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Abstract

We study the problem of designing consistent sequential two-sample tests in a nonparametric
setting. Guided by the principle of testing by betting, we reframe this task into that of selecting
a sequence of payoff functions that maximize the wealth of a fictitious bettor, betting against
the null in a repeated game. In this setting, the relative increase in the bettor’s wealth has
a precise interpretation as the measure of evidence against the null, and thus our sequential
test rejects the null when the wealth crosses an appropriate threshold. We develop a general
framework for setting up the betting game for two-sample testing, in which the payoffs are
selected by a prediction strategy as data-driven predictable estimates of the witness function
associated with the variational representation of some statistical distance measures, such as
integral probability metrics (IPMs). We then formally relate the statistical properties of the
test (such as consistency, type-II error exponent and expected sample size) to the regret of
the corresponding prediction strategy. We construct a practical sequential two-sample test by
instantiating our general strategy with the kernel-MMD metric, and demonstrate its ability to
adapt to the difficulty of the unknown alternative through theoretical and empirical results. Our
framework is versatile, and easily extends to other problems; we illustrate this by applying our
approach to construct consistent tests for the following problems: (i) time-varying two-sample
testing with non-exchangeable observations, and (ii) an abstract class of “invariant” testing
problems, including symmetry and independence testing.
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1 Introduction

Two-sample testing is a fundamental problem in statistics, where the goal is to check for the
homogeneity of samples drawn from two independent sources. Prior works, with some exceptions
discussed in Section 1.3, have mainly studied this problem in the batch setting (also called the
fixed sample size setting). Since the sample size in batch tests is decided before collecting the
observations, such tests run the risk of allocating too many observations on easier problem instances
leading to wasted resources, or too few observations on harder problem instances resulting in
inconclusive evidence against the null. To address these issues, we propose a general framework
for designing consistent level-α sequential nonparametric tests for the two-sample testing problem,
that automatically adapt the sample size to the unknown alternative.

A large fraction of existing works in the sequential testing literature have focused on designing
tests for simple null hypotheses, or for composite null hypotheses in parametric settings. Within
these restricted (parametric) scenarios, several tests have been proposed that satisfy strong optimal-
ity properties. These optimality properties, however, are heavily reliant on the model assumptions:
for instance, see Tartakovsky et al. [2014, § 5.2] for an example with univariate Gaussians, where
the optimality of Wald’s sequential probability ratio test (SPRT) breaks down.

In contrast, the literature on nonparametric sequential testing, the focus of this paper, is sparser.
We work within the framework of “sequential tests of power one”, as set out by Darling and Robbins
[1968], which stop only on rejecting the (typically highly composite, multivariate and nonparamet-
ric) null. Due to the generality of the composite nonparametric setting, the theoretical guarantees
of these tests are slightly weaker: one typically hopes to ensure type-I error control uniformly over
the null, asymptotic consistency (power one) under any alternative, and in some cases, an upper
bound on expected stopping time under the alternative (hopefully implying both minimax optimal-
ity and instance optimality/adaptivity). Our goal in this paper is to develop a general framework
for designing sequential two-sample tests satisfying the following properties:

(P1) They control type-I error uniformly over the composite null, and they have asymptotic power
one under any alternative.

(P2) Additionally, under some conditions one can identify their type-II error exponent and expected
stopping time under the alternative (ideally minimax optimal and instance adaptive).

(P3) They are computationally efficient/feasible, and have good empirical performance.

We describe our general strategy in Section 2, and use it to instantiate powerful two-sample tests
satisfying (P1)-(P3). This significantly improves upon the existing nonparametric sequential two-
sample tests, none of which satisfy all three properties. Additionally, our ideas easily generalize
to (a) two-sample testing with time-varying distributions (Section 5.1), which is significant since
two-sample testing has long relied on exchangeability under the null to run permutation tests, and
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(b) a class of abstract “invariant” testing problems (e.g., testing for symmetry or independence)
discussed in Section 5.2.

Our design strategy is based on the general principle of testing by betting, recently elucidated
by Shafer [2021]. This principle extends the game-theoretic reformulation of the foundations of
probability by Shafer and Vovk [2019] to hypothesis testing. This approach establishes an equiva-
lence between gathering evidence against the null, and multiplying an initial wealth by a large factor
by repeatedly betting on the observations with payoff functions bought for their expected value
under the null. These connections between betting and probability have a long history, going back
at least to the initial work of Ville [1939], and we refer the reader to Waudby-Smith and Ramdas
[2023, Appendix F] for more details on the evolution of these ideas. Overall, this approach trans-
forms the task of (sequential) hypothesis testing into that of setting up a betting game with payoff
functions that simultaneously ensure (i) a fair game under the null, and (ii) a large rate of growth
of the wealth of the bettor under the alternative. Note that, the main focus of Shafer [2021] is on
comparing the the merits of the betting-score (that is, the ratio of final and initial wealth of the bet-
tor) as a measure of evidence, against usual notions such as p-values. Hence, Shafer [2021] does not
propose constructive strategies for setting up the betting game and selecting the payoff functions,
beyond some basic tasks such as testing a simple null against a simple alternative. The two-sample
testing problem considered in our paper, on the other hand, is nonparametric with composite null
and composite alternative. Thus, to adapt the ideas of Shafer [2021] to our problem, we first need
to develop a general framework for constructing appropriate betting games for composite testing
problems, and design betting strategies, such that the resulting wealth process satisfies the two
properties listed above. We develop such a framework in Section 2 that uses statistical distance
measures that admit a variational representation, and exploits certain symmetries to set up an
appropriate betting game.

1.1 Testing by betting, test martingales and Ville’s inequality

To illustrate the above discussion, consider a hypothesis testing problem with a null hypothesis
H0 : P ∈ Pnull and alternative H1 : P ∈ Palt, and observations denoted by Z1, Z2, . . . lying in
some space Z, and drawn i.i.d. according to P . To test the null H0, a bettor may place repeated
bets on the outcomes {Zt : t ≥ 1} starting with an initial wealth K0 = 1. A single round of
betting (say at time t) involves the following two steps. (i) First, the bettor selects a payoff function
St : Z → [0,∞), under the restriction that it ensures a fair bet if the null is true. Formally, this
is imposed by requiring St to satisfy EP [St(Zt)|Ft−1] = 1 (or more generally, EP [St(Zt)|Ft−1] ≤ 1)
for all P ∈ Pnull, where Ft−1 = σ(Z1, . . . , Zt−1). (ii) Then, the outcome Zt is revealed, and the
bettor’s wealth grows (or possibly shrinks) by a factor of St(Zt). Thus, the bettor’s wealth after t
rounds of betting is Kt = K0

∏t
i=1 Si(Zi).

The two key technical pieces that underpin the framework are test martingales [Shafer et al.,
2011] and Ville’s inequality [Ville, 1939]. To elaborate, the restriction on the conditional expectation
of the payoff functions implies that under the null, {Kt : t ≥ 0} is a test martingale, which is a
nonnegative martingale with an initial value 1. Due to this fact, Kt is unlikely to take large values for
any t ≥ 1. On the other hand, when H1 is true, the bettor’s choice of payoff functions, {St : t ≥ 1}
should ensure that the wealth process (or equivalently, the amount of evidence against the null)

4



grows at a fast rate, ideally exponentially. Such a wealth process naturally leads to the following
sequential test: reject the null if Kt ≥ 1/α, where α ∈ (0, 1) is the desired confidence level. Ville’s
maximal inequality (recalled in Fact 1 in Appendix A) ensures that this test controls the type-I
error at level α.

The discussion in the previous paragraph highlights some key design choices that must be made
to use these ideas for two-sample testing: in which function class should St lie; how to ensure
E[St|Ft−1] = 1 uniformly over Pnull; and how to ensure fast growth of Kt under the alternative?
When testing simple hypotheses H0 : Zt ∼ P and H1 : Zt ∼ Q with P and Q known, an obvious
choice of St is the likelihood ratio dQ/dP . Indeed, with this choice of payoff functions, we have
EP [St|Ft−1] = 1, meaning it is a fair bet under the null. Furthermore, it is easy to check that under
H1, the wealth process with this payoff grows exponentially, with an optimal (expected) growth rate
of dKL(Q,P ): the KL-divergence between Q and P . However, when dealing with cases where either
one or both of H0 and H1 are composite and nonparametric (as is the case with the two-sample
testing problem considered in this paper), there is no obvious choice for the payoff functions. We
propose a principled strategy of selecting payoff functions, that result in powerful sequential tests
for certain “invariant” testing problems like two-sample testing.

1.2 Overview of Results

Our goal in this paper is to design sequential level-α tests of power one [Darling and Robbins, 1968]
for the two-sample testing problem and its generalizations.

Definition 1 (sequential-test). A level-α sequential test can be represented by a random stop-
ping time τ taking values in {1, 2, . . .} ∪ {∞}, and satisfying the condition P (τ < ∞) ≤ α, under
the null H0. Thus, τ denotes the random time at which the null hypothesis is rejected.

In the next three sections, we focus mainly on the standard two-sample testing problem, which
can be stated as follows: given two independent streams of observations, {Xt : t ≥ 1} and {Yt : t ≥
1}, drawn i.i.d. from PX and PY respectively, we wish to test the null H0 : PX = PY against the
alternative H1 : PX 6= PY .

General two-sample testing strategy In Section 2, we describe our framework for nonpara-
metric two-sample testing by betting. We start by selecting a function class G (consisting of func-
tions g : X → [−1/2, 1/2]), such that dG(PX , PY ) := supg∈G EPX

[g(X)] − EPY
[g(Y )] > 0 whenever

PX 6= PY . An element g∗ ∈ G achieving the supremum in the definition of dG(PX , PY ), also called
the witness function, can be interpreted as the test function in G that best distinguishes PX from PY .
If g∗ were known, we could use it to define the wealth process, K∗

t = K∗
t−1×(1+λ∗(g∗(Xt)−g∗(Yt))),

where λ∗ is the log-optimal fraction of wealth to bet in each round (see (3) for formal definition).
It can be verified that this process is a test martingale under the null, and grows exponentially
to infinity under the alternative. Using this ‘oracle’ wealth process, we can then define the corre-
sponding sequential test τ∗ = min{n : K∗

n ≥ 1/α}. However, since g∗ depends on the unknown PX

and PY , we instead propose to use predictable empirical estimates, {gt : t ≥ 1}, of g∗ to design the
practical sequential test τ . Naturally, the quality of the estimates (measured in terms of regret)
will govern the statistical properties of τ , and we characterize this formally in Theorem 1.
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Instances of two-sample test In Section 4, we instantiate the general approach described above
for the case when dG is the kernel-MMD metric (dMMD; a widely used distance metric in machine
learning). We show that the resulting sequential kernel-MMD test has two key advantages over its
batch counterpart: (i) adaptivity to unknown alternative, and (ii) lower computational costs (as it
does not use permutations).

Prior to introducing the kernel-MMD test, we study a related problem of testing the equality of
means of two bounded random vectors in Section 3. In this case, the distance dG is the ℓ2-distance
between the means, and the resulting test can be interpreted as a kernel-MMD test with a linear
kernel. The design and analysis of this test mirrors that of the kernel-MMD test, and hence it
allows us to describe the key ideas involved, in a technically simpler setting.

Generalizations Our design approach easily extends to more general cases beyond standard
two-sample testing. In Section 5.1, we show how our strategy can be used to construct a consistent
sequential test for two-sample testing with time-varying distributions. Then, in Section 5.2, we
study an abstract problem of testing whether the unknown distribution is invariant to an operator
T or not. This problem encompasses several tasks, such as two-sample testing, independence testing
and symmetry testing. We describe the steps to construct a general level-α sequential test for this
problem. Then, in Theorem 2, we characterize the detection boundary of a specific instance of this
test (based on a plug-in or empirical risk minimization method).

1.3 Related Work

The area of sequential hypothesis testing was initiated by Wald [1945], who proposed and analyzed
the Sequential Probability Ratio Test (SPRT) for testing a simple null against a simple alternative.
Wald and Wolfowitz [1948] established strong optimality properties of SPRT, and in particular,
showed that the SPRT has the smallest expected sample size among all tests (including fixed sample
size) that control the type-I and type-II errors below prescribed levels. Following Wald [1945],
there has been a significant body of work on extending the SPRT to composite, but parametric
family of hypotheses, and the reader is referred to Ghosh and Sen [1991, Chapters 2 & 4] for a
detailed overview. Unlike SPRT and its generalizations, the focus of this paper is on power-one
tests (described earlier, in Definition 1), pioneered by Robbins and collaborators. We discuss the
details of some relevant works in literature on designing power-one nonparametric two-sample tests
below.

Darling and Robbins [1968] considered several nonparametric one- and two-sample testing prob-
lems involving real-valued observations, and proposed sequential tests by deriving appropriate
fixed sample size uniform deviation inequalities. Howard and Ramdas [2022] proposed a sequen-
tial Kolmogorov-Smirnov (KS) test by obtaining a tighter time-uniform deviation inequality for
the empirical distribution functions. However, these sequential tests only work with real-valued
observations (or more generally, observations in a totally ordered space) and cannot be applied in
problems involving multivariate observations. The other tests discussed below address this issue.

Balsubramani and Ramdas [2016] derived a time-uniform empirical Bernstein inequality for
random walks, and used it to design a sequential nonparametric two-sample test based on the
linear-time kernel-MMD test statistic. The original batch two-sample kernel-MMD test, pro-
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posed by Gretton et al. [2012], uses a quadratic-time empirical estimate of the squared MMD
distance. The reliance of the sequential test of Balsubramani and Ramdas [2016] on the linear-time
MMD statistic, while making the test computationally more efficient, also makes it less powerful
than our proposed kernel-MMD test (in Section 4) and the tests of Lhéritier and Cazals [2018]
and Manole and Ramdas [2023] discussed below.

Lhéritier and Cazals [2018] proposed a general approach to designing sequential nonparamet-
ric two-sample tests, by using sequentially learned probabilistic predictors of the labels indi-
cating the population from which an observation was drawn. They identified sufficient condi-
tions for the λ-consistency (a weaker notion than usual consistency) of the resulting sequential
test, and verified these conditions for a nearest-neighbor based predictor. In a subsequent pa-
per [Lhéritier and Cazals, 2019], the authors proposed a new-predictor (called kd-switch), which
results in a sequential test satisfying the usual notion of consistency. Compared to these tests, we
construct sequential tests with stronger performance guarantees — in addition to consistency, we
also characterize the type-II error exponent and the expected sample size of our tests.

Manole and Ramdas [2023] propose a general technique for constructing confidence sequences
for convex divergences between two probability distributions. Their approach relies on the key
observation that the empirical divergence process is a reverse submartingale adapted to the ex-
changeable filtration. By instantiating the general confidence sequence for the special cases of the
Kolmogorov-Smirnov metric [Manole and Ramdas, 2023, § 4.1] and kernel-MMDmetric [Manole and Ramdas,
2023, § 4.2], the authors obtain consistent sequential nonparametric two-sample tests for both uni-
variate and multivariate distributions. Unlike Manole and Ramdas [2023], our approach relies on
constructing martingales (instead of reverse submartingales) from statistical distances with a vari-
ational definition. Hence, our resulting sequential tests are expected to be less conservative than
those of Manole and Ramdas [2023] in rejecting the null. This intuition is verified in some numerical
experiments in Section 6.

2 General Two-Sample Test

We describe our general strategy for constructing sequential two-sample tests based on the principle
of testing by betting in Section 2.1. After describing the test, we then characterize its statistical
properties in Section 2.2. We begin by defining the two-sample testing problem.

Definition 2 (Two-sample testing). Given a stream of paired observations {(Xt, Yt) : t ≥ 1},
drawn i.i.d. according to PX × PY on the observation space X × X , our goal is to test the null,
H0 : PX = PY against the alternative H1 : PX 6= PY .

Remark 1. The above problem can be rewritten as testing H0 : PX × PY ∈ Pnull against H1 :
PX × PY ∈ Palt, where Pnull and Palt denote the null and alternative classes, defined as:

Pnull := {PX × PY ∈ P(X × X ) : PX , PY ∈ P(X ), and PX = PY }, and (1)

Palt := {PX × PY ∈ P(X × X ) : PX , PY ∈ P(X ), and PX 6= PY }.

In other words, the distributions in the null class are invariant to the action of the operator T :
(X ×X ) → (X ×X ) that takes elements (x, y) ∈ X ×X and flips their order; that is T (x, y) = (y, x).

7



We will build upon this observation to extend our testing scheme to a significantly more general
class of problems in Section 5.2.

Remark 2. While we focus on two-sample testing in this section, the ideas we develop are also
applicable to the related task of one-sample testing. In this problem, we are given a probability
distribution PX , and observations {Yt : t ≥ 1} drawn i.i.d. from an unknown distribution PY . The
goal is to test the null H0 : PY = PX against the alternative H1 : PY 6= PX . We discuss the details
of using the techniques developed in this section for one-sample testing in Appendix B.

2.1 Construction of the Test

Our approach begins with choosing a distance measure (often a metric) on the space of probability
distributions that admits a variational representation. Key examples of such distance measures are
the integral probability metrics or IPMs [Müller, 1997] and f -divergence [Liese and Vajda, 2006]
families. For concreteness, we focus on IPMs denoted by dG , defined as

dG(P,Q) = sup
g∈G

|EP [g(X)] − EQ[g(Y )]|, (2)

where G denotes some class of functions from the observation space X to a bounded real-valued
set, which we set to the interval [−1/2, 1/2] without loss of generality. For developing two-sample
tests, we require that the function class G is rich enough to ensure dG(P,Q) > 0 for all (P,Q) ∈
P(X ) × P(X ), such that P 6= Q. In many problems, such as bounded-mean testing in Section 3,
we require this condition only on a subset of probability distributions. To formalize this, we
introduce the notion of characteristic IPMs, borrowing terminology from the literature on kernel
mean embeddings of probability distributions [Fukumizu et al., 2004, Sriperumbudur et al., 2011].

Definition 3. We say that the IPM dG associated with a function class G is characteristic for a
class of distribution pairs P2 ⊂ P(X ) × P(X ), if for all (P,Q) ∈ P2, we have dG(P,Q) > 0.

Remark 3. As mentioned above, in two-sample testing, we require dG to be characteristic for
P2 = {(P,Q) ∈ P(X ) × P(X ) : P 6= Q}. We will revisit this notion for other problems such as
bounded-mean testing, symmetry testing and independence testing later in the paper. For example,
in symmetry testing with real-valued random variables, we will require dG to be characteristic for
P2 which contains all pairs of non-symmetric distributions.

Let g∗ ≡ g∗(P,Q,G) denote the witness function, that is, the function in G at which the
supremum in the definition of dG is achieved. If we interpret G as a class of test-functions used to
distinguish two distributions P and Q, then g∗ represents the element of G that provides maximum
contrast between P and Q. If the supremum is achieved at more than one function, we can set
g∗ to be any one of them. On the other hand, when the supremum in the definition of dG is not
achieved, we can set g∗ to be any function that is ǫ-suboptimal for an arbitrarily small ǫ > 0. In
the cases we focus on, the supremum is achieved.
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Oracle Test In the two-sample testing problem, the distributions PX and PY are unknown, and
hence so is the witness function g∗ ∈ G associated with them. Hypothetically, if the witness function
g∗ associated with PX and PY were known, we could use it to define a test martingale (introduced
in Section 1.1), {K∗

t : t ≥ 0} as follows: set K∗
0 = 1 and

K∗
t = K∗

t−1 ×
(
1 + λ∗(g∗(Xt)− g∗(Yt)

))
, where

λ∗ ∈ argmax
λ∈[−1,1]

E[log (1 + λ(g∗(X) − g∗(Y )))], with (X,Y ) ∼ PX × PY . (3)

The above expressions can be interpreted as the wealth process of a fictitious bettor, betting on the
outcomes {(Xt, Yt) : t ≥ 1}, with payoff function g̃∗(x, y) = g∗(x) − g∗(y). The term λ∗ denotes
the optimal constant bet that ensures the fastest growth rate of the wealth when PX 6= PY , and
it depends on g∗ in addition to PX and PY . The log-optimality criterion is motivated by older
works such as Kelly [1956], Breiman [1961], as well as the more recent papers of Shafer [2021],
Waudby-Smith and Ramdas [2023], Grünwald et al. [2023]. As an additional benefit, this strategy
ensures that the bettor never puts all its wealth on the line; that is, it never risks ending up with
zero wealth. The process {K∗

t : t ≥ 0} is a test martingale when PX = PY , and it grows to infinity
at an exponential rate when PX 6= PY . These two properties suggest the following level-α sequential
test:

τ∗ := min{n ≥ 1 : K∗
n ≥ 1/α},

where the choice of threshold (i.e., 1/α) is motivated by Ville’s inequality [Ville, 1939]. It is easy
to verify that τ∗ is a consistent level-α test.

Our proposed test The oracle test discussed above is not practical, since it requires knowledge
of the witness function g∗, and the optimal bet λ∗. Instead, to design a practical test, we propose
to replace g∗ and λ∗ with predictable estimates {gt : t ≥ 1} and {λt : t ≥ 1}. In other words,
to construct a sequential test, we need a prediction strategy Apred for selecting {gt : t ≥ 1}, and
a betting strategy Abet for selecting {λt : t ≥ 1} in a data-driven manner. The strategy Apred, is
a collection of mappings {At,pred : t ≥ 1}, where At,pred maps (Xt−1

1 , Y t−1
1 ) to gt, an element in

G. Similarly, Abet is a collection of mappings, {At,bet : t ≥ 1}, where At,bet maps (Xt−1
1 , Y t−1

1 ) to
λt ∈ [−1, 1].

For fixed prediction and betting strategies, we can define the wealth process {Kt : t ≥ 1}, and
the corresponding sequential test τ as follows:

Kt = Kt−1 ×
(
1 + λt

(
gt(Xt)− gt(Yt)

))
, with K0 = 1, and

τ := min{t ≥ 1 : Kt ≥ 1/α}. (4)

Thus, the task of designing a sequential test is equivalent to that of choosing prediction and
betting strategies, Apred and Abet. The statistical properties of the resulting test will depend on
how quickly Apred and Abet approximate g∗ and λ∗. We will employ the Online Newton Step (ONS)
betting method of Cutkosky and Orabona [2018], which we describe in Definition 5, as the betting
strategy in all subsequent tests. The choice of the prediction strategy, however, will rely on the
specific function class G, as we show formally in Theorem 1. To simplify our presentation in this
section, we will make the following assumption.

9



Assumption 1. For any g that lies in G, the function −g also belongs to G. This implies that we
can write dG(P,Q) = supg∈G EP [g(X)] − EQ[g(Y )], without the absolute value.

Remark 4. We emphasize that Assumption 1 is made purely to simplify the presentation of the
section. In cases where this condition is not satisfied, such as for Kolmogorov-Smirnov metric (dKS),
we can construct the wealth process by hedging our bets over function classes G and −G := {−g :
g ∈ G}. That is, we can define the wealth process at time t as Kt =

1
2

(
K+

t +K−
t

)
, where K+

t (resp.
K−

t ) denotes the wealth process with payoffs from G (resp. −G). The details are in Appendix A.5.

The quality of a prediction strategy used for constructing the test τ is quantified in terms of its
regret, which we define below.

Definition 4 (Regret of a prediction strategy). The regret of a prediction strategy, Apred, on a
sequence of observations {(Xt, Yt) : 1 ≤ t ≤ n} is defined as

Rn ≡ Rn (Apred,G,Xn
1 , Y

n
1 ) :=

(
sup
g∈G

n∑

t=1

g(Xt)− g(Yt)

)
−

n∑

t=1

gt(Xt)− gt(Yt),

where for any t ≥ 1, the term gt is the Ft−1-measurable element of G selected by the prediction
strategy Apred. Recall that Ft−1 = σ ({(Xi, Yi) : 1 ≤ i ≤ t− 1}).

Note that the above definition of regret places no probabilistic assumptions on the observations.
A good strategy should ensure that the average regret, Rn(Apred,G,Xn

1 , Y
n
1 )/n, converges to zero; at

least on a per-sequence basis or, better still, uniformly over all observation sequences. In Section 2.2,
we show how the regret guarantees of a prediction scheme translates into statistical properties of
the resulting sequential test.

We end this section by introducing the ONS betting strategy, AONS, that we will use for selecting
the bets {λt : t ≥ 1} in all the tests in this paper.

Definition 5 (ONS betting strategy). Let {vt ∈ [−1, 1] : t ≥ 1} denote a sequence of outcomes.
In the two-sample testing case, we have vt = gt(Xt) − gt(Yt), where {gt : t ≥ 1} are chosen using
any prediction strategy Apred. Initialize λ1 = 0, and a0 = 1. Then, for t = 1, 2, . . . :

• Observe vt ∈ [−1, 1].

• Set zt = vt/(1− vtλt).

• Update at = at−1 + z2t .

• Update λt+1 as follows:

λt+1 = min

{
1

2
,max

{
−1

2
, λt −

2

2− log 3

zt
at

}}
.

The ONS strategy is easy to implement, as it has a constant computational complexity at each
time step t. Furthermore, if the observations {vt : t ≥ 1} deviate from zero on average, the bets
chosen by the ONS strategy ensure an exponential growth of the wealth process Kt, as we discuss
in Appendix A.3.
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2.2 Theoretical Analysis

In this section, we present the main theorem characterizing the statistical properties of the test
introduced in the previous section. While the formal statements presented in Theorem 1 require
additional notation, the main takeaways can be summarized as follows:

• The test τ , introduced in (4), controls the type-I error at the level α uniformly over the null
class Pnull for any prediction strategy Apred.

• If Apred guarantees a limiting average regret smaller than dG(PX , PY ) almost surely when
PX 6= PY , the test τ is consistent. If, in addition, the limiting average payoff function is equal
to dG(PX , PY ), then the process {Kt : t ≥ 1} grows at an order optimal exponential rate.

• If Apred guarantees zero limiting average regret uniformly over all sequence of observations
with sufficiently high probability, then the test τ has a finite expected sample size. If this
condition is guaranteed with probability one, then we can also show that τ is exponentially
consistent ; that is, its type-II error converges to zero exponentially.

We now introduce the additional terms required to state our main result. First, we introduce

∆ = sup
g∈G

E[g(X) − g(Y )] = dG(PX , PY ), and σ2 = sup
g∈G

V (g(X) − g(Y )) , (5)

where V(·) denotes the variance operator. For some non-increasing sequence {rn ∈ [0, 1] : n ≥ 1},
define the event En = {Rn/n ≤ rn} for all n ≥ 1. Introduce the term n0(ǫ, α) to denote the
minimum number of observations needed by Apred to make the average regret (under the event En)
sufficiently small,

n0(α,∆, σ) := min

{
n ≥ 1 : 8rn +

52 log(n/α)

n
+ 12σ

√
log n

n
< ∆

}
. (6)

Note that, if {rn : n ≥ 1} converges to zero, then n0(α,∆, σ) is guaranteed to be finite for all ∆ > 0.
To simplify the notation, we suppress the Apred, G and (PX , PY ) dependence of n0. The specific
form of the term 52 log(n/α)/n+12σ

√
log n/n is due to the exponentially growing lower bound on

the wealth after n steps guaranteed by the ONS betting strategy (details in Appendix A.3).
Finally, the term β, defined below, will be used to characterize the error exponent of our

proposed test (note that dKL below denotes the KL-divergence).

β = sup
ǫ>0

inf
P ′×Q′∈P2

ǫ,d

dKL(P
′, PX) + dKL(Q

′, PY )

2
, (7)

where P2
ǫ,G = {P ′ ×Q′ ∈ P(X ) × P(X ) : dG(Q

′, P ′) ≤ ǫ}.

To interpret this expression, first note that when ǫ = 0, the class P2
ǫ,G corresponds to the set of null

distributions for two-sample testing, Pnull, introduced in (1). Then, for a fixed ǫ > 0, the class P2
ǫ,G

is an ǫ-expansion of Pnull in terms of the distance measure dG . Hence, β can be interpreted as the
projection (in terms of the KL-divergence, dKL) of the pair (P,Q) when P 6= Q onto a vanishingly
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small expansion of the null set. In the special case, when dG metrizes weak convergence, β admits
the simpler representation: β = infP ′∈P(X )

1
2 (dKL(P

′, PX) + dKL(P
′, PY )).

We can now state the main result of this section.

Theorem 1. Suppose dG is characteristic (Definition 3) for P2 = {(P,Q) ∈ P(X )×P(X ) : P 6= Q},
and Assumption 1 holds. Consider observations {(Xt, Yt) : t ≥ 1} drawn i.i.d. according to PX×PY .
Let τ ≡ τ(Apred,AONS) denote a sequential test with prediction strategy Apred, and betting strategy
AONS introduced in Definition 5. Then, the following statements are true:

• For any prediction strategy, the type-I error rate is controlled at the specified level α uniformly
over the class of null distributions (1). That is,

sup
PX×PY ∈Pnull

PPX×PY
(τ < ∞) ≤ α. (8)

• Suppose PX 6= PY , and the per-sequence average regret of Apred satisfies

lim sup
n→∞

Rn (Apred,G,Xn
1 , Y

n
1 )

n
< dG(PX , PY ) almost surely.

Then, the sequential test τ has power one under the alternative:

PPX×PY
(τ < ∞) = 1, for each PX × PY ∈ Palt. (9)

• Suppose PX 6= PY , and the strategy Apred for choosing {gt : t ≥ 1} satisfies

lim
n→∞

1

n

n∑

t=1

gt(Xt)− gt(Yt) = EPX
[g∗(X)]− EPY

[g∗(Y )] = ∆. (10)

Then, the test τ is consistent, and furthermore the process process Kn grows to infinity at an
exponential rate:

lim inf
n→∞

1

n
logKn ≥ ∆

(
∆

E[(g∗(X)− g∗(Y ))2]
∧ 1

)
. (11)

• Suppose that PX 6= PY , and there exists a sequence {rn : n ≥ 1} such that rn → 0 and∑
n≥1 P(E

c
n) < ∞, where En = {Rn/n ≤ rn}. Then, we have the following upper bound on

the expected stopping time:

E[τ ] = O
(
n0(α,∆, σ) +

∞∑

n=1

P(Ec
n)

)
. (12)

• Suppose PX 6= PY , and there exists a sequence {rn : n ≥ 1} with rn → 0, and P(Ec
n) = 0 for

all but finitely many n ≥ 1. Then, we have the following under H1 with PX × PY ∈ Palt:

lim
n→∞

− 1

2n
log (PPX×PY

(τ > n)) ≥ β. (13)

Recall that the terms n0(α,∆, σ), and β were defined in (6) and (7) respectively.
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We will see later, that in many practical tests, both n0(α,∆, σ) and
∑

n≥1 P(E
c
n) = O(1) are of

the order O(σ2 log(1/α∆)/∆2), and thus (12) implies that E[τ ] is also O
(
σ2 log(1/α∆)/∆2

)
. A

detailed proof of Theorem 1 is in Appendix C.

Remark 5. As mentioned before, (8) is a consequence of the fact that {Kt : t ≥ 1} is a composite
test martingale for the class of distributions Pnull. In fact, the process {Kt : t ≥ 0} associated with
any prediction strategy Apred can be shown to satisfy the property supPX×PY ∈Pnull

supτ ′ EP [Kτ ′ ] ≤
1, where τ ′ is any stopping time adapted to {Ft : t ≥ 0}. This inequality is the defining property
of e-processes studied in recent works such as [Ramdas et al., 2021, Grünwald et al., 2023]. Hence,
our general approach for designing the wealth process {Kt : t ≥ 1} described in this section, can
also be thought of as a method of constructing nontrivial e-processes for Pnull that grow to infinity
under the alternative if the prediction strategy suffers vanishing average regret.

Remark 6. It is easy to check that the condition (10) is satisfied by the plug-in strategy for
any function class G that is uniformly learnable. Furthermore, following the same arguments
as Podkopaev et al. [2023, Proposition 1], we can also conclude that the growth rate of the oracle

process, {K∗
t : t ≥ 1}, is of the order Θ

(
∆
(

∆
E[(g∗(X)−g∗(Y ))2]

∧ 1
))

. This in turn implies the order

optimality of the rate obtained in (11) under the assumption (10). Additionally, when the variance
V(g∗(X) − g∗(Y )) is large (w.r.t. ∆2), the growth rate is ≍ ∆2, while for small variance, the rate
increases to ≍ ∆; thus displaying empirical Bernstein-type variance adaptivity.

Remark 7. We introduced the two-sample testing problem in Definition 2 with the assumption
that the two-streams of i.i.d. observations, {Xt : t ≥ 1} and {Yt : t ≥ 1}, are independent of each
other, following the standard formulation in literature. However, we note that the results stated
above in Theorem 1 are valid under a much weaker assumption that the stream {(Xt, Yt) : t ≥ 1}
consists of independent pairs of observations satisfying (Xt, Yt)

d
= (Yt,Xt) under the null, and

(Xt, Yt) 6 d= (Yt,Xt) under the alternative. This allows our tests to be applicable in interesting cases
where standard batch methods, such as permutation tests, fail. An example is when Xt and Yt are
obtained from a common parent variable Zt; that is, Xt = h(Zt, X̃t) and Yt = h(Zt, Ỹt), for some
function h, and with independent X̃t and Ỹt.

2.3 Extension to unbounded G
We now discuss how to design sequential tests when the class of test functions, G, contains possibly
unbounded functions. This allows us to significantly expand the class of test functions (G) that
can be employed within the framework of Section 2.1. For instance, following Kim et al. [2021], we
could use as gt, any classifier trained on the first t− 1 pairs of observations to distinguish PX and
PY .

Recall that our general approach uses the fact that E[g(X)− g(Y )] = 0 for all g ∈ G under the

null. However, note that g(X)− g(Y ) satisfies the stronger condition: g(X)− g(Y )
d
= g(Y )− g(X);

that is, it is symmetric for all g ∈ G under the null. This suggests that we can use ideas from
symmetry testing, such as those developed by Ramdas et al. [2020], to design appropriate test
martingales in the case of unbounded G.
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The only change we need to make is to apply an odd sigmoid function to the difference gt(Xt)−
gt(Yt), for selecting the bets and updating the wealth. We first formally state the properties required
of the sigmoid function.

Definition 6 (Sigmoid function). Let ̺ : R → [−1, 1] denote a sigmoid function satisfying:

1. ̺ is an odd function, that is ̺(x) = −̺(−x) for all x ∈ R.

2. limx→∞ ̺(x) = limx→−∞−̺(x) = 1.

An example of ̺ suggested by Ramdas et al. [2020] is ̺(x) = tanh(x) = ex−e−x

ex+e−x .

As before, let Apred denote any prediction strategy for selecting the functions {gt : t ≥ 1}.
Introduce the terms vt := ̺

(
gt(Xt) − gt(Yt)

)
, and let {λt : t ≥ 1} denote the bets selected by the

ONS strategy, AONS, applied to {vt : t ≥ 1}. We can define the following process:

K(u)
0 = 1, and K(u)

t = K(u)
t−1 × (1 + λtvt) for t ≥ 1, where vt = ̺ (gt(Xt)− gt(Yt)) .

Since ̺ is an odd function, E[vt|Ft−1] = 0, which implies that {K(u)
t : t ≥ 1} is a test martingale

under the null. This suggests the following level-α test: τ̺ = min{n ≥ 1 : K(u)
n ≥ 1/α}.

As in the case of Theorem 1, the consistency, exponential consistency and the expected stopping

time bound for the test τ̺ based on the modified process {K(u)
t : t ≥ 1} can be characterized in

terms of the modified regret, R̺
n, defined as

R̺
n ≡ R̺

n (Apred,G,Xn
1 , Y

n
1 ) :=

(
sup
g∈G

n∑

t=1

̺
(
g(Xt)− g(Yt)

)
)

−
n∑

t=1

̺
(
gt(Xt)− gt(Yt)

)
.

Since the function ̺ is not convex, developing prediction schemes that have theoretical guaran-
tees on the modified regret R̺

n may be nontrivial. However, some experimental results in Section 6
indicate that tests based on the prediction schemes that minimize the usual regret, Rn, still perform
very well in practice.

3 Bounded Mean Testing

To illustrate the steps involved in instantiating the general sequential test of Section 2, we begin
by considering a related, but conceptually simpler, task of testing the equality of the means of two
distributions. In this problem, we are given two streams of observations {Xt : t ≥ 1} and {Yt : t ≥
1}, taking values in the unit ball in the m-dimensional Euclidean space, X = {x ∈ R

m : ‖x‖2 ≤ 1}.
We assume that all the Xt (resp. Yt) are drawn i.i.d. from a distribution PX (resp. PY ), and our
goal is to test

H0 : EPX
[X] = EPY

[Y ], versus H1 : EPX
[X] 6= EPY

[Y ]. (14)
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Remark 8. The two-sample testing problem is equivalent to checking for the equality of the char-
acteristic functions of the two random variables — a much more stringent requirement than (14).
Nevertheless, bounded mean testing is a nontrivial task, with highly composite null and alternative
classes. Other than being bounded, the distributions do not have any other restrictions; they can
be discrete, continuous or mixed, and they do not need to have a common dominating measure.
This prevents several classical techniques from being applied to this problem. This section can be
seen as extending the univariate one-sample methods of Waudby-Smith and Ramdas [2023] to the
multivariate and two-sample setting.

For the rest of this section, we will first define a sequential test for (14) using the general
framework of Section 2, and then theoretically characterize its performance in Proposition 1.

Instantiating our test To instantiate the sequential test from Section 2, we need to specify a
function class G and a prediction strategy Apred (recall that the betting strategy is set to AONS

of Definition 5).
We set G = {gu(·) = 〈u, ·〉 : u ∈ R

m, ‖u‖2 ≤ 1/2}, where 〈x, y〉 = xT y denotes the usual inner
product in R

m. For the rest of this section, we will use U to denote the ball {u ∈ R
m : ‖u‖2 ≤ 1/2}.

The corresponding distance between two distributions P and Q taking values in X then becomes

dG (P,Q) = sup
u:‖u‖2≤1/2

〈EP [X]− EQ[Y ], u〉 = 1

2
‖EP [X]− EQ[Y ]‖2.

Thus the distance dG reduces to the Euclidean norm between the means of the two distribu-
tions (scaled by 1/2); a quantity which is zero only when the two means are equal. Hence, dG is
characteristic for the alternative class of distributions in the sense of Definition 3.

Next, we need to select a prediction strategy for selecting {gt : t ≥ 1} from G; or equivalently
for selecting {ut ∈ U : t ≥ 1}. The regret for this prediction problem is

Rn

n
=

1

n

(
max

u:‖u‖2≤1/2

n∑

t=1

〈u, Xt − Yt〉 −
n∑

t=1

〈ut, Xt − Yt〉
)

= max
u:‖u‖2≤1/2

n∑

t=1

〈u− ut, X̄n − Ȳn〉.

Since this regret corresponds to an online prediction problem with linear losses, we use an adaptive
version of the projected online gradient ascent (OGA) method (see Appendix A.4 for further details)
as the prediction strategy. To describe this strategy, we introduce the notation Mt =

∑t
i=1 ‖Xi −

Yi‖22, and set u1 = 0 ∈ U and η0 = 0. Then, for any t ≥ 1, we define the next payoff function,
gt+1(·) = 〈ut+1, ·〉 as follows:

ut+1 = ΠU

(
ut +

1√
Mt

(Xt − Yt)

)
, (15)

where ΠU (x) denotes the projection of x ∈ R
m onto the set U = {u ∈ R

m : ‖u‖2 ≤ 1/2}.
We now summarize all the steps of our sequential test for bounded mean testing below.
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Definition 7 (Sequential Test for Bounded Means Testing). Set K0 = 1, λ1 = 0, and u1 = 0 ∈ R
m.

For t = 1, 2, . . .:

• Observe Xt, Yt.

• Update the wealth: Kt = Kt−1 × (1 + λt〈ut,Xt − Yt〉). Reject the null if Kt ≥ 1/α.

• Obtain ut+1 from the OGA prediction strategy (15).

• Obtain λt+1 from the ONS betting strategy of Definition 5.

Computational Complexity The computational complexity of the test described in Definition 7
is O (τm), where τ denotes the (random) time at which the test rejects the null and m is the
dimension of X . This follows from the fact that for any t, the update of ut by OGA strategy is
an O(m) operation, the update of Kt is also an O(m) operation, and the update of λt+1 via ONS
strategy is an O(1) operation. Hence, the complexity of one step of the test is O(m). Since the
test rejects the null after τ observations, the overall complexity of the test is O(τm), as claimed.

Statistical Properties We can establish the statistical properties of the above test by special-
izing the general results of Theorem 1. In particular, we use the fact that the average regret of the
OGA strategy in this problem converges to zero uniformly (see Appendix A.4), which implies the
following results as a consequence of Theorem 1 (details in Appendix D).

Proposition 1. Introduce the terms ∆ = dG(PX , PY ) = (1/2)‖EPX
[X] − EPY

[Y ]‖2, and σ2 =
supu:‖u‖≤1/2 V (〈u,X − Y 〉) = O

(
E[‖X − Y ‖2]

)
. Then, for the sequential test described in Defini-

tion 7, we have the following:

Under H0 : P(τ < ∞) ≤ α.

Under H1 : P (τ < ∞) = 1, and E[τ ] = O
(
σ2 log(1/∆α)

∆2

)
. (16)

Thus, following the general framework introduced in the previous section, we have constructed
a level-α sequential test that is consistent against any fixed alternative. An interesting aspect of
the bound in (16) is the presence of the second moment term, σ2, in the numerator. In the worst
case, this term can be equal to 1/

√
2. However, for problems instances with σ2 is small, our test

has the ability to exploit this additional structure, and stop earlier.

Optimality We end this section by showing that there exist problem instances on which the
expected stopping time of our test, derived in Proposition 1, cannot be improved (modulo polylog-
arithmic terms). In particular, we do this by restricting our attention to a simple class of problems,
where PX and PY are distributions with finite support.

Proposition 2. Let τ ′ denote any level-α, power-one sequential test for the problem defined in (14),
such that the expected value of τ ′ is finite under H1. Then, there exist distributions PX and PY

supported on a finite subset of [0, 1], with ‖EPX
[X]−EPY

[Y ]‖2 = ∆ and E[(X−Y )2] = Ω(σ2), such

that we have E[τ ′] = Ω
(
σ2 log(1/α)

∆2

)
.
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The proof of this result is in Appendix F, and it proceeds by first obtaining a general information-
theoretic lower bound on any E[τ ′] in terms of dKL(PX , PY ), and then constructing distributions
for which dKL(PX , PY ) can be approximated in terms of ∆ and σ to get the required expression.

4 Sequential Two-Sample Kernel-MMD Test

We now instantiate the general strategy introduced in Section 2 for the two-sample testing problem,
using the kernel maximum mean discrepancy (MMD) metric. The batch two-sample test based on
this metric [Gretton et al., 2012] is widely used in practice, as it can be applied to observations
in arbitrary spaces as long as we can define positive-definite kernels on them. However, the exist-
ing sequential versions of this test, such as those proposed by Balsubramani and Ramdas [2016],
Manole and Ramdas [2023], often have poor empirical performance. In this section, we use our
framework to design the first sequential kernel-MMD test with strong theoretical guarantees along
with good empirical performance.

Let X denote the observation space, which for simplicity, we set to R
m for some m ≥ 1, and

let K : X × X → R be a positive definite kernel on X . We assume that K is uniformly bounded,
that is, supx,x′∈X

√
K(x, x′) ≤ 1, and let HK denote the reproducing kernel Hilbert space (RKHS)

associated with K. Since the unit ball in the RKHS HK satisfies Assumption 1, the associated
IPM, called the kernel-MMD metric, is defined as follows:

dMMD(P,Q) = sup
‖g‖K≤1

EP [g(X)] − EQ[g(Y )],

where ‖g‖K denotes the RKHS norm of the function g. The mean map of a distribution P is a
function in the RKHS given by µP := EP [K(X, ·)]. When P 6= Q, the “witness” function h∗ that
achieves the supremum in dMMD(P,Q) (i.e. witnesses the difference between P,Q) is simply given
by h∗ := µP−µQ

‖µP−µQ‖K , meaning that dMMD(P,Q) = EP [h
∗(X)] − EQ[h

∗(Y )].

Instantiating the test The above discussion suggests the choice of G = {g ∈ HK : ‖g‖ ≤ 1/2},
and g∗ = 1

2h
∗:

g̃∗(x, y) = g∗(x)− g∗(y) = (〈g∗,K(x, ·) −K(y, ·)〉) .

Note that the scaling h∗ by 1/2 in the definition of g∗ ensures that g̃∗ takes values in [−1, 1].
Having selected G, the final step in instantiating the sequential test is choosing an appropriate

prediction strategy. The regret of the prediction game after n observations for a prediction strategy
Apred playing {gt : t ≥ 1} is

1

n
Rn ≡ 1

n
Rn (Apred,G,Xn

1 , Y
n
1 ) = max

g∈G
1

n

n∑

t=1

〈g − gt,K(Xt, ·)−K(Yt, ·)〉.

A natural choice is the plug-in or the empirical risk minimization (ERM) strategy, that simply
selects gt = argmaxg∈G〈g, µP̂X,t−1

−µ
P̂Y,t−1

〉 (see Remark 11). We can check that this choice results

in a consistent sequential test. To get the exponent and bound on the expected stopping time under
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the alternative, however, we need to use an adaptive version of the online gradient ascent (OGA)
strategy, that proceeds as follows, with Mt :=

∑t
i=1 ‖gi(Xi, ·) − gi(Yi, ·)‖2K :

g1 = 0, and gt+1 = ΠG

(
gt +

1

2
√
Mt

(K(Xt, ·)−K(Yt, ·))
)

for t ≥ 1. (17)

Recall that ΠG denotes the projection operator (in terms of the RKHS norm ‖·‖K) onto the function
class G, which acts as follows: ΠG(h) = h/(2‖h‖K ). We now formally describe our sequential kernel
MMD test.

Definition 8 (Sequential Kernel MMD Test). Set K0 = 1, λ1 = 0, and g1 = 0 ∈ HK . For
t = 1, 2, . . .:

• Observe Xt, Yt.

• Update the wealth: Kt = Kt−1 × (1 + λt〈gt,K(Xt, ·) −K(Yt, ·)〉).

• Reject the null if Kt ≥ 1/α.

• Update gt+1 using the OGA prediction strategy (17).

• Update λt+1 using the ONS betting strategy Definition 5.

Computational Complexity The computational complexity of the test described in Definition 8
is O

(
τ2
)
, where τ denotes the (random) time at which the test rejects the null. This differs from

the test for equality of means in Section 3, which has a linear dependence on τ . This is because
the computation of the inner product 〈gt,K(Xt, ·) − K(Yt, ·)〉 in the kernel-MMD test is a O(t)
time operation as gt is a sum of t−1 terms, unlike the corresponding inner product in Definition 7,
which is a O(m) operator at all t. Adding this up over all values of t from 1 to τ implies the overall
quadratic complexity.

Statistical Properties As in the case of bounded-mean testing, we can establish the statis-
tical properties of the kernel-MMD test by specializing Theorem 1. Based on the regret bound
for OGA strategy stated in Appendix A.4, we note that the regret satisfies Rn = O(

√
Mn).

Plugging this into Theorem 1, we get the following with ∆ = dMMD(PX , PY ) and σ2 =
O
(
E[‖k(X, ·) − k(Y, ·)‖2K ]

)
:

Proposition 3. For the sequential test described in Definition 7, we have the following:

Under H0 : P(τ < ∞) ≤ α.

Under H1 : P (τ < ∞) = 1, E[τ ] = O
(
σ2 log(1/α∆)

∆2
+

log(1/∆)

∆

)
,

and lim
n→∞

− 1

2n
log P (τ > n) ≥ inf

P ′∈P(X )

1

2

(
dKL

(
P ′, PX

)
+ dKL

(
P ′, PY

))
.
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This result, proved in Appendix E, implies that the expected sample size required by our
sequential kernel-MMD test under the alternative has an inverse dependence on dMMD(PX , PY )

2.
This is of the same order as the minimum number of observations needed by the kernel-MMD test
of Gretton et al. [2012, Corollary 9] based on uniform deviation inequality. This highlights the key
benefit of our sequential test — the ability to adapt the sample size automatically to the unknown
alternative. This is not possible with fixed sample size tests in the absence of additional information
about dMMD(PX , PY ).

Optimality As in the case of bounded-mean testing, we can again show that there exist probabil-
ity distributions for which the quadratic dependence of the expected sample size on the kernel-MMD
distance between PX and PY cannot be improved.

Proposition 4. Let τ ′ denote any level-α, power-one sequential test for the problem defined in (4)
with X = R, such that the expected value of τ ′ is finite under H1. Then, there exist distributions
PX and PY supported on R, and a kernel K, such that dMMD(PX , PY ) = ∆ and E[‖K(X, ·) −
K(Y, ·)‖2K ] = Ω(σ2) for any ∆, σ2 > 0, such that we have E[τ ′] = Ω

(
σ2 log(1/α)

∆2

)
.

Thus this result implies that the performance of our sequential kernel-MMD test has the optimal
dependence on σ2 and α, and has a near-optimal (i.e., modulo log) dependence on ∆. The proof
of this statement is in Appendix F.

5 Generalizations

We now show how the game-theoretic testing formulation can be leveraged to design powerful
sequential tests in much more general settings, beyond the standard two-sample testing problem.
In particular, we discuss the following two extensions:

• In Section 5.1, we consider a time-varying version of the two-sample testing problem, and
show that the framework of Section 2 can still be used to construct a consistent test for this
problem.

• Next, in Section 5.2, we first introduce an abstract hypothesis testing problem (with i.i.d.
observations) that unifies several testing problems such as two-sample testing, testing for
independence and symmetry testing. We then introduce a testing strategy for this problem
using a class of test function G, similar to the approach of Section 2, and characterize the
statistical properties of the test in terms of the complexity of G.

5.1 Time-varying two-sample testing

We begin by defining a time-varying generalization of the two-sample testing problem.

Definition 9 (Two-sample testing with time-varying distributions). Consider two independent
sequence of observations, {Xt ∈ X : t ≥ 1} and {Yt ∈ X : t ≥ 1}, with Xt ∼ Pt and Yt ∼ Qt for
all t ≥ 1, where the distributions Pt and Qt are Ft−1 = σ(Xt−1

1 , Y t−1
1 ) measurable. Let P and Q
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denote the joint distributions of {Pt ∈ P(X ) : t ≥ 1} and {Qt ∈ P(X ) : t ≥ 1} respectively. For
some family of test functions G ⊂ [−1/2, 1/2]X satisfying Assumption 1, define

dG (P ,Q) := sup
g∈G

lim inf
n→∞

1

n

n∑

t=1

E [g(Xt)− g(Yt)|Ft−1] .

In this setting, we consider the following hypothesis testing problem:

H0 : dG (P ,Q)
a.s
= 0, versus H1 : dG (P ,Q)

a.s.
> 0.

Remark 9. The above problem can be considered as a game between the statistician and an
adversary. The adversary adaptively selects a sequence of distributions to induce the statistician to
reject the null (if null is true) or to continue sampling (if the alternative is true). In the special case
of Pt = PX , and Qt = PY for all t ≥ 1, this problem reduces exactly to the usual two-sample testing
problem considered in Section 2. Beyond this special case, this formulation covers a significantly
larger set of problems. For example, when Pt = Qt for all even t and EPt[g

∗(Xt)]−EQt [g
∗(Yt)] ≥ 2∆

for all odd t for some g∗ ∈ G, the distance dG(P ,Q) ≥ ∆, even though Pt = Qt infinitely often.

Remark 10. Note that, for the problem stated in Definition 9, the joint distributions of (Xt)
n
t=1

and (Yt)
n
t=1, for any fixed n, are non-exchangeable in general. This renders permutation tests, a

common approach for nonparametric testing in the batch setting, inapplicable to this problem.

We now show that, similar to the standard two-sample testing problem, the existence of a
prediction strategy with small limiting average regret on a per-sequence basis implies the existence
of a consistent sequential test.

Proposition 5. Let τ ≡ τ(AONS,Apred) denote a sequential test for the problem defined
in Definition 9. Then, for any prediction strategy Apred, we have P (τ < ∞) ≤ α, un-
der the null H0. Furthermore, under H1, let Apred denote a prediction strategy satisfying
lim supn→∞

1
nRn (Apred,G,Xn

1 , Y
n
1 ) < dG(P ,Q) almost surely. Then, if Assumption 1 holds, the

resulting test τ satisfies P (τ < ∞) = 1.

The proof of this statement is given in Appendix G.

5.2 Unified approach to several testing problems

We noted in Remark 1 that our strategy exploits the invariance of the null distributions in two-
sample testing to an operator T that flips the order of the paired observations; that is T (X,Y ) =
(Y,X). Building upon this observation, and following Romano [1989], we now state an abstract
testing problem in which the null class contains precisely those distributions that are invariant to
some given operator T .

Definition 10 (Abstract Hypothesis Testing Problem). Let Pnull and Palt denote disjoint classes of
distributions on the observations space Z. Let T : Z → Z denote an operator on the observation
space satisfying P ◦ T −1 = P for all P ∈ Pnull, and P ◦ T −1 6= P for all P ∈ Palt. Given an
i.i.d. sequence of observations Z1, Z2, . . . , drawn according to P ∈ Pnull ∪ Palt, we want to test
H0 : P ∈ Pnull, versus H1 : P ∈ Palt.
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To proceed as in Section 2, we need an appropriate integral probability metric (IPM). With
G = {g : Z → [−1/2, 1/2]} denoting a collection of test functions, define

dG(P,P ◦ T −1) := sup
g∈G

|EP [g(Z)]− EP [g(T Z)]| . (18)

To define a sequential test, we require that the IPM dG defined above, associated with the function
class G, is characteristic for the family of distributions P2 ⊂ P(Z) × P(Z), defined as

P2 = {(P,P ◦ T −1) : P ∈ Palt}. (19)

Under the above assumption, we can define a sequential test similar to the two-sample
case in Section 2. In particular, assuming that PZ ∈ Palt is the true distribution, we can
find a function g∗ in G, that maximizes the distance dG in (18). With λ∗ representing
argmaxλ∈(−1,1) EPZ

[log (1 + λ (g(Z)− g(T Z))), we can define the oracle test, τ∗, as

τ∗ = min{n ≥ 1 : K∗
n ≥ 1/α},

where K∗
n = K∗

n−1 × (1 + λ∗ (g∗(Zn)− g∗(T Zn))) , and K∗
0 = 1.

Following the same steps as in Section 2, we need to select a prediction strategy Apred for
selecting {gt : t ≥ 1}, estimates of the witness function g∗, and a betting strategy Abet, for
selecting {λt : t ≥ 1}; estimates of the optimal betting fraction λ∗.

Definition 11 (Abstract Sequential Test). Let Z1, Z2, . . . denote an i.i.d. sequence drawn from a
distribution P ∈ Pnull∪Palt, and let Apred denote any prediction strategy that generates a sequence
{gt ∈ G : t ≥ 1}, with gt being Ft−1 = σ(Z1, . . . , Zt−1) measurable. Let {λt ∈ (−1, 1) : t ≥ 1}
denote the sequence of bets generated by the ONS strategy introduced in Definition 5. Then, for
a given level α ∈ (0, 1), we define the following sequential test:

τ = min{n ≥ 1 : Kt ≥ 1/α},
where Kt = Kt−1 × (1 + λt (gt(Zt)− gt(T Zt))) for t ≥ 1, and K0 = 1.

It is easy to check that the wealth process {Kt : t ≥ 1} is a test martingale under the null
for any prediction strategy Apred. Hence, τ controls type-I error at level α uniformly over the
possibly composite null. Furthermore, as in Section 2, the power of our sequential test can again
be characterized in terms of the regret of the prediction strategy Apred, defined as

Rn ≡ Rn (Apred,G,T , Zn
1 ) := sup

g∈G

n∑

t=1

((
g(Zt)− g(T Zt)

)
−
(
gt(Zt)− gt(T Zt)

))
.

Corollary 1. For the hypothesis testing problem defined in Definition 10, let τ ≡ τ(AONS,Apred)
denote the sequential test introduced in Definition 11 with function class G. If G satisfies Assump-
tion 1, and the associated IPM dG, defined in Equation (18), is characteristic (Definition 3) for the
class of distributions defined in (19), we have the following:
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• For any prediction strategy Apred, the test τ(AONS,Apred) controls the type-I error uniformly
over the null; that is, supP∈Pnull

PP (τ < ∞) ≤ α.

• If Apred ensures that lim supn→∞
Rn(Apred,G,T ,Zn

1 )
n < dG

(
P,P ◦ T −1

)
almost surely under the

alternative, then the test τ is consistent. That is, PP (τ < ∞) = 1 for all P ∈ Palt.

• If Apred ensures that there exists a sequence {rn : n ≥ 1} with rn → 0, and events En =
{Rn/n ≤ rn} with

∑∞
n=1 P(E

c
n) < ∞, then the expected stopping time satisfies the upper

bound (12). If we have the stronger conditions that P(Ec
n) = 0 for all n ≥ 1, then the test τ

also satisfies (13).

The proof follows the same steps as the proof of Theorem 1, and we omit the details.
While Corollary 1 identifies sufficient conditions for the consistency of the test τ , it is non-

constructive in nature. We now analyze the properties of our test τ initialized with a natural
prediction strategy, called the empirical risk minimization (ERM) strategy.

Definition 12 (ERM strategy). For a stream of observations {Zt : t ≥ 1}, the ERM prediction
strategy, AERM, selects {gt ≡ gt(Z

t−1
1 ) : t ≥ 1} as follows:

gt ∈ argmax
g∈G

1

t− 1

t−1∑

i=1

g(Zi)− g(T Zi), for all t ≥ 2,

and at t = 1, AERM sets g1 to be an arbitrary element of G.

We will analyze the performance of our test τ(AONS,AERM) under certain assumptions on the
richness of the function class G. A suitable measure of complexity is the Rademacher complexity,
whose definition we recall next.

Definition 13. Consider a function class H containing mappings from some observations space
Z to R, and let P ∈ P(Z) denote a probability distribution on Z. For a natural number n ≥ 1,
let σn = (σ1, . . . , σn) denote a random vector distributed uniformly over {−1,+1}n. Then, given
Z1, Z2, . . . , Zn drawn i.i.d. from P , introduce the the following complexity terms:

Cn(H, P ) :=
1

n
E

[
sup
h∈H

n∑

t=1

h(Zt)σt

]
, and Cn(H) := sup

P∈P(Z)
Cn(H, P ).

Before stating Theorem 2, we need to introduce two more terms: the function class G̃, and the
notion of ∆-separated alternatives, Palt(∆).

G̃ := {g̃(·) = g(·)− g(T ·), g ∈ G}, and Palt(∆) = {P ∈ Palt : dG(P,P ◦ T −1) > ∆)}. (20)

We now present the main result of this section, that relates the consistency and detection boundary
of τ(AONS,AERM) to the complexity of the function class G̃.

Theorem 2. For the sequential test τ ≡ τ(AONS,AERM) for the testing problem of Definition 10,
with prediction strategy AERM introduced in Definition 12, we have the following:
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• τ is consistent against any P ∈ Palt, for which Cn(G̃, P ) converges to 0, that is,

lim
n→∞

Cn(G̃, P ) → 0 ⇒ PP (τ < ∞) = 1.

• Suppose Cn(G̃) converges to 0 with n, and for a small γ ∈ (0, 1), introduce the term

∆∗
n =

√
8 log n/α

n
+

2

n

(
2 +

n−1∑

t=1

(
Ct(G̃) + 5

√
log(16n/γ)

2t

))
+

√
8 log(4/γ)

n
.

Then, for any n ≥ 1, and ∆n > ∆∗
n,

sup
P∈Palt(∆n)

PP (τ > n) ≤ γ.

In other words, ∆∗
n denotes the minimum separation that can be detected with power greater

than 1− γ by our sequential test within the first n observations.

The proof of this statement is given in Appendix H.

Remark 11. The above result implies that the detection boundary for our test in terms of the

dG distance measure is given by ∆∗
n = Ω

(
1
n

∑n−1
t=1 Ct(G̃) +

√
log(n/α)

n +

√
log(n/γ)

n

)
, where α and

γ correspond to the type-I and type-II errors. For the bounded-mean test (Section 3) and the
kernel-MMD test (Section 4) introduced earlier, it is known that Ct(G̃) decays to zero at a 1/

√
t

rate. Hence, for both these tests, we have ∆∗
n = Ω

(√
log(n/α)

n +
√

log(n/γ)
n

)
.

As mentioned earlier, the abstract test of Definition 10 with T such that T (X,Y ) = (Y,X)
reduces to the two-sample testing problem. We now show that two other important testing problems
are also covered by this definition.

5.2.1 Testing for symmetry

We state the simplest version, in which Z = R, and we assume that the null distributions are
symmetric about the origin. That is, T : Z → Z, such that T z = −z. Hence, for any continuous
P ∈ P(Z), we have P ◦ T −1 = Q such that FP (z) = 1 − FQ(−z) for all z ∈ Z. To define the
sequential test, we can use the function class G = {g(x) = 1{x≤u} : u ∈ Z}. Then the distance dG
in (18) reduces to the KS distance between P and P ◦ T −1:

sup
g∈G

|EP [g(Z)]− EP [g(T Z)]| = sup
u∈R

|FP (u)− 1 + FP (−u)| > 0.

Theorem 2 implies that the test with ERM prediction strategy is consistent, and has a detection
boundary of the order O(

√
log n/n).
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5.2.2 Testing for independence

In this case, we have two observation spaces X and Y, not necessarily the same, and define Z =
(X × Y)×(X × Y). Let PXY denote a distribution in P(X×Y), and let PX ∈ P(X ) and PY ∈ P(Y)
denote its marginals. Under the null hypothesis, we have PXY = PX × PY , which can be encoded
via the operator T : Z → Z, with T ((x, y), (x′, y′)) = ((x, y′), (x′, y)).

When X = Y = R, we can again select G = {g(x) = 1{x≤u} : u ∈ R}, which leads to dG being the
KS distance between PXY and the product of its marginals PX×PY . For general X 6= Y, a suitable
choice of G is a norm ball in the RKHS of the product kernelK((x, y), (x′, y′)) := KX(x, x′)KY (y, y

′)
for positive definite kernels KX : X ×X → R and KY : Y ×Y → R. In this case, the distance dG is
the kernel-MMD distance between PXY and PX×PY ; also called the HSIC criterion [Gretton et al.,
2005]. In both cases, Theorem 2 implies that the test is ERM strategy is consistent, and furthermore
has a detection boundary of the order O(

√
log n/n) in their respective distance metrics.

6 Numerical Simulations

In this section, we demonstrate, through experiments, the key advantages of our betting-based
sequential kernel-MMD test over existing batch and sequential tests.
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Figure 1: Comparison of the power of our sequential kernel-MMD test (betting) with other sequen-
tial tests (LC, MR, BR).

Experiment Setup We will consider the two-sample testing problem with observations taking
values in the set X = R

m for some m ≥ 1. In all cases, we will fix the distribution PX to
N(0, Im), where Im is the m × m identity matrix. For any integer 1 ≤ j ≤ m, and any ǫ ∈ R,
let aǫ,j ∈ R

m denote the element obtained by changing the first j coordinates of 0 ∈ R to ǫ. We
set the distribution PY to N(aǫ,j, Im) for different choices of j, ǫ. For the first two experiments we
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Figure 2: Comparison of the type-I error of our sequential kernel-MMD test (betting) with other
sequential tests (LC, MR, BR).
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Figure 3: This figure demonstrates the ability of our sequential test to adapt to the unknown
hardness of the problem: we set PX ∼ N(O, Im) and PY ∼ N(aǫ,1, Im), where aǫ,1 is obtained by
setting the first coordinate of 0 ∈ R

m to ǫ. Each solid curve is obtained by running (200 trials
of) the kernel-MMD permutation test for 20 different values of the sample size, while the dashed
vertical line shows the corresponding average stopping time of our sequential kernel-MMD test.

use the Gaussian kernel K(x, y) = exp
(
− 1

2b2
‖x− y‖22

)
, with the bandwidth b set to

√
m. In the

third experiment, we use a linear kernel K(x, y) = xT y, to study the performance of our modified
sequential test with unbounded kernels, discussed in Section 2.3.

25



0 100 200 300 400 500 600 700 800

0.2

0.4

0.6

0.8

1

Sample-size (n)

P
ow

er
Adaptivity of sequential kernel-MMD test with unbounded kernel

2.0
1.2
1.0
0.8
0.6

Figure 4: This figure demonstrates the ability of our sequential test to adapt to the unknown
hardness of the problem: we set PX ∼ N(O, Im) and PY ∼ N(aǫ,1, Im), where aǫ,1 is obtained by
setting the first coordinate of 0 ∈ R

m to ǫ. Each solid curve is obtained by running (200 trials
of) the kernel-MMD permutation test with linear kernel for 20 different values of the sample size,
while the dashed vertical line shows the corresponding average stopping time of our sequential
kernel-MMD test.

Experiment 1: Comparison of power and type-I error with existing sequential
tests We compare the power of our kernel-MMD test with the following baselines: (i) the
sequential test of Lhéritier and Cazals [2019], denoted by LC, (ii) the sequential test proposed
by Manole and Ramdas [2023] based on reverse submartingales (MR), and (iii) the linear-time se-
quential test of Balsubramani and Ramdas [2016], denoted by BR. The power curves of the above
tests are shown in Figure 1. For each test, we run 400 trials, and the power curves are obtained by
plotting the empirical CDF of the stopping times.

Similarly, we plot the type-I error curves of the four sequential tests under the null in Figure 2,
averaged over 1000 trials. As expected, the MR and BR tests are significantly more conservative
as compared to the martingale based tests (betting and LC).

Experiment 2: Verification of adaptivity Proposition 3 shows that the expected stop-
ping time of our kernel-MMD test adapts to the hardness of the problem, without any addi-
tional information. To verify this claim, we again fix m = 10, j = 1 and vary ǫ in the range
{0.3, 0.35, 0.4, 0.45, 0.5, 0.7}. For every ǫ value, we run 200 trials of our kernel-MMD test and
obtain the expected stopping time. A a baseline, we run 200 trials each of the kernel-MMD per-
mutation test with 150 permutation, at 20 different sample size values to obtain the power curve.
The results, shown in Figure 3, demonstrate the ability of our sequential test to adapt the expected
stopping time to the alternative.
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Experiment 3: Sequential test with unbounded (linear) kernel The sequential kernel-
MMD test, defined in Section 4, requires the kernel K to be uniformly bounded; that is,
supx∈X K(x, x) ≤ B < ∞. However, as we discussed in Section 2.3, this restriction can be easily
addressed within our framework by using an anti-symmetric sigmoidal function ̺ taking values in
[−1, 1]. To empirically verify the performance of our modified sequential test with ̺(·) = tanh(·),
we repeat the previous experiment with an unbounded linear kernel K(x, y) = xT y. The result is
plotted in Figure 4, and shows the adaptivity of our sequential test even in the case of unbounded
kernels.

7 Discussion

7.1 Advantage of sequential tests

Our sequential tests have the following advantages compared to existing batch tests:

• Adaptivity to alternative: As shown analytically in Proposition 1 and Proposition 3, as well
as empirically in Section 6, the expected stopping times of our sequential tests automatically
adapt to the unknown hardness of the problem, measured by dG(PX , PY ). This is in contrast
to the fixed-sample size tests, where to choose the ‘right’ sample size, we require additional
prior information about the problem (i.e., a lower bound on dG(PX , PY )).

• Lower computational complexity: Selecting the rejection threshold in fixed-sample size tests
is often a nontrivial and computationally expensive task. For example, kernel-MMD per-
mutation test requires recomputing the quadratic-time kernel-MMD statistic b times, with b
usually in [200, 1000]. In contrast, the rejection threshold for our level-α sequential tests is
1/α — a direct consequence of using test martingales in our design. This leads to significantly
lower running times of our sequential test in comparison to its fixed sample size counterpart.
More importantly, this threshold does not lead to an overly conservative test: Ville’s inequal-
ity holds with equality for continuous-time nonnegative martingales, and often holds almost
with equality for our discrete-time nonnegative martingales.

7.2 Benefits of game-theoretic formulation

Our design strategy is based on a game-theoretic view of sequential testing (Appendix A.1), recently
popularized by Shafer [2021], where the gain in the wealth of a (fictitious) bettor has a precise
interpretation as the strength of evidence against the null. Working in this framework has two
main benefits:

• Connections to online learning: As we described in Theorem 1, the game-theoretic approach
allows us to connect the statistical properties of the sequential test to the regret achieved by
the prediction strategy in an associated online learning problem. Since there exists a well-
developed theory of online learning algorithms [Cesa-Bianchi and Lugosi, 2006] for a wide
range of function classes G, our work provides a simple method for using these algorithms to
design new sequential tests with strong performance guarantees.
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• Extension to non-i.i.d. observations: Many practical two-sample tests in the batch setting
rely strongly on the observations being i.i.d., or at least exchangeable. For example, the kernel-
MMD permutation test considered in our experiments in Section 6 uses the exchangeability
of the observations to obtain the rejection threshold. However, these conditions are often not
satisfied in many applications, preventing the use of such tests. In contrast, our techniques
using the game-theoretic framework easily extend to a variant of the two-sample testing with
time-varying probability distributions, as we described in Section 5.1.

7.3 Working with unpaired observations

In Section 2, we developed our two-sample testing framework under the assumption that, in each
round t, we observe the pair (Xt, Yt) drawn from PX × PY . However, in many applications, the
observations arrive in batches, often of unequal sizes. That is, in round t, we observe {Xt,i : 1 ≤
i ≤ nt} and {Yt,j : 1 ≤ j ≤ mt} drawn i.i.d. from PX and PY respectively, with nt possibly different
from mt. Such observation models can be easily handled in our framework by averaging the payoffs
in the update rule for the test martingale, as follows:

Kt = Kt−1 ×


1 + λt


 1

nt

nt∑

i=1

gt(Xt,i)−
1

mt

mt∑

j=1

gt(Yt,j)




 (21)

= Kt−1 ×


1 + λt


 1

ntmt

nt∑

i=1

mt∑

j=1

gt(Xt,i)− gt(Yt,j)




 .

In some applications, instead of batches, we only have access to a single stream of observations
{(Zt, Lt) : t ≥ 1}, with Lt ∈ {0, 1} and Lt = 0 indicates Zt ∼ PX , while Lt = 1 implies that
Zt ∼ PY . The averaging idea, described above in (21), can be used to address this case as well, with
the modification that we only update the test martingale when we have at least one observation from
both distributions. More formally, we update the test martingale using (21) at random stopping
times {Ts : s ≥ 1}, defined as follows:

T0 = 0, and Ts = min
{
t > Ts−1 : 0 <

t∑

t′=Ts−1+1

Lt′ < t− Ts−1

}
.

Together with the results of Section 2 and Section 5.1, the above discussion implies that the
framework developed in this paper can be used to design consistent sequential tests that work under
significantly weaker assumptions than existing tests in literature. In particular, our strategy works
with arbitrary observation models, with possibly dependent streams of observations (Remark 7),
that are drawn from time-varying distributions (Section 5.1).

8 Conclusion

In this paper, we described a general strategy of constructing sequential tests for the two-sample
testing problem and its generalizations. The fundamental idea underlying our approach is the
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principle of testing by betting, which motivates a game-theoretic formulation of the problem. We
presented a general strategy of constructing sequential tests within this framework based on a class
of integral probability metrics (IPMs), and instantiated this strategy for the kernel-MMD metric.
Both theoretical and empirical results demonstrate the computational efficiency and the ability of
the test to adapt to unknown alternatives.

Since the framework developed in our paper is quite general, adapting it to new testing prob-
lems is an interesting direction for future work. For instance, inspired by this work, Shaer et al.
[2023] very recently proposed a conditional independence test based on symmetry testing, concur-
rently developing ideas similar to those discussed in Section 2.3. Another important direction is
to instantiate our framework using other distance measures with variational representations, such
as Wasserstein metric and f -divergences, and examine the stopping times and exponents that re-
sult. Finally, a rigorous empirical evaluation of the performance of the “invariant” tests proposed
in Section 5.2 is also an important question.
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A Additional Background

A.1 Testing by Betting

The principle of testing by betting [Shafer, 2021] provides the conceptual foundation for our testing
strategy. The basic idea can be stated as follows [Shafer, 2021, § 2]: the claim that a random
variable Z is distributed according to PZ can be interpreted equivalently as the offer of a bet with
any payoff function sold for its expected value under the distribution PZ . This principle implies
that a person claiming that Z ∼ PZ (a “Forecaster”) should be willing to play any betting game
that is fair under this claim, since he is not expected to lose money in such a game. Following the
Forecaster’s claim about Z, a Skeptic (who does not believe the Forecaster) can announce a
betting score S : Z → R+ which represents the amount that Skeptic’s wealth is multiplied by:
if the outcome is z, then Skeptic gets back S(z) dollars for each dollar that was bet. This bet
is “fair” from the point of view of the Forecaster if EPZ

[S(Z)] ≤ 1, because it implies that the
Skeptic cannot make money if the Forecaster is correct. So if a Skeptic chooses to bet against
the Forecaster with any such pre-announced betting score, the Forecaster will be happy to play
this game.

We can formally describe this as a repeated game involving three players, Forecaster, Skeptic
and Reality following Shafer and Vovk [2019], Shafer [2021].

Definition 14 (Betting Protocol). Before the start of the game, Forecaster declares that the
observations {Zt : t ≥ 1} taking values in Z are distributed i.i.d. according to some PZ in the
class of distributions P0. Skeptic begins with an initial wealth K0 = 1, and the game proceeds as
follows for t = 1, 2, . . . :

• Skeptic selects a function g̃t : Z → [−1, 1] such that EP ′ [g̃t(Z)|Ft−1] = 0 for all P ′ ∈ P0,
and Ft−1 = σ (Z1, . . . , Zt−1).

• Skeptic bets an amount λtKt−1 for an Ft−1-measurable λt ∈ [0, 1] on the next realization
of Z.

• Reality reveals the next realization Zt.

• The wealth of the Skeptic is updated as Kt = Kt−1 + λtKt−1g̃t(Zt) = Kt−1 (1 + λtg̃t(Zt)).

Remark 12. In the two-sample testing problem, the role of Forecaster is played by the null
hypothesis, the role of Skeptic is played by the statistician and the role of Reality is played by
the independent and identically distributed (i.i.d.) source, generating the observations.

A.2 Ville’s inequality

We now recall a time-uniform analog of Markov’s inequality, derived by Ville [1939].

Fact 1 (Ville’s Inequality). Suppose {Kt : t ≥ 0} is a nonnegative supermartingale process adapted

to a filtration {Ft : t ≥ 0}. Then, we have, for any a > 0, P (∃t ≥ 1 : Kt ≥ a) ≤ E[K0]
a .

33



A.3 Details of ONS betting strategy

We used the ONS betting strategy proposed by Cutkosky and Orabona [2018, Algorithm 1]. The
key property of this betting strategy that we repeatedly use in designing our tests is that for any
sequence of outcomes {vt ∈ [−1, 1] : t ≥ 1}, the wealth process satisfies the following for any n ≥ 1.

Kn ≥ 1∑n
t=1 v

2
t

exp

(
(
∑n

t=1 vt)
2

4
(∑n

t=1 v
2
t +

∑n
t=1 vt

)
)

≥ exp


n

8

(
1

n

n∑

t=1

vt

)2

− log n


 .

This statement can be extracted from a more general result obtained by Cutkosky and Orabona
[2018] while proving their Theorem 1.

A.4 Regret Bound for OGA strategy

Let U denote an inner-product space, and let U1 and U2 denote two bounded subsets of U . Consider
the following prediction problem: For t = 1, 2, . . .:

• Player plays ut ∈ U1

• Adversary selects vt ∈ U2

• Player gains reward 〈ut, vt〉.
For any prediction strategy, A, that selects u1, u2, . . ., the regret after n rounds is defined as

Rn ≡ Rn(A,U1, v
n
1 ) = sup

u∈U1

n∑

t=1

〈u− ut, vt〉.

A useful strategy for this problem is the Online Gradient Ascent strategy (AOGA), that sets u0 as
an arbitrary element of U1 and proceeds as follows for t ≥ 1

ut = ut−1 + ηtvt−1,

where {ηt : t ≥ 1} are a non-negative decreasing sequence of step-sizes.
A standard result in online-learning [Orabona, 2019, Theorem 2.13] implies the following regret

bound for the OGA strategy:

Rn (AOGA) ≡ Rn (AOGA,U1, v
n
1 ) ≤

D2

2ηn
+

1

2

n∑

t=1

ηt‖vt‖22 (22)

≤ D2

2ηn
+

G2

2

n∑

t=1

ηt, (23)

where the terms D and G are defined as

D := sup
u,u′∈U1

‖u− u′‖, and G := sup
v∈U2

‖v‖.

Setting ηt = D/(G
√
t) in (23) implies a regret upper bound of Rn ≤ √

nDG. Alternatively, with
ηt =

D√
Mt

with Mt =
∑t

i=1 ‖vt‖22, the bound in (22) implies a more refined, observation-dependent,

regret bound of Rn = 3D
2

√
Mn.
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A.5 Discussion of Assumption 1

Recall that the IPM dG between two probability distributions is defined as

dG(P,Q) = max
g∈G

|EP [g(X)] − EQ[g(Y )]|

= max

(
max
g∈G

EP [g(X)] − EQ[g(Y )], max
g∈G

EP [−g(X)] − EQ[−g(Y )]

)

= max

(
max
g∈G

EP [g(X)] − EQ[g(Y )], max
g−∈G−

EP [g
−(X)]− EQ[g

−(Y )]

)
,

where G− := {−g : g ∈ G}. When, Assumption 1 is satisfied, the function classes G and G−

coincide. However, in general, when G 6= G−, we need to consider the two possibilities that the
witness function g∗ lies in G or G−. We can do this easily by defining the wealth process as the
average of two wealth processes with payoff functions lying in G and G− respectively. In the betting
language, we divide our initial capital of $1, equally among two bettors, who play separate betting
games on the same outcomes {(Xt, Yt) : t ≥ 1}, but with payoffs chosen from G and G− respectively,
using (possibly) different betting strategies A+

pred and A−
pred.

More formally, let A+
pred and A−

pred denote two prediction strategies for selecting functions

{g+t ∈ G : t ≥ 1} and {g−t ∈ G− : t ≥ 1} respectively, based on the same sequence of observations
{(Xt, Yt) : t ≥ 1}. We can define the corresponding wealth processes as follows, with bets λ+

t and
λ−
t chosen via the ONS strategy :

K+
0 = K−

0 =
1

2
, and

K+
t = K+

t−1 ×
(
1 + λ+

t

(
g+t (Xt)− g+t (Yt)

))
, and

K−
t = K−

t−1 ×
(
1 + λ−

t

(
g−t (Xt)− g−t (Yt)

))
, for t ≥ 1.

Under the null, when PX = PY , both these processes are nonnegative martingales with initial value
equal to 1/2. Hence, by adding them, we can get a new process, {Kt : t ≥ 1} with an initial value
equal to 1. This can be used to define our test, τ , as follows:

τ = min{n : Kn ≥ 1/α}, where Kt = K+
t +K−

t .

Ville’s inequality implies that the type-I error of this test is controlled at level α. Furthermore,
under the alternative when P 6= Q, at least one of K+

t or K−
t grows to infinity, and we can obtain

analogs of (9), (13) and (12) of Theorem 1 depending on the regret behavior of the strategies A+
pred

or A−
pred.

B One-Sample Testing

We now consider the one-sample testing problem, where we are given a sequence of observations {Yt :
t ≥ 1}, drawn i.i.d. from some unknown distribution PX ∈ P(X ), and a probability distribution
PX ∈ P(X ); and the goal is to test

H0 : PY = PX , versus H1 : PY 6= PX .
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Oracle One-Sample Test The general strategy developed for two-sample testing, in Section 2,
are also applicable to the problem stated above. In particular, we again select a class of test
functions G ⊂ [−1/2, 1/2]X , which defines an IPM dG on P(X ) as in (2). Let g∗ ≡ g∗(PX , PY ,G)
represent the witness function in G associated with a pair of distributions, PX and PY . Then, we
can define the oracle one-sample test as

τ∗ = min{n ≥ 1 : K∗
n ≥ 1/α} where

K∗
n = K∗

n−1 × (1 + λ∗ (g∗(Yn)− EPX
[g∗(X)])) , for n ≥ 1, and K∗

0 = 1.

In the above display, λ∗ denotes the log-optimal bet value as defined in (3). Since both g∗ and
λ∗ depend on the unknown distribution PY , to instantiate a practical sequential test using this
approach, we need a prediction strategy and a betting strategy.

Practical One-Sample Test As before, we will fix the betting strategy to the ONS strat-
egy (AONS). Let Apred denote any feasible prediction strategy for selecting the sequence of functions
{gt ∈ G : t ≥ 1}. Then, we can define a practical one-sample test as

τ = inf{n ≥ 1 : Kn ≥ 1/α}, where (24)

Kn = Kn−1 × (1 + λn (gn(Yn)− EPX
[gn(X)])) , for n ≥ 1, and K0 = 1.

As in the two-sample case, the performance of the test described in (24) depends on the quality
of the prediction strategy, Apred, measured via its regret, defined as

Rn ≡ Rn (Apred,G, PX , Y n
1 ) :=

(
sup
g∈G

n∑

t=1

g(Yt)− EPX
[g(X)]

)
−

n∑

t=1

gt(Yt)− EPX
[gt(X)].

Depending on the behavior of the regret defined above, we can characterize the statistical
properties of the sequential one-sample test of (24), similar to Theorem 1. To state the analogous
result for our one-sample test, we need to introduce the term, β1, which represents the type-II error
exponent for the one-sample test.

β1 = sup
ǫ>0

inf
P ′∈Pǫ,dG

dKL(P
′, PY ), where Pǫ,dG := {P ′ ∈ P(X ) : dG(P

′, PX) ≤ ǫ}. (25)

We now present the main result of this section.

Proposition 6. Suppose dG is characteristic (Definition 3) for P2 = {PY ∈ P(X ) : PY 6= PX},
and Assumption 1 holds. Consider observations {Yt : t ≥ 1} drawn i.i.d. according to PY . Let
τ ≡ τ(Apred,AONS) denote a sequential one-sample test with prediction strategy Apred, and betting
strategy AONS introduced in Definition 5. Then, the following statements are true:

• For any Apred, the type-I error rate is controlled at the specified level α. That is,

PPX
(τ < ∞) ≤ α.
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• Suppose the per-sequence average regret of Apred satisfies

lim sup
n→∞

Rn (Apred,G, PX , Y n
1 )

n
< dG(PX , PY ), almost surely.

Then, the sequential one-sample test τ has power one under the alternative,

PPY
(τ < ∞) = 1, for each PY 6= PX .

• If there exists a sequence {rn : n ≥ 1} such that rn → 0 and
∑

n≥1 P(E
c
n) < ∞, then we have

the following upper bound on the expected stopping time, under H1:

E[τ ] = O


n0(α,∆, σ) + n0(ǫ, α) +

∑

n≥1

P(Ec
n)


 ,

where ∆ and σ were defined in (5).

• Suppose there exists a sequence {rn : n ≥ 1} with rn → 0, and P(Ec
n) = 0 for all but finitely

many n ≥ 1. Then, we have the following under H1:

lim
n→∞

− 1

n
log (PPY

(τ > n)) ≥ β1.

Recall that the terms n0(α,∆, σ), and β1 were defined in (6) and (25) respectively.

The proof of this result follows exactly along the lines of the proof of Theorem 1, and we omit
the details.

C Proof of Theorem 1

Before presenting the details, we first fix some notation. As before, we will use ∆ and σ2 to denote
dG(PX , PY ) and supg∈G V[g(X) − g(Y )] respectively. Furthermore, we also introduce a variant of
σ2, that we denote by σ̃2, defined as

σ̃2 := sup
g∈G

E

[(
g(X) − g(Y )

)2]
. (26)

It is easy to verify that σ̃2 ≤ σ2 +∆2. Another term to be used in proving (12) is γ2, defined as

γ2 = sup
g∈G

E

[(
(g(X) − g(Y ))2 − E[(g(X ′)− g(Y ′))2]

)2]
= sup

g∈G
V
(
(g(X) − g(Y ))2

)
. (27)

For any t ≥ 1, we use vt to denote gt(Xt)− gt(Yt), and introduce the running sums Sn =
∑n

t=1 vt,
and Mn =

∑n
t=1 v

2
t .

37



Proof of (8) This follows as a direct consequence of the fact that, by construction, the process
{Kt : t ≥ 0} is a non-negative martingale with an initial value equal to 1 under the null. This is
because

E[Kt|Ft−1] = E[Kt−1 ×
(
1 + λt(gt(Xt)− gt(Yt))

)
|Ft−1]

= Kt−1 (1 + λtE[gt(Xt)− gt(Yt)|Ft−1]) = Kt−1,

where we used the fact that λt and gt are Ft−1 measurable, and that under the null, both Xt and
Yt have the same distribution. The result stated in (8) then follows by an application of Ville’s
inequality.

Proof of (9) We note that

{τ = ∞} = ∩∞
t=1{τ > t} ⊂ {τ > n} for any n ≥ 1,

which implies

P (τ = ∞) ≤ P (τ > n) ⇒ P (τ = ∞) ≤ lim inf
n→∞

P (τ > n) .

Thus, to show (9), it suffices to show that the lim inf in above display is equal to 0. To prove that,
we first recall that due to the use of ONS betting strategy, the wealth process at time t, for any
prediction strategy, satisfies

Kt ≥ exp


n

8

(
1

n

n∑

t=1

gt(Xt)− gt(Yt)

)2

− log n




≥


n

8

(
max

{
1

n

n∑

t=1

gt(Xt)− gt(Yt), 0

})2

− log n


 (28)

By definition, the event {τ > n} is contained in the event {Kn < 1/α}, which, due to (28), implies

{τ > n} ⊂
{
1

n

n∑

t=1

gt(Xt)− gt(Yt) <

√
8 log(1/α) + log n

n

}

⊂
{
dG(P̂X,n, P̂Y,n)−

Rn(Apred,X
n
1 , Y

n
1 )

n
<

√
8 log(1/α) + log n

n

}
(29)

:= Fn.

To complete the proof, it suffices to show that 1{Fn}
a.s−→ 0, since it implies

0 ≤ lim inf
n→∞

P (τ > n) ≤ lim
n→∞

E[1{Fn}] = 0,

where the second inequality uses Fatou’s lemma, and the equality follows from an application of
the Bounded Convergence Theorem.
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We now show that 1{Fn}
a.s−→ 0. To see this, first note that by definition, dG(P̂X,n, P̂Y,n) =

supg∈G
1
n

∑n
t=1 g(Xt) − g(Yt) ≥ 1

n

∑n
t=1 g

∗(Xt) − g∗(Yt)
a.s−→ dG(PX , PY ) > 0. Here g∗ ≡

g∗(PX , PY ,G) denotes the witness function associated with PX and PY . Thus, we have

dG
(
P̂X,n, P̂Y,n

)
− Rn

n

a.s
≥ 1

n

n∑

t=1

g∗(Xt)− g∗(Yt) − Rn

n
,

which implies that

lim inf
n→∞

(
dG
(
P̂X,n, P̂Y,n

)
− Rn

n

)
a.s
≥ lim inf

n→∞

(
1

n

n∑

t=1

g∗(Xt)− g∗(Yt) − Rn

n

)

= ∆− lim sup
n→∞

Rn

n
> 0.

The last inequality above follows from the assumption on the prediction strategy. Hence, the lim inf
of the term on the left of < in the definition of Fn in (29) is positive almost surely. On the other
hand, the term on the right converges to 0, implying that 1{Fn}

a.s−→ 0, as required.

Proof of (11) Using the fact that the regret achieved by the ONS strategy with respect to the
best constant bet λ ∈ [−1/2, 1/2] is O(log t); we first get the following lower bound, with the
notation vt = gt(Xt)− gt(Yt):

logKn

n
≥ sup

λ∈[−1/2,1/2]

1

n

n∑

t=1

log(1 + λvt)−O (log n)

≥
∑n

t=1 vt
4

(∑n
t=1 vt∑n
t=1 v

2
t

∧ 1

)
−O(log n/n).

The second inequality is a result of choosing a λ ∈ [−1/2, 1/2] that optimizes the lower bound on∑n
t=1 log(1 + λvt), obtained by using the inequality log(1 + x) ≥ x− x2 for x ≥ −1/2. The result

then follows by observing that under the assumption (10), we have limn→∞
1
n

∑n
t=1 vt

(a.s.)
= ∆, and

limn→∞ 1
n

∑n
t=1 v

2
t

(a.s.)
= E

[(
g∗(X) − g∗(Y )

)2]
.

Proof of (12) Since τ is a non-negative integer-valued random variable, we have

E[τ ] =

∞∑

n=0

P(τ > n) ≤
∞∑

n=0

P (log(Kn) < log(1/α)) ,

where the inequality follows from the definition of our test τ = inf{n ≥ 1 : Kn ≥ 1/α}. We now
use the regret guarantee of the ONS betting strategy to transform the above probabilities into a
more convenient form. In particular we have

logKn =

n∑

t=1

log
(
1 + λt (gt(Xt)− gt(Yt))

)
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≥ sup
λ∈[−1/2,1/2]

n∑

t=1

log
(
1 + λ (gt(Xt)− gt(Yt))

)
− 12 log(n).

Here we used the fact that the regret of the ONS strategy in our problem is upper bounded by
12 log n. With vt denoting gt(Xt)− gt(Yt), the above inequality implies

{τ > n} ⊂
{

sup
λ∈[−1/2,1/2]

n∑

t=1

log
(
1 + λvt

)
< 12 log(n/α)

}

⊂
{

n∑

t=1

log

(
1 +

1

2
vt

)
< 12 log(n/α)

}
. (30)

In the second inclusion, we simply used the property that supremum over all λ ∈ [−1/2, 1/2] is an
upper bound on its value with λ = 1/2.

Next, we use the fact that log(1 + x) ≥ x− x2 for x > −1/2, to get the following:

log
(
1 +

vt
2

)
≥ vt

2
− v2t

4
.

Combining this with (30), we get

{τ > n} ⊂
{

1

2n

n∑

t=1

vt <
12 log(n/α)

n
+

1

4n

n∑

t=1

v2t

}
:= Hn. (31)

Going back to the expression for E[τ ], we now have

E[τ ] =
∞∑

n=0

P(τ > n) ≤ 1 +
∞∑

n=1

P(Hn) ≤ 1 +
∞∑

n=1

P(Hn ∩ En) +
∑

n≥1

P(Ec
n).

The second inequality above uses the following fact: P(Hn) = P(Hn ∩En) + P(Hn ∩Ec
n) ≤ P(Hn ∩

En) + P(Ec
n).

We now consider the event Hn ∩ En, and using the fact that En = {Rn/n ≤ rn}, we have the
following for every n ≥ 1:

1

n

n∑

t=1

vt
a.s
≥ sup

g∈G

1

n

n∑

t=1

g(Xt)− g(Yt)−
Rn

n

a.s
≥ sup

g∈G

1

n

n∑

t=1

g(Xt)− g(Yt)− rn

a.s
≥ 1

n

n∑

t=1

g∗(Xt)− g∗(Yt)− rn.

The first inequality follows directly from the definition of regret of the prediction strategy for
choosing {gt : t ≥ 1}, the second inequality uses the defining property of the event En, while the
third inequality simply replaces the supremum with one particular function (the witness function
g∗). Plugging this in (31), we get

Hn ∩ En ⊂
{
1

n

n∑

t=1

g∗(Xt)− g∗(Yt) < 2rn +
1

2n

n∑

t=1

v2t +
12 log(n/α)

n

}
. (32)
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We now introduce the following lemma (proved in Appendix I.1), that will be used to analyze the
event Hn ∩En.

Lemma 1. Define the event Gn = Gn,1 ∩Gn,2, where

Gn,1 =

{
1

n

n∑

t=1

g∗(Xt)− g∗(Yt) ≥ ∆− σ̃

√
4 log n

n
− 2 log n

3n

}
, and

Gn,2 =

{
1

n

n∑

t=1

v2t ≤ σ̃2 + γ

√
4 log n

n
+

2 log n

3n

}
.

Then, we have P (Gn) ≥ 1− 2/n2, which in turn, implies that
∑∞

n=1 P (Gc
n) ≤ π2/3. Recall that σ̃

and γ were introduced in (26) and (27) respectively.

Using this lemma, we now observe:

P (Hn ∩En) = P (Hn ∩ En ∩Gn) + P (Hn ∩ En ∩Gc
n)

≤ P (Hn ∩ En ∩Gn) + P (Gc
n)

≤ P (Hn ∩ En ∩Gn) +
2

n2
.

This implies that

E[τ ] =

∞∑

n=0

P(τ > n) ≤ 1 +

∞∑

n=1

P(Ec
n) +

∞∑

n=1

P(Hn ∩ En)

≤ 1 +
∞∑

n=1

P(Ec
n) +

π2

3
+

∞∑

n=1

P (Hn ∩ En ∩Gn) . (33)

Finally, it remains to analyze the event Hn ∩ En ∩Gn. From (32), we have

Hn ∩ En ∩Gn ⊂
{
1

n

n∑

t=1

g∗(Xt)− g∗(Yt) < 2rn +
1

2n

n∑

t=1

v2t +
12 log(n/α)

n

}
∩Gn

⊂
{
∆ < 2rn +

1

2n

n∑

t=1

v2t +
12 log(n/α)

n
+ σ̃

√
4 log n

n
+

2 log n

3n

}
(34)

⊂
{
∆ < 2rn +

12 log(n/α)

n
+

σ̃2

2
+ γ

√
log n

n
+

log n

3n
+ σ̃

√
4 log n

n
+

2 log n

3n

}
(35)

=

{
∆− σ̃2

2
< 2rn +

12 log(n/α)

n
+ (γ + 2σ̃)

√
log n

n
+

log n

n

}
. (36)

In (34), we used the definition of event Gn,1, and in (35), we used the definition of event Gn,2. To
proceed further, we need the following lemma, which is proved in Appendix I.2
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Lemma 2. For the terms ∆, σ̃, and γ introduced in (5), (26), and (27) respectively, the following
inequalities hold:

σ̃2 ≤ ∆, and γ ≤ σ̃.

This lemma, combined with (36), gives us

Hn ∩ En ∩Gn ⊂
{
∆

2
< 2rn +

12 log(n/α)

n
+ 3σ̃

√
log n

n
+

log n

n

}

=

{
∆ < 4rn +

24 log(n/α)

n
+ 6σ̃

√
log n

n
+

2 log n

n

}

⊂
{
∆ < 4rn +

26 log(n/α)

n
+ 6σ̃

√
log n

n

}

Now observe that σ̃ ≤ σ + ∆, where σ was defined in (5). Assuming n is large enough to ensure

that
(
1− 6

√
log n/n

)
∆ ≥ ∆/2, we can now define the term n0(α,∆, σ), as

n0(α,∆, σ) := min

{
n ≥ 1 : 4rn +

26 log(n/α)

n
+ 6σ

√
log n

n
≤ ∆

2

}
,

and note that P (Hn ∩ En ∩Gn) = 0 for all n ≥ n0(α,∆, σ). Trivially bounding this probability
with 1 for n < n0(α,∆, σ), we then get the required upper bound on E[τ ] by (33):

E[τ ] ≤ 1 +
π2

3
+

∞∑

n=1

P(Ec
n) +

∞∑

n=1

P (Hn ∩ En ∩Gn) ≤ 1 +
π2

3
+ n0(α,∆, σ) +

∞∑

n=1

P(Ec
n)

= O
(
n0(α,∆, σ) +

∞∑

n=1

P(Ec
n)

)
.

This completes the proof.

Proof of (13) To show this, we start with (29). Since, by assumption rn → 0 and P(∩∞
n=1En) = 1,

for every ǫ > 0, there exists a finite Nǫ, such that for all n ≥ Nǫ, both of the following conditions
hold simultaneously:

rn ≤ ǫ

2
, and

√
8 log(1/α) + log n

n
≤ ǫ

2
.

Then, plugging these into (29) for any n ≥ Nǫ, we get that

{τ > n} ⊂ {dG(P̂X,n, P̂Y,n) ≤ ǫ} = {(P̂X,n, P̂Y,n) ∈ P2
ǫ,G}.

The term P2
ǫ,G used above was introduced in (7). Finally, an application of Sanov’s theorem implies

the following result for any ǫ > 0

lim inf
n→∞

− 1

2n
log (P(τ > n)) ≥ inf

(P ′,Q′)∈P2

ǫ,G

1

2

(
dKL(P

′, PX ) + dKL(Q
′, PY )

)

as required.
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D Proof of Proposition 1

It is easy to verify that under the null, the process {Kt : t ≥ 1} is a nonnegative martingale with
an initial value of 1. Hence its type-I error is below the level α, due to Ville’s inequality.

Next, to obtain the upper bound on the expected stopping time, we need to get appro-
priate upper bounds on the terms n0(α,∆, σ), and

∑
n≥1 P(E

c
n). The key to simultaneously

bounding both these terms is to select the sequence {rn : n ≥ 1} suitably to balance them.
Since D = supx,x′∈U ‖x − x′‖2 = 1, the regret of the OGA strategy with adaptive step-sizes is

Rn ≤ (3/2)
√
Mn = (3/2)

√∑n
t=1 ‖Xt − Yt‖2. Using this we choose rn as follows:

rn =
3

2n

√
nσ̃2 +

n2∆2

225
, and En =

{Rn

n
≤ rn

}
.

Recall that σ̃ was defined in (26). This choice of rn allows us to keep n0(α,∆, σ) small enough,
while also providing enough room to control the deviation of Rn/n beyond rn, as we describe below.

Bound on n0(α,∆, σ). Plugging the above choice of rn in (6), we get

n0(α,∆, σ) = min

{
n ≥ 1 :

12

n

√
nσ̃2 +

n2∆2

225
+

52 log(n/α)

n
+ 12σ

√
log n

n
< ∆

}
,

which implies that

n0(α,∆, σ) ≤ min

{
n ≥ 1 :

12σ̃√
n

+
4

5
∆ +

52 log(n/α)

n
+ 12σ

√
log n

n
< ∆

}
.

In the above display, we used the fact that
√
x+ y ≤ √

x+
√
y. By an application of Lemma 3 (stated

at the end of this subsection), we can show that

n0(α,∆, σ) = O
(
σ̃2

∆2
+

σ2 log(1/∆)

∆2
+

log(1/α∆)

∆

)

= O
(
σ2 log(1/α∆)

∆2

)
,

where we used the fact that σ̃2

∆2 ≤ σ2+∆2

∆2 = 1 + σ2

∆2 .

Bound on
∑∑∑

n≥1
P(Ec

n
). We proceed as follows:

P (Ec
n) = P

(
3

2n

√
Mn >

3

2n

√
nσ̃2 +

n2∆2

225

)
= P

(
Mn − E[Mn] >

(
nσ̃2 − E[Mn]

)
+

n2∆2

225

)

≤ P

(
Mn − E[Mn] >

n2∆2

225

)
,
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where the inequality uses the fact that E[Mn] ≤ nσ̃2. Now, by an application of Bernstein’s
inequality, we know that

P

(
Mn − E[Mn] > γ

√
4 log n

n
+

2 log n

n

)
≤ 1

n2
, (37)

where γ denotes the fourth moment term defined in (27). Now, introduce the term

n1 = min

{
n ≥ 1 : γ

√
4 log n

n
+

2 log n

n
<

n∆2

225

}
,

and note that for all n ≥ n1, we have P(Ec
n) ≤ 1/n2, due to (37). This implies that

∑

n≥1

P (Ec
n) ≤ n1 +

∑

n>n1

1

n2
≤ n1 +

π2

6
.

Finally, by two applications of Lemma 3, we can show that

n1 = O
(
log(1/∆)

∆
+

γ2 log(1/∆)

∆2

)
= O

(
log(1/∆)

∆
+

σ2 log(1/∆)

∆2

)
.

Combining with the bound on n0(α,∆, σ), we get the required result.
We end this section by stating the following lemma, that was used to get the upper bounds on

n0(α,∆, σ) and n1.

Lemma 3. For a > 0 and 0 < b ≤ 4, introduce the term N = min{n ≥ 1 : log(bn)/n ≤ a}. Then,
we have the following:

N ≤ 1 + max

{
20,

2 log(2/a)

a

}
.

The proof of this lemma is in Appendix I.

E Proof of Proposition 3

The proof of this result follows the same steps as the proof of Proposition 1. The control of type-I
error is due to the fact that the process {Kt : t ≥ 1} is a nonnegative martingale with an initial
value of 1.

Next, to obtain the upper bound on the expected stopping time, we follow the general strategy
introduced in proving Proposition 1. In particular, we define

rn =
3

2n

√
nσ̃2 +

n2∆2

225
, and En =

{Rn

n
≤ rn

}
.
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Then, as in the case of the proof of Proposition 1, we can show that

n0(α,∆, σ) = O
(
σ2 log(1/α∆)

∆2

)
, and

∑

n≥1

P (Ec
n) = O

(
σ2 log(1/∆)

∆2
+

log(1/∆)

∆

)
.

Plugging these two expressions in (12), we get the required bound on E[τ ].
To get the type-II error exponent, we need to find a sequence {rn : n ≥ 1}, satisfying the

following properties:

• rn → 0, and

• P(Ec
n) = 0 for all n ≥ 1.

The above two conditions are satisfied by setting rn = (3/2)/
√
2n, since we know that Rn ≤

(3/2)
√
Mn ≤ (3/2)

√
2n; which in turn implies that Rn/n ≤ (3/2)/

√
2n = rn with probability 1.

The result then follows by (13). The specific form of the exponent β is due to the fact that the
kerenl-MMD metric metrizes weak convergence, as noted by Zhu et al. [2021].

This completes the proof of Proposition 3.

F Proofs of Proposition 2 and Proposition 4

The first step in the proof of both these results is to obtain an information theoretic lower bound
on the expected stopping time of any sequential power-one test τ ′ in terms of the KL divergence
between the null and alternative distributions. We state and prove a general version of this result
first, and then use it to prove Proposition 2 and Proposition 4 in Appendix F.1 and Appendix F.2
respectively.

Lemma 4. Given a stream of observations Z1, Z2, . . .
i.i.d.∼ PZ , consider the problem of testing the

null H0 : PZ = Q0 against the alternative H1 : PZ = Q1, for Q0 6= Q1. Let τ ′ denote any level-α,
power-one, sequential test for this problem. Then, we have

EH1
[τ ′] ≥ log(1/α)

dKL(Q1, Q0)
.

Remark 13. To apply this result to the bounded-mean testing and two-sample testing problems,
we will construct distributions PX and PY , and set Q0 = PX × PX , and Q1 = PX × PY . Then,
for any level-α sequential test for these problems, Lemma 4 immediately implies that EH1

[τ ′] ≥
log(1/α)/dKL(PY , PX). With an appropriate choice of the distributions PX and PY , we get lower
bound expressions matching the upper bounds in Proposition 1 and Proposition 3.

Proof. The proof of this statement uses some standard properties of the KL-divergence that are
often used in proving lower bounds for multi-armed bandit algorithms, as we detail below.

Since τ ′ is a power-one test with finite expectation under H1, we can use Wald’s Lemma to get

dKL

(
Q⊗τ ′

1 , Q⊗τ ′

0

)
= EH1

[
log

(
dQ⊗τ ′

1

dQ⊗τ ′
0

)]
= EH1

[
τ ′∑

t=1

log

(
dQ1

dQ0

)]
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= EH1
[τ ′]dKL(Q1, Q0). (38)

Note that the last equality used the assumptions that τ ′ has finite expectation under the alternative,
and that 0 < dKL(Q1, Q0) < ∞.

Next, we consider the event E = {τ ′ < ∞}. By definition of a sequential level-α test of power
one, we have

q1 := PH1
(E) = 1, and q0 := PH0

(E) ≤ α.

Next, on evaluating KL divergence between two Bernoulli distributions with parameters q1 and
q0, we get

dKL(q1, q0) = q1 log

(
q1
q0

)
+ (1− q1) log

(
1− q1
1− q0

)

= log

(
1

q0

)
≥ log

(
1

α

)
. (39)

The final step is to relate (38) and (39) by using the data-processing inequality, as follows

dKL(Q
⊗τ ′

1 , Q⊗τ ′

0 ) = EH1
[τ ′]dKL(Q1, Q0) ≥ dKL(q1, q0),

which implies the required statement

EH1
[τ ′] ≥ log(1/α)

dKL(Q1, Q0)
.

This completes the proof of Lemma 4.

F.1 Proof of Proposition 2

The proof of this result follows directly by applying Lemma 4 to the construction used by Lu et al.
[2021, Lemma H.8] for deriving variance dependent lower bounds for best arm identification in
multi-armed bandits. We present the details below for completeness.

In what follows, we show that there exist problem instances for which any sequential power-one
test with finite mean must have E[τ ′] = Ω(s2/r2). Then, to complete the proof, we show that for
these instances we have r = Θ(∆) and s2 ≥ σ2, for ∆ and σ defined in (5).

We consider two cases, depending on the relative values of r and s2.

Case 1: s2 ≥ 5r. Introduce the following distributions for bounded random variables in [0, 1]:

PX =

{
0.5 + s, w.p. 0.5− r/s

0.5− s, w.p. 0.5 + r/s
, and PY =

{
0.5 + s, w.p. 0.5

0.5− s, w.p. 0.5
.

Then, consider a bounded mean testing problem under the null with distributionQ0 = PX×PX , and
another problem under the alternative with Q1 = PX × PY . Then, by an application of Lemma 4,
we get that for any τ ′ with finite expectation under H1, we have

E[τ ′] ≥ log(1/α)

dKL(PY , PX)
=

2 log(1/α)

log(1− 4r2/s2)
= Ω

(
log(1/α)s2

r2

)
,
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where we used the bound log(1+x) ≤ x and 1/(1−x) ≥ x/2 for 0 < x < 0.5. The condition s2 ≥ r
was invoked to ensure that r2/s2 ≤ r/s2 is small enough.

Note that in this case, the mean of PX is µX = 0.5 − r, which implies that ∆ = |µX − µY | =
|0.5 − r − 0.5| = r. To analyze σ2, we note that by definition we have σ2 = V(X) + V(Y ) = 2s2.
Together, these two results imply that EH1

[τ ′] = Ω
(
log(1/α)σ2/∆2

)
.

Case 1: s2 < 5r. In this case, we use a different distribution

P ′
X =





0.5 + s, w.p. 0.5− 2r

0.5− s, w.p. 0.5− 2r

0, w.p. 4r

.

Repeating the same argument with Q0 = P ′
X × P ′

X and Q1 = P ′
X × PY , we get that

E[τ ′] ≥ log(1/α)

dKL(PY , P ′
X)

= Ω

(
s2 log(1/α)

r2

)
,

where the last equality follows by Lu et al. [2021, Eq. (28)].
As in the previous case, we can verify that µX′ = (0.5 − 2r), which implies that ∆ = |0.5 −

2r − 0.5| = 2r. Similarly, we have σ2 = V(X ′) + V(Y ) = 2s2, hence we again have E[τ ′] =
Ω
(
log(1/α)σ2/∆2

)
.

F.2 Proof of Proposition 4

To prove this statement, we set X = R, select the Gaussian kernel k(x, y) = exp(−(x− y)2/b2) for
some fixed b > 0, and consider the following two distributions:

PX = N(0, s2), and PY = N(r, s2),

for some r > 0 and s2 < 1. Using these two distributions, we apply Lemma 4, with Q1 = PX × PY

and Q0 = PX × PX , to get the following for any level-α, power-one sequential test τ ′ with finite
expectation:

E[τ ′] ≥ s2 log(1/α)

r2
. (40)

For the Gaussian kernel, Reddi et al. [2015, Lemma 1] showed that the MMD between distributions
PX and PY satisfies

∆2 = Ω

(
2r2

b2

)
. (41)

Now, observe that the term σ2 can be written as

σ2 = sup
g∈G

VPX×PY
(g(X) − g(Y )) = sup

g∈G
VPX

(g(X)) + VPY
(g(Y )) .
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Recall that G in this case is the unit norm ball in the RKHS associated with the kernel k. Now,
we upper bound VPX

(g(X)) by using the reproducing property of G, to get

VPX
(g(X)) = VPX

(〈k(X, ·) − µX , g〉) ≤ EPX

[
‖g‖2‖k(X, ·) − µX‖2

]

≤ EPX

[
‖k(X, ·) − µX‖2

]
= EPX×P ′

X

[
〈k(X,X) − k(X,X ′)

]

= 1− EPX×P ′
X
[k(X,X ′)].

To evaluate the term EPX×P ′
X
[k(X,X ′)] we use the following Taylor’s expansion of the Gaussian

kernel around 0:

k(x, x′) = exp

(
−(x− x′)2

b2

)
= 1− (x− x′)2

b2
+ c

(x− x′)4

2b4
,

where c ≤ 1 is the constant arising from the Taylor’s series remainder expression. Using this, we
have

EPX×P ′
X
[k(X,X ′)] = 1− EPX×P ′

X

[
(X −X ′)2

b2
− c

(X −X ′)4

2b2

]

= 1− 2s2

b2
+ c

6s4

b4
.

In the last equality, we used the following fact about zero-mean Gaussian distributions: E[X4] =
3σ4. Thus, we have proved that

VPX
(g(X)) ≤ 2s2

b2
+ c

6s4

b4
.

Following the same steps to evaluate VPY
(g(Y )), we conclude that

σ2 ≤ sup
g∈G

(
4s2

b2
+ c

12s4

b4

)
=

4s2

b2
+ c

12s4

b4
≤ 16s2

b2
max

{
1,

1

b2

}
. (42)

Combining (40), (41), and (42), we get the required result that E[τ ′] = Ω
(
log(1/α)σ2/∆2

)
.

G Proof of Proposition 5

The control of type-I error again follows due to the fact that the wealth process is a test martingale
under the null, and hence it crosses the level 1/α with probability smaller than α.

To show that the test has power one, our starting point is (28). Note that to prove that the
test is consistent, it suffices to show

lim inf
n→∞

∣∣∣∣∣
1

n

n∑

t=1

gt(Xt)− gt(Yt)

∣∣∣∣∣
a.s.
> 0.
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We proceed as follows:

lim inf
n→∞

1

n

n∑

t=1

gt(Xt)− gt(Yt) = lim inf
n→∞

(
−Rn

n
+ sup

g∈G

1

n

n∑

t=1

g(Xt)− g(Yt)

)

≥ lim inf
n→∞

−Rn

n
+ lim inf

n→∞
sup
g∈G

1

n

n∑

t=1

g(Xt)− g(Yt)

≥ − lim sup
n→∞

Rn

n
+ sup

g∈G
lim inf
n→∞

1

n

n∑

t=1

g(Xt)− g(Yt)

:= − lim sup
n→∞

Rn

n
+ sup

g∈G
A(g).

By assumption on the prediction scheme, we know that − lim supn→∞Rn/n > −dG(P ,Q). Hence,
to complete the proof, it suffices to show that supg∈G A(g) ≥ dG(P ,Q).

To analyze the term A(g) for some arbitrary g ∈ G, we first introduce some notation:

at(g) := g(Xt)− g(Yt), bt(g) = E[at(g)|Ft−1]

An(g) =
1

n

n∑

t=1

at(g), Bn(g) =
1

n

n∑

t=1

bt(g).

Note that with this notation, we have A(g) = lim infn→∞An(g). We can then proceed as follows:

A(g) = lim inf
n→∞

An(g) = lim inf
n→∞

(
Bn(g) + (An(g)−Bn(g))

)

≥ lim inf
n→∞

Bn(g) − lim sup
n→∞

|An(g) −Bn(g)|

= lim inf
n→∞

Bn(g) = lim inf
n→∞

1

n

n∑

t=1

E[g(Xt)− g(Yt)|Ft−1]. (43)

In the above display, (43) follows due to the fact that limn→∞ |An(g) − Bn(g)| = 0 almost surely,
which we prove next. For any fixed n, define the event En = {|An(g) − Bn(g)| <

√
8 log(2n2)/n},

and note that, by Azuma’s inequality, we have that P(Ec
n) ≤ 1/n2. Hence, by the Borel-Cantelli

lemma, we know that P (Ec
n i.o.) = 0, which implies that the event En occurs for all but finitely

many n (almost surely). Since 0 ≤ |An(g)−Bn(g)| ≤
√

8 log(2n2)/n under the event En, the result
follows as the upper bound converges to 0 as n → ∞.

Thus, we have proved that for any fixed g ∈ G, we have

lim inf
n→∞

1

n

n∑

t=1

gt(Xt)− gt(Yt) ≥ lim inf
n→∞

1

n

n∑

t=1

E[g(Xt)− g(Yt)|Ft−1].

Since g ∈ G in the above inequality is arbitrary, and the left side is independent of G, we can
conclude the following by taking a supremum over all g ∈ G:

lim inf
n→∞

1

n

n∑

t=1

gt(Xt)− gt(Yt)
a.s
≥ sup

g∈G
lim inf
n→∞

1

n

n∑

t=1

E[g(Xt)− g(Yt)|Ft−1]
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= dG (P ,Q) .

The required result then follows by combining the above with the observation that for any sequence
of observations {(Xt, Yt) : t ≥ 1}, we have

lim inf
n→∞

∣∣∣∣∣
1

n

n∑

t=1

gt(Xt)− gt(Yt)

∣∣∣∣∣ ≥ lim inf
n→∞

1

n

n∑

t=1

gt(Xt)− gt(Yt).

This completes the proof.

H Proof of Theorem 2

Consistency against a fixed alternative The plug-in or ERM prediction strategy AERM selects
the function gt at time t ≥ 2 as follows:

g̃t ∈ argmax
g̃∈G̃

1

t− 1

t−1∑

i=1

g̃(Zi).

Recall that the notations g̃ and G̃ were introduced in (20).
Consider any fixed alternative distribution P ∈ Palt, and introduce g̃∗ ≡ g̃∗(P ) =

argmaxg̃∈G̃ EP [g̃(Z)], to denote the witness function associated it. For simplicity, we assume that
there exists a g̃∗ achieving the maximum. In case, this is not true, we can repeat the ensuing
argument with some g̃∗ whose expected value is within δ of the supremum, and then take δ → 0.
Under the assumption that limn→∞Cn(G̃, P ) → 0, using Shalev-Shwartz and Ben-David [2014,
Theorem 26.5], we can identify a sequence of events {En : n ≥ 1} with PP (En) ≥ 1 − 1/n2 for all
n ≥ 1, defined as follows:

En := {E[g̃∗(Z)]− E[g̃n(Zt)|Ft−1] ≤ ǫn} , where lim
n→∞

ǫn = 0.

Since
∑∞

n=1 1/n
2 < ∞, we can conclude that P ({Ec

n infinitely often}) = 0 by Borel-Cantelli
Lemma. Next, we observe that

1

n

n∑

t=1

g̃t(Zt) =
1

n

n∑

t=1

g̃t(Zt)− E[g̃t(Zt)|Ft−1] +
1

n

n∑

t=1

E[g̃t(Zt)|Ft−1],

which implies that

lim inf
n→∞

1

n

n∑

t=1

g̃t(Zt) = lim inf
n→∞

1

n

n∑

t=1

g̃t(Zt)− E[g̃t(Zt)|Ft−1] + lim inf
n→∞

1

n

n∑

t=1

E[g̃t(Zt)|Ft−1]

a.s
= 0 + lim inf

n→∞
1

n

n∑

t=1

E[g̃t(Zt)|Ft−1] (44)

a.s
= lim inf

n→∞
1

n

n∑

t=1

E[g̃t(Zt)|Ft−1]1{Et} (45)
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a.s
≥ lim inf

n→∞
1

n

n∑

t=1

(E[g̃∗(Zt)]− ǫt)1{Et} (46)

a.s
≥ lim inf

n→∞
1

n

n∑

t=1

E[g̃∗(Zt)]− lim sup
n→∞

1

n

n∑

t=1

ǫt (47)

= E[g̃∗(Z)] > 0. (48)

In the above display:
(44) uses the strong law of large numbers (SLLN) for bounded martingale difference sequences,
(45) and (47) use the fact that P ({Ec

n i.o.}) = 0,
(46) uses the definition of the event En, and
(48) uses the fact that EP [g̃

∗(Z)] > 0 when P ∈ Palt as dG is characteristic for the class of
distributions defined in (19), and that limn→∞ ǫn = 0.

Finally, the result follows by noting that lim infn→∞
∣∣ 1
n

∑n
t=1 g̃t(Zt)

∣∣ ≥
lim infn→∞ 1

n

∑n
t=1 g̃t(Zt). This completes the proof.

Minimum detectable separation We now consider the case when the stronger assumption on
the complexity of G̃ holds, that is,

Cn(G̃) := sup
P∈P(Z)

Cn(G̃, P )
n→∞−→ 0.

Now, for some n ≥ 1, consider any P ∈ Palt(∆n) and observe that the event that τ doesn’t reject
the null in the first n rounds satisfies

{τ > n} ⊂ {logKn ≤ log(1/α)}

⊂
{∣∣∣∣∣

1

n

n∑

t=1

g̃t(Zt)

∣∣∣∣∣ ≤
√

8 log(n/α)

n

}
. (49)

The second inclusion in the above display uses the lower bound on the wealth process for ONS
strategy as stated in (A.3). Observe that

∣∣∣∣∣
1

n

n∑

t=1

g̃t(Zt)

∣∣∣∣∣ =
∣∣∣∣∣

(
1

n

n∑

t=1

g̃t(Zt)− E[g̃t(Zt)|Ft−1] + E[g̃t(Zt)|Ft−1]− E[g̃∗(Zt)] + E[g̃∗(Zt)]

)∣∣∣∣∣

≥ E[g̃∗(Z)]−
∣∣∣∣∣
1

n

n∑

t=1

g̃t(Zt)− E[g̃t(Zt)|Ft−1]

∣∣∣∣∣−
∣∣∣∣∣
1

n

n∑

t=1

E[g̃t(Zt)|Ft−1]− E[g̃∗(Zt)]

∣∣∣∣∣
:= E[g̃∗(Z)]− Un − Vn. (50)

Combining (49) and (50), we get that

{τ > n} ⊂
{
E[g̃∗(Z)] ≤

√
8 log(n/α)

n
+ Un + Vn

}
. (51)
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We now introduce the following two events, which we will show later in Lemma 5 occur with high
probability.

En,1 := {Un ≤ un}, un =

√
8 log(4/γ)

n
, and (52)

En,2 := {Vn ≤ vn}, vn =
1

n

(
2 +

n−1∑

t=1

(
2Ct(G̃) + 5

√
2 log(16n/γ)

t

))
. (53)

Next, starting with (51), we observe the following:

{τ > n} ∩ (En,1 ∩ En,2) ⊂
{
E[g̃∗(Z)] ≤

√
8 log(n/α)

n
+ Un + Vn

}
∩ (En,1 ∩ En,2)

⊂
{
E[g̃∗(Z)] ≤

√
8 log(n/α)

n
+ un + vn

}
(54)

= {E[g̃∗(Z)] ≤ ∆∗
n} (55)

⊂ {∆n ≤ E[g̃∗(Z)] ≤ ∆∗
n} = ∅. (56)

In the above display:
(54) uses the fact that Un ≤ un and Vn ≤ vn under (En,1 ∩ En,2).

(55) uses the fact that ∆∗
n =

√
8 log(n/α)

n + un + vn by definition.

(56) uses the fact that EP [g̃
∗(Z)] ≥ ∆n as P ∈ Palt(∆n), and the fact that ∆n > ∆∗

n by assumption.
Hence, from (56), we can conclude that

PP (τ > n) ≤ PP ((En,1 ∩ En,2)
c) ≤ PP

(
Ec

n,1

)
+ PP

(
Ec

n,2

)
.

This implies that to complete the proof, it suffices to show that PP (E
c
n,i) ≤ γ/2 for i = 1, 2. We

show this below in Lemma 5.

Lemma 5. For the events En,1 and En,2 defined in (52) and (53) respectively, we have P(Ec
n,1) ≤ γ

2
and P(Ec

n,2) ≤ γ
2 .

Proof. We consider the two events separately:

• Upper bound on P(Ec
n,1). We note that the terms {δt = g̃t(Zt) − E[g̃(Zt)|Ft−1] : t ≥ 1} for a

martingale difference sequence, taking values in the bounded interval [−1, 1]. Hence, by an
application of Azuma’s inequality, we get the bound

P

(∣∣∣∣∣
1

n

n∑

t=1

δt

∣∣∣∣∣ > a

)
≤ 2 exp

(
−n

a2

8

)
.

By setting a = un =
√

8 log(4/γ)/n, we get the required result that P(Ec
n,1) ≤ γ/2.
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• Upper bound on P(Ec
n,2). Introduce the event E

(t)
n,2 := {|E[g̃t(Zt)|Ft−1] − E[g̃∗(Zt)]| ≤ vn,t},

where vn,t := 2Ct−1(G̃) + 5
√

2 log(16n/γ)/(t − 1) for t ≥ 2, and vn,1 = 2. Note that vn =

(
∑n

t=1 vn,t)/n and Ec
n,2 ⊂ ∪n

t=1

(
E

(t)
n,2

)c
, and thus, to complete the proof, it suffices to show

the following (since the result then follows by a union bound):

P

((
E

(t)
n,2

)c)
= P

(
|E[g̃t(Zt)|Ft−1]− E[g̃∗(Zt)]| > 2Ct−1(G̃) + 5

√
2 log(16n/γ)

t− 1

)
≤ γ

2n
. (57)

Since g̃t corresponds to the ERM predictor based on {Z1, . . . , Zt−1}, (57) follows by an appli-
cation of Shalev-Shwartz and Ben-David [2014, Theorem 26.5]. The remaining case of t = 1
follows trivially, since g̃1 and g̃∗ take values in [−1, 1], and thus |E[g̃1(Z1)|F0]− E[g̃∗(Z1)]| ≤
2 = vn,1 almost surely.

I Proofs of Auxiliary Lemmas

I.1 Proof of Lemma 1

Event Gn,1: Let v∗t denote the random variable g∗(Xt) − g∗(Yt). Then, we have E[v∗t ] = ∆ for
all t ≥ 1, and V(v∗t ) = E[(v∗t )

2]−∆2 ≤ σ̃2. Hence, by a direct application of Bernstein’s inequality,
we get for any δ > 0:

P

(
1

n
v∗t −∆ < δ

)
≤ exp

(
1
2n

2δ2

nσ̃2 + 1
3nδ

)
.

On inverting this inequality, we get

P

(
1

n

n∑

t=1

v∗t < ∆− σ̃

√
4 log n

n
− 2 log n

3n

)
≤ 1

n2
.

Hence, we have proved that P(Gc
n,1) ≤ 1

n2 .

Event Gn,2: The analysis of this event proceeds by considering the sequence of bounded random
variables, v2t − E[v2t |Ft−1]. Introducing the shorthand βt for the random variable E[v2t |Ft−1], we
obtain

P

(
Vn − 1

n

n∑

t=1

βt > δ

)
= P

(
n∑

t=1

v2t − βt > nδ

)
≤ exp

(
1
2n

2δ2∑n
t=1 E[(v

2
t − βt)2|Ft−1] +

1
3nδ

)
. (58)

The above result follows by applying Bernstein’s inequality for the sequence of conditional zero-
mean random variables, v2t − βt. Now, observe the following:

• For all t ≥ 1, we have βt ≤ σ̃2 almost surely, and
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• for all t ≥ 1, we have E[(v2t − βt)
2|Ft−1] ≤ γ2 almost surely, by the definition of γ in (27).

Hence, on inverting this concentration inequality, we get

P

(
Vn − σ̃2 > γ

√
4 log n

n
+

2 log(n)

3n

)
≤ P

(
Vn − 1

n

n∑

t=1

βt > γ

√
4 log n

n
+

2 log(n)

3n

)
≤ 1

n2
. (59)

The first inequality follows from the fact that, by definition, βt = E[v2t |Ft−1] = E[(gt(Xt) −
gt(Yt))

2|Ft−1]
a.s
≤ supg∈G E[(g(X) − g(Y ))2] := σ̃2. Thus, we have proved that P(Gc

n,2) ≤ 1
n2

Combining (58) and (59), we get the required P(Gc
n) ≤ P(Gc

n,1) + P(Gc
n,2) ≤ 2

n2 .

I.2 Proof of Lemma 2

The two statements follow by appealing to the fact that gt(Xt) − gt(Yt) ∈ [−1, 1] for all t ≥ 1. In
particular, note that

σ̃2 = sup
g∈G

E

[(
g(X) − g(Y )

)2] ≤ sup
g∈G

E [|g(X) − g(Y )|] = sup
g∈G

E [g(X) − g(Y )] = ∆.

The inequality simply uses the fact that for x2 ≤ |x| for x ∈ [−1, 1], and second equality uses the
assumption that the function class G is closed under negation (i.e., if g ∈ G, then −g ∈ G).

Similarly, the second inequality can be obtained as follows:

γ2 = sup
g∈G

V

((
g(X) − g(Y )

)2) ≤ sup
g∈G

E

[(
g(X) − g(Y )

)4] ≤ sup
g∈G

E

[(
g(X) − g(Y )

)2]
= σ̃2.

The first inequality uses the fact that variance is smaller than the second moment, while the second
inequality uses the fact that x4 ≤ x2 for x ∈ [−1, 1]. This completes the proof.

I.3 Proof of Lemma 3

If N < 21, then the statement of the theorem is trivially true. Hence we consider the N ≥ 21 case.
First, we note that for all n ≥ 20, we have log(bn)/n ≤ log(4n)/n ≤ 1. If N1 denotes the real
valued solution of the equation log(bn)/n = a, then since N − 1 ≤ N1 ≤ N , we get the following:

a =
log bN1

N
1/2
1

× 1

N
1/2
1

≤ 1

N
1/2
1

,

which implies (bN1)
1/2 ≤ b1/2

a
⇒ log(bN1) ≤ 2 log(b1/2/a) ≤ 2 log(2/a),

which implies that N1 ≤ 2 log(2/a)/a. Since N ≤ N1 + 1, this completes the proof.
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J Beyond IPMs

While our discussion in this paper focused on designing tests based on integral probability met-
rics (IPMs), we note that similar arguments work with other distance measures that admit a
variational representation, such as members of the f -divergence family. For instance, we can easily
develop a sequential version of the popular χ2-test using our approach.

In addition, we can also use our ideas to construct sequential tests using predictors that
are learned incrementally using stochastic gradient descent (or similar methods), such as neural
networks. More specifically, consider a class of functions G = {gθ : X → [−1/2, 1/2], with θ ∈ Θ}
for some parameter set Θ, and define the distance measure using a loss function ℓ, as follows:

dG(PX , PY ) := sup
θ∈Θ

E[ℓ(θ,X, Y )].

Assume that dG(PX , PY ) = 0 under the null, and dG(PX , PY ) > 0 under the alternative. To
construct a sequential two-sample test using this dG , we can use an SGD based prediction strategy,
that sets gt = gθt , and θt = θt−1 + ηtℓ

′(θt−1,Xt, Yt) for some step size ηt. It is easy to verify that
a sufficient condition for the resulting test to be consistent is that θt

a.s−→ θ∗, where θ∗ is a random
variable taking values in Θ, such that E[ℓ(θ∗,X, Y )|θ∗] > 0 almost surely.
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