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State-Dependent DMC with a Causal Helper
Amos Lapidoth, Fellow, IEEE and Ligong Wang, Member, IEEE

Abstract—A memoryless state sequence governing the behavior
of a memoryless state-dependent channel is to be described
causally to an encoder wishing to communicate over said chan-
nel. Given the maximal-allowed description rate, we seek the
description that maximizes the Shannon capacity. It is shown that
the maximum need not be achieved by a memoryless (symbol-
by-symbol) description. Such descriptions are, however, optimal
when the receiver is cognizant of the state sequence or when the
description is allowed to depend on the message. For other cases,
a block-Markov scheme with backward decoding is proposed.

Index Terms—Block-Markov coding, channel capacity, causal
state information, helper, Shannon strategy, state-dependent
channel.

I. INTRODUCTION AND PROBLEM SETUP

The impact of state information on the capacity of a state-
dependent discrete memoryless channel (SD-DMC) is well
understood. State information at the receiver can be accounted
for by appending it to the output, and the impact of state
information at the transmitter depends on its timing: if it is
provided strictly causally, it has no impact on capacity; if
causally, then the capacity is as given by Shannon [1]; and if
noncausally, then as given by Gel’fand and Pinsker [2]. Less
studied is how the state information should be conveyed to the
encoder when rate restrictions preclude its precise description.
We address this issue here by studying the design and impact
of rate-limited causal state descriptions to the encoder.

We account for the rate constraint by requiring that the
time-i assistance provided to the encoder take value in some
fixed set T , whose cardinality |T | is typically smaller than
that of the state alphabet S. (When |T | ≥ |S| we are back
to Shannon’s causal state information, because the helper can
then describe the state precisely.) We assume throughout that

|T | ≥ 2 (1)

because, otherwise, the description is of no help. We refer to
log|T | as the description rate.

This way of accounting for rate restrictions is quite rigid:
it allows for neither variable-length state descriptions nor for
time sharing between fine and coarse quantizations. Precluding
these techniques sharpens some of our conclusions.

It should be emphasized that causality does not imply
that the helper must describe the state sequence “symbol-by-
symbol,” i.e., that the time-i assistance Ti ∈ T be determined
by the time-i state Si: the time-i assistance may depend on
the entire state sequence up to time i, namely, Si.

The fact that we only consider memoryless channels with
independent and identically ditributed (IID) states might lead
one to suspect that symbol-by-symbol helpers are optimal.
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Lending credence to this suspicion might be that, when the
causal state information is perfect (i.e., when |T | ≥ |S|),
Shannon strategies achieve capacity, and those ignore the past
states and set the time-i channel input Xi(m,S

i) to be a
function of the message m and the time-i state Si only. But this
is not the case. As we shall see in Example 9 ahead, causal
helpers can outperform the best symbol-by-symbol helpers.
This example will motivate us to propose a block-Markov
communication scheme that can outperform all symbol-by-
symbol schemes.

Symbol-by-symbol descriptions are, however, optimal in
some special cases, e.g., when the state is known perfectly
to the receiver (Theorem 6). They are also optimal when the
helper is cognizant of the message (Theorem 4). They are
effective in the sense that if some positive rate is achievable
with a general rate-limited causal helper, then a positive rate
is also achievable with a symbol-by-symbol helper. In fact,
subject to (1), symbol-by-symbol helpers can achieve positive
communication rates whenever the SD-DMC is of positive
capacity when its state is revealed perfectly to both encoder
and decoder (Theorem 3).

We only present results for point-to-point channels. State in-
formation is, of course, of great importance also in multi-user
settings, but those are more complicated and are not even fully
understood when the helper’s rate suffices for perfect state
description. In such settings strictly-causal state information
may be helpful, and Shannon strategies are sub-optimal [3]–
[5]. For much more on state information in communication
systems, see [6]. Related to our work is [7] which—subject to
the assumption of perfect receiver state information—analyzes
a system comprising a symbol-by-symbol and a noncausal
helper to the transmitter.

A. The channel model

We consider a state-dependent discrete memoryless channel
with finite input, output, state, and description alphabets X ,
Y , S, and T , respectively. The states S1, S2, . . . are IID ∼ PS ,
where PS is some given probability mass function (PMF)
on S. The channel is memoryless, and we denote its law
W (y|x, s): given the channel input x ∈ X and the channel
state s ∈ S, the probability of the channel output being y ∈ Y
is W (y|x, s) irrespectively of past inputs, states, or outputs.
A fortiori, for every x ∈ X and s ∈ S , the transition law
W (y|x, s) is nonnegative and

∑
y∈YW (y|x, s) = 1.

When communicating with blocklength n, the transmitted
message m is chosen from the set of messages M =
{1, . . . , 2nR}, where R is the communication rate.

When the encoder is provided with perfect causal state
information—a setting to which we refer as the “Shannon set-
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ting,” because this is the setting studied in [1]—a blocklength-
n encoder consists of n mappings

fi :M×Si → X , (m, si) 7→ xi, i = 1, 2, . . . , n (2)

with the understanding that the time-i channel input Xi that the
encoder produces in order to convey the message m when the
present and past states are Si is Xi = Xi(m,S

i) = fi(m,S
i).

When the encoder is provided with perfect strictly-causal
state information, these mappings take the form

fi :M×Si−1 → X , (m, si−1) 7→ xi, i = 1, 2, . . . , n
(3)

with Xi now being a function of the message and past (and
not present) states, i.e., Xi = Xi(m,S

i−1) = fi(m,S
i−1).

The focus of our work, however, is the causal helper setting,
where the helper consists of a sequence of mappings

hi : Si → T , si 7→ ti, i = 1, 2, . . . , n (4)

with the understanding that the time-i help1 Ti that is provided
to the encoder is Ti = Ti(S

i) = hi(S
i). The time-i channel

input produced by the encoder to convey the message m is
then a function of m and the present-and-past help T i. The
encoder thus consists of a sequence of mappings

fi :M×T i → X , (m, ti) 7→ xi, i = 1, 2, . . . , n (5)

with the understanding that the time-i channel input Xi pro-
duced by the encoder to convey the message m, after having
received the present-and-past help T i, is Xi = Xi(m,T

i) =
fi(m,T

i). A special kind of helper is the symbol-by-symbol
helper whose time-i help Ti is a function only of the time-i
state Si, i.e., it is a helper where the mappings (4) have the
form

hi : S → T , si 7→ ti. (6)

In all the above cases, a decoder is a mapping

g : Yn →M, yn 7→ m̂ (7)

with the understanding that, upon receiving the channel output
sequence Y n, the decoder produces the message g(Y n). A
decoder with perfect state information is a mapping

g : Yn × Sn →M, (yn, sn) 7→ m̂ (8)

with the decoded message now being g(Y n, Sn).
A rate R is said to be achievable if there exists a sequence

of helpers, encoders, and decoders of said rate of average
probability of error tending to zero, where the average is over
the uniformly drawn message and the random state sequence.
The capacity is the supremum of the achievable rates.

We recall that the capacity of an SD-DMC with perfect
strictly-causal state information at the encoder equals the
capacity without state information; i.e., strictly causal state
information does not increase capacity. The capacity with
perfect causal state information is given by [1]

max I(U ;Y ), (9a)

1We use “help,” “assistance,” and “description” interchangeably.

where the maximum is over the choice of the set U and over
the joint distributions of the form

PS(s)PU (u)PX|US(x|u, s)W (y|x, s). (9b)

Without reducing the maximum, the conditional PMF PX|US
above can be chosen to be deterministic. Thus, U can be taken
as the set of all mappings from S to X . We sometimes refer
to these mappings as “Shannon strategies.”

The rest of this paper is organized as follows: Section II
presents our capacity results for various settings; Section III
provides three counterexamples demonstrating, respectively,
that revealing the message to the helper increases capacity,
that symbol-by-symbol helpers need not be optimal, and that
they need not be optimal even when the help is provided to
both encoder and decoder; Section IV presents a block-Markov
scheme that can outperform all symbol-by-symbol helpers; and
Section V offers some intuition for some of the results and
concludes the paper.

II. CAPACITY RESULTS

A. Symbol-by-symbol helper

The following result on symbol-by-symbol helpers is a
small variation on known results. Given a fixed symbol-by-
symbol helper, we can view h(Si) as a new state and then
invoke Shannon’s result to obtain the best achievable rate
that can be achieved with said helper [8], [9]. We include
this theorem for completeness and because our definition of a
symbol-by-symbol helper does not require that the functions
in (6) be time invariant, i.e., not depend on i. Also, we allow
for the past states (unquantized) to be revealed to the encoder.
The converse must thus be slightly modified.

Theorem 1: If only symbol-by-symbol helpers are permitted,
then the capacity is

max I(U ;Y ), (10a)

where the maximum is over the choice of a set U and over
the joint distributions of the form

PS(s)PU (u)PT |S(t|s)PX|UT (x|u, t)W (y|x, s), (10b)

where—without reducing the maximum—the cardinality of U
may be restricted to |X ||T |, and the conditional PMFs PT |S
and PX|UT can be chosen to be deterministic.

This is also the capacity if the time-i channel input produced
by the encoder may depend not only on m and T i but also on
the past states Si−1, i.e., when the encoder’s time-i mapping
is of the form

fi :M×T i × Si−1 → X , (m, ti, si−1) 7→ xi. (11)

Proof: In the direct part, we shall prove that (10) is
achievable also in the absence of perfect past state information;
in the converse part, we shall prove that one cannot achieve
a higher rate even in its presence. That PT |S and PX|UT can
be chosen to be deterministic follows because, for any fixed
PU , the mutual information I(U ;Y ) is convex in PY |U , and
because PY |U is linear in both PT |S and PX|UT . Once PX|UT
is chosen to be deterministic, U can be restricted to comprise
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the mappings from T to X , hence its cardinality need not
exceed |X ||T |.

Direct part. Choose PT |S to be a deterministic mapping that
achieves the maximum in (10), so T = h(S) with probability
one for some h(·). The helper produces ti = h(si) for every i.
This implies that the sequence Tn is IID. The encoder and the
decoder treat T as the channel state governing the SD-DMC

W̃ (y|x, t) =
∑
s∈S

PS|T (s|t)W (y|x, s) (12)

and can thus achieve (10) using Shannon strategies [1]; cf. (9).
Converse part. Given mappings {fi} as in (11), we can use

Fano’s inequality to infer the existence of some sequence {εn}
tending to zero for which

n(R− εn) ≤ I(M ;Y n) (13)

=

n∑
i=1

I(M ;Yi|Y i−1) (14)

≤
n∑
i=1

I(M,Y i−1;Yi) (15)

≤
n∑
i=1

I(M,Y i−1, Si−1;Yi) (16)

=

n∑
i=1

I(Ui;Yi), (17)

where in the last equality we defined, for every i ∈ {1, . . . , n},

Ui , (M,Y i−1, Si−1). (18)

It remains to check that, for every i, the joint distribution of
(Si, Ti, Ui, Xi, Yi) has the form (10b). To this end, it suffices
to verify that the following three conditions are satisfied:

(Ui, Ti) (−− (Xi, Si) (−− Yi (19a)
Si (−− (Ui, Ti) (−− Xi (19b)

Ui ⊥⊥ (Si, Ti). (19c)

Indeed, (19a) is satisfied because the channel is memoryless;
(19b) because, given Ui = (M,Y i−1, Si−1), one can compute
T i−1 (as a function of Si−1), and Xi is determined by
(M,T i, Si−1); and (19c) because the state sequence is IID,
and because, with a symbol-by-symbol helper, Ti depends
on Si alone and not on Si−1. This completes the proof of
the converse part and hence of the theorem.

The rate (10) is a lower bound to the causal-helper capacity,
because every symbol-by-symbol helper is causal. This bound,
however, is not tight:

Remark 2: For some channels, there exist causal helpers
that outperform all symbol-by-symbol helpers; see Example 9
ahead.

This bound does, however, characterize the SD-DMCs hav-
ing positive causal-helper capacity:

Theorem 3: Subject to (1), the following statements are
equivalent:

1) The causal-helper capacity is positive.

2) The symbol-by-symbol helper capacity is positive.
3) The capacity of the SD-DMC when the state is revealed

perfectly to both encoder and decoder is positive. Equiv-
alently, there exists some state s? ∈ S with PS(s?) > 0
and some x1, x2 ∈ X such that

W (·|x1, s?) 6=W (·|x2, s?), (20)

indicating that the output PMFs induced by (x1, s
?) and

by (x2, s
?) differ.

Proof: We first verify the equivalence of the two condi-
tions in 3). The capacity of an SD-DMC with perfect state
information at both encoder and decoder is given by (see [10]
and references therein)

max
PX|S

I(X;Y |S), (21a)

where the conditional mutual information is computed with
respect to the joint PMF

PS(s)PX|S(x|s)W (y|x, s). (21b)

This capacity is positive if, and only if, there exists some
s? ∈ S such that PS(s?) > 0 and

max
PX|S=s?

I(X;Y |S = s?) > 0. (22)

Inequality (22) holds if, and only if, there exist x1, x2 ∈ X
that satisfy (20).

We next show the equivalence of 1), 2), and 3). Of the three
capacities, the symbol-by-symbol helper capacity is smallest,
and the perfect-encoder-and-decoder-state-information capac-
ity is largest. It thus suffices to prove, as we proceed to do,
that if the latter is positive, then so is the former.

Assume that 3) holds. By Assumption (1), T has at least
two distinct elements. Call them 0 and 1. Now consider the
time-invariant symbol-by-symbol mapping, hi(·) = h(·) where

h(s) =

{
0 if s = s?

1 if s ∈ S \ {s?}.
(23)

The helper thus only tells the encoder whether or not the
current state is s?. Let PU be the uniform distribution over
the two mappings u1, u2 from T to X , where

u1(0) = x1 (24a)
u2(0) = x2 (24b)

u1(1) = u2(1) = x0, (24c)

where x0 can be chosen to be any element of X (not
necessarily different from x1 or x2). More formally, we choose
U = {1, 2}; the PMF PU to be uniform over U ; and we choose
PX|UT to be deterministic, so x = x(u, t), where

x(u = 1, t) =

{
x1 if t = 0

x0 if t = 1
(25)

and

x(u = 2, t) =

{
x2 if t = 0

x0 if t = 1.
(26)
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This choice of PU and PX|UT implies that, or every y ∈ Y ,

PY |U (y|u1) = PS(s
?)W (y|x1, s?) +

∑
s6=s?

PS(s)W (y|x0, s)
(27)

PY |U (y|u2) = PS(s
?)W (y|x2, s?) +

∑
s6=s?

PS(s)W (y|x0, s).
(28)

By (20),
PY |U (·|u1) 6= PY |U (·|u2), (29)

which implies that
I(U ;Y ) > 0. (30)

It then follows from Theorem 1 that the capacity of this
channel with a symbol-by-symbol helper is positive.

B. Helper cognizant of message

When a causal helper is cognizant of the message that the
encoder wishes to send, its time-i help is characterized by a
mapping of the form

hi :M×Si → T , (m, si) 7→ ti. (31)

Said helper is a symbol-by-symbol message-cognizant helper
if this function has the form

hi :M×S → T , (m, si) 7→ ti. (32)

In both cases the encoder is as before, i.e., characterized by
mappings of the form (5). For this setting, symbol-by-symbol
message-cognizant helpers achieve capacity:

Theorem 4: The capacity of an SD-DMC with a message-
cognizant causal helper is achieved by a message-cognizant
symbol-by-symbol helper and is given by

max I(U ;Y ), (33a)

where the maximum is over the choice of a set U and over
the joint distributions of the form

PS(s)PU (u)PT |US(t|u, s)PX|UT (x|u, t)W (y|x, s), (33b)

where, without loss of optimality, PT |US and PX|UT can be
chosen to be deterministic.

Proof: That PT |US and PX|UT can be chosen to be
deterministic follows because, for any fixed PU , I(U ;Y ) is
convex in PY |U , and because PY |U is linear in both PT |US
and PX|UT . (See (34) ahead.)

Direct part. Fix a PMF PU , a (deterministic) mapping
h : U×S → T , and a (deterministic) mapping f : U×T → X
that achieve the maximum in (33). Consider the “super chan-
nel” with input alphabet U , output alphabet Y , and of the
conditional law

W̃ (y|u) =
∑
s∈S
t∈T

PS(s)PT |US(t|u, s)PX|UT (x|u, t)W (y|x, s)
(34)

induced by (33b).
We will show that, given any codebook

{
un(m)

}
m∈M for

this super channel, there exists a scheme with a message-
dependent symbol-by-symbol helper that achieves the same

error probability on the original channel. To this end, suppose
that m ∈ M is the message to be transmitted, and un(m) is
the corresponding codeword for the super channel. Since the
helper knows the message m, it also knows un(m). In the
proposed scheme for the original channel, the helper produces

ti = h
(
ui(m), si

)
, i = 1, . . . , n. (35)

The encoder—that knows un(m) (because it is cognizant
of m) and that obtains ti from the helper—sends

xi = f
(
ui(m), ti

)
. (36)

The conditional distribution PY n|M (yn|m) of Y n given m
that this scheme induces is

PY n|M (yn|m) =

n∏
i=1

W̃
(
yi
∣∣ui(m)

)
, (37)

so the probability of error of this scheme is identical to that of
the code on the super channel. The proposed scheme can thus
achieve the capacity of the super channel, which equals (33).

Converse part. Fix mappings {hi} as in (31), and define

Ui , (M,T i−1, Y i−1), i = 1, . . . , n. (38)

From Fano’s inequality we infer that, if a uniformly drawn
message M is transmitted using a helping scheme with van-
ishing probability of error, then, for some εn that tends to zero
as n→∞,

n(R− εn) ≤ I(M ;Y n) (39)

=

n∑
i=1

I(M ;Yi|Y i−1) (40)

≤
n∑
i=1

I(M,Y i−1;Yi) (41)

≤
n∑
i=1

I(Ui;Yi). (42)

It remains to check that the joint distribution of
(Si, Ti, Ui, Xi, Yi) has the form (33b), i.e., that the following
Markov and independence conditions are satisfied:

(Ui, Ti) (−− (Xi, Si) (−− Yi (43a)
Si (−− (Ui, Ti) (−− Xi (43b)

Ui ⊥⊥ Si. (43c)

Here, (43a) is satisfied because the channel is an SD-DMC;
(43b) because Xi can be determined from (M,T i) (and
hence from (Ui, Ti)); and (43c) because the state sequence
is memoryless.

Note that the difference in (10) from (33) is that PT |US
replaces PT |S . This can also be seen in the difference between
(19c) and (43c).

Having the helper be cognizant of the transmitted message
is advantageous. The best message-cognizant causal helper can
outperform all message-oblivious causal helpers:

Remark 5: The capacity of an SD-DMC with a causal
message-cognizant helper can exceed that with the best causal
message-oblivious helper; see Example 7.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3305539

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



5

C. Channel state known to decoder

Theorem 6: When the decoder has perfect state information,
i.e., when it is of the form (8), the causal-helper capacity is
given by

max I(X;Y |S), (44a)

where the maximum is over all the joint distributions of the
form

PS(s)PT |S(t|s)PX|T (x|t)W (y|x, s). (44b)

Moreover, said capacity can be achieved with a symbol-by-
symbol helper.

Proof: Direct part. We use a symbol-by-symbol helper
and apply Theorem 1. Since the decoder is cognizant of
the state, the state can be viewed as part of the channel
output, so we can replace max I(U ;Y ) in Theorem 1 with
max I(U ;Y, S), which can be simplified as follows:

max I(U ;Y, S) = max I(U ;Y |S) (45)
= max I(X;Y |S), (46)

where (45) holds because U is independent of S in (10b); and
(46) holds because, when both PT |S and PX|UT are chosen
to be deterministic, X is a function of U and S, and because
U (−− (X,S) (−− Y forms a Markov chain. Integrating U
out reduces the joint PMF (10b) to (44b).

Converse part. Fix mappings {hi} as in (4), and define for
every i ∈ {1, . . . , n}

Ui , (M,Y i−1) (47)
Vi , Si−1. (48)

From Fano’s inequality we infer that, if the decoder is cog-
nizant of the state, and if a uniformly drawn message M is
transmitted using a helping scheme with vanishing probability
of error, then, for some εn that tends to zero as n→∞,

n(R− εn) ≤ I(M ;Y n, Sn) (49)

=

n∑
i=1

I(M ;Yi, Si|Y i−1, Si−1) (50)

≤
n∑
i=1

I(M,Y i−1;Yi, Si|Si−1) (51)

=

n∑
i=1

I(M,Y i−1;Yi|Si, Si−1) (52)

=

n∑
i=1

I(Ui;Yi|Si, Vi). (53)

The capacity is thus upper-bounded by the maximum of

I(U ;Y |S, V ) (54)

over the auxilliary sets U and V , and over the joint distributions
of the form

PV (v)PS(s)PU |V (u|v)PT |SV (t|s, v)
·PX|TUV (x|t, u, v)W (y|x, s). (55)

We further upper-bound (54) by its maximum over V = v:

I(U ;Y |S, V ) ≤ max
v∈V

I(U ;Y |S, V = v). (56)

Since V ⊥⊥ S, we can remove V by fixing V = v that
achieves the above maximum, so the upper bound becomes
max I(U ;Y |S) over the joint distribution (10b). As in the
direct part, I(U ;Y |S) = I(X;Y |S), which completes the
proof.

III. COUNTEREXAMPLES

A. Revealing the message to the helper increases capacity

Example 7: The channel input X is a binary tuple

X = (A,B) (57)

with A,B both taking values in {0, 1}. The state S too is a
binary tuple

S = (S(0), S(1)), (58)

where S(0) and S(1) are independent and both uniform over
{0, 1}. The channel output is

Y = (A,B ⊕ S(A)). (59)

The helper’s description rate is 1 bit:

T = {0, 1}, (60)

so it cannot fully describe the state.

Claim 8: For the SD-DMC of Example 7:
1) The capacity with a message-cognizant causal helper is

2 bits per channel use.
2) The capacity with a message-oblivious causal helper is

log 3, which can be achieved with a symbol-by-symbol
helper. Furthermore, log 3 is the capacity also when the
message-oblivious helper is noncausal and the help T is
provided also to the decoder.

Proof: Message-cognizant helper. The capacity cannot ex-
ceed log |X | = log |Y| = 2 bits, so we focus on achievability
and describe a scheme that can convey 2 bits error-free in a
single channel use. Let α and β denote the information bits
to be conveyed. Since the helper is cognizant not only of the
state but also of (α, β), it can assist the encoder by providing
it with

T = S(α). (61)

The encoder can then produce the channel input

X = (α, β ⊕ T ) = (α, β ⊕ S(α)), (62)

where ⊕ denotes modular-2 addition. The output is then

Y = (α, β ⊕ S(α) ⊕ S(α)) = (α, β) (63)

and both bits are correctly conveyed without the need for
decoding. (The achievability of 2 bits could also be deduced
from Theorem 4 by choosing U = (A, V ) uniform on
{0, 1} × {0, 1}, T = S(A), and X = (A, V ⊕ T ).)

We next turn to the message-oblivious helper. But first we
recall a result on the “sum channel” [11, Problem 4.18], [12,
Problem 7.28].
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Sum channel. Consider a discrete memoryless channel that
is the “sum” of ` disjoint sub-channels in the following sense:

X = X1 ∪ · · · ∪ X`, Xi ∩ Xj = ∅, i 6= j (64)
Y = Y1 ∪ · · · ∪ Y`, Yi ∩ Yj = ∅, i 6= j (65)
Pr(Y ∈ Yi|X = x) = 1, x ∈ Xi. (66)

Let Ci denote the capacity of the i-th sub-channel, i.e., the
channel with input alphabet Xi and output alphabet Yi. Then
the capacity of the sum channel is

C = log
∑̀
i=1

2Ci . (67)

Message-oblivious helper, direct part. Let the (symbol-by-
symbol) helper produce

T = S(0). (68)

Since the first component of the output Y is equal to the first
component of the input X (see (63)), we can view the channel
as the sum of two channels: the first where A = 0 so X1 =
Y1 = {(0, 0), (0, 1)} and the second where A = 1 so X2 =
Y2 = {(1, 0), (1, 1)}.

The encoders of both channels observe T , but the second
ignores it. The first encoder, cognizant of S(A) = S(0), can
perfectly control the second output bit B ⊕ S(0), so C1 = 1
bit. The encoder for the second sub-channel, where A = 1, is
incognizant of S(A) = S(1), so the sub-channel’s output bit
B⊕S(1) is random and independent of the input, so C2 = 0.
The capacity of the sum channel is thus

log
(
21 + 20

)
= log 3. (69)

Message-oblivious helper, converse part. We first consider
the special case where the helper is symbol-by-symbol. This
step is unnecessary but sheds light on the proof of the general
case. Assuming that the help is provided also to the decoder
and treating T = h(S) as the channel meta state, we can
express the capacity as

max I(X;Y |T ), (70)

where the maximization is over the conditional law PX|T .
When we fix any T = t, the channel becomes a sum channel.
The first sub-channel is where A = 0. With A = 0 fixed, the
maximum value of H(Y |T = t) is 1 bit, which is achieved
when B is uniform, whereas

H(Y |X,T = t) = H(B ⊕ S(0)|B, T = t) = H(S(0)|T = t).
(71)

We conclude that, conditional on T = t, the capacity of the
first sub-channel is

C1 = 1−H(S(0)|T = t). (72)

Similarly, under the same conditioning, the capacity of the
second sub-channel is

C2 = 1−H(S(1)|T = t). (73)

Conditional on T = t, the capacity of the sum channel is

max I(X;Y |T = t)

= log
(
21−H(S(0)|T=t) + 21−H(S(1)|T=t)

)
. (74)

This and the inequality

21−a ≤ 2− a, a ∈ [0, 1], (75)

imply that

max I(X;Y |T = t)

≤ log
(
2−H(S(0)|T = t) + 2−H(S(1)|T = t)

)
(76)

≤ log
(
4−H(S(0), S(1)|T = t)

)
. (77)

Averaging over t and employing Jensen’s inequality, we obtain
an upper bound on the capacity with a message-oblivious
symbol-by-symbol helper when the help is provided also to
the decoder:

C ≤ max
∑
t

PT (t) log
(
4−H(S(0), S(1)|T = t)

)
(78)

≤ max log
(
4−H(S(0), S(1)|T )

)
(79)

≤ log(4− 1) (80)
= log 3, (81)

where (79) follows because log is concave; and (80) because

H(S(0), S(1)|T ) = H(S(0), S(1))︸ ︷︷ ︸
=2

− I(S(0), S(1);T )︸ ︷︷ ︸
≤H(T )≤1

(82)

≥ 1. (83)

We next show that one cannot achieve any rate larger than
log 3 even with a noncausal helper, and when the help is
provided also to the decoder. In the rest of this proof, we
shall slightly abuse notation to use T to denote the n-letter
assistance, i.e., T is a function of Sn and takes values in
{0, 1}n. Using Fano’s inequality we can infer that, if there
exists a coding scheme of rate R that has vanishing error
probability, then, for some εn that tends to zero as n→∞,

n(R− εn) ≤ I(Xn;Y n|T ), (84)

so we shall bound the maximum of I(Xn;Y n|T ) over all
PXn|T . Given T = t, the n-letter channel can be viewed as a
sum channel containing 2n sub-channels, each corresponding
to a different choice of the binary n-tuple (A1, . . . , An).
Conditional on T = t, the capacity of the sub-channel
corresponding to A1 = a1, . . . , An = an is

exp2

{
n−H

(
S
(a1)
1 , . . . , S(an)

n

∣∣∣T = t
)}
, (85)

where exp2{ξ} denotes 2ξ. Hence,

max
PXn|T=t

I(Xn;Y n|T = t)

= log
∑

an∈{0,1}n
exp2

{
n−H

(
S
(a1)
1 , . . . , S(an)

n

∣∣∣T = t
)}

(86)

= log
∑

an∈{0,1}n

n∏
i=1

exp2{
1−H

(
S
(ai)
i

∣∣∣S(a1)
1 , . . . , S

(ai−1)
i−1 , T = t

)}
(87)

≤ log
∑

an∈{0,1}n

n∏
i=1

exp2

{
1−H

(
S
(ai)
i

∣∣∣Si−1, T = t)
)}

(88)
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= log

n∏
i=1

(
exp2

{
1−H

(
S
(0)
i

∣∣∣Si−1, T = t
)}

+ exp2

{
1−H

(
S
(1)
i

∣∣∣Si−1, T = t
)})

(89)

=

n∑
i=1

log

(
exp2

{
1−H

(
S
(0)
i

∣∣∣Si−1, T = t
)}

+ exp2

{
1−H

(
S
(1)
i

∣∣∣Si−1, T = t
)})

(90)

≤
n∑
i=1

log

(
2−H

(
S
(0)
i

∣∣∣Si−1, T = t
)

+ 2−H
(
S
(1)
i

∣∣∣Si−1, T = t
))

(91)

≤
n∑
i=1

log

(
4−H

(
Si
∣∣Si−1, T = t

))
(92)

≤ n log

(
4− 1

n

n∑
i=1

H
(
Si
∣∣Si−1, T = t

))
(93)

= n log

(
4− H(Sn|T = t)

n

)
, (94)

where (91) follows from (75), and (93) follows from the
concavity of the logarithm. Averaging (94) over T and again
using the concavity of the logarithm, we obtain the bound

I(Xn;Y n|T ) ≤ n log
(
4− H(Sn|T )

n

)
. (95)

Note that

H(Sn|T ) = H(Sn)− I(Sn;T ) (96)
≥ H(Sn)−H(T ) (97)
≥ 2n− n (98)
= n. (99)

This and (95) imply that

I(Xn;Y n|T ) ≤ n log 3, (100)

which completes the proof.

B. A causal helper that outperforms all symbol-by-symbol
helpers

Example 9: The channel input is

X = (A,B,C), (101)

where A,B take values in {0, 1}, and C in {0, 1}η for some
integer η (larger than 10). The state is a pair

S = (S(0), S(1)), (102)

where S(0) and S(1) are independent, both uniform on {0, 1}.
The output is

Y = (A′, D(0), D(1)), (103)

with A′ taking values in {0, 1}, and with D(0) and D(1) in
{0, 1}η .

The channel law is the following:

• Conditional on X and S with B 6= S(A), the output Y
is uniformly distributed over its alphabet.

• Conditional on X and S with B = S(A),

A′ = A (104a)
D(B) = C (104b)

deterministically, and

D(B⊕1) ∼ equiprobable over {0, 1}η. (104c)

The (message-oblivious) helper’s description rate is 1 bit:

T = {0, 1}. (105)

Claim 10: In Example 9:
1) There exists a (non symbol-by-symbol) causal helper

that allows for the reliable transmission of η bits per
channel use.

2) When restricted to symbol-by-symbol helpers, the ca-
pacity is strictly less than η.

Proof: General causal helper. To prove the achievability
of η bits per channel use with a causal (non symbol-by-
symbol) helper, consider the following coding scheme. Rep-
resent the message that is to be transmitted in n channel
uses as a sequence α1, α2, . . . , αn−1 of binary η-tuples, so
αi ∈ {0, 1}η . Set αn to be some arbitrary η-tuple, say all-zero.
The transmission rate is thus (n − 1)η/n, which approaches
η as n→∞.

Define
T0 , 0. (106)

At each time i, the help is

Ti = S
(Ti−1)
i , (107)

and the channel input is

Ai = Ti−1 (108)
Bi = Ti (109)
Ci = αi. (110)

This guarantees that, at each i,

Bi = S(Ai), (111)

so the channel behaves according to (104). Moreover, (108)
and (104a) imply that from Yi+1—specifically from A′i+1—the
decoder will learn Bi because Bi = Ai+1 = A′i+1. It will then
be able to recover αi without error by reading D(Bi)

i (which
was received at time i). In this way, the decoder recovers
α1, . . . , αn−1 error free. This concludes the proof of the first
part of the claim.

Symbol-by-symbol helper. There are ostensibly 24 symbol-
by-symbol helpers. But T and T ⊕ 1 give identical perfor-
mance. Likewise swapping S(0) and S(1) or replacing either
(or both of them) with the complement does not change
performance. After accounting for these symmetries, we must
only analyze three symbol-by-symbol helpers:

T = S(0) (112)
T = S(0) ∧ S(1) (113)
T = S(0) ⊕ S(1). (114)
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To analyze T = S(0) ⊕ S(1), define E = E(X,S) as

E =

{
1, if B = S(A)

0, otherwise.
(115)

Recall that, conditional on (X,S) with E(X,S) being zero,
the output Y is equiprobable over its alphabet. We can upper-
bound the capacity by assuming that T is revealed also to the
decoder and then upper-bounding max I(X;Y |T ). This we do
as follows:

I(X;Y |T ) ≤ I(X;Y,E|T ) (116)
≤ 1 + I(X;Y |E, T ) (117)

= 1 +
∑
t

PT (t) I(X;Y |E, T = t). (118)

For each t ∈ {0, 1}

I(X;Y |E, T = t) = PE|T (1|t) I(X;Y |E = 1, T = t) (119)
≤ PE|T (1|t) log |X | (120)

=
1

2
(η + 2), (121)

where the first equality holds because I(X;Y |E = 0, T = t)
is zero; and the last equality because, irrespectively of PX|T ,
the probability of E(X,S) being one is always 1/2. The
capacity with this symbol-by-symbol helper is thus upper-
bounded by 2+η/2, which is strictly smaller than η whenever
η exceeds 4.

Consider now T = S(0)∧S(1). Upper-bounding the mutual
information conditional on T = 1 by log |X |,

I(X;Y |T ) ≤ PT (1) (η + 2) + PT (0) I(X;Y |T = 0) (122)

=
1

4
(η + 2) +

3

4
I(X;Y |T = 0). (123)

The mutual information term can then be bounded by (with E
defined as in (115))

I(X;Y |T = 0) ≤ I(X;Y,E|T = 0) (124)
≤ 1 + I(X;Y |E, T = 0) (125)
= 1 + PE|T (1|0) (η + 2) (126)

≤ 1 +
2

3
(η + 2), (127)

where the last inequality holds because, conditional on S(0) ∧
S(1) = 0, the states (0, 0), (0, 1), (1, 0) are each of prob-
ability 1/3, so PE|T (1|0) cannot exceed 2/3. The above
inequalities demonstrate that the capacity with this helper is
upper-bounded by 9/4 + 3η/4. This is strictly smaller than η
whenever η ≥ 10.

The final symbol-by-symbol helper T = S(0) can be
analyzed using the duality-based upper bound [13, Thm. 5.1];
see the appendix.

C. Help to both encoder and decoder

The following example shows that symbol-by-symbol
helpers need not be optimal even when the help is provided
to both encoder and decoder.

Example 11: The channel input is binary, and the state is
quaternary

X = {0, 1} (128)
S = {0, 1, 2, 3}. (129)

The output is a binary 4-tuple

Y = (Y (0), Y (1), Y (2), Y (3)) ∈ {0, 1}4. (130)

Conditional on the input X = x and the state S = s, the
component of Y that is indexed by s equals x deterministically

Y (s) = x (131a)

and the other components are IID Bernoulli (1/2)

{Y (s′)}s′∈S\{s} ∼ IID Bern(1/2). (131b)

The helper’s description rate is 1 bit:

T = {0, 1}. (132)

Claim 12: If the help in Example 11 is provided to the
encoder causally and also to the decoder, then:

1) The highest capacity achievable with a symbol-by-
symbol helper is 0.5 bit.

2) With some causal non symbol-by-symbol helper the
capacity is at least 0.5 + 0.1875 log 1.5 ≈ 0.61 bit.

Proof: Symbol-by-symbol helper. After accounting for
symmetries and relabelings, only two different symbol-by-
symbol helpers remain. The first is

T =

{
0, if S ∈ {0, 1}
1, otherwise.

(133)

To analyze it, suppose that both encoder and decoder know
that T = 0. The output components Y (2) and Y (3) can then
be discarded because they are known to be independent of the
input. Conditional on X = x, the remaining components have
the following distribution:

(Y (0), Y (1)) =


(x, x) w.p. 0.5
(x, x⊕ 1) w.p. 0.25
(x⊕ 1, x) w.p. 0.25.

(134)

It then follows that

H
(
Y (0), Y (1)

∣∣∣X,T = 0
)
= 1.5. (135)

Since
maxH

(
Y (0), Y (1)

∣∣∣T = 0
)
= 2, (136)

with the maximum achieved by a uniform X ,

max I(X;Y |T = 0) = 0.5. (137)

Both (135) and (136) continue to hold when, rather than T =
0, we consider T = 1. We thus conclude that the maximum
achievable rate with the helper (133) is 0.5 bit.

The second symbol-by-symbol helper to be considered is

T =

{
0, S = 0

1, otherwise.
(138)
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When T = 0, which happens with probability 0.25, the
decoder knows that Y (0) = X , so

max I
(
X;Y (0)

∣∣ T = 0
)
= 1. (139)

When T = 1, which happens with probability 0.75, Y (0) is
independent of the input and can be discarded, whereas the
conditional probabilities of the remaining components given
X = x can be written down explicitly as in (134) (details
omitted). From these probabilities we can compute

max I
(
X;Y (1), Y (2), Y (3)

∣∣∣T = 1
)
= 1.5− 0.75 log 3.

(140)
Using (139) and (140), we obtain that the maximum rate
achievable by the helper (138) is

0.25 · 1 + 0.75 · (1.5− 0.75 log 3) ≈ 0.483, (141)

which is inferior to the capacity with the first helper. The
capacity with the best symbol-by-symbol helper is thus 0.5
bit and is achieved by the helper (133).

General helper. Consider a two-letter helper: over two
channel uses, the helper uses T1, T2 to describe S1 perfectly
and S2 not at all. (More formally, the time-(2i+1) help T2i+1

and the time-(2i + 2) help T2i+2 describe the time-(2i + 1)
state S2i+1 ignoring the time-(2i + 2) state S2i+2.) At time
2i+2 the receiver is cognizant of S2i+1 and can hence recover
X2i+1 (which equals the S2i+1-th component of Y2i+1). The
bit X2i+1 is thus recovered error free. As for X2i+2, it is
transmitted with neither encoder nor decoder cognizant of the
state, hence we can write the probabilities of the different
values of Y2i+2 as in (134) (with the details again omitted).
The channel from X2i+2 to Y2i+2 is of capacity

0.375 log 1.5. (142)

We can thus transmit (1+0.375 log 1.5) bits with two channel
uses, from which the second part of the claim follows.

IV. A BLOCK-MARKOV SCHEME

Inspired by Example 9, we propose a communication
scheme employing block-Markov encoding and backward de-
coding. Choose three finite auxiliary sets Z , U , and V , and fix
a joint distribution of the form

PS(s)PZ(z)PT |SZ(t|s, z)PU |Z(u|z)
·PX|UT (x|u, t)PV |T (v|t)W (y|x, s), (143)

where PT |SZ and PX|UT are deterministic, so there exist
mappings f : U × T → X and h : S × Z → T such that,
with probability one,

T = h(S,Z) (144)
X = f(U, T ). (145)

In the following, we use boldface letters such as x and t
to denote length-n vectors, and we extend h and f to apply
to n-length vectors component-wise. For example, t = h(s, z)
indicates that each component of t is the result of applying h
to the corresponding components of s and z. Component-wise
extension of conditional probabilities to length-n vectors are
denoted using the superscript ×n as in P×nU |Z(u|z).

The block-Markov scheme we propose divides the transmis-
sion time into λ blocks, with each of the first λ − 1 blocks
being of length n, and with the last being possibly longer.
Since λ will be very large, the last block will have negligible
effect on the transmission rate. The scheme employs binning
and superposition coding. In the superposition coding, the
Block j cloud center z(j)—being determined at the end of
Block (j − 1)—is known to both encoder and helper before
the block begins. The satellite u(j) is determined by the
message mj that is transmitted in Block j. The assistance
produced in Block j is t(j) = h(s(j), z(j)). A v-sequence,
v(j), is then chosen based on t(j), and is binned as in Wyner-
Ziv coding [14], treating the outputs y(j) as side information
that is available to the decoder. The bin index determines the
cloud center in Block (j + 1). We elaborate below.

Fix three positive rates R, Rv , and R̃ that will be specified
later. In the following, “typical” is short for strongly typical
with respect to corresponding marginal of the joint distribution
(143) [15]. We shall not explicitly write “ε-typical,” but it
shall be understood that the implicit parameter ε does not
depend on n and can be chosen arbitrarily close to zero.
However, the choice of ε may need to be different in each
case below, a technicality that, to simplify the exposition, we
ignore. Furthermore, the bounds we shall derive on the rates
should involve slacks that are related to ε. This too we ignore.

Codebook construction. Generate 2n(Rv+R̃) length-n se-
quences IID ∼ PV

v(`, k), ` ∈ {1, . . . , 2nRv}, k ∈ {1, . . . , 2nR̃}. (146)

Independently of the above, generate 2nRv sequences IID ∼
PZ

z(`), ` ∈ {1, . . . , 2nRv}. (147)

For each ` ∈ {1, . . . , 2nRv}, independently generate 2nR

sequences ∼ P×nU |Z
(
·
∣∣z(`))

u(`,m), m ∈ {1, . . . , 2nR}. (148)

Encoding. Let `0 , 1. When encoding for Block j, where
j ∈ {1, . . . , λ − 1}, the encoder and the helper have already
identified `j−1 (which they compute at the end of Block (j−
1)). They pick the cloud center

z(j) = z(`j−1). (149)

The helper produces the help

t(j) = h(s(j), z(j)). (150)

Denoting the message to be sent over all the blocks
(m1, . . . ,mλ−1), the encoder selects the satellite according
to the message mj ∈ {1, . . . , 2nR}:

u(j) = u(`j−1,mj). (151)

It sends
x(j) = f(u(j), t(j)). (152)

(Note that the mappings (150) and (152) are indeed causal.)
The helper and the encoder look for the first pair of indices
(`j , kj) ∈ {1, . . . , 2nRv} × {1, . . . , 2nR̃} such that

v(j) = v(`j , kj) (153)
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satisfies (
v(j), t(j)

)
are jointly typical. (154)

They discard kj and use `j to pick the cloud center in Block
(j + 1). If no such pair of indices can be found, then they
choose `j = 1. We think of `j as a bin index.

In the last block, Block λ, no message bits are sent, and we
only convey the index `λ−1. To this end, we employ a symbol-
by-symbol helper of positive capacity. For now, we assume that
such a helper exists, and proceed to derive an achievable rate
by analyzing Blocks 1 through (λ − 1). Later we will assert
that this assumption is unnecessary, because it is satisfied
whenever the rate whose achievability we seek to prove using
the block-Markov scheme—namely, (161) ahead—is positive.
To prove the assertion, we shall recall that, by Theorem 3, a
symbol-by-symbol helper of positive capacity exists whenever
the capacity with perfect state information at both encoder and
decoder is positive. To prove the assertion, we shall thus only
need to show that this latter capacity is positive whenever (161)
is positive. This will follow once we show that said capacity
is greater than or equal to (161).

Decoding. Based on the output sequence y(λ) received in
the last block, Block λ, the decoder recovers `λ−1. It then
proceeds with backward decoding from Block (λ − 1) to
Block 1. By the time the decoder decodes Block j, it will
have already recovered `j (from its decoding Block (j + 1)).
Denote the recovered value by ˆ̀

j . To decode Block j, the
decoder looks for indices k̂j , ˆ̀j−1, and m̂j such that(

z(ˆ̀j−1),u(ˆ̀j−1, m̂j),v(ˆ̀j , k̂j),y
(j)
)

are jointly typical.
(155)

If such indices can be found, then it picks the first triple of
such indices, outputs m̂j as its guess for mj , and keeps ˆ̀

j−1
to be used when decoding Block (j − 1).

Analysis. A number of failure modes must be addressed.
• Decoding of `λ−1 fails. Since the capacity with the afore-

mentioned symbol-by-symbol helper is positive, there
exists a γ > 0 such that, provided Block λ has length
at least γn, the probability of a decoding error in this
last block can be made to tend to zero as n→∞. Since
we shall later choose λ very large, the exact value of γ
will not affect the overall rate.

• When encoding for Block j, the encoder and the helper
cannot find indices satisfying (154). Notice that the
vectors (146) are generated IID according to PV and
independently of s(j) and z(j) = z(`j−1). It follows
that these vectors are also independent of t(j), whereas
the latter, when averaged over the randomly generated
codebook, is IID according to PT . Hence the probability
of this event can be made to vanish as n → ∞ as long
as

Rv + R̃ > I(V ;T ). (156)

The following error events all concern the decoding task for
Block j ∈ {1, . . . , λ−1}. We assume that `j has been correctly
decoded in Block (j + 1) (so ˆ̀

j = `j).
• The chosen indices satisfy (154), but(

z(j),u(j),v(j),y(j)
)

are not jointly typical. By

our construction, over the randomly generated codebook,(
S(j),Z(j),T(j),U(j),X(j),Y(j)

)
are IID according to

PSZTUXY ; in particular, conditional on any t(j),
the probability of the tuple

(
z(j),u(j),y(j)

)
is

P×nZUY |T
(
z(j),u(j),y(j)

∣∣t(j)). It then follows by
the Markov Lemma [10, Lemma 12.1] that, given jointly
typical

(
v(j), t(j)

)
, the probability that

(
Z(j),U(j),Y(j)

)
are jointly typical with v(j) tends to one as n→∞.

• There exists some k′ 6= kj such that
(
v(`j , k

′),y(j)
)

are jointly typical.2 By our construction, v(`j , k
′) is

generated IID according to PV and independently of y(j).
It then follows that the probability of this error event can
be made to approach zero as n→∞ as long as

R̃ < I(V ;Y ). (157)

Note that, in the joint distribution (143), V (−− T (−−
Y forms a Markov chain. Therefore (156) and (157)
together imply that

Rv > I(V ;T |Y ). (158)

Conversely, given Rv satisfying (158), there exists a
choice of R̃ to satisfy both (156) and (157).

• There exists some m′ 6= mj such that(
z(`j−1),u(`j−1,m

′),v(`j , kj),y
(j)
)

are jointly
typical. As discussed above, with high probability(
z(`j−1),v(`j , kj),y

(j)
)

are jointly typical. By
our construction, u(`j−1,m

′) is generated with
probability P×nU |Z(u(`j−1,m

′)|z(`j−1)), hence the
probability of a so-generated sequence being jointly
typical with

(
z(`j−1),v(`j , kj),y

(j)
)

is approximately
2−nI(U ;V,Y |Z). It follows that the probability of this
error can be made to vanish as n→∞ provided

R < I(U ;V, Y |Z) = I(U ;Y |V,Z), (159)

where the equality follows because, in the joint distribu-
tion (143), U (−− Z (−− V forms a Markov chain.

• There exist some `′ 6= `j−1 and m′ 6= mj such that(
z(`′),u(`′,m′),v(`j , kj),y

(j)
)

are jointly typical. With
high probability,

(
v(`j , kj),y

(j)
)

are jointly typical, and,
independently, (z(`′),u(`′,m′)) are drawn IID according
to PZU . Therefore the probability that these vectors are
jointly typical for any pair (`′,m′) is approximately
2−nI(U,Z;V,Y ). Consequently, the probability of this type
of error can be made to vanish as n→∞ provided

R+Rv < I(U,Z;V, Y ). (160)

Summarizing the above analyses, we conclude that, for
the block-Markov scheme to succeed with high probability,
it suffices that the rate R be smaller than

min
{
I(U ;Y |V,Z), I(U,Z;V, Y )− I(V ;T |Y )

}
. (161)

We now return to our assertion regarding the existence of
a symbol-by-symbol helper of positive capacity and show
that (161) does not exceed the capacity with a message-
cognizant helper (33), let alone the capacity when perfect state

2This will cause an error not in decoding mj , but in decoding `j−1, which
will (very likely) cause decoding errors in Blocks j − 1 to 1.
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information is available to both encoder and decoder. Recall
that this will allow us to dispense with the assumption that
there exists an effective symbol-by-symbol helper, which we
need in Block λ.

To show the desired inequality, consider the second term in
the minimizaiton in (161):

I(U,Z;V, Y )− I(V ;T |Y )

= I(U,Z;Y ) + I(U,Z;V |Y )−H(V |Y ) +H(V |T ) (162)
= I(U,Z;Y )−H(V |U,Z, Y ) +H(V |T ) (163)
≤ I(U,Z;Y ), (164)

where (162) holds because V (−− T (−− Y forms a Markov
chain; and (164) because V (−− T (−− (U,Z, Y ) forms a
Markov chain. If we define

U ′ , (U,Z), (165)

then the joint distribution of (U ′, X, Y, S, T ) has the form
(33b) with U ′ replacing U , therefore the right-hand side of
(164) cannot exceed (33).

We have now completed the proof of the following result:

Theorem 13: Given any joint distribution of the form (143),
the described block-Markov coding scheme can achieve any
rate up to (161).

Claim 14: Maximizing (161) over all joint distributions of
the form (143) yields an achievable rate that is at least as
high as the capacity with the best symbol-by-symbol helper.
In some cases it is strictly higher.

Proof: Choosing Z and V null (deterministic) re-
duces (161) to I(U ;Y ), so the optimization over PU leads
to the capacity with the symbol-by-symbol helper PT |S .

As for an example where the maximum of (161) is higher
than the capacity of the best symbol-by-symbol helper, con-
sider Example 9 with the following choices (where equalities
are with probability one):

Z ∼ uniform on {0, 1} (166a)
T = S(Z) (166b)
U = (Z,C) with C uniform on {0, 1}η (166c)
X = (Z, T,C) (166d)
V = T = S(Z). (166e)

The output is then

Y =

{
(Z,C, C̃), S(Z) = 0

(Z, C̃, C), S(Z) = 1,
(167)

where C̃ is independent of all other random variables. We can
then compute

I(U ;Y |V,Z) = η (168)
I(U,Z;V, Y ) = η + 1 (169)
I(V ;T |Y ) = 1. (170)

The choice (166) thus results in (161) being η, which, by
Claim 10, is higher than the capacity of any symbol-by-symbol
helper.

V. CONCLUDING REMARKS

Revealing the state of an SD-DMC to the encoder strictly
causally does not increase capacity. The intuitive explanation
that is usually given for this is that, because the channel and
state are memoryless, the past states tell the encoder nothing
about the channel’s present behavior, and—while possibly
useful to the decoder—it is more efficient for the encoder
to convey fresh information than past states. So why, as
Example 9 shows, are symbol-by-symbol helpers suboptimal?

A clue to this might be offered by the coding scheme we
proposed for this example and by the general block-Markov
scheme that builds on it. The idea behind both is that at time i
the encoder conveys to the decoder some information about
the past states that it has learned via past assistance and that
is known to the helper (who knows Si−1 and consequently all
the past assistance). Since the helper knows this information
about Si−1, this information plays a role similar to that of
a message that is known to the helper. Since revealing the
message to the helper can increase capacity (Example 7), it
can be more efficient for the encoder to send this information
about Si−1 than to send fresh information, which the helper
does not know.

Such a scheme—where the encoder tells the decoder about
past states—makes no sense if the decoder has full state infor-
mation. This is congruent with the optimality of symbol-by-
symbol helpers when the receiver has perfect state information
(Theorem 6).

Such a scheme also makes no sense when the helper is cog-
nizant of the message. In this case conveying fresh information
is preferable to conveying information about the past states,
because, in comparing the two approaches, both are done with
the helper’s knowledge of what is being conveyed, so the
playing field is level. This provides intuition for Theorem 4,
which states that, when the helper is cognizant of the message,
symbol-by-symbol helpers are optimal.

Finally, we note that, although the assistance provided
in Example 9 and in the block-Markov scheme depends
on past states, it does not provide the encoder with any
new information about the past states; it only provides the
encoder information about the current state. The past states,
however, determine which information about the current state
is provided to the encoder. Indeed, in this example, even if the
past states were provided to the encoder perfectly, symbol-by-
symbol helpers would still be suboptimal. (By Theorem 1, the
capacity with a symbol-by-symbol helper is unchanged when
past states are provided to the encoder, so revealing the past
states perfectly to the encoder would not allow the symbol-by-
symbol helpers to catch up with the block-Markov scheme.)

APPENDIX

In this appendix we complete the proof of Claim 10 by
analyzing the helper T = S(0). To this end, we view S(0) as a
meta state, which is known causally to the encoder but not to
the decoder. The capacity is then the maximum of I(U ;Y ),
where U takes values in the set of Shannon strategies that map
S(0) to X [1]. Denote a generic Shannon strategy u as

u = (a(0), b(0), c(0), a(1), b(1), c(1)), (171)
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indicating that u maps S(0) = 0 to the channel input
(a(0), b(0), c(0)) and S(0) = 1 to (a(1), b(1), c(1)). The con-
ditional law of Y given U is then

PY |U (y|u) =
∑

s(1)∈{0,1}

1

2
W
(
y
∣∣x = (a0, b0, c0), s = (0, s(1))

)
+

∑
s(1)∈{0,1}

1

2
W
(
y
∣∣x = (a1, b1, c1), s = (1, s(1))

)
. (172)

The duality-based upper bound [13, Thm. 5.1] states that
any choice of a distribution Q on Y leads to an upper bound
on the capacity

C ≤ max
u

D
(
PY |U (·|u)

∥∥Q). (173)

Our choice of Q is one under which A′, D(0), and D(1)

are independent, with A′ being Bernoulli (δ) (with δ < 1/2
specified later) and with both D(0) and D(1) uniform:

Q(a′, d(0), d(1)) =

{
(1− δ) 2−2η, a′ = 0

δ 2−2η, a′ = 1.
(174)

We next analyze D
(
PY |U (·|u)

∥∥Q) for different strategies u.

• Consider any u with a(0) = a(1) = 0, b(0) = 0, and
b(1) = 1. Such a u guarantees that B = S(A) = S(0),
and

Y =

{
(0, c(0), D̃) w.p. 1/2
(0, D̃, c(1)) w.p. 1/2,

(175)

where D̃ is uniform over {0, 1}η and independent of
everything else. Hence PY |U (y|u) equals 2−η for y =
(0, c(0), c(1)), and equals 2−η−1 for the other (2η+1− 2)
outcomes of positive probability. (Outputs of the form
(0, κ, κ′) where κ 6= c(0) and κ′ 6= c(1) have zero
probability.) It then follows that

D
(
PY |U (·|u)

∥∥Q)
= 2−η log

2−η

(1− δ)2−2η
+ (1− 2−η) log

2−η−1

(1− δ)2−2η
(176)

= η + 2−η − 1 + log
1

1− δ
. (177)

• Now consider u with a(0) = a(1) = 0, b(0) = 1, and
b(1) = 0. For this u, we always have B 6= S(A), so Y
conditional on u is always uniform, and

D
(
PY |U (·|u)

∥∥Q) = D
(
PA′|U (·|u)

∥∥QA′) (178)
= D

(
Bern(1/2)

∥∥Bern(δ)
)

(179)

≤ log
1

δ
. (180)

• Consider u with a(0) = a(1) = 0 and b(0) = b(1) = 0
(so the meta state is nearly ignored). Conditional on such
a u, B = S(A) when S(0) = 0 and B 6= S(A) when
S(0) = 1, so

Y =

{
(0, c(0), D̃(1)) w.p. 1/2
(Ã, D̃(0), D̃(1)) w.p. 1/2,

(181)

where Ã, D̃(0), D̃(1) are all uniform and independent
of everything else. In the first case above, we have a
probability of 2−η on each of the 2η realizations of Y
of positive probability; and in the second case, we have
a probability of 2−2η−1 on each outcome of positive
probability. By convexity of relative entropy, we can
upper-bound D

(
PY |U (·|u)

∥∥Q) by the weighted sum of
the relative entropies resulting from these two cases (in
the second case it is D

(
Bern(1/2)

∥∥Bern(δ)
)
):

D
(
PY |U (·|u)

∥∥Q)
≤ 1

2
log

2−η

(1− δ)2−2η
+

1

2
D
(
Bern(1/2)

∥∥Bern(δ)
)

(182)

≤ η

2
+ log

1

δ
. (183)

One can easily verify that the same bound holds for
a(0) = a(1) = 0 and b(0) = b(1) = 1.

• Consider u with a(0) = a(1) = 1 and b(0) = b(1) = 0 (so
the meta state is again nearly ignored). Conditional such
a u, there is a probability of 1/2 that B 6= S(A) = S(1),
and

Y =


(Ã, D̃(0), D̃(1)) w.p. 1/2
(1, c(0), D̃(1)) w.p. 1/4
(1, c(1), D̃(1)) w.p. 1/4,

(184)

where Ã, D̃(0), D̃(1) are all uniform and independent of
everything else. Again using convexity of relative entropy
we have

D
(
PY |U (·|u)

∥∥Q)
≤ 1

2
D
(
Bern(1/2)

∥∥Bern(δ)
)

+
1

4
log

2−η

δ2−2η
+

1

4
log

2−η

δ2−2η
(185)

≤ η

2
+ log

1

δ
. (186)

By similar analysis, the bound (186) can be shown to
hold for all u with a(0) = a(1) = 1.

• Next consider u with a(0) = 0, a(1) = 1, b(0) = b(1) = 0.
When S(0) = 0 we always have B = S(A) = S(0); but,
when S(0) = 1, B is independent of S(A) = S(1). The
output is thus as follows:

Y =


(0, c(0), D̃(1)) w.p. 1/2
(1, c(0), D̃(1)) w.p. 1/4
(Ã, D̃(0), D̃(1)) w.p. 1/4,

(187)

where Ã, D̃(0), D̃(1) are all uniform and independent of
everything else. Using convexity of relative entropy we
have

D
(
PY |U (·|u)

∥∥Q)
≤ 1

2
log

2−η

(1− δ)2−2η
+

1

4
log

2−η

δ2−2η

+
1

4
D
(
Bern(1/2)

∥∥Bern(δ)
)

(188)

≤ 3η

4
+ log

1

δ
. (189)
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The same bound holds for a(0) = 0, a(1) = 1, b(0) = 0,
b(1) = 1, as well as for a(0) = 1, a(1) = 0, b(1) = 1 (and
b(0) = 0 or 1).

• Finally, consider a(0) = 0, a(1) = 1, b(0) = 1, and b(1) =
0. (The bound will also apply to a(0) = 0, a(1) = 1,
b(0) = b(1) = 1, and to a(0) = 1, a(1) = 0, b(1) = 0,
b(0) = 0 or 1.) In this case, when S(0) = 0, we always
have B 6= S(A) = S(0); and when S(0) = 1, we have
that B is independent of S(A) = S(1). Consequently,

Y =

{
(1, c(1), D̃(1)) w.p. 1/4
(Ã, D̃(0), D̃(1)) w.p. 3/4,

(190)

where Ã, D̃(0), D̃(1) are all uniform and independent of
everything else. We then have

D
(
PY |U (·|u)

∥∥Q)
≤ 1

4
log

2−η

δ2−2η
+

3

4
D
(
Bern(1/2)

∥∥Bern(δ)
)

(191)

≤ η

4
+ log

1

δ
. (192)

Summarizing all above cases, the capacity with the helper
T = S(0) is upper-bounded as

C ≤ max

{
η + 2−η − 1 + log

1

1− δ
,
3η

4
+ log

1

δ

}
. (193)

If we choose δ = 1/4, then the bound becomes

C ≤ max

{
η + 2−η − log

3

2
,
3η

4
+ 2

}
, (194)

which is less than η if η > 8. This completes the proof.
When η is very large, we can choose δ to be close to zero,

and the best bound obtained from (193) will be approximately
η − 1. In fact, η − 1 is indeed approximately the best
performance with a symbol-by-symbol helper when η is very
large.
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