
ar
X

iv
:2

00
6.

02
64

3v
2

 [
cs

.I
T

]
 6

 F
eb

 2
02

1

Universal Graph Compression: Stochastic Block Models

Alankrita Bhatt∗

University of California San Diego

La Jolla, CA 92093, USA

a2bhatt@eng.ucsd.edu

Ziao Wang∗

University of British Columbia

Vancouver, BC V6T1Z4, Canada

ziaow@ece.ubc.ca

Chi Wang

Microsoft Research, Redmond

Redmond, WA 98052, USA

wang.chi@microsoft.com

Lele Wang

University of British Columbia

Vancouver, BC V6T1Z4, Canada

lelewang@ece.ubc.ca

Abstract

Motivated by the prevalent data science applications of processing and mining large-scale
graph data such as social networks, web graphs, and biological networks, as well as the high I/O
and communication costs of storing and transmitting such data, this paper investigates lossless
compression of data appearing in the form of a labeled graph. In particular, we consider a widely
used random graphmodel, stochastic block model (SBM), which captures the clustering effects in
social networks. An information-theoretic universal compression framework is applied, in which
one aims to design a single compressor that achieves the asymptotically optimal compression
rate, for every SBM distribution, without knowing the parameters of the SBM that generates
the data. Such a graph compressor is proposed in this paper, which universally achieves the
optimal compression rate for a wide class of SBMs with edge probabilities ranging from O(1) to
Ω(1/n2−ǫ) for any 0 < ǫ < 1.

Existing universal compression techniques are developed mostly for stationary ergodic one-
dimensional sequences with fixed alphabet size and entropy linear in the number of variables.
However, the adjacency matrix of SBM has complex two-dimensional correlations and sublinear
entropy in the sparse regime. These challenges are alleviated through a carefully designed
transform that converts two-dimensional correlated data into almost i.i.d. blocks. The blocks
are then compressed by a standard Krichevsky–Trofimov compressor, whose length analysis is
generalized to identically distributed but arbitrarily correlated sequences with slowly growing
alphabet size and sublinear entropy. In four benchmark graph datasets (protein-to-protein
interaction, LiveJournal friendship, Flickr, and YouTube), the compressed files from competing
algorithms (including CSR, Ligra+, PNG image compressor, and Lempel–Ziv compressor for
two-dimensional data) take 2.4 to 27 times the space needed by the proposed scheme.

∗Alankrita Bhatt and Ziao Wang contributed equally to this work.

i

http://arxiv.org/abs/2006.02643v2

Contents

1 Introduction 1
1.1 Problem Setup . 3
1.2 Main Results . 4

2 Algorithm: Universal Graph Compressor 4

3 Main Ideas in Establishing Universality 7

4 Proof of Universality 9
4.1 Graph Entropy . 9
4.2 Asymptotic i.i.d. via Block Decomposition . 10
4.3 Length of the Laplace Probability Assignment . 13
4.4 Length of the KT probability assignment . 14
4.5 Proof of Theorem 2 . 16

5 Second order analysis in the sparse regime 17
5.1 Basic definitions on rooted graphs . 17
5.2 Local weak convergence . 18
5.3 BC entropy . 20
5.4 Achieving BC entropy in the sparse regime . 20

6 Stationarity in the stochastic block model 21

7 Experiments 23

ii

1 Introduction

In many data science applications, data appears in the form of large-scale graphs. For example,
in social networks, vertices represent users and an edge between vertices represents friendship; in
the World Wide Web, vertices are websites and edges indicate the hyperlinks from one site to
the other; in biological systems, vertices can be proteins and edges illustrate protein-to-protein
interaction. Such graphs may contain billions of vertices. In addition, edges tend to be correlated
with each other since, for example, two people sharing many common friends are likely to be friends
as well. How to efficiently compress such large-scale structural information to reduce the I/O and
communication costs in storing and transmitting such data is a persisting challenge in the era of
big data.

The literature on graph compression is vast. Existing compression schemes follow various dif-
ferent methodologies. Several methods exploited combinatorial properties such as cliques and cuts
in the graph [1,2]. Many works targeted at domain-specific graphs such as web graphs [3], biology
networks [4, 5], and social network graphs [6]. Various representations of graphs were proposed,
such as the text-based method, where the neighbor list of each vertex is treated as a “word” [7,8],
and the k2-tree method, where the adjacency matrix is recursively partitioned into k2 equal-size
submatrices [9]. Succinct graph representations that enable certain types of fast computation, such
as adjacency query or vertex degree query, were also widely studied [10]. While most compression
schemes are for labeled graphs, there are also works considering lossless compression of unlabeled
graphs [11–13], graphs with marks on its edges and vertices [14–16], or (correlated) data on the
graph [17,18]. We refer the readers to [19] for an exhaustive survey on lossless graph compression
and space-efficient graph representations.

In this paper, we take an information theoretic approach to study lossless compression of a
graph. We assume the graph is generated by some random graph model and investigate lossless
compression schemes that achieve the theoretical limit, i.e., the entropy of the graph, asymptotically
as the number of vertices goes to infinity. When the underlying distribution/statistics of the random
graph model is known, optimal lossless compression can be achieved by methods like Huffman
coding. However, in most real-world applications, the exact distribution is usually hard to obtain
and the data we are given is a single realization of this distribution. This motivates us to consider
the framework of universal compression, in which we assume the underlying distribution belongs
to a known family of distributions and require that the encoder and the decoder should not be
a function of the underlying distribution. The goal of universal compression is to design a single
compression scheme that universally achieves the optimal theoretical limit, for every distribution
in the family, without knowing which distribution generates the data. For this paper, we focus on
the family of stochastic block models, which are widely used random graph models that capture the
clustering effect in social networks. Our goal is to develop a universal graph compression scheme
for a family of stochastic block models with as wide range of parameters as possible.

How to design computationally efficient universal compression scheme is a fundamental question
in information theory. In the past several decades, a large number of universal compressors were
proposed for one-dimensional sequences with fixed alphabet size, whose entropy is linear in the num-
ber of variables. Prominent results include the Laplace and Krichevsky–Trofimov (KT) compressors
for i.i.d. processes [20,21], Lempel–Ziv compressor [22,23] and Burrows–Wheeler transform [24] for
stationary ergodic processes, and context tree weighting [25] for finite memory processes. Many of
these have been adopted in standard data compression applications such as compress, gzip, GIF,
TIFF, and bzip2. Despite these exciting developments, existing universal compression techniques
fall short of establishing optimality results for graph data due to the following challenges. Firstly,
graph data generated from a stochastic block model has non-stationary two-dimensional correlation,

1

so existing techniques do not immediately apply here. Secondly, in many practical applications,
where the graph is sparse, the entropy of the graph may be sublinear in the number of entries in
the adjacency matrix.

For the first challenge, a natural question arising is: can we convert the two-dimensional ad-
jacency matrix of the graph into a one-dimensional sequence in some order and apply a universal
compressor for the sequence? For some simple graph model such as Erdős–Rényi graph, where
each edge is generated i.i.d. with probability p, this would indeed work. For more complex graph
models including stochastic block models, it is unclear whether there is an ordering of the entries
that results in a stationary process. We will show in Section 6 several orders including row-by-row,
column-by-column, and diagonal-by-diagonal fail to produce a stationary process. We alleviate this
challenge by designing a decomposition of the adjacency matrix into blocks. We then show in The-
orem 3 that with a carefully chosen parameter, the block decomposition converts two-dimensional
correlated entries into a sequence of almost i.i.d. blocks with slowly growing alphabet size. To ad-
dress the second challenge, we adjust the standard definition of universality, which normalizes the
compression length by the number of variables. The new definition of universality accommodates
data with unknown leading order in its entropy expression.

Lossless compression for stochastic block models was first studied by Abbe [17] (albeit not un-
der the universal compression framework). The focus there is two-fold: 1) compute the entropy
of the stochastic block model; 2) explore the relation between community detection and compres-
sion. Several interesting questions were presented: Knowing the community assignments will help
compression since edges can be grouped into i.i.d. subsets. But is community detection necessary
for compression? In the regime when community detection is not possible, how do we compress
the graph? We answer these questions in this paper by presenting a universal compressor that
does not require knowledge of the edge probabilities, the community assignments, or the number of
communities. Our compressor remains universal even in the regime when community detection is
information theoretically impossible. As a consequence, universal compression is a fundamentally
easier task than community detection for stochastic block models.

Recently, universal compression of graphs with marked edges and vertices is studied by Delgosha
and Anantharam [16,26]. They focus on the sparse graph regime, where the number of edges is in
the same order as the number of vertices n. They employ the framework of local weak convergence,
which provides a technique to view a sequence of graphs as a sequence of distributions on neighbour-
hood structures. Built on this framework, they propose an algorithm that compresses graphs by
describing the local neighbourhood structures. Moreover, they introduce a universality/optimality
criterion through a notion of entropy for graph sequences under the local weak convergence frame-
work, known as the BC entropy [27]. This universality criterion is stronger than the one used in
this paper. It requires the asymptotic length of the compressor to match the constants in both
first and second order terms in Shannon entropy, whereas the universality criterion we use only
requires to match the first order term. As a consequence of the stronger criterion, the compressor
in [26] is universal over a smaller random graph family. In comparison, we expand the range of
edge numbers from Θ(n) in the sparse regime to Θ(nα) for every 0 < α ≤ 2 and propose a single
universal compressor for the whole family under the weaker universality criterion. In Section 5, we
evaluate the proposed compressor under the criterion in [26] for the family of symmetric SBMs.
The proposed compressor achieves a similar performance in terms of BC entropy in the sparse
regime.

The rest of the paper is organized as follows. In Section 1.1, we define universality over a family
of graph distributions and the stochastic block models. We present our main result in Section 1.2,
which is a graph compressor that is universal for a family containing most non-trivial stochastic
block models. We describe the proposed graph compressor in Section 2. We illustrate key steps in

2

establishing universality in Section 3 and elaborate the proof of each step in Section 4. In Section 5,
we provide the second order analysis of the expected length of our compressor and compare it to
the one in [26] In Section 6, we explain why existing universal compressors developed for stationary
processes may not be immediately applicable for some one-dimensional ordering of entries in the
adjacency matrix. In Section 7, we implement our compressor in four benchmark graph datasets
and compare its empirical performance to four competing algorithms.

Notation. For an integer n, let [n] = {1, 2, . . . , n}. Let log(·) = log2(·). We follow the

standard order notation: f(n) = O(g(n)) if limn→∞
|f(n)|
g(n) <∞; f(n) = Ω(g(n)) if limn→∞

f(n)
g(n) > 0;

f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)); f(n) = o(g(n)) if limn→∞
f(n)
g(n) = 0;

f(n) = ω(g(n)) if limn→∞
|f(n)|
|g(n)| =∞; and f(n) ∼ g(n) if limn→∞

f(n)
g(n) = 1.

1.1 Problem Setup

For simplicity, we focus on simple (undirected, unweighted, no self-loop) graphs with labeled vertices
in this paper. But our compression scheme and the corresponding analysis can be extended to more
general graphs. Let An be the set of all labeled simple graphs on n vertices. Let {0, 1}i be the
set of binary sequences of length i, and set {0, 1}∗ = ∪∞i=0{0, 1}i. A lossless graph compressor
C : An → {0, 1}∗ is a one-to-one function that maps a graph to a binary sequence. Let ℓ(C(An))
denote the length of the output sequence. When An is generated from a distribution, it is known
that the entropy H(An) is a fundamental lower bound on the expected length of any lossless
compressor [29, Theorem 8.3]

H(An)− log(e(H(An) + 1)) ≤ E[ℓ(C(An))], (1)

and therefore

lim inf
n→∞

E[ℓ(C(An))]

H(An)
≥ 1.

Thus, a graph compressor is said to be universal for the family of distributions P if for all distri-
bution P ∈P and An ∼ P, we have

lim sup
n→∞

E[ℓ(C(An))]

H(An)
= 1. (2)

A stochastic block model SBM(n,L,p,W) defines a probability distribution over An. Here
n is the number of vertices, L is the number of communities. Each vertex i ∈ [n] is associated
with a community assignment Xi ∈ [L]. The length-L column vector p = (p1, p2, . . . , pL)

T is a
probability distribution over [L], where pi indicates the probability that any vertex is assigned
community i. W is an L × L symmetric matrix, where Wij represents the probability of having
an edge between a vertex with community assignment i and a vertex with community assignment
j. We say An ∼ SBM(n,L,p,W) if the community assignments X1,X2, . . . ,Xn are generated
i.i.d. according to p and for every pair 1 ≤ i < j ≤ n, an edge is generated between vertex i
and vertex j with probability WXi,Xj

. In other words, in the adjacency matrix An of the graph,
Aij ∼ Bern(WXi,Xj

) for i < j; the diagonal entries Aii = 0 for all i ∈ [n]; and Aij = Aji for i > j.
We assume all the entries in W are in the same regime f(n) and write W = f(n)Q, where Q is an
L× L symmetric matrix with constant entries Qij = Θ(1) for all i, j ∈ [L]. We assume all entries

3

in p are Θ(1). We will consider two families of stochastic block models: For 0 < ǫ < 1,

P1(ǫ) : SBM with L = Θ(1), f(n) = O(1), f(n) = Ω
(

1
n2−ǫ

)

, (3)

P2(ǫ) : SBM with L = Θ(1), f(n) = o(1), f(n) = Ω
(

1
n2−ǫ

)

. (4)

Note that the edge probability 1
n2 is the threshold for a random graph to contain an edge with high

probability [30]. Thus, the family P1(ǫ) covers most non-trivial SBM graphs. Clearly, P2(ǫ) is a
strict subset of P1(ǫ), as it does not contain the constant regime f(n) = 1.

1.2 Main Results

The main contribution of this paper is providing two compressors universal over the classes P1(ǫ)
and P2(ǫ) respectively for 0 < ǫ < 1. Note that a compressor universal over the class P1(ǫ) is also
universal over the class P2(ǫ), but our compressor designed specifically for the class P2(ǫ) has a
lower computational complexity. We will formally state the results in the next two theorems.

Theorem 1 (Universality over P1). For every 0 < ǫ < 1, the graph compressor Ck defined in
Section 2 is universal over the family P1(ǫ) provided that

0 < δ < ǫ, k ≤
√

δ log n, and k = ω(1).

Theorem 2 (Universality over P2). For every 0 < ǫ < 1, the graph compressor C1 defined in
Section 2 is universal over the family P2(ǫ).

For now, one can think of k as a parameter that defines a compression scheme Ck—the exact
definition will become clear in the next section when we precisely define the compressors.

2 Algorithm: Universal Graph Compressor

In this section, we describe our universal graph compression scheme. For each k that divides n, the
graph compressor Ck : An → {0, 1}∗ is defined as follows.

• Block decomposition. Let n′ = n
k . For 1 ≤ i, j ≤ n′, let Bij be the submatrix of An formed

by the rows (i− 1)k+1, (i− 1)k+2, . . . , ik and the columns (j− 1)k+1, (j− 1)k+2, . . . , jk.
For example, we have

B12 =











A1,k+1 A1,k+2 · · · A1,2k

A2,k+1 A2,k+2 · · · A2,2k
...

...
. . .

...
Ak,k+1 Ak,k+2 · · · Ak,2k











. (5)

We then write An in the block-matrix form as

An =











B11 B12 · · · B1,n′

B21 B22 · · · B2,n′

...
...

. . .
...

Bn′,1 Bn′,2 · · · Bn′,n′











. (6)

Denote

But
..= B12,B13,B23,B14,B24,B34, . . . ,B1,n′ , · · · ,Bn′−1,n′ (7)

4

as the sequence of off-diagonal blocks in the upper triangle and

Bd
..= B11,B22, . . . ,Bn′,n′ (8)

as the sequence of diagonal blocks.

• Binary to m-ary conversion. Let m := 2k
2
. Each k × k block with binary entries in the

two block sequences But and Bd is converted into a symbol in [m].

• KT probability assignment. Apply KT sequential probability assignment for the two
m-ary sequences But and Bd respectively. Given an m-ary sequence x1, x2, . . . , xN , KT
sequential probability assignment defines N conditional probability distributions over [m] as
follows. For j = 0, 1, 2, . . . , N − 1, assign conditional probability

qKT(i|xj) ..= qKT(Xj+1 = i|Xj = xj) =
Ni(x

j) + 1/2

j +m/2
for each i ∈ [m], (9)

where Xj ..= (X1, . . . ,Xj), x
j ..= (x1, x2, . . . , xj), and Ni(x

j) ..=
∑j

k=1 1{xk = i} counts the
number of symbol i in xj.

• Adaptive arithmetic coding. With the KT sequential probability assignments, compress
the two sequencesBut andBd separately using adaptive arithmetic coding [31] (see description
in Algorithm 1). In case k = 1, the diagonal sequence Bd becomes an all-zero sequence since
we assume the graph is simple. So we will only compress the off-diagonal sequence But.

Algorithm 1: m-ary adaptive arithmetic encoding with KT probability assignment

Input : Data sequence xN , alphabet size m

Initialize lower = 0, upper = 1, logprob = 0, N1 = N2 = · · · = Nm = 0;
for j = 0, 1, . . . , N − 1 do

range← upper− lower;
for i = 1, 2, . . . , xj+1 do

Compute qKT(i|xj) = Ni+1/2
j+m/2 ;

upper← lower+ range ·∑xj+1

i=1 qKT(i|xj);
lower← upper− range · qKT(xj+1|xj);
Nxj+1 ← Nxj+1 + 1;
logprob← logprob+ log(qKT(xj+1|xj));

Output: the binary representation of 1
2(lower+ upper) with ⌈−logprob⌉+ 1 bits

Given the compressed graph sequence yL, the number of vertices n and the block size k, the
graph decompressor Dk : {0, 1}∗ → An is defined as follows.

• Adaptive arithmetic decoding. With the KT sequential probability assignments defined
in (9), decompress the two code sequences forBut andBd separately using adaptive arithmetic
decoding (see Algorithm 2). The length of data sequence But and Bd are n

k (
n
k − 1)/2 and n

k
respectively.

• m-ary to binary conversion. Each m-ary symbol in the sequence is converted to a k2-bit
binary number and further converted into a k × k block with binary entries.

5

Algorithm 2: m-ary adaptive arithmetic decoding with KT probability assignment

Input : Binary sequence yL, alphabet size m = 2k
2
, length of data sequence N

Add ‘0.’ before sequence yL and convert it into a decimal real number Y . Initialize
lower = 0, upper = 1, N1 = N2 = · · · = Nm = 0;

for j = 0, 1, . . . , N − 1 do
range← upper− lower;
for i = 1, 2, . . . ,m do

Compute qKT(i|xj) = Ni+1/2
j+m/2 ;

Find minimum z ∈ [m] such that lower+ range ·∑z
i=1 qKT(i|xj) > Y ;

upper← lower+ range ·∑z
i=1 qKT(i|xj);

lower← upper− range · qKT(z|xj);
Nz ← Nz + 1;
xj+1 ← z;

Output: the m-ary data sequence x1, x2, · · · , xN

• Adjacency matrix recovery. With the blocks in But and Bd, recover the adjacency matrix
of An in the order described in (6), (7), and (8).

One can check that Ck is well-defined. The block decomposition and the binary to m-ary
conversion are clearly one-to-one. It is also known that for any valid probability assignment,
arithmetic coding produces a prefix code, which as also one-to-one.

The computational complexity of the proposed algorithm is O(2k
2
n2). For the choice of k that

achieves universality over P1(ǫ) family in Theorem 1, O(2k
2
n2) = O(n2+δ) for δ < ǫ. For the

choice of k that achieves universality over P2(ǫ) family in Theorem 2, O(2k
2
n2) = O(n2).

The orders in But and Bd do not matter in terms of establishing universality. The current
orders in (7) and (8) together with arithmetic coding enable a horizon free implementation. That
is, the encoder does not need to know the horizon n to start processing the data and can output
partial coded bits on the fly before receiving all the data. This leads to short encoding and decoding
delay. For some real-world applications, for example, when the number of users increases in a large
social network, this compressor has the advantage of not requiring to re-process existing data and
re-compress the whole graph from scratch.

Remark 1 (Laplace probability assignment). As an alternative to the KT sequential proba-
bility assignment, one can also use the Laplace sequential probability assignment. Given an m-ary
sequence x1, x2, . . . , xN , Laplace sequential probability assignment defines N conditional probability
distributions over [m] as follows. For j = 0, 1, 2, . . . , N − 1, we assign conditional probability

qL(Xj+1 = i|Xj = xj) =
Ni(x

j) + 1

j +m
for each i ∈ [m]. (10)

Both methods can be shown to be universal, while Laplace probability assignment has a much
cleaner derivation. However, KT probability assignment produces a better empirical performance.
For this reason, we keep both in the paper.

6

3 Main Ideas in Establishing Universality

In this section, we establish the universality of the graph compressor in Section 2.

Graph Entropy We first calculate the entropy of the (random) graph An, which, recall, is the
fundamental lower bound on the expected compression length for any compression scheme. Since
to establish optimality we need to show that lim supn→∞

E[ℓ(C(An))]
H(An)

≤ 1, we will only be concerned

with the first order term in H(An).

Lemma 1 (Graph entropy). Let An ∼ SBM(n,L,p, f(n)Q) with f(n) = O(1), f(n) = Ω
(

1
n2

)

, and

L = Θ(1). For 0 ≤ p ≤ 1, let h(p) , −p log(p) − (1 − p) log(1 − p) denote the binary entropy
function. For a matrix W with entries in [0, 1], let h(W) be a matrix of the same dimension whose
(i, j) entry is h(Wij). Then

H(An) =

(

n

2

)

H(A12 |X1,X2)(1 + o(1)) (11)

=

(

n

2

)

pTh
(

f(n)Q
)

p+ o
(

n2h
(

f(n)
))

. (12)

In particular, when f(n) = Ω
(

1
n2

)

and f(n) = o(1), expression (12) can be further simplified as

H(An) =

(

n

2

)

f(n) log

(

1

f(n)

)

(pTQp+ o(1)). (13)

Remark 2. In the regime f(n) = Ω
(

1
n

)

and f(n) = O(1), the above result has been established
in [17]. We extend the analysis to the regime f(n) = o

(

1
n

)

and f(n) = Ω(1
n2).

Remark 3. Lemma 1 can be used to calculate the entropy of the graph for certain important
regimes of f(n), in which the SBM displays characteristic behavior. For f(n) = 1, we haveH(An) =
(

n
2

)

h
(

pTQp
)

(1 + o(1)); for f(n) = logn
n (the regime where the phase transition for exact recovery

of the community assignments occurs [32, 33]), we have H(An) = n log2 n
2 (pTQp + o(1)); when

f(n) = 1
n (the regime where the phase transition for detection between SBM and the Erdős–Rényi

model occurs [34]), we have H(An) =
n logn

2 (pTQp+ o(1)); when f(n) = 1
n2 (the regime where the

phase transition for the existence of an edge occurs), we have H(An) = log n(pTQp+ o(1)).

Asymptotic i.i.d. via Block Decomposition To compress the matrix An, we wish to decom-
pose it into a large number of components that have little correlation between them. This leads
to the idea of block decomposition described previously. Since the sequence of blocks are used to
compress An, the next theorem claims these blocks are identically distributed and asymptotically
independent in a precise sense described as follows.

Theorem 3 (Block decomposition). Let An ∼ SBM(n,L,p, f(n)Q) with f(n) = Ω
(

1
n2−ǫ

)

for
some 0 < ǫ < 1, f(n) = O(1), and L = Θ(1). Let k be an integer that divides n and n′ = n/k.
Consider the k × k block decomposition in (6). We have all the off-diagonal blocks share the same
joint distribution; all the diagonal blocks share the same joint distribution. In other words, for any
1 ≤ i1, i2, j1, j2 ≤ n′ with i1 6= j1, i2 6= j2 and 1 ≤ l1, l2 ≤ n′, we have

Bi1,j1
d
= Bi2,j2 ,

Bl1,l1
d
= Bl2,l2 .

7

In addition, if k = ω(1) and k = o(n), we have

lim
n→∞

H(But)
(n′

2

)

H(B12)
= 1. (14)

Length Analysis for Correlated Sequences Thanks to this property of the block decompo-
sition, we hope to compress these blocks as if they are independent using a Laplace probability
assignment (which, recall, is universal for the class of all m-ary iid processes). However, since these
blocks are still correlated (albeit weakly), we will need a result on the performance of Laplace
probability assignment on correlated sequences with identical marginals, which we give next.

Theorem 4 (Laplace probability assignment for correlated sequence). Consider arbitrarily corre-
lated Z1, Z2, . . . , ZN , where the marginal distribution of each Zi is identically distributed over an
alphabet of size m ≥ 2. Let ℓL(z

N) = log 1
qL(zN)

where qL(·) is the marginal distribution induced by

Laplace probability assignment in (10)

qL(z
N) .

.=
N1!N2! · · ·Nm!

N !
· 1
(

N+m−1
m−1

) . (15)

We then have
E[ℓL(Z

N)] ≤ m log(2eN) +NH(Z1). (16)

We provide a similar result for the KT probability assignment.

Theorem 5 (KT probability assignment for correlated sequence). Consider arbitrarily correlated
Z1, Z2, . . . , ZN , where the marginal distribution of each Zi is identically distributed over an alphabet
of size m ≥ 2. Let ℓKT(z

N) = log 1
qKT(zN)

where qKT(·) is the marginal distribution induced by KT

probability assignment in (9)

qKT(z
N) =

(2N1 − 1)!!(2N2 − 1)!! · · · (2Nm − 1)!!

m(m+ 2) · · · (m+ 2N − 2)
(17)

with (−1)!! , 1. We then have

E[ℓKT(Z
N)] ≤ m

2 log
(

e
(

1 + 2N
m

))

+ 1
2 log(πN) +NH(Z1). (18)

We are now ready to prove Theorem 1.

Proof of Theorem 1. We will prove the universality of Ck for both KT probability assignment
and Laplace probability assignment. Note that the upper bound on the expected length of KT
in (18) is upper bounded by the upper bound on the length of Laplace in (16). So it suffices to
show Laplace probability assignment is universal.

We use the bound in Theorem 4 to establish the upper bound on the length of the code. Recall
that here we compress the diagonal blocks Bd (m = 2k

2
n-sized alphabet, N = n′ blocks) and the

off-diagonal blocks But (m = 2k
2
n-sized alphabet, N =

(

n′

2

)

blocks) separately. We have,

E(ℓ(Ck(An)))

H(An)
=

E(ℓL(But)) + E(ℓL(Bd))

H(An)

≤
(

n′

2

)

H(B12) + 2k
2
n log

(

2e
(

n′

2

)

)

+ n′H(B11) + 2k
2
n log(2en′)

H(An)

8

(a)

≤
(n′

2

)

H(B12) + 2k
2
n log

(

en2
)

+ nH(B11) + 2k
2
n log(2en)

H(An)

(b)

≤
(n′

2

)

H(B12) + 2k
2
n log

(

2e2n3
)

+ nk2nH(A12)

H(An)

=

(n′

2

)

H(B12)

H(An)
+

2k
2
n log

(

2e2n3
)

H(An)
+

nk2nH(A12)

H(An)
,

where in (a) we bound
(

n′

2

)

≤ n2 and n′ ≤ n, and in (b) we note thatH(B11) ≤ k2nH(A12) since there
are k2n−kn elements of the matrix (all apart from the diagonal elements) are distributed identically
as A12. We will now analyze each of these three terms separately. Firstly, using Theorem 3 yields

that
(n

′

2)H(B12)

H(An)
→ 1. Next, since f(n) = Ω

(

1
n2−ǫ

)

, we have H(An) = Ω(nǫ log n) and subsequently

substituting kn ≤
√
δ log n, we have

2k
2
n log(2en3)

H(An)
= O

(

nδ log n

nǫ log n

)

= O
(

nδ−ǫ
)

= o(1)

since δ < ǫ. Moreover, we have

nk2nH(A12)

H(An)
≤ nk2nH(A12)

H(An|Xn)
=

nk2nH(A12)
(n
2

)

H(A12|X1,X2)
= O

(

k2n
n

)

= o(1),

where the penultimate equality used the fact that H(A12) ∼ H(A12|X1,X2) (since h(f(n)p
TQp) ∼

pTh(f(n)Q)p). We have then established that

E(ℓ(Ck(An)))

H(An)
≤

(

n′

2

)

H(B12)

H(An)
+

2k
2
n log

(

2en3
)

H(An)
+

nk2nH(A12)

H(An)

= 1 + o(1),

which finishes the proof.

The proof of Theorem 2 follows similar arguments as in Theorem 1 and is deferred to Section 4.5.

4 Proof of Universality

4.1 Graph Entropy

Proof of Lemma 1. Note that

H(An) = H(An |Xn) + I(Xn;An)

=

(

n

2

)

H(A12 |X1,X2) + I(Xn;An) (19)

=

(

n

2

)

pTh
(

f(n)Q
)

p+ I(Xn;An), (20)

9

where (20) follows since all the
(n
2

)

edges are identically distributed and also independent given Xn

and consequently

H(An |Xn) =

(

n

2

)

H(A12 |X1,X2) =

(

n

2

)

∑

i,j

H(A12 |X1 = i,X2 = j)pipj =

(

n

2

)

pTh (f(n)Q)p.

When f(n) = Θ(1), we see that since

0 ≤ I(Xn;An) ≤ H(Xn) = nH(X1) ≤ n logL,

we have that H(An) =
(n
2

)

pTh
(

f(n)Q
)

p+ o
(

n2h(f(n))
)

.
Next, consider the case when f(n) = o(1) and f(n) = Ω

(

1
n2

)

. By properties of the entropy, we
have

H(An |Xn) ≤ H(An) ≤
(

n

2

)

H(A12). (21)

Note that
P(A12 = 1) =

∑

i,j

P(A12 = 1|X1 = i,X2 = j)pipj = pT f(n)Qp,

which yields that H (A12) = h
(

f(n)pTQp
)

. Substituting this in (21) gives

(

n

2

)

pTh(f(n)Q)p ≤ H(An) ≤
(

n

2

)

h
(

f(n)pTQp
)

. (22)

Note now for any g(n) = o(1), we have

h(g(n)) = −g(n) log g(n)− (1− g(n)) log(1− g(n))

= −g(n) log g(n)
(

1 +
(1− g(n)) log(1− g(n))

g(n) log g(n)

)

.

By noting that log(1−g(n))
g(n) → −1 and 1

log(g(n)) → 0 as g(n)→ 0 we see that

h(g(n)) = g(n) log
1

g(n)
(1 + o(1)).

Using this, we note that pTh(f(n)Q)p = pTQpf(n) log 1
f(n)(1 + o(1)) and h(f(n)pTQp) =

pTQpf(n) log 1
f(n)(1 + o(1)). Finally, substituting this into (22) yields

H(An) =

(

n

2

)

pTQpf(n) log
1

f(n)
(1 + o(1))

as required.

4.2 Asymptotic i.i.d. via Block Decomposition

We first invoke a known property of stochastic block models (see, for example, [35]). We include
the proof here for completeness.

Lemma 2 (Exchangeability of SBM). Let An ∼ SBM(n,L,p,W). For a permutation π : [n]→ [n],

10

let π(An) be an n × n matrix whose (i, j) entry is given by Aπ(i),π(j). Then, for any permutation
π : [n]→ [n], the joint distribution of An is the same as the joint distribution of π(An), i.e.,

An
d
= π(An). (23)

Proof. Let an be a realization of the random matrix An and π(Xn) be the permuted vector
(Xπ(1), . . . ,Xπ(n)). For any symmetric binary matrix an with zero diagonal entries, we have

P(An = an) =
∑

xn∈[L]n
P(An = an,X

n = xn)

=
∑

xn∈[L]n
P(An = an |Xn = xn)

n
∏

i=1

P(Xi = xi)

(a)
=

∑

xn∈[L]n

∏

i,j
1≤i<j≤n

P(Aij = aij |Xi = xi,Xj = xj)

n
∏

i=1

P(Xπ(i) = xi)

(b)
=

∑

xn∈[L]n

∏

i,j
1≤i<j≤n

(Wxi,xj
)aij (1−Wxi,xj

)1−aij

n
∏

i=1

P(Xπ(i) = xi)

(c)
=

∑

xn∈[L]n

∏

i,j
1≤i<j≤n

P(Aπ(i),π(j) = aij |Xπ(i) = xi,Xπ(j) = xj)

n
∏

i=1

P(Xπ(i) = xi)

=
∑

xn∈[L]n
P(π(An) = an, π(X

n) = xn)

= P(π(An) = an),

where (a) follows since Xn are i.i.d. and thus P(Xi = xi) = P(Xπ(i) = xi) and (b) follows since
Aij ∼ Bern(WXi,Xj

), and thus

P(Aij = aij |Xi = xi,Xj = xj) =

{

Wxi,xj
if aij = 1

1−Wxi,xj
if aij = 0

(24)

= (Wxi,xj
)aij (1−Wxi,xj

)1−aij . (25)

The step in (c) follows since Aπ(i),π(j) ∼ Bern(WXπ(i),Xπ(j)
) and the conditional probability has the

same expression as in (25).

Now we are ready to establish Theorem 3.

Proof of Theorem 3. For any i1 6= j1 and i2 6= j2, consider a permutation π1 : [n]→ [n] that has

π1(x) =
{ x+ (i2 − i1)kn for (i1 − 1)kn + 1 ≤ x ≤ i1kn

x+ (j2 − j1)kn for (j1 − 1)kn + 1 ≤ x ≤ j1kn

and the remaining n − 2kn arguments are mapped to the n − 2kn values in [n] \ {(i2 − 1)kn +
1, . . . , i2kn, (j2− 1)kn, . . . , j2kn} in any order. Lemma 2 implies that Bi1,j1 , which is the submatrix
formed by the rows (i1 − 1)kn + 1, . . . , i1kn and the columns (j1 − 1)kn + 1, . . . , j1kn has the same
distribution as the submatrix formed by the rows π1((i1 − 1)kn +1), . . . , π1(i1kn) and the columns

11

π1((j1−1)kn+1), . . . , π1(j1kn). From the definition of π1, we see that the latter submatrix is Bi2,j2

and we establish that Bi1,j1
d
= Bi2,j2 . Similarly, defining a permutation π2 : [n]→ [n] which has

π2(x) = x+ (l2 − l1)kn for (l1 − 1)kn + 1 ≤ x ≤ l1kn

and invoking Lemma 2 establishes Bl1,l1
d
= Bl2,l2 .

Now, clearly H(But) ≤
(n′

2

)

H(B12), and therefore we have

lim sup
n→∞

H(But)
(n′

2

)

H(B12)
≤ 1. (26)

Moreover we have H(An) = H(But,Bd) ≤ H(But) + H(Bd) ≤ H(But) + n′H(B11) ≤ H(But) +
n′k2nh(A12) where the last inequality follows by noting that except for the diagonal elements of
Bd (which are zero and thus have zero entropy), all other elements have the same distribution as
A12. We therefore obtain H(But) ≥ H(An) − n′k2nh(A12) = H(An) − nknh(A12) ≥ H(An|Xn

1) −
nknh(A12) =

(n
2

)

pTh(f(n)Q)p− nknh(f(n)p
TQp). Consequently,

H(But)
(n′

2

)

H(B12)
≥

(n
2

)

(

pTh(f(n)Q)p− 2knh(f(n)pTQp)
n−1

)

(n′

2

)

H(B12)
. (27)

We will now analyze the right hand side of (27) in two parameter ranges.

• f(n) = 1 : We have

H(B12)
(a)

≤ H(B12 |X2kn
1) +H(X2kn

1)

≤ H(B12 |X2kn
1) + 2knH(p)

(b)
= k2nH(A1,kn |X1,Xkn) + 2knH(p)

≤ k2n

(

pTh(Q)p+ 2
logL

kn

)

, (28)

where (a) follows from the chain rule and (b) follows since all elements of the matrix B12 are
independent given X1, · · · ,X2kn . Plugging this into the right hand side of (27) we obtain

H(But)
(

n′

2

)

H(B12)
≥

(n
2

)

(

pTh(Q)p− 2knh(pTQp)
n−1

)

(n′

2

)

k2n

(

pTh(Q)p+ 2 logL
kn

) . (29)

Since kn = o(n), kn = ω(1) and
(

n′

2

)

k2n ∼
(

n
2

)

, we have from (29)

lim inf
n→∞

H(But)
(

n′

2

)

H(B12)
≥ 1, (30)

which together with (26) yields the required result.

• f(n) = Ω
(

1
n2

)

, f(n) = o(1) : Since B12 is a matrix of k2n identically distributed Bernoulli

12

random variables, we have

H(B12) ≤ k2nh(A1,kn) = k2nh
(

f(n)pTQp
)

. (31)

Plugging this into the RHS of (27) then yields

H(But)
(n′

2

)

H(B12)
≥

(n
2

)

(

pTh(f(n)Q)p− 2knh(f(n)pTQp)
n−1

)

(n′

2

)

k2nh (f(n)p
TQp)

. (32)

We first observe that in this parameter range, since f(n) = o(1), we have by Lemma 1

pTh(f(n)Q)p ∼ h
(

f(n)pTQp
)

. (33)

Finally using that kn = o(n) and
(

n′

2

)

k2n ∼
(

n
2

)

establishes

lim inf
n→∞

H(But)
(

n′

2

)

H(B12)
≥ 1, (34)

which together with (26) yields the required result.

4.3 Length of the Laplace Probability Assignment

Proof of Theorem 4. Let us first elaborate the relation between probability assignment and com-
pression length. In Algorithm 1, the terms log(q(xj+1|xj)) are added up, which lead to the marginal
probability implied by the sequential probability assignment

N−1
∑

j=0

log(q(xj+1 |xj)) = log





N−1
∏

j=0

q(xj+1 |xj)



 = log(q(xN)). (35)

The compression output length of Algorithm 1 is
⌈

log 1
q(xN)

⌉

+ 1.

Now we analyze the compression length of Laplace compressor for the sequence Z1, Z2, . . . , ZN .
Define θi ..= P(Z1 = i), Ni

..=
∑N

k=1 1{Zk = i}, i ∈ [m]. We have

ℓL(z
n) = log

1

qL(zN)

= log
θN1
1 θN2

2 · · · θNm
m

qL(zN)
+ log

1

θN1
1 θN2

2 · · · θNm
m

= log

(

N +m− 1

m− 1

)

+ log

(

N !

N1!N2! · · ·Nm!
θN1
1 θN2

2 · · · θNm
m

)

+ log
1

θN1
1 θN2

2 · · · θNm
m

(a)

≤ log

(

N +m− 1

m− 1

)

+ log
1

θN1
1 θN2

2 · · · θNm
m

(b)

≤ (m− 1) log

(

e

(

N

m− 1
+ 1

))

+ log
1

θN1
1 θN2

2 · · · θNm
m

13

≤ m log(2eN) +
m
∑

i=1

Ni log
1

θi
, (36)

where (a) follows since N !
N1!N2!···Nm!θ

N1
1 θN2

2 · · · θNm
m is a multinomial probability which is always upper

bounded by 1, and (b) follows since
(

n
k

)

≤
(

en
k

)k
. Taking expectation on both sides of (36), we

obtain

E[ℓL(Z
N)] ≤ m log(2eN) +

m
∑

i=1

E[Ni] log
1

θi

(a)
= m log(2eN) +

m
∑

i=1

Nθi log
1

θi

= m log(2eN) +NH(Z1),

where (a) follows since E[Ni] =
∑N

k=1 E[1{Zk = i}] = NP(Z1 = i) since the Zi are identically
distributed.

4.4 Length of the KT probability assignment

Lemma 3. For any integer m > 0, N1, N2, · · ·Nm ∈ N and probability distribution (θ1, · · · θm),

(

N
N1,N2···Nm

)

θN1
1 · · · θNm

m
(2N
2N1,2N2···2Nm

)

θ2N1
1 · · · θ2Nm

m

≥ 1,

where N =
∑m

i=1Ni.

Remark 4. Equivalently, consider an urn containing known number of balls with m different
colours. The lemma claims that the probability of getting N1 balls of colour 1, N2 of balls of colour
2, · · · Nm balls of colour m out of N draws with replacement is always greater than the probability
of getting 2N1 balls of colour 1, 2N2 of balls of colour 2, · · · 2Nm balls of colour m out of 2N draws
with replacement.

Proof. Let p1 = N1/N, p2 = N2/N, · · · , pm = Nm/N. Notice that
∑m

i=1 pi = 1, so (p1, · · · pm) can
be viewed as a probability distribution. And the entropy of this distribution is H(p1, · · · pm) =
∑m

i=1−pi log pi. Firstly we consider the case when N1, N2 · · ·Nm are all positive and none of them
equal to N. By Stirling’s approximation for factorial

√
2πn(ne)

ne1/(12n+1) ≤ n! ≤
√
2πn(ne)

ne1/12n,
we can bound

(

N

N1, N2 · · ·Nm

)

≥

√
2πNNN exp

(

1
12N+1 − 1

12N1
− 1

12N2
− · · · − 1

12Nm

)

(2π)m/2(N1N2 · · ·Nm)1/2NN1
1 NN2

2 · · ·NNm
m

=
exp

(

1
12N+1 − 1

12N1
− 1

12N2
− · · · − 1

12Nm

)

(2π)
m−1

2 (p1p2 · · · pm)1/2N
m−1

2 2−NH(p1,p2,··· ,pm)
.

Similarly, we have

(

2N

2N1, 2N2 · · · 2Nm

)

≤
exp

(

1
24N − 1

24N1+1 − 1
24N2+1 − · · · − 1

24Nm+1

)

(2π)
m−1

2 2
m−1

2 (p1p2 · · · pm)1/2N
m−1

2 2−2NH(p1···pm)
·

14

Consider the function

f(N1, N2, · · · , Nm) = 1
12N+1 − 1

24N + (1
24N1+1 − 1

12N1
) + (1

24N2+1 − 1
12N2

) + · · ·+ (1
24Nm+1 − 1

12Nm
)

and the function

g(n) =
1

24n+ 1
− 1

12n
,

where n is a positive integer. Function g(n) is minimized with n = 1 and min g(n) = 1/25 − 1/12
and we can bound function f(N1, N2, · · · , Nm) ≥ 1

12N+1 − 1
24N + (1/25 − 1/12)m. Finally we are

ready to prove the lemma.

(N
N1,N2···Nm

)

θN1
1 · · · θNm

m
(2N
2N1,2N2···2Nm

)

θ2N1
1 · · · θ2Nm

m

≥ 2
m−1

2 exp(f(N1, N2, · · · , Nm))

2NH(p1···pm)θN1
1 · · · θNm

m

≥
2

m−1
2 exp

(

1
12N+1 − 1

24N + (1/25 − 1/12)m
)

2−NDKL(p||θ)

= 2
m−1

2 2NDKL(p||θ)2log e(
1

12N+1
− 1

24N
+(1/25−1/12)m) .

Notice that 1
12N+1 − 1

24N goes to zero when N →∞, m−1
2 > (1/25 − 1/12)m and DKL(P ||θ) ≥ 0.

Therefore in this case,
(N
N1,N2···Nm

)

θN1
1 · · · θNm

m
(

2N
2N1,2N2···2Nm

)

θ2N1
1 · · · θ2Nm

m

≥ 1.

When one of {Ni}Ni=1 equals to N , without loss of generality, we assume that N1 = N . We have

(N
N1,N2···Nm

)

θN1
1 · · · θNm

m
(2N
2N1,2N2···2Nm

)

θ2N1
1 · · · θ2Nm

m

=
1

θN1
1 · · · θNm

m

> 1.

When there are k numbers out of N1, N2, · · · , Nm that equal to zero, we can simply remove these
values and consider the case with alphabet size m− k. And this will yield the same result.

Proof of Theorem 5. In this proof, we define a generalized form of factorial function. Let x be a
positive integer, (x+ 1

2)! =
1
2
3
2 · · · (x+ 1

2). Since (2N1 − 1)!! = (2N1)!

2N1 (N1)!
, we have

m(m+ 2) · · · (m+ 2N − 2) = 2N
(m

2

)

(

m+ 2

2

)

· · ·
(

m+ 2N − 2

2

)

= 2N
(

m
2 +N − 1

)

!
(

m
2 − 1

)

!
.

Therefore we can rewrite the KT probability assignment in (17) as

qKT(z
N) =

(m2 − 1)!

2N (m2 +N − 1)!

(2N
N

)

(2N
N

)

m
∏

i=1

(2Ni)!

Ni!2Ni

=
(m2 − 1)!

2N (m2 +N − 1)!

(

2N

N

)

N !
N !

(2N)!

m
∏

i=1

(2Ni)!

Ni!2Ni

(a)

≥
(

m
2 − 1

)

!
(2N
N

)

4N (N + m
2 − 1

2)
m−1

2

N !

(2N)!

m
∏

i=1

(2Ni)!

Ni!

15

(b)
=

θN1
1 · · · θNm

m (m2 − 1)!
(2N
N

)

4N (N + m
2 − 1

2)
m−1

2

(

N
N1,N2···Nm

)

θN1
1 · · · θNm

m
(2N
2N1,2N2···2Nm

)

θ2N1
1 · · · θ2Nm

m

,

where (a) follows that when m is even, N !
(m
2
+N−1)! =

1
(N+1)···(m

2
+N−1) ≥ 1

(N+m
2
− 1

2
)
m−1

2
and when m

is odd, N !
(m
2
+N−1)! ≥ N !

(m
2
+N− 1

2
)!
= 1

(N+1)···(m
2
+N− 1

2
)
≥ 1

(N+m
2
− 1

2
)
m−1

2
, (b) follows that

(N
N1,N2···Nm

)

=

N !∏m
i=1 Ni!

and θi , P(Z1 = i). By lemma 3, we have qKT(z
N) ≥ θ

N1
1 ···θNm

m (m
2
−1)!(2NN)

4N (N+m
2
− 1

2
)
m−1

2
. Thus,

ℓKT(z
N) = log

1

qKT(zN)

≤ log
1

θN1
1 · · · θNm

m

+ log
4N (N + m

2 − 1
2)

m−1
2

(m2 − 1)!
(

2N
N

)

= log
1

θN1
1 · · · θNm

m

+
m− 1

2
log

(

N +
m− 1

2

)

+ log
4N
(2N
N

) − log
(m

2
− 1

)

!

(a)

≤ log
1

θN1
1 · · · θNm

m

+
m− 1

2
log

(

N +
m− 1

2

)

+ log
4N
(2N
N

) −
(m

2
− 1

)

log (
m
2 − 1

e
)

(b)∼ log
1

θN1
1 · · · θNm

m

+
m− 1

2
log

(

N +
m− 1

2

)

+ log
√
πN −

(m

2
− 1

)

log

(m
2 − 1

e

)

∼ m

2
log

e(m2 +N)

m/2
+ log

√
πN + log

1

θN1
1 · · · θNm

m

=
m

2
log

(

e
(

1 + 2N
m

))

+
1

2
log(πN) +

m
∑

i=1

Ni log
1

θi
,

where (a) follows Stirling’s approximation k! ≥
√
2πk(ke)

ke
1

12k+1 and (b) follows Stirling’s approxi-

mation for binomial coefficient, i.e.,
(

2N
N

)

∼ 4N√
πN

. Therefore, we have

E[ℓKT(Z
N)] ≤ 1

2
m log

(

e
(

1 + 2N
m

))

+
1

2
log(πN) +NH(Z1).

4.5 Proof of Theorem 2

Proof. Once again, we establish universality for both KT and Laplace probability assignment.
Following a similar argument as in the proof of Theorem 1, it suffices to show the universality of
Laplace. Since we are compressing N =

(n
2

)

identically distributed bits using a Laplace probability
assignment, Theorem 4 yields

E(ℓ(C1(An)))

H(An)
≤ log(2eN) +NH (A12)

H(An)

≤ log(2eN) +NH (A12)

H(An|Xn
1)

=

(

log(2eN) +NH (A12)

NH(A12)

)

H(A12)

H(A12|X1,X2)

16

=

(

1 +
log(2eN)

Nh(f(n)pTQp)

)

h(f(n)pTQp)

pTh(f(n)Q)p

(a)
= 1 + o(1).

Here, (a) is justified by noting that log(2eN)
Nh(f(n)pTQp)

≤ log(2en2)

(n2)h(n−(2−ǫ)pTQp)

h(n−(2−ǫ)pTQp)
h(f(n)pTQp)

, and then

noting that log(2en2)

(n2)h(n
−(2−ǫ)pTQp)

= o(1) and h(n−(2−ǫ)pTQp)
h(f(n)pTQp)

= O(1) when f(n) = Ω
(

1
n2−ǫ

)

and that

H(h(f(n)pTQp) ∼ pTh(f(n)Q)p.

Remark 5. When f(n) = 1, the compressor C1 is strictly suboptimal. This is because the length
achieved by C1 is

(n
2

)

h
(

f(n)pTQp
)

(1 + o(1)), whereas the first order term in the entropy is
(n
2

)

pTh (f(n)Q)pT . When f(n) is o(1), these two have the same first order term. However, when
f(n) is constant, pTh (f(n)Q)pT is strictly smaller than h

(

f(n)pTQp
)

by concavity of entropy.

5 Second order analysis in the sparse regime

So far, we have shown that our algorithm always matches the first order term in the Shannon
entropy. Now, we proceed to analyze the second order term of the expected length of our pro-
posed compressor. We focus on the family of symmetric SBM with edge probability f(n) = 1/n
and evaluate the performance of our compressor using the framework of local weak convergence,
as introduced in [27]. This would allow us to compare the performance of our compressor to
the compressor proposed in [14]. We first introduce some basic definitions on rooted graphs in
Subsection 5.1. Then, we define the local weak convergence of graphs and derive the local weak
convergence limit of the symmetric stochastic block model in Subsection 5.2. Finally, we review the
definition of BC entropy in Subsection 5.3 and state the performance guarantee of our compression
algorithm in Subsection 5.4.

5.1 Basic definitions on rooted graphs

Let G = (V,E) be a simple graph (undirected, unweighted, no self-loop), with V a countable set of

vertices and E a countable set of edges. Let u
G∼ v denote the connectivity of vertices u and v in G.

G is said to be locally finite if, for all v ∈ V , the degree of v in G is finite. A rooted graph (G, o)
is a locally finite and connected graph G = (V,E, o) with a distinguished vertex o ∈ V , called the
root. Two rooted graphs (G1, o1) = (V1, E1, o1) and (G2, o2) = (V2, E2, o2) are isomorphic, denoted

as (G1, o1) ≃ (G2, o2), if there exists a bijection π : V1 → V2 such that π(o1) = o2 and u
G1∼ v if

and only if π(u)
G2∼ π(v) for all u, v ∈ V1. One can verify that this notion of isomorphism defines

an equivalence relation on rooted graphs. Let [G, o] denote the equivalence class corresponding to
(G, o). Let G∗ denote the set of all locally finite and connected rooted graphs. For (G, o) ∈ G∗ and
h ∈ N, we write (G, o)h for the truncated graph at depth h of the graph (G, o), in other words, the
induced subgraph on the vertices such that their distance from the root is less than or equal to h.
The equivalence classes [G, o]h follows the similar definition. Let G∗h denote the set of all [G, o]h.
Now, we define the metric d∗ on G∗. For any [G1, o1] and [G2, o2], let

ĥ := sup{h ∈ Z
+ : (G1, o1)h ≃ (G2, o2)h for some (G1, o1) ∈ [G1, o1], (G2, o2) ∈ [G2, o2]}

and define the metric d∗ as

d∗([G1, o1], [G2, o2]) :=
1

1 + ĥ
.

17

As shown in [14], equipped with the metric defined above, G∗ is a Polish space, i.e, a complete
separable metric space. For this Polish space, let P(G∗) denote the Borel probability measures on it.
We say that a sequence of measures µn ∈ P(G∗) converges weakly to µ ∈ P(G∗), written as µn µ,
if for any bounded continuous function f on G∗, we have

∫

fdµn →
∫

fdµ. It was shown in [36]
that µn µ if for any uniformly continuous and bounded functions f , we have

∫

fdµn →
∫

fdµ.
For µ ∈ P(G∗), h ∈ {0, 1, 2, . . .}, and [G, o] ∈ G∗, let µh denote the h-neighborhood marginal of µ

µh([G, o]) =
∑

[G′,o]∈G∗:[G′,o]h=[G,o]

µ([G′, o]).

For a locally finite graph G = (V,E) and a vertex v ∈ V , let G(v) denote the graph component
in G that is connected to v. By our previous definitions, (G(v), v) denotes the rooted graph of
the connected component of v and the root is located at v and [G(v), v] denotes the equivalence
class corresponding to (G(v), v). Now, the rooted neighbourhood distribution of G is defined as the
distribution of the rooted graph when the root is chosen uniformly at random over V

U(G) :=
1

|V |
∑

v∈V
δ[G(v),v], (37)

where δ is the Dirac delta function.

5.2 Local weak convergence

For our study of stochastic block model, which is a sequence of random graphs {An}∞n=1, U(An) as
defined in (37) becomes a random distribution. In the section, we establish the asymptotic behavior
of the average neighbourhood distribution EU(An) averaged over the randomness of the graph An.

To state the limiting distribution, we define the Galton–Watson tree probability distribution on
rooted trees GWT(Pλ) as follows. Let Pλ denote the Poisson distribution with mean λ. We take a
vertex as the root and generate Z(1) ∼ Pλ as the number of children of the first generation. For the

first generation, independent of Z(1), we generate ξ
(1)
1 , . . . , ξ

(1)

Z(1) i.i.d. according to Pλ as the number

of children of each vertex in the first generation. Let Z(2) =
∑Z(1)

i=1 ξ
(1)
i denote the total number of

vertices in the first generation. In general, for the jth generation, j = 1, 2, . . ., generate the number

of children for each vertex in the jth generation ξ
(j)
1 , . . . , ξ

(j)

Z(j) i.i.d. according to Pλ, independent

of all previous variables {ξ(i−1)
1 , . . . , ξ

(i−1)

Z(i−1) , Z
(i), for all i ≤ j}. Let Z(j+1) =

∑Z(j)

k=1 ξ
(j)
k denote the

total number of vertices in the jth generation. In this way, we iteratively defined a measure on
rooted trees. With the definitions above, we are ready to establish the local weak convergence of
the symmetric stochastic block model.

Lemma 4 (Local weak convergence of sparse symmetric SBMs). Let An denote a graph generated
from a symmetric stochastic block model SBM(n,L,p, 1

nQ) with p =
(

1
L , . . . ,

1
L

)

, Qii = a,∀i ∈ [n]
and Qij = b,∀i, j ∈ [n], i 6= j. Let U(An), defined as in (37), be the random rooted neighbourhood
distribution of An. Then, the average neighbourhood distribution EU(An) converges weakly to a
Poisson Galton–Walson tree

EU(An) GWT(Pλ),

where λ = a+(L−1)b
L .

Remark 6. When a = b, the symmetric stochastic block model recovers the well-known local weak
convergence result on Erdős–Rényi model (see, e.g., []).

18

Proof of Lemma 4. We want to show that for any uniformly continuous and bounded function
f ,

∣

∣

∣

∣

∫

fdEU(An)−
∫

fdGWT(Pλ)

∣

∣

∣

∣

→ 0

as n → ∞. Since f is a uniformly continuous function on G∗, for every ǫ > 0 there exists δ > 0
such that, for any pair of rooted graphs [G1, o1] and [G2, o2] ∈ G∗ with d∗([G1, o1], [G2, o2]) < δ
we have |f(G1, o1) − f(G2, o2)| < ǫ. Recall that d∗([G1, o1], [G2, o2]) :=

1
1+ĥ

, where ĥ denotes the

maximum layers of matching between [G1, o1] and [G2, o2]. Therefore, as long as h > 1
δ −1, we have

|f((G, o)h) − f(G, o)| < ǫ. It follows that |f([i, o]) − f([g, o])| < ǫ, if [i, o]h = [g, o]. Let µ ∈ P(G∗)
and assume h > 1

δ − 1. We have

∣

∣

∣

∣

∫

fdµh −
∫

fdµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

[g,o]∈G∗

h

f([g, o])µh([g, o]) −
∑

[i,o]∈G∗

f([i, o])µ([i, o])

∣

∣

∣

∣

∣

∣

(38)

≤
∑

[g,o]∈G∗

h

∣

∣

∣

∣

∣

∣

f([g, o])µh([g, o]) −
∑

[i,o]∈G∗:[i,o]h=[g,o]

f([i, o])µ([i, o])

∣

∣

∣

∣

∣

∣

(39)

=
∑

[g,o]∈G∗

h

∣

∣

∣

∣

∣

∣

∑

[i,o]∈G∗:[i,o]h=[g,o]

(f([g, o]) − f([i, o]))µ([i, o])

∣

∣

∣

∣

∣

∣

(40)

≤
∑

[g,o]∈G∗

h

∑

[i,o]∈G∗:[i,o]h=[g,o]

|f([g, o]) − f([i, o])| µ([i, o]) (41)

≤
∑

[g,o]∈G∗

h

∑

[i,o]∈G∗:[i,o]h=[g,o]

ǫµ([i, o]) = ǫ, (42)

where (3) follows since µh([g, o]) =
∑

[i,o]∈G∗:[i,o]h=[g,o] µ([i, o]). Therefore, we have |
∫

fdEU(An)h−
∫

fdEU(An)| < ǫ and |
∫

fdGWT(Pλ)h−
∫

fdGWT(Pλ)| < ǫ. Let B ⊆ G∗ be a measurable event in
G∗. By the exchangability of stochastic block model, we have EU(An)(B) = 1

n

∑n
i=1 P([An(i), i] ∈

B) = P([An(1), 1] ∈ B), in other words, EU(An) is simply the neighbourhood distribution at vertex
1. By the analogous argument as in proposition 2 of [34], for any ǫ > 0, there exists n0 such
that if n ≥ n0 and lnn

10 ln(2(a+(L−1)b)) ≥ R, we have dTV (GWT(Pλ)R,EU(An)R) < ǫ, where dTV (·, ·)
denotes the total variation distance between two measures. Remember here the total variation
distance is dTV (µ1, µ2) := supg:G∗→[−1,1](

∫

gdµ1 −
∫

gdµ2). Since f is a bounded function, we have
|
∫

fdGWT(Pλ)R −
∫

fdEU(An)R| < ǫ, as long as n is large enough. Therefore, if we take n large
enough such that lnn

10 ln(2(a+(L−1)b)) > 1
δ − 1 and |

∫

fdGWT(Pλ)h −
∫

fdEU(An)h| < ǫ, we have

∣

∣

∣

∣

∫

fdEU(An)−
∫

fdGWT(Pλ)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

fdEU(An)h −
∫

fdEU(An)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

fdGWT(Pλ)h −
∫

fdGWT(Pλ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

fdGWT(Pλ)h −
∫

fdEU(An)h

∣

∣

∣

∣

< 3ǫ,

which completes the proof.

19

5.3 BC entropy

In this section, we review the notion of BC entropy introduced in [27], which is shown to be the
fundamental limit of universal lossless compression for certain graph family [14].

For a Polish space Ω, let P(Ω) denote the set of all Borel probability measures on Ω. Let A be a
Borel set in Ω, we define the ǫ-extension of A, denoted Aǫ, as the union of the open balls with radius ǫ
centered around the points in A. For two probability measures µ and ν in P(Ω), we define the Lévy–
Prokhorov distance dLP(µ, ν) := inf{ǫ > 0 : µ(A) ≤ ν(Aǫ) + ǫ and ν(A) ≤ µ(Aǫ) + ǫ,∀A ∈ B(Ω)},
where B(Ω) denotes the Borel sigma algebra of Ω. Let ρ ∈ P(G∗). Let d be the expected number of
neighbours of root under the law ρ and let a sequence m = m(n) such that m/n→ d/2, as n→∞.
Define Gn,m to be the set of graphs with n vertices and m edges. For ǫ > 0, define

Gn,m(ρ, ǫ) = {G ∈ Gn,m : U(G) ∈ B(ρ, ǫ)},

where B(ρ, ǫ) denotes the open ball with radius ǫ around ρ with respect to Lévy–Prokhorov metric.
Now, we define the ǫ-upper BC entropy of ρ as

Σ(ρ, ǫ) = lim sup
n→∞

log |Gn,m(ρ, ǫ)| −m log n

n

and define the upper BC entropy of ρ as

Σ(ρ) = lim
ǫ→0

Σ(ρ, ǫ).

Similarly we define the ǫ-lower BC entropy Σ(ρ, ǫ) and lower BC entropy Σ(ρ) with lim sup replaced
by lim inf in above definitions. If ρ is such that Σ(ρ) = Σ(ρ), then this common limit is called the
BC entropy of ρ

Σ(ρ) := Σ(ρ) = Σ(ρ).

The following lemma states the BC entropy of the Galton–Waston tree distribution.

Lemma 5 (Corollary 1.4 of [27]). The BC entropy of the Galton–Watson tree distribution GWT(Pλ)
is given by

Σ (GWT(Pλ)) =
λ

2
log

e

λ
bits.

5.4 Achieving BC entropy in the sparse regime

With the Lemma above, we can give a performance guarantee of our algorithm corresponding to
the BC entropy. It is a Theorem analog to Proposition 1 in [14].

Theorem 6. Let An ∼ SBM
(

n,L,p, 1
nQ

)

with p =
(

1
L , . . . ,

1
L

)

, Qii = a,∀i ∈ [n] and Qij =

b,∀i, j ∈ [n], i 6= j. Let λ = pTQp = a+(L−1)b
L and m =

(

n
2

)

λ
n be the expected number of edges

in the model. Then, our compression algorithm achieves the BC entropy of the local weak limit of
stochastic block models in the sense that

lim sup
n→∞

E[ℓ(Ck(An))]−m log n

n
≤ Σ (GWT(Pλ)) .

Proof. By our proof of theorem (need to fill in ref), we have

E[ℓ(Ck(An))] ≤
(

n′

2

)

H(B12) + 2k
2
n log(2en3) + nk2nH(A12).

20

Notice that
(

n′

2

)

H(B12) ≤
(

n′

2

)

k2nH(A12)

=

(

n′

2

)

k2nh(λ/n)

(1)
=

(

n′

2

)

k2n

(

1

n
λ log

ne

λ
+ o

(

1

n

))

(2)∼
(

n

2

)(

1

n
λ log n+

1

n
λ log

e

λ
+ o

(

1

n

))

=

(

n

2

)

1

n
λ log n+

λ log e− λ log λ

2
n+ o(n)

(3)
= m log n+ nΣ (GWT(Pλ)) + o(n)

where (1) follows since h(p) = p log e
p −

log e
2 p2 + o(p2), (2) follows since n′kn = n and (3) follows

from Lemma 5. Then it suffices to that the remaining terms in the upper bound of E[ℓ(Ck(An))]
are all o(n). Indeed we have

2k
2
n log(2en3) ≤ 2δ logn log(2en3) = nδ log(2en3) = o(n)

since δ < 1 and

nk2nH(A12) = nk2nh(λ/n)

= nk2n

(

1

n
λ log

ne

λ
+ o

(

1

n

))

≤ nδ log n

(

1

n
λ log

ne

λ
+ o

(

1

n

))

= δ log n
(

λ log
ne

λ

)

+ o (log n)

= o(n).

Remark 7. For sparse symmetric SBMs, Theorem 6 shows that our compressor achieves the BC
entropy of the Galton–Watson tree that is the local weak convergence limit of the underlying
sequence of graphs. We note, however, that for the family of sparse symmetric SBMs, it is unclear
if this BC entropy is the fundamental limit of lossless compression. This is because the family of
sparse symmetric SBMs does not belong to the family of random graphs considered in [26], where
a converse statement can be established.

6 Stationarity in the stochastic block model

In this section, we take a closer look at the correlation among entries in the adjacency matrix
and explain why existing universal compressors developed for stationary processes may not be
immediately applicable for certain orderings of the entries.

21

Compressing An entails compressing

A12, . . . , A1,n, A23, . . . , An−1,n,

i.e. the bits in the upper triangle of An. Clearly, these are not independent (because of the
dependency through Xn

1) so one cannot use any of the compressors universal for the class of iid
processes to compress An. So, one hopes that it is possible to list the

(n
2

)

random variables
A12, . . . , A1,n, A23, . . . , An−1,n in an order that makes the resulting sequence stationary, so that the
Lempel–Ziv compressor (which, recall, is universal for the class of stationary processes) may be
used. However, we show now that some of the most natural orders of listing these

(n
2

)

bits result
in a sequence that is nonstationary.

1. Horizontally: Listing the bits in the upper triangle row-wise (i.e. first listing the bits in
the first row, followed by the bits in the second and so on, ending with An−1,n) we get the
following sequence

A12, . . . , A1,n, A23, . . . , A2,n, . . . , An−1,n,

which can be seen to be nonstationary. Consider the case when n = 4, L = 2, Q11 = Q12 =
1, Q12 = 0. In this case the horizontal ordering is

A12, A13, A14, A23, A24, A34

and this is seen to be nonstationary by observing P (A12 = 1, A13 = 0, A14 = 1) > 0 but
P (A23 = 1, A24 = 0, A34 = 1) = 0.

2. Vertically: Listing the bits in the upper triangle column-wise (i.e. first listing the bits in
the first column, followed by the bits in the second and so on, ending with An−1,n) we get
the following sequence

A12, A13, A23, . . . , A1,n, . . . , An−1,n,

which can be seen to be nonstationary. Consider the case when n = 4, L = 2, Q11 = Q12 =
1, Q12 = 0. In this case the vertical ordering is

A12, A13, A23, A14, A24, A34

and this is seen to be nonstationary by observing P (A12 = 1, A13 = 0, A23 = 1) = 0 but
P (A14 = 1, A24 = 0, A34 = 1) > 0.

3. Diagonally: Consider ⌊n2 ⌋ sequences defined as

S1 := A12, A23, A34, . . . , An−1,n, An,1

S2 := A13, A24, A35, . . . , An−2,n, An−1,1, An,2

...

S⌊n
2
⌋−1 := A1,1+⌊n

2
⌋−1, A2,2+⌊n

2
⌋−1, · · · , An,⌊n

2
⌋−1

and

S⌊n
2
⌋ =

{

A1,1+n/2, A2,2+n/2, . . . , An/2,n, when n is even,

A1,1+⌊n
2
⌋, A2,2+⌊n

2
⌋, . . . , An,n+⌊n

2
⌋, when n is odd.

Concatenating S1, . . . , S⌊n
2
⌋ yields a sequence of length

(

n
2

)

. This corresponds to listing the
bits diagonal-wise. However, even this does not yield a sequence that is stationary which can

22

be illustrated by considering the case when n = 4, L = 2, Q11 = Q12 = 1, Q12 = 0. In this
case the diagonal ordering is

A12, A23, A34, A41, A13, A24

and this is seen to be nonstationary by observing P (A12 = 0, A23 = 1, A34 = 1) > 0 but
P (A34 = 0, A41 = 1, A13 = 1) = 0.

7 Experiments

We implement the proposed universal graph compressor (UGC) in four widely used benchmark
graph datasets: protein-to-protein interaction network (PPI) [37], LiveJournal friendship network
(Blogcatalog) [38], Flickr user network (Flickr) [38], and YouTube user network (YouTube) [39].
The block decomposition size k is chosen to be 1, 2, 3, 4 and we present in Table 1 the compression
ratios (the ratio between output length and input length of the encoder) of UGC for different
choices of k. We present in Table 2 the compression ratios of four competing algorithms.

k = 1 k = 2 k = 3 k = 4

PPI 0.0228 0.0226 0.0227 0.034

Blogcatalog 0.0275 0.0270 0.0267 0.0288

Flickr 0.00960 0.00935 0.00915 0.00907

YouTube 4.51 × 10−5 4.11 × 10−5 3.98× 10−5 4.00× 10−5

Table 1: Compression ratio of UGC under different k values.

CSR Ligra+ LZ PNG

PPI 0.166 0.0605 0.06 0.089

Blogcatalog 0.203 0.0682 0.080 0.096

Flickr 0.0584 0.0217 0.0307 0.0262

YouTube 3.23 × 10−4 9.90 × 10−5 1.09 × 10−4 1.10 × 10−3

Table 2: Compression ratios of competing algorithms.

• CSR: Compressed sparse row is a widely used sparse matrix representation format. In the
experiment, we further optimize its default compressor exploiting the fact that the graph is
simple and its adjacency matrix is symmetric with binary entries.

• Ligra+: This is another powerful sparse matrix representation format [40,41], which improves
upon CSR using byte codes with run-length coding.

• LZ: This is an implementation of the algorithm proposed in [42], which first transforms the
two-dimensional adjacency matrix into a one-dimensional sequence using the Peano–Hilbert
space filling curve and then compresses the sequence using Lempel–Ziv 78 algorithm [23].

• PNG: The adjacency matrix of the graph is treated as a gray-scaled image and the PNG
lossless image compressor is applied.

23

The compression ratios of the five algorithms implemented on four datasets are given as follows.
The proposed UGC outperforms all competing algorithms in all datasets. The compression ratios
from competing algorithms are 2.4 to 27 times that of the universal graph compressor.

Note, however, that CSR and Ligra+ are designed to enable fast computation, such as adjacency
query or vertex degree query, in addition to compressing the matrix. Our proposed compressor does
not possess such functionality and is designed solely for compression purpose.

Acknowledgment

L. Wang would like to thank Emmanuel Abbe and Tsachy Weissman for stimulating discussions in
the initial phase of the work. She is grateful to Young-Han Kim and Ofer Shayevitz for their interest
and encouragement in this result. C. Wang would like to thank Richard Peng for his suggestion in
writing.

References

[1] R. Rossi and R. Zhou, “GraphZIP: a clique-based sparse graph compression method,” Journal
of Big Data, vol. 5, no. 10, 2018.

[2] Y. Lim, U. Kang, and C. Faloutsos, “Slashburn: Graph compression and mining beyond
caveman communities,” IEEE Transactions on Knowledge and Data Engineering, vol. 26,
no. 12, pp. 3077–3089, 2014.

[3] P. Boldi and S. Vigna, “The webgraph framework i: Compression techniques,” in Proceedings
of the 13th International Conference on World Wide Web, ser. WWW ’04. New York, NY,
USA: Association for Computing Machinery, 2004, pp. 595–602.

[4] T. C. Conway and A. J. Bromage, “Succinct data structures for assembling large genomes,”
Bioinformatics, vol. 27, no. 4, pp. 479–486, 01 2011.

[5] M. Hayashida and T. Akutsu, “Comparing biological networks via graph compression,” BMC
systems biology, vol. 4 Suppl 2, no. Suppl 2, 2010.

[6] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Raghavan,
“On compressing social networks,” in Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’09. New York, NY, USA:
Association for Computing Machinery, 2009, pp. 219–228.

[7] G. Navarro, “Compressing web graphs like texts,” Dept. of Computer Science, University of
Chile, Tech. Rep., 2007.

[8] K. Sadakane, “New text indexing functionalities of the compressed suffix arrays,” Journal of
Algorithms, vol. 48, no. 2, pp. 294 – 313, 2003.

[9] N. R. Brisaboa, S. Ladra, and G. Navarro, “K2-trees for compact web graph representation,”
in Proceedings of the 16th International Symposium on String Processing and Information
Retrieval, ser. SPIRE ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 18–30.

[10] A. Farzan and J. I. Munro, “Succinct encoding of arbitrary graphs,” Theoretical Computer
Science, vol. 513, pp. 38 – 52, 2013.

24

[11] G. Turán, “On the succinct representation of graphs,” Discrete Applied Mathematics, vol. 8,
no. 3, pp. 289 – 294, 1984.

[12] M. Naor, “Succinct representation of general unlabeled graphs,” Discrete Applied Mathematics,
vol. 28, no. 3, pp. 303 – 307, 1990.

[13] Y. Choi and W. Szpankowski, “Compression of graphical structures: Fundamental limits,
algorithms, and experiments,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 620–638, Feb 2012.

[14] P. Delgosha and V. Anantharam, “Universal lossless compression of graphical data,” in Proc.
IEEE Internat. Symp. Inf. Theory, June 2017.

[15] ——, “Universal lossless compression of graphical data,” 2019.

[16] ——, “A universal low complexity compression algorithm for sparse marked graphs,” in Proc.
IEEE Internat. Symp. Inf. Theory, June 2020.

[17] E. Abbe, “Graph compression: The effect of clusters,” in Proc. 54th Ann. Allerton Conf.
Commun. Control Comput., 2016, pp. 1–8.

[18] A. Asadi, E. Abbe, and S. Verdú, “Compressing data on graphs with clusters,” in Proc. IEEE
Internat. Symp. Inf. Theory, August 2017, pp. 1583–1587.

[19] M. Besta and T. Hoefler, “Survey and taxonomy of lossless graph compression and space-
efficient graph representations,” 2018.

[20] Q. Xie and A. R. Barron, “Minimax redundancy for the class of memoryless sources,” IEEE
Trans. Inf. Theory, vol. 43, no. 2, pp. 646–657, 1997.

[21] ——, “Asymptotic minimax regret for data compression, gambling, and prediction,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 431–445, 2000.

[22] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans.
Inf. Theory, vol. 23, no. 3, pp. 337–343, 1977.

[23] ——, “Compression of individual sequences via variable-rate coding,” IEEE Trans. Inf. Theory,
vol. 24, no. 5, pp. 530–536, 1978.

[24] M. Effros, K. Visweswariah, S. R. Kulkarni, and S. Verdú, “Universal lossless source coding
with the burrows wheeler transform,” IEEE Trans. Inf. Theory, vol. 48, no. 5, pp. 1061–1081,
2002.

[25] F. M. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree weighting method: basic
properties,” IEEE Trans. Inf. Theory, vol. 41, no. 3, pp. 653–664, 1995.

[26] P. Delgosha and V. Anantharam, “Universal lossless compression of graphical data,” IEEE
Trans. Inf. Theory, vol. 66, no. 11, pp. 6962–6976, 2020.

[27] C. Bordenave and P. Caputo, “Large deviations of empirical neighborhood distribution in
sparse random graphs,” Probability Theory and Related Fields, vol. 163, no. 1-2, p. 149–222,
Nov 2014.

[28] A. Bhatt, Z. Wang, C. Wang, and L. Wang, “Universal graph compression: Stochastic block
models,” 2020. [Online]. Available: https://arxiv.org/abs/2006.02643

25

[29] Y. Polyanskiy and Y. Wu, “Lecture notes on information theory,” 2014.

[30] A. Frieze and M. Karoński, Introduction to Random Graphs. Cambridge University Press,
2015.

[31] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arithmetic coding
in the h.264/avc video compression standard,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, no. 7, 2003.

[32] E. Abbe, A. S. Bandeira, and G. Hall, “Exact recovery in the stochastic block model,” IEEE
Trans. Inf. Theory, vol. 62, no. 1, pp. 471–487, 2015.

[33] E. Abbe and C. Sandon, “Community detection in general stochastic block models: Fun-
damental limits and efficient algorithms for recovery,” in IEEE 56th Annual Symposium on
Foundations of Computer Science, 2015, pp. 670–688.

[34] E. Mossel, J. Neeman, and A. Sly, “Reconstruction and estimation in the planted partition
model,” Probability Theory and Related Fields, vol. 162, no. 3-4, pp. 431–461, 2015.

[35] S. Lauritzen, A. Rinaldo, and K. Sadeghi, “Random networks, graphical models, and exchange-
ability,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 80,
01 2017.

[36] P. Billingsley, Convergence of probability measures, 2nd ed., ser. Wiley Series in Probability
and Statistics: Probability and Statistics. New York: John Wiley & Sons Inc., 1999, a
Wiley-Interscience Publication.

[37] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, ser. KDD ’16. New York, NY, USA: Association for Computing Machinery, 2016, pp.
855–864.

[38] L. Tang and H. Liu, “Relational learning via latent social dimensions,” in Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser.
KDD ’09. New York, NY, USA: Association for Computing Machinery, 2009, pp. 817–826.

[39] S. Nandanwar and M. N. Murty, “Structural neighborhood based classification of nodes in a
network,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16. New York, NY, USA: Association for Computing
Machinery, 2016, pp. 1085–1094.

[40] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing framework for shared
memory,” in Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP ’13. New York, NY, USA: Association for Computing
Machinery, 2013, pp. 135–146.

[41] J. Shun, L. Dhulipala, and G. E. Blelloch, “Smaller and faster: Parallel processing of com-
pressed graphs with ligra+,” in 2015 Data Compression Conference, pp. 403–412.

[42] A. Lempel and J. Ziv, “Compression of two-dimensional data,” IEEE Trans. Inf. Theory,
vol. 32, no. 1, pp. 2–8, 1986.

26

