))−H(p)| ≤ UCDbias(δ, n), (8)

with probability larger than 1− δ.

We may now specify the general Algorithm 1 to the upper confidence bound of Proposition 1, and obtain the

following guarantee on the expected regret. To this end, let us denote

Γbias(α, β,Y,∆, t) := max

{ |Y|−1

eβ·∆/2 − 1
, 15 · Λ2

(
8 · log(2tα)
(1 − β)2∆2

)}

. (9)

Theorem 2. Assume that Algorithm 1 is run with a plug-in entropy estimator Ĥ(Y , n) ≡ H(p̂(n)), and upper

confidence deviation UCD(Y , δ, n) ≡ UCDbias(δ, n) with δ ≡ δα(t) = t−α and α > 2. Let β ∈ (0, 1) be given.

Then, the pseudo-regret is bounded as

R(t) ≤
∑

i∈[K]:∆i>0

[

Γbias(α, β,Xi,∆i, t) ·∆i +
2(α− 1)

α− 2
·∆i

]

. (10)

We remark that β is a parameter that is used in our analysis of the pseudo regret for the sake of serving tighter

upper bounds and is not part of Algorithm 1. The bound on the regret of Algorithm 1 with a bias corrected
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entropy estimator in (10) is comprised of a few terms. However, for any i ∈ [K], there is only a single term

that blows-up as ∆i ↓ 0, given by

c1 · log(t)
∆i

· log2
(
c2 · log(t)

∆2
i

)

, (11)

for some constants c1, c2. Thus, the regret scales as Õ( log(t)∆i
), where the only difference from the standard UCB

[19, Thm. 2.1] is the additional poly-logarithmic term. Then, if we consider for simplicity the two-arm case

(K = 2) with ∆1 = 0 and ∆2 ≡ ∆, since ∆t is always an upper bound on the pseudo-regret, we may obtain

the Õ( 1
∆ ∧ ∆t) = Õ(

√
t), which roughly matches the gap-independent bound in the standard MAB problem

(e.g., [40, Thm. 2.10]).

Nonetheless, from a different perspective, assuming that the gaps are all constants, then if log2(t) = Õ(|Xi|)
the regret will be determined by the first term in (9), and so the regret bound is large as long as t =

O(maxi∈[K] exp(
√

|Xi|)). In the next section we develop a UCB algorithm which ameliorates this unfavorable

behavior.

V. UPPER CONFIDENCE BOUNDS WITH A TOTAL VARIATION BOUND

As we have seen in Theorem 2, the upper bound on the regret of the UCB algorithm with a bias corrected

entropy estimator is severely affected by the size of the alphabets Xi. Therefore, a natural question is whether

improved bounds can be obtained whenever the entropy of sources is much less than the alphabet size. In this

section, we propose algorithms that adapt to arms with very low entropy. The idea is similar to variance-UCB

[41], [42] that replaces the distribution-independent confidence interval of the standard UCB algorithm (which

hinges, e.g., on Hoeffding’s inequality, assuming bounded rewards), with a distribution-dependent confidence

interval (which hinges, e.g., on Bernstein’s inequality). Our next proposed algorithms will similarly use a data-

dependent UCD. For such algorithms, the confidence interval, which in principle depends on the unknown

distribution, is also required to be estimated from the given observations. For the sake of illustration, let us

first consider the simpler case of Bernoulli arms, for which pi(1) = P[Xi = 1] is close to 0 for some arm

i ∈ [K]. The entropy of this arm is much smaller than the maximal possible value of log|Xi|= log 2. A

multiplicative Chernoff’s inequality (or Bernstein’s inequality, see Lemma 17) results a confidence interval of

O(

√
pi(1) log(1/δ)

n ) in the estimation of pi(1) using n samples from the source. Since pi(1) ≪ 1, this is much

smaller than the O(

√
log(1/δ)

n ) which stems from standard Chernoff’s bound (or Hoeffding’s inequality). This

confidence interval on pi(1) then leads to an improved confidence interval bound on the error of the plug-in

estimator of the entropy. Since this confidence interval bound depends on the unknown pi(1), it should also be

estimated by the player, using its estimation of pi(1). The estimation error of the confidence interval is then

another source of error that is addressed by our analysis.

Thus, in what follows, we begin with the Bernoulli case in Sec. V-A, which leads to a more transparent

bound than the general case, and can also be compared to the Lai-Robbins impossibility result [2, Thm. 1]. We
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later on generalize this type of algorithm to arbitrary arm alphabets in Sec. V-B. As in the Bernoulli case, the

confidence interval of arms with low entropy is smaller than ones with large entropy. The PMF of these arms

is close to the vertices of the probability simplex, which in the Bernoulli case implies a low value of pi(1).

In the general alphabet case, the value of pi(1) is replaced by a functional1 ζ(p) ∈ [0, 1], which satisfies that

low values of ζ(p) are indicator of being close to the vertices of the simplex, and that can also be efficiently

be estimated from the data. As a result, we additionally show that the effective alphabet size for the IMAB

problem is ζi|Xi|, which demonstrates the utility of this functional.

A. The Bernoulli Case

In this section, we consider the Bernoulli case, in which Xi = {0, 1} for all the K arms, i ∈ [K]. For brevity

we use hb(p) := −p log p − (1− p) log(1− p) to denote the binary entropy function. Furthermore, we assume

for simplicity of exposition that pi(1) = P[Xi = 1] ≤ 1/2 for all i ∈ [K]. The results can be extended in a

straightforward manner to remove this assumption. The proofs of the theoretical results presented in Section V-A

are included in Appendix C. The proposed UCB algorithm and its regret analysis are based on the following

confidence deviation function

UCDber(q, δ, n) :=

√

12q log(6δ )

n
log

(

n

q log(6δ )

)

+
18 log(6δ ) log(n)

n
, (12)

and the corresponding confidence interval bound for the plug-in entropy estimator:

Proposition 3. Let Y = {Yℓ}ℓ∈[n] be IID from a Bernoulli with parameter p = P[Yi = 1], and let p̂(n) =

1
n

∑n
ℓ=1 1{Yℓ = 1} be the empirical probability of ′1′. Let δ ∈ [0, 12 ] be given. If n ≥ 200 · log(4δ ) then

|hb(p̂(n))− hb(p)| ≤ UCDber(p̂(n), δ, n), (13)

with probability larger than 1− δ.

Remark 4. The confidence interval of Proposition 3 follows from the relation

|H(p)−H(q)| ≤ dTV(p, q) log

( |Y|
dTV(p, q)

)

, (14)

where dTV(p, q) is the total variation distance between PMFs p and q defined on a common alphabet Y , and

that holds as long as dTV(p, q) ≤ 1
2 [43, Lemma 2.7]. The bound (14) is not the sharpest known bound, and,

e.g., it also holds that [24, Thm. 6]

|H(p)−H(q)| ≤ dTV(p, q) log (|Y|−1) + hb (dTV(p, q)) , (15)

1We define this functional explicitly in (26).
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(see also an additional refinement in [25]). In our proofs this type of bounds is utilized in the regime dTV(p, q) =

o(1), for which both (14) and (15) are of the same order of Θ
(

dTV(p, q) log
|Y|

dTV(p,q)

)

. Thus, we exclusively

use the simpler bound (14).

Remark 5. In the special case of a binary alphabet, the binary entropy hb(p) is maximized when p = 1/2.

Additionally, it is symmetric around p = 1/2 and strictly increases in the interval [0, 1/2]. Therefore, instead of

utilizing UBC for entropy estimation we can consider the following strategy where we optimistically look for

the arm with the minimal |p−1/2| in the set p ∈ [p̂i(1)−UCD, p̂i(1)+UCD]. However, since we examine the

binary alphabet to gain insights regarding the general alphabet case, we focus below on regret bounds which

we can extend to the general alphabet case. These regret bounds are achieved by UCB strategies for entropy

estimation.

Next, we state the regret bound on Algorithm 1, based on the confidence interval of Proposition 3. To this

end, let us denote

Γber(α, β, q,∆, t) :=

max

{

6 · Λ1

(
36α log(t)

(1− β)∆

)

,
5120qα log(t)

β2∆2
· log2

(
48

β2∆2

)

,
88
√

α log(t)

β∆
· log

(
48

β2∆2

)}

, (16)

and use the notation p̂(Y , n) for the empirical probability of ′1′ in Y = {Yℓ}ℓ∈[n].

Theorem 6. Assume that Xi = {0, 1} for all i ∈ [K]. Further assume that Algorithm 1 is run with the plug-in

entropy estimator Ĥ(Y , n) ≡ H(p̂(Y , n)) and upper confidence deviation

UCD(Y , δ, n) ≡ UCDber(p̂(Y , n), δ, n), (17)

(as defined in (12)) with δ ≡ δα(t) = 6t−α with α > 2. Then,

R(t) ≤
∑

i∈[K]:∆i>0

inf
β∈(0,1)

[

Γber(α, β, pi(1),∆i, t) ·∆i +
16(α − 1)

α− 2
·∆i

]

. (18)

Let us inspect the regret bound of (18) of Theorem 6 in the regime of small gaps. By inserting the definition

of the Γber(·), the dominating term as ∆i ↓ 0 is on the order of Õ(pi log(t)
∆i

) and all other terms are O(logc( 1
∆i

)).

Thus, e.g., in case ∆i = Θ(pi) (as t → ∞), then the regret is only O(log(t) · logc( 1
∆i

)). This is a similar

behavior to the variance-UCB algorithm [41], [42] with standard bounded rewards. Nonetheless, in general, the

bound of Theorem 6 is not optimal. Indeed, recall that in the standard Bernoulli MAB problem, say with two

arms (K = 2), the regret bound depends on the difference p1(1)−p2(1) between the ′1′-probability of each arm,

which is exactly the gap between their rewards. However, in the IMAB problem, the gap is hb(p1(1))−hb(p2(1)),

and due to the non-linearity of the entropy functional this gap depends on both the difference p1(1)− p2(1) as
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well as the location of p1(1).

To further elucidate this phenomenon, next we state the Lai-Robbins lower bound [2] on the pseudo-regret.

We follow the clear statement made in [40, Thms. 2.14 and 2.16]:

Theorem 7 (Lai-Robbins lower bound). Consider the IMAB problem with K arms. A problem instance I is the

collection {pi}i∈[K] with pi ≡ pi(1) ∈ [0, 1/2). Suppose that a IMAB algorithm is such that R(t) = O(CI,at
a)

for each problem instance I and a > 0. Fix an arbitrary problem instance I . Then,

lim inf
t→∞

R(t)

log(t)
≥

∑

i∈[K]:∆i>0

∆i

DKL(pi||pi∗)
, (19)

where DKL(p||q) := p log(p/q) + (1 − p) log((1 − p)/(1 − q)) is the binary Kullback-Leibler divergence, and

∆i = maxj∈[K] hb(pj)− hb(pi).2

The proof of Theorem 7 for the IMAB problem is omitted since it is essentially identical to the proof of the

standard Lai-Robbins lower bound for Bernoulli bandits, which can be found in [2, Thm. 1] [19, Thm. 2.2] [40,

Ch. 2].

Strictly speaking, Theorem 7 is asymptotic and does not specify the minimal t required for its validity, and

is also valid for a fixed set of gaps. Nonetheless, we next informally compare the order of convergence it

implies with the one attained in Theorem 6 while considering the effect of varying the gap. To simplify the next

discussion, we will assume K = 2 with p2 < p1 < 1
2 . Let ∆ ≡ ∆2 = hb(p1) − hb(p2). In the standard bandit

case, one approximates DKL(p2||p1) = Θ(∆2) (e.g., using Pinsker’s inequality and its reverse version), and then

the lower bound is Ω( 1
∆ log(t)). This lower bound is roughly achieved by the basic UCB algorithm [19, Thm.

2.1] (and the variance-UCB algorithm leads to data-dependent improvement in the constant). Before comparing

this result to the upper bound of Theorem 6, we note that the latter has an extra multiplicative logarithmic

factor, which can be as large as Θ(log( log(t)∆ )). To focus on the first-order terms in the regret bound, we next

ignore these additional factors in the discussion. We next consider a few different regimes.

To begin, let us assume that p1 = p and p2 = p−Λ with p fixed and Λ ↓ 0, then ∆ = hb(p1)−hb(p2) = Θ(Λ)

and DKL(p2||p1) = Θ(Λ2), and the ratio in the lower bound is Θ( log tΛ ) as in standard bandits. This roughly

matches the upper bound of Theorem 6 on the pseudo-regret achieved by the algorithm, and no significant

improvements are anticipated.

Next, we consider the regime in which the probabilities of the arms are close to 1/2. The binary entropy

function "flattens" in this region, and is markedly different from the standard linear reward function. Thus, on an

intuitive level, this is not a difficult instance of the problem. More explicitly, let us assume that both p1 =
1
2 −Λ

and p2 = 1
2 − 2Λ. Then, both ∆ = hb(p1) − hb(p2) = Θ(Λ2) and DKL(p2||p1) = Θ(Λ2), and the ratio in the

2If q = 0 or q = 1 and p 6= q then DKL(p||q) := ∞.
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lower bound is asymptotically Θ(log t) even if Λ ↓ 0 and so also ∆ ↓ 0. In this regime, the regret of Algorithm

1 is upper bounded as Õ( log t∆ ) whereas the lower bound is only Θ(log t), and so the bounds do not match.

However, as we next show, the fact that the binary entropy function at 1/2 is quadratic leads to an ameliorated

confidence interval bound. Specifically, consider the following upper confidence deviation

UCD
(1/2)
ber (q, δ, n) := 7

∣
∣
∣
∣

1

2
− q

∣
∣
∣
∣
·

√

log(4δ )

n
+

9 log(4δ )

n
. (20)

We now have the following confidence interval bound.

Proposition 8. Let Y = {Yℓ}ℓ∈[n] be IID from a Bernoulli with parameter p = P[Yi = 1], let p̂(n) =

1
n

∑n
ℓ=1 1{Yℓ = 1} be the empirical probability of ′1′. Assume that p ∈ [25 ,

1
2 ], that n ≥ 60 log(4δ ), and let

δ ∈ [0, 12 ] be given. Then

|hb(p̂(n))− hb(p)| ≤ UCD
(1/2)
ber (p̂(n), δ, n), (21)

with probability larger than 1− δ, and

|hb(p̂(n))− hb(p)| ≤ UCD
(1/2)
ber (p, δ, n), (22)

with probability larger than 1− δ.

We restricted pi to [25 ,
1
2 ] since the regime of current interest is such that the arm probabilities are close to

1/2, and this restriction simplifies the exposition. With this result, the following regret bound can be easily

derived using the same methods used in the proof of Theorem 6, and so its proof is omitted. For simplicity, we

only state it for K = 2 arms.

Theorem 9. Assume that Xi = {0, 1} and that pi ∈ [25 ,
1
2 ] for i ∈ {1, 2} where ∆ = hb(p1) − hb(p2) with

p2 < p1 <
1
2 . Further assume that Algorithm 1 is run with the plug-in entropy estimator Ĥ(Y , n) ≡ H(p̂(Y , n))

and upper confidence deviation

UCD(Y , δ, n) ≡ UCD
(1/2)
ber (p̂(Y , n), δ, n), (23)

(as defined in (20)) with δ ≡ δα(t) = 4t−α with α > 2. Then,

R(t) ≤ 784
(
1
2 − p2

)2
α log(t)

∆
+ 60α log(t) +

8(α − 1)

α− 2
·∆. (24)

In the regime above, (12 − p2)
2 = Λ2 = Θ(∆) and so the regret of the algorithm is Θ(log(t)), just as the

Lai-Robbins lower bound. This result can be easily extended to multiple arms, and can also be combined with

the result of Theorem 6 by taking the minimal confidence bound out of those used in Theorem 6 and that of

Theorem 9. This will result the minimum of the regret upper bounds of both theorems.
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Finally, we consider the other extremal regime for the arms’ Bernoulli probabilities, to wit, the small value

regime, in which the derivative of the binary entropy function is unbounded. For concreteness, assume that

p1 = γ > 0 and p2 = 0 for a small γ > 0. It then can be easily derived that the gap is ∆ = hb(p1)− hb(p2) =

Θ(γ log 1
γ ) and that DKL(p2||p1) = Θ(γ) (adopting the convention that 0 log(0/q) = 0 in the definition of the

KL divergence, which agrees with continuity assumptions). So, the lower bound is Ω(log 1
γ · log t). According

to Theorem 6, the pseudo-regret bound achieved by the algorithm is also O(log 1
γ · log t), and this agrees with

the lower bound.

We may also compare the gap-independent lower bound with the gap-independent regret bound that Theorem

6 implies. This bound is given by

R(t) = O

(

min

{

log t · log
(
1

γ

)

,

(

γ log
1

γ

)

· t
})

= O
(
log2(t)

)
, (25)

where the maximum regret is achieved for the gap γ = Θ( log(t)t ) (as can be shown by equating both terms

and evaluating the order of the solution). This result roughly matches the gap-independent lower bound of

R(t) = Ω(log(t)), which can be established by modifying, e.g., the argument in [40, Sec. 2.3 and 2.4]. We

next briefly describe this argument. Therein, the standard MAB problem is reduced to a best-arm identification

problem (essentially, a binary hypothesis testing problem), between a uniform Bernoulli source p1(1) =
1
2 and

an ǫ-biased source, that is, an arm for which p1(1) =
1
2 − ǫ for some ǫ > 0. Since the KL divergence is Θ(ǫ2),

then as long as t = Θ(ǫ−2), the arm identifier resulting from any MAB algorithm will have a constant fraction of

errors. Consequently, since the gap in this standard MAB problem is Θ(ǫ), a lower bound on the pseudo-regret

is given by Θ(ǫt) which can be chosen as large as R(t) = Ω(
√
t), to obtain the gap-independent bound. In the

IMAB problem and the regime considered here, the KL divergence is on the order of Θ(γ) (instead of Θ(γ2)),

and the gap is Θ(γ log( 1γ )). Repeating the same argument then leads to a lower bound of R(t) = Ω(log(t)).

Intuitively, this is also not a difficult instance of the problem (just as in the regime in which the probabilities

are close to half) since here it is easy to statistically distinguish between the arms with the larger entropy (the

KL divergence between the distributions is linear DKL(p1(1)||p2(1)) = Θ(γ) rather than quadratic, while the

gap is only logarithmically above linear Θ(γ log(1/γ))).

B. The General Alphabet Case

In this section, we extend the data-dependent UCD bound of the previous section to general alphabets, of

cardinality larger than 2. To this end, let p and q be two probability mass functions over an alphabet Y . We

consider the distribution-dependent functional

ζ(p) := 1−
∑

y∈Y

p2(y), (26)



15

which can be easily seen to equal ζ(p) = 1− e−H(2)(p), where H(2)(p) is the second-order Rényi entropy. Note

that if H(2)(p) ≪ 1 then ζ(p) ≈ H(2)(p) ≪ 1 too. As we shall see, ζ(pi)|Xi| is a measure of the effective

alphabet size of the ith arm. In addition, ζ(pi) can also be accurately estimated from the data, and thus can be

used by player in determining its confidence interval. The proofs of the theoretical results of this Section V-B

are relegated to Appendix D.

Let the plug-in estimator of ζ(p) be given by

ζ̂(n) ≡ ζ̂(Y , n) := 1−
∑

y∈Y

p̂2(n, y). (27)

The proposed UCB algorithm and its regret analysis are based on the following confidence interval function

UCDtv(ζ,Y, δ, n) :=

3

√

ζ|Y|
n

log

(
n|Y|
36ζ

)

+
3

2

√

log
(
2
δ

)

n
log

(
n|Y|2
9

)

+
2|Y|1/2log1/4

(
2
δ

)
log
(
n|Y|2/3

)

n3/4
, (28)

and the following confidence interval bound for the plug-in entropy estimator:

Proposition 10. Let Y = {Yℓ}ℓ∈[n] be IID from a PMF p over an alphabet Y , and let p̂(n) = {p̂(n, y)}y∈Y with

p̂(n, y) = 1
n

∑n
ℓ=1 1{Yℓ = y} be the empirical PMF of Y . Let δ ∈ [0, 0.2] be given. Then, if n ≥ 112 · log

(
2
δ

)

it holds that

|H(p̂(n))−H(p)| ≤ UCDtv(ζ̂(n),Y, δ, n), (29)

with probability larger than 1− δ.

To state the upper bound on the regret, we define, as before

Γtv(α, ζ(pi),∆i, t) = max

{

288
ζ(pi)

|Y| Λ2
1

(
2|Y|
3∆i

)

, 36230
α1/3 log1/3(t)

|Y|2/3 Λ
4/3
1

(
2|Y|
3∆i

)

,

135

|Y|2Λ2

(
9|Y|2α log(t)

∆2
i

)

,
3

|Y|2/3Λ4/3

(

27|Y|4/3α1/3 log1/3(t)

∆
4/3
i

)

, 30 · α log
(

21/αt
)

, 119ζ(pi)|Y|
}

. (30)

Theorem 11. Assume that Algorithm 1 is run with the plug-in entropy estimator

Ĥ(Y , n) ≡ H(p̂(Y , n)), (31)

and upper confidence deviation

UCD(Y , δ, n) ≡ UCDtv(ζ̂(Y , n),Y, δ, n), (32)
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with δ ≡ δα(t) = t−α with α > 2. Then,

R(t) ≤
∑

i∈[K]:∆i>0

[

Γtv(α, ζ(pi),∆i, t) ·∆i +
4(α− 1)

α− 2
·∆i

]

. (33)

To show the improvement of using UCDtv(ζ,Y, δ, n) of (28) over UCDbias(δ, n) of (7), we observe that for

a non-asymptotic time t that is upper bounded by a polynomial function of |Xi|, the regret bound of Theorem

11 scales as

Õ

(

ζ(pi)|Xi|+1

∆i
+

|Xi|2/3

∆
1/3
i

+ ζ(pi)|Xi|∆i +∆i

)

, (34)

where the Õ(·) hides logarithmic terms in the gap, the alphabet size and the number of rounds. For a fixed gap,

the dependence on the alphabet size is |Xi|2/3∨ζ(pi)|Xi| which can be much smaller than the |Xi| dependence

obtained in Theorem 2 for the biased-based UCB. For a gap-independent bound, we only need to consider the

terms which blow-up as ∆i ↓ 0, and this leads to a bound of the order Õ(
√

(ζ(pi)|Xi|+1)t ∨
√

|Xi| · t1/4), for

which the leading term
√
t is multiplied by roughly

√

ζ(pi)|Xi| rather than |Xi| itself.

VI. MULTI-ARMED BANDITS WITH ENTROPY REWARDS AND SUPPORT ESTIMATION

The previous sections assume that the player knows in advance the alphabet sizes of the sampled random

variables. In practice, the exact alphabet size may not be known by the player in advance. Additionally, even

when the player does know in advance the alphabet size, the actual support size can be drastically smaller than

the alphabet size, and this leads to unnecessarily large confidence bounds which increase the player’s regret. To

address this problem, we consider the case where the alphabet size is unknown, however, it is loosely upper

bounded by a parameter κ via the assumption minx∈N+
{pi(x) : pi(x) > 0} ≥ 1

κ for every arm i ∈ [K]. We next

derive upper confidence bounds for unknown support and present a UCD with support size estimation that can

be input to Algorithm 1. The proof of the theoretical results derived in this section are relegated to Appendix

E.

A. A Concentration Inequality for Arm’s Support Size

Let Y ∼ P be a discrete random variable over an N+, such that p(a) = P [Y = a] for a ∈ N+. Assume that

min
a∈N+

{P (a) : P (a) > 0} ≥ 1

κ
(35)

for some given κ ≥ 1, and so it holds that the support size of Y is at most κ. Let S(P ) := {a ∈ N+ : P (a) > 0}
be the support of P . Given n IID samples Y = (Yi)i∈[n] from P , our goal is to find confidence interval for the

support size S(P ) := |S(P )|.
For a given dataset (Yi)i∈[n], let

Na(n) :=

n∑

i=1

1[Yi = a] (36)
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be the number of appearances of a in (Yi)i∈[n]. The simplest intuitive estimator is given by the plug-in estimator

Ŝ(Y , n) =
∑

a∈N+

1[Na(n) > 0], (37)

which is the number of different symbols that appeared in (Yi)i∈[n].

Proposition 12. Let Y = {Yℓ}ℓ∈[n] be IID from a discrete distribution p over a finite alphabet Y such that

p(y) := P[Y = y]. Then, assuming n ≥ 1, it holds for any δ ∈ (0, 1) that

Ŝ(Y , n) ≤ S(P ) ≤
(

Ŝ(Y , n) +

√

1

2
log

(
1

δ

))

·
(
1− e−

n

κ

)−1
, (38)

with probability larger than 1− δ.

B. A UCB Regret Bound with Support Size Estimation

Next, we present a UCB policy with support size estimation and an upper bound on the resulting expected

regret. We apply our analysis to the finite time regime where
√

α log(t)/2 < S(P ) < κ. In this regime the

number of available samples for an arm is o(κ log κ) for which it is known that the plug-in estimator for

the support size is known to grossly underestimate the true support size (see [44] for a detailed discussion).

Furthermore, the regime
√

α log(t)/2 < S(P ) considers the case in which the bound of Proposition 12 is

non-trivial, and allows for δ, chosen as t−α, to be positive.

In the results of the previous sections, both the biased-corrected entropy estimator and the confidence bounds

depend on the alphabet size. Additionally, the pseudo-regret terms depend (monotonically) on the alphabet size.

So, if the true support size is much smaller than the alphabet size, and if the player is aware of this, it can

significantly reduce its pseudo-regret (bound). Nonetheless, when the player does not necessarily know the

support size in advance, it can estimate it to reduce its pseudo-regret. Next, for simplicity of presentation, we

focus on the biased-corrected entropy estimation presented in Section IV.

Define

BSE(Y , δ, n) := log

(

1 +
1

n

[(

Ŝ(Y , n) +

√

1

2
log

(
1

δ

))

·
(
1− e−

n

κ

)−1 − 1

])

, (39)

and

UCDSE(Y , δ, n) := BSE(Y , δ, n) +

√

2 log2(n)

n
log

(
2

δ

)

. (40)

Now, we present the following upper confidence interval bound for the bias-corrected entropy estimator with

an unknown support size.
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Proposition 13. Let Y = {Yℓ}ℓ∈[n] be IID from a discrete distribution p over a finite alphabet Y such that

p(y) := P[Y = y]. Then, assuming n ≥ 2, it holds for any δ ∈ (0, 1) that

|H(p̂(n))−H(p)| ≤ UCDSE(Y , δ, n), (41)

with probability larger than 1− 2δ.

Using this confidence interval, we may adapt Algorithm 1 to include upper confidence bounds on the support

size estimation, for each arm, and then derive an upper bound on the pseudo-regret of Algorithm 1 when the

support size is estimated. To this end, denote

ΓSE(α, β, S, κ,∆, t) := max







2
√
κ
(√

S + (α log(t)/2)
1

4

)

{eβ∆/2 − 1} ∨
√

eβ∆/2 − 1
, 15 · Λ2

(
8 · log(2tα)
(1− β)2∆2

)





. (42)

Theorem 14. Let β ∈ (0, 1) be given, δ ≡ δα(t) = t−α and α > 2. Additionally, denote by S(Pi) the support

size of arm i and assume that {κi}i∈[K] are given and are such that S(Pi) ≤ κi for all i ∈ [K]. Assume

that Algorithm 1 is run with a plug-in entropy estimator Ĥ(Y , n) ≡ H(p̂(n)), and upper confidence deviation

UCD(Y , δ, n) ≡ UCDSE(Y , δ, n). Then, the pseudo-regret is bounded as

R(t) ≤
∑

i∈[K]:∆i>0

[

ΓSE(α, β, Si, κ,∆i, t) ·∆i +
4(α − 1)

α− 2
·∆i

]

. (43)

Note that ΓSE(α, β, S, κ,∆, t) = O(κ2/3), for given β and ∆, whenever S ∨α log(t) = o(κ2/3). In this case,

estimating the support significantly decreases the pseudo-regret by an order of κ1/3 with respect to that of the

bias-correction entropy estimator we present in Section IV where |Y|= κ, cf. (9).

VII. NUMERICAL EXPERIMENTS

In this section we present numerical experiments that illustrate the average total regret achieved by Algorithm

1 for the various upper confidence bounds we develop. We examined the setups summarized in Table II, each

includes two arms, the subscript 1 denotes quantities of the first arm, similarly, the subscript 2 denotes quantities

of the second arm.

We set α = 2.1 and ran each setup for 1.5× 106 rounds. Additionally, for each setup, we averaged the total

regret across 100 Monte Carlo realizations.

Figure 1 presents numerical results for the binary alphabet, i.e., Setups 1-3. Additionally, Figure 2 presents

the numerical results for the ternary alphabet, i.e., Setups 4-6. The lines ‘Bias’ depict the average total regret of

the bias-corrected confidence interval used in (7) with the plug-in entropy estimator. To evaluate the sensitivity

of (7) to the alphabet size compared with the support size, we examine multiple alphabet sizes κ as is described

in Table II. The lines ‘TV’ denote the PMF-based confidence intervals that are used with the plug-in entropy
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Alphabet PMF Entropy [nats] κ values

Setup 1 binary

p1(1) = 0.25

p2(1) = 0.01
H1 = 0.5623
H2 = 0.0560 2, 10, 103 , 105

Setup 2 binary

p1(1) = 0.1

p2(1) = 0.01
H1 = 0.3251
H2 = 0.0560 2, 10, 103 , 105

Setup 3 binary

p1(1) = 0.3

p2(1) = 0.15
H1 = 0.6109
H2 = 0.4227 2, 10, 103 , 105

Setup 4 ternary

p1(0) = p1(1) = 0.125

p2(0) = p2(1) = 0.005
H1 = 0.7356
H2 = 0.0629 3, 10, 103 , 105

Setup 5 ternary

p1(0) = p1(1) = 0.05

p2(0) = p2(1) = 0.005
H1 = 0.3944
H2 = 0.0629 3, 10, 103 , 105

Setup 6 ternary

p1(0) = p1(1) = 0.15

p2(0) = p2(1) = 0.075
H1 = 0.8188
H2 = 0.5267 3, 10, 103 , 105

TABLE II

NUMERICAL RESULT SETUPS.

estimator. Here too κ denotes the alphabet size known to the player. In the case of a binary alphabet κ = 2, we

take the minimum between the confidence interval (12) and the confidence interval (20). In the case of a larger

alphabet, i.e., κ ≥ 3, we use the general alphabet confidence interval (28). Finally, The lines ‘Bias SE’ depict

the average total regret of the bias-corrected confidence interval with support estimation used in (40) along with

the plug-in entropy estimator.

For the case of binary support size that is known to the player, i.e., κ = 2, it is evident from Figure 1 that

the Bernoulli PMF-based confidence intervals (12) and (20) provide a significant reduction in the average total

regret in comparison to the combination of the bias corrected estimator and confidence interval used in (7).

Furthermore, we can see that as expected, the bias correction approach suffers from significantly increased regret

values as the probabilities of drawing the symbol ‘1’, i.e., p(1), of the arms get closer to the boundary points

of the interval
[
0, 12
]
. The Bernoulli PMF-based confidence intervals exhibit robustness in these regimes and

have not suffered from such stark degradation in performance. It is also evident from Figure 1 that the resulted

regrets of both the bias corrected and the PMF based approaches increase as the known alphabet size, i.e., κ

increases and the support size remains fixed. We note that since the alphabet size affects the biased corrected

approach through a logarithmic term in (7) it is robust to small variations in the alphabet size. In fact, even

when κ is set to 103 the resulted increase in regret is small. Nonetheless, as we continue to increase κ to 105

the regret increases significantly. Interestingly, Figure 1 shows that the PMF approach is very sensitive to the

choice of the alphabet size κ where the increase in regret is noticeable even for κ = 10. Finally, we can see

from Figure 1 that regret of the bias corrected approach with support estimation is robust to the changes in κ

even for very large values of κ such as 105.

As we increase the alphabet size from two (binary) to three (ternary), Figure 2 shows that the general PMF-

based confidence interval (28) does not perform as well as the binary ones, i.e., (12) and (20). This occurs
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Fig. 1. Average total regret as a function of the number of rounds for a two-armed bandit model for arms with a binary alphabet.

since the general PMF-based confidence interval (28) targets scenarios where ζ(pi) · |Xi| is sufficiently small.

Furthermore, we can see that κ impacts the experience regret of sources with ternary support size, i.e., Figure

2 in a very similar way to its impact on the regret in the case of a binary support size, see Figure 1.

In addition to Setups 1-6 that capture scenarios with small alphabet sizes, we consider a scenario with a large

alphabet size, namely, one with 104 symbols. For the first arm, the total probability of the first 104− 1 symbols

is 5× 10−3, these probabilities are chosen randomly by generating 104 − 1 IID uniform random numbers over

the interval [0, 1] and then normalizing them to have a total probability of 5× 10−3; the probability of the last

symbol is 1 − 5 × 10−3. For the second arm, the total probability of the first 104 − 1 symbols is 10−4, these

probabilities are chosen randomly similarly to the way they are generated in the first arm; the probability of the

last symbol is 1− 10−4. Thus, it must be for all generated PFMs that ζ1 ≤ 0.01 and ζ2 ≤ 2× 10−4. We refer

to this setup as Setup 7. Figure 3 demonstrates the reduction in the average regret that the general PMF-based
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Fig. 2. Average total regret as a function of the number of rounds for a two-armed bandit model for arms with a ternary alphabet.

confidence interval (28) leads to in a non-asymptotic time regime with a large alphabet size and small total

variance values.

VIII. SUMMARY

In this paper, we have introduced the IMAB problem, in which a player aims to maximize the information it

observes from a set of possible sources, and concretely focused on the entropy functional. We have proposed a

basic bias-corrected UCB algorithm, and showed that it is inefficient when the entropy is very low compared to

the log-alphabet size. For this regime, we have proposed a UCB algorithm that is based on data-dependent UCD,

and which significantly improves upon the bias-corrected UCB algorithm. Additionally, its pseudo-regret bound

agrees order-wise with Lai-Robbins impossibility lower bound in the binary alphabet case, for the gap-dependent

regret bound, and almost agrees for the gap-independent regret bound. The first part of the paper assumes that

the player knows in advance the alphabet of each arm. In practice, the alphabet of the arm may be very large
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Fig. 3. Average total regret as a function of the number of rounds for a two-armed

bandit model for arms with an alphabet size of 104 and a support size of 104.

(Setup 7)

compared to the support of the PMF, thus it is of interest to develop UCB algorithms for this case. To that end,

we additionally developed a bias-corrected UCB algorithm with support estimation which implements a UCB

approach for estimating both the support size and the resulted entropy of each arm.
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APPENDIX A

INVERTING POLYLOGARITHMIC FUNCTIONS OVER LINEAR FUNCTIONS

Lemma 15. Let r ∈ [1, 2] be given. There exists a constant cr > 0 so that if x ≥ cr log
r(1/y)/y = Λr(1/y)

then logr x
x ≤ y. This bound is orderwise tight as y ↓ 0. Specifically, this holds for the constants c1 = 2, c4/3 = 3

and c2 = 15.

Proof. On R+, the function x → logr x
x has a unique maximum at x = er, and its maximal value is

(
r
e

)r
(which

is less than 1 for any r ∈ [1, 2]). So, logr x
x is monotonic strictly decreasing for x ≥ er. If y ≥

(
r
e

)r
then
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log x
x ≤ y for all x ∈ R+ and the claim of the lemma trivially holds. Otherwise, if y ∈ [0,

(
r
e

)r
] then setting

x = cr log
r(1/y)/y results

logr x

x
=

y logr
(
cr log

r(1/y)
y

)

cr log
r(1/y)

(44)

≤ y ·
[

log(cr) + r log log(1/y) + log(1/y)

c
1/r
r · log(1/y)

]r

(45)

≤ y ·
[

log(cr) + (r + 1) log(1/y)

c
1/r
r · log(1/y)

]r

(46)

≤ y · sup
y′∈[0,( r

e
)r ]

[

log(cr) + (r + 1) log(1/y′)

c
1/r
r · log(1/y′)

]r

(47)

= y ·
[

log(cr)

c
1/r
r r log(er )

+
(r + 1)

c
1/r
r

]r

. (48)

For any given power r, the term inside the square brackets can be made arbitrarily small by taking cr ↑ ∞, and

specifically, can be made less than 1, which results logr x
x ≤ y for the aforementioned choice of x, with some

numerical constant cr. The minimal constant can be found by checking (45) numerically, and this leads to the

constants in the claim of the lemma. Finally, this value of x is orderwise tight since if x = o(logr(1/y))/y

(where the asymptotic-o notation is as y ↓ 0), then, log x
x /y = ω(1).

APPENDIX B

PROOFS FOR SECTION IV

Proof of Proposition 1. For the upper confidence bound it holds that

P (H(p̂(n))−H(p) > B(n) + ǫ)

= P




H(p̂(n))− E(H(p̂(n))) > ǫ+H(p)− E(H(p̂(n)))

︸ ︷︷ ︸

≥0

+B(n)
︸ ︷︷ ︸

≥0




 (49)

(a)

≤ P (H(p̂(n))− E(H(p̂(n))) > ǫ) (50)

(b)

≤ exp

[

−n

2

(
ǫ

log(n)

)2
]

, (51)

where (a) follows from the bound on the bias in (5), and (b) follows from [23, p. 168]. Similarly, for the lower

confidence bound it holds that

P (H(p̂(n))−H(p) < −ǫ−B(n))

= P




H(p̂(n))− E(H(p̂(n))) < −ǫ+H(p)− E(H(p̂(n)))−B(n)

︸ ︷︷ ︸

≤0




 (52)
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(a)

≤ P (H(p̂(n))− E(H(p̂(n))) < −ǫ) (53)

(b)

≤ exp

[

−n

2

(
ǫ

log(n)

)2
]

. (54)

Combining (51) and (54) shows that

P (|H(p̂(n))−H(p)| > B(n) + ǫ) ≤ 2 exp

[

−n

2
· ǫ2

log2(n)

]

(55)

for every n ≥ 2 and ǫ > 0. Setting the RHS of (55) to δ and simplifying leads to the claimed result.

The proof of Theorem 2 requires the following lemma, which lower bounds the number of samples required

for a sufficiently low upper confidence interval.

Lemma 16. Let an alphabet Y be given, let a gap ∆ ∈ (0, log|Y|] be given, and let δ = t−α. Then, for any

β ∈ (0, 1), if n ≥ Γbias(α, β,Y,∆, t) then UCDbias(t
−α, n) ≤ ∆/2.

Proof. We may assume that n > 1. Let β ∈ [0, 1] be given. Then, UCDbias(t
−α, n) ≤ ∆/2 if both

B(n) ≤ β ·∆/2, (56)

and √

2 log2(n)

n
log

(
2

δ

)

≤ (1− β) ·∆/2, (57)

holds. The first condition (56) is equivalent to

n ≥ |Y|−1

eβ·∆/2 − 1
, (58)

and the second condition (57) is equivalent to

log2(n)

n
≤ (1− β)2∆2

8 log(2tα)
. (59)

According to Lemma 15 this holds if

n ≥
120 · log(2tα) · log2

(
8 log(2tα)
(1−β)2∆2

)

(1− β)2∆2
= 15 · Λ2

(
8 · log(2tα)
(1− β)2∆2

)

(60)

(recall the notation (1)). Simplifying both expressions and optimizing over β ∈ [0, 1] concludes the proof.

With this result at hand, we may prove Theorem 2.

Proof of Thm. 2. The proof follows the analysis of [19, Proof of Thm. 2.1], with required modifications to

entropy rewards structure. At round t, the player chooses a suboptimal i arm with ∆i > 0 if
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Ĥ(X i∗(t− 1), Ni∗(t− 1))) + UCDbias(δα(t), Ni∗(t− 1))

≤ Ĥ(Xi(t− 1), Ni(t− 1))) + UCDbias(δα(t), Ni(t− 1)). (61)

For this to occur at least one of the following events must occur too (sufficient conditions):

I. The entropy of the best arm is significantly underestimated:

Ĥ(X i∗(t− 1), Ni∗(t− 1))) + UCDbias(δα(t), Ni∗(t− 1)) ≤ Hi∗. (62)

II. The entropy of arm i is significantly overestimated:

Ĥ(X i(t− 1), Ni(t− 1))) > Hi +UCDbias(δα(t), Ni(t− 1)). (63)

III. The upper confidence interval is significantly larger than the gap

UCDbias(δα(t), Ni(t− 1)) > ∆i/2. (64)

If all three events I-III are false, then

Ĥ(Xi∗(t− 1), Ni∗(t− 1))) + UCDbias(δα(t), Ni∗(t− 1))

> Hi∗ = Hi +∆i (65)

≥ Hi + 2 ·UCDbias(δα(t), Ni(t− 1)) (66)

≥ Ĥ(X i(t− 1), Ni(t− 1))) + UCDbias(δα(t), Ni(t− 1)), (67)

which contradicts the assumption that Algorithm 1 chooses It = i at the tth round.

Next, we upper bound the expected pseudo-regret (3) of Algorithm 1 with the entropy estimator and confidence

bound stated in the theorem. To that end, we upper bound the expected number of times a sub-optimal arm i

is played, i.e., E(Ni(t)) as follows. Note that if Ni(t) ≥ Γbias(α, β,Xi,∆i, t) then event III does not occur. so,

E(Ni(t)) = E

(
t∑

τ=1

1[I(τ) = i]

)

≤ Γbias(α, β,Xi,∆i, t) +

t∑

τ=Γbias(α,β,Xi,∆i,t)+1

E (1[I or II is true a round τ ]) . (68)

≤ Γbias(α, β,Xi,∆i, t) +

t∑

τ=1

[P (I is true at round τ) + P (II is true at round τ)] . (69)

For any τ ≤ t, the first probability in (69) is upper bounded as

P (I is true at round τ)
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(a)

≤
τ∑

n=1

P

(

Ĥ({Xi(ℓ)}ℓ∈[n], n)) + UCDbias(δα(τ)), n) ≤ Hi

)

(70)

(b)

≤ τ · δα(τ) =
1

τα−1
, (71)

where (a) follows from the union bound, and (b) from the definition of the upper confidence deviation

UCD(δ, n). The second probability in (69) is similarly upper bounded. Inserting these bounds back to the

sum in (69) it then follows that

t∑

τ=1

[P (I is true at round τ) + P (II is true at round τ)]

≤ 2

t∑

τ=1

1

τα−1
≤ 2

∞∑

τ=1

1

τα−1
(72)

≤ 2

[

1 +

∫ ∞

1

1

τα−1
dτ

]

=
2(α − 1)

α− 2
. (73)

Substituting the upper bounds in the last two displays back to (69), and using the resulting bound in R(t) =
∑

i∈[K]:∆i>0 E(Ni(t))∆i then concludes the proof.

APPENDIX C

PROOFS FOR SECTION V-A

The proof of Proposition 3 is based on a standard concentration result on the empirical mean of a Bernoulli

source.

Lemma 17. In the setting of Proposition 3, each of the following events holds with probability larger than

1− δ:

|p− p̂(n)| ≤

√

3p log(2δ )

n
, (74)

p ≤ 2p̂(n) +
12 log(1δ )

n
, (75)

and

p̂(n) ≤ 2p +
3 log(1δ )

n
. (76)

Proof. We will use the relative (multiplicative) Chernoff bound multiple times. This bound states that [45, Thm.

4.4]

P [|p̂(n)− p| ≥ ξp] = P [p̂(n)− p ≥ ξp] + P [p̂(n)− p ≤ −ξp] ≤ 2e−
ξ2pn

3 , (77)

for any ξ ∈ [0, 1] (and it holds for the pair of one-sided deviations each without the 2 pre-factor). Setting
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ξ =

√
3 log( 2

δ
)

pn in (77) immediately leads to (74). Next, if p >
12 log( 1

δ
)

n then

P [p ≥ 2p̂(n)] = P

[

p̂(n)− p ≤ −1

2
p

]
(a)

≤ e−
pn

12

(b)

≤ δ, (78)

where (a) is by setting ξ = 1/2 in the one-sided version of (77), and (b) utilizes the assumption on p. Thus,

with probability larger than 1− δ it holds that

p ≤ 2p̂(n) ∨ 12 log(1δ )

n
, (79)

which can be loosened to (75). Finally, If p >
3 log( 1

δ
)

n then

P [p̂(n) > 2p] = P [p̂(n)− p ≥ ξp]
(a)

≤ e−
pn

3

(b)

≤ δ, (80)

where (a) is by setting ξ = 1 in the one-sided version of (77), and (b) utilizes the assumption on p. Thus, with

probability larger than 1− δ it holds that

p̂(n) ≤ 2p ∨ 3 log(1δ )

n
, (81)

which can be loosened to (76).

The concentration of the empirical probability of the source then leads to a confidence bound on the entropy,

as next shown in the proof of Proposition 3.

Proof of Proposition 3. If dTV(p, p̂(n)) ≤ 1
2 then [43, Lemma 2.7] implies that

|hb(p̂(n))− hb(p)| ≤

√

12p log(2δ )

n
log

(√

4n

12p log(2δ )

)

(82)

= −2 · Λ1

(
dTV(p, p̂(n))

2

)

, (83)

and we note that −Λ1(s) is monotonic increasing for s ∈ [0, e−1]. For a pair of Bernoulli distributions p and q

it holds that

dTV(p, q) = 2|p(1)− q(1)|, (84)

and so by (74) and (75) from Lemma 17 it holds that

dTV(p, q) ≤

√

12p log(2δ )

n
, (85)

and

p ≤ 2p̂(n) +
12 log(1δ )

n
, (86)

simultaneously hold with probability larger than 1 − 2δ. To be in the monotonic increasing regime of −Λ1(s)
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for any p̂(n), we require that the upper bound on the total variation distance in (85), when substituted with the

upper bound on p in (86), is less than e−1, to wit

√
√
√
√12

[

2p̂(n) +
12 log( 1

δ
)

n

]

log(2δ )

n
≤ e−1. (87)

This can be easily seen to be satisfied by the assumption n ≥ 200 · log(2δ ). Now, if 2p̂(n) ≥ 12 log( 1

δ
)

n then

p ≤ 4p̂(n) and so by the assumption of n and the resulting monotonicity,

|hb(p̂(n))− hb(p)| ≤

√

12p̂(n) log(2δ )

n
log

(

n

p̂(n) log(2δ )

)

(88)

(after slightly deteriorating the constants to obtain a succinct expression). Otherwise, if
12 log( 1

δ
)

n ≥ 2p̂(n) then

p ≤ 24 log( 1

δ
)

n and so by the assumption of n and the resulting monotonicity,

|hb(p̂(n))− hb(p)| ≤
18 log(2δ ) log(n)

n
(89)

(after, again, slightly deteriorating the constants). To account for both cases, we sum the two deviation terms.

Finally, to obtain (12), we replace δ with 2δ.

Next, we turn to the proof of Theorem 6, which is based on a lemma analogous to Lemma 16. To this end,

we further denote a simplified version of Γber(·) from (16), defined as

Γ̃ber(α, β, q,∆, t) := max

{

2 · Λ1

(
36α log(t)

(1 − β)∆

)

,
960qα log(t)

β2 ·∆2
· log2

(
48

β2 ·∆2

)}

. (90)

Lemma 18. With δ ≡ δα(t) = 4t−α, β ∈ (0, 1) and α > 2, if n ≥ Γ̃ber(α, β, q,∆, t) then UCDber(q, δα(t), n) ≤
∆/2 where UCDber(·) is as defined in (12).

Proof. We may assume that n ≥ e; this can easily be achieved by playing each arm for three rounds at the

beginning of Algorithm 1. Let β ∈ [0, 1] be given. Then, UCDber(q, 4t
−α, n) ≤ ∆/2 if both

√

12qα log(t)

n
log

(
n

qα log(t)

)

≤ β ·∆/2, (91)

and

18α log(t) log(n)

n
≤ (1− β) ·∆/2, (92)

hold. The first condition is satisfied if

log2
(

n
q log( 6

δ
)

)

n
q log( 6

δ
)

≤ β2 ·∆2

48
, (93)
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for which Lemma 15 implies that this condition is satisfied if

n ≥ 960qα log(t)

β2 ·∆2
· log2

(
48

β2 ·∆2

)

. (94)

The second condition is satisfied if

log(n)

n
≤ (1− β)∆

36α log(t)
, (95)

for which Lemma 15 implies that this condition is satisfied if

n ≥ 72α log(t)

(1 − β)∆
log

(
36α log(t)

(1− β)∆

)

= 2 · Λ1

(
36α log(t)

(1− β)∆

)

(96)

(recall the notation (1)). The claim of the lemma then follows from the definition of Γ̃ber(·) in (90).

We may now prove Theorem 6.

Proof of Theorem 6. The proof is similar to the proof of Theorem 2, and so we only highlight the main

differences. In what follows it will be convenient to interchangeably use both UCD(Y , δ, n) and UCDber(p̂(Y , n), δ, n)

to denote the (same) upper confidence bound used by the algorithm. At round t, the player chooses a sub-optimal

i arm if ∆i > 0 and

Ĥ(X i∗(t− 1), Ni∗(t− 1))) + UCD(X i∗(t− 1), δα(t), Ni∗(t− 1))

≤ Ĥ(Xi(t− 1), Ni(t− 1))) + UCD(X i(t− 1), δα(t), Ni(t− 1)). (97)

For this to occur at least one of the following events must occur too (sufficient conditions):

I’. Either the entropy of the best arm is significantly underestimated

Ĥ(X i∗(t− 1), Ni∗(t− 1))) + UCD(X i∗(t− 1), δα(t), Ni∗(t− 1)) ≤ Hi∗, (98)

or

p̂ (Xi∗(t− 1), Ni∗(t− 1))− 1

2
pi∗ ≤ −6 log(1/δα(t))

Ni∗(t− 1)
. (99)

II’. Either the entropy of arm i is significantly overestimated

Ĥ(X i(t− 1), Ni(t− 1))) > Hi +UCD(Xi(t− 1), δα(t), Ni(t− 1)), (100)

or

p̂ (Xi(t− 1), Ni(t− 1))− 2pi ≥
3 log(1/δα(t))

Ni(t− 1)
. (101)
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III’. The upper confidence interval, which is based on an overestimation of p̂(Xi(t−1), Ni(t−1)) is significantly

larger than the gap

UCDber

(

2pi +
3 log(1/δα(t))

Ni(t− 1)
, δα(t), Ni(t− 1)

)

>
∆i

2
, (102)

or

Ni(t− 1) ≤ 200α log(t). (103)

As in the proof of Theorem 2, if all three events I’-III’ are false, then

Ĥ(X i∗(t− 1), Ni∗(t− 1))) + UCD(X i∗(t− 1), δα(t), Ni∗(t− 1))

≥ Hi∗ = Hi +∆i (104)

≥ Hi + 2UCDber

(

2pi +
3 log(1/δα(t))

Ni(t− 1)
, δα(t), Ni(t− 1)

)

(105)

(∗)

≥ Hi + 2UCD (Xi(t− 1), δα(t), Ni(t− 1)) (106)

≥ Ĥ(Xi(t− 1), Ni(t− 1))) + UCD(Xi(t− 1), δα(t), Ni(t− 1)) , (107)

where in (∗) we have used the current assumption that Ni(t−1) ≥ 200α log(t), which assures that UCDber(q, δα(t), Ni(t−
1)) is a monotonically non-decreasing function of q. Thus, in this case Algorithm 1 will not choose It = i at

the tth round; a contradiction.

By Lemma 18, if

Ni(t− 1) ≥ Γ̃ber

(

α, β, 2pi +
3 log(1/δα(t))

Ni(t− 1)
,∆i, t

)

, (108)

then the first part of the event III’ does not occur. By the definition of Γ̃ber(·) in (90), and by setting δα(t) = 4t−α,

the RHS in the last equation is upper bounded as

max

{

2 · Λ1

(
36α log(t)

(1− β)∆i

)

,

2560piα log(t)

β2 ·∆2
i

· log2
(

48

β2 ·∆2
i

)

+
3840α log(t)

β2 ·∆2
iNi(t− 1)

· log2
(

48

β2 ·∆2
i

)}

. (109)

This can be guaranteed by requiring that Ni(t− 1) is larger than each of the first two terms, as well as larger

than twice of each of the additive components of the third term. To conclude, a sufficient condition for the event

III’ not to occur is that

Ni(t− 1) ≥

max

{

2 · Λ1

(
36α log(t)

(1− β)∆i

)

,
5120piα log(t)

β2 ·∆2
i

· log2
(

48

β2 ·∆2
i

)

,
88
√

α log(t)

β ·∆i
· log

(
48

β2 ·∆2
i

)}
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= Γber(α, β, pi,∆i, t). (110)

The second part of event III’ does not occur if Ni(t − 1) ≥ 200α log(t), which is already covered by the

condition in (110) if we increase the pre-constant of the second term to 6, which is the definition of Γber(·)
used in (16).

The analysis then follows as in the proof of Theorem 2, by using Lemma 17 and Proposition 3 to bound the

probabilities of the events in I’ and II. Note that the condition Ni(t− 1) ≥ 200 · log(4δ ) = 200α log(t) required

for the confidence bound to hold with high probability is already satisfied by (110).

Proof of Proposition 8. By Taylor approximation at the point p, for any q ∈ [0, 12 ]

hb(q) = hb(p) + h′b(p)(q − p) +
h′′b (ξ)

2
(q − p)2 , (111)

where ξ ∈ [p, q]∪[q, p]. From Lemma 17, it holds with probability larger than 1−2δ that both p ≤ 2p̂(n)+
12 log( 1

δ
)

n

and |p− p̂(n)| ≤
√

3p log( 2

δ
)

n . Under this event, since n ≥ 60 log(2δ ) was assumed, it holds that p̂(n) ≥ 1
10 . For

q ∈ [25 ,
1
2 ] it can be easily verified that

∣
∣h′b(q)

∣
∣ =

∣
∣
∣
∣
log

1− q

q

∣
∣
∣
∣
≤ 5

(
1

2
− q

)

, (112)

and for any q ∈ [ 1
10 ,

1
2 ] it holds that |h′′b (q)|≤ 12. Hence, by (111), and under the high probability event

|hb(p̂(n))− hb(p)| ≤ 5

∣
∣
∣
∣

1

2
− p

∣
∣
∣
∣
|p̂(n)− p|+ 6 (p̂(n)− p)2 (113)

≤ 7

∣
∣
∣
∣

1

2
− p

∣
∣
∣
∣

√

log(2δ )

n
+

9 log(2δ )

n
. (114)

The proof of (22) is completed by replacing δ with 2δ. The proof of (21) is similar, with a Taylor approximation

for p around p̂(n).

APPENDIX D

PROOFS FOR SECTION V-B

The proof of Proposition 10 relies on a confidence interval bound for the entropy which is based on an

empirical version of ζ(p). We begin with the following bound.

Lemma 19. Consider the setting of Proposition 10. Then, for any δ ∈ (0, 1)

dTV(p, p̂(n)) ≤

√

4ζ(p)|Y|+ log
(
1
δ

)

n
, (115)

with probability larger than 1− δ.
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Proof. The total variation dTV(p, p̂(n)) satisfies a bounded difference inequality with constant 1/n as a function

of (Y1, . . . , Yn), and so by McDiarmid’s inequality [46, Thm. 3.11]

P [|dTV(p, p̂(n))− E [dTV(p, p̂(n))]| ≥ ǫ] ≤ e−2nǫ2 . (116)

Recall that p̂(n, y) = 1
n

∑n
ℓ=1 1{Yi = y}. We next upper bound the expected value E[dTV(p, p̂(n))] as follows:

E [dTV(p, p̂(n))] =
∑

y∈Y

E [|p(y)− p̂(n, y)|] (117)

≤
∑

y∈Y

√

E

[

(p(y)− p̂(n, y))2
]

(118)

=
∑

y∈Y

√

2

n
p(y)(1 − p(y)) (119)

≤ |Y|
√

1

|Y|
∑

y∈X

2

n
p(y)(1− p(y)) (120)

=

√

2|Y|
n

√
∑

y∈Y

p(y)(1 − p(y)) (121)

=

√

2ζ(p)|Y|
n

, (122)

where the two inequalities follow from Jensen’s inequality. Setting e−2nǫ2 = δ directly leads to

dTV(p, p̂(n)) ≤
√

2ζ(p)|Y|
n

+

√

1

2n
log

(
1

δ

)

, (123)

which is further slightly loosened to the claim of the lemma using
√
a+

√
b ≤

√

2(a+ b) for a, b ∈ R+.

Clearly, while ζ(p) controls the size confidence interval of dTV(p, p̂(n)), it is a distribution-dependent quantity

which is unknown to the player, and thus required to be estimated from the data. In this respect, the concentration

of ζ(p) to its estimated plug-in value is roughly on the same order of that of the total variation (in fact, it can

be proved to be faster). Specifically, the following holds:

Lemma 20. Let the plug-in estimator of ζ(p) be given by ζ̂(n) ≡ ζ̂(Y , n) := 1−∑y∈Y p̂2(n, y). Then, under

the setting of Lemma 19, for any δ ∈ (0, 1)

ζ̂(n)−

√

18 log
(
1
δ

)

n
− 1

n
≤ ζ(p) ≤ ζ̂(n) +

√

18 log
(
1
δ

)

n
, (124)

with probability larger than 1− δ.

Proof. Since |(p(Y , n) ± 1
n)

2 − p(Y , n)2|≤ 3
n for any p(Y , n) ∈ [0, 1], the plug-in estimator ζ̂(n) ≡ ζ̂(Y , n)

satisfies a bounded difference inequality with constant 6/n as a function of (Y1, . . . , Yn), and so by McDiarmid’s
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inequality [46, Thm. 3.11]

P

[∣
∣
∣ζ̂(Y , n)− E

[

ζ̂(Y , n)
]∣
∣
∣ ≥ ǫ

]

≤ e−
nǫ2

18 . (125)

The plug-in estimator ζ̂(n) is biased, and easily seen to satisfy E

[

ζ̂(n)
]

= ζ(p)+ ζ(p)
n . The result follows since

ζ(p) ∈ [0, 1].

We combine Lemma 19 and Lemma 20 to obtain a confidence interval bound which can be computed by the

player according to its empirical data.

Lemma 21. Under the setting of Lemma 19, any δ ∈ (0, 1/e) it holds that

dTV(p, p̂(n)) ≤

√

4ζ̂(n)|Y|
n

+

√

log
(
2
δ

)

n
+

5|Y|3/4
n3/4

log1/4
(
2

δ

)

, (126)

with probability larger than 1− δ.

Proof. By combining Lemma 19 and Lemma 20, and a union bound, it holds with probability larger than 1−2δ

that

dTV(p, p̂(n)) ≤

√

4ζ(p)|Y|+ log
(
1
δ

)

n
(127)

≤

√
√
√
√
√

4

[

ζ̂(n) +

√
18 log( 1

δ )
n

]

|Y|+ log
(
1
δ

)

n
(128)

≤

√

4ζ̂(n)|Y|
n

+

[

288|Y|2log
(
1
δ

)

n3

]1/4

+

√

log
(
1
δ

)

n
, (129)

where the last inequality follows from
√
a+ b ≤ √

a+
√
b for a, b ∈ R+. The proof is completed by substituting

δ with 2δ.

With these results at hand we may prove Proposition 10.

Proof of Proposition 10. As in the proof of Proposition 3 if dTV(p, p̂(n)) ≤ 1
2 then

|H(p̂(n))−H(p)| ≤ −|Y|·Λ1

(
dTV(p, p̂(n))

|Y|

)

. (130)

From Lemma 21

dTV(p, p̂(n)) ≤

√

4ζ̂(n)|Y|
n

+

√

log
(
2
δ

)

n
+

5|Y|1/2
n3/4

log1/4
(
2

δ

)

:= a1 + a2 + a3, (131)
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with probability larger than 1 − δ, where {ai}i∈[3] were implicitly defined. To be in the monotonic increasing

regime of −Λ1(s) of s ∈ [0, e−1], we require that this upper bound is less than |Y|e−1. This can be satisfied if

dTV(p, p̂(n))

|Y| ≤

√

4ζ̂(n)

n|Y| +

√

log
(
2
δ

)

n|Y|2 +
5

n3/4|Y|1/2 log1/4
(
2

δ

)

≤ 1

e
. (132)

A simple sufficient condition for this can be obtained by bounding ζ̂(n) ≤ 1 and |Y|≥ 2, and requiring that

each of the three terms is less than a third of 1/e. This holds if n ≥ 112 · log
(
2
δ

)
and δ ≤ 0.2.

Now, since monotonicity is satisfied, we may replace dTV(p, p̂(n)) with the high probability upper bound

(126) of Lemma 21. We may consider three cases, according to which of the terms, which we denoted by

{ai}3i=1, is the largest.

• If maxi∈[3] ai = a1 then the upper bound (126) is less than 3a1 =

√
36ζ̂(n)|Y|

n . By the monotonicity

property, (130) results

|H(p̂(n))−H(p)| ≤

√

36ζ̂(n)|Y|
n

log

(√

n|Y|
36ζ̂(n)

)

≤ 3

√

ζ̂(n)|Y|
n

log

(

n|Y|
36ζ̂(n)

)

. (133)

• If maxi∈[3] ai = a2 then the upper bound (126) is less than 3a2 =

√
9 log( 2

δ )
n . By the monotonicity property,

(130) results

|H(p̂(n))−H(p)| ≤

√

9 log
(
2
δ

)

n
log

(√

n|Y|2
9 log

(
2
δ

)

)

≤ 3

2

√

log
(
2
δ

)

n
log

(
n|Y|2
9

)

. (134)

• If maxi∈[3] ai = a3 then the upper bound (126) is less than 3a3 =
15|Y|3/4

n3/4 log1/4
(
2
δ

)
. By the monotonicity

property, (130) results

|H(p̂(n))−H(p)| ≤ 15|Y|1/2log1/4
(
2
δ

)

n3/4
log

(

n3/4|Y|1/2

15 log1/4
(
2
δ

)

)

(135)

≤ 2|Y|1/2log1/4
(
2
δ

)
log
(
n|Y|2/3

)

n3/4
. (136)

To agree with all three cases, we sum the three deviation terms, and this completes the proof.

We next turn to the proof of Theorem 11, which is based on a lemma analogous to Lemma 18. To this end,

we further denote a simplified version of Γtv(·) from (30) defined as

Γ̃tv(α, ζ,∆, t) :=

max

{

144
ζ

|Y|Λ
2
1

(
2|Y|
3∆

)

,
135

|Y|2Λ2

(
9|Y|2α log(t)

∆2

)

,
3

|Y|2/3Λ4/3

(

27|Y|4/3α1/3 log1/3(t)

∆4/3

)}

. (137)

Lemma 22. For δ ≡ δα(t) = 2t−α and α > 2, if n ≥ Γ̃tv(α, ζ,∆, t) then UCDtv(ζ, δ,Y, n) ≤ ∆/2, where

UCDtv(ζ, δ,Y, n) is as defined in (28).
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Proof. We may assume3 that n ≥ e. Then, UCDtv(ζ,Y, δ, n) ≤ ∆/2 if all three conditions hold4

3

√

ζ|Y|
n

log

(
n|Y|
36ζ

)

≤ ∆/6, (138)

and

3

2

√

log
(
2
δ

)

n
log

(
n|Y|2
9

)

≤ ∆/6, (139)

as well as
2|Y|1/2log1/4

(
2
δ

)
log
(
n|Y|2/3

)

n3/4
≤ ∆/6. (140)

For the first condition, we write it equivalently as

log

(√
n|Y|
36ζ

)

√
n|Y|
36ζ

≤ 3∆

2|Y| . (141)

Lemma 15 then implies that this condition is satisfied if

n ≥ 144
ζ

|Y|Λ
2
1

(
2|Y|
3∆

)

. (142)

For the second condition, we write it equivalently as

log2
(
n|Y|2

9

)

n|Y|2

9

≤ ∆2

9|Y|2log
(
2
δ

) . (143)

Lemma 15 implies that this condition is satisfied if

n ≥ 135

|Y|2Λ2

(

9|Y|2log
(
2
δ

)

∆2

)

. (144)

For the last condition, we first require a slightly stronger condition (in terms of the numerical constant)

log4/3
(
n|Y|2/3

)

n|Y|2/3 ≤ ∆4/3

27|Y|4/3log1/3
(
2
δ

) . (145)

Lemma 15 implies that this condition is satisfied if

n ≥ 3

|Y|2/3Λ4/3

(

27|Y|4/3log1/3
(
2
δ

)

∆4/3

)

. (146)

The claim of the lemma then follows from the definition of Γ̃tv(·) in (137).

We may now prove Theorem 11.

3This assumption can be easily achieved if the player plays each arm 3 times at the beginning of Algorithm 1.

4Since there are three terms involved, we do not over-complicate the analysis with additional parameter β (see the proof of Lemma

18).
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Proof of Theorem 11. The proof begins as the proof of Theorem 6. We then define the events:

I”. Either the entropy of the best arm is significantly underestimated

Ĥ(X i∗(t− 1), Ni∗(t− 1))) + UCD(X i∗(t− 1), δα(t), Ni∗(t− 1)) ≤ Hi∗, (147)

or

ζ̂ (Xi∗(t− 1), Ni∗(t− 1))− ζ(pi∗) ≤ −

√

18 log
(
1
δ

)

Ni∗(t− 1)
. (148)

II”. Either the entropy of arm i is significantly overestimated

Ĥ(X i(t− 1), Ni(t− 1))) > Hi +UCD(Xi(t− 1), δα(t), Ni(t− 1)), (149)

or

ζ̂ (Xi(t− 1), Ni(t− 1))− ζ(pi) ≥

√

18 log
(
1
δ

)

Ni(t− 1)
+

1

Ni(t− 1)
. (150)

III”. The upper confidence interval, which is based on an overestimation of ζ̂(X i(t−1), Ni(t−1)) is significantly

larger than the gap:

UCDtv



ζ(pi) +

√

18 log
(
1
δ

)

Ni(t− 1)
, δα(t), Ni(t− 1)



 >
∆i

2
, (151)

or

Ni(t− 1) ≤ max

{

30 · log
(
2

δ

)

, 119ζ(pi)|Y|
}

. (152)

As in the proof of Theorem 2, if all three events I”-III” are false, then

Ĥ(X i∗(t− 1), Ni∗(t− 1))) + UCD(X i∗(t− 1), δα(t), Ni∗(t− 1))

≥ Hi∗ = Hi +∆i (153)

≥ Hi + 2 · UCDtv



ζ(pi) +

√

18 log
(
1
δ

)

Ni(t− 1)
, δα(t), Ni(t− 1)



 (154)

(∗)

≥ Hi + 2 ·UCD (Xi(t− 1), δα(t), Ni(t− 1)) (155)

≥ Ĥ(Xi(t− 1), Ni(t− 1))) + UCD(Xi(t− 1), δα(t), Ni(t− 1)) , (156)

where in (∗) we have used the current assumption that (152) does not hold, which assures that UCDtv(ζ, δα(t), Ni(t−
1)) is a monotonically non-decreasing function of ζ . Thus, in this case Algorithm 1 will not choose It = i at

the tth round; a contradiction.

By Lemma 22 if

Ni(t− 1) ≥ Γ̃tv



α, ζ(pi) +

√

18 log
(
1
δ

)

Ni(t− 1)
,∆i, t



 , (157)
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then event III” does not occur. By the definition of Γ̃tv(·) in (137), and by setting δα(t) = t−α, the RHS in the

last equation is upper bounded as

max

{

144
ζ(pi)

|Y| Λ2
1

(
2|Y|
3∆i

)

+ 576

√

18 log
(
1
δ

)

|Y|
√

Ni(t− 1)
Λ2
1

(
2|Y|
3∆i

)

,
135

|Y|2Λ2

(
9|Y|2α log(t)

∆2
i

)

,
3

|Y|2/3Λ4/3

(

27|Y|4/3α1/3 log1/3(t)

∆
4/3
i

)}

. (158)

This can be guaranteed by requiring that Ni(t− 1) is larger than twice of each of the additive components of

the first term, as well as larger than each of the second and third terms. To conclude, a sufficient condition for

the event III” not to occur is that

Ni(t− 1) ≥ max

{

288
ζ(pi)

|Y| Λ2
1

(
2|Y|
3∆i

)

, 36230
α1/3 log1/3(t)

|Y|2/3 Λ
4/3
1

(
2|Y|
3∆i

)

,
135

|Y|2Λ2

(
9|Y|2α log(t)

∆2
i

)

,
3

|Y|2/3Λ4/3

(

27|Y|4/3α1/3 log1/3(t)

∆
4/3
i

)}

. (159)

This condition, along with the second part of event III” is then used to define Γber(α, ζ(pi),∆i, t) in (30).

The analysis then follows as in the proof of Theorem 6, by using Lemma 21 and Proposition 10 to bound the

probabilities of the events in I” and II”.

APPENDIX E

PROOFS FOR SECTION VI

The proof of Proposition 12 relies on the following two lemmas which we utilize in upper bounding the

probability P(|Ŝ(Y , n)− S(P )|> τ).

Lemma 23. Let n ≥ 1,

S(P ) ·
[

1− exp
(

−n

κ

)]

≤ E(Ŝ(Y , n)) ≤ S(P ). (160)

Proof. Without loss of generality, let us order the symbols in the support |S(P )| and denote them by s1, . . . , sS(P ).

First, we note that

E(Ŝ(Y , n)) = E





S(P )
∑

j=1

1[Nsj(n) > 0] > 0



 (161)

=

S(P )
∑

j=1

(
P
(
1[Nsj (n) > 0] > 0

))
(162)

=

S(P )
∑

j=1

(
1− P

(
1[Nsj (n) > 0] = 0

))
. (163)
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Next, we lower and upper bound the probability P
(
1[Nsj (n) > 0] = 0

)
. For the lower bound we use the

trivial bound P
(
1[Nsj (n) > 0] = 0

)
≥ 0. For the upper bound we use the assumption that P (sj) ≥ 1

κ to deduce

P
(
1[Nsj (n) > 0] = 0

)
= (1− P (sj))

n ≤
(

1− 1

κ

)n

≤ exp
(

−n

κ

)

, (164)

where the last inequality follows since log(1− x) ≤ −x.

Lemma 24. Let n ≥ 1, then

P

(

|Ŝ(Y , n)− E(Ŝ(Y , n))|≥ ǫ
)

≤ exp
(
−2ǫ2

)
. (165)

Proof: This follows directly from McDiarmid’s inequality and since changing the outcome of one sample

changes Ŝ(Y , n) by at most one.

We proceed to prove Lemma 12.

Proof of Proposition 12: We wish to bound the probability P(|Ŝ(Y , n) − S(P )|> τ). By the triangle

inequality

P(|Ŝ(Y , n)− S(P )|> τ) ≤ P

(

|Ŝ(Y , n)− E(Ŝ(Y , n))|+|E(Ŝ(Y , n))− S(P )|> τ
)

. (166)

Thus, we next upper bound the gap |E(Ŝ(Y , n))− S(P )| and the probability P(|Ŝ(Y , n)− E(Ŝ(Y , n))|> τ̃).

By Lemma 23

|E(Ŝ(Y , n))− S(P )|≤ S(P ) exp
(

−n

κ

)

. (167)

Additionally, we can upper bound the probability P[|Ŝ(Y , n)−E(Ŝ(Y , n))|> τ−S(P ) exp
(
−n

κ

)
] using Lemma

24. We then substitute τ =
√

1
2 log

(
1
δ

)
+ S(P ) exp

(
−n

κ

)
to conclude the proof.

We are now ready to prove Proposition 13.

Proof of Proposition 13:

From Proposition 12, it holds that the event

E :=







Ŝ(Y , n) +
√

1
2 log

(
1
δ

)

1− e−
n

κ

≥ S(P )






(168)

occurs with probability P[E ] ≥ 1− δ. Thus,

P



|H(p̂(n))−H(p)| ≥ BSE(Y , δ, n) +

√

2 log2(n)

n
log

(
2

δ

)




= P



|H(p̂(n))−H(p)| ≥ BSE(Y , δ, n) +

√

2 log2(n)

n
log

(
2

δ

)

, E




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+ P



|H(p̂(n))−H(p)| ≥ BSE(Y , δ, n) +

√

2 log2(n)

n
log

(
2

δ

)

, Ec



 (169)

≤ P



|H(p̂(n))−H(p)| ≥ 1

2
log

(

1 +
S(P )− 1

n

)

+

√

2 log2(n)

n
log

(
2

δ

)

, E



+ P [Ec] (170)

≤ P



|H(p̂(n))−H(p)| ≥ 1

2
log

(

1 +
S(P )− 1

n

)

+

√

2 log2(n)

n
log

(
2

δ

)


+ δ (171)

≤ 2δ. (172)

Next, we present an upper bound on the number maximal number of rounds, i.e., n, such that UCDSE(Y , t−α, n) ≤
∆/2.

Lemma 25. Let a support S such that |S|= S ≤ κ be given, let a gap ∆ ∈ (0, log(S)] be given, and let δ = t−α.

Then, for any β ∈ (0, 1), if n ≥ ΓSE(α, β, S, κ,∆, t) then UCDSE(Y , t−α, n) ≤ ∆/2 for every Y ∈ Sn.

Proof: By the definition of UCDSE(Y , δ, n) we have that if

BSE(Y , δ, n) ≤ β · ∆
2
, (173)

and
√

2 log2(n)

n
log

(
2

δ

)

≤ (1− β) · ∆
2
, (174)

then UCDSE(Y , δ, n) ≤ ∆i/2.

First, we analyze the first condition, i.e., (173). Since Ŝ(Y , n) ≤ S, it is fulfilled whenever

log

(

1 +
1

n

[(

S +

√

1

2
log

(
1

δ

))

·
(
1− e−

n

κ

)−1 − 1

])

≤ β · ∆
2
. (175)

Further algebra yields that BSE(Y , δ, n) ≤ β · ∆
2 for all n such that

1

eβ∆/2 − 1

(

S +

√

1

2
log

(
1

δ

))

≤
(

n+
1

eβ∆/2 − 1

)
(
1− e−

n

κ

)
. (176)

Next, utilizing the bound 1 − e−x ≥ x
2 which holds for every x ∈ [0, 1], we replace the condition (176) with

the following stricter condition

1

eβ∆/2 − 1

(

S +

√

1

2
log

(
1

δ

))

≤
(

n+
1

eβ∆/2 − 1

)
n

2κ
, and

n

κ
≤ 1. (177)

Substituting δ = t−α and replacing the RHS of (177), i.e.
(

n+ 1
eβ∆/2−1

)
n
2κ , with the stricter condition n2

2κ on
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n yields that (177) is fulfilled whenever

n ≥

√

2κ
(
S +

√
α
2 log(t)

)

eβ∆/2 − 1
, and

n

κ
≤ 1. (178)

Note that since the RHS of (176) is monotonically increasing with n, it is sufficient to find n0 that fulfills

(178) to conclude that every n ≥ n0 fulfills (176) too.

Now, we consider the case where n ≥ κ. In this scenario 1 − e−
n

κ ≥ 1 − e−1 ≥ 1/2. Plugging this bound,

we have that (176) is fulfilled in this case whenever n ≥ 2 · S+
√

α log(t)/2

eβ∆/2−1 .

Overall, we have that (176) is fulfilled for

n ≥ 2

√
√
√
√max

{

κ,
S +

√

α log(t)/2

eβ∆/2 − 1

}

· S +
√

α log(t)/2

eβ∆/2 − 1
. (179)

Since
√

α log(t)/2 < κ, we can simplify the bound and conclude that (176) is fulfilled by all n such that

n ≥
2
√
κ
(√

S + (α log(t)/2)
1

4

)

min{eβ∆/2 − 1,
√

eβ∆/2 − 1}
. (180)

Now, we focus on the second condition, i.e., (174). Observe that the second condition is exactly (57) which

is investigated in the proof of Lemma 16. Recall the notation (1), it follows that the second condition holds for

all n such that

n ≥ 15 · Λ2

(
8 · log(2tα)
(1− β)2∆2

)

. (181)

We are now ready to prove Theorem 14.

Proof of Theorem 14: The structure of this proof is similar to that of Theorem 2, thus we only highlight

the main differences, namely, our reliance on Proposition 12 and Lemma 25 which results in the regret terms

ΓSE(α, β, Si, κ,∆i, t).

At each round t, the player chooses a sub-optimal i arm if ∆i > 0 and at least one of the following events

occurs:

I”. The entropy of the best arm is significantly underestimated:

ĤSE(Xi∗(t− 1), δα(t), Ni∗(t− 1))) + UCDSE(X i(t− 1), δα(t), Ni(t− 1))) ≤ Hi∗. (182)

II”. The entropy of arm i is significantly overestimated:

ĤSE(Xi(t− 1), δα(t), Ni(t− 1))) > Hi +UCDSE(Xi(t− 1), δα(t), Ni(t− 1))). (183)
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III”. The upper confidence interval is significantly larger than the gap

UCDSE(X i(t− 1), δα(t), Ni(t− 1))) > ∆i/2. (184)

As in the proof of Theorem 2, if all three events I”-III” are false, then

ĤSE(Xi∗(t− 1), Ni∗(t− 1))) + UCDSE(Xi∗(t− 1), δα(t), Ni∗(t− 1))

> Hi∗ = Hi +∆i (185)

≥ Hi + 2 · UCDSE(Xi(t− 1), δα(t), Ni(t− 1)) (186)

≥ ĤSE(X i(t− 1), Ni(t− 1))) + UCDSE(X i(t− 1), δα(t), Ni(t− 1)), (187)

which contradicts the assumption that Algorithm 1 chooses It = i at the tth round.

By Lemma 25, if Ni(t − 1) ≥ ΓSE(α, β, Si, κ,∆, t) then UCDSE(X i(t − 1), t−α, Ni(t − 1)) ≤ ∆i/2 for

every Xi(t− 1) ∈ SNi(t−1)
i , that is, the event III” does not occur. The analysis then follows as in the proof of

Theorem 2. Specifically, we upper bound the probability that the events I” and II” occur based on Proposition

13 as follows:

t∑

τ=1

[P (I” is true at round τ) + P (II” is true at round τ)]

≤ 2

t∑

τ=1

2

τα−1
≤ 4(α − 1)

α− 2
. (188)
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