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Quantum Multiple-Access One-Time Pad
Eyuri Wakakuwa

Abstract—We introduce and analyze an information

theoretical task that we call the quantum multiple-access

one-time pad. Here, a number of senders initially share

a correlated quantum state with a receiver and an eaves-

dropper. Each sender performs a local operation to encode

a classical message and sends their system to the receiver,

who subsequently performs a measurement to decode the

messages. The receiver will be able to decode the messages

almost perfectly, while the eavesdropper must not be able

to extract information about the messages even if they have

access to the quantum systems transmitted. We consider a

“conditional” scenario in which a portion of the receiver’s

side information is also accessible to the eavesdropper. We

investigate the maximum amount of classical information

that can be encoded by each of the senders. We derive

a single-letter characterization for the achievable rate

region in an asymptotic limit of infinitely many copies

and vanishingly small error.

I. INTRODUCTION

Encoding and decoding of classical information

into/from a composite quantum system under locality

restrictions have been one of the central issues in quan-

tum information theory. Superdense coding [1] is a task

of encoding classical information to a bipartite quantum

state by local operations on one of the two subsystems.

Quantum secret sharing [2], [3] and quantum data hiding

[4]–[7] are schemes that prevent anyone under locality

restrictions from extracting the information encoded in

a multipartite quantum system. The quantum one-time

pad [8], [9] and the conditional quantum one-time pad

[10] are hybrid of the two scenarios, in the sense that

classical information is encoded by local operations on

one of the subsystems so that it can be decoded only if

the global access to the entire system is granted. These

studies have lead to a better understanding of correlation

and entanglement in multipartite quantum states from an

operational and information theoretical viewpoint.

This paper considers an extension of the conditional

quantum one-time pad to a multi-sender scenario. We

refer the task as the quantum multiple-access one-time

pad. Here, a receiver, an eavesdropper and a number
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of senders initially share a correlated quantum state.

Each sender performs a local operation to encode a

classical message on that state. The senders then send

their systems to the receiver, who subsequently performs

a measurement to decode the messages. We require

that the receiver can decode the messages almost per-

fectly, while the eavesdropper can obtain almost no

information about the messages even if they have access

to the quantum systems transmitted. We focus on a

“conditional” scenario as in [10], i.e., we assume that

a portion of the receiver’s side information is accessible

to the eavesdropper. We consider an asymptotic limit of

infinitely many copies and vanishingly small error, and

investigate the maximum amount of classical information

that can be encoded by each of the senders. The main

result is that we derive a single-letter characterization for

the achievable rate region.

This paper is organized as follows. In Section II, we

present the formulation of the problem and describe

the main result. Section III introduces two subprotocols

that we call distributed encoding and distributed

randomization, and present the coding theorems thereof.

Based on these results, we prove the main result in

Section IV. The proofs of the coding theorems for

distributed encoding and distributed randomization are

provided in Section V and Section VI, respectively,

and proofs of two lemmas that are used therein will

be provided in Section VII. Conclusions are given in

Section VIII.

Notations: For a natural number N ∈ N, the set of nat-

ural numbers no greater than N is denoted by [N ], i.e.,

[N ] ≡ {1, · · · , N}. The set of linear operators, unitary

operators, normalized density operators and subnormal-

ized ones on a Hilbert space H are denoted by L(H),
U(H), S(H) and S≤(H), respectively. The Hilbert space

associated with a system A is denoted by HA, and its

dimension is denoted by dA. The identity operator on

HA is denoted by IA, and the completely mixed state

on system A is denoted by πA, i.e., πA = IA/dA. The

system composed of two subsystems A and B is denoted

by AB. The Hilbert space associated with a composite

system AB is denoted by HAB , i.e., HAB = HA⊗HB.

When M and N are linear operators on HA and HB,

respectively, their tensor product M ⊗N is denoted by

http://arxiv.org/abs/2208.12016v1
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MA ⊗NB for clarity. The identity operation on system

A is denoted by idA. When E is a quantum operation

on A and ρ is a state on AB, the state (E ⊗ idB)(ρAB)
is denoted simply by EA(ρAB). For ρAB, ρA represents

TrB[ρ
AB ]. The system composed of n identical systems

of A is denoted by An, and the corresponding Hilbert

space is denoted by (HA)⊗n or HAn

. The trace norm

of an operator X ∈ L(H) is defined by ‖X‖1 :=
Tr[

√
X†X] and the trace distance between two states

ρ, σ ∈ S(HA) is defined by 1
2‖ρ− σ‖1. log x represents

the base 2 logarithm of x. The binary entropy is defined

by h(x) := −x log x − (1 − x) log (1− x) and satisfies

limx↓0 h(x) = 0. The cardinality of a set S is denoted

by |S|.
The von Neumann entropy of a state ρ ∈ S(HA) is

defined by

S(A)ρ = S(ρA) := −Tr[ρA log ρA]. (1)

For ̺ ∈ S(HAB) and ς ∈ S(HABC), the conditional

entropy, the mutual information and the conditional

mutual information are defined by

S(A|B)̺ := S(AB)̺ − S(B)̺, (2)

I(A : B)̺ := S(A)̺ − S(A|B)̺, (3)

I(A : B|C)ς := S(A|C)ς − S(A|BC)ς . (4)

For the properties of the entropies and the mutual infor-

mations used in this paper, see e.g. [11].

II. FORMULATION AND RESULT

Suppose that Z ∈ N senders, a receiver and an

eavesdropper are located distantly. Let A1, · · · , AZ , B
and E be quantum systems in their possession, which

are represented by finite-dimensional Hilbert spaces

HA1 , · · · ,HAZ , HB and HE , respectively. They ini-

tially share n ∈ N copies of a quantum state ρ ∈
S(HA1···AZBE). Each sender encodes a classical mes-

sage by performing an operation on their system locally.

For z ∈ [Z], let Rz be the bit length of the message

that the z-th sender is to encode, divided by n, and let

Mz ≡ 2nRz . The encoding scheme is represented by

a finite-dimensional quantum system A′
z and a set of

encoding quantum operations (completely positive trace-

preserving maps) Ez ≡ {Ez,mz
}Mz

mz=1 from An
z to A′

z ,

where mz ∈ [Mz] denotes the values of the message.

For simplicity, we introduce the following notations:

M ≡ [M1]× · · · × [MZ ], (5)

m ≡ (m1, · · · ,mZ). (6)

After performing the encoding operations, the senders

send their systems to the receiver, who subsequently

performs a measurement to decode the messages. We

consider the “conditional” scenario of [10], in which

the receiver has access to A′
1 · · ·A′

ZB
nEn when de-

coding the messages and the eavesdropper has access

to A′
1 · · ·A′

ZE
n when trying to extract the informa-

tion about the messages. The decoding measurement

by the receiver is represented by a POVM M ≡
{Λm}m∈M on A′

1 · · ·A′
ZB

nEn. We refer to the tuple

C ≡ (E1, · · · ,EZ ,M) as a (n,M1, · · · ,MZ) code for

ρ.

For each message value m, the state after the encoding

operations is represented by

ρm :=

(

Z
⊗

z=1

EAn
z→A′

z
z,mz

)

(ρ⊗n). (7)

We assume that the messages are distributed uniformly,

in which case the average state is

ρ̄ :=
1

|M|
∑

m∈M

ρm. (8)

The average decoding error is defined by

ǫ(C) := 1− 1

|M|
∑

m∈M

Tr[ρmΛm]. (9)

The average information leakage is quantified by the

trace distance as

ϑ(C) :=
1

|M|
∑

m∈M

∥

∥

∥
ρ
A′

[Z]E
n

m − ρ̄A
′
[Z]E

n
∥

∥

∥

1
. (10)

We require that both the decoding error and the in-

formation leakage can be made arbitrarily small in the

asymptotic limit of n to infinity. A rigorous definition of

the achievable rate region is as follows:

Definition 1 A rate tuple (R1, · · · , RZ) is achievable

for the state ρ ∈ S(HA1···AZBE) if, for any ǫ, ϑ >
0 and any sufficiently large n ∈ N, there exists a

(n, 2nR1 , · · · , 2nRZ ) code C for ρ that satisfies the re-

liability condition ǫ(C) ≤ ǫ and the secrecy condition

ϑ(C) ≤ ϑ. The achievable rate region for ρ is the closure

of the set of all achievable rate tuples in R
Z .

The main result of this paper is the following theorem:

Theorem 2 The achievable rate region is equal to the

set of all rate tuples (R1, · · · , RZ) ∈ R
Z that satisfy the

following inequality for any Γ ∈ [Z]:
∑

z∈Γ

Rz ≤ I(AΓ : AΓc
B|E)ρ, (11)

where AΓ and AΓc
denote the systems composed of

{Az}z∈Γ and {Az}z∈Γc
, respectively, with Γc ≡ [Z]\Γ.

A proof of Theorem 2 will be provided in Section IV

based on the results presented in Section III.
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III. DISTRIBUTED ENCODING AND DISTRIBUTED

RANDOMIZATION

We introduce two subprotocols that we call distributed

encoding and distributed randomization, and present the

coding theorems thereof. We compare the results with

those in the previous literature. The two subprotocols

are combined in Section IV to prove the direct part of

Theorem 2. The proofs of the two theorems will be

provided in Section V and VI, respectively.

A. Distributed Encoding

Suppose that Z ∈ N senders and a receiver are located

distantly. Let A1, · · · , AZ and V be quantum systems

in their possession, which are represented by finite-

dimensional Hilbert spaces HA1 , · · · ,HAZ and HV ,

respectively. They initially share n ∈ N copies of a

quantum state ρ ∈ S(HA1···AZV ). Distributed encoding is

a task in which each sender encodes a classical message

by performing a local unitary operation on An
z so that

it can be decoded from An
1 · · ·An

ZV
n almost perfectly.

For z ∈ [Z], let Cz be the bit length of the message

that the z-th sender is to encode, divided by n, and let

Kz ≡ 2nCz . We define K ≡ [K1] × · · · × [KZ ]. Each

element of K is denoted as k ≡ (k1, · · · , kZ), where

kz ∈ [Kz]. A rigorous definition is as follows:

Definition 3 For each z ∈ [Z], let Uz ≡ {Uz,kz
}Kz

kz=1
be a set of unitaries on An

z . For each k ∈ K, define a

unitary

Uk :=

Z
⊗

z=1

Uz,kz
(12)

and a state

ρk := (Uk ⊗ IV
n

)ρ⊗n(Uk ⊗ IV
n

)†. (13)

A tuple (U1, · · · ,UZ) is a (n,K1, · · · ,KZ) distributed

encoding for ρ with error ǫ if there exists a measurement

{Λk}k∈K on An
1 · · ·An

ZV
n such that

1

|K|
∑

k∈K

Tr[ρkΛk] ≥ 1− ǫ. (14)

Our interest is on how much classical information can be

encoded in this manner. We consider a scenario where

the encoding unitaries are chosen independently and

randomly according to the Haar measure. A rigorous

definition is as follows:

Definition 4 A rate tuple (C1, · · · , CZ) is achievable

in distributed encoding on a state ρ ∈ S(HA1···AZV ) if,

for any ǫ, ξ > 0 and any sufficiently large n ∈ N, the

following statement holds:

Let Uz,kz,i ∈ U(HAz) for i ∈ [n] and suppose that we

choose Uz,kz,i randomly and independently according to

the Haar measure for each i ∈ [n], kz ∈ [2nCz ] and

z ∈ [Z]. Let

Uz,k :=

n
⊗

i=1

Uz,kz,i (15)

and Uz ≡ {Uz,kz
}Kz

kz=1. Then, with probability no

smaller than 1 − ξ, the tuple (U1, · · · ,UZ) is a

(n, 2nC1 , · · · , 2nCZ ) distributed encoding for ρ with er-

ror ǫ.
The achievable rate region for ρ is the closure of the

set of all achievable rate tuples in R
Z .

A single-letter characterization of the achievable rate

region is provided by the following proposition:

Proposition 5 The achievable rate region for dis-

tributed encoding on ρ is equal to the set of all tuples

(C1, · · · , CZ) ∈ R
Z that satisfy
∑

z∈Γ

Cz ≤ Ĉ(Γ)ρ (16)

for any Γ ∈ [Z], where

Ĉ(Γ)ρ :=
∑

z∈Γ

log dAz
− S(AΓ|AΓc

V )ρ. (17)

A proof of Proposition 5 will be presented in Section

V. Although the converse part of Proposition 5 is not

necessary to prove the main theorem, we provide its

proof for the completeness. A few properties of Ĉ(Γ)ρ
are described in Section III-D and will be used in the

following sections to prove the main results. We remark

that the validity of the time sharing scheme used in the

proof of the direct part of Proposition 5 (see Section V)

follows from the fact that the encoding unitaries are in

the form of the tensor product as (15).

B. Distributed Randomization

Consider quantum systems A1, · · · , AZ and W that

are represented by finite-dimensional Hilbert spaces

HA1 , · · · ,HAZ and HW , respectively. Suppose that n ∈
N copies of a state ρ ∈ S(HA1···AZW ) are distributed to

Z + 1 distant parties. The task of distributed random-

ization is to transform the state by applying a random

unitary operation individually and independently on each

An
z , so that the state will become the product of the

maximally mixed state on An
1 · · ·An

Z and a state on W n.

For z ∈ [Z], let Lz ≡ 2nDz be the number of unitaries

that are randomly applied on An
z . A rigorous definition

is as follows:
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Definition 6 For each z ∈ [Z], let Uz ≡ {Uz,lz}Lz

lz=1
be a set of unitaries on An

z . Consider random unitary

operations Rz (z ∈ [Z]) defined by

Rz(·) :=
1

Lz

Lz
∑

lz=1

Uz,lz(·)U †
z,lz

(18)

and let

ρ̄ :=

(

Z
⊗

z=1

Rz

)

(ρ⊗n). (19)

A tuple (U1, · · · ,UZ) is a (n,L1, · · · , LZ) distributed

randomization of ρ with error ϑ if it holds that
∥

∥

∥
ρ̄A

n
[Z]W

n − πAn
[Z] ⊗ (ρ⊗n)W

n
∥

∥

∥

1
≤ ϑ, (20)

where π is the maximally mixed state on An
[Z].

Our interest is on how much randomness is required to

accomplish this task in an asymptotic limit of infinitely

many copies and vanishingly small error. We consider a

scenario where each element of the set of the unitaries

is chosen randomly and independently according to the

Haar measure. A rigorous definition is as follows:

Definition 7 A rate tuple (D1, · · · ,DZ) is achiev-

able in distributed randomization of a state ρ ∈
S(HA1···AZW ) if, for any ϑ, ξ > 0 and any sufficiently

large n ∈ N, the following statement holds:

Let Uz,lz,i ∈ U(HAz) for i ∈ [n] and suppose that we

choose Uz,lz,i randomly and independently according to

the Haar measure for each i ∈ [n], lz ∈ [2nDz ] and

z ∈ [Z]. Let

Uz,l :=

n
⊗

i=1

Uz,lz,i (21)

and Uz ≡ {Uz,l}2
nDz

l=1 . Then, with probability no

smaller than 1 − ξ, the tuple (U1, · · · ,UZ) is a

(n, 2nD1 , · · · , 2nDZ ) distributed randomization of ρ with

error ϑ.

The achievable rate region for distributed randomiza-

tion of ρ is the closure of the set of all achievable rate

tuples in R
Z .

A single-letter characterization of the achievable rate

region is provided by the following proposition:

Proposition 8 The achievable rate region for dis-

tributed randomization of ρ is equal to the set of all

tuples (D1, · · · ,DZ) ∈ R
Z that satisfy

∑

z∈Γ

Dz ≥ D̂(Γ)ρ (22)

for any Γ ∈ [Z], where

D̂(Γ)ρ :=
∑

z∈Γ

log dAz
− S(AΓ|W )ρ. (23)

A proof of Proposition 8 will be given in Section VI.

Although the converse part of Proposition 8 is not

necessary to prove the main theorem, we provide its

proof for the completeness. A few properties of D̂(Γ)ρ
are described in Section III-D and will be used in the

following sections to prove the main results. We remark

that the validity of the time sharing scheme used in the

proof of the direct part of Proposition 8 (see Section VI)

follows from the fact that the encoding unitaries are in

the form of the tensor product as (21).

C. Comparison with Previous Results

Distributed encoding can be viewed as a Shannon

theoretical generalization of local encoding [12], which

is a task of encoding classical information to a multi-

partite pure quantum state by local unitary operations.

Ref. [12] considered a one-shot and deterministic set-

ting, and raised a question of whether it is possible to

encode the maximum amount of information, i.e., the one

determined by the dimension of the entire system, only

by local unitary operations. Ref. [12] proved that this is

possible for several classes of pure states, while it has

been left open whether this is possible for all multipartite

pure states. Proposition 5 above answers this question

in the affirmative in the setting of asymptotic limit of

infinitely many copies and vanishingly small error. Note

that when B and E are trivial (one-dimensional) systems

and ρ is a pure state, then Ĉ([Z])ρ =
∑

z∈[Z] log dAz
.

Refs. [13], [14] introduced a task called distributed

quantum dense coding, which is a generalization of

quantum superdense coding to a multi-sender scenario.

They considered both of the case with one receiver

and the case with multiple receivers. In the former,

distributed quantum dense coding is similar to distributed

encoding, i.e., the senders encode classical information

to a multipartite quantum state only by local unitary

operations. They proved that the maximum value of

the Holevo information between the quantum system

and the classical information to be encoded is equal

to C∗
[Z] defined by (17). Proposition 5 above and its

proof in Section V improves upon this result in that

(i) Proposition 5 not only deals with the total amount

of information but also clarifies the trade-off relation

between the maximum amounts of information that can

be encoded by each of the senders, and (ii) in the proof in

Section V, we explicitly show the existence of encoding

operations and a decoding measurement that achieve the
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optimal encoding rate. In the case of only one sender,

Proposition 5 reduces to the result of [15].

Distributed randomization is similar to but is different

from multi-sender decoupling [16] (see also Section 10

in [17]). In multi-sender decoupling, the goal is simply

to destroy the correlation between A1 · · ·A[Z] and W . In

distributed randomization, we need not only to destroy

the correlation between A1 · · ·A[Z] and W but also to

destroy the correlation among A1, · · · , A[Z] and com-

pletely randomize these subsystems. Thus, distributed

randomization costs more randomness than multi-sender

decoupling in general. We remark that Ref. [18] consid-

ered distributed randomization that uses random projec-

tive measurements instead of random unitary operations

(see Section 3.2.3 therein).

D. Properties of The Set Functions Ĉ and D̂

We describe properties of the set functions Ĉ and D̂,

defined by (17) and (23), respectively. The properties

will be used to prove the main results in Section IV, V

and VI. We define

Ď(Γ)ρ := 2
∑

z∈Γ

log dAz
− D̂(Γ)ρ (24)

=
∑

z∈Γ

log dAz
+ S(AΓ|W )ρ. (25)

Lemma 9 The set functions Ĉ(Γ)ρ and Ď(Γ)ρ are

zero for the empty set, nonnegative, nondecreasing and

strongly subadditive. I.e., for f = Ĉ, Ď and for any

subsets Γ,Γ′,Γ′′ ⊆ [Z] satisfying Γ ⊆ Γ′ ⊆ [Z], it holds

that

f(∅)ρ = 0, (26)

f(Γ)ρ ≥ 0, (27)

f(Γ)ρ ≤ f(Γ′)ρ, (28)

f(Γ)ρ + f(Γ′′)ρ ≥ f(Γ ∪ Γ′′)ρ + f(Γ ∩ Γ′′)ρ. (29)

Proof: Equality (26) immediately follows from the

definitions of Ĉ and Ď. Inequality (27) follows from the

fact that the conditional entropy of a state ̺ ∈ S(HAR)
is bounded by the system dimension as − log dA ≤
S(A|R)̺ ≤ log dA. To prove (28) and (29), note that

AΓ̃AΓ̃c
= A[Z] for any Γ̃ ⊆ [Z]. From the definition of

the conditional entropy, we have

S(AΓ′ |AΓ′
c
V )ρ − S(AΓ|AΓc

V )ρ

= S(AΓc
V )ρ − S(AΓ′

c
V )ρ (30)

= S(AΓc\Γ′
c
|AΓ′

c
V )ρ (31)

= S(AΓ′\Γ|AΓ′
c
V )ρ (32)

≤
∑

z∈Γ′\Γ

log dAz
(33)

=
∑

z∈Γ′

log dAz
−
∑

z∈Γ

log dAz
, (34)

which implies (28) for Ĉ . In the same way, we have

S(AΓ′ |W )ρ − S(AΓ|W )ρ

= S(AΓ′W )ρ − S(AΓW )ρ (35)

= S(AΓ′\Γ|AΓW )ρ (36)

≥ −
∑

z∈Γ′\Γ

log dAz
(37)

=
∑

z∈Γ

log dAz
−
∑

z∈Γ′

log dAz
, (38)

which implies (28) for Ď. We also have
(

Ĉ(Γ)ρ + Ĉ(Γ′′)ρ

)

−
(

Ĉ(Γ ∪ Γ′′)ρ + Ĉ(Γ ∩ Γ′′)ρ

)

= S(AΓ∪Γ′′ |A(Γ∪Γ′′)cV )ρ + S(AΓ∩Γ′′ |A(Γ∩Γ′′)cV )ρ

− S(AΓ|AΓc
V )ρ − S(AΓ′′ |AΓ′′

c
V )ρ (39)

= S(AΓc
V )ρ + S(AΓ′′

c
V )ρ

− S(AΓc∩Γ′′
c
V )ρ − S(AΓc∪Γ′′

c
V )ρ. (40)

The last line is nonnegative due to the strong subaddi-

tivity of the von Neumann entropy, which implies (29)

for Ĉ . Similarly, we have

S(AΓ|W )ρ + S(AΓ′′ |W )ρ

= S(AΓW )ρ + S(AΓ′′W )ρ − 2S(W )ρ (41)

≥ S(AΓ∪Γ′′W )ρ + S(AΓ∩Γ′′W )ρ − 2S(W )ρ (42)

= S(AΓ∪Γ′′ |W )ρ + S(AΓ∩Γ′′ |W )ρ, (43)

which implies (29) for Ď. �

The following corollary immediately follows from

Lemma 9 and (24):

Corollary 10 The set function D̂(Γ)ρ is zero for the

empty set and strongly superadditive, i.e., D̂(∅) = 0 and

for any subsets Γ,Γ′ ⊆ [Z], it holds that

D̂(Γ)ρ + D̂(Γ′)ρ ≤ D̂(Γ ∪ Γ′)ρ + D̂(Γ ∩ Γ′)ρ. (44)

Due to Lemma 9, the extremal points of the regions

defined by (16) and (22) are identified as follows:

Lemma 11 The region defined by (16) is a polyma-

troid in R
Z and every extremal point (C∗

1 , · · · , C∗
[Z]) is

represented as

C∗
σ(z)=log dAσ(z)

−S(Aσ(z)|Aσ(1)· · ·Aσ(z−1)V )ρ, (45)

where σ is a permutation on [Z]. Similarly, the region

defined by (22) is a contrapolymatroid in R
Z and every

extremal point (D∗
1, · · · ,D∗

[Z]) is represented as

D∗
σ(z)=log dAσ(z)

−S(Aσ(z)|Aσ(1)· · ·Aσ(z−1)W )ρ. (46)
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Proof: Due to Lemma 9 and the property of polyma-

troids (see Section 18.4 in [19]), the extremal points of

the region defined by (16) are all points (C∗
1 , · · · , C∗

[Z])
that can be represented as

C∗
σ(z) = Ĉ({σ(z′)}z′∈[z])− Ĉ({σ(z′)}z′∈[z−1])

= log dAσ(z)
−S(Aσ(z)|Aσ(z+1)· · ·Aσ(Z)W )ρ, (47)

where σ is a permutation on [Z]. Combining this with

permutation of [Z] in the inverse order, we obtain (45).

In the same way, the set of all tuples (D̃1, · · · , D̃Z) ∈
R
Z that satisfy the condition

∑

z∈Γ D̃z ≤ Ď(Γ)ρ for

any Γ ∈ [Z] is a polymatroid, and all of its vertices

(D̃∗
1 , · · · , D̃∗

[Z]) are given by

D̃∗
σ(z) = Ď({σ(z′)}z′∈[z])− Ď({σ(z′)}z′∈[z−1]) (48)

= log dAσ(z)
+S(Aσ(z)|Aσ(1)· · ·Aσ(z−1)W )ρ (49)

for some permutation σ. Noting that Ď is defined by

(24), the vertices of the region defined by (22) is repre-

sented as D∗
σ(z) = 2 log dAσ(z)

− D̃∗
σ(z) and are equal to

(46). �

We remark that it is not possible to identify the extremal

points of the region defined by (11) along the same

argument as in Lemma 11. This is because the function

I(AΓ : AΓc
B|E)ρ is not a nondecreasing function of Γ,

i.e., it does not satisfy the condition (28) in Lemma 9.

IV. PROOF OF THE MAIN THEOREM

In this section, we provide a proof of the main theorem

(Theorem 2 in Section II). The proof of the converse part

is based on a standard calculation of the entropies and

the mutual informations. For the direct part, we invoke

the direct part of the distributed encoding theorem and

the distributed randomization theorem (Proposition 5 and

Proposition 8).

A. Proof of The Converse Part

Suppose that a rate triplet (R1, · · · , RZ) is achievable

for the state ρ ∈ S(HA1···AZBE). Fix arbitrary ǫ, ϑ > 0,

choose sufficiently large n and let Mz = 2nRz for each

z ∈ [Z]. By definition, there exist a quantum system A′
z ,

a set of encoding CPTP maps Ez ≡ {Ez,mz
}Mz

mz=1 from

An
z to A′

z for each z and a measurement {Λm}m∈M on

A′
1 · · ·A′

ZB
nEn such that

1− 1

|M|
∑

m∈M

Tr[ρmΛm] ≤ ǫ (50)

and

1

|M|
∑

m∈M

∥

∥

∥ρ
A′

1···A
′
ZE

n

m − ρ̄A
′
1···A

′
ZE

n
∥

∥

∥

1
≤ ϑ, (51)

where

ρm :=

(

Z
⊗

z=1

EAn
z→A′

z
z,mz

)

(ρ⊗n) (52)

and

ρ̄ :=
1

|M|
∑

m∈M

ρm. (53)

Fix an arbitrary subset Γ ⊆ [Z]. Let A′
Γ and A′

Γc

denote the systems composed of {A′
z}z∈Γ and {A′

z}z∈Γc
,

respectively. The set M is divided into MΓ×MΓc
, where

MΓ :=×
z∈Γ

[Mz], MΓc
:= ×

z∈Γc

[Mz]. (54)

Correspondingly, each element m ∈ M is represented

as m = (mΓ,mΓc
) by mΓ ∈ MΓ and mΓc

∈ MΓc
.

Let MΓ and MΓc
be quantum systems with fixed or-

thonormal bases {|mΓ〉}mΓ∈MΓ
and {|mΓc

〉}Γc∈MΓc
,

respectively. We define CPTP maps EΓ,mΓ
: An

Γ → A′
Γ

and EΓc,mΓc
: An

Γc
→ A′

Γc
by

EΓ,mΓ
:=
⊗

z∈Γ

Ez,mz
, EΓc,mΓc

:=
⊗

z∈Γc

Ez,mz
. (55)

We also define ẼΓ : An
Γ → A′

ΓMΓ and ẼΓc
: An

Γc
→

A′
Γc
MΓc

by

ẼΓ(·) :=
1

|MΓ|
∑

mΓ∈MΓ

|mΓ〉〈mΓ|MΓ ⊗ EΓ,mΓ
(·),

ẼΓc
(·) := 1

|MΓc
|

∑

mΓc∈MΓc

|mΓc
〉〈mΓc

|MΓc ⊗ EΓc,mΓc
(·).

The state after the encoding operation is represented by

ρ̃ = ẼΓ ⊗ ẼΓc
(ρ⊗n). (56)

It is straightforward to verify that

ρ̄ = TrMΓMΓc
[ρ̃], πMΓMΓc = TrA′

[Z]B
nEn[ρ̃]. (57)

Noting that both ρ̃ and πMΓMΓc are diagonal in {|mΓ〉}
and {|mΓc

〉}, the secrecy condition (51) is equivalent to
∥

∥

∥
ρ̃MΓMΓcA

′
ΓA

′
Γc

En−πMΓMΓc ⊗ρ̄A
′
ΓA

′
Γc

En
∥

∥

∥

1
≤ ϑ. (58)

Tracing out MΓc
A′

Γc
, we obtain

∥

∥

∥ρ̃MΓA
′
ΓE

n−πMΓ⊗ρ̄A
′
ΓE

n
∥

∥

∥

1
≤ ϑ. (59)

We calculate the entropies and the mutual informa-

tions of ρ̃ along the same line of Appendix C in [10].

First, let M ′
Γ be the system to which the Γ part of

the decoding result is registered. Due to the reliability
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condition (50) and Fano’s inequality (see e.g. Theorem

2.10.1 in [20]), we have

I(MΓ : M ′
Γ) = S(MΓ)− S(MΓ|M ′

Γ)

≥ (1− ǫ) log |MΓ| − h(ǫ) (60)

= n(1− ǫ)
∑

z∈Γ

Rz − h(ǫ). (61)

Second, from (57), (59) and the Alicki-Fannes inequality

([21]: see [22] for an improved version), we obtain

I(MΓ : A′
ΓE

n)ρ̃

= S(MΓ)π − S(MΓ|A′
ΓE

n)ρ̃ (62)

= S(MΓ|A′
ΓE

n)π⊗ρ̄ − S(MΓ|A′
ΓE

n)ρ̃ (63)

≤ 2ϑ log dMΓ
+ (1 + ϑ)h

(

ϑ

1 + ϑ

)

(64)

= 2nϑ
∑

z∈Γ

Rz + (1 + ϑ)h

(

ϑ

1 + ϑ

)

. (65)

Third, we have

I(MΓ : M ′
Γ)− I(MΓ : A′

ΓE
n)ρ̃ (66)

≤ I(MΓ : A′
ΓA

′
Γc
BnEn)ρ̃ − I(MΓ : A′

ΓE
n)ρ̃ (67)

= I(MΓ : A′
Γc
Bn|A′

ΓE
n)ρ̃ (68)

≤ I(MΓ : An
Γc
Bn|A′

ΓE
n)ẼΓ(ρ⊗n) (69)

=

n
∑

i=1

I(MΓ : AΓc,iBi|A′
ΓA

i−1
Γc

Bi−1En)ẼΓ(ρ⊗n) (70)

=

n
∑

i=1

[

I(MΓA
′
ΓA

i−1
Γc

Bi−1En
\i :AΓc,iBi|Ei)ẼΓ(ρ⊗n)

−I(A′
ΓA

i−1
Γc

Bi−1En
\i :AΓc,iBi|Ei)ẼΓ(ρ⊗n)

]

(71)

≤
n
∑

i=1

I(MΓA
′
ΓA

i−1
Γc

Bi−1En
\i :AΓc,iBi|Ei)ẼΓ(ρ⊗n) (72)

≤
n
∑

i=1

I(An
ΓA

i−1
Γc

Bi−1En
\i : AΓc,iBi|Ei)ρ⊗n (73)

=

n
∑

i=1

I(AΓ,i : AΓc,iBi|Ei)ρ⊗n (74)

= nI(AΓ : AΓc
B|E)ρ. (75)

Here, (67) follows from the data processing inequality

of the mutual information and the fact that M ′
Γ is

obtained by performing a measurement on A′
ΓA

′
Γc
BnEn;

(68) due to the chain rule of the mutual information;

(69) from (56) and the data processing inequality; (70)

from the chain rule of the mutual information, where

Ai−1
Γc

and Bi−1 denotes the systems AΓc,1 · · ·AΓc,i−1

and B1 · · ·Bi−1, respectively; (71) due to the chain

rule of the mutual information, where En
\i denotes

E1 · · ·Ei−1Ei+1 · · ·En; (72) from the non-negativity of

the conditional mutual information; (73) from the data

processing inequality; (74) because ρ⊗n is a product

state between AΓ,iAΓc,iBiEi and the other systems; and

(75) because the state on AΓ,iAΓc,iBiEi is ρ for each i.
Substituting (61) and (65) into (66), we obtain

n(1− ǫ− 2ϑ)
∑

z∈Γ

Rz

≤ nI(AΓ :AΓc
B|E)ρ+h(ǫ)+(1+ϑ)h

(

ϑ

1+ϑ

)

. (76)

Since this relation holds for any ǫ, ϑ > 0 and sufficiently

large n, we arrive at
∑

z∈Γ

Rz ≤ I(AΓ : AΓc
B|E)ρ. (77)

Noting that the above inequality holds for any Γ ⊆ [Z],
we complete the proof of the converse part. �

B. Proof of The Direct Part

We apply the distributed encoding theorem (Propo-

sition 5) and the distributed randomization theorem

(Proposition 8) under the correspondence V → BE and

W → E. Recall that Ĉ(Γ)ρ and D̂(Γ)ρ are defined by

(17) and (23), respectively, which yields

Ĉ(Γ)ρ =
∑

z∈Γ

log dAz
− S(AΓ|AΓc

BE)ρ, (78)

D̂(Γ)ρ =
∑

z∈Γ

log dAz
− S(AΓ|E)ρ. (79)

It is straightforward to verify that

Ĉ(Γ)ρ − D̂(Γ)ρ = I(AΓ : AΓc
B|E)ρ. (80)

Thus, the condition (11) is equivalent to
∑

z∈Γ

Rz ≤ Ĉ(Γ)ρ − D̂(Γ)ρ. (81)

We prove the direct part of Theorem 2 based on the

following lemma:

Lemma 12 For any rate tuple (R1, · · · , RZ) that sat-

isfies the condition
∑

z∈Γ

Rz < Ĉ(Γ)ρ − D̂(Γ)ρ, (82)

there exists a pair of rate tuples (C1, · · · , CZ) and

(D1, · · · ,DZ) that satisfy
∑

z∈Γ

Cz < Ĉ(Γ)ρ,
∑

z∈Γ

Dz > D̂(Γ)ρ, (83)

respectively, for any Γ ∈ [Z], and it holds that

Rz = Cz −Dz (84)
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for all z ∈ [Z].

A proof of Lemma 12 will be provided at the end of this

subsection.

To prove the direct part of Theorem 2, let

(R1, · · · , RZ) be an arbitrary rate tuple that satisfies the

condition (82). Fix a pair of rate tuples (C1, · · · , CZ)
and (D1, · · · ,DZ) that satisfy (83) and (84). Fix arbi-

trary ǫ, ϑ, ξ > 0 and choose sufficiently large n. Let

Kz ≡ 2nCz , Lz ≡ 2nDz and Mz ≡ 2nRz for each z. Note

that Kz = LzMz . Let Uz,kz,i ∈ U(HAz) for i ∈ [n] and

Uz,kz
:=
⊗n

i=1 Uz,kz,i. We let A′
z = An

z and construct

the encoding operation {Ez,mz
}Mz

mz=1 by

Ez,mz
(·) = 1

Lz

mzLz
∑

kz=(mz−1)Lz+1

Uz,kz
(·)U †

z,kz
. (85)

In the following, we prove that if we choose Uz,kz,i

randomly and independently according to the Haar mea-

sure for each i ∈ [n], kz ∈ [Kz ] and z ∈ [Z], the

set of encoding operations constructed as (85) satisfies

both the reliability condition and the secrecy condition

with a probability greater than 1 − 2ξ. Recall that the

state after the encoding operation corresponding to the

message value m is given by

ρm :=

(

Z
⊗

z=1

EAn
z

z,mz

)

(ρ⊗n). (86)

To prove the reliability condition, define Uk =
⊗Z

z=1 Uz,kz
and ρk := (Uk⊗ IB

nEn

)ρ⊗n(Uk⊗ IB
nEn

)†

for k ≡ (k1, · · · , kZ). Due to the distributed encoding

theorem (Proposition 5), with probability no smaller

than 1 − ξ, there exists a measurement {Λk}k∈K on

An
1 · · ·An

ZB
nEn and it holds that

1− 1

|K|
∑

k∈K

Tr[ρkΛk] ≤ ǫ. (87)

We construct the decoding measurement by

Λm :=

m1L1
∑

k1=(m1−1)L1+1

· · ·
mZLZ
∑

kZ=(mZ−1)LZ+1

Λk. (88)

It is straightforward to verify that

1

|M|
∑

m∈M

Λm =
1

|K|
∑

k∈K

Λk = I, (89)

thus {Λm}m∈M is indeed a POVM. Noting that ρm in

(86) is calculated to be

ρm =
1

L1 · · ·LZ

m1L1
∑

k1=(m1−1)L1+1

· · ·
mZLZ
∑

kZ=(mZ−1)LZ+1

ρk,

(90)

we have

Tr[ρmΛm]

≥ 1

L1 · · ·LZ

m1L1
∑

k1=(m1−1)L1+1

· · ·
mZLZ
∑

kZ=(mZ−1)LZ+1

Tr[ρkΛk].

(91)

Thus

1

|M|
∑

m∈M

Tr[ρmΛm] ≥ 1

|K|
∑

k∈K

Tr[ρkΛk] ≥ 1−ǫ, (92)

which implies the reliability condition.

To prove the secrecy condition, we evaluate the infor-

mation leakage as

1

|M|
∑

m∈M

∥

∥

∥
ρ
An

[Z]E
n

m − ρ̄A
n
[Z]E

n
∥

∥

∥

1

≤ 1

|M|
∑

m∈M

∥

∥

∥ρ
An

[Z]E
n

m − πAn
[Z] ⊗ ρ̄E

n
∥

∥

∥

1

+
∥

∥

∥ρ̄A
n
[Z]E

n − πAn
[Z] ⊗ ρ̄E

n
∥

∥

∥

1
(93)

≤ 2

|M|
∑

m∈M

∥

∥

∥
ρ
An

[Z]E
n

m − πAn
[Z] ⊗ ρ̄E

n
∥

∥

∥

1
, (94)

where (93) follows from the triangle inequality and (94)

from the convexity of the trace distance. Hence, by the

distributed randomization theorem (Proposition 8), we

have

1

|M|
∑

m∈M

∥

∥

∥
ρ
An

[Z]E
n

m − ρ̄A
n
[Z]E

n
∥

∥

∥

1
≤ 2ϑ (95)

with a probability no smaller than 1− ξ.

In total, with a probability no smaller than (1− ξ)2 >
1−2ξ, the reliability condition and the secrecy condition

are both satisfied. Since this relation holds for any

ǫ, ϑ, ξ > 0 and sufficiently large n, we conclude that

any rate tuple satisfying the condition (82) is achievable.

Taking the closure of the region defined by (82), we

obtain (81) and complete the proof of the direct part. �

It remains to prove Lemma 12. Let S be a finite set. A

function f : 2S → R is said to be a submodular function

if it holds that

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (96)

for any A,B ⊆ S. A function g : 2S → R is said to be

a supermodular function if −g is submodular. We prove

Lemma 12 based on the following lemma:

Lemma 13 Let f : 2S → R a submodular function and

g : 2S → R be a supermodular function such that

f(∅) = g(∅) = 0, (97)

g(A) ≤ f(A) (∀A ⊆ S,A 6= ∅). (98)
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There exists {Rs}s∈S such that

g(A) ≤
∑

s∈A

Rs ≤ f(A) (99)

for any A ⊆ S satisfying A 6= ∅. If the condition (98) is

strict inequalities, both inequalities in (99) can be strict

inequalities.

Proof: The former statement was proved in Section

4 of [23]. To prove the latter statement, suppose that

g(A) < f(A) for any A ⊆ S such that A 6= ∅. Let

∆ := min
A⊆S,A 6=∅

1

2|A| (f(A)− g(A)) (100)

and define f ′, g′ : 2S → R by

f ′(A) = f(A)− |A|∆, g′(A) = g(A) + |A|∆.
(101)

Applying the former statement to f ′ and g′, we complete

the proof. �

Proof of Lemma 12: Due to Lemma 9 and Corollary

10, the set functions Ĉ(Γ)ρ − ∑

z∈ΓRz and D̂(Γ)ρ
are submudular and supermodular, respectively, and are

equal to zero for Γ = ∅. From (82), we have D̂(Γ)ρ <
Ĉ(Γ)ρ−

∑

z∈ΓRz . Hence, due to Lemma 13, there exists

{Dz}z∈[Z] such that D̂(Γ)ρ <
∑

z∈ΓDz < Ĉ(Γ)ρ −
∑

z∈ΓRz for any nonempty Γ ⊆ [Z]. Letting Cz =
Dz +Rz completes the proof. We remark that the same

argument was used in [24] to prove the achievability

of the private classical capacity of a classical-quantum

multiple-access channel (see Inequality (19) therein). �

V. PROOF OF PROPOSITION 5

In this section, we prove the distributed encoding

theorem (Proposition 5). We will use the same notations

as in Section III-A.

A. Proof of The Converse Part

Suppose that a triplet (C1, · · · , CZ) is achievable for

distributed encoding on the state ρ ∈ S(HA1···AZV ).
Fix arbitrary ǫ > 0, choose sufficiently large n and let

Kz = 2nCz . By definition, there exist a set of unitaries

Uz ≡ {Uz,kz
}Kz

kz=1 on An
z for each z and a measurement

{Λk}k∈K on An
[Z]V

n such that

1− 1

|K|
∑

k∈K

Tr[ρkΛk] ≤ ǫ, (102)

where ρk := (Uk ⊗ IV
n

)ρ⊗n(Uk ⊗ IV
n

)† and Uk :=
⊗Z

z=1 Uz,kz
.

Let Γ ∈ [Z] be any subset. The set K is represented as

KΓ×KΓc
, where KΓ :=×z∈Γ[Kz ], KΓc

:=×z∈Γc
[Kz].

Each element k ∈ K is written as k = (kΓ,kΓc
) by

kΓ ∈ KΓ and kΓc
∈ KΓc

. We define UkΓ
:=
⊗

z∈Γ Uz,kz

and UkΓc
:=
⊗

z∈Γc
Uz,kz

, by which Uk is represented

as UAΓ

kΓ
⊗ U

AΓc

kΓc
and ρk as ρkΓ,kΓc

. It is straightforward

to verify that

TrAn
Γ
[ρkΓ,kΓc

] = ρ
An

Γc
V n

kΓc

:= (U
AΓc

kΓc
⊗IV

n

)(ρAΓcV )⊗n(U
AΓc

kΓc
⊗IV

n

)†. (103)

Let KΓ and KΓc
be the systems with fixed orthonormal

bases {|kΓ〉}kΓ
and {|kΓ〉}kΓ

, respectively. The state

after the encoding operation is represented by

ρ̃=
1

|K|
∑

kΓ,kΓc

|kΓ〉〈kΓ|KΓ⊗|kΓc
〉〈kΓc

|KΓc ⊗ρkΓ,kΓc
. (104)

Using (103), it is straightforward to verify that

TrKΓA
n
Γ
[ρ̃]=

1

|KΓc
|
∑

kΓc

|kΓc
〉〈kΓc

|KΓc ⊗ρ
An

Γc
V n

kΓc
. (105)

To prove the converse part, we calculate the condi-

tional entropies of ρ̃. We have

S(KΓ|An
[Z]V

n)ρ̃ (106)

≥ S(KΓ|An
[Z]V

nKΓc
)ρ̃ (107)

= S(KΓKΓc
)ρ̃ + S(An

[Z]V
n|KΓKΓc

)ρ̃

− S(An
[Z]V

nKΓc
)ρ̃ (108)

≥ S(KΓKΓc
)ρ̃ + S(An

[Z]V
n|KΓKΓc

)ρ̃ + S(KΓc
)ρ̃

− S(An
Γc
V nKΓc

)ρ̃ − S(An
ΓKΓc

)ρ̃ (109)

= S(KΓ|KΓc
)ρ̃ + S(An

[Z]V
n|K[Z])ρ̃

− S(An
Γc
V n|KΓc

)ρ̃ − S(An
Γ|KΓc

)ρ̃, (110)

where (107) follows from the data processing inequality;

(108) from the chain rule; (109) from the strong subaddi-

tivity and AΓAΓc
= A[Z]; and (110) from the definition

of the conditional entropy and KΓKΓc
= K[Z]. Noting

that KΓc
is uncorrelated with KΓ, the first term in (110)

is evaluated as

S(KΓ|KΓc
)ρ̃ = S(KΓ)ρ̃ =

∑

z∈Γ

logKz = n
∑

z∈Γ

Cz. (111)

The forth term is bounded by the system dimension as

S(An
Γ|KΓc

)ρ̃ ≤ log dAn
Γ
= n

∑

z∈Γ

log dAz
. (112)

Due to (104) and the unitary invariance of the von

Neumann entropy, the second term in (110) is evaluated

to be

S(An
[Z]V

n|K[Z])ρ̃ =
1

|K|
∑

k∈K

S
(

ρ
An

[Z]V
n

k

)

(113)

= S
(

(ρA[Z]V )⊗n
)

= nS(A[Z]V )ρ. (114)
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Similarly, due to (105) we have

S(An
Γc
V n|KΓc

)ρ̃ =
1

|KΓc
|
∑

kΓc∈KΓc

S
(

ρ
An

Γc
V n

kΓc

)

(115)

= S
(

(ρAΓcV )⊗n
)

= nS(AΓc
V )ρ. (116)

Let K ′
Γ be the system to which the Γ part of the decoding

result is recorded. Since K ′
Γ is obtained as a result of a

measurement on An
[Z]V

n, the data processing inequality

yields

S(KΓ|K ′
Γ) ≥ S(KΓ|An

[Z]V
n)ρ̃. (117)

Furthermore, due to the condition (102) and Fano’s

inequality (see e.g. Theorem 2.10.1 in [20]), we have

S(KΓ|K ′
Γ) ≤ ǫ log |KΓ|+ h(ǫ)

= nǫ
∑

z∈Γ

Cz + h(ǫ). (118)

We substitute (111), (112), (114) and (116) all into (109),

and (117) and (118) into (106). Noting that S(A[Z]V )ρ−
S(AΓc

V )ρ = S(AΓ|AΓc
V )ρ, we obtain

n(1− ǫ)
∑

z∈Γ

Cz

≤ n

(

∑

z∈Γ

log dAz
− S(AΓ|AΓc

V )ρ

)

+ h(ǫ). (119)

Since this relation holds for any ǫ > 0 and any suffi-

ciently large n, we arrive at
∑

z∈Γ

Cz ≤
∑

z∈Γ

log dAz
− S(AΓ|AΓc

V )ρ. (120)

Noting that the above inequality holds for any Γ ⊆ [Z],
we complete the proof of the converse part. �

B. Proof of The Direct Part

Recall that the region defined by (16) is a polyma-

troid in R
Z and every extremal point (C∗

1 , · · · , C∗
[Z]) is

represented as

C∗
σ(z)=log dAσ(z)

−S(Aσ(z)|Aσ(1)· · ·Aσ(z−1)V )ρ, (121)

where σ is a permutation on [Z] (see Lemma 11). Due

to the time-sharing scheme, it suffices to prove that all

these extremal points are in the achievable rate region.

Without loss of generality, it suffices to prove that a rate

tuple (C1, · · · , C[Z]) is achievable if

Cz < log dAz
− S(Az|A1 · · ·Az−1V )ρ (122)

for all z ∈ [Z]. The proof is based on the following two

lemmas:

Lemma 14 Let A and Q be finite-dimensional quantum

systems represented by Hilbert spaces HA and HQ,

respectively, and let ρ ∈ S(HA⊗HQ) be a quantum state

thereon. Fix arbitrary C < log dA − S(A|Q)ρ, ǫ, ξ > 0
and choose sufficiently large n ∈ N. Let Uk,i be unitaries

on HA that are chosen independently and randomly

according to the Haar measure for each i ∈ [n] and

k ∈ [2nC ], and Uk :=
⊗n

i=1 Uk,i. Then, with probability

no smaller than 1− ξ, there exists a POVM {Λk}2
nC

k=1 on

AnQn and it holds that

1− 1

2nC

2nC

∑

k=1

Tr[Λk(U
An

k ⊗ IQ
n

)ρ⊗n(UAn

k ⊗ IQ
n

)†] ≤ ǫ.

(123)

Lemma 15 Let S be a finite-dimensional quantum sys-

tem and let Λ1, · · · ,ΛJ be any sequence of positive

semidefinite operators on HS such that 0 ≤ Λj ≤ I .

Let Mj be a qubit system for each 1 ≤ j ≤ J and

define a linear operator ΠΛj
: HS → HS ⊗ HMj

by ΠΛj
:= Λj ⊗ |0〉 +

√

Λj

√

I − Λj ⊗ |1〉. For any

subnormalized state ̺ ∈ S(HS), it holds that

Tr[̺]− Tr[Π̺̂Π̂†] ≤ 2

√

√

√

√

J
∑

i=1

Tr[(I − Λj)̺], (124)

where Π̂ := ΠΛJ
· · ·ΠΛ1

. In addition, we have

Tr[Π̺̂Π̂†] = Tr[Λ̺̂], where

Λ̂ :=
∑

x1,··· ,xJ=0,1

Λ
(x1)
1 · · ·Λ(xJ)

J · Λ(xJ)
J · · ·Λ(x1)

1 (125)

and Λ
(0)
j = Λj , Λ

(1)
j =

√

Λj

√

I − Λj .

A proof of Lemma 14 will be provided in Section VII.

The former half of Lemma 15 was proved in Section 3

of [25] based on the non-commutative union bound for

projective measurements [26]. The latter half follows by

a straightforward calculation.

To prove the achievability of the rate tuple satisfying

the condition (122), we invoke the notion of successive

decoding which has been used e.g. in the achievability

proof of the classical capacity of a classical-quantum

multiple access channel [27]: The receiver first decodes

M1 by performing a measurement on An
1V

n. The mea-

surement does not much change the state of the whole

system as long as the error probability in decoding M1 is

sufficiently small. The receiver then performs U †
1,m1

on

An
1 to reverse the encoding operation by Sender 1. In the

second step, the receiver decodes M2 by performing a

measurement on An
1A

n
2V

n. Since the encoding operation

on An
1 has already been cancelled, in this step, An

1V
n

plays the same role as that of V n in the first step.
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This time, the receiver then performs U †
2,m2

on An
2 to

reverse the encoding operation by Sender 2. Repeating

this procedure Z times, the receiver can decode all of

the messages M1, · · · ,MZ within a small error.

To be more precise, fix arbitrary ǫ > 0, arbitrary rate

tuple (C1, · · · , CZ) satisfying the condition (122) and

choose sufficiently large n. For each z ∈ [Z], we apply

Lemma 14 under the following correspondence:

A → Az, Q → A1 · · ·Az−1V. (126)

Let Uz,kz,i be unitaries on HAz that are chosen inde-

pendently and randomly according to the Haar mea-

sure for i ∈ [n], kz ∈ 2cz and z ∈ [Z], and let

Uz,kz
:=
⊗n

i=1 Uz,kz,i. Let IA
n
<z be the identity operator

on (
⊗z−1

z′=1 HAz′ )⊗n, and define

ρz,kz
:=(Uz,kz

⊗IA
n
<zV

n

)(ρA[z]V )⊗n(Uz,kz
⊗IA

n
<zV

n

)†,
(127)

It follows that, for any z and with a probability no

smaller than 1 − ξ, there exists a POVM {Λz,kz
}2nCz

kz=1
on An

[z]V
n that satisfies

1− 1

2nCz

2nCz
∑

kz=1

Tr[Λz,kz
ρz,kz

] ≤ ǫ. (128)

Thus, with a probability no smaller than (1 − ξ)Z ≥
1−Zξ, there exist POVMs {Λz,kz

}2nCz

kz=1 satisfying (128)

for every z ∈ [Z].
We construct a decoding measurement {Λk}k∈K from

{Uz,kz
}2nCz

kz=1 and {Λz,kz
}2nCz

kz=1 as follows. First, define

Υz,kz
:= (Uz,kz

⊗IA
n
<zV

n

)†
√

Λz,kz
(Uz,kz

⊗IA
n
<zV

n

).
(129)

It follows that

(Υz,kz
)2 :=(Uz,kz

⊗IA
n
<zV

n

)†Λz,kz
(Uz,kz

⊗IA
n
<zV

n

).
(130)

Thus, we have
∑

kz∈[Kz]

(Uz,kz
⊗IA

n
<zV

n

)(Υz,kz
)2(Uz,kz

⊗IA
n
<zV

n

)†

= IA
n
[z]V

n

. (131)

Let IA
n
>z denote the identity operator on

(
⊗Z

z′=z+1HAz′ )⊗n. From (127) and (128), we

have

1− 1

2nCz

2nCz
∑

kz=1

Tr[((Υz,kz
)2 ⊗ IA>z)ρ⊗n] ≤ ǫ. (132)

Second, define

Υ
(0)
z,kz

:= Υ2
z,kz

, Υ
(1)
z,kz

:= Υz,kz

√

I −Υ2
z,kz

(133)

for each z and kz . It is straightforward to verify that

(Υ
(0)
z,kz

)2 + (Υ
(1)
z,kz

)2 = Υ2
z,kz

. (134)

Third, we define

Υx1···xz

k
:=Υ

(xZ)
Z,kZ

(Υ
(xZ−1)
Z−1,kZ−1

⊗IAZ )· · ·(Υ(x1)
1,k1

⊗IA>1)

(135)

for x1, · · · , xZ ∈ {0, 1}, where k = (k1, · · · , kZ).
We apply Lemma 15 under the correspondence S →
An

[Z]V
n, J → Z , j → z, Λj → Υ2

z,kz
⊗ IA

n
>z and

̺ → ρ⊗n. It follows that

1−
∑

x1,··· ,xZ=0,1

Tr[Υx1···xz

k
ρ⊗n(Υx1···xz

k
)†]

≤ 2

√

√

√

√

Z
∑

z=1

(1− Tr[((Υz,kz
)2 ⊗ IA>z)ρ⊗n]). (136)

Thus, from (132) and the concavity of the squareroot

function, we have

1− 1

2nC[Z]

∑

k∈K

∑

x1,··· ,xZ=0,1

Tr[Υx1···xz

k
ρ⊗n(Υx1···xz

k
)†]

≤ 2
√
Zǫ. (137)

Now, we construct a decoding measurement by

Λk := Ũk





∑

x1,··· ,xZ=0,1

(Υx1···xz

k
)†Υx1···xz

k



 Ũ †
k
, (138)

where Ũk := (
⊗Z

z=1 Uz,kz
) ⊗ IV

n

. From (131), (134)

and (135), it follows that
∑

k∈K

Λk = I, (139)

which implies that {Λk}k∈K is indeed a POVM. Noting

that ρk = Ũkρ
⊗nŨ †

k
, we also have

Tr[Λkρk]=
∑

x1,··· ,xZ=0,1

Tr[Υx1···xz

k
ρ⊗n(Υx1···xz

k
)†]. (140)

Substituting this to (137), we arrive at

1− 1

2nC[Z]

∑

k∈K

Tr[Λkρk] ≤ 2
√
Zǫ. (141)

Since this relation holds for any small ǫ, ξ > 0 and any

sufficiently large n, we complete the proof of the direct

part. �

VI. PROOF OF PROPOSITION 8

In this section, we prove the distributed randomization

theorem (Proposition 8). We will use the same notations

as in Section III-B.
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A. Proof of The Converse Part

Suppose that a rate tuple (D1, · · · ,DZ) is achiev-

able in distributed randomization of the state ρ ∈
S(HA1···AZW ). Fix arbitrary ϑ > 0, choose sufficiently

large n, and let Lz = 2nDz for each z. By definition,

there exists a set of unitaries Uz ≡ {Uz,lz}Lz

lz=1 on An
z

for every z such that
∥

∥

∥
ρ̄A

n
[Z]W

n − πAn
[Z] ⊗ (ρ⊗n)W

n
∥

∥

∥

1
≤ ϑ, (142)

where

ρ̄ :=

(

Z
⊗

z=1

Rz

)

(ρ⊗n) (143)

and

Rz(·) :=
1

Lz

Lz
∑

lz=1

Uz,lz(·)U †
z,lz

. (144)

Fix an arbitrary subset Γ ⊆ [Z]. By tracing out An
Γc

in

(142), we have

∥

∥ρ̄A
n
ΓW

n − πAn
Γ ⊗ (ρ⊗n)W

n∥

∥

1
≤ ϑ. (145)

Define LΓ := ×z∈Γ[Lz]. Each element of LΓ is

denoted as lΓ = (lz)z∈Γ, where lz ∈ [Lz] for each z.

Correspondingly, define UlΓ =
⊗

z∈Γ Uz,lz and

ρ
An

ΓW
n

lΓ
:= (UlΓ ⊗ IW

n

)(ρAΓW )⊗n(UlΓ ⊗ IW
n

)†. (146)

Let LΓ be a quantum system with a fixed orthonormal

basis {|lΓ〉}lΓ∈LΓ
. Consider a state

ρ̃Γ :=
1

|LΓ|
∑

lΓ∈LΓ

|lΓ〉〈lΓ|LΓ ⊗ ρ
An

ΓW
n

lΓ
. (147)

It is straightforward to verify that

(ρW )⊗n = TrLΓA
n
Γ
[ρ̃Γ], (148)

ρ̄A
n
ΓW

n

= TrLΓ
[ρ̃Γ]. (149)

The entropies of ρ̃Γ is calculated as follows. We have

log dLΓ

≥ I(LΓ : An
ΓW

n)ρ̃Γ
(150)

= S(An
ΓW

n)ρ̃Γ
− S(An

ΓW
n|LΓ)ρ̃Γ

(151)

= S(W n)ρ̃Γ
+S(An

Γ|W n)ρ̃Γ
−S(An

ΓW
n|LΓ)ρ̃Γ

(152)

= nS(W )ρ+S(An
Γ|W n)ρ̄−S(An

ΓW
n|LΓ)ρ̃Γ

, (153)

where (150) follows from the fact that ρ̃Γ is a classical-

quantum state between LΓ and An
ΓW

n; (151) from the

definition of the mutual information; (152) due to the

chain rule; and (153) from (148) and (149). Due to the

condition (145) and the Alicki-Fannes inequality [21],

[22], the second term in (153) is bounded as

S(An
Γ|W n)ρ̄ (154)

≥ S(An
Γ|W n)πAn

Γ⊗ρWn − 2ϑ log dAn
Γ

− (1 + ϑ)h

(

ϑ

1 + ϑ

)

(155)

= n(1− 2ϑ) log dAΓ
− (1 + ϑ)h

(

ϑ

1 + ϑ

)

. (156)

Due to (147), (146) and the unitary invariance of the von

Neumann entropy, the third term in (153) is evaluated as

S(An
ΓW

n|LΓ)ρ̃Γ
=

1

|LΓ|
∑

lΓ∈LΓ

S
(

ρ
An

ΓW
n

lΓ

)

(157)

=
1

|LΓ|
∑

lΓ∈LΓ

S
(

(ρAΓW )⊗n
)

= nS(AΓW )ρ. (158)

In addition, we have

log dAΓ
=
∑

z∈Γ

log dAz
(159)

and

log dLΓ
=
∑

z∈Γ

log dLz
= n

∑

z∈Γ

Dz. (160)

Combining the above relations, we obtain

n
∑

z∈Γ

Dz ≥ n

(

(1− 2ϑ)
∑

z∈Γ

log dAz
−S(AΓ|W )ρ

)

−(1 + ϑ)h

(

ϑ

1 + ϑ

)

. (161)

Since this relation holds for any ϑ > 0 and sufficiently

large n, we arrive at
∑

z∈Γ

Dz ≥
∑

z∈Γ

log dAz
− S(AΓ|W )ρ. (162)

Noting that this relation holds for any Γ ⊆ [Z], we

complete the proof of the converse part. �

B. Proof of The Direct Part

Recall that the region defined by (22) is a contrapoly-

matroid in R
Z and every extremal point (D∗

1, · · · ,D∗
[Z])

is represented as

D∗
σ(z)=log dAσ(z)

−S(Aσ(z)|Aσ(1)· · ·Aσ(z−1)W )ρ, (163)

where σ is a permutation on [Z] (see Lemma 11). Owing

to the time-sharing scheme, it suffices to prove that all

extremal points are in the achievable rate region. Without

loss of generality, it suffices to prove that a rate tuple

(D1, · · · ,D[Z]) is achievable if

Dz > log dAz
− S(Az |A1 · · ·Az−1W )ρ (164)
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for all z ∈ [Z]. The proof is based on the following

lemma:

Lemma 16 Let A and Q be finite-dimensional quantum

systems represented by Hilbert spaces HA and HQ,

respectively, and let ρ ∈ S(HA ⊗ HQ) be a quantum

state thereon. Fix arbitrary D > log dA − S(A|Q)ρ,

ϑ, ξ > 0 and choose sufficiently large n ∈ N. Let

Ul,i be unitaries on HA that are chosen independently

and randomly according to the Haar measure for each

i ∈ [n] and l ∈ [2nD]. Let Ul :=
⊗n

i=1 Ul,i and

R(·) := 1
2nD

∑2nD

l=1 Ul(·)U †
l . Then, with probability no

smaller than 1− ξ, it holds that

∥

∥R(ρ⊗n)− πAn ⊗ (ρ⊗n)Q
n∥

∥

1
≤ ϑ. (165)

A proof of Lemma 16 will be provided in Section VII.

To prove the achievability of the rate tuple satisfying

the condition (164), we consider a successive protocol

that proceeds as follows: In the first step, a random

unitary operation is applied on system An
1 so that the

state on An
1 is completely randomized and is decor-

related from the remaining system An
2 · · ·An

ZE
n. Note

that this operation does not affect the reduced state

on An
2 · · ·An

ZE
n. In the second step, a random unitary

operation is applied on An
2 to completely randomize

An
2 and decorrelate it from An

3 · · ·An
ZE

n. Repeating this

procedure Z times, all subsystems An
z are completely

randomized and decoupled from each other and W n.

To be more precise, fix arbitrary ǫ > 0, arbitrary rate

tuple (D1, · · · ,DZ) satisfying the condition (164) and

choose sufficiently large n. For each z ∈ [Z], we apply

Lemma 16 under the following correspondence:

A → Az, Q → Az+1 · · ·AZW. (166)

Let Uz,lz,i be unitaries on HAz that are chosen indepen-

dently and randomly according to the Haar measure for

each i ∈ [n], lz ∈ [2nDz ] and z ∈ [Z]. Let Uz,lz :=
⊗n

i=1 Uz,lz,i and Rz(·) := 1
2nDz

∑2nDz

l=1 Uz,lz(·)U †
z,lz

. It

follows that, for each z and with a probability no smaller

than 1− ξ, it holds that

∥

∥Rz((ρ
Az···AZW )⊗n)− πAz ⊗ (ρAz+1···AZW )⊗n

∥

∥

1
≤ ϑ.

(167)

Thus, with a probability no smaller than (1 − ξ)Z ≥
1 − Zξ, the condition (167) holds for every z ∈ [Z].
Let A>z denote the system Az+1 · · ·AZ . By the triangle

inequality and the monotonicity of the trace distance, we

have
∥

∥

∥

∥

∥

(

Z
⊗

z=1

Rz

)

((ρA[Z]W )⊗n)− πA[Z] ⊗ (ρW )⊗n

∥

∥

∥

∥

∥

1

≤
Z
∑

z=1

∥

∥

∥

∥

∥

πA[z−1] ⊗
(

Z
⊗

z′=z

Rz′

)

((ρA≥zW )⊗n)

−πA[z] ⊗
(

Z
⊗

z′=z+1

Rz′

)

((ρA≥z+1W )⊗n)

∥

∥

∥

∥

∥

1

(168)

≤
Z
∑

z=1

∥

∥Rz((ρ
A≥zW )⊗n)−πAz⊗(ρA≥z+1W )⊗n

∥

∥

1
(169)

≤ Zϑ. (170)

Since this relation holds for any small ϑ, ξ > 0 and any

sufficiently large n, we complete the proof of the direct

part. �

VII. PROOF OF LEMMA 14 AND 16

We prove Lemma 14 and 16 based on the packing

lemma and the covering lemma, respectively. For the

simplicity of presentations, we describe the two lemmas

as a single one. For the details, see Chapter 15 and 16

in [11].

Lemma 17 Consider an ensemble of states

{px, τx}x∈X on a Hilbert space H, and define

τ :=
∑

x∈X

pxτx. (171)

Suppose there exists a projector Π and a set of projectors

{Πx}x∈X that satisfy

∑

x∈X

pxTr[Πτx] ≥ 1− ε, (172)

∑

x∈X

pxTr[Πxτx] ≥ 1− ε, (173)

and there exist ω,Ω, ω′,Ω′ > 0 such that

Tr[Πx] ≤ ω, ΠτΠ ≤ 1

Ω
Π (174)

and

Tr[Π] ≤ Ω′, ΠxτxΠx ≤ 1

ω′
Πx. (175)

Let M and M′ be finite sets, and C ≡ {Cm}m∈M and

C′ ≡ {C ′
m′}m′∈M′ be sets of random variables that take

values in X independently according to a probability

distribution {px}x∈X . Then,
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1) There exists a POVM {ΛC
m}m∈M for each C and

satisfies

EC

{

1

|M|
∑

m∈M

Tr[ΛC
mτCm

]

}

≥ 1− 2(ε+ 2
√
ε)− 4ω|M|

Ω
. (176)

2) It holds that

PrC′

{

‖τ̄ − τ‖1 ≤ ε+ 4
√
ε+ 24 4

√
ε
}

≥ 1− 2Ω′ exp

(

− ε3

4 ln 2

|M′|ω′

Ω′

)

, (177)

where τ̄ := |M′|−1
∑

m′∈M′ τC′
m′

.

Proof of Lemma 14 and 16: Fix arbitrary δ, ε > 0 such

that

C + 3δ ≤ log dA − S(A|Q)ρ, (178)

D − 3δ ≥ log dA − S(A|Q)ρ (179)

and

3ε+ 4
√
ε < ǫξ, (180)

ε+ 4
√
ε+ 24 4

√
ε < ϑ, (181)

and choose sufficiently large n. Let ΠQn

n,δ and ΠAnQn

n,δ

be projectors onto the δ typical subspaces of (HQ)⊗n

and (HAQ)⊗n with respect to (ρQ)⊗n and (ρAQ)⊗n,

respectively. For each unitary U on (HA)⊗n that is

decomposed into U =
⊗n

i=1 Ui, define

ΠAnQn

n,δ,U := (U ⊗ IQ
n

)ΠAnQn

n,δ (U ⊗ IQ
n

)†, (182)

ρn,U := (U ⊗ IQ
n

)ρ⊗n(U ⊗ IQ
n

)†. (183)

It is straightforward to verify that

ρ̄n := EU [ρn,U ] = πAn ⊗ (ρQ)⊗n, (184)

where the expectation is taken with respect to the Haar

measure for each Ui. We denote IA
n ⊗ ΠQn

n,δ simply by

Π̃AnQn

n,δ . Due to the property of the typical subspace, it

holds that

EUTr[Π̃
AnQn

n,δ ρA
nQn

n,U ] = Tr[ΠQn

n,δ(ρ
Q)⊗n] ≥ 1− ε,

EUTr[Π
AnQn

n,δ,U ρA
nQn

n,U ] = Tr[ΠAnQn

n,δ (ρAQ)⊗n] ≥ 1− ε.

In addition, we have

Tr[ΠAnQn

n,δ,U ] = Tr[ΠAnQn

n,δ ] ≤ 2n(S(AQ)ρ+δ), (185)

Tr[Π̃AnQn

n,δ ] ≤ 2n(log dA+S(Q)ρ+δ) (186)

and

Π̃AnQn

n,δ ρ̄nΠ̃
AnQn

n,δ ≤ 2−n(log dA+S(Q)ρ−δ)Π̃AnQn

n,δ , (187)

ΠAnQn

n,δ,U ρA
nQn

n,U ΠAnQn

n,δ,U ≤ 2−n(S(AQ)ρ−δ)ΠAnQn

n,δ,U . (188)

We apply Lemma 17 under the following correspon-

dence:

X → U((HA)⊗n), px → p(dU) (189)

τx → ρn,U , τ → ρ̄n, (190)

Π → Π̃n,δ, Πx → Πn,δ,U . (191)

We let

ω → 2n(S(AQ)ρ+δ), Ω → 2n(log dA+S(Q)ρ−δ), (192)

M → [2nC ], C → U (193)

and

ω′ → 2n(S(AQ)ρ−δ), Ω′ → 2n(log dA+S(Q)ρ+δ), (194)

M′ → [2nD], C′ → U. (195)

It follows that there exists a POVM {ΛU

k }2
nC

k=1 on AnQn

for each U and it holds that

EU







1

2nC

2nC

∑

m=1

Tr[ΛU

kUkρ
⊗nU †

k ]







≥ 1− 2(ε+ 2
√
ε)− 4·2n(C−log dA+S(A|Q)ρ+2δ)

≥ 1− 2(ε+ 2
√
ε)− 4·2−nδ . (196)

By taking n sufficiently large, and by applying Markov’s

inequality, we complete the proof of Lemma 14. With R
define as in Lemma 16, we also have

Pr
{∥

∥R(ρ⊗n)− πAn ⊗ (ρ⊗n)Q
n∥

∥

1
≤ ϑ

}

≥ 1−2 · 2n(log dA+S(Q)ρ+δ) exp

(

− ε3

4 ln 2
·2nδ

)

. (197)

This yields Lemma 16 by taking n sufficiently large. �

VIII. CONCLUSION AND DISCUSSION

In this paper, we introduced the task of the quantum

multiple-access one-time pad. We considered an asymp-

totic limit of infinitely many copies and vanishingly

small error, and derived a single-letter characterization

of the achievable rate region. Thereby we have provided

a generalization of the quantum one-time pad [8], [9]

and the conditional quantum one-time pad [10] to a

multi-sender scenario. The proof of the converse part

is based on a standard calculation of the entropies and

the mutual informations, and that of the direct part is

obtained by combining two subprotocols, i.e., distributed

encoding and distributed randomization. It is left open to

obtain a similar characterization for the achievable rate

region when the eavesdropper’s side information is not

necessarily a subsystem of the receiver’s one.

A future direction is to extend the result to a one-shot

scenario. As in the case of the quantum multiple-access
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channels, successive decoding and time sharing may not

be sufficient to derive the optimal one-shot rate region.

It would be necessary to employ the quantum joint

typicality lemma [28] (see also the quantum multiparty

packing lemma in [29]), which has played a central role

in the proof of the one-shot capacity theorems of the

classical-quantum multiple-access channels [16], [28],

[30], [31], and to address the simultaneous smoothing

conjecture [32], which has been one of the major open

problems in quantum Shannon theory.
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