
ar
X

iv
:2

11
1.

08
84

3v
3

 [
cs

.I
T

]
 2

0
Se

p
20

23
This paper, previously titled “Error Coefficient-reduced Polar/PAC Codes”, will appear in IEEE Trans. on Inf. Theory.

On the Formation of Min-weight Codewords of Polar/PAC Codes

and Its Applications

Mohammad Rowshan, Member, IEEE, Son Hoang Dau, Member, IEEE, and Emanuele Viterbo, Fellow, IEEE

Minimum weight codewords play a crucial role in the error
correction performance of a linear block code. In this work,
we establish an explicit construction for these codewords of
polar codes as a sum of the generator matrix rows, which
can then be used as a foundation for two applications. In the
first application, we obtain a lower bound for the number of
minimum-weight codewords (a.k.a. the error coefficient), which
matches the exact number established previously in the literature.
In the second application, we derive a novel method that modifies
the information set (a.k.a. rate profile) of polar codes and PAC
codes in order to reduce the error coefficient, hence improving
their performance. More specifically, by analyzing the structure
of minimum-weight codewords of polar codes (as special sums
of the rows in the polar transform matrix), we can identify rows
(corresponding to information bits) that contribute the most to the
formation of such codewords and then replace them with other
rows (corresponding to frozen bits) that bring in few minimum-
weight codewords. A similar process can also be applied to PAC
codes. Our approach deviates from the traditional constructions
of polar codes, which mostly focus on the reliability of the sub-
channels, by taking into account another important factor - the
weight distribution. Extensive numerical results show that the
modified codes outperform PAC codes and CRC-Polar codes at
the practical block error rate of 10

−2-10−3.

Index Terms—Polarization-adjusted convolutional codes, PAC
Codes, polar codes, minimum Hamming distance, weight distri-
bution, list decoding, code construction, rate profile.

I. INTRODUCTION

Polar codes [2] are the first class of constructive channel

codes that was proven to achieve the symmetric (Shannon)

capacity of a binary-input discrete memoryless channel (BI-

DMC) using a low-complexity successive cancellation (SC)

decoder. However, the error correction performance of polar

codes under SC decoding is not competitive. To address

this issue, successive cancelation list (SCL) decoding was

proposed in [3] which yields an error correction performance

comparable to maximum-likelihood (ML) decoding at high

SNR. Further improvement was obtained by concatenation

of polar codes and cyclic redundancy check (CRC) bits [3]

Mohammad Rowshan is currently with the School of Electrical Engineering
and Telecommunications, The Univerity of New South Wales (UNSW), Syd-
ney, NSW 2052, Australia. E-mail: m.rowshan@unsw.edu.au. This research
was carried out during his Ph.D. program at Monash University.

Emanuele Viterbo is with the Department of Electrical and Computer
Systems Engineering (ECSE), Monash University, Melbourne, VIC 3800,
Australia. E-mail: emanuele.viterbo@monash.edu.

Son Hoang Dau is with the School of Computing Technologies, RMIT Uni-
versity, Melbourne, VIC 3000, Australia. E-mail: sonhoang.dau@rmit.edu.au.

This work was supported by the Australian Research Council under
Discovery Project ARC DP200100731 and DECRA Project DE180100768.

This paper was presented in part at the 2022 IEEE Information Theory
Workshop (ITW), Mumbai, India [1].

or parity check (PC) bits [4], [5], and by convolutional

pre-transformation, a.k.a. polarization-adjusted convolutional

(PAC) codes [6].

The error correction performance of linear codes under

ML decoding can be estimated by the Union bound [7,

Sect. 10.1] based on the weight distribution. As the truncated

Union bound, in particular at high SNR regimes, suggests, the

number of minimum Hamming weight codewords (a.k.a. error

coefficient) has the largest contribution to the calculation of

this bound. Given the importance of the number of minimum-

weight codewords, several attempts pursuing the enumeration

of weight distribution, and in particular the minimum-weight

codewords of polar codes, have been undertaken in the past.

In [8], the authors proposed sending the all-zero codeword

over a channel with low noise, or receiving at very high

SNR, and counting the re-encoded messages with certain

weights at the output of a successive cancellation list de-

coder with a very large list size. The method presented in

[9] suggests efficient computation of a probabilistic weight

distribution expression. In [10], [11], a closed-form expression

was proposed for the enumeration of min-weight codewords

of decreasing monomial codes, a large family of codes that

includes polar codes and Reed-Muller codes. This work was

recently extended in [12] to the structure and enumeration of

weights less than twice the minimum weight, in particular 1.5

times the minimum weight for polar codes. The authors in [14]

proposed a way to obtain an approximate distance spectrum

of polar codes with long lengths using the spectrum of

short codes and a probabilistic assumption on the appearance

of ones in codewords. Based on the weight distribution of

|u|u + v| constructed codes in [15], the weight distribution

of the words generated by the polar transform was found

recursively in [16]. Note that this work does not count the

codewords of a specific code where a subset of the rows of

the polar transform is frozen, that is, it is not involved in the

codeword formation. This shortcoming was addressed in [17]

by proposing a recursive algorithm that counts all codewords

from polar codes with any weight based on a specific definition

of cosets. The authors of [17] also exploited the properties of

monomial codes from [10] to reduce the complexity of the

proposed algorithm. Nevertheless, their algorithm cannot be

used for medium and long block lengths.

From a different perspective, the error coefficient of a code

depends on the code construction. Polar codes are constructed

by selecting good synthetic channels based on the reliability

of the sub-channels in the polarized vector channel. Note that

the vector channel is obtained from combining independent

channels recursively, which results in polarized sub-channels.

http://arxiv.org/abs/2111.08843v3

Bad synthetic channels are used for the transmission of known

values (usually 0). The mapping of information bits to good

sub-channels is performed based on a rate profile. Good

sub-channels are selected based on various methods for the

evaluation of sub-channels’ reliability. In [2], a method based

on the evolution of the Bhattacharyya parameters was used,

and the Bhattacharyya parameters evolved through the channel

combining process were the reliability metrics for binary

erasure channels (BEC). This method does not provide an ac-

curate reliability metric for low-reliability sub-channels under

additive white Gaussian noise (AWGN) channels. Density evo-

lution (DE) was proposed in [18] for a more accurate reliability

evaluation. However, it suffers from excessive complexity. To

reduce the complexity of DE, a method based on the upper

bound and the lower bound on the error probability of the sub-

channels was proposed in [19]. To further reduce the compu-

tational complexity of DE, the Gaussian approximation (GA)

to evolve the mean log-likelihood ratios (LLR) throughout the

decoding process in [20] which was based on [21]. There are

also SNR-independent low-complexity methods for reliability

evaluation. In [22], a partial ordering of sub-channels was

proposed based on their indices. A method for ordering all

the sub-channels was suggested in [23] based on the binary

expansion of the sub-channels indices. This method is known

as the polarization weight (PW) method.

The aforementioned code construction methods estimate the

reliability of sub-channels with different precision levels and

various levels of computational complexity. However, select-

ing only good channels, i.e. sub-channels with the highest

reliability, may result in poor weight distribution. Hence, to

obtain a good error correction performance, one may not

rely only on the reliability of the individual sub-channels. In

[24], an approach was proposed for constructing codes for list

decoding in which the probability of elimination of the correct

sequence in different sub-blocks of a code is balanced. In this

scheme, a code obtained from traditional code construction

methods is modified. A different method was suggested in

[28] to construct randomized polar subcodes that rely on the

explicit enumeration of low-weight codewords in a polar code

and the construction of dynamic freezing constraints (DFC)

to eliminate most of these codewords. The numerical results

have shown a significant performance gain for 1 kb code-

length in high-SNR regimes and block error rate (BLER)

below 10−4 and 10−5. However, the DFCs are optimized

and compared to non-optimized polar subcodes and CRC-

polar codes. Some other approaches such as in [26], [27]

were proposed for designing improved polar-like codes for

list decoding as well, although they do not provide explicit

procedures for constructing a code.

In this work, we first study the properties of the polar

transform, a matrix resulting from the Kronecker power of

the 2x2 binary Hadamard matrix, and characterize the rows

involved in the generation of minimum-weight codewords.

Although our characterization rediscovers a known formula

for the number of minimum-weight codewords of polar codes

developed in Bardet et al. [10], [11], it offers a different

perspective that facilitates a novel approach for code modifi-

cations. Based on this, we propose a simple, low-complexity,

and explicit method to modify polar and PAC codes to reduce

the error coefficient Admin
, i.e. the number of minimum-weight

codewords. Our method seeks to balance the competing effects

of reducing the error coefficient and using some less reliable

sub-channels to improve the error performance. The codes

designed by this approach outperform polar codes and PAC

codes in terms of block error rate (BLER) in certain regimes.

More specifically, as demonstrated by the numerical results,

the proposed codes have an edge at low and medium SNR

regimes (where the gain is usually harder to achieve), and the

BLER of 10−2-10−3 over polar codes and their well-known

variants. This BLER level is commonly used in many use

cases, except in ultra-reliability low-latency communications

(URLLC). Furthermore, we compare our results with the

BLER lower bound for finite-length codes as a reference. In

summary, our contributions are given below.

• We establish a construction of minimum-weight code-

words in a polar code as a sum of a row i of minimum

weight wmin, a set of core rows (rows that are at distance

wmin from the row i), and a set of balancing rows,

which brings the weight of the sum back to wmin.

This construction (see Theorem 1) immediately leads

to a lower bound on the number of minimum-weight

codewords in a polar code.

• We provide an analysis of error coefficient improvement

in the convolutional precoding process in PAC coding.

• Based on our new understanding of the structures of

minimum-weight codewords, we develop a code modifi-

cation procedure to improve the error coefficient of polar

and PAC codes, targeting the low SNR regimes and BLER

of 10−2-10−3.

Paper Outline: The rest of the paper is organized as

follows. We provide in Section II basic concepts and notations

in coding theory, as well as introduce Reed-Muller codes and

polar codes and the relationship between them. In Section III,

we study the special formation of minimum-weight codewords

in polar codes. In Sections IV and V, leveraging the new

insight regarding such formation, we propose a method to

improve the error coefficient of polar codes by carefully

modifying existing codes. We discuss in Section VI the impact

of precoding on the error coefficient of existing polar codes

and modified ones. In Section VII, we analyze the trade-off be-

tween the improvement of the error coefficient and the overall

reliability at different SNR regimes. The numerical results of

the proposed construction are provided in Section VIII, while

concluding remarks are given in Section IX. The Appendix

contains several parts, which provide a MATLAB script for

the enumeration of minimum-weight codewords (Appendix

A), the relation between the error coefficient and block error

probability (Appendix B), fundamental properties of polar

transform (Appendix C), and a full proof for Theorem 1, which

is about the formation of the minimum-weight codewords in

polar codes (Appendix D).

II. PRELIMINARIES

A. Basic Concepts in Coding Theory

We denote by Fq the finite field with q elements. In this

work we concentrate only on binary codes, that is, q = 2. The

cardinality of a set is denoted by |·|. The notation Vj
i represents

a vector Vi, Vi+1, · · · , Vj . We define in the following standard

notions from coding theory (for instance, see [7]). The support

of a vector c = (c0, . . . , cN−1) ∈ F
N
q is the set of indices

where c has a non-zero coordinate, that is, supp(c) , {i ∈
[0, N − 1] : ci 6= 0}. The (Hamming) weight of a vector c ∈
F
N
q is w(c) , | supp(c)|, which is the number of non-zero

coordinates of c. For the two vectors c = (c0, c1, . . . , cN−1)
and c′ = (c′0, c

′
1, . . . , c

′
N−1) in F

N
q , the (Hamming) distance

between c and c′ is defined to be the number of coordinates

where c and c′ differ, namely,

d(c, c′) = |{i ∈ [0, N − 1] : ci 6= c′i}|.

A K-dimensional subspace C of F
N
q is called a linear

(N,K, d)q code over Fq if the minimum distance of C,

d(C) , min
c,c′∈C,c 6=c

′
d(c, c′),

is equal to d. Sometimes we use the notation (N,K, d) or

just (N,K) for brevity. We refer to N and K as the length

and the dimension of the code. The vectors in C are called

codewords. It is easy to see that the minimum-weight of a

no-nzero codeword in a linear code C is equal to its minimum

distance d(C). A generator matrix G of an (N,K)q code C

is a K × N matrix in F
K×N
q whose rows are Fq-linearly

independent codewords of C. Then C = {vG : v ∈ F
K
q }.

We denote the number of codewords in C with weight w by

Aw(C). For brevity, we may drop C and simply write Aw.

Let [ℓ, u] denote the range {ℓ, ℓ+1, . . . , u}. The binary rep-

resentation of i ∈ [0, 2n−1] is defined as bin(i) = in−1...i1i0,

where i0 is the least significant bit, that is i =
∑n−1

a=0 ia2
a.

For i ∈ [0, 2n− 1], let Si denote the support of bin(i), that is,

Si , supp(bin(i)) = {a ∈ [0, n− 1] : ia = 1} ⊆ [0, n− 1].

This is an important notation that we will use throughout this

work. For instance, for i = 6 = (00110)2, Si = {1, 2}. Note

that the Hamming weight of bin(i) is w(bin(i)) = |Si|. We

will use interchangeably i ∈ [0, 2n − 1] and Si as the index

subscript of a codeword coordinate, i.e. ci = cSi
. For example,

when n = 5, we may use Si = {1, 3} to refer to the index

i = 10, which has bin(i) = 01010, and write c{1,3} instead of

c10. We also define Si’s complement Ti as Ti , [0, n−1]\Si.
For instance, when n = 5 and i = 10, we have Ti = {0, 2, 4}.

B. Reed-Muller Codes and Polar Codes

Reed-Muller (RM) codes and polar codes of length N = 2n

are constructed based on the n-th Kronecker power of binary

Walsh-Hadamard matrix G2 =
[
1 0
1 1

]

, that is, GN = G⊗n
2 ,

which is referred to as polar transform throughout this paper.

We denote polar transform by rows as

GN =








g0

g1

...

gN−1







. (1)

A generator matrix of RM code or polar code is formed by

selecting a set of rows of GN . We use I to denote the set

of indices of these rows and C(I) to denote the linear code

generated by the set of rows of GN indexed by I. Note that

I ⊆ [0, N−1] = [0, 2n−1]. We describe below how to select

the information sets I for RM and polar codes, respectively.

Reed-Muller Codes. The generator matrix of RM code of

length 2n and order r, denoted RM(r, n), is formed by the

set of all rows gi, i ∈ [0, N − 1], of weight w(gi) ≥ 2n−r,

which is the minimum-weight wmin of the code. Therefore,

the information set IRM of RM(r, n) is created as follows.

IRM = {i ∈ [0, 2n − 1] : w(gi) ≥ 2n−r}.

The dimension of RM(r, n) is K = |IRM| =
∑r

ℓ=0

(
n
ℓ

)
. The

concept of order r in the RM(r, n) code comes from the wedge

products of N -tuple vi+1 = gN−2i−1, i ∈ [0, n − 1] up to

degree r, where gj is the j-th rows of GN . By default, v0 =
gN−1 = [1 1 ... 1]. For instance, when n = 3 we obtain

v0 = g7 = [1 1 1 1 1 1 1 1],

v1 = g6 = [1 0 1 0 1 0 1 0],

v2 = g5 = [1 1 0 0 1 1 0 0],

v3 = g3 = [1 1 1 1 0 0 0 0].

The vectors vi, i ∈ [0, 3] in the example above form the

generator matrix of RM(1,3). As an example for order 2, the

generator matrix for RM(2, 3) is given by

GRM(2,3)=













v2∧v3

v1∧v3

v3

v1∧v2

v2

v1

v0













=













1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1













(2)

which has rows with minimum Hamming weight 2n−r =
23−2 = 2. One can observe that the generator matrix of

RM(n, n) is GN . In the example above, only g0 of G8 which

has weight 1 is not included in (2).

Polar Codes. The characterisation of the information set I
for polar codes is more cumbersome, relying on the concept

of bit-channel reliability. We discuss this in detail in the next

few paragraphs.

The key idea of polar codes of length N = 2n lies in

using a polarization transformation that converts N identical

and independent copies of any given binary-input discrete

memoryless channel (BI-DMC) W into N synthetic channels

{W
(i)
N , 0 ≤ i ≤ N − 1} which are either better or worse than

the original channel W [2]. We define WN (yN−1
0 |uN−1

0) =
WN (yN−1

0 |uN−1
0 GN) as the polarized vector channel from

the transmitted bits uN−1
0 where yN−1

0 are the received signals

from the N copies of the physical channel W . The bit-channel

W
(i)
N , i ∈ [0, N − 1] is implicitly defined as

W
(i)
N

(
yN1 , ui−1

1 |ui

)
=

∑

uN
i+1

1

2N−i
WN

(
yN1 |u

N
1

)
.

The channel polarization theorem [2] states that the symmetric

capacity of the bit-channel W
(i)
N , denoted I(W

(i)
N), converges

to either 0 or 1 as N approaches infinity. It can also be shown

that the fraction of the channels that become perfect converges

to the capacity of the original channel W , i.e., I(W), meaning

that polar codes are capacity achieving while the fraction of

extremely bad channels approaches to (1− I(W)).

Hence, a polar code of length N = 2n is constructed by

selecting a set I of indices i ∈ [0, N − 1] with the highest

I(W
(i)
N). The indices in I are dedicated to information bits,

while the rest of the bit-channels with indices in Ic , [0, N−
1] \ I are used to transmit a known value, ‘0’ by default,

which are called frozen bits. Regardless of the method we use

for forming the set I for a polar code, the bit-channels with

indices in the set I must be more reliable than any bit-channels

in Ic. The notation W
(i)
N � W

(j)
N is used to say that the bit-

channel j is more reliable than bit-channel i. In summary, a

polar code can be defined by any set I ⊆ [0, N−1] satisfying

W
(i)
N � W

(j)
N for every j ∈ I, i ∈ Ic. Such a code has

dimension K = |I|.

C. Partial Order Property and a Generalization of Reed-

Muller and Polar Codes

In the first part of this work, we identify the minimum-

weight codewords for a more general family of linear codes

C(I) that includes both RM codes and polar codes as special

cases. This family of codes is defined based on the par-

tial orders introduced in the literature of polar codes ([18],

[22], [32]), which are based on the binary representations of

the bit-channel indices and conveniently abstracts away the

cumbersome notion of bit-channel reliability. We first define

in Definition 1 these partial orders, combined as a single

partial order, and then the so-called Partial Order Property

that the information set I of these codes needs to satisfy in

Definition 2. We came to know when writing that the same

family of code had been also investigated in the previous

work by Bardet et al. [10], [11] under the name of decreasing

monomial codes.

Definition 1 (Partial Order). Given i, j ∈ [0, 2n−1], we denote

i � j or j � i if they satisfy one of the following conditions:

• Si ⊆ Sj ,

• Sj = (Si \ {a})∪{b} for some a ∈ Si, b /∈ Si and a < b
(i.e., bin(j) is obtained from bin(i) by swapping a ‘1’ in

bin(i) and a ‘0’ at a higher index),

• there exists k ∈ [0, 2n − 1] satisfying i � k and k � j,

where Si , supp(bin(i)) ⊆ [0, n− 1], which consists of the

indices where i has a ‘1’ in its binary representation. Note that

i � j implies that i ≤ j but not vice versa.

It is straightforward to verify that Definition 1 defines a

partial order, i.e. a binary relation on the set [0, 2n − 1]
satisfying reflexivity, antisymmetry, and transitivity.

It turns out that the relative reliability of some pairs of the

bit-channels with indices in [0, N−1] can be determined using

the partial order defined in Definition 1 as follows.

Proposition 1 ([18], [22], [32], [10], [11]). If j � i then the

bit-channel W
(j)
N is more reliable than the bit-channel W

(i)
N .

Definition 2 (Partial Order Property). A set I ⊆ [0, 2n− 1] is

said to satisfy the Partial Order Property if i 6� ic for every

i ∈ I and ic ∈ Ic. In other words, none of the indices in I is

smaller than or equal to another index in Ic according to the

partial order defined in Definition 1. Equivalently, for every

i ∈ I and j ∈ [0, N − 1], if j � i then j ∈ I.

Corollary 1. The information sets I of Reed-Mular codes and

polar codes satisfy the Partial Order Property.

Proof. For the RM(r, n), we have

IRM = {i ∈ [0, 2n − 1] : w(gi) ≥ 2n−r}

= {i ∈ [0, 2n − 1] : |Si| ≥ n− r},
(3)

where the second equality is due to Corollary 4 (Appendix C),

which states that w(gi) = 2|Si|. Clearly, if ic ∈ Ic then

|Sic | < n − r ≤ |Si|, which implies that i 6� ic. Therefore,

RM codes satisfy the Partial Order Property.

For a polar code, its information set I must satisfy the

condition that the bit-channel W
(i)
N is more reliable than

the bit-channel W
(ic)
N for every i ∈ I and ic ∈ Ic. By

Proposition 1, such i and ic must satisfy i 6� ic. Therefore,

the information set I of a polar code C(I) satisfies the Partial

Order Property. �

It is a simple fact that the linear codes in the general family

we are considering are subcodes of RM codes.

Note that the selected rows in the polar codes of length

N = 2n and minimum row weight wmin = minw(gi), i ∈ I
are a subset of the rows of the generator matrix for RM(r, n)

where 2n−r = wmin. As a result, any polar code is a subcode

of some RM code with common minimum distance which

results in I ⊆ IRM .

III. THE FORMATION OF MINIMUM-WEIGHT CODEWORDS

OF REED-MULLER AND POLAR CODES

A. The Minimum-Weight Codewords Formation

To determine the minimum-weight codewords of a RM

code or a polar code C(I) generated by a set of rows

{gi : i ∈ I} of GN , our strategy is to partition the code into

|I| disjoint cosets Ci(I) = gi + C(I \ [0, i]) of its subcodes

C(I\[0, i]) for i ∈ I, and identify minimum-weight codewords

in each of such cosets. We came to realize when writing this

paper and its conference version that another approach based

on permutation groups of Reed-Mular/polar codes had been

proposed before by Bardet et al. [10], [11]. Our work is a set-

theoretic approach and achieves only the lower bound on the

number of minimum-weight codewords of C(I), while both

the (same) lower bound and a matching upper bound were

established in [10], [11]. However, the formation of minimum-

weight codewords proposed in our approach makes it more

convenient to make a modification to the codes to reduce the

number of minimum-weight codewords and achieve a better

performance. We discuss the connection between our approach

and that of Bardet et al. in detail at the end of this section.

Definition 3. Given a set I ⊆ [0, N − 1], we define the set of

codewords Ci(I) ⊆ C(I) for each i ∈ I as follows.

Ci(I) ,

{

gi ⊕
⊕

h∈H

gh : H ⊆ I \ [0, i]

}

⊆ C(I). (4)

In other words, Ci(I) is a coset of the subcode C(I \ [0, i]) of

C(I) generated by {gh : h ∈ I \ [0, i]} with the coset leader

gi, where gi is the i-th row of the polar transform GN . It is

clear that the sets Ci(I), i ∈ I, partition the code C(I).

Lemma 1. Let Awmin
(I) denote the number of codewords

of minimum-weight wmin of the RM/polar code C(I), and

Ai,w(I) denote the number of codewords of weight w in the

coset Ci(I), i ∈ I. Then the following formula holds.

Awmin
(I) =

∑

i∈I : w(gi)=wmin

Ai,wmin
(I). (5)

Proof. Since Ci(I), i ∈ I, partition the code C(I), we have

Awmin
(I) =

∑

i∈I

Ai,wmin
(I) =

∑

i∈I : w(gi)=wmin

Ai,wmin
(I),

where the second equality holds because due to Corollary 5

(Appendix C), if w(gi) > wmin then all codewords in Ci(I)
have weights greater than wmin, that is, Ai,wmin

(I) = 0. �

We now define the set of indices Ki, which plays an

essential role in the formation of minimum-weight codewords

in Ci(I). If I satisfies the Partial Order Property then |Ki|
is the number of minimum-weight codewords in Ci(I) of the

form c = gi + gj , j ∈ I \ [0, i]. Surprisingly, Ki also leads

to the formation of all other minimum-weight codewords in

Ci(I) (see Theorem 1).

Definition 4. For each index i ∈ [0, N − 1] we define

Ki , {j ∈ [i + 1, N − 1] : w(gj) ≥ w(gi + gj) = w(gi)}

as the set of indices j ∈ [i+1, N−1] so that gj is at distance

w(gi) away from gi and has weight at least w(gi).

We call the rows indexed by elements in Ki the core rows

of i. As we will see later, the core rows allow one to form

all minimum-weight codewords in Ci(I). The properties of Ki

are listed in Lemma 2. Note that the definition of Ki is code

independent. However, thank to Lemma 2 c), if I satisfies the

Partial Order Property and i ∈ I then Ki ⊆ I. Hence, |Ki|
is indeed the number of minimum-weight codewords in Ci(I)
that are the sums of gi and another row gj , j ∈ I \ [0, i].

Lemma 2. The set Ki defined in Definition 4 satisfies the

following properties.

a) Ki = {j ∈ [i + 1, N − 1] : |Sj \ Si| = 1, |Sj | =
|Si| or |Si|+ 1}.

b) For every j ∈ Ki, we have

Sj ∩ Si =

{

Si, if w(gj) = 2w(gi),

Si \ {k}, k ∈ Si, if w(gj) = w(gi).
(6)

c) If I ⊆ [0, N − 1] satisfies the Partial Order Property

then for every i ∈ I, we have Ki ⊆ I.

d) The size of Ki is (recalling that bin(i) = in−1...i1i0)

|Ki| = |Ti|+
∑

k∈Si

∑

ℓ>k

īℓ, (7)

where Ti , [0, n− 1] \ Si and īℓ , iℓ ⊕ 1.

Proof. The proof for each part is given below.

a) According to Corollary 4 (Appendix C), w(gi + gj) =
w(gi) if and only if |Sj | = 1 + |Si ∩ Sj |. Taking

into account the condition that w(gj) ≥ w(gi), or

equivalently, |Sj | ≥ |Si|, we conclude that j ∈ Ki if

and only if |Sj \ Si| = 1 and |Si| ≤ |Sj | ≤ |Si|+ 1.

b) Following properties of Ki in part (a), when |Sj | = |Si|,
then according to Corollary 4 we have w(gj) = w(gi).
In this case since |Sj \Si| = 1, then |Sj ∩Si| = |Si|−1
which implies that Sj ∩Si = Si \ {k} for some k ∈ Si.
Also, when |Sj | = |Si| + 1, then we have w(gj) =
2w(gi). In this case since |Sj \Si| = 1, then |Sj∩Si| =
|Si| which implies that Sj ∩ Si = Si.

c) According to Part b), if j ∈ Ki then either Sj ⊇ Si or Sj
is obtained from Si by replacing an index k ∈ Si with

another index h > k (because j > i). By Definition 1,

j � i. Since I satisfies the Partial Order Property, j ∈ I.

Therefore, Ki ⊆ I.

d) To count the elements of Ki, we consider two cases in

part (b) in addition to the condition |Sj \ Si| = 1:

• If Sj ∩ Si = Si, then we count any j where there

exists some ℓ ∈ Sj and ℓ ∈ Ti. That is, by addition

of one ℓ ∈ Ti at a time to Si, we can obtain all such

j rows. Thus, we have |Ti| such j rows in total.

• If Sj ∩ Si = Si \ {k}, k ∈ Si, then we count any j
where there exists some ℓ ∈ Sj and ℓ ∈ Ti in which

ℓ is swapped with some k ∈ Si to retain |Sj | = |Si|.
Since j > i, this swap should be left-swap as the

right-swap gives j < i. Hence to count all such j
rows, for every k ∈ Si we count all ℓ ∈ Ti such

that ℓ > k. This operation can be implemented by
∑

k∈Si

∑

ℓ>k īℓ where īℓ = iℓ ⊕ 1. �

Remark 1. From the proof of Lemma 2 - part (c), note that

the elements of Ki can be obtained by applying the addition

and left-swap operations on bin(i):

• Addition: if we flip every ‘0’ in bin(i) one at time, we

get all j ∈ Ki which have weight w(gj) = 2w(gi).
• Left-swap: if we swap every ‘1’ in bin(i) with every ‘0’

on the left, one at time, we get all j ∈ Ki which have

weight w(gj) = w(gi).

Example 1. Suppose i = (13)10 = (01101)2 for G32 where

n = 5. To find the set Ki, we follow Remark 1. First we find

all j > i with weight 2w(gi) by addition operation. These

rows are {(01111)2, (11101)2} = {15, 29} ⊂ Ki. The size of

this subset can be found even without listing them by |Ti| =
n − |Si| = 5 − w(01101) = 2. We are actually counting the

number of zero-value positions in bin(i). Then, we find all

j > i with weight w(gi) by left-swap operation over bin(i).
These rows are {(01110)2, (11100)2, (11001)2, (10101)2} =
{14, 28, 25, 21} ⊂ Ki. The size of this subset also can be

found without listing them by
(
5−w(01101)

)
+
(
3−w(011)

)
+

(
2 − w(01)

)
= 4. We are actually counting the number of

zero-value positions in bin(i) at the positions larger than k,

positions k are underlined. Hence, |Ki| = 6 and

Ki = {14, 15, 21, 25, 28, 29}.

We show in Theorem 1 that if the information set I satisfies

the Partial Order Property then the set Ki, although defined to

capture some specific minimum-weight codewords in Ci(I),
allows us to identify all minimum-weight codewords of C(I)
lying in Ci(I) for every i ∈ I. Note that by its own right,

the theorem only implies a lower bound on the number of

minimum-weight codewords (see Corollary 2). However, given

the work of Bardet et al. [10], we know that this bound is

exact. The theorem applies to both RM and polar codes thanks

to Corollary 1.

Theorem 1. Suppose that I ⊆ [0, N − 1] satisfies the Partial

Order Property and i ∈ I is such that w(gi) = wmin. Then

for any set J ⊆ Ki, there exists a set M(J) ⊆ I \ Ki such

that

w
(
gi ⊕

⊕

j∈J

gj

︸ ︷︷ ︸
core rows

⊕
⊕

m∈M(J)

gm

︸ ︷︷ ︸

balancing rows

)
= wmin. (8)

Moreover, such a set M(J) can be constructed by the M-

Construction (see below). Note that the rows in M(J) are

called balancing rows as their inclusion brings the weight of

the sum down to wmin if the sum of the coset leader and a

subset of core rows has weight exceeding wmin.

Proof. The theorem is proved in Appendix D. �

M-Construction. Suppose that I ⊆ [0, N − 1] satisfies the

Partial Order Property and i ∈ I satisfying w(gi) = wmin.

For any ∅ 6= J ⊆ Ki, we aim to construct a set M(J) ⊆
I \ (Ki ∪ [0, i]) satisfying (8)1. First, let

J(J) , {J ′ ⊆ J : |J ′| ≥ 2,Sj \ Si, j ∈ J
′ are disjoint} ,

noting that |Sj \ Si| = 1 due to Lemma 2 a). Next, for every

such J ′ ∈ J(J), let mJ ′ ∈ [0, 2n − 1] such that

SmJ′ ,
⋃

j∈J ′

(
Sj \ Si

)
∪
(

Si ∩
(⋂

j∈J ′

Sj
))

, (9)

The set M(J) consists of all such mJ ′ indices with odd

multiplicities. More specifically,

M(J) , {h ∈ [0, N − 1] : |Jh(J)| is odd} , (10)

where

Jh(J) , {J
′ ∈ J(J) : mJ ′ = h} . (11)

1Note that while showing that M(J) ⊆ I \ [0, i] requires Lemma 6 in
Appendix D, the fact that M(J) ∩ Ki = ∅ can be seen from the M-
Construction itself because |SmJ′ \Si| ≥ 2, and hence mJ ′ doesn’t satisfy

Lemma 2 (a).

Remark 2. An equivalent way to define J(J) and SmJ′ in

the M-Construction is as follows. First, let

R =
⋃

j∈J

(
Sj \ Si

)
⊆ Ti , [0, n− 1] \ Si.

Then, we can verify that

J(J)={J ′ ⊆J : |J ′|≥2, |{j ∈ J ′ : jk=1}|≤1, ∀k ∈ R},

and

SmJ′ = {k ∈ R : ∃j ∈ J ′, jk = 1} ∪
(

Si ∩
(⋂

j∈J ′

Sj
))

.

Remark 3. Note that in the M-Construction, for J ⊆ Ki,

|J | ≤ 1, we have M(J) = ∅ because there are no J ′ ⊆
J with |J ′| ≥ 2 and hence, J(J) = ∅. This is consistent

with our goal to form codewords of the minimum-weight: if

J = ∅ then c = gi itself has weight wmin; if J = {j}, then

c = gi⊕gj also has weight wmin due to the definition of Ki.

Fig. 1 demonstrates the M-construction, in particular, how

to find mJ ′ for every J ′.

Fig. 1: Illustration of how mJ ′ is obtained for every J ′.

Fig. 2 shows the Venn diagram associated with various

sets defined in relation to the formation of minimum weight

codewords of polar codes.

Fig. 2: Venn diagram of the sets defined for indices in

[i, N − 1].

We provide below a few examples to demonstrate the M-

Construction.

Example 2. Let n = 4, N = 2n = 16, and i = 3 = (0011)2.

Then, Si = {0, 1}, Ti = [0, 3] \ Si = {2, 3}, and

Ki = {5, 6, 7, 9, 10, 11}

= {(0101)2, (0110)2, (0111)2, (1001)2, (1010)2, (1011)2}.

Take

J = {5, 6, 7, 9, 10}

= {(0101)2, (0110)2, (0111)2, (1001)2, (1010)2} ⊂ Ki.

We have S5 = {0, 2}, S6 = {1, 2}, S7 = {0, 1, 2}, S9 =
{0, 3}, S10 = {1, 3}. Therefore, S5\S3 = {2}, S6\S3 = {2},
S7 \ S3 = {2}, S9 \ S3 = {3}, S10 \ S3 = {3}. As J(J)
consists of the subsets J ′ ⊆ J , |J ′| ≥ 2, that satisfy that

Sj \ Si, j ∈ J ′, are all disjoint, we have

J(J) = {{5, 9}, {5, 10}, {6, 9}, {6, 10}, {7, 9}, {7, 10}}.

From (9), we obtain SmJ′ for all J ′ ∈ J(J) as follows.

Sm{5,9}
=

(
(S5 \S3)∪(S9 \S3)

)
∪
(
S3∩S5∩S9

)
= {0, 2, 3}.

Sm{5,10}
=

(
(S5 \S3)∪(S10 \S3)

)
∪
(
S3∩S5∩S10

)
= {2, 3}.

Sm{6,9}
=

(
(S6 \ S3)∪ (S9 \ S3)

)
∪
(
S3 ∩S6 ∩ S9

)
= {2, 3}.

Sm{6,10}
=

(
(S6\S3)∪(S10\S3)

)
∪
(
S3∩S6∩S10

)
= {1, 2, 3}.

Sm{7,9}
=

(
(S7 \S3)∪(S9 \S3)

)
∪
(
S3∩S7∩S9

)
= {0, 2, 3}.

Sm{7,10}
=

(
(S7\S3)∪(S10\S3)

)
∪
(
S3∩S7∩S10

)
= {1, 2, 3}.

These supports correspond to mJ ′ = 13, 12, 12, 14, 13, 14.

Therefore, according to (11), |Jh(J)| = 2 for h = 12, 13, 14.

As the cardinalities of Jh(J) are even for all h = 12, 13, 14,

according to (10), M(J) = ∅.

Example 3. We assume the same parameters n = 4 and

i = 3 as in Example 2 but pick J = {5, 6, 9, 10}. Then

J(J) = {{5, 9}, {5, 10}, {6, 9}, {6, 10}}. As already com-

puted in Example 2, we have Sm{5,9}
= {0, 2, 3}, Sm{5,10}

=
{2, 3}, Sm{6,9}

= {2, 3}, and Sm{6,10}
= {1, 2, 3}. These sets

correspond to mJ ′ = 13, 12, 12, 14. Therefore, according to

(11), |Jh(J)| = 1 (odd) for h = 13, 14 and |Jh(J)| = 2
(even) for h = 12. By (10), M(J) = {13, 14}.

As a corollary of Theorem 1, we can provide a lower bound

on the number of minimum-weight codewords of a code C(I)
(including RM and polar codes). It was established earlier

in [10], by analyzing the permutation group of polar codes, that

this bound is the exact number of minimum-weight codewords.

We provide a MATLAB script in Appendix A that computes

this number (i.e., the error coefficient). We discuss in detail

the implicit connection between our work and the work in [10]

at the end of this section.

Corollary 2. If I ⊆ [0, N−1] satisfies the Partial Order Prop-

erty then for every i ∈ B(I) where B(I) = {i ∈ I : w(gi) =
wmin}, the number of minimum-weight codewords of the code

C(I) lying in the coset Ci(I) satisfies

Ai,wmin
(I) ≥ 2|Ki|, (12)

where Ki is given in Definition 4. As a consequence,

Awmin
(I) =

∑

i∈B(I)

Ai,wmin
(I) ≥

∑

i∈B(I)

2|Ki|. (13)

Proof. From Theorem 1, we know that for every i ∈ B(I) and

J ⊆ Ki, there exists a set M(J) ⊆ ([i+ 1, N − 1]∩ I) \Ki

such that (8) holds. In other words, any combination of row

i and rows in a subset J ⊆ Ki gives a wmin-weight code-

word. As Ki has 2|Ki| subsets, the M-Construction provides

2|Ki| distinct minimum-weight codewords for C(I). Thus,

Ai,wmin
(I) ≥ 2|Ki| as claimed. �

We observe that the upper bound on the number of

minimum-weight codewords proved by Bardet et al. [11]

doesn’t require that I must satisfy the Partial Order Property

(referred to as decreasing monomial codes in their work). We

restate the upper bound part of their result (see the proof

of [11, Proposition 12]) using our terminology below.

Proposition 2 ([11]). For an arbitrary set I ⊆ [0, N − 1],
let wmin be the minimum weight of C(I), and i ∈ I such

that w(gi) = wmin. Then the number of minimum-weight

codewords in Ci(I) ⊆ C(I) (see Definition 3) satisfies

Ai,wmin
(I) ≤ 2|Ki|.

B. The Connection to the Permutation-Group-Based Ap-

proach by Bardet et al. [10], [11]

Bardet et al. [10], [11] use the transpose of G2 instead

in their constructions of RM/polar codes. Each row in GN

indexed by i ∈ [0, N − 1 = 2n − 1] corresponds to the

monomial gi , xi0
0 xi1

1 · · ·x
in−1

n−1 ∈ F2[x0, . . . , xn−1]/(x
2
0 −

x0, . . . , x
2
n−1−xn−1), where (i0i1 · · · in−1) is the binary rep-

resentation of i. The row gi of GN is obtained by evaluating

the monomial gi at the binary representations of all the column

indices c ∈ [0, N − 1]. They also define a partial order �
on the monomials, which is equivalent to our partial order

given in Definition 1. A set of monomials I (corresponding

to our index set I ⊆ [0, N − 1]) is called decreasing if

and only if (f ∈ I and g � f) implies that g ∈ I. They

show that the permutation group of the code C(I), which is

generated by {gi : i ∈ I}, contains LTA(n, 2), which consists

of the transformations of the form x 7→ Ax + b, where

A = (ak,h) ∈ F
n×n
2 is a lower-triangular matrix over F2 with

ak,k = 1 for all 0 ≤ k ≤ n− 1, and b = (b0, . . . , bn−1) ∈ F
n
2

(see [11, Theorem 2]). More specifically, under the trans-

formation (A, b), a monomial g = xk1
· · ·xks

(for some

0 < k1 < k2 < · · · < ks ≤ n− 1) is mapped into yk1
· · · yks

,

where yk = xk +
∑k−1

h=0 ak,hxh + bk.

It is shown in [11, Theorem 2, Proposition 12] that all

minimum-weight codewords of C(I) can be generated by the

codewords in the orbits O(gi) under LTA(n, 2) of the mono-

mials corresponding to the rows i ∈ I that have maximum

degree r+ (corresponding to the indices i ∈ I satisfying

w(gi) = wmin in our work). Moreover, to count the number

of minimum-weight codewords, for such i, they demonstrate

in [11, Propositions 8 and 9] that |O(gi)| is equal to the

number of different transformations (A, b) where bk = 0 if

k /∈ idx(gi) and ak,h = 0 if k /∈ idx(gi) or h ∈ idx(gi),

Every row gi, i ∈ I of the transform matrix GN , where w(gi) = wmin, can form a minimum-weight codeword in

combination with the rows in every subset J ⊆ Ki and the corresponding set M(J) ⊆ (I ∩ [i+ 1, N − 1]) \Ki as

w
(
gi ⊕

⊕

j∈J

gj

︸ ︷︷ ︸
core rows

⊕
⊕

m∈M(J)

gm

︸ ︷︷ ︸

balancing rows

)
= wmin.

The core rows in the formation of minimum-weight codewords belong to a subset J of the set Ki defined as follows.

Ki , {j ∈ [i+ 1, N − 1] : w(gj) ≥ w(gi + gj) = w(gi)}.

The rows in the setM(J) are called balancing rows as their inclusion brings the weight of the sum down to wmin if

needed. The set M(J) can be constructed by the M-Construction described in Section III. The codewords formed

by the leading row gi belong to the coset Ci(I) defined in Definition 3. Note that gi itself is a minimum-weight

codeword. The information set I ⊆ [0, N − 1] is assumed to satisfy the Partial Order Property. The construction

above can be extended to all rows in [0, N − 1] (see (35), Section VI).

Since every subset of Ki corresponds to a different minimum-weight codeword, the total number of such codewords

in every coset Ci(I) equals the total number of subsets of Ki, that is 2|Ki|. Hence, the total number of minimum-

weight codewords, matching the result in [10], is

Awmin
(I) =

∑

i∈I : w(gi)=wmin

2|Ki|.

Fig. 3: A summary of the construction of minimum-weight codewords in polar codes.

here idx(gi) , {k1, . . . , ks}. Based on Young diagrams,

such |O(gi)| can be determined explicitly based on the binary

representation of i (Bardet et al. [11, Propositions 10 and 11]).

It turns out that |O(gi)| is exactly the same as our 2|Ki| (see

Corollary 2). The reason is that the number of free entries

(taking either 0 or 1) in a valid (A, b) as described above is

precisely equal to |Ki| (not hard to verify using Lemma 2(a)).

We also give an explanation of how our M-Construction can

be extracted from their formulation below.

For each i ∈ [0, N − 1] satisfying deg(gi) = r+, let

gi = xk1
· · ·xks

. The minimum-weight codewords in O(gi)
are of the form (A, b)gi for all valid A and b as described in

the previous paragraph. Such a codeword corresponds to the

polynomial yk1
· · · yks

, which can be written as

(
xk1

+

k1−1∑

h=0,h/∈idx(gi)

ak1,hxh + bk1

)
· · ·

· · ·
(
xks

+

ks−1∑

h=0,h/∈idx(gi)

aks,hxh + bks

)
,

where ak1,h, . . . , aks,h for all relevant h, and bk1
, . . . , bks

can be either 0 or 1. Due to the structure of Ki (see

Lemma 2(a)), by inspecting the expansion of the product above

more closely, we can recover the J and the M sets in our

M-Construction as follows. Note that our notation is comple-

mentary to theirs, and so an appropriate but straightforward

transformation will be required for the sets to match exactly.

• The term xk1
· · ·xks

= gi corresponds to the row gi in

our construction (see Theorem 1).

• The terms obtained after expanding the sums

(
k1−1∑

h=0,h/∈idx(gi)

ak1,hxh

)
xk2
· · ·xks

, . . .

. . . , xk1
· · ·xks−1

ks−1∑

h=0,h/∈idx(gi)

aks,hxh

(14)

and bk1
xk2
· · ·xks

, . . ., xk1
· · ·xks−1

bks
correspond to the

rows j ∈ J ⊆ Ki. More specifically, the terms including

A-entries correspond to j ∈ Ki with |Sj | = |Si|, where

the terms including b-entries correspond to the j ∈ Ki

with |Sj | = |Si| + 1. Depending on whether the entries

in A and b are 0 or 1, we have different subsets J of Ki.

• The remaining terms in the product corresponds to the

rows m ∈M in our M-Construction.

From here, it can also be seen that the number of minimum-

weight codewords from the orbit of gi is equal to two to the

power of the number of free entries (can be assigned any value

in F2) in A and b, which can be easily proven to be the

same as 2|Ki|. In the language of monomials and permutation

groups [10], [11], our code modification procedures in later

sections perturb the set I by, e.g., removing a row/monomial

gj that contributes to the formation of a large number of orbits,

while adding back a row/monomial gi that has a small orbit,

which is further reduced by half due to the removal of j. Note

that gj contributes to the orbit formation of gi if it appears as

a term in (14), e.g. gj = xhxk2
· · ·xks

for some valid index h,

and hence, the removal of j will effectively eliminate one free

entry, e.g. ak1,h, making at least half of the minimum-weight

codewords in the orbit of gi disappear. On the other hand, as I

is decreasing, gi should not contribute to the orbit formation of

any other gi′ , i
′ ∈ I. The modification can be applied further

to achieve extra reduction on Admin
. Our explicit formulation

of the set Ki makes this modification process more transparent.

Before moving on, we summarize the construction of

minimum-weight codewords and its application in the numer-

ation of such codewords in Fig. 3.

C. Applications of the Minimum-Weight Codewords Char-

acterization for Polar Codes

So far, we have explicitly characterized the row combina-

tions involved in the formation of minimum-weight codewords

and then used them to enumerate minimum-weight codewords

as one of the potential applications. In the following sections,

we shall see how this knowledge can help to improve the

error coefficient of polar codes by a simple modification.

This is not the only way to employ the minimum-weight

codeword characterization in code design. For instance, instead

of modifying polar codes, one can start from a low-order Reed-

Muller code as a polar subcode and obtain a different polar-

like code while considering the number of minimum-weight

codewords.

In rate-compatible polar coding, we use a pattern P (a

certain set of bit indices) to shorten the codewords. One

can easily explain and count the reduction in the number

of minimum-weight codewords of shortened polar codes by

considering the intersection of the shortening pattern, set P ,

and setM(J), that is, by checking P ∩M(J) 6= ∅ for every

J ⊆ Ki. This approach was used in [36] to analyze the impact

of shortening on the error coefficient of the PAC codes.

When precoding is performed before polar coding, what

we learned from the formation of minimum-weight codewords

can be used to explain the impact of precoding on the weight

distribution of a polar code, as will be discussed in Section

VI. This understanding was further used for a semi-closed-

form enumeration of PAC codes in [34] and for two different

approaches to design a precoder for PAC codes in [35], [37].

Hence, we can classify the applications of the main con-

tribution of this work into three categories: 1) deterministic

enumeration of polar codes and their variants, 2) design of

polar-like codes and precoding, and 3) analysis of the impact

of any code modification (such as shortening) or precoding

on the weight distribution and error correction performance.

The next section focuses on the application of minimum-

weight codewords characterization in code design, followed

by its application to explain the reduction of minimum-weight

codewords in PAC coding in Section VI.

IV. ERROR COEFFICIENT-IMPROVED CODES

In this section, leveraging what we know about the structure

of minimum-weight codewords of a polar code in Section III,

we propose a procedure to construct new codes with fewer

minimum-weight codewords.

Consider a polar code C(I), where I is constructed by the

conventional methods such as density evolution (DE) or those

used to approximate the DE. We define the set B(I) (which

was used in Corollary 2 as well) and B(Ic) as follows:

B(I) , {i ∈ I : w(gi) = wmin}, (15)

B(Ic) , {i ∈ Ic : w(gi) = wmin}. (16)

For each j ∈ B(I), let us also define the set Ej and Dj as

follows.

Ej , {i ∈ [0, j − 1] : j ∈ Ki, |Si| = |Sj |}

= {i ∈ B(I) ∪ B(Ic) : j ∈ Ki},
(17)

and

Dj , Ej ∩ B(I) = {i ∈ B(I) : j ∈ Ki}. (18)

Remark 4. The set Ej is formed by the right-swap operation

on bin(j) which is the opposite of the operation performed

on bin(j) to form set Kj .

Our first idea to start from an existing code C(I) and

generate a new code C(I ′), where I ′ is obtained from I by

removing an index j while adding a new index i /∈ I. The

key point is to select j and i so that gj contributes to the

formation of more minimum-weight codewords in C(I) than

gi does in C(I ′). Note that gj can contribute to a minimum-

weight codeword as a coset leader, as a row in the J -part, or as

a row in theM-part (see Theorem 1). Additionally, we choose

i ∈ Ej , or equivalently, j ∈ Ki, to further reduce the number of

minimum-weight codewords emerging due to the addition of i:
with the removal of j from I, |Ki∩I ′| ≤ |Ki\{j}| = |Ki|−1.

Proposition 3. Suppose that I ⊆ [0, N − 1] satisfies the

Partial Order Property. Given j ∈ B(I) and i ∈ (Ej ∩B(Ic))
satisfying

(
∑

x∈Dj

2|Kx|−1

)

+ 2|Kj| > 2|Ki|−1, (19)

then

Admin
(I ′) ≤ Admin

(I)−

((
∑

x∈Dj

2|Kx|−1

)

+2|Kj|−2|Ki|−1

)

,

(20)

where I ′ is I ′ = {i} ∪
(
I \ {j}

)
.

Proof. First, after removing j from I to obtain a new set of

indices of the information bits I ′′ = I \ {j}, the number of

minimum-weight codewords satisfies the following inequality.

Admin
(I ′′) ≤

∑

x∈Dj

2|Kx|−1 +
∑

y∈B(I)\(Dj∪{j})

2|Ky|. (21)

Hence, the number of minimum-weight codewords is reduced

by at least
(∑

x∈Dj
2|Kx|−1

)
+ 2|Kj|, which is the left-hand

side of (19). The first term of the sum,
∑

x∈Dj
2|Kx|−1, reflects

the reduction of Admin
due to the contribution of gj (as the

J -part) to the cosets Cx(I) for x ∈ Dj , while the second

term, 2|Kj|, is the contribution of gj (as the coset leader) to

Cj(I). The equality holds in (21) when gj does not contribute

as the M-part to any cosets.

On the other hand, we claim that by adding i to the set

I ′′, the total number of minimum weight codewords increases

by at most 2|Ki|−1, which is the right-hand side of inequality

(19). Indeed, we note that as i /∈ I, the row gi will only

contribute to the formation of minimum-weight codewords of

C(I ′) as a coset leader because all i′ ∈ I already have their

sets Ki′ (hence their J -parts) in I and their M-parts in I
as well. Here, we are applying Proposition 2 on i and the set

I ′ = I ′′ ∪{i}, noting that this proposition doesn’t require the

set to satisfy the Partial Order Property. Furthermore, since

j ∈ Ki (because i ∈ Ej), and j has been removed from I,

the row gi contributes to at most 2|Ki|−1 minimum-weight

codewords in C(I ′).
Thus, as more minimum-weight codewords are lost than

gained when going from C(I) to C(I ′) due to (19), the

inequality (20) follows. �

According to Proposition 3, we can modify I to improve

Admin
given that there exists i ∈ Ic such that w(gi) = wmin

and (19) holds. It is clear that such a modification is im-

possible for Reed-Muller codes because I already contains

all i ∈ [0, N − 1] with w(gi) = wmin. For polar codes,

to reduce the error coefficient, as a fast rule (which could

be sub-optimal), one can look for j ∈ B(I) with a large

|Dj | = |Ej ∩ B(I)| and i ∈ (Ej ∩ B(Ic)) with the smallest

|Ki| that satisfies (19).

Example 4. Let us take the polar code of (64, 32, 8) where

B(I) = {26, 28, 38, 41, 42, 44, 49, 50, 52, 56}, (22)

B(Ic) = {7, 11, 13, 14, 19, 22, 25, 35, 37}. (23)

Then with j = 56, Dj = B(I) \ {38} has the largest size

|Dj | = 9. Observe that bin(38) = (100110)2 is not the result

of the right-swap operation on bin(56) = (111000)2. On the

other hand, we have i = 25 where i ∈ B(Ic) and i ∈ E56.

Furthermore, |K25| = 8 for bin(25) = (011001)2, which is

the smallest among |Ki′ | for every i′ ∈ B(Ic) (actually, the

alternative choice is 37). That is, by adding i = 25 to set I,

the total number of codewords of minimum weight increases

by 28, assuming no other changes in I. Now, if we remove

j = 56 from I, not only all 2|Kj| = 23 minimum-weight

codewords from the coset Cj(I) disappear, but also the number

of minimum-weight codewords in every coset Cx(I) for x ∈
D56 (and x = i = 25) is reduced by half. Therefore, the

reduction in the number of minimum-weight codewords going

from I to I ∪ {i} \ {j} is at least
(∑

x∈Dj

2|Kx|−1
)
+ 2|Kj| − 2|Ki|−1

= (64 + 32 + 64 + 32 + 16 + 32 + 16 + 8) + 8− 128

= 264 + 8− 128 = 144,
(24)

as stated in Proposition 3. However, it turns out that we

have achieved a larger reduction by this modification, which

is 192 = 664 − 472 > 144 (see Table I). The difference

48 = 192− 144 is due to the further loss of minimum-weight

codewords in the coset led by the row 38. More specifically,

by removing j = 56 from I, the number of minimum-weight

codewords generated by this coset also reduces from 128

(as |K38| = 7) to 80 because j is a row in the M-part

corresponding to several J ⊆ K38. This extra reduction is

i Ai,8(I) Ai,8(I′)
25 128

26 128 64

28 64 32

38 128 80

41 128 64

42 64 32

44 32 16

49 64 32

50 32 16

52 16 8

56 8

Total 664 472

Table I: The number of minimum-weight codewords of C(I)
and C(I ′) where I ′ = I ∪ {25} \ {56}. The numbers of

minimum-weight codewords in the cosets Ci(I) and Ci(I ′)
are given in each row for i ∈ {25, 26, . . . , 56}. By removing

j = 56 and adding i = 25 to I, 320 minimum-weight

codewords are removed while 128 are added, resulting in a

reduction of 192.

reflected (by the ≤ sign in (20)) but not quantified in the

statement of Proposition 3.

Remark 5. Given I ′ = {i} ∪
(
I \ {j}

)
, the contribution

of row i where w(gi) = wmin and i 6∈ Ej is Ai,dmin
(I ′) ≤

Ai,dmin
(I) = 2|Ki| because j could be in the setM associated

with some J in the coset Ci(I). For example, A38,8(I ′) =
80 < 128 in Example 4.

Example 5. In Example 4, 38 6∈ E56, as a result A38,wmin
=

80 < 2|K38| where 2|K38| = 27 = 128. Take J = {42, 52} for

example, observe that m = 56 for this J but since 56 6∈ I ′,
then w(g38+g42+g52) = 12, however, w(g38+g42+g52+
g56) = 8. Note that m ∈ M for every J consists of {42, 52}
and any subset of K38 \{42, 52}, hence we expect to sabotage

the formation of 2|K38|−2 = 25 codewords at least.

Corollary 3. Suppose that I ⊆ [0, N − 1] satisfies the Partial

Order Property. Pick an i ∈ Ic with w(gi) > wmin and set

I ′′ , I ∪ {i}. Then Admin
(I) = Admin

(I ′′).

Proof. According to Corollary 5, if w(gi) > wmin, then

w(gi ⊕
⊕

h∈H

gh) > wmin,

whereH ⊆ [i+1, 2n−1], therefore, no codewords with weight

wmin are introduced in the coset Ci. Therefore, Admin
(I ′′) =

Admin
(I ′), where I ′ = {i} ∪

(
I \ {j}

)
. �

V. CONSTRUCTING NEW CODES: PROCEDURE

We can further reduce the error coefficient, Admin
, by

repeating the process suggested in Proposition 3 for more pairs

(i, j). We propose a procedure2, detailed in Algorithm 1, to

find the pairs (i, j) to modify the set I with the objective of

reducing the number of minimum weight codewords. That is,

we are looking for (i1, j1), . . . , (iπmax
, jπmax

) to modify the

code C(I) to obtain C(I ′), where

I ′ = {i1, . . . , iπmax
} ∪ (I \ {j1, . . . , jπmax

}).

2Python script available at https://github.com/mohammad-rowshan/Error-
Coefficient-reduced-Polar-PAC-Codes

This iterative procedure occurs in a loop in lines 4-38. As

described before, the first step is to find the index j1 ∈ B(I)
that reduces the error coefficient Admin

the most, or in math-

ematical notation,

j1 = argmaxx∈B(I) |Ex ∩ B(I)|. (25)

Recall that the reduction in the number of minimum-weight

codewords due to the removal of j1 (see Proposition 3) is at

least

minus ,

(
∑

x∈Ej1
∩B(I)

2|Kx|−1

)

+ 2|Kj1
|. (26)

One may want to find j1 ∈ B(I) that maximizes the minus,

which could be expensive. An alternative way is to simply

look for the largest |Dj | = |Ex ∩ B(I)|, as discussed in

Section IV and in the proof of Proposition 3. Note that

both approaches may still be sub-optimal because as shown

in Example 4, minus does not fully capture the possible

reduction in the number of minimum-weight codewords when

removing j. In lines 6-8, j and |Dj | are collected in D and

in line 11, the index j corresponding to the largest |Dj | is

obtained. Then the calculation of minus according to (26) is

implemented in lines 12-14. Observe that for such j1, we have

2|Kj1
| = minx∈B(I) 2

|Kx| or j1 = max(B(I)). Further details

and the application of this property are the subject of Section

V-A. After finding such j, we remove it from the set I. We

denote the new set as the set I ′ = I \ {j} (lines 33-35). The

next step is to find a row i that contributes the least to the error

coefficient Admin
. The contribution of i depends on whether

it belongs to the set Ej ∩ B(Ic) or B(Ic) \ Ej as follows:

plus =

{

2|Ki|−1 if i ∈ Ej ∩ B(Ic),

2|Ki| if i ∈ B(Ic) \ Ej .
(27)

Lines 19-23 and 24-29 implement the two cases in (27),

respectively. In subsequent iterations π : 1 → πmax, we

subtract π from the exponents of minus and plus to account

for the removal of j’s in lines 14 and 23. Note that since

we removed j from the set I in the first stage, i.e., j 6∈ I ′,
and on the other hand, we have i ∈ Ej ∩ B(Ic), as a result,

j 6∈ (Ki ∩ I). Thus, the contribution of i will be reduced to

2|Ki|−1. This is the reason for choosing i from Ej ∩ B(Ic).
We can check whether there exists some i′ ∈ B(Ic) \ Ej such

that 2|Ki′ | < 2|Ki|−1. However, this is generally not the case.

We can repeat this procedure a limited number of times,

up to a suitable πmax. However, the following iterations do

not exactly follow Proposition 3 because the set I ′ no longer

satisfies partial order property. Needless to mention that in

each iteration, the sets B(I) and B(Ic) are changing due to

updating the set I ′. This results in a difference in the set

Kx ∩ I ′ for identical x in every iteration (making Kx ∩ I ′

smaller due to the removal of larger indices from I ′). Note

that the reduction estimated by removing i is the lower bound.

The reason is that the removed j from the set I could be in

the set M(J) of some J ⊆ Ki. Therefore, as Theorem 1

suggests, in the absence of such M, some of the codewords

with minimum-weight in the coset Ci(I ′) cannot be generated.

This results in an additional reduction in the minimum weight

codewords introduced by the coset Ci, smaller than what

is expected and consequently in a smaller error coefficient,

Admin
.

Also, if there exists some i ∈ Ic such that w(gi) > wmin,

then this would have priority over an i with w(gi) = wmin

because according to Corollary 3, adding this coordinate to

I ′ will not contribute to Admin
. This is implemented in lines

15-17.

Algorithm 1: Code Modification

input : Set of non-frozen indices I, πmax

output: I (modified)

1 B(I)← extract all i ∈ I where w(gi) = wmin

2 B(Ic)← extract all i ∈ Ic where w(gi) = wmin

3 B∗(Ic)← extract all i ∈ Ic where w(gi) > wmin

4 for π in [1 : πmax] do

5 D ← ∅, K ← ∅

6 for x in B(I) do

7 if |Ex ∩ B(I)| > 0 then

8 D ← D∪{(x, |Ex ∩B(I)|)} // Cf. (17)

9 if D = ∅ then

10 Break

11 j ← Find x associated with the largest |Ex ∩ B(I)|
in D

12 minus← 2|Kj|−(π−1) // Cf. Lemma 2.a

13 for x in Ej ∩ B(I) do

14 minus← minus+ 2|Kx|−π

15 if |B∗(Ic)| > 0 then

16 i← max(B∗(Ic))
17 plus ← 0, paired ← True

18 else

19 if |Ej ∩ B(Ic)| > 0 then

20 for x in Ej ∩ B(Ic) do

21 K ← K ∪ {(x, |Kx|)}

22 i← Find x < min(B(I)) with the smallest

|Kx| in K
23 plus← 2|Ki|−π

24 else if |B(Ic)| > 0 then

25 for x in B(Ic) do

26 K ← K ∪ {(x, |Kx|)}

27 i′ ← Find x associated with the smallest

|Kx| in K
28 if plus > 2|Ki′ | then

29 plus ← 2|Ki′ |, i← i′

30 if plus < minus then

31 Remove i from B(Ic)
32 paired ← True

33 if paired = True then

34 Remove j from B(I)
35 I ← (I ∪ {i} \ {j})
36 else

37 Break

It is worth mentioning that the resulting information set I ′

using this procedure or the simplified procedure in the next

section does not necessarily satisfy the partial order property.

Algorithm 1 illustrates the procedure discussed above. In this

procedure, the iterations are limited to πmax. Additionally, in

lines 30-32, we have a stopping criterion of plus < minus.

This could be useful when πmax is considered large. In Section

VII, we will discuss the need to balance reliability and error

coefficient. The parameter πmax is chosen at the turning point

where further improvement of the error coefficient does not

improve the error correction performance of the code but

degrades it.

A. Simplified Procedure for Code Design

The procedure introduced above requires operations on

the sets and finding the largest or smallest elements in the

sets. Some of these operations can be replaced with simpler

operations based on prior knowledge of the polar transform

and partial ordering. Here, we review Algorithm 1 and find

equivalent operations that are simpler. The procedure in gen-

eral can be divided into two operations: 1) remove the indices

that contribute the most to the error coefficient in the set I
and 2) add the indices that contribute the least to the error

coefficient in the set I. These two operations are performed

interactively by index pairs (up to πmax pairs) in Algorithm 1.

In the following, we find equivalents for these two operations.

We start by finding the indices that contribute the most to

the error coefficient. In the first iteration of this algorithm,

finding an x that gives the largest |Ex ∩ B(I)| in D (line

11 of Algorithm 1) is straightforward. By definition, the set

B(I) includes every i ∈ I with w(gi) = wmin, then Ex
intersects most of the elements in B(I) when bin(x) has the

form {1}q + {0}r where q = log2 wmin and r = n − q. In

this notation, {1}q denotes a string of 1’s repeated q times,

and + is used for concatenation. This x is x � i for every

i ∈ B(I) \ {x}. That is, the rest of the elements in B(I)
can be obtained by single or multiple right-swap operations

on bin(x). Hence, the x that gives the largest |Ex ∩ B(I)| in

D is basically the element in B(I) that has the largest index.

The other candidates to be removed from I in the following

iterations can be approximated by choosing the second and

third largest indices in B(I). Our observation shows that in

the case of πmax = 3, we get identical index candidates to

remove from I. Therefore, the πmax largest indices in the set

B(I) are chosen.

For the second operation, that is, selecting the least con-

tributing indices of the set Ic that will play the role of coset

leader, we choose a different approach. Assuming that the

reduction (minus) in the error coefficient is significantly larger

than the addition (plus), that is,

minus≫ plus,

then instead of finding the least contributing indices, we can

simply choose the most reliable bit-channels in set B(Ic)
to be added to the set I ′ if B∗(Ic) is empty. Obviously, if

|B∗(Ic)| > 0, we prioritize adding the elements of the set

B∗(Ic).
This simplified approach can be summarized in Algorithm

2. Suppose that we have a reliability-ordered sequence QN−1
0

such that W
(Q0)
N ≤W

(Q1)
N ≤ · · · ≤ W

(QN−1)
N . This sequence

can be obtained from any method discussed in the Introduction

as long as the partial ordering property is maintained. Then,

we select K + πmax most reliable indices from the sequence

QN−1
0 , that is,is, from QN−K−πmax−1 to QN−1 given the

minimum distance dmin of QN−1
N−K−πmax−1 and QN−1

N−K−1 is

identical. If not, we can reduce πmax ∈ [1, 3]. The rest of the

procedure follows the approach discussed above, as illustrated

in the algorithm.

Algorithm 2: Simplified Code Design Procedure

input : reliability ordered sequence QN−1
0 , πmax

output: I ′

1 B∗(Ic)← find up to πmax elements i in

{QN−K−2, · · · ,Q1,Q0} where

w(bin(i)) = 2 log2(wmin)
2 I ′ ← {QN−K−πmax−1+|B∗(Ic)|, · · · ,QN−2,QN−1} ∪
B∗(Ic)

3 for π in [1 : πmax] do

4 j ← max{j ∈ I ′ : w(bin(j)) = wmin}
5 I ′ ← I ′ \ {j}

Table II compares the output of Algorithms 1 and 2. As

can be seen, the selected non-frozen rows to be frozen are

identical in both algorithms.

Table II: Comparison of Algorithms 1 and 2 in terms of the

indices added to and removed from set I.

N Alg.

64
1
2

256
1
2

512
1
2

Code Rate (R)

1/4 3/4
Removed Added Removed Added

60,58,57 30,29,27 48,40 18,12
60,58,57 39,30,29 48,40 33,18

248,244 118,63 224,208,200 74,23,15
248,244 173,63 224,208,200 74,23,15

496,488,484 335,315,311 448,416,400 135,83,78
496,488,484 335,315,311 448,416,400 83,78,58

As can be seen in Table II, for both algorithms, the largest

index for each code in the ‘Removed’ columns has the form

of {1}q + {0}r and the other indices are the result of the

right-swap operation of the least significant bit (LSB) on the

binary representation of the largest index. For example, 60 =
(111100)2 is the largest, and the second and the third are

58 = (111010)2 and 57 = (111001)2 where they all have a

Hamming weight of 4. Furthermore, the indices added to set

I in both algorithms are also similar (identical or different

in one element) and according to our observation, the slight

difference in some of the codes does not significantly change

the error coefficient as illustrated in Table III. Note that P+

and PAC+ denote polar codes and PAC codes, respectively,

constructed by Algorithms 1 and 2. As a result, the block

error rate will remain almost the same. The indices highlighted

in blue in Table II have a Hamming weight of 2 log2(wmin)
and those shown in red highlight the differences between the

results of the two algorithms. The codes with rate 1/2 also

follow this similarity in both algorithms; however, due to the

limit of column width, we omitted them from the table.

Table III: Comparison of Algorithms 1 and 2 in terms of

resulting error coefficients.

N Alg.

64
1
2

256
1
2

512
1
2

Code Rate (R)

1/4 1/2 3/4
P+ PAC+ P+ PAC+ P+ PAC+

196 24 408 112 272 108
220 44 408 184 304 216

5912 568 77104 13904 272 216
6424 608 77104 13904 272 216

4048 748 18720 4412 13504 4832
4048 748 18720 4412 13504 4832

VI. IMPACT OF PRECODING ON ERROR COEFFICIENT

In this section, we consider convolutional precoding. The

recently introduced polarization-adjusted convolutional (PAC)

coding scheme can reduce the number of minimum-weight

codewords. This reduction is a result of the inclusion of rows

in Ic in the generation of codewords in the cosets [30]. Note

that the convolutional precoding does not change the set B(I).
That is, the leaders of cosets Ci, i ∈ B(I) remain unchanged

in the PAC coding. In this section, we study how precoding

further reduces the number of minimum-weight codewords.

The input vector u = [u0, . . . , uN−1] in PAC codes unlike

polar codes is obtained by a convolutional transformation

using the binary generator polynomial of degree m, with

coefficients p = [p0, . . . , pm] as follows:

ui =

m∑

j=0

pjvi−j , (28)

This convolutional transformation combines m previous

input bits stored in a shift register with the current input bit vi
to calculate ui. The parameter m is known as the memory of

the shift register, and by including the current input bit we have

the constraint length m + 1 of the convolutional code. Note

that the convolutional precoding does not reduce the minimum

distance of a polar code (and thus the minimum weight of non-

zero codewords) due to Corollary 5. This was shown in [37,

Lemma 1].

From a polar coding perspective, the vector u is equivalent

to the vector v in the PAC coding by p = [1]. To obtain

similar combinations of rows in GN to form a minimum-

weight codeword, we need to have ua = 1 for every

a ∈ {i} ∪ J ∪M,

hence we have

w
(
gi ⊕

⊕

j∈J

gj ⊕
⊕

m∈M(J)

gm

)
= wmin, (29)

where J ⊆ Ki and M(J) ⊆ I \ Ki. Obviously, we need

ub = 0 for any

b ∈
(
I ∩ [i, N − 1]

)
\
(
{i} ∪ J ∪M

)
.

Note that the values of elements in the vector v are not

important as long as we get the desired vector u as a result

of transmission in (28). That is, a different message vector

d = [d0, d1, . . . , dK−1] (see Section II in [30] for more details)

in the PAC coding may result in the same code as in the polar

coding if they both have the same vector u. If we represent the

convolution operation in the form of a Toeplitz matrix, where

the rows of a convolutional generator matrix G are formed by

shifting the vector p = (p0, p1, . . . pm) one element at a row,

as shown in (30).

P =

















p0 p1 pm 0 0
0 p0 p1 pm

0
p0 p1 pm

p0 p1
0 0 p0

















(30)

Note that p0 and pm by convention are always 1, hence

it is an upper-triangular matrix. Then, we can obtain u by

matrix multiplication as u = vP. As a result of this pre-

transformation, uf for f ∈ Ic may no longer be frozen (i.e.,

uf = 0) as in polar codes. Therefore, uf ∈ {0, 1}.
The important point to note is that vf = 0 for f ∈ Ic. To

have codewords similar to those of the polar codes in (29),

we need ua = 1 for a ∈ {i} ∪ J ∪M(J).
In general, depending on the convolution of the m previous

inputs, that is, V =
∑m

k=1 pkvx−k, we have ux = V + vx.

Therefore, we can obtain ux = 1 by setting the current input

vx as

vx =

{

1 if
∑m

k=1 pkvx−k = 0,

0 otherwise,
(31)

and for ux = 0, we can do the opposite.

Hence, to get ux = 1 for x ∈ {i}∪J ∪M(J) and ux = 0
for x ∈

(
I ∩ [i, N − 1]

)
\
(
{i} ∪ J ∪M(J)

)
, we can set vx

according to the general rules mentioned above. However, we

have no control over the values of uf for f ∈ Ic as a result of

(28) knowing that vf = 0 by default. Consequently, there will

be another term as
⊕

f∈F(J) gf for F(J) ⊆ Ic ∩ [i, N − 1]
in (29) which is inevitable. This term may increase the weight

of the generated codeword:

w
(
gi ⊕

⊕

j∈J

gj ⊕
⊕

f∈F(J)

gf ⊕
⊕

m∈M(J∪F(J))

gm

)
≥ wmin.

(32)

Note that the equality in (32) is our conjecture based on

observations and requires a rigorous proof by extending the

M-construction as discussed in this section, and it is an open

problem.

Example 6. Suppose that we have the polar code of (64,32,8).

If we modify it as I ′ =
(
{25} ∪ I \ {56}

)
, the number

of minimum-weight codewords broken into cosets will be as

shown in the table below before precoding and after precoding.

For any set J ⊆ Ki and its associated setM(J) ⊆ I \Ki,

if as a result of precoding in (28) there exists set F(J) ⊆
Ic∩[i, N−1] such that |Sf\Si| > 1 for at least one f ∈ F(J),
then we have

Table IV: Number of minimum-weight codewords in the

coset Ci(I ∩ [i, N − 1]) and Ci(I ′ ∩ [i, N − 1]) for the code

(64,32,8) and π = 1, with and without precoding where

c = [1, 0, 1, 1, 0, 1, 1].

Polar PAC

i Ai,8(I) Ai,8(I′) Ai,8(I) Ai,8(I′)
25 128 0

26 128 64 0 0

28 64 32 0 0

38 128 80 128 64

41 128 64 128 64

42 64 32 64 32

44 32 16 32 16

49 64 32 64 32

50 32 16 32 16

52 16 8 16 8

56 8 8

Total 664 472 472 232

Table V: Number of minimum-weight codewords in the

coset Ci(I ∩ [i, N − 1]) and Ci(I ′ ∩ [i, N − 1]) for the code

(64,32,8) and π = 2, with and without precoding where

c = [1, 0, 1, 1, 0, 1, 1].

Polar PAC

i Ai,8(I) Ai,8(I) Ai,8(I′) Ai,8(I′)
22 0

25 0 0

26 128 0 0 0

28 64 0 0 0

38 128 128 64 32

41 128 128 64 32

42 64 64 32 16

44 32 32 16 8

49 64 64 32 16

50 32 32 16 8

52 16 16 8

56 8 8

Total 664 472 232 112

w
(
gi ⊕

⊕

j∈J

gj ⊕
⊕

f∈F(J)

gf ⊕
⊕

m∈M(J∪F(J))

gm

)
> wmin.

(33)

Recall from Lemma 2 (properties of Ki) and Theorem 1 that

in order to get a codeword with weight wmin, the members of

Ki, here Ki∪F(J), should satisfy the condition |Sj \Si| = 1
for j ∈ Ki ∪ F(J). The set M also is defined based on this

property for every set J ⊆ Ki ∪ F(J). Now, if there exists

an element j ∈ Ki∪F(J) such that |Sj \Si| > 1, Theorem 1

is no longer valid. Hence,

w
(
gi ⊕

⊕

j∈J∪F(J)

gj ⊕
⊕

m∈M(J∪F(J))

gm

)
> wmin. (34)

Example 7. In the coset C26 and C28 of the polar code

(64,32,8) discussed in Example 6, there exists some F(J) ⊂
{32, 33, 34, 35, 36, 37} ∪ {40} ∪ {48} where bin(26) =
(011010)2, and bin(28) = (011100)2. Observe that |Sf \
S26| > 1 for f ∈ {33, 35, 36, 37} and |Sf \ S28| > 1 for

f ∈ {33, 34, 35, 37}. Hence, as can be seen, Admin,i for

i = {26, 28} reduced to zero after precoding. This reduction

occurs as a result of the inevitable combination of at least

one f with the aforementioned condition with J1 ⊆ {26, 28}
along with or without J2 ⊆ Ki \J1. For this specific p, there

is always such an f however, with shorter p, i.e., smaller m,

this may not be the case.

The opposite of (33) is expected to be true if |Sf \ Si| = 1
for every f ∈ F(J), then we have

w
(
gi ⊕

⊕

j∈J

gj ⊕
⊕

f∈F(J)

gf ⊕
⊕

m∈M(J∪F(J))

gm

)
= wmin.

(35)

Fig. 4 shows the Venn diagram associated with various sets

defined so far in relation to the formation of minimum weight

codewords after precoding.

Fig. 4: Venn diagram of the sets defined for indices in

[i, N − 1] including the frozen indices as a result of

precoding. Here, F is F , {f ∈ Ic ∩ [i, N − 1] : uf = 1}.

Remark 6. Observe that although every f ∈ F(J) satisfies

condition |Sf \Si| = 1 for inclusion in the set Ki, it is linearly

dependent on some J ⊆ Ki, so any f ∈ F(J) satisfying the

condition will not increase the number of row combinations

that give codewords with weight wmin.

Note that although the weight in (35) remains the same,

the generated codewords are not the same as the combination

without involving
⊕

f∈F(J) gf of which we see in polar

codes.

Example 8. In the coset C41, C42 and C44 of the polar

code (64,32,8) discussed in Example 6, there exists F(J) =
{48} where bin(41) = (101001)2, bin(42) = (101010)2,

bin(44) = (101100)2, and bin(48) = (110000)2. Observe

that |S48 \S41| = |S48 \S42| = |S48 \S44| = 1. Hence, as can

be seen, Admin,i for i = {41, 42, 44} remains unchanged after

precoding. This is the case for C38 where F(J) = {40, 48}
the property |Sf \ Si| = 1 follows.

Remark 7. Observe that if F(J) = Ic ∩ [i, N − 1] = ∅ for

the coset Ci, then precoding has no impact on Ai,wmin
as there

is no f ∈ F(J) to follow (33). Therefore, it will be the same

as (29).

Example 9. In the coset C49, C50, C52, and C56 of the

polar code (64,32,8) discussed in Example 6, there exists

no set F(J). Therefore, as can be seen, Admin,i for i =
{49, 50, 52, 56} remains unchanged after precoding.

VII. RELIABILITY VS ERROR COEFFICIENT

As discussed in Section IV, we freeze the bit-channel(s)

with the highest contribution(s) into Admin
. These bit-channels

have relatively higher reliability compared to those not in

the set I. Then, to keep the code rate constant, we have to

unfreeze the bit-channels with the lowest contribution into

Admin
. Obviously, these bit-channels have relatively lower

reliability. Recall that we denote the index set of the non-

frozen bits by I ′. For the decision on the entire codeword

to be correct, all individual decisions must be correct. If we

decode such a polar code formed by set I with successive

cancellation (SC) decoder, the block error event E is a union

over I of the event that the first bit error occurs, denoted by

Ei , {ûi 6= ui | û
i−1
1 = ui−1

1 } where E =
⋃

i∈I Ei. Let Ec

denote the event that the block is decoded correctly, that is

ûN
1 = uN

1 , then the probability of block error is obtained by

[18]

PSC(I) = P (E) = 1− P (Ec) = 1−
∏

i∈I

(1− P (Ei)), (36)

where P (Ei) is the probability of error at bit-channel i at a

particular noise power or SNR assuming that bits 0 to i−1 are

decoded successfully. Note that P (Ei) = 0 for any i ∈ Ic. As

a result of modifying the set I by swapping high-reliability

bit-channels with low-reliability ones, the error coefficient

improves as we saw in the previous sections; however, we

will have

PSC(I) ≤ Pnear−ML. (37)

If we use a near ML decoder, the block error rate depends

more on dmin and Admin
for linear codes as discussed in

Appendix B. However, in the context of polar codes, if we

continue to improve the error coefficient, Admin
, of the code,

assuming that we can do it by the aforementioned process

multiple times, we will be weakening the block code in

terms of reliability. There is a turning point where further

improvement of the error coefficient not only does not improve

the block error rate further but it results in the error correcting

performance degradation. That is, the gain due to the improve-

ment of the error coefficient cannot overcome the degradation

due to the loss of block reliability, 1−PSC(I) ≥ 1−PSC(I ′).
Fig. 5 illustrates the block error rate (BLER) versus the error

coefficient. The turning point at Eb/N0 = 3.5 is π = 5 bit-

pairs, while for Eb/N0 = 2.5, it is π = 3 bit-pairs. This

shows the importance of the error coefficient at relatively

high SNR regimes. Unfortunately, this turning point cannot be

found analytically. As a general rule, we can agree that as long

as the error coefficient increases πmax, the resulting gain can

overcome the loss due to the block reliability. Note that if we

design a code solely based on error coefficient, as union bound

implies, at very high SNR regimes where the noise is small,

the error coefficient plays the dominant role, and the power

gain appears; although, at low and medium SNR regimes, the

performance may not be competitive. In this work, we aim to

target the medium and low SNR regimes; hence, we consider

both reliability and error coefficient in code design by limiting

πmax.

0 1 2 3 4 5 6 7

Bit-pairs

10-4

10-3

10-2

10-1

B
LE

R

0.08720.1334

0.4832

0.9944

2.0176

4.064

E
rr

or
 C

oe
ffi

ci
en

t

104BLER vs Error Coefficient

BLER at 2.5 dB
BLER at 3.5 dB
Error Coefficient

Fig. 5: BLER at two Eb/N0’s versus error coefficient Admin

of PAC code of (512,384) under SC list decoding with L=16.

The bit-pairs are the number of bit indices added to/removed

from I, denoted by πmax in the proposed procedure.

VIII. NUMERICAL RESULTS

In this Section, we assess the amount of reduction in Admin

based on the proposition and the method we proposed, and

we observe the power gain resulting from the error correction

performance of the improved codes. For this purpose, we

choose three block-lengths (N = 64, 256, 512), and three code

rates (R = 1/4, 1/2, 3/4) totaling nine different codes. We

will construct new codes based on these nine codes and present

the error coefficients and block error rates for the new codes

with and without convolutional precoding. Therefore, we will

compare 4x9=36 codes in total.

Table VI illustrates the error coefficient, Admin
, of the 36

aforementioned codes. Note that P+ and PAC+ represent the

codes resulting from the rate profile I ′ corresponding to polar

codes and PAC codes with the rate profile I. As can be seen,

the modified polar codes, P+, have a smaller error coefficient

than PAC codes for all codes except for (256,64). This code

and code (256,128) have special distributions of indices in I
in the range [0, N − 1]. In code (256,128), we have only two

indices in I where w(gi) = wmin. Therefore, the new code

has a larger dmin.

To optimize the performance for BLER 10−2 − 10−3,

the density evolution method with Gaussian approximation

(DEGA) [20] is used to construct the base codes, that is, to

obtain the set I. Precoding in all PAC codes is performed with

polynomial coefficients p = [1, 0, 1, 1, 0, 1, 1].

To evaluate the block error rate (BLER) of the codes, we

transmit the modulated codewords using binary phase-shift

keying (BPSK) scheme through additive white Gaussian noise

(AWGN) channel. The lower bound for maximum likelihood

(ML) decoding is obtained by counting the list decoding

failures (L = 32) when the Euclidean distance between the

received signals y and the modulated transmitted signals c

is greater than the Euclidean distance between the received

signals y and the estimation of transmitted signals through

Table VI: The minimum Hamming distance and the

associated error coefficient, Admin
, of polar and PAC codes

before and after modification. P+ and PAC+ represent the

modified polar and PAC codes with rate profile I ′ while

polar code (P) and PAC codes use the rate profile I.

N Code

64

P
P+

PAC
PAC+

256

P
P+

PAC
PAC+

512

P
P+

PAC
PAC+

Code Rate (R)

1/4 1/2 3/4
dmin Admin

dmin Admin
dmin Admin

16 364 8 664 4 432
16 196 8 408 4 304
16 236 8 472 4 320
16 24 8 112 4 108

32 13336 8 96 8 82016
32 5912 16 77104 8 28448
32 2200 8 96 8 53456
32 568 16 13904 8 6704

32 13616 16 61024 8 49344
32 4048 16 18720 8 13504
32 6496 16 36256 8 40640
32 748 16 4412 8 4832

decoding ĉ, that is, when ||y− c|| > ||y− ĉ||. Clearly, in this

situation, ML decoding cannot be successful.

As Fig. 6 to Fig. 14 show, the power gain of polar+ codes

over polar codes and, in particular, PAC + codes over PAC

codes is significant. Observe that polar+ codes are outper-

forming PAC codes for most of the codes evaluated in this

section. When comparing PAC+ codes with CRC polar codes,

we still observe that PAC+ codes outperform CRC-polar codes

at the practical BLER range of 10−2− 10−3. For comparison

purposes, we compare the BLERs with the lower bound for

the BLER of finite block length codes called dispersion bound.

The dispersion bounds with normal approximation [40] are

obtained by the Laplace transform-based integration proposed

in [41].

Let us analyze the numerical results for each code rate

separately. Fig. 6,9,12 illustrate block error rates for codes

with block lengths N = 64, 256, and 512 and rate R = 1/4.

At this code rate, we observe a significant power gain of 0.2

to 0.5 dB for PAC+ over CRC-polar codes and PAC codes

depending on the code length. The gain at short codes is larger.

For N = 64, the BLER reaches the dispersion bound. Note

that as N increases, appending a relatively short CRC does

not cost in terms of code rate as much as it costs at short

block lengths. Therefore, the gain relative to the CRC-polar

reduces as Eb/N0 increases.

We can observe a similar performance gain for code rate

R = 3/4 in Fig. 8, 11, and 14.

For the code rate R = 1/2 in Fig. 7, 10, and 13, it is

observed that the power gain of PAC+ over CRC-polar at the

practical BLER range of 10−2− 10−3 is smaller than at other

rates. A careful observer would find a similar power gain of

0.4-0.6 dB for PAC+ codes over PAC codes as other code rates.

Hence, CRC-polar might be performing better at this rate than

at other rates. To explain this observation, let us divide the

block errors that occur in the list decoding into two types:

1) Elimination error: when the correct sequence is eliminated

before decoding the last bit, 2) Miss error: when the correct

sequence remains in the list until decoding the last bit, but

it is not the sequence with the highest likelihood. Clearly, the

2 2.5 3 3.5 4 4.5 5

E
b
/N

0
 [dB]

10-4

10-3

10-2

10-1

B
LE

R

(64,16), SCLD, L=32

Polar
Polar+
PAC
PAC+
CRC-Polar
Dispersion bound

Fig. 6: BLER Comparison of various (64,16)-codes.

Parameters: design-SNR=4 dB, CRC: 0xA5, πmax = 3,

I ′ = {30, 29, 27} ∪ I \ {60, 58, 57}.

2 2.5 3 3.5 4 4.5 5

E
b
/N

0
 [dB]

10-4

10-3

10-2

10-1
B

LE
R

(64,32), SCLD, L=32

Polar
Polar+
PAC
PAC+
CRC-Polar
Dispersion bound

Fig. 7: BLER Comparison of various (64,32)-codes.

Parameters: design-SNR=4 dB, CRC: 0xA5, πmax = 2,

I ′ = {25, 22} ∪ I \ {56, 52}.

CRC mechanism as a genie that finds the correct sequence can

reduce the miss error rate, but not the elimination error. On

the other hand, we know that all information bits are mapped

to high-reliability bit-channels at a low code rate while we

will have a significant number of information bits transmitted

through low-reliability bit-channels. Hence, at low code rates,

both miss error rate and elimination error rate are relatively

low because of exploiting high-reliability bit-channels hence,

CRC will not have a significant impact at our target range.

However, the elimination error rate is relatively high compared

with the miss error rate at high code rates because the correct

sequences may not survive due to the overall low reliability

of exploited bit-channels. In this case, CRC cannot also be

helpful. In the medium code rates, the CRC mechanism seems

3 3.5 4 4.5 5 5.5

E
b
/N

0
 [dB]

10-4

10-3

10-2

10-1

B
LE

R
(64,48), SCLD, L=32

Polar
Polar+
PAC
PAC+
CRC-Polar
Dispersion bound

Fig. 8: BLER Comparison of various (64,48)-codes.

Parameters: design-SNR=2 dB, CRC: 0xA5, πmax = 2,

I ′ = {22, 18} ∪ I \ {48, 40}.

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10-5

10-4

10-3

10-2

10-1

B
LE

R

(256,64), SCLD, L=16

Polar
Polar+
PAC
PAC+
CRC-Polar
Dispersion bound

Fig. 9: BLER Comparison of various (256,64)-codes.

Parameters: design-SNR=4 dB, CRC: 0xA5, πmax = 2,

I ′ = {118, 63} ∪ I \ {248, 244}.

to be more effective, as the overall reliability of non-frozen

bit-channel is at a moderate level.

Note that the minimum distance of the new construction for

the code (256,125), as Table VI indicates, increased from 8

to 16. This is the main reason for the higher power gain of

polar+ and PAC+ codes as shown in Fig. 10 compared to other

codes.

IX. CONCLUSION

In this paper, we discover the combinatorial properties of

polar transform GN based on the row and column indices and

then characterize explicitly all the row combinations involved

in the formation of the minimum-weight codewords. In other

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10-4

10-3

10-2

10-1

B
LE

R

(256,128), SCLD, L=16

Polar
Polar+
PAC
PAC+
CRC-Polar
Dispersion bound

Fig. 10: BLER Comparison of various (256,128)-codes.

Parameters: design-SNR=2 dB, CRC: 0xA5, πmax = 2,

I ′ = {149, 147} ∪ I \ {224, 208}.

2 2.5 3 3.5 4 4.5

E
b
/N

0
 [dB]

10-4

10-3

10-2

10-1

B
LE

R
(256,192), SCLD, L=16

Polar
Polar+
PAC
PAC+
CRC-Polar
Dispersion bound

Fig. 11: BLER Comparison of various (256,192)-codes.

Parameters: design-SNR=4 dB, CRC: 0xA5, πmax = 3,

I ′ = {74, 23, 15}∪ I \ {224, 208, 200}.

words, we explicitly provide the decomposition of minimum-

weight codewords into the rows of polar transform. The

decomposed rows are classified into core and balancing rows.

First, this characterization gives an elementary enumeration of

the minimum-weight codewords based on core rows. Unlike

other methods, it is based on explicitly counting all the row

combinations resulting in minimum-weight codewords. The

core application of this characterization is to explain how

the error coefficient is reduced after convolutional precoding.

Furthermore, we propose an exact and approximate method

to significantly reduce the error coefficient of polar and PAC

codes. Evaluation of the BLER of various codes shows that

the designed codes can outperform CRC-polar codes and

PAC codes in the practical BLER regime of 10−2 − 10−3.

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10-4

10-3

10-2

10-1

B
LE

R
(512,128), SCLD, L=16

Polar
Polar+
PAC
PAC+
CRC-Polar
Dispersion bound

Fig. 12: BLER Comparison of various (512,128)-codes.

Parameters: design-SNR=2 dB, CRC: 0xC06, πmax = 3,

I ′ = {335, 315, 311}∪ I \ {496, 488, 484}.

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10-4

10-3

10-2

10-1

B
LE

R

(512,256), SCLD, L=16

Polar
Polar+
PAC
PAC+
CRC-Polar
Dispersion bound

Fig. 13: BLER Comparison of various (512,256)-codes.

Parameters: design-SNR=2 dB, CRC: 0xC06, πmax = 3,

I ′ = {283, 279, 271}∪ I \ {480, 464, 456}.

The decomposition of minimum-weight codewords gives a

significant insight into more analytical and practical works

related to polar code modifications. Finally, in this work, we

only considered the core rows in the code construction, taking

the balancing rows into consideration seems to be a promising

future direction.

REFERENCES

[1] M. Rowshan, S. Hoang Dau and E. Viterbo, “Improving the Error
Coefficient of Polar Codes,” 2022 IEEE Information Theory Workshop

(ITW), Mumbai, India, 2022, pp. 249-254
[2] E. Arıkan, “Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073, Jul. 2009.

[3] I. Tal and A. Vardy, “List Decoding of Polar Codes,” in IEEE Transactions

on Information Theory, vol. 61, no. 5, pp. 2213-2226, May 2015.

2 2.5 3 3.5 4

E
b
/N

0
 [dB]

10-4

10-3

10-2

10-1

B
LE

R

(512,384), SCLD, L=16

Polar
Polar+
PAC
PAC+
CRC-Polar
Dispersion bound

Fig. 14: BLER Comparison of various (512,384)-codes.

Parameters: design-SNR=4 dB, CRC: 0xC06, πmax = 3,

I ′ = {135, 83, 78}∪ I \ {448, 416, 400}.

[4] P. Trifonov and G. Trofimiuk, “A randomized construction of polar
subcodes,” IEEE International Symposium on Information Theory (ISIT),
Aachen, 2017, pp. 1863-1867.

[5] H. Zhang et al., “Parity-Check Polar Coding for 5G and Beyond,” 2018
IEEE International Conference on Communications (ICC), Kansas City,
MO, 2018, pp. 1-7.

[6] E. Arıkan, “From sequential decoding to channel polarization and back
again,” arXiv preprint arXiv:1908.09594 (2019).

[7] S. Lin and D. J. Costello, “Error Control Coding,” 2nd Edition, Pearson
Prentice Hall, Upper Saddle River, 2004, pp. 395-400.

[8] Z. Liu, K. Chen, K. Niu, and Z. He, “Distance spectrum analysis of
polar codes,” in 2014 IEEE Wireless Communications and Networking
Conference (WCNC), IEEE, 2014, pp. 490–495.

[9] M. Valipour and S. Yousefi, “On probabilistic weight distribution of polar
codes,” IEEE communications letters, vol. 17, no. 11, pp. 2120–2123,
2013.

[10] M. Bardet, V. Dragoi, A. Otmani, and J.-P. Tillich, “Algebraic properties
of polar codes from a new polynomial formalism,” in 2016 IEEE Inter-

national Symposium on Information Theory (ISIT), 2016, pp. 230–234.

[11] M. Bardet, V. Dragoi, A. Otmani, and J.-P. Tillich, “Algebraic properties
of polar codes from a new polynomial formalism,” 2016, full version,
available at https://arxiv.org/pdf/1601.06215.pdf.

[12] M. Rowshan, V. Dragoi, and J. Yuan, “On the Closed-form Weight
Enumeration of Polar Codes: 1.5-weight Codewords,” arXiv preprint
arXiv:2305.02921 (2023).

[13] F. J. MacWilliams and N. J. A. Sloane, “The Theory of Error-Correcting
Codes,” 5th ed. Amsterdam: North–Holland, 1986.

[14] Q. Zhang, A. Liu, and X. Pan, “An enhanced probabilistic computation
method for the weight distribution of polar codes,” IEEE Communications
Letters, vol. 21, no. 12, pp. 2562–2565, 2017.

[15] M. P. C. Fossorier and Shu Lin, “Weight distribution for closest coset
decoding of |u|u + v| constructed codes,” in IEEE Transactions on
Information Theory, vol. 43, no. 3, pp. 1028-1030, May 1997.

[16] R. Polyanskaya, M. Davletshin and N. Polyanskii, “Weight Distributions
for Successive Cancellation Decoding of Polar Codes,” in IEEE Transac-
tions on Communications, doi: 10.1109/TCOMM.2020.3020959.

[17] H. Yao, A. Fazeli, and A. Vardy, “A Deterministic Algorithm for
Computing the Weight Distribution of Polar Codes,” arXiv preprint
arXiv:2102.07362v1 (2020).

[18] R. Mori and T. Tanaka, “Performance and construction of polar codes
on symmetric binary-input memoryless channels,” in Proc. IEEE ISIT,

Jun./Jul. 2009, pp. 1496–1500.

[19] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inf.

Theory, vol. 59, no. 10, pp. 6562–6582, Oct. 2013.

[20] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Trans.

Commun., vol. 60, no. 11, pp. 3221–3227, Nov. 2012.

http://arxiv.org/abs/1908.09594
http://arxiv.org/abs/2305.02921
http://arxiv.org/abs/2102.07362

[21] Sae-Young Chung, T. J. Richardson and R. L. Urbanke, “Analysis of
sum-product decoding of low-density parity-check codes using a Gaussian
approximation,” in IEEE Transactions on Information Theory, vol. 47, no.
2, pp. 657-670, Feb 2001.

[22] C. Schürch, ”A partial order for the synthesized channels of a polar
code,” IEEE International Symposium on Information Theory (ISIT),
Barcelona, 2016, pp. 220-224.

[23] G. He et al., “Beta-Expansion: A Theoretical Framework for Fast and
Recursive Construction of Polar Codes,” GLOBECOM 2017 - 2017 IEEE

Global Communications Conference, Singapore, 2017, pp. 1-6.
[24] M. Rowshan and E. Viterbo, “How to Modify Polar Codes for List

Decoding,” 2019 IEEE International Symposium on Information Theory
(ISIT), Paris, France, 2019, pp. 1772-1776.

[25] B. Li, H. Zhang, J. Gu, “On Pre-transformed Polar Codes,” arXiv
preprint arXiv:1912.06359 (2019).

[26] M. C. Coşkun, H. D. Pfister, “An information-theoretic perspective
on successive cancellation list decoding and polar code design”, arXiv
preprint arXiv:2103.16680 (2021).

[27] V. Miloslavskaya and B. Vucetic, “Design of Short Polar Codes for SCL
Decoding,” in IEEE Transactions on Communications, vol. 68, no. 11,
pp. 6657-6668, Nov. 2020.

[28] P. Trifonov, “Randomized Polar Subcodes With Optimized Error Coef-
ficient,” in IEEE Transactions on Communications, vol. 68, no. 11, pp.
6714-6722, Nov. 2020.

[29] M. Rowshan, A. Burg and E. Viterbo, “Polarization-adjusted Con-
volutional (PAC) Codes: Fano Decoding vs List Decoding,” in IEEE
Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1434-1447,
Feb. 2021, doi: 10.1109/TVT.2021.3052550.

[30] M. Rowshan and E. Viterbo, “On Convolutional Precoding in PAC
Codes,” 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain,
2021, pp. 1-6, doi: 10.1109/GCWkshps52748.2021.9681987.

[31] N. Hussami, S. B. Korada and R. Urbanke, “Performance of polar codes
for channel and source coding,” 2009 IEEE International Symposium on
Information Theory, Seoul, 2009, pp. 1488-1492.

[32] W. Wu, B. Fan, and P. H. Siegel, “Generalized Partial Orders for
Polar Code Bit-Channels,” 2017 55th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), Monticello, IL,
USA, 2017, pp. 541-548.

[33] V. Dragoi, “Algebraic approach for the study of algorithmic problems
coming from cryptography and the theory of error correcting codes,”
Université de Rouen, France, 2017.

[34] M. Rowshan and J. Yuan, “Fast Enumeration of Minimum Weight
Codewords of PAC Codes,” 2022 IEEE Information Theory Workshop
(ITW), Mumbai, India, 2022, pp. 255-260.

[35] X. Gu, M. Rowshan, J. Yuan, “Improved Convolutional Precoder for
PAC Codes,” 2023 IEEE Globecom, Kuala Lumpur, Malaysia, 2023

[36] X. Gu, M. Rowshan, J. Yuan, “Rate-Compatible Shortened PAC Codes,”
2023 IEEE/CIC International Conference on Communications in China
(ICCC Workshops), Dalian, China, 2023, pp. 1-6.

[37] M. Rowshan and J. Yuan, “On the Minimum Weight Codewords of PAC
Codes: The Impact of Pre-transformation,” to appear in IEEE Journal of

Selected Areas in Information Theory, doi: 10.1109/JSAIT.2023.3312678.
[38] H. Vangala, E. Viterbo and Y. Hong, “A Comparative Study of Polar

Code Constructions for the AWGN Channel,” arXiv:1501.02473 (2015).
[39] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list

decoder for polar codes with cyclic redundancy check,” IEEE Commu-
nications Letters, vol. 16, no. 12, pp. 2044–2047, 2012.

[40] Y. Polyanskiy, H. V. Poor and S. Verdu, “Channel Coding Rate in the
Finite Blocklength Regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307-2359, May 2010.

[41] T. Erseghe, “Coding in the Finite-Blocklength Regime: Bounds Based
on Laplace Integrals and Their Asymptotic Approximations,” in IEEE
Transactions on Information Theory, vol. 62, no. 12, pp. 6854-6883, Dec.
2016.

APPENDIX

A. MATLAB Script for Enumeration

The function err coeff in MATLAB™ language in the

following listing can be used to obtain dmin and Admin
given

the inputs; the index set of the non-frozen bits, I, and the

code length N . Note that the index of non-frozen bits starts

from 0 and consequently the largest index is N − 1. In line

2, the function finds the minimum | supp(i)| or sum of 1’s in

bin(i) for i ∈ I. Then, we can get the minimum Hamming

distance of the code, that is dmin = 2| supp(i)| for every i that

gives the minimum | supp(i)|. We collect all such i in set

B(I) in line 4. Then, in the outer loop, we find |Ki| for every

i ∈ B(I). According to (7), the size of |Ki| is the sum of

|Ti| = log2(N)−| supp(i)|, in line 6, and
∑

k∈Si

∑

ℓ>k īℓ, in

lines 7-10 or inner loop. Recall that Admin
=

∑

i∈B(I) 2
|Ki|.

This is being accumulated in line 11 in the outer loop.

function [dmin, A_dmin] = err_coeff(I,N)

d = min(sum(dec2bin(I)-'0',2));

dmin = 2ˆd; n = log2(N); A_dmin = 0;

B = find(sum(dec2bin(I)-'0',2)==d);

for i = B'

Ki_size = n - d;

for x = find(dec2bin(I(i),n)-'0'==1)

ii = dec2bin(bitxor(N-1,I(i)),n)-'0';

Ki_size = Ki_size + sum(ii(1:x-1));

end

A_dmin = A_dmin + 2ˆKi_size;

end

end

Moreover, you may find a Python script for Algorithm 1

on https://github.com/mohammad-rowshan/Error-Coefficient-

reduced-Polar-PAC-Codes.

B. Block Error Probability and the Number of minimum-

weight Codewords of Polar Codes

The Hamming distance between two non-identical code-

words v,w in C is defined as d(c, c′) = w(c+c′). It is known

that the linear block codes can correct up to ⌊(d(C) − 1)/2⌋
errors, where d(C) is the minimum Hamming distance of code

d(C). In the linear block codes, c + c′ in F2 gives another

codeword in C , let us call it c′′, then

d(C) = min{w(c′′), c′′ ∈ C , c′′ 6= 0} = wmin. (38)

The minimum Hamming weight, in this paper we use its

short form as minimum-weight, defines the error correction

capability of a code. Besides minimum Hamming weight, the

number of minimum-weight codewords is also important.

It was shown in [7, Sect. 10.1] that for a binary input

additive white Gaussian noise (BI-AWGN) channel at high

Eb/N0, the upper bound for block error probability of linear

codes under soft-decision maximum likelihood (ML) decoding

can be approximated by

PML
e ≈ Awmin

(I)Q(
√

2 d(C) · R ·Eb/N0),

where Awmin
(I) denotes the number of minimum-weight

codewords, a.k.a error coefficient, Q(·) is the tail probability

of the normal distribution N (0, 1), and R is the code rate. As

Awmin
(I) is directly proportional with the upper bound for

the error correction performance of a code, it can be used as a

measure to anticipate the direction of change in the block error

rate when Awmin
(I) changes or in general it is a measure for

relative performance of the codes under the same decoding.

C. Polar Transform and its Properties

In this appendix, for self-completeness, we develop a few

useful properties regarding the polar transform, some of which

were known under equivalent formulations in the literature.

http://arxiv.org/abs/1912.06359
http://arxiv.org/abs/2103.16680
http://arxiv.org/abs/1501.02473

The polar transform matrix GN is defined as the n-th

Kronecker power of

G2 =

[
1 0
1 1

]

=

[
g0

g1

]

, (39)

where g0 and g1 are the rows of G2. Hence,

GN = G⊗n
2 =

[
1 0
1 1

]⊗n

. (40)

Lemma 3 provides a criterion to determine the value of an

entry in GN based on the supports of the binary expansions

of its row and column indices. An equivalent statement of the

lemma was established earlier in [10] under the language of

polynomials and their evaluations.

Lemma 3. Let gi,c be the (i, c)-th entry of GN for indices

i, c in [0, N − 1]. Then the following holds.

gi,c =

{

1, if Sc ⊆ Si,

0, if otherwise.
(41)

Proof. We show this by induction on n.

Base case. When n = 1 and N = 21 = 2, one can observe

that (41) holds trivially. Note that supp(0) = ∅ and ∅ ⊆ ∅

for entry (0,0), hence g0,0 = 1.

G2 =

(
0 1

0 1 0
1 1 1

)

. (42)

Inductive step. Suppose (41) holds for n, we need to prove

that it also holds for n+ 1. Let us use the notations gni,c, Sni ,

and Snc for n and gn+1
i,c , Sn+1

i , and Sn+1
c for n+1. We have

G2n+1 =

(
G2n 0

G2n G2n

)

(43)

Now, we consider two cases:

• Case 1: 0 ≤ i ≤ 2n − 1 and 2n ≤ c ≤ 2n+1 − 1. In this

case we have gi,c = 0. Since n /∈ Sn+1
i and n ∈ Sn+1

c ,

we deduce that Sn+1
c 6⊆ Sn+1

i . Thus, (41) holds.

• Case 2: 2n ≤ i ≤ 2n+1 − 1 or 0 ≤ c ≤ 2n − 1. From

(43) we have

gn+1
i,c = gn(i mod 2n),(c mod 2n). (44)

Claim 1. Sn+1
c ⊆ Sn+1

i ⇐⇒ Snc mod 2n ⊆ S
n
i mod 2n .

Proof. Since

Sn+1
i =

{

{n} ∪ Sni mod 2n , if 2n ≤ i ≤ 2n+1 − 1,

Sni mod 2n = Sni , if 0 ≤ i ≤ 2n − 1,
(45)

and

Sn+1
c =

{

{n} ∪ Snc mod 2n , if 2n ≤ c ≤ 2n+1 − 1,

Snc mod 2n = Snc , if 0 ≤ c ≤ 2n − 1.
(46)

Under the assumption that 2n ≤ i ≤ 2n+1−1 or 0 ≤ c ≤
2n− 1, if n belongs to Sn+1

c then it must also belong to

Sn+1
i . From this, it is easy to see that Claim 1 holds. �

From Claim 1 and (44), we can conclude that

gn+1
i,c =

(44)
gn(i mod 2n),(c mod 2n)

=
Induction

{

1 if Snc mod 2n ⊆ S
n
i mod 2n ,

0 otherwise

=
Claim 1

{

1, if Sn+1
c ⊆ Sn+1

i ,

0, otherwise

(47)

Thus, the relation (41) holds for n+1 in Case 2 as well. �

Lemma 3 is a fundamental tool that we rely on throughout

this paper. Based on this lemma, we can easily determine the

weight of a row gi and the weight of a sum of two rows

gi+gj based on the supports of the binary representations of

i and j as follows.

Corollary 4. For i and j in [0, 2n − 1], we have

w(gi) = 2|Si|,

w(gi + gj) = 2|Si| + 2|Sj| − 2× 2|Si∩Sj|.

Proof. From Lemma 3, we have

supp(gi) = {c ∈ [0, N − 1] : gi,c = 1}

= {c ∈ [0, N − 1] : Sc ⊆ Si},

which implies that

w(gi) = | supp(gi)| = |{c ∈ [0, N − 1] : Sc ⊆ Si}| = 2|Si|.

We also have

supp(gi) ∩ supp(gj) = {c ∈ [0, N − 1] : Sc ⊆ Si ∩ Sj},

which implies that

| supp(gi) ∩ supp(gj)| = 2|Si∩Sj|.

Therefore,

w(gi + gj) = w(gi) + w(gj)− 2× | supp(gi) ∩ supp(gj)|

= 2|Si| + 2|Sj| − 2× 2|Si∩Sj|,

which proves the second equality. �

Recall that throughout this work we use the index subscript

i ∈ [0, 2n − 1] and its Si = supp(bin(i)) ⊆ [0, n − 1]
interchangeably. For instance, when n = 5, instead of c10,

we may write c{1,3} as S10 = supp(01010) = {1, 3}.

Lemma 4. For i ∈ [0, 2n − 1] and J ⊆ [i+ 1, 2n − 1], let

c = gi ⊕
⊕

j∈J

gj . (48)

Then for every subset S ⊆ Si there exists at least one subset

T ⊆ Ti , [0, n− 1] \ Si such that

cS∪T = 1. (49)

Proof. For every S ⊆ Si, we define

J ′(S) , {j ∈ J : Sj ⊇ S}. (50)

We consider the following two cases.

Case 1: |J ′(S)| is even. We pick T = ∅, then S ∪ T = S,

which is contained in both Si and Sj . Therefore, (gi)S∪T =

(gj)S∪T = 1 for every j ∈ J ′(S), and (gj)S∪T = 0 for

every j ∈ J \ J ′(S). Since |{i} ∪ J ′(S)| is odd for every

S ⊆ Si, we have cS∪T = 1.

Case 2: |J ′(S)| is odd. We use double counting technique to

count the elements of the set

P = {(T , j) : T ⊆ Sj \ Si, T 6= ∅, j ∈ J ′(S)}.

First,

|P| =
∑

j∈J ′(S)

(2|Sj\Si| − 1),

which is odd as explained below. Note that the number of

subsets of Sj \Si excluding the empty set is 2|Sj\Si|− 1, and

|Sj \ Si| ≥ 1 due to Sj 6⊆ Si. On the other hand, |J ′(S)| is

also odd. Therefore, |P |, which is the sum of an odd number

of all odd terms, is odd.

Second,

|P| =
∑

T ⊆Ti,T 6=∅

|{j ∈ J ′(S) : T ⊆ Sj \ Si}|.

Therefore, since |P | is odd, there exists at least one T ⊆ Ti
such that |{j ∈ J ′(S) : T ⊆ Sj \ Si}| is odd. For this T , we

have (gi)S∪T = 0 and

(gj)S∪T =







1, if j ∈ J ′(S) and T ⊆ Sj ,

0, if j ∈ J ′(S) and T 6⊆ Sj ,

0, if j ∈ J \ J ′(S).

Therefore, cS∪T = 1. �

The following useful result, which was also established

in [25, Corollary 1] via an induction proof, is a simple

corollary of Lemma 4.

Corollary 5. For any i ∈ [0, 2n− 1] and H ⊆ [i+1, 2n− 1],
we have

w(gi ⊕
⊕

h∈H

gh) ≥ w(gi). (51)

Proof. According to Lemma 4, for every subset S ⊆ Si, there

exists at least one subset T ⊆ Ti so that cS∪T = 1. Since the

total number of subsets of Si is 2|Si|, we deduce that

w(c) = w(gi ⊕
⊕

h∈H

gh) ≥ 2|Si| =
Lemma 4

w(gi). �

From Corollary 5, the dmin of the code C(I) (including RM

and polar codes) can be easily determined. Different proofs of

this result (via RM codes containing C(I)) could be found

in [31, Lemma 3] (for polar codes) and [10, Proposition 3]

(for decreasing monomial codes).

Corollary 6. The minimum distance of the code C(I) (see

Section III), which includes RM and polar codes, is

dmin = min
i∈I

w(gi),

where gi denotes the i-th row in GN .

Proof. According to (38), the minimum distance of a linear

code is the minimum-weight of any no-nzero codeword. From

Corollary 5, we know that the weight of every codeword in

the coset Ci(I), which has the form gi⊕
⊕

j∈J gj , is at least

w(gi). Hence, it follows that dmin = wmin = mini∈I w(gi).
�

D. Proof of Theorem 1

Assume that I ⊆ [0, N − 1] satisfies the Partial Order

Property, and i ∈ I satisfying w(gi) = wmin. We first show in

Lemma 6 that for any ∅ 6= J ⊆ Ki, the setM(J) constructed

by the M-Construction satisfies M(J) ⊆ I \ [0, i]. We then

prove in Lemma 8 that M(J) also satisfies (8), that is, the

sum of gi, gj with j ∈ J , and gm with m ∈ M(J) has

weight wmin. These two lemmas together prove Theorem 1.

We need a simple auxiliary result to prove the lemma 6.

Lemma 5. Suppose that for i and m in [0, N − 1], Si \Sm =
{a1, . . . , aℓ}, Sm \ Si = {b1, . . . , bu}, ℓ ≤ u, and moreover,

at < bt for all t ∈ [1, ℓ]. Then i � m.

Proof. We define the indices h0, h1, . . . , hℓ+1 as follows.

• h0 , i,
• Sht

,
(
Sht−1

\ {at}
)
∪ {bt}, 1 ≤ t ≤ ℓ,

• Shℓ+1
, Shℓ

∪ {bℓ+1, . . . , bu}.

Clearly, hℓ+1 = hu. Furthermore, by Definition 1, we have

i = h0 � h1 � · · · � hℓ � hℓ+1 = m,

which implies that i � m. �

Lemma 6. If I ⊆ [0, N − 1] satisfies the Partial Order

Property, i ∈ I satisfying w(gi) = wmin, and J ⊆ Ki, then

the set M(J) generated by the M-construction is a subset

of I \ [0, i].

Proof. Since I satisfies the Partial Order Property, it suffices

to show that i � m for every m ∈ M(J). Note that i � m
and i 6= m imply i < m.

Take m = mJ ′ created as in the M-Construction. Due to

Lemma 2 (a), for each j ∈ J ′, it holds that |Sj \ Si| = 1
and either |Si \ Sj | = 1 or |Si \ Sj | = 0 (i.e., Si ⊆ Sj).

Let J ′ = {j1, j2, . . . , j|J ′|}. Rearranging, if necessary, let

1 ≤ ℓ ≤ p ≤ u = |J ′| be such that

(C1) |Si \ Sj1 | = |Si \ Sj2 | = · · · = |Si \ Sjp | = 1,

(C2) |Si \ Sjp+1
| = |Si \ Sjp+2

| = · · · = |Si \ Sju | = 0,

(C3) Si \ Sjt , t ∈ [1, ℓ], are pair-wise disjoint (singleton) sets,

(C4) ∪t∈[ℓ+1,p](Si \ Sjt) ⊆ ∪t∈[1,ℓ](Si \ Sjt).

Let Si\Sjt = {at}, 1 ≤ t ≤ ℓ. Note that all these ℓ (singleton)

sets are pair-wise disjoint according to (C3). From the M-

Construction, (C2), and (C4), we deduce that

Si \ Sm = Si \
(
∩j∈J ′ Sj

)

= ∪j∈J ′

(
Si \ Sj) = ∪t∈[1,u]

(
Si \ Sjt)

= ∪t∈[1,ℓ]

(
Si \ Sjt) = {a1, . . . , aℓ},

where the second equality is due to De Morgan’s laws and the

fourth is due to (C2) and (C4). Let Sjt \Si = {bt}, 1 ≤ t ≤ u.

Then due to the M-Construction, all these (singleton) sets

are pair-wise disjoint as well. Moreover, as i � jt, we have

at < bt for all 1 ≤ t ≤ ℓ. We also have

Sm \ Si = ∪j∈J ′(Sj \ Si)

= ∪t∈[1,u](Sjt \ Si) = {b1, . . . , bu}.

Applying Lemma 5 to Si and Sm, we conclude that i � m as

desired. �

Before proving our key Lemma 8, we need the following

important result.

Lemma 7. If I ⊆ [0, N − 1] satisfies the Partial Order

Property, i ∈ I satisfies w(gi) = wmin, and J ⊆ Ki, then for

each subset S ⊆ Si, there exists a unique subset T ∗(S) ⊆ R,

where R , ∪j∈J

(
Sj \ Si

)
, such that

cS∪T ,

{

1, if T = T ∗(S),

0, otherwise,

where

c , gi ⊕
⊕

j∈J

gj ⊕
⊕

m∈M

gm.

and cS∪T denotes a coordinate of c indexed by S ∪ T .

Proof. We prove the lemma by providing an explicit construc-

tion of the set T ∗(S) for every S ⊆ Si. First, let J ∗(S) denote

the set of rows in J such that S ⊆ Sj .

J ∗(S) = {j ∈ J : S ⊆ Sj}.

We define T ∗(S) as the set consisting of indices in R =
∪j∈J

(
Sj\Si

)
that belong to an odd number of Sj , j ∈ J ∗(S).

We divide the remainder of the proof into two parts, showing

that cS∪T = 1 if T = T ∗(S) in Lemma 9 and cS∪T = 0 if

T 6= T ∗(S) in Lemma 10. Both lemmas can be found at the

end of this appendix. �

We illustrate in Example 10 how T ∗(S) discussed in the

proof of Lemma 7 can be found.

Example 10. We consider n = 4, N = 16, i = 3, and J as

given in Example 2:

J = {5, 6, 7, 9, 10}

= {(0101)2, (0110)2, (0111)2, (1001)2, (1010)2}.

Note that R = ∪j∈J

(
Sj \Si

)
= {2, 3}. The subset S ⊆ Si =

{0, 1} can be ∅, {0}, {1}, or {0, 1}. Let us consider S = {1}.
Then,

J ∗(S) = {6, 7, 10} = {(0111)2, (0110)2, (1010)2}.

Since 2 appears twice and 3 appears once among S6, S7,

and S10, we have T ∗(S) = {3}. Consequently, cS∪T ∗(S) =
c(1010)2 = c10 = 1.

To determine all the ‘1’ coordinates in the codeword, we

find the sets T ∗(S) corresponding to other subsets S of Si,
which are T ∗({0}) = {3}, T ∗({0, 1}) = {2}, and T ∗(∅) =
{2}. Then, cS∪T ∗(S) = c(1001)2 = c9 = 1, c(0111)2 = c7 =
1, and c(0100)2 = c4 = 1. The remaining coordinates in the

codeword are ‘0’.

Lemma 8. If I ⊆ [0, N − 1] satisfies the Partial Order

Property, i ∈ I satisfies w(gi) = wmin, and J ⊆ Ki, then the

set M(J) generated by the M-construction satisfies

w
(
gi ⊕

⊕

j∈J

gj ⊕
⊕

m∈M(J)

gm

)
= wmin.

Proof. Let c = gi ⊕
⊕

j∈J gj ⊕
⊕

m∈M(J) gm. Recall that

we use the set Sh, h ∈ [0, N−1], to index the coordinate ch of

c, where Sh , supp(bin(h)) ⊆ [0, n− 1]. Due to Lemma 3,

gi and gj , j ∈ J , have a zero entry at every index h with

Sh 6⊂ Si ∪ R, where R ,
(
∪j∈J

(
Sj \ Si

))
. Moreover, due

to the way we constructM(J) in the M-Construction, since

Sm ⊆ Si ∪ R, the row gm with m ∈ M(J) also has a zero

at such indices. Therefore, to determine the Hamming weight

of c, we only need to consider the coordinates of c indexed

by subsets of Si ∪R and ignore the rest, because they are all

zeros.

Let T ∗(S) be defined as in the statement of Lemma 7 for

each set S ⊆ Si. Since Si ∩R = ∅, the collection of subsets

of Si ∪R can be written as

{S ∪ T : S ⊆ Si, T ⊆ R} =

{S ∪ T ∗(S) : S ⊆ Si} ∪ {S ∪ T : S ⊆ Si, T 6= T
∗(S)}.

According to Lemma 7, cS∪T = 1 if T = T ∗(S) and 0
otherwise. Therefore,

w(c) = |{S ∪ T ∗(S) : S ⊆ Si}|

= |{S ⊆ Si}| = 2|Si| = wmin.

This proves the lemma. �

The next two lemmas settle the remaining parts in the proof

of Lemma 7.

Lemma 9. If I ⊆ [0, N − 1] satisfies the Partial Order

Property, i ∈ I satisfies w(gi) = wmin, J ⊆ Ki, and M(J)
is created by the M-Construction, then for every S ⊆ Si,

cS∪T ∗(S) =
⊕

m∈{i}∪J∪M(J)

gm,S∪T ∗(S) = 1.

where T ∗(S) is defined as in the proof of Lemma 7 and

cS∪T ∗(S) is the coordinate indexed by S ∪ T ∗(S) of

c , gi ⊕
⊕

j∈J

gj ⊕
⊕

m∈M

gm.

Proof. Recall that from Lemma 3, gm,c = 1 if and only if

Sc ⊆ Sm. To prove Lemma 9, it suffices to show that the

number of m ∈ {i} ∪ J ∪M satisfying S ∪ T ∗(S) ⊆ Sm is

odd (so that cS∪T ∗(S) = 1).

Note that in the M-Construction, the rows of M(J) are

mJ ′ with |J ′| ≥ 2. To facilitate the proof, we also include

J ′ with |J ′| < 2 by setting Sm∅
, Si and Sm{j}

, Sj . In

this way, any row index m ∈ {i} ∪ J ∪M(J) corresponds

to an element mJ ′ for some J ′ ⊆ J .

According to the definition of J ∗(S) in the first part of the

proof of Lemma 7, for any J ′ 6⊆ J ∗(S), we have S 6⊆ Sj for

some j ∈ J ′, and hence, S 6⊆ Si ∩
(
∩j∈J ′ Sj

)
. Furthermore,

since S ⊆ Si, we have S 6⊆ ∪j∈J ′(Sj \ Si). Therefore,

S ∪ T ∗(S) 6⊆ ∪j∈J ′(Sj \ Si) ∪
(
Si ∩

(
∩j∈J ′ Sj

))
= SmJ′ .

Thus, we only need to consider m = mJ ′ where J ′ ⊆ J ∗(S).
Note that if J ′ ⊆ J ∗(S) then S ⊆ Si ∩

(
∩j∈J ′ Sj

)
⊆

SmJ′ . To have S ∪ T ∗(S) ⊆ SmJ′ , we only need T ∗(S) ⊆
∪j∈J ′(Sj \ Si). According to the M-Construction, the sets

J ′ of interest should also satisfy that the sets Sj \Si, j ∈ J ′,

are pairwise disjoint. Note that we now can safely ignore the

requirement that |J ′| ≥ 2 in the M-Construction as we have

set a convention for the cases J ′ = ∅ and J ′ = {j}.

From the above discussion, it suffices to show that the num-

ber of sets J ′ ⊆ J ∗(S) satisfying the following conditions

(C1) and (C2) is odd.

• (C1) Sj \ Si, j ∈ J ′, are pairwise disjoint.

• (C2) T ∗(S) ⊆ ∪j∈J ′(Sj \ Si).

To this end, for each j ∈ J ∗(S) let rj be the unique element in

Sj\Si, and for each r ∈ R , ∪j∈J

(
Sj\Si

)
denote Jr , {j ∈

J ∗(S) : rj = r}. Moreover, let O , {r ∈ R : |Jr | is odd}
and E , {r ∈ R : |Jr| is even}. Then T ∗(S) = O and R =
O ∪ E .

Recall that we aim to prove that the number of J ′ ⊆ J ∗(S)
satisfying (C1) and (C2) is odd. We note that these conditions

are satisfied if and only if

|J ′ ∩ Jr| =

{

1, for r ∈ O,

0 or 1, for r ∈ E .

In fact, to satisfy (C1), J ′ must contain at most one element

from each Jr, for every r ∈ R. To also satisfy (C2), because

T ∗(S) = O, J ′ must contain exactly one element from each

Jr for every r ∈ O. Note that there are |Jr| ways to pick

an element from Jr, r ∈ O, and |Jr| + 1 ways to choose

no element or one from Jr, r ∈ E . Thus, the number of

J ′ ⊆ J ∗(S) that meets both (C1) and (C2) is equal to
∏

r∈O

|Jr|
︸︷︷︸

Odd

×
∏

r∈E

(|Jr |
︸︷︷︸

Even

+1)

︸ ︷︷ ︸

Odd

,

which is an odd number as desired. �

Lemma 10. If I ⊆ [0, N − 1] satisfies the Partial Order

Property, i ∈ I satisfies w(gi) = wmin, J ⊆ Ki, and M(J)
is created by the M-Construction, then for every S ⊆ Si and

T 6= T ∗(S),

cS∪T =
⊕

m∈{i}∪J∪M(J)

gm,S∪T = 0,

where cS∪T is the coordinate indexed by S ∪ T of

c , gi ⊕
⊕

j∈J

gj ⊕
⊕

m∈M

gm.

Proof. We follow the same proof strategy as in Lemma 9 and

also define the sets Jr, O, and E , noting that R = O∪E and

T ∗(S) = O. For all S ⊆ Si and T 6= T ∗(S), our objective is

to show that the number of J ′ ⊆ J ∗(S) satisfying both (C1)

and (C3) is even (so that cS∪T = 0), with

• (C1) Sj \ Si, j ∈ J ′, are pairwise disjoint.

• (C3) T ⊆ ∪j∈J ′(Sj \ Si).

We observe that a set J ′ ⊆ J ∗(S) satisfies (C1) if and only

if J ′ contains at most one element of each Jr , for every

r ∈ R. Furthermore, the set J ′ also satisfies (C3) if and only

if it contains exactly one element of each Jr with r ∈ T .

Therefore, the number of J ′ ⊆ J ∗(S) that meets both (C1)

and (C3) is ∏

r∈T

|Jr| ×
∏

r∈R\T

(|Jr |+ 1), (52)

which is an even number. Indeed, as T 6= T ∗(S) = O, either

T ∩ E 6= ∅ or R\ T ⊇ O \ T 6= ∅. If the former holds, then

the first product in (52) contains an even factor |Jr| for some

r ∈ E ∩ T and is therefore even. If the latter holds, then the

second product contains an even factor (|Jr| + 1) for some

r ∈ O \ T . In either case, the number of J ′ as given by (52)

is even as desired �

	Introduction
	Preliminaries
	Basic Concepts in Coding Theory
	Reed-Muller Codes and Polar Codes
	Partial Order Property and a Generalization of Reed-Muller and Polar Codes

	The Formation of Minimum-Weight Codewords of Reed-Muller and Polar Codes
	The Minimum-Weight Codewords Formation
	The Connection to the Permutation-Group-Based Approach by Bardet et al. bardet, bardetarxiv
	Applications of the Minimum-Weight Codewords Characterization for Polar Codes

	Error Coefficient-improved Codes
	Constructing New Codes: Procedure
	Simplified Procedure for Code Design

	Impact of Precoding on Error Coefficient
	Reliability vs Error Coefficient
	Numerical Results
	Conclusion
	References
	Appendix
	MATLAB Script for Enumeration
	Block Error Probability and the Number of minimum-weight Codewords of Polar Codes
	Polar Transform and its Properties
	Proof of Theorem 1

