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or Hidden Markov Signal Priors
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Abstract—This paper estimates free energy, average mutual
information, and minimum mean square error (MMSE) of a
linear model under two assumptions: (1) the source is generated
by a Markov chain, (2) the source is generated via a hidden
Markov model. Our estimates are based on the replica method
in statistical physics. We show that under the posterior mean es-
timator, the linear model with Markov sources or hidden Markov
sources is decoupled into single-input AWGN channels with state
information available at both encoder and decoder where the
state distribution follows the left Perron-Frobenius eigenvector
with unit Manhattan norm of the stochastic matrix of Markov
chains. Numerical results show that the free energies and MSEs
obtained via the replica method are closely approximate to their
counterparts achieved by the Metropolis–Hastings algorithm or
some well-known approximate message passing algorithms in the
research literature.

Index Terms—Compressed sensing, Linear model, Linear re-
gression, Markov chain, Hidden Markov model, Replica method,
Free energy, Minimum mean square error, Statistical Physics,
Maximum a posteriori estimation.

I. INTRODUCTION

In the canonical compressed sensing problem, the pri-
mary goal is to reconstruct an n-dimensional vector X =
(X1, X2, · · · , Xn) with independent and identical prior from
an m-dimensional vector of noisy linear observations Y =
(Y1, Y2, · · · , Ym) of the form Yk = 〈Φk,X〉 + Wk, k =
1, 2, · · · ,m, where {Φk} is a sequence of n-dimensional mea-
surement vectors, {Wk} is a sequence of standard Gaussian
random variables, and 〈·, ·〉 denotes the Euclidean inner prod-
uct between vectors. In this paper, under the assumption that
X has a Markov or hidden Markov prior, we wish to estimate
the asymptotic mutual information limn→∞

1
nI(X;Y ) and

the MMSE limn→∞
1
nE[‖X − E[X|Y ,Φ]‖2]. Our estimates

are based on the replica method which was developed origi-
nally to study mean field approximations in spin glasses [1].
Although this method lacks of rigorous mathematical proof
in some particular parts, it has been widely accepted as an
analytic tool and utilized to investigate a variety of problems in
applied mathematics, information processing, machine learn-
ing, and coding [2].

A. Related Work

The use of the replica method for studying multiuser estima-
tors goes back to [3] where Tanaka determined the asymptotic
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bit error rate of Marginal-Posterior-Mode (MPM) estimators
by employing the replica method. The study demonstrated in-
teresting large-system properties of multiuser estimators. As a
result, the statistical physics approach received more attention
in the context of multiuser systems [4], [5] with a subsequent
work focusing on the compressed sensing directly [6]–[11].
Guo and Verdú [4] studied the same CDMA detection problem
as [3] but under more general (arbitrary) input distributions.
They assumed that a generic posterior mean estimator is
applied before single-user decoding. The generic detector can
be particularized to the matched filter, decorrelator, linear
minimum mean-square error (MMSE) detector, the jointly
or the individual optimal detector, and others. It is found
that the detection output for each user, although in general
asymptotically non-Gaussian conditioned on the transmitted
symbol, converges as the number of users go to infinity
to a deterministic function of a “hidden” Gaussian statistic
independent of the interferers. Thus, the multi-user channel
can be decoupled.

The results of replica method have been rigorously in a
number of settings in compressed sensing. One example is
given by message passing on matrices with special structure,
such as sparsity [12]–[16] or spatial coupling [17]–[19]. In
[8], Rangan et al. studied the asymptotic performance of
a class of Maximize-A-Posterior (MAP) estimators. Using
standard large deviation techniques, the authors represented
the MAP estimator as the limit of an indexed MMSE estima-
tor’s sequence. Consequently, they determined the estimator’s
asymptotics employing the results from [4] and justified the
decoupling property of MAP estimators under Replica Sym-
metry (RS) assumption for an i.i.d. measurement matrix Φ.
The asymptotic performance for the MAP estimator where
the RS assumption does not hold but satisfies some looser
symmetric assumptions, called Replica Symmetry Breaking
(RSB) is considered in [2]. Under the RSB assumption with
b steps of breaking (bRSB), the equivalent noisy single-user
channel is given in form of an input term added by an
impairment term. The impairment term, moreover, is expressed
as a sum of an independent Gaussian random variable and b
correlated non-Gaussian interference terms.

Recently, there have been some works which aim to close
the gap between mathematically rigorous proof and results
from the replica method. Reeves and Pfister considered the
fundamental limit of compressed sensing for i.i.d. signal
distributions and i.i.d. Gaussian measurement matrices [20].
Under some mild technical conditions, their results show that
the limiting mutual information and Minimum Mean Square
Error (MMSE) are equal to the values predicted by the replica
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method. Their proof techniques are based on establishing
relationships between mutual information and MMSE at finite
n,m and n ∼ m such as [21], and extending obtained results
in large system limits. In [22], Barbier et al. showed that the
results for Generalized Linear Models (GLM) and i.i.d. sources
stemming from the replica method are indeed correct and
imply the optimal value of both estimation and generalization
error. The proof is based on the adaptive interpolation method
[23] which is an extension of interpolation method developed
by Guerra and Toninelli [24] in the context of spin glasses,
with an adaptive interpolation path. More specifically, this
scheme interpolates between the original problem and the
solution via replica method in small steps, each step involving
its own set of trial parameters and Gaussian mean-fields
in the spirit of Guerra and Toninelli. We are then able to
choose the set of trial parameters in various ways so that
the upper and lower bounds are eventually matched. By a
generalization of the adaptive interpolation method, Truong
[25] has recently established exact asymptotic expressions for
the normalized mutual information and MMSE of sparse linear
regression in the sub-linear sparsity regime, i.e., m = nα

for some α ∈ (0, 1). This work shows that the traditional
linear assumption between the signal dimension and number of
observations in the replica and adaptive interpolation methods
is not necessary for sparse signals.

In all above research literature, the authors assume that the
source is independently and identically distributed (i.i.d.). In
many practical applications, samples of input data may be de-
pendent on each other, e.g., Markov chains or hidden Markov
models. There are a few non-rigorous literatures handling
Markov chains using the replica method [26]–[28]. However,
to the best of our knowledge, there exists no rigorously
analytic result which was developed based on replica-related
methods for these models. Some recent works considered the
linear model with random generative priors where the signal
is the output of a Bayesian neural network with specific
structures with the input being an i.i.d. sequence [29]–[31].
Although these papers are to recover the structured signal,
however, the signal structure is different from Markov or
hidden Markov. For example, if we use a classifier (one
layer neural network) with ReLU activation function, i.e.,
x = σ(aTu) where a is Gaussian as the assumptions in these
papers and u is an i.i.d. vector, then x is not Markov or Hidden
Markov. The adaptive interpolation method looks hard to apply
for the linear model with Markov sources or hidden Markov
sources since it requires that X1, X2, . . . , Xn are i.i.d. (or at
least i.i.d. block-by-block) to guarantee a fixed interpolating
free energy at the final (k, t)-interpolation model for each finite
value of n [23]. There were also some existing works related to
Mean Square Errors (MSE) achieved by Approximate Message
Passing algorithms (AMP) for the linear model with Markov
or hidden Markov sources [32]–[34]. Approximate message
passing (AMP) refers to a class of efficient algorithms for
statistical estimation in high-dimensional problems such as
compressed sensing and low-rank matrix estimation. AMP is
initially proposed for sparse signal recovery and compressed
sensing [35]–[37]. AMP algorithms have been proved to
be effective in reconstructing sparse signals from a small

number of incoherent linear measurements. Their dynamics
are accurately tracked by a simple one-dimensional iteration
termed state evolution [38]. The state evolution is redefined
in non-asymptotic sense for the sparse linear regression with
sublinear sparsity in [25]. AMP algorithms achieve state-of-
the-art performance for several high-dimensional statistical
estimation problems, including compressed sensing [18], [38],
[39] and low-rank matrix estimation [38], [40].

B. Main Contributions

In this paper, based on the same replica assumptions as
[4], we establish free energy, mutual information, and MMSE
for the linear model with Markov or hidden Markov sources.
When limiting to the linear model with i.i.d. sources as case,
we recover Guo and Verdú’s results [4], which extends Tanaka
work [3] to more general alphabets. More specially, our main
contributions are as follows:
• Using the replica method, we estimate the free energy,

the normalized mutual information in the large system
limit for two models: linear model with Markov sources
and linear model with hidden Markov sources (cf. Claim
1 and Claim 3).

• Using the replica method, we characterize MMSEs in
the large system limit for two estimation problems (cf.
Claim 2 and Claim 3). We show that under the posterior
mean estimator, the linear model with Markov sources
or hidden Markov sources is decoupled into single-input
AWGN channels with state information available at both
encoder and decoder where the state distribution follows
the left Perron-Frobenius eigenvector with unit Manhattan
norm of the stochastic matrix of Markov chains1.

• We show that the free energies and MSEs obtained
via the replica method are closely approximate to their
counterparts achieved by the Metropolis–Hastings algo-
rithm or some well-known approximate message passing
algorithms in the research literature (cf. Section IV).

Essentially, our results show that in the large system limit, we
can convert the estimation in high-dimensional space for the
linear model with Markov or hidden Markov signal prior to
the estimation problems in one-dimensional spaces. Compared
with the linear model with i.i.d. sources [4], we need to deal
with some new technical challenges related to the estimation of
the derivative of Perron-Frobenius eigenvalue of non-negative
matrices. For example, in the following Lemma 7, we develop
a new technique to estimate this derivative in the large system
limit.

MMSE and free energy are very important fundamental
limits, which are benchmarks to check if a coding scheme
or a learning algorithm for the linear model is optimal. In
this work, we aim to characterize these fundamental limits
by using replica method. Our simulation results (cf. Section
IV) show that some existing MCMC algorithms (for example,
Metropolis–Hastings algorithm) and AMP (for example, Turbo
AMP [32]) are (potentially) optimal for the linear model with

1For any irreducible Markov process {Zn}∞n=1, the left Perron-Frobenius
eigenvector with unit Manhattan norm is the stationary distribution of this
Markov process, and the Perron-Frobenius eigenvalue is equal to 1 [41].
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Markov or hidden Markov signal prior. Before our work,
whether these interesting algorithms are optimal or not is an
open question.

C. Paper Organization

The problem setting is placed in Section II, where we intro-
duce the system model, posterior mean estimation, free energy
and replica method in statistical physics. We also introduce
some new concepts such as single-symbol Posterior Mean
Estimation (PME) channel with state information, free energy
functions, and other related notations in this section. Our main
results are stated and proved in Section III. We apply our main
results to estimate free energy, mutual information, and MMSE
for some specific Markov chains or hidden Markov models
in Section IV, where we also compare our obtained MMSEs
with achievable MSEs by the classical Metropolis–Hastings
algorithm and some well-known AMP algorithms in research
literature. Proofs of main results are placed in Section V.

D. Notation

Use [n] to denote the set {1, . . . , n}. Random vectors and
matrices are in bold letters. Expectations with respect to
“quenched” random variables (i.e., the variables that are fixed
by the realization of the problem) are denoted by E and those
with respect to “annealed” random variables (i.e., dynamical
variables) are denoted by Gibbs bracket 〈−〉 possibly with
appropriate subscripts. This choice follows the stardards of
statistical physics.

As standard literature, we define xn = (x1, x2, · · · , xn)T

to denote a vector of length n. However, if the dimension of
a vector x is clear from context, we omit it for simplicity. Let
log x := log2 x and lnx be the natural logarithm of x for all
x ∈ R+. Manhattan and Euclidean norms of a vector x ∈ Rn
are defined as

‖x‖1 :=

n∑
i=1

|xi|, (1)

‖x‖2 :=

√√√√ n∑
i=1

|xi|2, (2)

respectively. In addition, vec(·) denotes the vectorization op-
erator. Besides, for any A ∈ Rp×q and B ∈ (Rn×n)p×q , we
define AotrB :=

∑
i,j Aij�Bij , where A�B is the Hadamard

product between A and B.
The moment generating function of a random vector X ∈

Rn is defined as M(λ) := E[exp(λTX)] for all λ ∈ Rn.
Let M(Q̃) := E[exp(tr(Q̃Q))] be the moment generating
function of a random matrix Q ∈ Rn×n for all matrix
Q̃ ∈ Rn×n.

Denote by

Q :=

{
sxxT for some x ∈ S × X ν+1

}
. (3)

For simplicity of presentation, we enumerate all matrices in
Q as Q̄0, Q̄1, · · · , Q̄M where M := |Q| − 1.

II. PROBLEM SETTING

We consider the linear model

Y = ΦX +W = AS1/2X +W . (4)

Here Y ∈ Rm is a vector of observations, X ∈ Rn is the
signal vector, A ∈ Rm×n is a measurement matrix, S is
diagonal matrix of positive scale factors:

S = diag(S1, S2, · · · , Sn), Sj ∈ R+, (5)

and W ∈ Rm is a noise vector. We consider a sequence of
problems indexed by n, and make the following assumptions
on the model. These assumptions are identical to those in
earlier works [4], [8] except for the signal prior, which we
allow to be Markov or hidden Markov in contrast to the i.i.d.
priors considered in earlier works.

1) We assume that the number of measurements m scales
linearly with n, and limn→∞

n
m = β, for some β > 0.

2) The elements {Aij}i∈[m],j∈[n] of the matrix A are i.i.d.
and distributed as Aij

d
= 1√

m
A, where A is a random

variable with zero mean, unit variance and all moments
finite.

3) The scale factors (S1, . . . , Sn) are i.i.d. according to PS ,
which is supported on a set S ⊂ R+. The scale factors
(S1, . . . , Sn) are independent of A,X , and W .

4) The noise vector W is standard normal, i.e., Wj ∼i.i.d.
N (0, 1) for j ∈ [m].

5) Signal prior: We assume that the components of X
take values on a Polish space on R, and are distributed
according to either a Markov or a hidden Markov prior.
• Markov chain prior: This model assumes that

P(X = (x1, . . . , xn))

= p(x1)π(x1, x2) · · ·π(xn−1, xn) (6)

for some initial probability distribution p(·) on X ,
where π(·, ·) is the transition probability of a time-
homogeneous, irreducible Markov chain on X .

• Hidden Markov prior: The second model
assumes that {Xn}∞n=1 are generated by a
Hidden Markov Model (HMM), with hidden
states {Υn}∞n=1 take values on a Polish space
on HΥ. That is, P(Υ = (υ1, . . . , υn)) =
pΥ(υ1)πΥ(υ1, υ2) · · ·πΥ(υn−1, υn) for some initial
probability distribution pΥ(·) on HΥ, where πΥ(·, ·)
is the transition probability of a time-homogeneous,
irreducible Markov chain on HΥ. Then,

P(Xi = xi | Υ1 = υ1, . . . ,Υi = υi)

= pX|Υ(xi | υi), i ∈ [n],

for some stationary emission probability pX|Υ(·|·)
on SΥ ×X .

For simplicity of presentation, we assume that Markov
chains {Xn}∞n=1, {Υn}∞n=1 have finite state spaces and S has
a finite number of elements in some proofs. However, it is
not hard to extend these proofs to Markov chains on Polish
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spaces in R with an infinite set S2 by referring to a more
general definition of Markov chain in [42] and noting that the
Varadhan’s large deviation theorem holds for Markov chains
on the general Polish space. An irreducible and recurrent
Markov chain on an infinite state-space is called a Harris chain
[42], which owns many similar properties to the finite state-
space version such as the existence of an unique stationary
distribution. For both models, we denote the joint probability
mass distribution (pmf) of the signal by p(x1, . . . , xn). For
general proofs, we use Radon–Nikodym derivatives with re-
spect to corresponding measures [43].

A. Posterior Mean Estimation

The problem setting described above induces a posterior
distribution pX|Y ,Φ, given by

pX|Y ,Φ(x | y,φ) =
pY |X,Φ(y | x,φ)pX(x)

pY |Φ(y | φ)
, (7)

where

pY |X,Φ(y | x,Φ) = (2π)−m/2 exp

[
− ‖y − φx‖

2

2

]
, (8)

and

pY |Φ(y | φ) = Ep[pY |X,Φ(y |X,φ)]

=
∑
x

pY |X,Φ(y | x,φ)pX(x). (9)

The (canonical) posterior mean estimator (PME), which com-
putes the mean value of the posterior distribution pX|Y ,Φ is
given by,

[X] = Ep
[
X|Y ,Φ]. (10)

This estimator achieves MMSE between the estimated and the
original signal.

As in Guo and Verdú [4], we consider a more general
class of posterior mean estimators, based on a postulated
posterior distribution qX|Y ,Φ, to model that scenario that the
true posterior mean may be infeasible to compute or the
estimator may not know the exact prior and the noise variance.
The postulated posterior distribution is defined via a postulated
prior and a postulated noise variance. The postulated prior
qX(x) is of the form

qX(x) = q(x1)π̃(x1, x2) · · · π̃(xn−1, xn) (11)

for some initial distribution q(·) on X , and π̃(·, ·) is the
transition probability of an irreducible Markov chain on X .
The postulated likelihood is Gaussian with variance σ2, which
may not be equal to the true noise variance 1:

qY |X,Φ(y | x,φ) = (2π)−m/2 exp

[
− ‖y − φx‖

2

2σ2

]
(12)

The postulated prior and noise variance induce the posterior
distribution qX|Y ,Φ given by

qX|Y ,Φ(x | y,φ) =
qY |X,Φ(y | x,φ) qX(x)

qY |Φ(y|φ)
, (13)

2In the Appendix B, we show how to extend our analysis to Markov chain
on a general Polish spaces in R.

where

qY |Φ(y|φ) = Eq[qY |X,Φ(y | x,φ) | Φ = φ]

=
∑
x

qX(x) qY |X,Φ(y | x,φ). (14)

The posterior mean estimator computed using (13), which we
call the ‘generalized PME’, is denoted by

[X]q = Eq
[
X|Y ,Φ]. (15)

As described in [4], with suitable choices of the postulated
distribution, the generalized PME can recover various com-
monly used sub-optimal estimators such as the linear MMSE
estimator and the matched filter. The postulated prior can also
be used to model estimators that ignore the memory in the
signal X , e.g., estimator based on an i.i.d. prior.

In the remainder of the paper, we will use the sub-
script p to denote expectations computed using the true
prior/posterior, and q to denote expectations using the pos-
tulated prior/posterior.

B. Free Energy and Replica Method

Let

Z(Y ,Φ) := qY |Φ(Y |Φ). (16)

The free energy of the model in (4) is defined as

Fn := − 1

n
logZ(Y ,Φ). (17)

The expectation of the free energy (with respect to
qY |Φ(Y |Φ)) is equal to the conditional entropy of the ob-
servation 1

nHq(Y |Φ) as well as (up to an additive constant)
to the mutual information density between the signal and the
observations 1

nIq(X,Y ).
The asymptotic free energy is the limit of the sequence
{Fn}∞n=1, i.e.,

Fq := lim
n→∞

Fn. (18)

In general, it is very challenging to prove the existence
and estimate the limit in (18). Replica method, originally
developed in statistical physics, is usually used to evaluate
this limit [3], [4] because the linear model is similar to the
thermodynamic system. For this model, replica method is
based on the following assumptions (A) and facts (F):
• (A1) The free energy Fn has the self-averaging property

as n→∞. This means that

F := lim
n→∞

E[Fn]. (19)

The self-averaging property essentially assumes that the
variations of Z(Y ,Φ) due to the randomness of the
measurement matrix Φ vanish in the limit n → ∞.
Although a large number of statistical physics quantities
exhibit such self-averaging, the self-averaging of the
relevant quantities for the general PME (PMMSE) and
Postulated MAP (PMAP) analyses has not been rigor-
ously established [8]. For the purpose of estimating the
average mutual information of the Markov model only,
we don’t need to make use of this assumption.
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• (F1) The following identity holds:

E[logZ(Y ,Φ)] = lim
ν→0

∂

∂ν
logE[Zν(Y ,Φ)]. (20)

• (A2) Estimation of E[Z(Y ,Φ)ν ] for a positive real
number ν in the neighbourhood of 0 can be done by two
steps: (1) Estimate E[Zν(Y ,Φ)] for a general positive
integer ν (2) Take the limit of the obtained result as
ν → 0. This is called “replica trick” in statistical physics.

• (F2) For any positive integer ν and a realization (y,Φ)
of (Y ,Φ), the quantity Zν(y,Φ) can be written as

Zν(y,Φ) =

{
qY |Φ(y|Φ)

}ν
(21)

=

{
EqX

[
qY |X,Φ(y|X,Φ)

]}ν
(22)

= EqX
{ ν∏
a=1

qY |X,Φ(y|X(a),Φ)

}
. (23)

where the last expectation is taken over relicated vectors
X(a), a = 1, 2, · · · , ν which are independent copies of a
random vector with postulated distribution qX .

• (A3) The order of limit n → ∞ and ν → 0 can
be interchanged. Mathematically, under some conditions
such as Theorem Moore-Osgood [44], the interchange
between limits work. This theorem is used in [45] for
a similar purpose.

• (A4) Usually, the free energy can be expressed an op-
timal value of an optimization problem over the space
of covariance matrices of replica samples, say Q. This
optimization is general difficult to perform. To overcome
this, the replica method also makes an additional as-
sumption that the optimizer Q∗ is symmetric with respect
to permutations of ν replica indices. This assumption is
called Replica Symmetry (RS) in statistical physics. See
Definition 10 for our assumption about RS in this paper.

III. MAIN RESULTS

A. Results for Markov Priors
Our results on the free energy and MMSE will be stated in

terms of a single-symbol channel, similar to the equivalent
single-user Gaussian channel which is obtained via decou-
pling as in [4, Section D]. Let λ(π) be the left Perron-
Frobenius eigenvector with unit Manhattan norm3 of Pπ =
{π(x, y)}x∈X ,y∈X which is the stochastic matrix of the
Markov chain {Xn}∞n=1, and let λ(π)

x0 be the component of
λ(π) associated with the x0-th row of Pπ . Let us consider the
composition of a Gaussian channel with one state X0 available
at both encoder and decoder such that X0 = x0 ∼ λ

(π)
x0 , a

one-state PME, and a companion retrochannel in the single-
symbol setting depicted in Fig. 1. Given the state information
X0 = x0 ∼ λ

(π)
x0 , the input-output relationship of this single-

symbol channel is given by

U =
√
S X1 +

1
√
η
W, (24)

3Since there exists a unique left Perron-Frobenius eigenvector up to a
positive scaling factor [41], λ(π) exists uniquely, which is the stationary
distribution of the Markov chain.

where the input X1 ∼ pX1|X0
(·|x0) := π(x0, ·), S ∼ PS which

is independent X0 and X1, W ∼ N (0, 1) the noise independent
of X0 and X1, and η > 0 the inverse noise variance. The
conditional distribution associated with the channel is

pU |X0,X1,S;η(u | x0, x1, s; η)

=

√
η

2π
exp

[
− η

2
(u−

√
sx1)2

]
. (25)

Let qU |X0,X1,S;ξ represent Gaussian channel with state X0

available at both encoder and decoder akin to (24), the only
difference being that the inverse noise variance is ξ instead of
η

qU |X0,X1,S;ξ(u | x0, x1, s; ξ)

=

√
ξ

2π
exp

[
− ξ

2
(u−

√
sx1)2

]
. (26)

Similar to that in the vector channel setting, by postulating
the input distribution to be qX1|X0

(·|x0) = π̃(x0, ·), a posterior
probability distribution qX1|X0,U,S;ξ is induced by qX1|X0

and
qU |X0,X1,S;ξ using the Bayes rule, i.e.,

qX1|X0,S,U ;ξ(x | x0, s, u; ξ)

=
qX1|X0

(x | x0)qU |X0,X1,S;ξ(u | x0, x1, s; ξ)

qU |X0,S;ξ(u | x0, s; ξ)
. (27)

This induces a single-use retrochannel with random transfor-
mation qX1|X0,U,S;ξ, which outputs a random variable X given
the channel output U and the channel state X0 (Fig. 1). A
(generalized) single-symbol PME with state available X0 = x0

is defined naturally as (cf. (15))

〈X
∣∣X0 = x0〉q = Eq

[
X|X0 = x0, U, S; ξ

]
, (28)

where the expectation is taken over the (conditionally) postu-
lated distribution in (27).

The single-symbol PME (28) is merely a decision function
applied to the Gaussian channel output with state X0 = x0

available at both encoder and decoder (or input and output),
which can be expressed explicitly as

Eq
[
X|U,X0 = x0, S; ξ

]
=
q1(U, x0, S; ξ)

q0(U, x0, S; ξ)
, (29)

where

q0(u, x0, S; ξ) := qU |X0,S;ξ(u | x0, S; ξ)

= E
[
qU |X0,X1,S;ξ(u | x0,X1, S; ξ)

∣∣∣∣S], (30)

q1(z, x0, S; ξ)

= E
[
X qU |X0,X1,S;ξ(z | x0,X1, S; ξ)

∣∣∣∣S]. (31)

The probability law of the (composite) single-symbol chan-
nel depicted by Fig. 1 is determined by S and two parameters
η and ξ given state X0. We define the conditional mean-square
error of the PME as

E(S; η, ξ|x0) = E[(X1 − 〈X
∣∣X0〉q)2 | X0 = x0, S; η, ξ] (32)

and also define the conditional variance of the retrochannel as

V(S; η, ξ|x0) = E
[
(X− 〈X|X0〉q)2 | X0 = x0, S; η, ξ

]
. (33)
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Fig. 1. The equivalent single-symbol Gaussian channel with state available at both encoder and decoder, PME, and retrochannel.

Define

G :=
∑
x0∈X

λ(π)
x0
G(x0), (34)

where

G(x0)

:= −E
{∫

pU |X0,X1,S;η(u | x0,X1, S; η)

× log qU |X0,X1,S;ξ(u | x0, S; ξ)du

}
+

1

2β

[
(ξ − 1) log e− log ξ

]
− 1

2
log

2π

ξ
− ξ

2η
log e

+
σ2ξ(η − ξ)

2βη
log e+

1

2β
log(2π) +

ξ

2βη
log e, (35)

and η and ξ is the solution of the following equation system

η−1 = 1 + β
∑
x0∈X

λ(π)
x0

E[SE(S; η, ξ | x0)], (36)

ξ−1 = σ2 + β
∑
x0∈X

λ(π)
x0

E[SV(S; η, ξ | x0)] (37)

such that they minimize G. Observe that for the case
X0,X1, · · · ,Xn are i.i.d., G(x0) does not depend on x0 and is
defined in [4, Eq. (22)].

Claim 1. The free energy of the linear model with Markov
sources in Section II satisfies

Fq = G, (38)

where G is defined in (34). In addition, the average mutual
information of this model satisfies:

C = lim
n→∞

1

n
I
(
Xn;Y m|Φ

)
= Fq

∣∣∣∣
σ=1

− 1

2β
. (39)

Claim 2. Recall the definition of {λ(π)
x0 }x0∈X in Section III-A.

Assume that the generalized PME defined in (15) is used for

estimation. Then, for all k ∈ [n] and (i0, j0, l0) ∈ Z+×Z+×
Z+, the joint moments satisfy:

lim
n→∞

E
[
Xi0
k X̃

j0
k [Xk]l0q

]
=
∑
x0∈X

λ(π)
x0

E
[
Xi01 Xj0〈X

∣∣X0〉l0q
∣∣X0 = x0

]
, (40)

where (X1,X0,X, 〈X|X0〉q) is the input, channel state, and
outputs defined in the (composite) single-symbol PME channel
in Fig. 1, and (Xk, X̃k, [Xk]q) is the k-th symbol in the vector
X ∈ Xn, the k-th output of the vector retrochanel defined
in (13), and its corresponding estimated symbol by using the
PME estimate in (15).

In addition, the average MMSE satisfies:

1

n
E
[
‖X − [X]‖22

]
= E

[
X2

1

]
−
∑
x0∈X

λ(π)
x0

E
[
〈X|X0 = x0〉2

]
, (41)

where X1 ∼
∑
x0∈X π(x0, ·)λ(π)

x0 .

Observe that an i. i. d. sequence {Xn}∞n=1 can be considered
as a Markov sequence with transition probability (function)
π(x, y) = p(y) for all x, y ∈ X . Hence, Claim 1 and
Claim 2 can recover all results for the linear model with
i.i.d. signal prior in [4, Sect. II-D]. For this special case,
G(x0) is a constant, say G(∅), for all x0 ∈ X . Here, G(∅)
is the free energy function estimated in Section III-A when
there is no state information appeared in the correponding
single-symbol PME channel, i.e. X0 = ∅. In addition, the
left Perron-Frobenius eigenvector with unit Manhattan norm
for the stochastic matrix for this special case is {PX1(x)}x∈X .

B. Results for Hidden Markov Priors

As the previous section, for the case that {Xn}∞n=1 are
hidden states of a Markov chain {Υn}∞n=1 on the space SΥ,
we define a new single-symbol channel with state which is
similar to the conditional PME channel defined in Section
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Fig. 2. The equivalent single-symbol Gaussian channel with two states available at both encoder and decoder, PME, and retrochannel.

III-A. Let λ(πΥ) be the left Perron-Frobenius eigenvector with
unit Manhattan norm4 of

Pπ,X =

{
PX1,Υ1|X0,Υ0

(x1, υ1 | x0, υ0)

}
(x0,υ0),(x1,υ1)∈X×SΥ

,

=

{
πΥ(υ0, υ1)PX|Υ(x1 | υ1)

}
(x0,υ0),(x1,υ1)∈X×SΥ

,

which is the stochastic matrix of the Markov chain
{(Xn,Υn)}∞n=1

5, and let λ(π)
x0,υ0 be the component of λ(π)

associated with the (x0, υ0)-th row of Pπ,X . Let us con-
sider the composition of a Gaussian channel with two states
(X0,Υ0) available at both encoder and decoder such that
(X0,Υ0) = (x0, υ0) ∼ λ

(π)
x0,υ0 , a two-state PME, and a

companion retrochannel in the single-symbol setting depicted
in Fig. 2. Given the state information (X0,Υ0) = (x0, υ0),
the input-output relationship of this single-symbol channel is
given by

U =
√
SX1 +

1
√
η
W, (42)

where the input X1 ∼ pX1|X0,Υ0
(·|x0, υ0) such that

pX1|X0,Υ0
(x1 | x0, υ0)

=
∑
υ1∈SΥ

pX1,Υ1|X0,Υ0
(x1, υ1 | x0, υ0) (43)

=
∑
υ1∈SΥ

πΥ(υ0, υ1)pX|Υ(x1 | υ1), (44)

S ∼ PS which is independent X0,Υ0 and X1,Υ1, W ∼
N (0, 1) the noise independent of X0,Υ0 and X1,Υ1, and
η > 0 the inverse noise variance. The conditional distribution
associated with the channel is

pU |X0,Υ0,X1,S;η(u | x0, υ0, x1, s; η)

=

√
η

2π
exp

[
− η

2
(u−

√
sx1)2

]
. (45)

4Since there exists a unique left Perron-Frobenius eigenvector unique up to
a positive scaling factor [41], so λ(πΥ) exists uniquely.

5The fact that {(Xn,Υn)}∞n=1 forms a Markov chain can be easily proved.

Let qU |X0,Υ0,X1,S;ξ represent Gaussian channel with two states
X0 and Υ0 available at both encoder and decoder akin to (42),
the only difference being that the inverse noise variance is ξ
instead of η

qU |X0,Υ0,X1,S;ξ(u | x0, υ0, x1, s; η, x0)

=

√
ξ

2π
exp

[
− ξ

2
(u−

√
sx1)2

]
. (46)

Similar to that in the vector channel setting, by postulating the
input distribution to be qΥ1|Υ0

(·|υ0) = π̃Υ(υ0, ·), a posterior
probability distribution qX1|X0,Υ0,U,S;ξ is induced by qX1|X0,Υ0

and qU |X0,Υ0,X1,S;ξ using the Bayes rule, i.e.,

qX1|X0,Υ0,S,U ;ξ(x | x0, υ0, s, u; ξ)

=
qX1|X0,Υ0

(x | x0, υ0)qU |X0,Υ0,X1,S;ξ(u | x0, υ0, x1, s; ξ)

qU |X0,Υ0,S;ξ(u | x0, υ0, s; ξ)
.

(47)

This induces a single-use retrochannel with random transfor-
mation qX1|X0,Υ0,U,S;ξ, which outputs a random variable X
given the channel output U and the channel states X0,Υ0 (Fig.
2). A (generalized) single-symbol PME with two available
states X0 = x0 and Υ0 = υ0 is defined naturally as (cf. (28))

〈X
∣∣X0 = x0,Υ = υ0〉q
= Eq

[
X|X0 = x0,Υ0 = υ0, U, S; ξ

]
, (48)

where the expectation is taken over the (conditionally) postu-
lated distribution in (27).

The single-symbol PME (28) is merely a decision function
applied to the Gaussian channel output with two states X0 =
x0 and Υ0 = υ0 available at both encoder and decoder (or
input and output), which can expressed explicitly as

Eq
[
X|U,X0 = x0,Υ0 = υ0, S; ξ

]
=
q1(U, x0, υ0, S; ξ)

q0(U, x0, υ0, S; ξ)
, (49)
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where

q0(u, x0, υ0, S; ξ) := qU |X0,Υ0,S;ξ(u | x0, υ0, S; ξ)

= E
[
qU |X0,Υ0,X1,S;ξ(u | x0, υ0,X1, S; ξ)

∣∣S], (50)
q1(u, x0, υ0, S; ξ)

= E
[
XqU |X0,Υ0,X1,S;ξ(u | x0, υ0,X1, S; ξ)

∣∣S]. (51)

The probability law of the (composite) single-symbol chan-
nel depicted by Fig. 2 is determined by S and two parameters
η and ξ given states X0 and Υ0. We define the conditional
mean-square error of the PME as

E(S; η, ξ|x0, υ0)

= E[(X1 − 〈X
∣∣X0,Υ0〉q)2|X0 = x0,Υ0 = υ0, S; η, ξ]

(52)

and also define the conditional variance of the retrochannel as

V(S; η, ξ|x0, υ0)

= E
[
(X− 〈X|X0,Υ0〉q)2|X0 = x0,Υ0 = υ0, S; η, ξ

]
.

(53)

Define

G̃ :=
∑

(x0,υ0)∈X×SΥ

λ(πΥ)
x0,υ0

G̃(x0, υ0), (54)

where

G̃(x0, υ0)

:= −E
{∫

pU |X0,Υ0,S;η(u | x0, υ0, S; η)

× log qU |X0,Υ0,S;ξ(u | x0, υ0, S; ξ)du

}
+

1

2β

[
(ξ − 1) log e− log ξ

]
− 1

2
log

2π

ξ
− ξ

2η
log e

+
σ2ξ(η − ξ)

2βη
log e+

1

2β
log(2π) +

ξ

2βη
log e, (55)

and η and ξ is the solution of the following equation system

η−1 = 1 + β
∑
x0,υ0

λ(πΥ)
x0,υ0

E[SE(S; η, ξ | x0, υ0)], (56)

ξ−1 = σ2 + β
∑
x0,υ0

λ(πΥ)
x0,υ0

E[SV(S; η, ξ | x0, υ0)] (57)

such that they minimize G̃.

Claim 3. Assume that {Xn}∞n=1 is the hidden states (outputs)
of a hidden Markov model generated by a Markov chain
{Υn}∞n=1 with transition probability (function) πΥ(·, ·) on
some Polish space SΥ, i.e.,
• Υn is a Markov process and is not directly observable.
• P(Xn ∈ A|Υ1 = υ1,Υ2 = υ2, · · · ,Υn = υn) =

P(Xn ∈ A|Υn = υn) = PX|Υ(A|υn),
for every n ≥ 1, υ1, υ2, · · · , υn, and an arbitrary measurable
set A, where PX|Υ(·|·) is some probability measure called
emission probability. Then, the following holds:
• {Xn,Υn}∞n=1 forms a Markov chain on X × SΥ

with transition probability PX1,Υ1|X0,Υ0
(x1, υ1|x0, υ0) =

PX|Υ(x1|υ1)πΥ(υ0, υ1).

• Recall the definitions of {λ(πΥ)
x0,υ0}(x0,υ0)∈X×SΥ

and G̃
in (55). Then, the free energy, mutual information, joint
moments, the average MMSE of the linear model with
hidden Markov sources in II satisfy:

Fq = G̃, (58)

C = Fq
∣∣∣∣
σ=1

− 1

2β
, (59)

lim
n→∞

E
[
Xi0
k X̃

j0
k [Xk]l0q

]
=
∑
x0,υ0

λ(πΥ)
x0,υ0

E
[
Xi01 Xj0〈X

∣∣X0,Υ0〉l0q
∣∣X0 = x0,Υ0 = υ0

]
,

∀i0, j0, l0 ∈ Z+, (60)

lim
n→∞

1

n
E[‖X − [X]‖22] = E[X2

1]

−
∑
x0,υ0

λ(πΥ)
x0,υ0

E[〈X|X0 = x0,Υ0 = υ0〉2], (61)

where (X1,X, 〈X|X0 = x0,Υ0 = υ0〉q) is the input
and outputs defined in the (composite) single-symbol
PME channel in Fig. 2, and (Xk, X̃k, [Xk]q) is the k-
th symbol in the vector X ∈ Xn, the k-th output
of the vector retrochanel defined in (13), and its cor-
responding estimated symbol by using the generalized
PME estimate in (15). In addition, in (61), X1 ∼∑
υ∈SΥ

PX|Υ(·|υ)πΥ(υ0, υ), where PX|Υ is the stationary
emission probability of the hidden Markov process.

IV. NUMERICAL EXAMPLES AND COMPARISON WITH
ALGORITHMIC PERFORMANCE

A. Binary-valued Markov Prior
Assume that X is a homogeneous Markov chain on the

alphabet X = {−1, 1} with the stochastic matrix as follows:

Pπ =

[
π(−1,−1) π(−1, 1)
π(1,−1) π(1, 1)

]
=

[
1− α α
δ 1− δ

]
(62)

for some α and δ in (0, 1).
1) Free Energy and Average Mutual Information: It is easy

to see that the left Perron-Frobenius eigenvector λ(π) of Pπ
defined in Subsection III-A is

λ(π) =

(
δ

α+ δ
,

α

α+ δ

)T
. (63)

We assume that all postulated distributions are the same as
their true ones for simplicity. We also assume that S = 1 with
probability 1. For this case, η = ξ, and (36)–(37) is degraded
to the following equation in η:

η−1 = 1 + β

(
δ

δ + α
E
f

(1)
U

[
1−

(
1−

(
1−α
α

)
exp(−2ηU)

1 +
(

1−α
α

)
exp(−2ηU)

)2]
+

α

δ + α
E
f

(2)
U

[
1−

(
1−

(
δ

1−δ
)

exp(−2ηU)

1 +
(

δ
1−δ
)

exp(−2ηU)

)2])
,

(64)

where

f
(1)
U (u) =

1√
2π

(1− α)
√
η exp

(
− (u+ 1)2η

2

)
+

1√
2π
α
√
η exp

(
− (u− 1)2η

2

)
(65)
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and

f
(2)
U (u) =

1√
2π
δ
√
η exp

(
− (u+ 1)2η

2

)
+

1√
2π

(1− δ)√η exp

(
− (u− 1)2η

2

)
. (66)

Since S = 1, ξ = η, σ = 1, π̃ = π, from (35), we obtain

G(−1)

∣∣∣∣
S=1,σ=1,π̃=π

= Ḡ(−1, η, α), (67)

where

Ḡ(−1, η, α)

:= −
∫ ∞
−∞

(
(1− α)

√
η

2π
exp

[
− η

2
(u+ 1)2

]
+ α

√
η

2π
exp

[
− η

2
(u− 1)2

])
× log

(
(1− α)

√
η

2π
exp

[
− η

2
(u+ 1)2

]
+ α

√
η

2π
exp

[
− η

2
(u− 1)2

])
du

+
1

2β

[
(η − 1) log e− log η

]
− 1

2
log

2π

η

− 1

2
log e+

1

2β
log(2π) +

1

2β
log e. (68)

By the symmetry, it is not hard to see that

G(1)

∣∣∣∣
S=1,σ=1,π̃=π

= Ḡ(1, η, δ), (69)

where

Ḡ(1, η, δ)

:= −
∫ ∞
−∞

(
δ

√
η

2π
exp

[
− η

2
(u+ 1)2

]
+ (1− δ)

√
η

2π
exp

[
− η

2
(u− 1)2

])
× log

(
δ

√
η

2π
exp

[
− η

2
(u+ 1)2

]
+ (1− δ)

√
η

2π
exp

[
− η

2
(u− 1)2

])
du

+
1

2β

[
(η − 1) log e− log η

]
− 1

2
log

2π

η

− 1

2
log e+

1

2β
log(2π) +

1

2β
log e. (70)

Now, let Cβ(α, δ) is the set of all solutions η of the equation
(64) given β and α and δ. Then, by Claim 1 and (63), the free
energy can be expressed as

F
∣∣∣∣
S=1,σ=1,π̃=π

= min
η∈Cβ(α,δ)

[
δ

α+ δ
G(−1) +

α

α+ δ
G(1)

]
,

(71)

where G(−1) and G(1) are given in (67) and (69), respectively.
Solving the optimization problem in (71) is very challenging

since Cβ(α, δ) may have more than one elements, which cor-
responds to multiple fixed points of the optimization problem

in (71). However, by observing that given α and δ, then β,
Ḡ(−1, η, α) and Ḡ(1, η, α) are functions of η. The multiple
fixed-points happen if there exists at least two different values
η1 and η2 such that β(η1) = β(η2). In simulations, for
a fixed β, we can estimate all the values of η such that
|β(η) − β| < 10−3 and then estimate the free energy as a
functions of η and find the minimum value among them as
the free energy corresponding to β(η). This procedure can
avoid the multiple fixed-point problem.
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Fig. 3. Free energy by Replica Method and MCMC as functions for the i.i.d.
prior α = δ = 0.5.
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Fig. 4. Free energy by Replica Method and MCMC as functions of β for the
symmetric case α = δ = 0.3.

2) Markov Chain Monte Carlo (MCMC) vs. Replica Pre-
diction: In this subsection, we use the Markov Chain Monte-
Carlo (MCMC) simulation method to estimate the density
function Py|Φ(y|Φ) and verify our replica predictions in
Claims 1 and 2. More specifically, we compare the free
energies achieved by the replica prediction and MCMC for
the linear model with binary-valued Markov prior defined
in (62). Our simulation shows that the free energy curves
by the replica method and MCMC nearly coincide to each
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other for all three cases: (1) i.i.d. prior (α = δ = 0.5), (2)
symmetric Markov prior α = δ = 0.3, (3) asymmetric Markov
prior (α = 0.2, δ = 0.5) (cf. Figs. 3, 4, and 5). In those
simulations, the Metropolis–Hastings algorithm is used where
the state xt := vec(Φt+1, yt+1) and the probability transition
g(xt+1|xt) ∼ N (xt, Imn+n). Our simulation results show
that the replica prediction for free energy in Claim 1 is very
closed to MCMC result.
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Fig. 5. Free energy by Replica Method and MCMC as functions of β for the
non-symmetric case α = 0.2 and δ = 0.5.

Since MMSE is fixed function of the free energy (or
mutual information) [21], these simulation results also indicate
that our replica prediction for MMSE in Claim 2 closely
approximates the MMSE of the model.

B. Gauss-Markov Prior

We consider a Gauss-Markov prior {Xn}∞n=1 on X = R,
i.e., Xn = νXn−1+Zn, where Zn ∼ N (0, σ2

0) and ν ∈ (0, 1).
Then, the transition probability is

π(x0, x) :=
1

σ0

√
2π

exp

[
− 1

2σ2
0

(x− νx0)2

]
. (72)

This means that Xn|Xn−1 = x0 ∼ N (νx0, σ
2
0) for all

n ∈ Z+. This is not hard to show that the Markov chain
in (72) is irreducible by using [42, Definition 1.1]. We even
can show that this Markov chain is a Harris chain by using its
definition in [46] or using [42, Theorem 4.2]. To guarantee the
irreducible and recurrent properties of this continuous-space
Markov chain, we show that P[τA <∞|X0 = x] = 1 for any
x ∈ R and A ∈ B(R), where τA = {inf n ≥ 1 : Xn ∈ A}.

1) Free Energy and Average Mutual Information: We as-
sume that all postulated distributions are the same as their
true ones for simplicity. Now, given S = s0 ∈ R+

6, by using

6For example, in BPSK or QPSK modulation schemes in communications,
all symbols in the constellation have a fixed energy s0.

Claim 1, we can show that the free energy satisfies

Fq
∣∣∣∣
S=s0,σ=1,π̃=π

=
1

2
log

(
2πe

(
s0σ

2
0 +

1

η

))
+

1

2β

[
(η − 1) log e− log η

]
− 1

2
log

2π

η
− 1

2
log e+

1

2β
log(2π) +

1

2β
log e (73)

where

η =
−((β − 1)s0σ

2
0 + 1) +

√
((β − 1)s0σ2

0 + 1)2 + 4s0σ2
0

2s0σ2
0

.

(74)

2) Markov Chain Monte Carlo (MCMC) vs. Replica Pre-
diction: In this subsection, we use the same MCMC algorithm
as Subsection IV-A2, which is the Metropolis–Hastings algo-
rithm. In the Fig. 6, we plot the free energy curves for the
linear model with Markov prior in (72) for three cases ν = 0.1,
ν = 0.5, and ν = 0.8. The curves suggest that the free energy
does not depend on ν as we can observe from (73). In these
plots, we set X1 ∼ N (0,

σ2
0

1−ν2 ) to force the state distribution

of the Markov (Harris) chain Xn ∼ N (0,
σ2

0

1−ν2 ) for all n ≥ 1.
The plot also shows that the replica prediction for the free
energy is very closed to the MCMC simulation result. Since
the MMSE is a fixed function of the free energy (or mutual
information) [21], this also means that the MMSE curve by
replica method closely approaches the MMSE of the model.
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Fig. 6. Free energy by replica method and empirical MCMC as functions of
β for σ2

0 = 1 and s0 = 1.

C. Hidden Markov Prior
In this section, we estimate free energy and mutual infor-

mation for the linear model in Section II with hidden Markov
sources defined in [32, Sect. 7]. The sequence {Xn}∞n=1 which
takes values on R is generated via

pXn|Υn(xn | υn)

= υnN (xn; 0, 1) + (1− υn)δ(xn) (75)

=
υn√
2π

exp

(
− x2

n

2

)
+ (1− υn)δ(xn) (76)
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using a time-homogeneous irreducible Markov chain-
generated sparsity pattern {Υn}∞n=1 on Sγ = {0, 1}. Such
a Markov chain is fully described by the following transition
stochastic matrix

PΥ =

[
1− κγ γκ

(1− κ)γ 1− (1− κ)γ

]
(77)

for some γ ∈ (0, 1] called the Markov independence pa-
rameter. This irreducible Markov chain yields a stationary
distribution with activity rate P (Υn = 1) = κ for all n ∈ Z+.

1) Free Energy and Average Mutual Information: First, it
is easy to see that the left Perron-Frobenius eigenvector of the
stochastic matrix PΥ with unit Manhattan norm is

λ0 = (1− κ, κ)T . (78)

Observe that

PX1,Υ1|X0,Υ0
(x1, υ1 | x0, υ0)

= PX|Υ(x1 | υ1)πΥ(υ0, υ1) (79)

where PX|Υ(·|·) is the emission probability of the hidden
Markov process.

For this case, η = ξ, and (56)–(57) is degraded to the
following equation in η:

η−1 = 1 + β(1− κ)g(γk) + βκg(1− (1− κ)γ), (80)

where

g(x) := x− E

[(
L1(x, U)

L2(x, U)

)2
]
, (81)

and

L1(x, U) := x

√
η

2π(1 + η)
exp

(
− ηU2

2(1 + η)

)(
ηU

1 + η

)
,

(82)

L2(x, U) := (1− x)

√
η

2π
exp

(
− ηU2

2

)
+ x

√
η

2π(1 + η)
exp

(
− ηU2

2(1 + η)

)
. (83)

Now, let Ĉβ(κ, γ) is the set of all solutions η of equation
(80) given β and κ and γ. By using Claim 3, it can be shown
that

F
∣∣∣∣
S=1,σ=1,π̃Υ=πΥ

= min
η∈Ĉβ(κ,γ)

[
(1− κ)Ĝ(0, η, κ, γ) + κĜ(1, η, κ, γ)

]
,

(84)

where

Ĝ(0, η, κ, γ)

:= −
∫ ∞
−∞

(
(1− κγ)

√
η

2π
exp

[
− ηu2

2

]
+ κγ

√
η

2π(1 + η)
exp

[
− ηu2

2(1 + η)

])
× log

(
(1− κγ)

√
η

2π
exp

[
− ηu2

2

]
+ κγ

√
η

2π(1 + η)
exp

[
− ηu2

2(1 + η)

])
du

+
1

2β

[
(η − 1) log e− log η

]
− 1

2
log

2π

η

− 1

2
log e+

1

2β
log(2π) +

1

2β
log e. (85)

and

Ĝ(1, η, κ, γ)

:= −
∫ ∞
−∞

(
(1− κ)γ

√
η

2π
exp

[
− ηu2

2

]
+ (1− (1− κ)γ)

√
η

2π(1 + η)
exp

[
− ηu2

2(1 + η)

])
× log

(
(1− κ)γ

√
η

2π
exp

(
− ηu2

2

)
+ (1− (1− κ)γ)

√
η

2π(1 + η)
exp

[
− ηu2

2(1 + η)

])
du

+
1

2β

[
(η − 1) log e− log η

]
− 1

2
log

2π

η

− 1

2
log e+

1

2β
log(2π) +

1

2β
log e. (86)
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Fig. 7. Free energy and average mutual information as functions of β for the
symmetric i.i.d. case λ = 0.5 and γ = 1.

Solving the optimization problems in (84) is very chal-
lenging. However, by observing that given κ and γ, then β,
Ĝ(0, η, κ, γ) and Ĝ(1, η, κ, γ) are functions of η. Hence, we
can plot lower and upper bounds for the free energy F and



12

the average mutual information as functions of (κ, γ). In Fig.
7, we plot the free energy and the average mutual information
for κ = 0.5 and γ = 1, i.e., the sequence {Xn}∞n=1 is i.i.d.
generated.

For the non-symmetric case where κ = 0.3 and γ = 0.8,
we obtain the free energy and the average mutual information
as in Fig. 8.
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Fig. 8. Free energy and average mutual information as functions of β for the
non-symmetric case λ = 0.3 and γ = 0.8.

2) Approximate Message Passing Algorithm vs. Replica
Prediction: Denote by

K1(x, U) := x

√
η

2π(1 + η)
exp

(
− ηU2

2(1 + η)

)(
ηU

1 + η

)
,

(87)

K2(x, U) := (1− x)

√
η

2π
exp

(
− ηU2

2

)
+ x

√
η

2π(1 + η)
exp

(
− ηU2

2(1 + η)

)
, ∀x, U.

(88)

Let

R1 := E

[(
K1(κγ, U)

K2(κγ, U)

)2
]

(89)

and

R2 := E

[(
K1(1− (1− κ)γ, U)

K2(1− (1− κ)γ, U)

)2
]
. (90)

Then, by using Claim 3, we can show that

MMSEHM = κ− ((1− κ)R1 + κR2). (91)

In this section, we compare the MMSE in Claim 3 with the
MSE achieved by the AMP algorithm in [32] for n = 1000
(signal dimension) and m = dnβ e (observations). We assume
that S = 1 and A is a random matrix where each element
is normal distributed N (0, 1/m) as Section II. However, this

algorithm assumes some level of sparsity in signal X . Before
introducing the algorithm, we define some new functions:

αl(c) =
1

c+ 1
, (92)

βl(c) =

(
1− κ
κ

)(
c+ 1

c

)
, (93)

ζl(c) =
1

c(c+ 1)
, (94)

Fl(θ; c) =
αl(c)θ

1 + βn(c)e−ζl(c)|θ|2
, (95)

Gl(θ; c) = βn(c)e−ζn(c)|θ|2 |Fn(θ; c)|2 +
c

θ
Fl(θ; c) (96)

F ′l (θ; c) =
αl(c)

1 + βl(c)e−ζl(c)|θ|
2

×
[
1 +

ζl(c)|θ2|
1 + (βl(c)e−ζl(c)|θ|

2)−1

]
, ∀l ∈ [n].

(97)

We call this algorithm Turbo AMP since it is based on
an approximation of a loopy BP which has demonstrated
very accurate results in LDPC and Turbo decoding [32]. The
algorithm for our setting is as follows:

1) Initialize

c0 = 10; µ0
l = 0 ∀l ∈ [n]; z0

k = yk ∀k ∈ [m].
(98)

2) Repeat the following for all i = 0, 1, 2, · · · (we use 10
iterations in our simulations):

θil =
1√
n

m∑
k=1

Aklz
i
k + µil, ∀l ∈ [n], (99)

µi+1
l = Fl(θ

i
l ; c

i), ∀l ∈ [n], (100)

υi+1
l = Gl(θ

i
l ; c

i), ∀l ∈ [n], (101)

ci+1 = 1 +
β

n

n∑
l=1

υi+1
l , (102)

zi+1
k = yk −

n∑
l=1

Aklµ
i+1
l +

zik
m

n∑
l=1

F ′l (θ
i
l ; c

i),

∀k ∈ [m]. (103)

Our obtained results are as follows.
• For the symmetric case κ = 0.5 and γ = 1, the Markov

model in Section II becomes the linear model with i.i.d.
sequence {Xn}∞n=1 in [4, Sect. II]. Fig. 9 shows that
Turbo AMP works well for this case. The gap between
the MSE of AMP and the MSE of the Replica Method
in Claim 3 is very small.

• For the non-symmetric case κ = 0.3 and γ = 0.8, the
Markov model in Section II is very different from the
linear model with i.i.d. sequence {Xn}∞n=1 in [4, Sect.
II]. Fig. 10 shows that Turbo AMP also works well for
this case. The gap between the MSE of Turbo AMP and
the upper bound of MSE by using the Replica Method in
Claim 3 is also still small. However, the gap is bigger than
the symmetric case. The multiple fixed points (multiple
solutions) of the equation (80) can be a reason for this
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gap. Besides, Turbo AMP may not be optimal for this
given model although it exploits the Markov structure of
the sequence {Xn}∞n=1 quite well.
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Fig. 9. MSE by Turbo AMP algorithm and MMSE by the Replica Method
as functions of β for the symmetric case κ = 0.5, γ = 1, i.e., {Xn}∞n=1 is
an i.i.d. sequence.
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Fig. 10. MSE by Turbo AMP algorithm and MMSE by the Replica Method
as functions of β for the asymmetric case κ = 0.3 and γ = 0.8.

V. PROOFS OF MAIN RESULTS

This section proves Claims 1–3 using the replica method.
We first prove some preliminary results which are required
to estimate the free energy of the linear model with Markov
signal prior. Then, we derive the joint moments for this model.
Finally, we obtain the free energy and joint moments for the
linear model with hidden Markov signal prior based on the
results of the linear model with Markov signal prior.

A. Some preliminary results

Lemma 4. [4, p. 1998] Let X(a)
n be replicated vectors with

distribution qX . Define a sequence of (ν+1)×(ν+1) random

matrices {Qn}∞n=1 such that

Q(a,b)
n = SnX

(a)
n X(b)

n (104)

for all a, b ∈ {0, 1, · · · , ν} and n = 1, 2, · · · . Let

Tn =
1

n

n∑
k=1

Qk, n = 1, 2, · · · . (105)

Then, the following holds:

1

n
logE[Zν(Y ,Φ)]

=
1

n
logE

{
exp

[
m

(
G(ν)(Tn) +O(n−1)

)]}
, (106)

where

G(ν)(Q) := −1

2
log det(I + ΣQ)

− 1

2
log

(
1 +

ν

σ2

)
− ν

2
log(2πσ2), (107)

and Σ is a (ν + 1)× (ν + 1) matrix

Σ =
β

σ2 + ν

[
ν −eT
−e (1 + ν

σ2 )I − 1
σ2 ee

T

]
, (108)

where e is a ν × 1 column vector whose entries are all 1.

The following two lemmas state some new results on large
deviations for Markov chains induced by the channel setting.

Lemma 5. Let {Sn}∞n=1 be an i.i.d. sequence of random
variable on a finite set S ⊂ R+. Let X := {Xn}∞n=1 be
a Markov chain with states on a Polish space X with the
transition matrix P = {π(x, x′)}x,x′∈X . Assume this Markov
chain is irreducible. Set X(0) = X . Let X(a) := {X(a)

n }∞n=1

be a set of ν replica sequences with (postulated) distribution
qX for each a = 1, 2, · · · , ν. This means that

pX(0)X(1)X(2)···X(ν)(x(0), x(1), x(2), · · · , x(ν))

∼ pX(x(0))

ν∏
i=1

qX(x(i)), (109)

where

pX(x(0)) =

∞∏
i=1

π(x
(0)
i , x

(0)
i+1) (110)

qX(x(a)) =

∞∏
i=1

π̃(x
(a)
i , x

(a)
i+1), ∀a ∈ [ν]. (111)

Define a new sequence of (ν + 1)× (ν + 1) random matrices
{Qn}∞n=1 such that

Q(a,b)
n = SnX

(a)
n X(b)

n (112)

for all a ∈ [ν] and b ∈ [ν] and for all n = 1, 2, · · · . Then,
{Qn}∞n=1 is also an irreducible Markov chain with states
on Q, where Q is defined in (3). In addition, the transition
probability, namely P (Q|Q′), of this Markov chain satisfies
(113), where pXn−1(·) is the state distribution at time n − 1
of the Markov chain {Xn}∞n=1 with the transition probability
π defined in (6), and qXn−1

(·) is the state distribution at time
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P (Q|Q′) =

∑
(s,x0,x1,··· ,xν ,s′,x′0,x′1,··· ,x′ν)∈AQ×AQ′

PS(s′)PS(s)pXn−1
(x′0)π(x′0, x0)

∏ν
i=1 qXn−1

(x′i)π̃(x′i, xi)∑
(s′,x′0,x

′
1,··· ,x′ν)∈AQ′

PS(s′)pXn−1
(x′0)

∏ν
i=1 qXn−1

(x′i)
(113)

n − 1 of the Markov chain {Xn}∞n=1 with the (postulated)
transition probability π̃(·, ·) defined in (11), and

AQ :=
{

(s, x) ∈ S × X ν+1 : sxxT = Q
}
, ∀Q ∈ Q.

(114)

The proof of Lemma 5 is based on showing P(Qn =
Q|σ(Q1,Q2, · · · ,Qn−1)) = P(Qn = Q|Qn−1) by using
σ(Qk) = σ(Sk, X

(0)
k , X

(1)
k , · · · , X(ν)

k ) for all k ∈ [n]7.

Lemma 6. Let X be a Polish space with finite cardinality
and a irreducible Markov chain X := {Xn}∞n=1 defined on
X and ν be a positive integer number. Let X(a)

n for a ∈ [ν]
be replicas of the Markov process X . Recall the definition
of the sequence Qn in Lemma 5 and Tn = 1

n

∑n
j=1Qj . Let

Pn(U) := P(Tn ∈ U) for any measurable set U on the σ-
algebra generated by {Qn}∞n=1. Then, for and bounded and
continuous function F : Q → R

lim
n→∞

1

n
logE

[
enF (Tn)

]
= lim
n→∞

1

n
log

∫
enF (Q)dPn(Q) (115)

= sup
Q

[
F (Q)− I(Q)

]
(116)

where I(Q) = supQ̃(tr(Q̃Q) − log ρ(PQ̃)) and ρ(PQ̃)
is the Perron-Frobenius eigenvalue of the matrix PQ̃ =

{etr(Q̃Q̄j)PQ̄j |Q̄i}0≤i,j≤M and M = |Q| − 1, where Q and
{Q̄i}Mi=0 are defined in Subsection I-D.

Proof: Equation (115) is an application of the change of
measures [48]. Equation (116) is a direct application of the
large deviation theorem [49].

Lemma 7. Recall the definitions of {Q̄i}Mi=0 in Subsection I-D
Recall the definition of the sequence Qn in Lemma 5. Then,
the following holds:

∂ log ρ(PQ̃)

∂Q̃
(Q̃)

=
1

ρ(PQ̃)

M∑
i=0

λi(Q̃)

M∑
j=0

ψj(Q̃)Q̄jP (Q̄j |Q̄i)etr(Q̃Q̄j),

(117)

where λ(Q̃) and ψ(Q̃) are left and right eigenvectors associ-
ated with the Perron-Frobenius eigenvalue ρ(PQ̃) which are
normalized such that λ(Q̃)Tψ(Q̃) = 1.

Proof: Refer to Appendix A for a detailed proof.

7A detailed proof for this Lemma can be found in [47, Proof of Lemma
29].

Theorem 8. Recall the definition of G(ν)(Q) in Lemma 4.
In the large system limit, given any initial state x0, the free
energy satisfies:

Fq
∣∣
X0=x0

= − lim
ν→0

∂

∂ν
sup
Q

[
β−1G(ν)(Q)− I(ν)(Q)

]
,

(118)

where

I(ν)(Q) := sup
Q̃

[
tr(Q̃Q)− log ρ(PQ̃)], (119)

and ρ(PQ̃) is the Perron-Frobenius eigenvalue of the matrix
PQ̃ = {etr(Q̃Q̄j)PQ̄j |Q̄i}0≤i,j≤M and M = |Q| − 1.

Proof: The proof follows the same idea as [4, Part A, Sect.
IV] with some important changes to account for the Markov
setting.

1) By applying Lemma 6 and [4, p. 1998], we obtain

lim
n→∞

1

n
logE[Zν(Y ,Φ)]

= lim
n→∞

1

n
logE

{
exp

[
n

β

(
G(ν)(Tn) +O(n−1)

)]}
(120)

= sup
Q

[
1

β
G(ν)(Q)− I(ν)(Q)

]
. (121)

2) Estimate the free energy.

Now, observe that

Fq
∣∣
X0=x0

= − lim
n→∞

1

n
lim
ν→0

∂

∂ν
logE[Zν(Y ,Φ)] (122)

= − lim
ν→0

∂

∂ν
lim
n→∞

1

n
logE[Zν(Y ,Φ)] (123)

= − lim
ν→0

∂

∂ν
sup
Q

[
1

β
G(ν)(Q)− I(ν)(Q)

]∣∣∣∣
X0=x0

(124)

where (122) follows from the assumption (A1), (A2),
and the fact (F1), (123) follows from the assumption
(A3), and (124) follows from (121).

Theorem 9. Recall the definitions of Σ in Lemma 4, the matrix
PQ̃ in Theorem 8, and {Q̄i}Mi=0 in Subsection I-D. The optimal
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matrix Q∗ of equation (118) in Theorem 8 must satisfy the
following constraints:

Q∗ =
∂ log ρ(PQ̃∗)

∂Q̃∗
, (125)

Q̃∗ = −(2β)−1(I + ΣQ∗)−1Σ, (126)
∂ log ρ(PQ̃∗)

∂Q̃∗

=
1

ρ(PQ̃∗)

M∑
i=0

λi(Q̃
∗)

M∑
j=0

ψj(Q̃
∗)Q̄jP (Q̄j |Q̄i)etr(Q̃∗Q̄j),

(127)

where λ(Q̃∗) and ψ(Q̃∗) are left and right eigenvectors as-
sociated with the Perron-Frobenius eigenvalue ρ(PQ̃∗) which
are normalized such that λ(Q̃∗)Tψ(Q̃∗) = 1.

Proof: Recall the definition of I(ν) in Theorem 8. It is
easy to see that the optimization problem in (121) is equivalent
to the following optimization problem:

sup
Q

inf
Q̃
T (ν)(Q, Q̃) (128)

where

T (ν)(Q, Q̃) := − 1

2β
log det(I + ΣQ)− tr(Q̃Q)

+ log ρ(PQ̃)− 1

2β
log
(
1 +

ν

σ2

)
− ν

2β
log(2πσ2). (129)

For an arbitrary Q, we first seek critical points with respect to
Q̃ and find that for any given Q, the extremum in Q̃ satisfies

Q =
∂ log ρ(PQ̃)

∂Q̃
(130)

Let Q̃(Q) be a solution to (130). We then seek the critical
point of T (ν)(Q, Q̃(Q)) with respect to Q.

Let

KQ,Q̃ :=


∂Q̃0,0

∂Q0,0

∂Q̃0,1

∂Q0,1
· · · ∂Q̃0,ν

∂Q0,ν

∂Q̃1,0

∂Q1,0

∂Q̃1,1

∂Q1,1
· · · ∂Q̃1,ν

∂Q1,ν

...
...

. . .
...

∂Q̃ν,0
∂Qν,0

∂Q̃ν,1
∂Qν,1

· · · ∂Q̃ν,ν
∂Qν,ν

 . (131)

Observe that

∂tr(Q̃Q)

∂Q
=
∂tr(QQ̃)

∂Q
(132)

= Q̃+Q�KQ,Q̃, (133)

where � is the Hadamard product.

It follows that

∂T (ν)(Q, Q̃)

∂Q

= − 1

2β
(I + ΣQ)−1Σ

−
(
Q̃+Q�KQ,Q̃

)
+
∂ log ρ(PQ̃)

∂Q
(134)

= − 1

2β
(I + ΣQ)−1Σ

−
(
Q̃+Q�KQ,Q̃

)
+
∂ log ρ(PQ̃)

∂Q̃
�KQ,Q̃ (135)

= − 1

2β
(I + ΣQ)−1Σ

− Q̃−
[
Q−

∂ log ρ(PQ̃)

∂Q̃

]
�KQ,Q̃ (136)

= − 1

2β
(I + ΣQ)−1Σ− Q̃, (137)

where (134) follows from (133), and (137) follows from (130).
Hence, the optimal value of the Theorem 8 is the solution of
the following equation systems:

Q =
∂ log ρ(PQ̃)

∂Q̃
, (138)

Q̃ = −(2β)−1(I + ΣQ)−1Σ. (139)

Finally, from Lemma 7, we also obtain an additional constraint
in (127).

Observe that the matrix Σ defined in Lemma 4 is invariant if
two non-zero indices are interchanged, i.e., Σ is symmetric in
replicas. Now, we use the RS assumption (A4) to simplify the
result in Theorem 8. More specifically, we use the following
RS assumption:

Definition 10. [4, p. 1999] An solution (Q̃∗, Q∗) of the
optimization problem in Theorem 8, i.e.,

sup
Q

[
β−1G(ν)(Q)− I(ν)(Q)

]
= sup

Q
inf
Q̃

[
− 1

2β
log det(I + ΣQ)− tr(Q̃Q) + log ρ(PQ̃)

− 1

2β
log

(
1 +

ν

σ2

)
− ν

2β
log(2πσ2)

]
, (140)

is called to satisfy the Replica Symmetry (RS) if both Q∗ and
Q̃∗ under the exchange of any two (nonzero) replica indices.
In other words, the extrema can be written as

Q∗ =


r m m · · · m
m p q · · · q

m q p
. . .

...
...

...
. . .

. . . q
m q · · · q p

 , (141)
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Q̃∗ =


c d d · · · d
d g f · · · f

d f g
. . .

...
...

...
. . .

. . . f
d f · · · f g

 , (142)

where r,m, p, q, c, d, f, g are some real numbers which are not
dependent on ν.

Next, we show the following results:

Lemma 11. Let {Q̄i}Mi=0 be states of the Markov chain
{Qn}∞n=1 in Lemma 5. Assume that

ρ(PQ̃∗)→ 1 and
M∑
j=0

P (Q̄j |Q̄i)etr(Q̃∗Q̄j) → 1 (143)

for all i ∈ [M ] as ν → 0. Then, under the RS assumption in
Definition 10, the following holds:

Q∗ = lim
ν→0

M∑
i=0

λi(Q̃
∗)E[Q1e

tr(Q̃∗Q1)
∣∣Q0 = Q̄i] (144)

where Q∗ is defined in Theorem 9 and λ(Q̃∗) is a left (positive)
eigenvector associated with the Perron-Frobenius eigenvalue
ρ(PQ̃∗) such that ‖λ(Q̃∗)‖1 = 1. In addition, we have

ρ(PQ̃∗) =

M∑
i=1

λi(Q̃
∗)E[etr(Q̃∗Q1)|Q0 = Q̄i]. (145)

Proof: Since ψ(Q̃∗) is the right eigenvector associated
with the Perron-Frobenius eigenvalue of the matrix PQ̃∗ , it
holds that

M∑
j=0

P (Q̄j |Q̄i)etr(Q̃∗Q̄j)ψj(Q̃
∗) = ρ(PQ̃∗)ψi(Q̃

∗) (146)

for all i ∈ [M ]. From (146) and (143), we can set ψ(Q̃∗) =
(1, 1, · · · , 1)T is a right eigenvector associated with the eigen-
value ρ(PQ̃∗) as ν → 0.

Hence, from Theorem 9, we have

Q∗ = lim
ν→0

M∑
i=0

λi(Q̃
∗)E[Q1e

tr(Q̃∗Q1)
∣∣Q0 = Q̄i]. (147)

Now, since by Theorem 9, it holds that

M∑
j=0

ψj(Q̃
∗)λj(Q̃

∗) = 1, (148)

so we have

‖λ(Q̃∗)‖1 = 1. (149)

Now, since λ(Q̃∗) := (λ0(Q̃∗), λ1(Q̃∗), · · · , λM (Q̃∗)) is the
left (positive) eigenvector associated with ρ(PQ̃∗), it holds that

λj(Q̃
∗)ρ(PQ̃∗) =

M∑
i=0

λi(Q̃
∗)etr(Q̃∗Q̄j)P (Q̄j |Q̄i). (150)

Then, it follows that

ρ(PQ̃∗) =

M∑
j=0

λj(Q̃
∗)ρ(PQ̃∗) (151)

=

M∑
j=0

M∑
i=0

λi(Q̃
∗)etr(Q̃∗Q̄j)P (Q̄j |Q̄i) (152)

=

M∑
i=0

λi(Q̃
∗)

M∑
j=1

etr(Q̃∗Q̄j)P (Q̄j |Q̄i) (153)

=

M∑
i=0

λi(Q̃
∗)E[etr(Q̃∗Q1)|Q0 = Q̄i], (154)

where (151) follows from (149), and (152) follows from (150).

Lemma 12. Under the RS assumption in Definition 10, as
ν → 0, the following hold:

ρ(PQ̃∗)→ 1 and
M∑
j=0

P (Q̄j |Q̄i)etr(Q̃∗Q̄j) → 1. (155)

Furthermore, it holds that

∂ log ρ(PQ̃∗)

∂ν

∣∣∣∣
ν=0

= −ξ
2

(
E[S]EX0∼λ(π)

[
E[X2

1|X0]

]
+

1

η

)
log e+

1

2
log

2π

ξ

+ EX0∼λ(π)

[
ES
{∫

R
pU |X0,S;η(u|x0, S; η)

× log qU |X0,S;η(u|x0, S; η)du

}]
. (156)

Proof: By Lemma 5, Q0−Q1−· · ·−Qn forms a Markov
chain on the state-space {Q̄i}Mi=0 defined in Subsection I-D
with the transition matrix as (157), where

P (Q̄j |Q̄i) := P(Q1 = Q̄j |Q0 = Q̄i) (158)

and Q0 and Q1 are random (state) matrices at time 0 and 1,
respectively.

By [41], we have

min
i∈[M ]

M∑
j=0

P (Q1 = Q̄j |Q0 = Q̄i)e
tr(Q̃∗Q̄j) ≤ ρ(PQ̃∗)

≤ max
i∈[M ]

M∑
j=0

P (Q1 = Q̄j |Q0 = Q̄i)e
tr(Q̃∗Q̄j). (159)

It follows that

min
i∈[M ]

E
[
etr(Q̃∗Q1)|Q0 = Q̄i

]
≤ ρ(PQ̃∗)

≤ max
i∈[M ]

E
[
etr(Q̃∗Q1)|Q0 = Q̄i

]
. (160)

First, we show that

lim
ν→0

ρ(PQ̃∗) = 1. (161)
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PQ̃ =


P (Q̄0|Q̄0)etr(Q̃Q̄0) P (Q̄1|Q̄0)etr(Q̃Q̄1) · · · P (Q̄M |Q̄0)etr(Q̃Q̄M )

P (Q̄0|Q̄1)etr(Q̃Q̄0) P (Q̄1|Q̄1)etr(Q̃Q̄1) · · · P (Q̄M |Q̄1)etr(Q̃Q̄M )

...
...

...
...

P (Q̄0|Q̄M )etr(Q̃Q̄0) P (Q̄1|Q̄M )etr(Q̃Q̄1) · · · P (Q̄M |Q̄M )etr(Q̃Q̄M )

 . (157)

To show (161), it is enough to show that

E
[
etr(Q̃∗Q1)

∣∣Q0 = Q̄i

]
→ 1 (162)

for all i ∈ [M ]. Indeed, by the definition of {Qn}∞n=1 in
Lemma 5, we have Q1 = S1X1X

T
1 where S1 ∼ PS . Hence,

we have

E
[
etr(Q̃∗Q1)

∣∣Q0 = Q̄i

]
= E

[
eS1X1Q̃

∗XT
1

∣∣∣∣Q0 = Q̄i

]
(163)

= E
[
eS1X1Q̃

∗XT
1

∣∣∣∣Q0 = Q̄i

]
(164)

= E
[

exp

(
S1

[
2d

ν∑
a=1

X
(0)
1 X

(a)
1 + 2f

∑
1≤a<b≤ν

X
(a)
1 X

(b)
1

+ c
(
X

(0)
1

)2
+ g

ν∑
a=1

(
X

(a)
1

)2])∣∣∣∣Q0 = Q̄i

]
, (165)

where (165) follows from RS assumption in Definition 10.
Now, the eight parameters (r,m, p, q, f, g) that define Q∗

and Q̃∗ are the solution to the joint equations (125) and (126)
in Theorem 9. Using (126), it can be shown that [4, Eq. (123)]

c = 0, (166)

d =
1

2[σ2 + β(p− q)]
, (167)

f =
1 + β(r − 2m+ q)

2[σ2 + β(p− q)]2
, (168)

g = f − d. (169)

Now, define η = 2d2

f and ξ = 2d. In addition, for the
simplicity of presentation, let S := S1. Then, by using
some algebraic calculation and using the following interesting
identity

ex
2

=

√
η

2π

∫
exp

[
− η

2
u2 +

√
2ηxu

]
du, ∀x, η, (170)

from (165), we have (cf. a similar formula in [4, Eq. (125)]):

E
[
etr(Q̃∗Q1)

∣∣Q0 = Q̄i

]
(171)

= E
[√

η

2π

∫
exp

[
− η

2
(u−

√
SX1)2

][
Eq
{

exp

[
− ξ

2
u2

− ξ

2

(
u−
√
SX
)2]∣∣∣∣Q0 = Q̄i

}]ν
du

∣∣∣∣Q0 = Q̄i

]
(172)

→ E
[√

η

2π

∫
exp

[
− η

2
(u−

√
SX1)2

]
du

∣∣∣∣Q0 = Q̄i

]
(173)

= E
[
1
∣∣Q0 = Q̄i

]
(174)

= 1, (175)

where (173) follows from the dominated convergence theorem
[43]. Here, as above, we note that the conditional event {Q0 =
Q̄i} only affects the distributions of X and X1.

Next, we prove that

lim
ν→0

∂ρ(Q̃∗)

∂ν

=

(
1

log e

)(
− ξ

2

(
E[S]EX0∼λ(π)

[
E[X2

1|X0]

]
+

1

η

)
log e

+
1

2
log

2π

ξ
+ EX0∼λ(π)

[
ES
{∫

R
pU |X0,S;η(u|x0, S; η)

× log qU |X0,S;η(u|x0, S; η)du

}])
. (176)

Indeed, at ν = 0, it holds from (172) that

min
i∈[M ]

E
[
etr(Q̃∗Q1)|Q0 = Q̄i

]∣∣∣∣
ν=0

= 1

= max
i∈[M ]

E
[
etr(Q̃∗Q1)|Q0 = Q̄i

]∣∣∣∣
ν=0

. (177)

Therefore, from (160) and (177), it holds that

ρ(PQ̃∗)
∣∣
ν=0

= 1. (178)

On the other hand, observe that

E
[
etr(Q̃∗Q1)

∣∣∣∣Q0 = Q̄i

]
= E

[
eSX1Q̃

∗XT
1

∣∣∣∣Q0 = Q̄i

]
(179)

= E
{√

η

2π

∫
R

exp

[
− η

2

(
u−
√
SX1

)2]
×
[
Eq
{

exp

[
− ξ

2
u2 − ξ

2
(u−

√
SX)2

]∣∣∣∣S}]νdu∣∣∣∣Q0 = Q̄i

}
(180)

where (179) follows from (163), (180) follows by using (166)–
(169) (see [4, Eq. (125)]). Hence, we have

∂

∂ν
E
[
etr(Q̃∗Q1)

∣∣∣∣Q0 = Q̄i

]
=

(
1

log e

)
E
{√

η

2π

∫
R

exp

[
− η

2

(
u−
√
SX1

)2]
×
[
Eq
{

exp

[
− ξ

2
u2 − ξ

2
(u−

√
SX)2

]∣∣∣∣S}]ν
× log

(
Eq
{

exp

[
− ξ

2
u2

− ξ

2
(u−

√
SX)2

]∣∣∣∣S})du∣∣∣∣Q0 = Q̄i

}
. (181)

Hence, given X0 = x0 and S0 = s0, we obtain (187) (see
the following page) from (181), which is a constant which does
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lim
ν→0

∂

∂ν
E
[
etr(Q̃∗Q1)

∣∣∣∣Q0 = Q̄i

]
= lim
ν→0

(
1

log e

)
E
{√

η

2π

∫
R

exp

[
− η

2

(
u−
√
SX1

)2][Eq{ exp

[
− ξ

2
u2 − ξ

2
(u−

√
SX)2

]∣∣∣∣S}]ν
× log

(
Eq
{

exp

[
− ξ

2
u2 − ξ

2
(u−

√
SX)2

]∣∣∣∣S})du∣∣∣∣Q0 = Q̄i

}
(182)

=

(
1

log e

)
E
{√

η

2π

∫
R

exp

[
− η

2

(
u−
√
SX1

)2]
log

(
Eq
{

exp

[
− ξ

2
u2 − ξ

2
(u−

√
SX)2

]∣∣∣∣S})du∣∣∣∣X0 = x0

}
(183)

=

(
1

log e

)(
− ξ

2
E
{√

η

2π

∫
R

exp

[
− η

2

(
u−
√
SX1

)2]
u2du

∣∣∣∣X0 = x0

}
+ E

{∫
R
pU |X0,X1,S;η(u|X0,X1, S; η) log

(
Eq
{√

2π

ξ
qU |X0,X1,S;η(u|X0,X1, S; η)

∣∣∣∣S})du∣∣∣∣X0 = x0

})
(184)

=

(
1

log e

)(
− ξ

2

(
E[S]E[X2

1|X0 = x0] +
1

η

)
log e+

1

2
log

2π

ξ

+ ES
{∫

R
Eπ(x0,·)

[
pU |X0,X1,S;η(u|x0,X1, S; η)

∣∣∣∣S] log

(
Eπ̃(x0,·)

[
qU |X0,X1,S;η(u|x0,X1, S; η)

∣∣∣∣S])du∣∣∣∣X0 = x0

})
(185)

=

(
1

log e

)(
− ξ

2

(
E[SX2

1|X0 = x0] +
1

η

)
log e+

1

2
log

2π

ξ

+ ES
{∫

R
Eπ(x0,·)

[
pU |X0,X1,S;η(u|X0,X1, S; η)

]
log

(
Eπ̃(x0,·)

{
qU |X0,X1,S;η(u|X0,X1, S; η)

∣∣∣∣S})du∣∣∣∣X0 = x0

})
(186)

=

(
1

log e

)(
− ξ

2

(
E[S]E[X2

1|X0 = x0] +
1

η

)
log e+

1

2
log

2π

ξ

+ ES
{∫

R
pU |X0,S;η(u|x0, S; η) log qU |X0,S;η(u|x0, S; η)du

})
. (187)

not depend on Q̄i, where (183) follows from the dominated
convergence theorem [43]. Here, we note that the conditional
event {Q0 = Q̄i} only affects the distribution of X and X1.

Now, from Lemma 11, it holds that

∂ρ(PQ̃∗)

∂ν

∣∣∣∣
ν=0

= lim
ν→0

ρ(PQ̃∗)
∣∣
ν
− 1

ν
(188)

= lim
ν→0

M∑
i=1

λi(Q̃
∗)

(
E[etr(Q̃∗Q1)|Q0 = Q̄i]− 1

ν

)
(189)

where (188) follows from (178).
Finally, as ν → 0, it holds that Q̃∗ → c = 0 by (166) and

(142) of Definition 10. Therefore, we have PQ̃∗ → PS ⊗ Pπ
and M →

∣∣{sx2 : (x, s) ∈ X × S}
∣∣ := M0, where ⊗ is

denoted as the Kronecker product. It follows that for each
fixed S = s, λ(Q̃) → λ̃(π) where λ̃(π) is the left Perron-
Frobenius eigenvector of the stochastic matrix PS ⊗ Pπ such
that ‖λ(π)‖1 = 1. By [50, p. 7], the left Perron-Frobenius
eigenvector exists, and it is unique up to a positive scaling
factor, so λ̃(π) exists uniquely.

Let λ(π) be the marginal distribution of λ̃(π). Then, from
(187) and (189), we obtain

∂ρ(PQ̃∗)

∂ν

∣∣∣∣
ν=0

=
∑
s∈S

∑
x0∈X0

λ̃(π)
s,x0

×
(

1

log e

)(
− ξ

2

(
E[S]E[X2

1|X0 = x0] +
1

η

)
log e

+
1

2
log

2π

ξ
+ ES

{∫
R
pU |X0,S;η(u|x0, S; η)

× log qU |X0,S;η(u|x0, S; η)du

})
(190)

=
∑
x0∈X0

λ(π)
x0

(
1

log e

)(
− ξ

2

(
E[S]E[X2

1|X0 = x0] +
1

η

)
log e

+
1

2
log

2π

ξ
+ ES

{∫
R
pU |X0,S;η(u|x0, S; η)

× log qU |X0,S;η(u|x0, S; η)du

})
(191)

=

(
1

log e

)(
− ξ

2

(
E[S]EX0∼λ(π)

[
E[X2

1|X0]

]
+

1

η

)
log e

+
1

2
log

2π

ξ
+ EX0∼λ(π)

[
ES
{∫

R
pU |X0,S;η(u|x0, S; η)

× log qU |X0,S;η(u|x0, S; η)du

}])
. (192)

This concludes our proof of Lemma 12.
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B. Proofs of Claims

1) Proof of Claim 1: Recall the definitions of {Q̄i}Mi=1 in
Subsection I-D. From Lemma 11, it holds that

Q∗ = lim
ν→0

M∑
i=0

λi(Q̃
∗)E[Q1e

tr(Q̃∗Q1)
∣∣Q0 = Q̄i], (193)

where ‖λ(Q̃∗)‖1 = 1 and all its components are positive.
By Lemma 4, we have Q1 = S1X1X

T
1 and Q0 =

S0X0X
T
0 where X1 := (X

(0)
1 , X

(1)
1 , · · · , X(ν)

1 )T and X0 :=

(X
(0)
0 , X

(1)
0 , · · · , X(ν)

0 )T . It follows that for any Q̃ ∈ Q and
Q̄i ∈ Q, we have

Q̂i(Q̃) := E[Q1e
tr(Q̃Q1)

∣∣Q0 = Q̄i] (194)

= E
[
S1X1X

T
1 exp

[
XT

1 Q̃X1

]∣∣∣∣S0 = si,X0 = xi

]
(195)

= E
[
S1X1X

T
1 exp

[
XT

1 Q̃X1

]∣∣∣∣X0 = xi

]
(196)

for some si ∈ S and xi ∈ X ν+1 such that sixixTi = Q̄i,
where (195) follows from the uniqueness of the xi and si by
the definition of Q in (3), and (196) follows from the fact that
S0 is independent of X1,X0.

This means that for each fixed i ∈ [M ], Q̂(a,b)
i (Q̃) is in the

same form as [4, Eq. (127)] for each (a, b) ∈ [ν+1]× [ν+1].
Hence, by setting S := S1 ∼ PS as above, we have

Q̂
(0,1)
i (Q̃)

= E
[
SX

(0)
1 X

(1)
1 exp

[
XT

1 Q̃X1

]∣∣∣∣X0 = xi

]
(197)

= E
[
SX1〈X

∣∣X0 = xi〉q
∣∣∣∣X0 = xi

]
, (198)

where (198) follows from [4, Eq. (131)].
Similarly, we also have

ri := Q̂
(0,0)
i = E

[
S
∣∣X0 = xi

]
, (199)

mi := Q̂
(0,1)
i = E

[
SX1〈X

∣∣X0 = xi〉q
∣∣X0 = xi

]
, (200)

pi := Q̂
(1,1)
i = E

[
SX2

∣∣X0 = xi
]
, (201)

qi := Q̂
(1,2)
i = E

[
S〈X

∣∣X0 = xi〉2q
∣∣X0 = xi

]
, (202)

for all i ∈ [M ]. Since X(a) ∼ qX for all a = 1, 2, · · · , ν and
mutually independent to each other, it follows from (199)–
(202) that Q̂i(Q̃) has the RS form as defined in Lemma 10,
i.e.,

Q̂i(Q̃) =


ri mi mi · · · mi

mi pi qi · · · qi

mi qi pi
. . .

...
...

...
. . . . . . qi

mi qi · · · qi pi

 . (203)

for all i ∈ [M ].

It follows from (193) and (194) that

Q∗(Q̃) = lim
ν→0

M∑
i=0

λi(Q̃)Q̂i(Q̃) (204)

= lim
ν→0

M∑
i=0

λi(Q̃)


ri mi mi · · · mi

mi pi qi · · · qi

mi qi pi
. . .

...
...

...
. . . . . . qi

mi qi · · · qi pi

 . (205)

Hence, from the RS assumption in Definition 10 and (205),
we obtain

r = lim
ν→0

M∑
i=0

λi(Q̃)ri (206)

= lim
ν→0

M∑
i=0

λi(Q̃)E
[
S
∣∣X0 = xi

]
(207)

= lim
ν→0

M∑
i=0

λi(Q̃)E
[
S
∣∣X0 = x

(0)
i

]
, (208)

where x(0)
i is the first element of the vector xi. In addition,

we also have

m = lim
ν→0

M∑
i=0

λi(Q̃)mi (209)

= lim
ν→0

M∑
i=0

λi(Q̃)E
[
SX1〈X

∣∣X0 = xi〉q
∣∣X0 = xi

]
(210)

= lim
ν→0

M∑
i=0

λi(Q̃)E
[
SX1〈X

∣∣X0 = x
(0)
i 〉q

∣∣X0 = x
(0)
i

]
,

(211)

p = lim
ν→0

M∑
i=0

λi(Q̃)pi (212)

= lim
ν→0

M∑
i=0

λi(Q̃)E
[
SX2

∣∣X0 = xi
]

(213)

= lim
ν→0

M∑
i=0

λi(Q̃)E
[
SX2

∣∣X0 = x
(0)
i

]
, (214)

q = lim
ν→0

M∑
i=0

λi(Q̃)qi (215)

= lim
ν→0

M∑
i=0

λi(Q̃)E
[
S〈X

∣∣X0 = xi〉2q
∣∣X0 = xi

]
(216)

= lim
ν→0

M∑
i=0

λi(Q̃)E
[
S〈X

∣∣X0 = x
(0)
i 〉

2
q

∣∣X0 = x
(0)
i

]
. (217)
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From these facts, we obtain

r − 2m+ q = lim
ν→0

M∑
i=0

λi(Q̃)E
[
S

(
X2

1 − 2X1〈X
∣∣X0 = x

(0)
i

+ 〈X
∣∣X0 = x

(0)
i 〉

2
q

)∣∣∣∣X0 = x
(0)
i

]
(218)

= lim
ν→0

M∑
i=0

λi(Q̃)E
[
S

(
X1 − 〈X

∣∣X0 = x
(0)
i 〉q

)2∣∣∣∣X0 = x
(0)
i

]
,

(219)

and similarly,

p− q

= lim
ν→0

M∑
i=0

λi(Q̃)E
[
S

(
X− 〈X

∣∣X0 = x
(0)
i 〉q

)2∣∣∣∣X0 = x
(0)
i

]
.

(220)

On the other hand, from (166)–(169), we also have

r − 2m+ q =
1

β

(
1

η
− 1

)
, (221)

p− q =
1

β

(
1

ξ
− σ2

)
. (222)

From (219)–(222), (η, ξ) is a solution of the following equa-
tion system:

η−1 = 1 + β lim
ν→0

M∑
i=0

λi(Q̃)

× E
[
S

(
X1 − 〈X

∣∣X0 = x
(0)
i 〉q

)2∣∣∣∣X0 = x
(0)
i

]
, (223)

= 1 + β lim
ν→0

M∑
i=0

λi(Q̃)E
[
SE(S; η, ξ|X0 = x

(0)
i )

]
,

(224)

ξ−1 = σ2 + β lim
ν→0

M∑
i=0

λi(Q̃)

× E
[
S

(
X− 〈X

∣∣X0 = x
(0)
i 〉q

)2∣∣∣∣X0 = x
(0)
i

]
(225)

= σ2 + β lim
ν→0

M∑
i=0

λi(Q̃)E
[
SV(S; η, ξ|X0 = x

(0)
i )

]
.

(226)

Now, from (107) in Lemma 4 and RS assumption on
Definition 10, we obtain

G(ν)(Q∗) = −ν
2

log(2πσ2)− ν − 1

2
log

[
1 +

β

σ2
(p− q)

]
− 1

2
log

[
1 +

β

σ2
(p− q) +

ν

σ2

(
1 + β(r − 2m+ q)

)]
.

(227)

In addition, we also have

I(ν)(Q∗)

= tr(Q̃∗Q∗)− log ρ(PQ̃∗) (228)

= tr(Q̃∗Q∗)− log ρ(PQ̃∗), (229)

= rc+ νpg + 2νmd+ ν(ν − 1)qf − log ρ(PQ̃∗), (230)

where (229) follows from Lemma 12, and (230) follows from
assumptions Q∗ and Q̃∗ in Definition 10.

Now, by the RS assumption, the eight parameters
(r,m, p, q, c, d, f, g) have zero derivatives with respect to ν
as ν → 0 [4, p.1999]. Let λ(π) is the left Perron-Frobenius
eigenvector of the stochastic matrix Pπ such that ‖λ(π)‖1 = 1,
which is the stationary distribution of the stochastic matrix. By
choosing the initial state at the state that the limit distribution
of the Markov process {Xn}∞n=1 converges to the stationary
distribution. Then, from Theorem 8, we have

Fq

= − lim
ν→0

∂

∂ν
(β−1G(ν)(Q∗)− I(ν)(Q∗)) (231)

= lim
ν→0

∂

∂ν

(
rc+ νpg + 2νmd+ ν(ν − 1)qf

− β−1

(
− ν

2
log(2πσ2)− ν − 1

2
log

[
1 +

β

σ2
(p− q)

]
− 1

2
log

[
1 +

β

σ2
(p− q)

+
ν

σ2

(
1 + β(r − 2m+ q)

)]))
− lim
ν→0

∂

∂ν
log ρ(PQ̃∗)

(232)
= pg + 2md− qf

+ β−1

[
1

2
log(2πσ2) +

1

2
log

(
1 +

β

σ2
(p− q)

)
+

1 + β(r − 2m+ q)

2σ2(1 + β
σ2 (p− q))

log e

]
− lim
ν→0

∂

∂ν
log ρ(PQ̃∗)

(233)
= p(f − d) + 2md− qf

+ β−1

[
1

2
log(2πσ2) +

1

2
log

(
1 +

β

σ2
(p− q)

)
+

1 + β(r − 2m+ q)

2σ2(1 + β
σ2 (p− q))

log e

]
− lim
ν→0

∂

∂ν
log ρ(PQ̃∗)

(234)
= (p− q)f − pd+ 2md

+ β−1

[
1

2
log(2πσ2) +

1

2
log

(
1 +

β

σ2
(p− q)

)
+

1 + β(r − 2m+ q)

2σ2(1 + β
σ2 (p− q))

log e

]
− lim
ν→0

∂

∂ν
log ρ(PQ̃∗)

(235)

=
1

β

(
1

ξ
− σ2

)
ξ2

2η
− pξ

2
+ ξm

+
1

β

[
1

2
log(2πσ2)− 1

2
log
(
ξσ2
)

+
ξ2

2η
log e

]
− lim
ν→0

∂

∂ν
log ρ(PQ̃∗) (236)

= ξm− pξ

2
+

1

β

(
1

ξ
− σ2

)
ξ2

2η
− 1

2β
log ξ +

1

2β
log(2π)

+
ξ2

2βη
log e− lim

ν→0

∂

∂ν
log ρ(PQ̃∗) (237)

= ξm− pξ

2
+

1

β

(
1

ξ
− σ2

)
ξ2

2η
− 1

2β
log ξ +

1

2β
log(2π)
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+
ξ2

2βη
log e+

ξ

2

(
E[S]E[X2

1] +
1

η

)
log e− 1

2
log

2π

ξ

− EX0∼λ(π)

{
ES
{∫

R
pU |X0,S;η(u|X0, S; η)

}
× log

(
qU |X0,S;η(u|X0, S; η)

)
du

}})
(238)

= ξ lim
ν→0

M∑
i=0

λi(Q̃)E
[
SX1〈X

∣∣X0 = x
(0)
i 〉q

∣∣X0 = x
(0)
i

]
− ξ

2
lim
ν→0

M∑
i=0

λi(Q̃)E
[
SX2

∣∣X0 = x
(0)
i

]
+

1

β

(
1

ξ
− σ2

)
ξ2

2η
− 1

2β
log ξ +

1

2β
log(2π)

+
ξ2

2βη
log e+

ξ

2

(
E[S]E[X2

1] +
1

η

)
log e− 1

2
log

2π

ξ

− EX0∼λ(π)

{
ES
{∫

R
pU |X0,S;η(u|X0, S; η)

× log

(
qU |X0,S;η(u|X0, S; η)

)
du

}}
(239)

= ξEX0∼λ(π)

[
E
[
SX1〈X

∣∣X0〉q
∣∣X0

]]
− ξ

2
EX0∼λ(π)

[
E
[
SX2

∣∣X0

]]
+

1

β

(
1

ξ
− σ2

)
ξ2

2η

− 1

2β
log ξ +

1

2β
log(2π) +

ξ2

2βη
log e

+
ξ

2

(
E[S]E[X2

1] +
1

η

)
log e− 1

2
log

2π

ξ

− EX0∼λ(π)

{
ES
{∫

R
pU |X0,S;η(u|X0, S; η)

× log

(
qU |X0,S;η(u|X0, S; η)

)
du

}}
(240)

=
∑
x0

λ(π)
x0
G(x0), (241)

where (233) follows from Lemma 12, (234) follows from
(166)–(169), (236) follows from (221) and (222), (238) follows
from Lemma 12, (239) follows from (211) and (214), (240)
follows from λ(Q̃) → λ(π) since PQ̃ → Pπ as ν → 0 where
λ(π) is the left Perron-Frobenius eigenvector of the stochastic
matrix Pπ such that ‖λ(π)‖1 = 1, which is the stationary
distribution of the Markov chain {Xn}∞n=1

8, and (241) follows
from [4, Sect. IV].

Hence, we obtain (38) from (224), (226), and (241).
Finally, (39) is an direct application of [3, Prop. 5].

2) Proof of Claim 2: The result in (40) can be obtained by
using the same ideas as in the proof of Theorem 8, [4, Sec.
IV-B], and the facts in (193), (196), and (241). The detailed
proof can be found in [47, Appendix C].

Now, observe that by using the MMSE decoder defined in

8By [50, p. 7], the left Perron-Frobenius eigenvector exists, and it is unique
up to a positive scaling factor, so λ(π) exists uniquely.

Section II-A, we have

E
[
‖X − [X]‖22

]
=

n∑
k=1

E
[
X2
k

]
−

n∑
k=1

E
[
[Xk]2

]
, (242)

where (242) follows from

[Xk] = Ep
[
Xk
∣∣Y ,Φ], (243)

which is drawn from (10).
Now, by (40), we have as n→∞,

E
[
[Xk]2

]
=
∑
x0∈X

λ(π)
x0

E
[
〈X1|X0 = x0〉2

]
, ∀k ∈ [n]. (244)

In addition, for all k ∈ [n], we also have

E
[
X2
k

]
= E

[
E
[
X2
k

∣∣Xk−1

]]
(245)

= E
[
E
[
X2

1

∣∣X0

]]
(246)

= E[X2
1], (247)

where (245) follows from the tower property [48], and
(246) follows from the time-homogeneity of Markov process
{Xn}∞n=1.

From (242), (244), and (247), as n→∞, we have

E
[
‖X − [X]‖22

]
= n

(
E[X2

1]−
∑
x0∈X

λ(π)
x0

E
[
〈X1|X0 = x0〉2

])
,

(248)

which leads to (41).
3) Proof of Claim 3: First, for any n ≥ 2, by using Markov

chains such as Υn−Υn−1−(Xn−1, {Xk,Υk}n−2
k=1) and Xn−

Υn−({Xk,Υk}n−1
k=1), we can easily show that {(Xn,Υn)}∞n=1

forms a Markov chain with states on X×SΥ. Hence, (58), (59),
and (60) are direct results of Claim 1 and Claim 2.

APPENDIX A
PROOF OF LEMMA 7

Consider the homogeneous Markov chain with states in the
set Q as mentioned in Lemma 5. This Markov chains have
M states Q̄0, Q̄1, · · · , Q̄M where M = |Q| − 1. Recall the
definition of PQ̃ in (157).

Then, PQ̃ is an irreducible non-negative matrix [41]. Let
ρ(PQ̃) denote the Perron-Frobenious eigenvalue of the non-
negative irreducible matrix PQ̃. It follows from [50, p. 7] and
[50, Lemma 3.1] that

∂ρ(PQ̃)

∂PQ̃
= λ(Q̃)ψ(Q̃)T (249)
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where λ(Q̃) and ψ(Q̃) are left and right eigenvectors asso-
ciated with the eigenvalue ρ(PQ̃) which are normalized such
that λ(Q̃)Tψ(Q̃) = 1. Hence, we have

∂ρ(PQ̃)

∂Q̃
(Q̃)

=
∂ρ(PQ̃)

∂PQ̃
otr

∂PQ̃

∂Q̃
(250)

= λ(Q̃)ψ(Q̃)T otr
Q̄0P (Q̄0|Q̄0)etr(Q̃Q̄0) · · · Q̄MP (Q̄M |Q̄0)etr(Q̃Q̄M )

Q̄0P (Q̄0|Q̄1)etr(Q̃Q̄0) · · · Q̄MP (Q̄M |Q̄1)etr(Q̃Q̄M )

...
...

...
Q̄0P (Q̄0|Q̄M )etr(Q̃Q̄0) · · · Q̄MP (Q̄M |Q̄M )etr(Q̃Q̄M )


(251)

=

M∑
i=0

M∑
j=0

λi(Q̃)ψj(Q̃)Q̄jP (Q̄j |Q̄i)etr(Q̃Q̃j) (252)

=

M∑
i=0

λi(Q̃)

M∑
j=0

ψj(Q̃)Q̄jP (Q̄j |Q̄i)etr(Q̃Q̃j). (253)

Now, by the chain rule, we also have

∂ log ρ(PQ̃)

∂Q̃
(Q̃) =

1

ρ(PQ̃)

∂PQ̃

∂Q̃
(Q̃). (254)

Hence, we obtain (117) from (253) and (254).

APPENDIX B
EXTENSIONS TO MARKOV CHAINS ON A GENERAL POLISH

SPACE IN R
In this section, we sketch what we should change in our

analysis when working with a Markov chains on a general
Polish space in R.
• As the spectral method (Paulin), we define an associated

linear operator π on L2 to a the Markov kernel π(x, y)
such that

π(f)(x) :=

∫
S
π(x, y)f(y)dy. (255)

We call f(·) is an eigenvector of π associated with an
eigenvalue λ if and only if π(f)(x) = λf(x) for all
x ∈ S. The existence of such λ and f is guaranteed (for
example, let f(y) = 1/‖f‖,∀y ∈ S and λ = 1). Define
S2 be the set of eigenvalues of π. The Perron-Frobenius
eigenvalue is defined as the supremum of all elements in
this set9.

• Then, we show that for every positive function h : S →
R+ and Markov chain {Zn}∞n=1 on an arbitrary space V
with stochastic kernel Q(x, y), the following holds:

lim
n→∞

1

n
log

[ ∫
V
Qn(x, y)h(y)dy

]
= log ρ(Q), ∀x ∈ V,

(256)

where ρ(Q) is the Perron-Frobenius eigenvalue of Q.

9Since the linear operator is continuous (bounded), the set of eigenvalues
is bounded.

• Show that Tn = 1
n

∑n
k=1Qk satisfies the large deviation

bounds with rate I(Q) = supQ̃(tr(Q̃Q) − log ρ(PQ̃),
where ρ(PQ̃) is the Perron-Frobenius eigenvalue of the
Markov chain Q0 −Q1 · · · −Qn.

• By Varadhan theorem on Polish space [49], we can show
that Lemma 6 still holds, i.e.,

lim
n→∞

1

n
logE

[
enF (Tn)

]
= lim
n→∞

1

n
log

∫
enF (Q)dPn(Q) (257)

= sup
Q

[
F (Q)− I(Q)

]
(258)

for any bounded continuous function F : Q → R. The
main difference is now |Q| is unbounded or M →∞.

• From (258), by applying for a specific function F , we
obtain Theorem 8.

• The rest is an optimization problem and the same argu-
ments as previous section still work.
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