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Abstract—Gaussian processes provide a flexible, non-
parametric framework for the approximation of functions in
high-dimensional spaces. The covariance kernel is the main
engine of Gaussian processes, incorporating correlations that
underpin the predictive distribution. For applications with spa-
tiotemporal datasets, suitable kernels should model joint spa-
tial and temporal dependence. Separable space-time covariance
kernels offer simplicity and computational efficiency. However,
non-separable kernels include space-time interactions that better
capture observed correlations. Most non-separable kernels that
admit explicit expressions are based on mathematical consid-
erations (admissibility conditions) rather than first-principles
derivations. We present a hybrid spectral approach for generating
covariance kernels which is based on physical arguments. We
use this approach to derive a new class of physically motivated,
non-separable covariance kernels which have their roots in
the stochastic, linear, damped, harmonic oscillator (LDHO).
The new kernels incorporate functions with both monotonic
and oscillatory decay of space-time correlations. The LDHO
covariance kernels involve space-time interactions which are
introduced by dispersion relations that modulate the oscillator
coefficients. We derive explicit relations for the spatiotemporal
covariance kernels in the three oscillator regimes (underdamping,
critical damping, overdamping) and investigate their properties.
We further illustrate the hybrid spectral method by deriving
covariance kernels that are based on the Ornstein-Uhlenbeck
model.

Index Terms—Gaussian processes, spatiotemporal, covariance
kernel, non-separable, harmonic oscillator, Ornstein-Uhlenbeck

I. INTRODUCTION

GAUSSIAN processes are a data-driven, non-parametric
machine learning method used for nonlinear regression

and classification tasks [1] as well as adaptive control and
reinforcement learning [2]. Gaussian processes define a prior
over a class of functions or models. Hence, they provide a
powerful framework for the analysis of time series as well
spatial and spatiotemporal data [3], [4]. The core of Gaus-
sian processes is the covariance kernel, which incorporates
correlations that are learned from the data. Only non-negative
definite functions can be used as covariance kernels. Various
generic admissible models are available in the literature [1],
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[5], [6]. However, there is still great interest in deriving kernels
for spatiotemporal datasets [7]. Such functions, which are
necessary for modeling dynamic phenomena, need to include
physically meaningful space-time interactions. Applications
of Gaussian processes with spatiotemporal kernels involve
object tracking [8], control of dynamic systems [2], systems
identification [9], mobile sensor networks [10], and environ-
mental process mapping [11]. In spatial statistics, a predictive
framework similar to Gaussian processes has been developed
independently based on the theory of random fields and has
found many applications in the natural sciences [4], [12]–[14].
The covariance kernel is also instrumental in determining the
properties of random fields. The main differences between the
Gaussian process and the random field predictive frameworks
are as follows: (i) in the case of random fields the input vector
is restricted to the spatial (or space-time) coordinates; (ii)
Gaussian processes are embedded in a Bayesian framework;
(iii) the two approaches use different nomenclature [5]. The
results of this paper are applicable to both frameworks.

Covariance kernels for multidimensional input spaces of-
ten involve separable models which are formed as products
or as linear superposition of lower-dimensional kernels [6],
[15], [16]. Separability is also invoked to construct simplified
space-time covariance kernels by means of products or linear
superposition of spatial and temporal components. In separable
models, spatial and temporal correlations are decoupled; this
behavior is not physically justifiable [17] and can lead to
numerical instabilities in calculations of conditional means
and variances [18]. Non-separable, flexible and physically
motivated covariance kernels are thus in great demand [18]–
[20]. Cressie and Huang [18] constructed kernels that involve
space and time interactions by inverting admissible mathemat-
ical expressions for the spatial Fourier modes of the kernels.
Gneiting [19] introduced a method for constructing admissible
kernels directly in the space-time domain, thus avoiding the
calculation of inverse Fourier transforms. His method takes
advantage of the powerful properties of completely monotone
functions and generates a broad class of functions. Kolovos et
al. [20] review various methods for generating non-separable
space-time kernels including the use of Radon transforms and
stochastic partial differential equations.

Properties, existing models, and open research questions
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for spatiotemporal covariance kernels are discussed in two
recent reviews [7], [21]. Ideally, space-time covariance kernels
should be solutions of partial differential equations (PDEs) that
characterize the particular system under study [4]. However,
such PDEs are not amenable to explicit solutions except in
certain special cases [17], [22]–[25]. Hybrid approaches that
use Gaussian processes and differential equations to combine
data-driven modeling with a physical model have been pro-
posed to address this issue [9].

Motivated by the scarcity of solvable physics-based models
for covariance kernels, we derive a new family of non-
separable covariance kernels which are based on the stochas-
tic, linear, damped harmonic oscillator (LDHO). The LDHO
model is herein suitably generalized for spatially extended
processes by means of the Cressie-Huang approach [18]. The
spatial LDHO Fourier modes are generated by injecting in-
tuitive dispersion relations in the oscillator’s coefficients. The
dispersion relations then translate into physically meaningful
covariance kernel hyperparameters. To our knowledge, this is
the first non-separable space-time covariance kernel family in
the literature which allows for oscillatory temporal correla-
tions. Hence, the LDHO kernels are particularly interesting
for geo-referenced data that exhibit periodicity (e.g., diurnal,
weekly, monthly or yearly) in their correlation functions [26].
The LDHO covariance kernels are also applicable to temporal
Gaussian processes with different input spaces, so long as the
Euclidean distance measure is meaningful for the input space
(excluding the time dimension).

The remainder of this paper has the following structure: Sec-
tion II presents necessary notation and definitions. Section III
focuses on the linear damped harmonic oscillator driven by
white noise and the respective covariance kernels. Section IV
introduces the hybrid spectral method for the construction of
spatiotemporal covariance kernels. In Section V, the hybrid
spectral method is applied to the LDHO and spatiotemporal
covariance kernels are derived for the three different oscillator
regimes based on dispersion functions with O(f(k2)) depen-
dence. Several properties of the LDHO kernels are discussed in
Section VI. The hybrid spectral method is further illustrated in
Section VII, where LDHO kernels are obtained for dispersion
functions with O(f(k)) dependence, as well as kernels derived
from the Ornstein-Uhlenbeck equation. Finally, conclusions
and directions for future research are given in VIII. Long
proofs are relayed to the Appendices, and additional material
is presented in the online Supplement.

II. METHODS AND PROCEDURES

A. Notation and Definitions

We use lowercase boldface symbols, e.g., a,b, to denote
vector variables and uppercase boldfaced letters to represent
matrices. The transpose of a matrix A is denoted by A⊤, its
inverse by A−1, and the matrix determinant by detA. The dot
defines the inner product of two vectors, i.e., a·b =

∑n
i=1 aibi,

where n is the dimension of vectors a,b. The Euclidean norm
of the vector a will be denoted by ∥a∥.

N is the set of natural numbers, R denotes the set of real
numbers, R+ denotes the set of positive real numbers, and

R+,0 the set of non-negative real numbers. The zero vector
in Rd, where d ∈ N, is denoted by 0, i.e., 0i = 0 for i =
1, . . . , d. C is the set of complex numbers. If a ∈ C then
a = Re(a)+ ȷIm(a), where Re(a), Im(a) are respectively the
real and imaginary parts of a and ȷ =

√
−1. The complex

conjugate of a ∈ C is denoted by a† ∈ C and |a| = (a a†)1/2

is the magnitude of a. Finally, the symbol ≜ will be used for
definitions.

B. Gaussian processes and random fields

A Gaussian process defines a prior distribution over func-
tions, which can then be used for Bayesian regression [27]. We
will denote the GP by z(x) ∼ GP (m(x), C(x,x′)), where
m(x) : RD → R is the mean function (expectation) and
C(x,x′) : RD × RD → R is the covariance kernel, which
is a non-negative definite function [1]. The matrix C with
elements [C]i,j = C(xi,xj), for all i, j = 1, . . . , n (where
n ∈ N) is the kernel covariance (Gram) matrix.

For geo-referenced data x = (s, t) where s ∈ D ⊂ Rd

is the spatial coordinate inside the spatial domain D and
t ∈ R+,0 is the time instant. In this case, the dimension of
the input vector x is D = d + 1. To be more precise, given
a probability space (Ω,F ,P), where Ω is the sample space,
F is a σ−field of subspaces of Ω, and P is a probability
measure, the collection of real-valued, scalar random variables
{z(s, t; ζ) : s ∈ D, t ∈ R+,0, ζ ∈ Ω} is a scalar, real-
valued spatiotemporal process Z : D × R+,0 × Ω 7→ R. The
expectation operator over the probability space is denoted by
E[·]. The functions (realizations) of this space are denoted by
z(s, t). Herein we focus on weakly (second-order) stationary
spatiotemporal processes which have (i) constant mean and
(ii) covariance that depends purely on the space-time lag, i.e.,
C(x1,x2) = C(x1 − x2) = C(s1 − s2, t1 − t2). We use
r = si−sj ∈ Rd to denote the spatial lag and τ = ti− tj ∈ R
for the temporal lag between two space-time points xi and xj .
The indices i, j are not needed for the space-time lags in the
stationary case.

C. Covariance kernels

Definition 1 (Non-negative definite functions): The function
C(·, ·) is non-negative definite (positive definite) if and only
if for all sets {xi}ni=1 and all real-valued vectors v ∈ Rn it
holds that v⊤Cv ≥ 0 (resp., v⊤Cv > 0) for all n ∈ N and
v ̸= 0, where [C]i,j = C(xi,xj).

Remark 1 (Units): Covariance kernels depend on a vector
of hyperparameters θ. The box notation, [θ], denotes the units
of a scalar hypeparameter θ; e.g., [θ] = [L]/[T ] implies that θ
units of length over time.

Definition 2 (Fourier transforms): Let C(r, τ) : Rd×R → R
represent a space-time function which is absolutely inte-
grable over Rd × R. Then, the Fourier transform C̃(k, ω) =
FT[C(r, τ)] and its inverse C(r, τ) = IFT[C̃(k, ω)] exist.
The FT is given by means of the multidimensional improper
integral

C̃(k, ω) =

∫
Rd

∫
R
e−ȷ(k·r+ωτ)C(r, τ)drdτ, (1)



IEEE TRANSACTIONS ON INFORMATION THEORY 3

where ω ∈ R is the cyclic frequency, and k ∈ Rd is the
spatial frequency vector (wavevector) in reciprocal (Fourier)
space. The Euclidean norm ∥k∥ is known as the wavenumber.

The inverse FT is given by means of the following integral

C(r, τ) =
1

(2π)d+1

∫
Rd

∫
R
eȷ(k·r+ωτ)C̃(k, ω)dkdω. (2)

Theorem 1 (Bochner’s theorem): A function C(r, τ) is an
admissible covariance kernel for a stationary random field if
and only if the Fourier transform C̃(k, ω) of C(r, τ) exists,
is non-negative, and its integral over Rd × R is finite [28].

Bochner’s theorem specifies conditions for C(r, τ) to be an
admissible covariance kernel for some random field without
requiring that the latter be normally distributed.

Definition 3 (Radial functions): A function C(r, τ) is called
a radial function if C(r, τ) = Cr(r, τ) where r = ∥r∥ is the
Euclidean norm of r. For simplicity of notation we drop the
index r in Cr(r, τ). A covariance kernel defined by a radial
function is called isotropic.

The Fourier transform of a radial function C(r, τ), if it
exists, is also a radial function C̃(k, ω), where k = ∥k∥; the
converse is also true.

Definition 4 (Marginal covariance kernels): The functions
CS(r) ≜ C(r, τ = 0) and CT(τ) ≜ C(r = 0, τ) represent
the spatial and temporal marginal covariance kernels at zero
space and time lags respectively.

III. COVARIANCE KERNEL OF HARMONIC OSCILLATOR
DRIVEN BY WHITE NOISE

We denote by z(t; ζ) the displacement from equilibrium of
a classical, linear, damped harmonic oscillator (LDHO) as a
function of time t ∈ R+,0. It is assumed that m > 0 is the
inertial mass of the oscillator, γ > 0 is the friction coefficient,
and κ > 0 is Hooke’s constant.

A. Equation of motion

The equation of motion (EOM) due to random forcing (e.g.,
if the oscillator is placed in a heat bath) is given by the
following stochastic ordinary differential equation (SODE)

d2z(t; ζ)
dt2

+
γ

m

dz(t; ζ)
dt

+
κ

m
z(t; ζ) = σηη(t; ζ). (3)

The function σηη(t), where ση > 0, models the random
force acting on the oscillator. The noise η(t; ζ) represents
a realization of a standard Gaussian white noise stochastic
process, i.e., dη(t; ζ) = dW (t; ζ) where dW (t; ζ) is the
differential of the Wiener process; hence

E[η(t; ζ)] = 0; E[η(t; ζ)η(t′; ζ)] = δ(t− t′), for all t, t′,
(4)

where δ(·) is the Dirac delta function. The LDHO hyperpa-
rameters m,κ, γ, ση can be replaced by the more intuitive
quantities, ω0, τc, and σ where

ω0 ≜
√
κ/m

is the natural frequency of the undamped oscillator, and

τc ≜ m/γ

is the characteristic damping time and σ ≜ ση/m. The natural
frequency of the damped oscillator is given by

ωd =
√
κ/m− γ2/(4m2) =

√
ω2
0 − 1/(4τ2c ). (5)

The damped frequency (5) is real-valued if γ2 < 4mκ; the
value γcrit ≜ 2(mκ)1/2 represents the critical damping.

Remark 2 (RLC Oscillator): The EOM (3) for the LDHO
is parametrized for a mechanical oscillator. However, using
the substitutions m → L, γ → R, and κ → 1/C, the EOM
describes current oscillations in an electrical RLC circuit in
the presence of thermal noise.

B. Covariance equation of motion

Since the oscillator displacement z(t; ζ) is governed by
a second-order linear SODE, the displacement covariance
C(τ) ≜ E[z(t + τ ; ζ) z(t; ζ)] − E[z(t + τ ; ζ)]E[z(t; ζ)] is
the fundamental solution (Green’s function) of a fourth-order,
linear ordinary differential equation (ODE).

Corollary 1 (Green’s function equivalence of LDHO Co-
variance): If the stochastic process z(t; ζ) is governed by the
second-order SODE (3), its covariance kernel is the fundamen-
tal solution (Green’s function); the latter satisfies the following
fourth-order (biharmonic) generative ODE, where σ = ση/m:

d4C(τ)

dτ4
+

(
2ω2

0 −
1

τ2c

)
d2C(τ)

dτ2
+ ω4

0C(τ) = σ2
ηδ(τ). (6)

Proof: The proof is given in Appendix A.

The connection between covariance kernels of stochastic
processes satisfying linear SODEs and Green’s functions is
well-known [4], [29], [30].

Corollary 2 (Spectral density from generative ODE): The
covariance kernel which satisfies the ODE (6) corresponds to
a spectral density C̃(ω). If τc > 0 the latter is given by the
following rational function of the cyclic frequency ω:

C̃(ω) =
σ2
η τ

2
c

τ2c (ω
2 − ω2

0)
2 + ω2

. (7)

Proof: The spectral density of z(t; ζ) is obtained accord-
ing to Bochner’s theorem [28] from the Fourier transform
of C(τ). We multiply both sides of (6) in Corollary 1 with
τ2c and apply the Fourier transform. Since the image of the
time derivative operator in the Fourier domain is FT[d/dτ ] =
ȷω [31], it follows that

FT

[
dnC(τ)

dτn

]
= (ȷω)n C̃(ω), n ∈ N. (8)

The spectral density (7) then follows by recalling that
FT[δ(τ)] = 1.

Remark 3 (Admissibility of spectral density): The function
C̃(ω) defined in (7) is demonstrably non-negative for all ω ∈
R and integrable over ω ∈ R. Therefore, it satisfies Bochner’s
admissibility conditions.
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C. Covariance kernel

The covariance kernel for the LDHO is given by calculating
the inverse Fourier transform of the spectral density. This
can be explicitly evaluated as shown in [32] (with slightly
different parametrization). The results, which correspond to
three different LDHO damping regimes, are reviewed below.

1) Underdamping: This regime is obtained for ωd > 0, i.e.,
for ω0τc > 1/2. In this case,

C(τ) =
σ2

2ω2
0 τc

e−
|τ|
2τc

(
cosωdτ +

sinωd|τ |
2ωdτc

)
(9a)

These covariance kernels oscillate with amplitudes that de-
crease exponentially with characteristic time 2τc.

2) Overdamping: This regime is obtained for ωd imaginary,
i.e., for ω0τc < 1/2.

C(τ) =
σ2

4ω2
0 τc

(
1

|ωd|τf
e−|τ |/τs − 1

|ωd|τs
e−|τ |/τf

)
. (9b)

Hence, the covariance kernel decays as a superposition of
two exponential functions with two characteristic times, a slow
time, τs, and a fast time, τf :

τs =
2τc

1− 2τc|ωd|
, τf =

2τc
1 + 2τc|ωd|

, τs > τf . (9c)

Remark 4 (Admissible difference of exponential kernels):
Since ωd is imaginary in this regime, it follows from (5) that
2ω0τc < 1 and 2|ωd|τc =

√
1− (2ω0τc)2. Hence, it holds

that 0 < 2|ωd|τc < 1. Therefore, the slow time τs is a positive
number. An interesting fact about the covariance (9b) is that
it involves the difference of two admissible (exponential)
kernels, and it is admissible nonetheless. While this may
seem trivial, one needs to recall that there are no simple,
general conditions that render a linear superposition of kernels
admissible unless the coefficients of the superposition are non-
negative [33].

3) Critical damping: This regime is obtained for ωd = 0,
i.e., for ω0τc = 1/2.

C(τ) =
σ2

2ω2
0 τc

e−
|τ|
2τc

(
1 +

|τ |
2τc

)
. (9d)

The function (9d) is also known as the modified exponential
kernel [34], [35].

IV. HYBRID SPECTRAL APPROACH FOR SPATIOTEMPORAL
KERNEL CONSTRUCTION

In this section we present the hybrid spectral approach. We
assume that C̃(k, ω) is the spectral density of a spatiotemporal
kernel. The space-time inverse Fourier transform of C̃(k, ω)
satisfies the following decomposition property

C(r, τ) ≜ IFT[C̃(k, ω)] = IFTk

[
IFTω[C̃(k, ω)]

]
=IFTk[C̃−ω(k, τ)]. (10)

In (10), IFTω (IFTk) is the inverse Fourier transform with
respect to the temporal (spatial) dimension, and the function
C̃−ω(k, τ) ≜ IFTω[C̃(k, ω)] represents the temporal Fourier
modes of the covariance kernel. The temporal modes are thus

defined by means of the partial (with respect to ω) inverse
Fourier transform of C̃(k, ω).

The hybrid spectral approach involves the following steps:
1) Generative ODE: A purely temporal covariance kernel,
C(τ ;θ0), is derived as the fundamental solution (Green’s
function) of a generative linear ODE with constant coefficients
given by the vector c(θ0) ≜ (c1(θ0), . . . , cP (θ0))

⊤, where
θ0 ∈ Rm is a hyperparameter vector. Thus, C(τ ;θ0) satisfies
the following equation (in terms of the linear differential
operator Lτ )

LτC(τ ;θ0) = δ(τ), Lτ =

P∑
p=0

cp(θ0)
d2p

dτ2p
. (11)

2) Spectral density: The spectral density corresponding to
C(τ ;θ0) is given by

C̃(ω;θ0) =
1

Π(ω;θ0)
, (12a)

where Π(ω;θ0) is the characteristic polynomial of the differ-
ential operator Lτ given by

Π(ω;θ0) =

P∑
p=0

(−1)p cp(θ0)ω
2p, P ∈ N . (12b)

The equations (12) are obtained by applying the Fourier
transform on both sides of (11), using (8) to calculate the FT
of derivatives. Bochner’s theorem requires that c0(θ0) > 0
and Π(ω;θ0) > 0 for all ω ∈ R.

3) The generative ODE coefficients are replaced by the vector
c̃(k;θ). The latter incorporates dispersion relations which
implement the space-time interactions. Respectively, the char-
acteristic polynomial becomes

Π̃(ω,k;θ) =

P∑
p=0

(−1)p c̃p(k;θ)ω
2p, P ∈ N . (13)

The dispersion relations must be compatible with the admis-
sibility conditions of Bochner’s theorem 1 which specify that:
(i) Π̃(ω,k;θ) ≥ 0 for k ∈ Rd and (ii) the integral of C̃(k, ω)
over Rd × R is finite.

4) The spectral density of the temporal process, C̃(ω;θ0),
generates the spectral density C̃(k, ω;θ) of the spatiotemporal
kernel; the latter is obtained from C̃(ω;θ0) by replacing
cp(θ0) with c̃p(k;θ) for all p = 1, . . . , P .

5) Temporal Fourier modes of the associated spatiotemporal
kernel, C̃−ω(k, τ ;θ) are obtained from C(τ ;θ0) in (12) by
replacing c(θ0) with k-dependent coefficients c̃(k;θ), where
θ = (θ⊤

0 ,θ
′⊤)⊤ is the augmented hyperparameter vector

and θ′ ∈ Rℓ is the hyperparameter vector used to define
the k dependence. The temporal modes C̃−ω(k, τ ;θ) are
fundamental solutions of the k-dependent generative ODEs:

L̃τ C̃−ω(k, τ ;θ) = δ(τ), L̃τ =

P∑
p=1

c̃p(k;θ)
d2p

dτ2p
. (14)

The fundamental solution for each k corresponds to a differ-
ent coefficient vector c̃(k;θ). The assumption underlying (14)
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is that the mode for a given k evolves in time independently
of the modes for k′ ̸= k.

Based on the decomposition property (10), proving the
integrability of C̃(k, ω) over Rd ×R is equivalent to proving
that the modes C̃−ω(k, τ) are integrable over Rd. This requires
showing that IFTk[C̃−ω(k, τ)] exists and is not singular at r =
0 (the lack of singularity implies that C̃−ω(k, τ) is integrable
over k ∈ Rd).

6) If the temporal Fourier modes are explicitly known by
solving the generative ODE (14), the space-time covariance
kernel C(r, τ) can be obtained, according to the decomposi-
tion property (10), by calculating the IFT of C̃(k, ω;θ) with
respect to the wavevector k. The latter is given by a multi-
dimensional integral, which in certain cases can be exactly
evaluated.

The spatiotemporal kernel C(r, τ) is physically motivated if
the generative ODE that governs C̃−ω(k, τ) is associated with
a SODE that, at least approximately, describes the equation of
motion (EOM) of the studied process [4], [29].

V. HYBRID SPECTRAL APPROACH APPLIED TO THE
HARMONIC OSCILLATOR

In the following, we suppress the kernel dependence on
θ0 and θ for brevity. We apply the hybrid spectral approach
using the LDHO generative ODE given by (6) (Step 1 in
Section IV). The associated LDHO spectral density is given
by (7) in Corollary 2 (Step 2). However, the spectral density (7)
involves the noise variance σ2

η instead of the coefficient σ2

used in (9).
Remark 5 (LDHO variance): The variance σ2

z ≜ C(0)
of the LDHO covariance in all three regimes is equal to
σ2
z = σ2/2ω2

0 τc. This is straightforward for the kernels (9a)
and (9d), while for the kernel (9b) it can be shown with simple
algebraic manipulations. The variance σ2

z can also be evaluated
by integrating the spectral density C̃(ω) over all ω, i.e.,
σ2
z = 1

π

∫∞
0

dω C̃(ω), leading to σ2
z = 1

2σ
2
η τc/ω

2
0 . Equating

the two expressions for the variance we obtain σ2
η = σ2/τ2c .

Then, the LDHO spectral density becomes

C̃(ω) =
σ2

τ2c (ω
2 − ω2

0)
2 + ω2

, (15)

and the LDHO hyperparameter vector is θ0 ≜
(
σ2, ω0, τc

)⊤
.

A. Dispersion relations

Dispersion relations link the LDHO hyperparameters with
the spatial frequency k. Let us assume the following general
form for the dispersion functions:

σ2 → σ2(k) = σ2
0A(k), τc → τc(k) =

τ̃c
B(k)

,

ω0 → ω0(k) = ω̃0B(k), (16)

where ω̃0, τ̃c ∈ R+, A(k), B(k) > 0 for all k. A(k) and B(k)
are dimensionless functions that allow considerable flexibility.
We use physical considerations to constrain the form of these
functions. We postulate the following principles:

(i) A(k) is a bounded and decreasing function of ∥k∥, to
ensure that the mode variance is finite and declines with
increasing ∥k∥. If A(k) increased with ∥k∥, the temporal
modes would not be integrable. Non-exponential decline of
A(k) is possible, but it is not sufficient to ensure integrability
for all d [cf. the dispersion functions (19) and the temporal
Fourier modes given by (51), (61), (68)]. Exponential decline
of the mode variance suppresses the high-∥k∥ modes and
ensures integrability.
(ii) B(k) increases with ∥k∥, implying an increase of the
mode frequency and simultaneous decline of the damping
time. Hence, for large ∥k∥ (small spatial scales) the temporal
mode oscillation frequency is high but the oscillations are
rapidly damped. This behavior is combined with the fast
decline of the oscillation amplitude due to A(k). Linking the
oscillation frequency and damping time via B(k) is crucial
for mathematical convenience [cf. the comment accompany-
ing (18d) below]. The reverse dependence, i.e., a damping
time that increases with ∥k∥ and concomitant decrease of the
oscillation frequency, complicates the explicit integration of
the temporal Fourier modes.
(iii) Arbitrarily and without loss of generality, we assume that
A(0) = B(0) = 1 so that τc(0) = τ̃c, ω0(0) = ω̃0 and σ(0) =
σ0. Different values for A(0) and B(0) can be absorbed in
σ0 and ω̃0.

In Step 3 of Section IV, θ0 is augmented by the vector
of the dispersion hyperparameters θ′ ≜ (b, ϵ)⊤ (see below).
According to Step 4, inserting the dispersion relations (16) in
the spectral density (15) modifies the latter as follows

C̃(k, ω) =
σ2
0A(k)

ω2 + [ω2 − ω̃2
0 B

2(k) ]
2
τ̃2c /B

2(k)
. (17)

The function (17) satisfies by construction C̃(k, ω) ≥ 0 for
all ω ∈ R and k ∈ Rd. Hence, to confirm that (17) is an
admissible spectral density for a stationary process (according
to Bochner’s theorem) it suffices to provide conditions on
A(k) and B(k) that render C̃(k, ω) integrable over Rd × R.
Integrability conditions for radial dispersion functions are
formulated in Section V-B.

The dispersive relations (16) lead to scaling relations for
the damped natural frequency and for certain hyperparameter
combinations that appear in the Fourier modes:

ω2
0(k)τc(k) = ω̃2

0 τ̃cB(k), (18a)

ωd(k)τc(k) = τ̃cω̃d, (18b)

σ2(k)

ω2
0(k)τc(k)

=
σ2
0

ω̃2
0 τ̃c

A(k)

B(k)
. (18c)

Tethering the dispersion relations for ω0(k) and τc(k) to
the same dispersion function in (16), i.e., ω0(k) ∝ B(k)
and τc(k) ∝ B−1(k), enforces the linear dependence of the
damped frequency on B(k):

ωd(k) = ω̃dB(k), where ω̃d =
1

2τ̃c

∣∣∣√4τ̃2c ω̃
2
0 − 1

∣∣∣ . (18d)
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This is a key property, since in combination with B(k) > 0 it
ensures that the LDHO regime is determined by ω̃d, and thus
it is invariant for all k ∈ Rd.

B. Radial dispersion functions

Definition 5 (Dispersion functions with k2 dependence): Let
A(k) and B(k) be given by the following radial dispersion
functions, where k = ∥k∥ is the wavenumber:

B(k) =1 + bk2, b > 0, (19a)

A(k) =e−ϵk2

B(k), ϵ > 0. (19b)

The function B(k) in (19a) implies that τc(k) ∼ k−2,
whereas ω0(k) ∼ k2 for k → ∞. The function A(k), as
defined in (19b), is dominated by the square exponential decay,
implying a rapid decrease of the modal variance σ2(k) for
k → ∞. The rapid decay (different forms than the square
exponential law are possible) ensures integrability of the
spectral density. The choice A(k) = e−ϵk2

B(k) simplifies the
scaling relation (18c) because it leads to A(k)/B(k) = e−k2

.
The spectral density of the spatiotemporal LDHO kernel is

obtained by inserting in (17) the scaling relations (18) and the
radial dispersion functions (19), leading to

C̃(k, ω) =
σ2
0

(
1 + b k2

)
e−ϵk2

ω2 +
[
ω2 − ω̃2

0 (1 + bk2)
2
]2

τ̃2
c

(1+bk2)2

. (20)

Recalling Step 5, a comparison of (20) and (7) leads to the
conclusion that C̃−ω(k, τ) is given by equations (9) with the
substitutions ω2

0 → ω̃2
0 (1 + bk2)2, τ2c → τ2c /(1 + bk2)2, and

σ2 → σ2
0 (1 + bk2) exp(−ϵ k2).

C. LDHO Covariance Kernels

The temporal Fourier modes C̃−ω(k, τ) are obtained from
the respective temporal kernels (9) by replacing the LDHO
hyperparameters with the dispersion relations (16) and (19)
(Step 5 in Section IV). The radial functions A(k), B(k) allow
the evaluation of the IFT of C̃−ω(k, τ) (Step 6 in Section IV)
leading to isotropic LDHO covariance kernels. The latter are
given by

C(r, τ) = IFTk[C̃−ω(k, τ)], (21)

according to the spatiotemporal Fourier transform decomposi-
tion property (10).

Spectral representation of radial functions: For radial
covariance functions, the pair of spatial Fourier transforms
is expressed in terms of the following, one-dimensional, im-
proper integrals [36, p. 353]

C̃−ω(k, τ) =
(2π)d/2

kν

∫ ∞

0

rd/2Jν(kr)C(r, τ) dr, (22a)

C(r, τ) =
1

(2π)d/2rν

∫ ∞

0

kd/2Jν(kr) C̃−ω(k, τ) dk, (22b)

where r = ∥r∥, k = ∥k∥, ν = d/2−1, and Jν(·) is the Bessel
function of the first kind of order ν [37].

The resulting spatiotemporal LDHO covariance kernels for
each regime are presented below. The proofs as well as the re-
spective expressions for the temporal Fourier modes are given

in Appendix B. For notation convenience the hyperparameter
c0 ≜ σ2

0/2τ̃cω̃
2
0 is introduced.

1) Underdamping: This regime is obtained for ω̃0τ̃c > 1/2.

Theorem 2 (LDHO kernel in underdamped regime): If
ω̃0τ̃c > 1/2, the LDHO spatiotemporal kernel generated by
the radial spectral density (20) is given by the radial function
C(r, τ):

C(r, τ) = c0 e
− |τ|

2τ̃c [F1(r, τ) + F2(r, τ)] , (23a)

F1(r, τ) = cos(ω̃dτ) gre(r, τ)− sin(ω̃d|τ |) gim(r, τ),

F2(r, τ) =
sin(ω̃d|τ |)
2 ω̃dτ̃c

gre(r, τ) +
cos(ω̃d|τ |)
2 ω̃dτ̃c

gim(r, τ) ,

gre(r, τ) =
e−λ2r2 cos

(
κ2r2 + dϕ

2

)
(4π)d/2

[
(ϵ+ |τ | b/2τ̃c)2 + b2 ω̃2

d |τ |2
]d/4 ,

gim(r, τ) =
e−λ2r2 sin

(
κ2r2 + dϕ

2

)
(4π)d/2

[
(ϵ+ |τ | b/2τ̃c)2 + b2 ω̃2

d |τ |2
]d/4 ,

where r, τ are, respectively, the spatial and temporal lags. The
quantities κ2, λ2 and ϕ (the dependence on τ is suppressed
for brevity) are space-time interaction functions given by

κ2 =
b ω̃d |τ |(

b|τ |
τ̃c

+ 2ϵ
)2

+ (2b ω̃d |τ |)2
, (23b)

λ2 =

b|τ |
2τ̃c

+ ϵ(
b|τ |
τ̃c

+ 2ϵ
)2

+ (2b ω̃d |τ |)2
, (23c)

ϕ = tan−1

(
−2b ω̃d |τ |τ̃c
b |τ |+ 2ϵτ̃c

)
. (23d)

Proof: The proof is given in Appendix B-A.

a) The LDHO model hyperparameters: The kernel func-
tion (23) includes a hyperparameter vector with five inde-
pendent components: θ = (c0, τ̃c, ω̃d, ϵ, b)

⊤. The physical
significance of the hyperparameters is as follows:

• c0 is a scaling factor which has units [z]2 and determines
the kernel’s amplitude.

• τ̃c is a characteristic relaxation time that controls the
temporal decay of the correlations.

• ω̃d is a cyclical frequency which controls the periodicity
of damped temporal oscillations.

• ϵ is the variance decay scale; it has dimensions of
square length and determines how fast the mode variance
declines at large k.

• b controls the space-time interaction strength; it also has
dimensions of square length and determines the rate at
which the non-damped resonance frequency increases and
the damping time drops with k.

The hyperparameters τ̃c, ω̃d control the purely temporal
dependence of the LDHO kernel. The hyperparameters b, ϵ
enter, along with τ̃c and ω̃d, in the three time-dependent
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Fig. 1. Normalized C(r, τ) and isolevel contour lines (red online) in the
underdamped regime, obtained from (23) using ω̃d = 3π/2, τ̃c = 3, b = 0.4,
ϵ = 1, and d = 2.

functions κ2, λ2, ϕ that control the space-time interactions as
follows:

• κ: wavenumber that controls the spatial oscillations of the
LDHO kernel;

• λ: inverse length controlling the decay of spatial correla-
tions;

• ϕ: phase factor modulating the correlations at r = 0.

A preliminary discussion of the estimation of θ from data
is given in the Supplement (Section S1).

Remark 6 (Kernel dependence on d): C(r, τ) depends on the
spatial dimension d via the scaling factor (4π)−d/2, the phase
factor dϕ/2, and the denominators in the damped oscillatory
functions gre(r, τ) and gim(r, τ).

The LDHO covariance kernel is illustrated in Fig. 1. A
combination of a relatively slow damping time τ̃c = 3 and
a fast oscillation frequency, ω̃d = 3π/2, generate four ridges
with decaying amplitude as τ increases. A smaller value of τ̃c
(not shown) leads to faster decay and fewer oscillation peaks.
The plot also exhibits spatiotemporal interaction, i.e., spatial
oscillation patterns that appear as ripples on the (r, τ) plane.

Remark 7 (Variance decay scale): The variance decay
scale ϵ crucially ensures that the space-time interaction func-
tions (23b)-(23d) are stable at τ = 0: κ2(τ = 0) = 0,
λ2(τ = 0) = 1/4ϵ, and ϕ(τ = 0) = 0. These relations
guarantee that C(r, τ = 0) is finite. In contrast, if ϵ = 0,
the limit of C(r, τ) as τ → 0 does not exist.

Remark 8 (Interaction strength): The space-time interac-
tions in (23) are controlled by the interaction hyperparameter
b. Indeed, if b = 0, then (23b) implies that κ = 0, λ = 1/2

√
ϵ,

and ϕ = 0. Thus, all three interaction functions become
independent of τ for b = 0.

b) Zero-lag marginal covariances: We evaluate the
marginal kernels according to Definition 4.

Proposition 1 (Spatial marginal covariance): In the under-
damped regime, the spatial marginal covariance of the LDHO

kernel (23) at τ = 0 is given by the square exponential kernel

CS(r) = c0
e−r2/4ϵ

(4πϵ)d/2
. (24)

Proof: From (23) for τ = 0 it follows that CS(r) =
c0 [F1(r, 0) + F2(r, 0)]. Furthermore, F1(r, 0) = gre(r, 0) and
F2(r, 0) = 1

2 ω̃dτ̃c
gim(r, 0). At zero time lag the space-time

interaction functions take the following values:

κ2(τ = 0) = 0, λ2(τ = 0) = 1/4ϵ, ϕ(τ = 0) = 0. (25)

Hence, gre(r, 0) = exp(−λ2r2)/(4πϵ)d/2 while gim(r, 0) = 0.
This concludes the proof.

The result (24) shows that the hyperparameter ϵ can be
viewed as ϵ ≜ ξ−2/4, where ξ is the correlation length of
the square exponential kernel.

Proposition 2 (Temporal marginal covariance): In the un-
derdamped regime, the temporal marginal covariance of the
LDHO kernel (23) at r = 0 is given by the following damped
harmonic expression—where ϕ is defined in (23d):

CT(τ) =
c0 e

− |τ|
2τ̃c

(4πϵ)d/2
[(

b|τ |
2τ̃cϵ

+ 1
)2

+
(

b ω̃d |τ |
ϵ

)2
]d/4

×
[
cos

(
ω̃d|τ |+ dϕ

2

)
+ 1

2 ω̃dτ̃c
sin

(
ω̃d|τ |+ dϕ

2

)]
.

(26)

Proof: The functions gre(0, τ) and gim(0, τ) are obtained
from (23) by setting r = 0. The rest follows from the
definitions of F1(r, τ) and F2(r, τ), see (23), using the trigono-
metric identities cos(α + β) = cosα cosβ − sinα sinβ and
sin(α+ β) = sinα cosβ + sinβ cosα.

Proposition 3 (Very large relaxation time limit): Let
C∗(r, τ) = limτc→∞ C(r, τ) be the very-large-relaxation-time
(VLRT) limit τc → ∞ of the underdamped LDHO kernel.
Then, C∗(r, τ) is given by

C∗(r, τ) =
c0e

−λ2
0 r2 cos

(
ω̃0τ + κ20 r

2 + dϕ0

2

)
(4π)d/2 (ϵ2 + b2 ω̃2

0 |τ |2)
d/4

(27a)

κ20 =
b ω̃0 |τ |

4 (ϵ2 + b2 ω̃2
0 |τ |2)

, (27b)

λ20 =
ϵ

4 (ϵ2 + b2 ω̃2
0 |τ |2)

, (27c)

ϕ0 = tan−1

(
−b ω̃0 |τ |

ϵ

)
. (27d)

Proof: Based on (18a) it holds that limτc→∞ ω̃d = ω̃0.
Equations (27b)-(27d) are obtained from (23b)-(23d) at the
VLRT limit τc → ∞. The kernel C(r, τ) is given by (23); it
is obvious that limτc→∞ F2(r, τ) = 0. Evaluating the VLRT
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limit of the first term, F1(r, τ) at τ → τc, the following is
obtained

C∗(r, τ) = c0 [cos(ω̃0τ) g
∗
re(r, τ)− sin(ω̃0|τ |) g∗im(r, τ)] ,

g∗re(r, τ) =
e−λ2

0 r2 cos
(
κ20 r

2 + dϕ0

2

)
(4π)d/2 (ϵ2 + b2 ω̃2

0 |τ |2)
d/4

,

g∗im(r, τ) =
e−λ2

0 r2 sin
(
κ20 r

2 + dϕ0

2

)
(4π)d/2 (ϵ2 + b2 ω̃2

0 |τ |2)
d/4

,

where g∗re(r, τ) and g∗im(r, τ) are respectively the VLRT limits
of gre(r, τ) and gim(r, τ) as τc → ∞, while κ20, λ

2
0, ϕ0

in (27b)-(27d), are the limits of the respective functions as
τc → ∞. Finally, the VLRT limit C∗(r, τ) is obtained
from the above equations using the trigonometric identity
cos(u+ v) = cosu cos v − sinu sin v, where u, v ∈ R.

Remark 9 (Persistence of quasi-periodicity): Even at the
VLRT limit, the kernel C∗(r, τ) is not purely periodic due to
the space-time interaction parameter b. The dispersion relation
τc(k) = τ̃c/(1+bk

2) implies that even for large τ̃c, there exist
k ∈ R such that τc(k) is finite. However, if b = 0, i.e., for
constant τc(k), the LDHO kernel decouples in the VLRT limit
into a product of separable spatial and temporal components;
the latter is given by the purely periodic function cos(ω̃0τ).

2) Overdamping: This regime is obtained for ω̃0τ̃c < 1/2.
Theorem 3 (LDHO kernel in overdamped regime): If ω̃0τ̃c <

1/2, the LDHO spatiotemporal kernel generated by the radial
spectral density (20) is given by

C(r, τ) =
c0τ̃

d/2−1
c

4ω̃d

βf e− βs|τ|
2τ̃c

− r2τ̃c
2b|τ| βs+4ϵτ̃c

(2πbβs|τ |+ 4πϵτ̃c)
d/2

− βs e
−

βf |τ|
2τ̃c

− r2τ̃c
2b|τ|βf+4ϵτ̃c

(2πb βf |τ |+ 4πϵτ̃c)
d/2

 , (28)

where βs = 1− 2τ̃cω̃d, βf = 1 + 2τ̃cω̃d.

Proof: The proof is given in Appendix B-B.
A plot of the overdamped kernel C(r, τ) is shown in Fig. 2.

Remark 10 (Variance stablilization): As in the underdamped
case, the spectral decay hyperparameter ϵ stabilizes the vari-
ance (i.e., the behavior at τ = 0), and b adjusts the space-time
interaction since for b = 0 the space and time dependence
in (28) decouple.

a) Zero-lag marginal covariances: The spatial and tem-
poral marginal kernels of Definition 4 are obtained from (28)
by setting τ = 0 and r = 0 respectively, following simple
algebraic calculations.

CS(r) =
c0τ̃

d/2−1
c

4ω̃d

(βf − βs) e
− r2

4ϵ

(4πϵτ̃c)
d/2

=
c0 e

− r2

4ϵ

(4πϵ)
d/2

, (29)

Fig. 2. Normalized C(r, τ) and isolevel contour lines (red online) in the
overdamped regime, obtained from (28) using ω̃d = π/10, τ̃c = 0.8, b =
0.4, ϵ = 8, and d = 2.

CT(τ) =
c0τ̃

d/2−1
c

4ω̃d

[
βf e

− βs|τ|
2τ̃c

(2πbβs|τ |+ 4πϵτ̃c)
d/2

− βs e
−

βf |τ|
2τ̃c

(2πbβf |τ |+ 4πϵτ̃c)
d/2

 . (30)

The spatial marginal kernel (29) is given by the square expo-
nential function as in the underdamped case (24). The temporal
marginal kernel (30) comprises a combination of slow and
fast exponential kernels. This is analogous to the purely
temporal case (9b), albeit the coefficients of the exponentials
are renormalized and include temporal dependence.

3) Critical damping: In this regime it holds that ω̃0τ̃c =
1/2.

Theorem 4 (LDHO kernel in critical damping regime): If
ω̃0τ̃c = 1/2, the LDHO spatiotemporal kernel generated by
the radial spectral density (20) is given by

C(r, τ) = c0

(
τ̃c

2π (b|τ |+ 2ϵτ̃c)

)d/2

e−
|τ|
2τ̃c

− r2τ̃c
2b|τ|+4ϵτ̃c

×
[
1 +

|τ |
2τ̃c

−
(

r2 b|τ |τ̃c
2(b |τ |+ 2ϵτ̃c)2

− d b|τ |
2b|τ |+ 4ϵτ̃c

)]
.

(31)

Proof: The proof is given in Appendix B-C.
Remark 11 (Hyperparameters at critical damping): The

critically damped LDHO kernel (31) includes four independent
hyperparameters: c0, τ̃c, ϵ, b. The fifth hyperparameter, ω̃d,
is not meaningful since ω̃d = 0 at critical damping. The
critical-damping kernel (31) can be viewed as the limit of the
overdamped kernel (28) for ω̃d → 0, which implies βs → 1,
βf → 1. The comments in Remark 10 regarding the role of b
and ϵ also hold for the critically damped case.

a) Zero-lag marginal covariances: The spatial and tem-
poral marginal kernels of Definition 4 are obtained from (31)
by setting τ = 0 and r = 0 respectively. We thus obtain

CS(r) =
c0 e

− r2

4ϵ

(4πϵ)
d/2

, (32)
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CT(τ) = c0

(
τ̃c

2π (b|τ |+ 2ϵτ̃c)

)d/2

e−
|τ|
2τ̃c[

1 +
|τ |
2τ̃c

+
d b|τ |

2b|τ |+ 4ϵτ̃c

]
. (33)

VI. PROPERTIES OF LDHO KERNELS

a) Full symmetry: A stationary covariance kernel is fully
symmetric if the following equalities hold for all r ∈ Rd, τ ∈
R [19]:

C(r, τ) = C(r,−τ) = C(−r, τ) = C(−r,−τ) .

Since the LDHO spatiotemporal kernels depend on r and τ
only via r = ∥r∥ and |τ |, they are fully symmetric.

Full symmetry is not a suitable assumption for transport pro-
cesses with a dominant advection velocity [19], [38]. For such
phenomena, the LDHO covariance kernels can be extended by
invoking Taylor’s frozen field hypothesis [39], [40], according
to which a non-symmetric spatiotemporal covariance C(r, τ)
can be obtained from a purely spatial model Cs(r) by means
of C(r, τ) = Cs(r − vτ), where v is the uniform advection
velocity, e.g. [38]. Full symmetry is broken in the frozen-field
model because, except for τ = 0 and v = 0, it holds that
r − vτ ̸= r + vτ ; therefore, there exist r and τ such that
C(r,−τ) ̸= C(r, τ). The “frozen field” assumption means
that the correlation between two points at the same location
separated by a time distance τ is the same as the synchronous
correlation between two points that lie apart by r = vτ . If the
spatial distance r is replaced with the composite space-time
distance r − vτ in the LDHO kernels, models that are not
fully symmetric are generated. These models, however, do not
respect the frozen-field condition, since they depend on τ in
addition to r− vτ .

b) Hole effect: Commonly used isotropic covariance
kernels, such as the exponential (Ornstein-Uhlenbeck), square
exponential (Gaussian), and Whittle-Matérn models are ad-
missible for input spaces of any dimension d ∈ N. They
can be extended to space-time by means of a composite
space-time distance u =

√
r2 + a2τ2, where a > 0, and

u = (r, aτ) ∈ Rd × R is the composite lag vector. Isotropic
kernels satisfy the inequality C(u) ≥ −C(0)/d [12, p. 34].
Hence, if the same functional form C(·) is valid for all d ∈ N,
by taking the limit of the lower bound as d → ∞, it follows
that C(·) is non-negative everywhere, and therefore the hole
effect is prohibited.

Gneiting’s non-separable kernels are fully-symmetric and
expressed as [19]:

C(r, τ) =
σ2

(ψ(τ2))
d/2

ϕ

(
r2

ψ(τ2)

)
, (r, τ) ∈ Rd × R, (34)

where ϕ(·) is a completely monotone function and ψ(·) is
a positive function with a completely monotone derivative
(i.e., a Bernstein function). Hence, this kernel family excludes
negative values (i.e., the “hole effect”).

In contrast, the LDHO kernel in the underdamped
regime (23) allows negative correlations at certain spatial and
temporal lags even for large d. As evidenced in (24) and (26),

Fig. 3. Normalized C(r, τ) and isolevel contours (red online) in the
underdamped regime, obtained from (23) using ω̃d = 3π/2, τ̃c = 3, b = 0.4,
ϵ = 3, and d = 2.

oscillations are favored by (i) τc ↑ and (ii) ϵ ↑, since (i) slows
down the temporal and (ii) slows down the spatial decay. On
the other hand, large values of b tend to suppress correlations
as τ ↑ and thus also suppress oscillations. Fig. 3 illustrates
a kernel with a “deep hole effect”: the normalized C(r, τ) is
plotted for the same hyperparameters as in Fig. 1 except that
ϵ = 3 instead of ϵ = 1. In this case, the most negative peak
of C(r, τ) is C(0, 0.7538) = −0.7853.

c) Marginal kernels: All three LDHO spatial marginal
kernels exhibit square exponential decay of the correlations
[cf. (24), (29), (32)]. This is inherited from the square ex-
ponential spectral decay of the dispersion function A(k) (16)
which is transferred to real space via the spectral integral (57).
The temporal marginal kernels in all three regimes behave
as the respective purely temporal LHDO kernels (9) with
renormalized coefficients.

d) Interactions: The LDHO kernels exhibit space-time
interactions enabled by the hyperparameter b which determines
(in all three regimes) to what extent the spatial and temporal
lags are coupled in non-separable expressions [cf. (23), (28),
(31)]. If b = 0 separable space-time covariance models are
obtained. The presence of interactions in any given dataset can
be tested using statistical separability tests which are based on
the interaction ratio [21], [41]:

Qint(r, τ) ≜
C(0, 0)C(r, τ)

C(r, 0)C(0, τ)
=
C(0, 0)C(r, τ)

CS(r)CT(τ)
. (35)

The interaction ratio is equal to one for separable models [42].
From (35) it also follows that Qint(r, 0) = Qint(0, τ) = 1.
Within the framework of LDHO models, an initial estimate of
b can be obtained by fitting the marginal temporal covariance
kernels to the data, exploiting the fact that b > 0 modifies the
τ dependence of the temporal marginal kernels. For nonzero
r, τ , it is shown empirically (cf. plots in Section S2 of the
Supplement) that Qint(r, τ) can take both positive and negative
values depending on the hyperparameter values and the space-
time lags.
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On the other hand, the LDHO temporal Fourier modes
C̃−ω(k, τ) satisfy the linear generative ODE (6), albeit with
k-dependent coefficients. The linearity of the generative ODE
implies a lack of interaction between different Fourier modes.
Hence, the LDHO spatiotemporal kernel cannot capture non-
linear interactions that emerge in turbulent flows [43] and
cosmological structure formation [44]. Nonetheless, this does
not preclude the use of LDHO kernels as approximations,
especially in the framework of variational Gaussian pro-
cesses [45]–[47].

e) Periodicity: Periodic kernels are suitable for physical
processes that exhibit regular or quasi-regular variation in time
such as stellar activity [48]. The MacKay periodic kernel [49]
C(t, t′) = σ2 exp

[
−a sin2 (π(t− t′)/T )

]
, where T is the

period, is used in such cases [1]. The periodic kernel is
often multiplied with a square exponential, in order to model
quasi-periodic behavior [1], [3], [48]. In spatial processes, the
product of cosine, cos(k0 · r), and exponential, exp(−∥r∥/ξ)
kernels is used for the same purpose [13, p. 97]. The MacKay
kernel can also be used to construct products of separable
terms which are periodic along each direction of the input
space [4, p. 120]. Separable scale mixtures that comprise
products of periodic components with squared exponential
functions at multiple scales have also been considered [6]. The
LDHO covariance (23) is, by construction, a quasi-periodic
spatiotemporal kernel. In contrast with the MacKay kernel
which only takes positive values, the LDHO functions incor-
porates both positive and negative correlations. Furthermore,
at the limit τc → ∞, the LDHO kernel (23) tends to a non-
damped periodic function.

f) Connection with other models: The Matérn model
comprises a family of flexible spatial kernels with smoothness
properties controlled by a hyperparameter ν ∈ R+ [1],
[30], [50]. Spatiotemporal extensions of the Matérn model
have been derived [19]. The LDHO temporal kernel (9d) at
critical damping is equivalent to the temporal Matérn model
with ν = 3/2. However, the associated spatiotemporal LDHO
kernel (31) exhibits different space-time interactions, inherited
by the dispersion functions, than the spatiotemporal Matérn
model. LDHO models with temporal smoothness orders ν =
p + 1/2, p ∈ {2, 3, . . .} can be obtained using higher-order
generative ODEs (see Section VIII).

VII. OTHER KERNELS BASED ON THE HYBRID SPECTRAL
METHOD

In this section we derive additional kernels using the hybrid
spectral method. The first family comprises LDHO kernel
functions obtained from a linear in k dispersion function B(k)
and an A(k) that decays exponentially with k. The second
family employs temporal Fourier modes derived from the first-
order Ornstein-Uhlenbeck ODE using two different dispersion
function pairs.

A. LDHO Covariance Kernels with Linear-k Dependence of
Dispersion Relations

We use the radial dispersion functions B(k) = 1 + ξ k,
ξ > 0, and A(k) = e−ϵkB(k), ϵ > 0. These functions

comply with the general principles laid out in Section V-A.
The spectral density of the respective LDHO kernel is obtained
by inserting in (17) the scaling relations (18) and the above
radial dispersion functions, leading to

C̃(k, ω) =
σ2
0 (1 + ξ k) e−ϵk

ω2 +
[
ω2 − ω̃2

0 (1 + ξk)
2
]2

τ̃2
c

(1+ξk)2

. (36)

The spatiotemporal kernels are obtained following the same
mathematical steps as those described in Appendix B for k2

dependence of the dispersion functions. Below we present the
main results, while the details of the derivations are given in
the Supplement (Section S3).

Theorem 5 (LDHO kernel in underdamped regime): If
ω̃0τ̃c > 1/2, the LDHO spatiotemporal kernel generated by
the radial spectral density (36) is given by

C(r, τ) = c0 e
− |τ|

2τc [F1(r, τ) + F2(r, τ)] , (37a)

F1(r, τ) = g0(r, τ) cos

(
ω̃dτ +

(d+ 1)γ

2
− ϕ

)
,

F2(r, τ) =
g0(r, τ)

2ω̃dτ̃c
sin

(
ω̃dτ +

(d+ 1)γ

2
− ϕ

)
(37b)

where the functions g0(r, τ), γ(r, τ), and ϕ(τ) (the r, τ
dependence of γ and ϕ was dropped in the above for brevity)
are as follows

g0(r, τ) =
Γ(d+1

2 )

π(d+1)/2

(
a2Re + a2Im

)1/2[
(a2Re + a2Im + r2)

2 − 4a2Imr
2
](d+1)/4

,

(37c)

tan γ(r, τ) =
2aImaRe

a2Re − a2Im + r2
, tanϕ(τ) =

aIm
aRe

, (37d)

aRe =
ξ|τ |
2τ̃c

+ ϵ , aIm = ξ|τ |ω̃d . (37e)

Theorem 6 (LDHO kernel in overdamped regime): If ω̃0τ̃c <
1/2, the LDHO spatiotemporal kernel generated by the radial
spectral density (36) is given by

C(r, τ) =
c∗0 βf e

− βs|τ|
2τ̃c[(

ξβs|τ |
2τ̃c

+ ϵ
)2

+ r2
](d+1)/2

− c∗0 βs e
−

βf |τ|
2τ̃c[(

ξβf |τ |
2τ̃c

+ ϵ
)2

+ r2
](d+1)/2

, (38)

where c∗0 =
c0 Γ( d+1

2 )

4ω̃d τ̃c π(d+1)/2 , βs = 1− 2τ̃cω̃d, βf = 1 + 2τ̃cω̃d.

Theorem 7 (LDHO kernel in critically damped regime):
If ω̃0τ̃c = 1/2, the LDHO spatiotemporal kernel generated
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by the radial spectral density (36) is given by the following
expression, where aRe is defined in (37):

C(r, τ) = c0 e
− |τ|

2τ̃c

[(
1 +

|τ |
2τ̃c

)
C1(r, τ) +

ξ|τ |
2τ̃c

C2(r, τ)

]
,

(39a)

C1(r, τ) =
Γ(d+1

2 )

π(d+1)/2

1

(r2 + a2Re)
(d+1)/2

, (39b)

C2(r, τ) =
(d+ 1)Γ(d+1

2 )

π(d+1)/2

aRe

(r2 + a2Re)
(d+3)/2

. (39c)

The properties (a), (b), (d), (e) described in Section VI
are also valid for the above LDHO kernels with linear-
k dispersion relations. The marginal spatial kernels CS(r)
obtained from (37)-(39) for τ = 0 decay as power laws with
a dominant term which behaves as O(r−(d+1)) as r → ∞,
while the decay of the temporal marginal kernels CT(τ)
is dominated by exponential terms (for more details, see
Supplement, Section S3).

B. Covariance Kernels based on the Ornstein-Uhlenbeck
Model

In this section we investigate the application of hybrid
spectral matching to the Ornstein-Uhlenbeck (O-U) process
which satisfies the first-order SODE:

dz(t; ζ)
dt

+
1

τc
z(t; ζ) = σηη(t; ζ) , (40)

where η(t; ζ) is the standard Gaussian white noise. The covari-
ance of the O-U process is given by C(τ) = σ2 exp(−|τ |/τc)
where σ2 = σ2

ητc/2 [51, p. 448]. The dispersion relations are
given by τc → τc(k) = τ̃c/B(k), σ2 → σ2(k) = σ2

0A(k).
The O-U temporal Fourier modes for radial dispersion func-
tions thus become

C̃−ω(k, τ) = σ2
0 A(k) exp [−|τ |B(k)/τ̃c] . (41)

Since A(k) is dimensionless, [σ2
0 ] = [X]2[L]d, where L repre-

sents length, to ensure correct dimensionality of the FT (124).
Based on the IFT (22b), the O-U covariance kernel is given
by the integral (ν = d/2− 1):

C(r, τ) =
σ2
0

(2π)d/2rν

∫ ∞

0

kd/2 Jν(kr)A(k) e
−|τ |B(k)/τ̃c dk .

(42)
Below, we derive spatiotemporal kernel expressions for two

different choices of dispersion functions.
(1) A(k) = e−βk2

, B(k) = a + bk2 where a, b, β > 0 are
hyperparameters with units [b] = [β] = [L]2, [a] = [L]0. In
this case, the spectral integral (125) becomes

C(r, τ) =
σ2
0 e

−a |τ |/τ̃c

(2π)d/2 rν

∫ ∞

0

kd/2Jν(kr) e
−bk2|τ | /τ̃c−βk2

dk .

Using the table of integrals [52, 6.631.4, p. 706] it follows
that

C(r, τ) =
σ2
0 e

−a |τ |/τ̃c

(2π)d/2
e−r2/4(β+b |τ |/τ̃c)(

2b|τ |
τ̃c

+ 2β
)d/2

. (43)

The kernel (126) involves four free hyperparameters: σ0, τ̃c/a,
τ̃c/b and β. The spatial and temporal marginal kernels are
given respectively by

CS(r) =
σ2
0

(4π β)d/2
e−r2/4β , (44a)

CT(τ) =
σ2
0 (1 + b |τ |/βτ̃c)−d/2

(4π β)d/2
e−a |τ |/τ̃c . (44b)

Hence, the spatial marginal is the square exponential while the
temporal marginal is a modified exponential kernel.

(2) A(k) = e−βk, B(k) = a + ξ k, where a, ξ, β > 0 are
hyperparameters with units [b] = [β] = [L], [a] = [L]0. The
spectral integral (125) becomes (ν = d/2− 1):

C(r, τ) =
σ2
0 e

−a |τ |/τ̃c

(2π)d/2 rν

∫ ∞

0

kν+1Jν(kr) e
−k(β+ξ |τ | /τ̃c) dk .

Using the table of integrals [52, 6.623.2, p. 702] we obtain

C(r, τ) =
σ2
0 Γ(

d+1
2 )

π(d+1)/2

(βτ̃c + ξ |τ | ) e−a |τ |/τ̃c

τ̃c

[
r2 +

(
β + ξ|τ |

τ̃c

)2
](d+1)/2

. (45)

The kernel (128) involves four free hyperparameters: σ0, τ̃c/a,
τ̃c/ξ and β. The spatial and temporal marginal kernels are
given respectively by the following functions

CS(r) =
σ2
0 Γ(

d+1
2 )

π(d+1)/2

β

(r2 + β2)
(d+1)/2

, (46a)

CT(τ) =
σ2
0 Γ(

d+1
2 )

π(d+1)/2

e−a |τ |/τ̃c(
β + ξ|τ |

τ̃c

)d
. (46b)

Plots of the O-U kernels (126) and (128) derived above are
shown in the Supplement (Section S4).

VIII. CONCLUSIONS

This paper responds to the need for non-separable covari-
ance kernels that incorporate space-time interactions [21] by
proposing a hybrid spectral approach. New spatiotemporal
covariance kernels are then derived which can be used for re-
gression and classification tasks involving Gaussian processes.

Our results are of interest for the analysis of spatiotemporal
data obtained from processes whose evolution is governed by
SPDEs. The covariance kernels in such cases should ideally be
derived by solving a generative PDE associated with the SPDE
that represents the EOM of the process. However, the explicit
solution of PDEs is impossible except in simplified cases (e.g.,
linear models, constant coefficients, tractable initial/boundary
conditions), thus hindering the development of physically
consistent covariance kernels. In many cases, the generative
PDE is not even known.

The novel hybrid spectral approach proposed herein over-
comes the kernel solvability problem. It is based on the
Cressie-Huang idea [18], i.e., the construction of non-
separable covariance kernels by inverting permissible spectral
densities C̃(k, ω). However, we introduce two important novel
elements:
1) Instead of C̃(k, ω), our starting point involves time-
dependent kernels C(τ ;θ) which are derived from a generative
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ODE. Herein, we focus on the ODE associated with the
stochastic, linear, damped harmonic oscillator.
2) The k-dependence is inserted by means of suitable disper-
sion relations that modulate the coefficients of the temporal
kernels and lead to admissible Fourier modes C̃−ω(k, τ) ≜
C (τ ;θ(k)); these are ultimately integrated (by means of the
inverse Fourier transform) to obtain non-separable covariance
kernels with space-time interactions.

The spatiotemporal interactions are thus inserted in the
kernel by means of the dispersion relations which modify the
oscillator hyperparameters at different spatial frequencies. A
judicious choice of the dispersion relations leads to exactly
solvable expressions for the LDHO spatiotemporal covariance
kernels in the three oscillator regimes (underdamping, critical
damping, and overdamping).

The LDHO kernel functions developed herein provide the
first, to our knowledge, non-separable covariance kernels that
exhibit both space-time interactions and consistent (that is,
not subject to the “shallow hole” effect) oscillatory behav-
ior in time, independently of the input space dimension d.
In addition, the LDHO kernels have their underpinnings in
the paradigmatic harmonic oscillator model and physically
meaningful dispersion functions. The derived isotropic LDHO
covariance kernels involve five hyperparameters (four in the
critical regime). This already rich parametric dependence can
be extended by means of scaling factors along each input
dimension in the spirit of automatic relevance determina-
tion [53].

The hybrid spectral approach can be investigated with
generative ODEs other than LDHO for the temporal Fourier
modes and different dispersion functions. For example, herein
we also developed space-time kernels based on the first-order
generative ODE that corresponds to the Ornstein-Uhlenbeck
process [54]. Higher-order generative ODEs are also useful,
e.g. in calculations of background-error correlations in vari-
ational data assimilation [55]. The spatial roughness of the
covariance kernels can be controlled by the asymptotic decay
of the mode variance. This was demonstrated by deriving
LDHO kernels based on dispersion functions with square ex-
ponential as well as exponential decay. Methods for consistent
estimation of the LDHO kernel hyperparameters as well as
novel algorithms and computational strategies for the efficient
simulation of spatiotemporal LDHO Gaussian processes on
large spatiotemporal grids, are needed. Particularly interesting
is the extension of the hybrid spectral approach to multi-
output (multivariate) Gaussian processes as well as Gaussian
processes on manifolds (e.g., spherical surfaces).

APPENDIX A
PROOF OF GENERATIVE ODE FOR LDHO COVARIANCE

Proof: The EOM for the expectation of the harmonic
oscillator’s displacement is expressed, based on (3), as follows

E
[

d2z(t; ζ)
dt2

]
+

1

τc
E
[

dz(t; ζ)
dt

]
+

1

ω2
0

E[z(t; ζ)] = 0. (47)

Assume that the time derivatives and the expectation operator
commute, being both linear operators [51, p. 398]. Then, if
z(t) ≜ E[z(t; ζ)], the expectation z(t) obeys the linear ODE

d2

dt2
z(t) +

1

τc

d
dt
z(t) +

z(t)

ω2
0

= 0 . (48)

The solution of the ODE is the following damped harmonic
function [56, Chap. 24]

z(t) = A e−t/2τc sin (ωd t+ ϕ0) ,

where the constants A and ϕ0 are determined by initial
conditions. Without loss of generality we assume that z(t =
0) = dz(t = 0)/dt = 0. Then it follows that z(t) = 0 for all
t ≥ 0 and C(τ) = E[z(t+ τ ; ζ) z(t; ζ)].

a) LDHO covariance: To derive the EOM for the co-
variance function we use the SODE (3) at two different times,
t, t′ = t− τ , (i) we duplicate (3) for t and t′; (ii) we multiply
the respective sides of the two equations, and (iii) we calculate
the expectation on both sides of the resulting EOM. The right-
hand side includes the term σ2

η η(t; ζ) η(t
′; ζ); upon calculating

the expectation this leads to σ2
η δ(t− t′) in light of the noise

covariance in (4). For brevity we use zt and żt and z̈t for
z(t; ζ), and its first and second derivatives, respectively. The
term on the left-hand side contains a sum of nine product pairs:

z̈tz̈t′ +
1

τc
z̈tżt′ +

1

ω2
0

z̈tzt′ +
1

τc
żtz̈t′ +

1

τ2c
żtżt′

+
1

τcω2
0

żtzt′ +
1

ω2
0

ztz̈t′ +
1

ω2
0τc

ztżt′ +
1

ω4
0

zt zt′ . (49)

The following lemma is used to evaluate the oscillator’s
covariance EOM.

Lemma 1 (Covariance of process derivatives): Let z(t; ζ)
be a stationary, stochastic process which admits derivatives up
to order n ∈ N in the mean-square sense. Then, the following
identity holds for the covariance of the derivatives of order k
and l, where max(k, l) ≤ n [51, p. 407,417], [4, p. 187]:

E

[
dkz(t; ζ)

dtk
dlz(t′; ζ)

dt′l

]
= (−1)l

dk+lC(τ)

dτk+l

∣∣∣∣
τ=t−t′

.

Lemma 1 is used to evaluate the expectation of the sum-
mation (49) using k, l = 0, 1, 2 according to the order of
derivatives in each product. The expectations of the following
terms then cancel out: the second with the fourth and the sixth
with the eighth. The remaining terms in the covariance EOM
then include

E
[
z̈tz̈t′ +

z̈tzt′ + ztz̈t′

ω2
0

+
żtżt′

τ2c
+
zt zt′

ω4
0

]
= δ(t− t′) . (50)

Finally, the LDHO covariance EOM (6) is obtained by
applying Lemma 1 to the left-hand side of (50).
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APPENDIX B
PROOFS OF LDHO COVARIANCE KERNEL EXPRESSIONS

A. LDHO kernel in underdamping regime

Proof: The temporal Fourier modes of the LDHO kernel
are obtained from (9a) by inserting the dispersion func-
tions (16) and (19) and using the scaling relations (18).

C̃−ω(k, τ) = c0 e
− |τ|B(k)

2τ̃c
−ϵk2

[
cos

(
ω̃dB(k)τ

)
+

1

2ω̃dτ̃c
sin

(
ω̃dB(k)|τ |

)]
. (51)

This can also be expressed in terms of the radial functions
F̃1(k), F̃2(k) as follows

C̃−ω(k, τ) = c0 e
− |τ|

2τ̃c

[
F̃1(k) + F̃2(k)

]
, (52a)

F̃1(k) = e−k2( |τ| b
2τ̃c

+ϵ) cos
(
ω̃d(1 + bk2)|τ |

)
, (52b)

F̃2(k) = e−k2( |τ| b
2τ̃c

+ϵ) sin
(
ω̃d(1 + bk2)|τ |

)
2ω̃dτ̃c

. (52c)

In (52) we replaced τ with |τ | in the cosine term; this is
allowed due to the symmetry of cos(·) under sign changes.
The functions F̃i(·) depend on both k and |τ |, while the Fi(·)
depend on r and τ (where i = 1, 2). For reasons of brevity,
in the following only the dependence of F̃i(·) on k (in the
Fourier domain) and of Fi(·) on r are shown explicitly. Based
on (21) and (52), C(r, τ) is given by

C(r, τ) = c0 e
− |τ|

2τ̃c [F1(r) + F2(r)] , (53)

where Fi(r) = IFTk[F̃i(k)], i = 1, 2. In order to evaluate
Fi(r) we express the harmonic terms as linear combinations
of e±ȷx using Euler’s formula eȷx = cosx+ȷ sinx, for x ∈ R.
By defining ar ≜ |τ | b

2τ̃c
+ϵ, it follows that ar > 0 and the F̃1(k),

F̃2(k) are given by

F̃1(k) =
e−ark

2

2

[
eȷ(ω̃d|τ |+bω̃d|τ | k2) + e−ȷ(ω̃d|τ |+bω̃d|τ |k2)

]
,

F̃2(k) =
e−ark

2

4ȷ ω̃dτ̃c

[
eȷ(ω̃d|τ |+bω̃d|τ |k2) − e−ȷ(ω̃d|τ |+bω̃d|τ |k2)

]
.

Hence, the k-dependent parts of F̃1(k), F̃2(k) comprise the
functions Ĩ±(k) = exp

[
− (ar ± ȷ b ω̃d |τ |) k2

]
:

F̃1(k) =
1

2

[
eȷω̃d|τ | Ĩ+(k) + e−ȷω̃d|τ | Ĩ−(k)

]
,

F̃2(k) =
1

4ȷ ω̃dτ̃c

[
eȷω̃d|τ | Ĩ+(k)− e−ȷω̃d|τ | Ĩ−(k)

]
.

Using the identities Ĩ−(k) = I†+(k), e−ȷω̃d|τ | =
(
eȷω̃d|τ |

)†
,

and z†1z
†
2 = (z1z2)

† for any z1, z2 ∈ C, the functions F̃1(k),
F̃2(k) are expressed in terms of the real and imaginary parts
of the function eȷω̃dτ Ĩ+(k), i.e.,

F̃1(k) = Re
[
eȷω̃d|τ | Ĩ+(k)

]
= cos(ω̃d|τ |)Re

[
Ĩ+(k)

]
− sin(ω̃d|τ |) Im

[
Ĩ+(k)

]
, (54a)

F̃2(k) =
1

2 ω̃dτ̃c
Im

[
eȷω̃d|τ | Ĩ+(k)

]
=

sin(ω̃d|τ |)
2 ω̃dτ̃c

Re
[
Ĩ+(k)

]
+

cos(ω̃d|τ |)
2 ω̃dτ̃c

Im
[
Ĩ+(k)

]
. (54b)

Furthermore, since both Re
[
Ĩ+(k)

]
and Im

[
Ĩ+(k)

]
are

radial functions of k, their inverse Fourier transforms are real-
valued, radial functions of r according to (22b). Let I+(r) ≜
IFTk

[
Ĩ+(k)

]
denote the inverse Fourier transform of Ĩ+(k).

I+(r) comprises real and imaginary parts denoted by gre(r) ≜
Re[I+(r)] and gim(r) ≜ Im[I+(r)]. Then,

IFT
{
Re[Ĩ+(k)]

}
= Re

{
IFT[Ĩ+(k)]

}
= gre(r),

IFT
{
Im[Ĩ+(k)]

}
= Im

{
IFT[Ĩ+(k)]

}
= gim(r) .

Based on the above IFTs and the spectral functions (54), the
inverse Fourier transforms Fi(r) = IFTk[F̃i(k)], i = 1, 2 are
given by

F1(r) = cos(ω̃dτ) gre(r)− sin(ω̃d|τ |) gim(r), (55a)

F2(r) =
sin(ω̃d|τ |)
2 ω̃dτ̃c

gre(r) +
cos(ω̃d|τ |)
2 ω̃dτ̃c

gim(r) . (55b)

The function I+(r) is evaluated by means of the spectral
representation (22b) which involves the following integral

I+(r) ≜
r

(2πr)d/2

∫ ∞

0

kd/2Jd/2−1(kr) e
−(ar+ȷ b ω̃d |τ |)k2

dk .

(56)
Hence, I+(r) can be evaluated using the following lemma [52,
Eq. (6.631.4)].

Lemma 2 (Spectral integral for radial functions): Let Jν(x)
represent the Bessel function of the first kind of order ν ∈ C,
where Re(ν) > −1. Furthermore, let a ∈ C be a constant
coefficient with Re(a) > 0. Then, the following is true:∫ ∞

0

kν+1 Jν(rk) e
−ak2

dk =
rν

(2a)ν+1
e−r2/4a. (57)

Hence, in light of Lemma (2) and by setting ν = d/2− 1,
the function I+(r) defined in (56) is given by the following
complex-valued expression

I+(r) =
e−r2/4a

(4πa)d/2
, where a = ar + ȷ b ω̃d |τ | . (58)

If we define β ≜ 1/4a, since 1/a = a†/|a|2, it follows that
β = βr + ȷβi, where

βr =
ar

4(a2r + b2 ω̃2
d |τ |2)

, βi = − b ω̃d |τ |
4(a2r + b2 ω̃2

d |τ |2)
. (59a)
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In polar representation, β is expressed as β = |β| e ȷϕ, where

|β| = 1

4
√
a2r + b2 ω̃2

d |τ |2
, ϕ = tan−1

(
−b ω̃d |τ |

ar

)
. (59b)

In light of (59), the function I+(r) in (58) is expressed as

I+(r) = e−βr2
(
β

π

)d/2

=

(
|β|
π

)d/2

e−βrr
2−ȷ(βir

2−dϕ/2) .

Using the expressions for βr, βi given by (59a) and for |β|
given by (59b), we obtain the following expressions for the
real and imaginary parts of I+(r)

gre(r) =
e−λ2r2 cos

(
κ2r2 + dϕ

2

)
(
4π

√
a2r + b2 ω̃2

d |τ |2
)d/2

, (60a)

gim(r) =
e−λ2r2 sin

(
κ2r2 + dϕ

2

)
(
4π

√
a2r + b2 ω̃2

d |τ |2
)d/2

, (60b)

where κ2 = b ω̃d |τ |/4(a2r + b2 ω̃2
d |τ |2), λ2 = arκ

2/b ω̃d |τ |.
Finally, the LDHO kernel (23) is obtained by combin-

ing (53), (55) and (60).

B. LDHO kernel in overdamping regime

Proof: The temporal Fourier modes of the LDHO kernel
are obtained from (9b)-(9c) by inserting the dispersion func-
tions (16) and (19) and using the scaling relations (18). This
leads to

C̃−ω(k, τ) =
c0 e

−ϵk2

2ω̃dB(k)

e−
|τ|

τs(k)

τf (k)
− e

− |τ|
τf (k)

τs(k)

 . (61)

In light of (9c) and taking account of the dispersion relations,
the fast and slow decay times transform as follows

τs(k) =
2τ̃c

B(k) (1− 2τ̃cω̃d)
, (62a)

τf (k) =
2τ̃c

B(k) (1 + 2τ̃cω̃d)
. (62b)

Based on (62), the functions B(k) in (61) cancel out, and the
temporal Fourier modes are given by

C̃−ω(k, τ) =
c0 e

−ϵk2

4ω̃dτ̃c

[
βf e

− βs|τ|B(k)
2τ̃c − βs e

−
βf |τ|B(k)

2τ̃c

]
,

(63)
where βs = 1 − 2τ̃cω̃d and βf = 1 + 2τ̃cω̃d. Recalling (19a)
for B(k), the IFT expression (21) for the LDHO kernel, and
the linearity of the IFT, it follows that

C(r, τ) =
c0

4ω̃dτ̃c
[βfCs(r, τ)− βsCf (r, τ) ] , (64)

where

Cj(r, τ) = e−
βj |τ|
2τ̃c IFT

[
e−

b βj |τ| k2

2τ̃c
−ϵk2

]
, j = s, f . (65)

The IFTs in (65) can be evaluated using the following
lemma.

Lemma 3 (Inverse Fourier Transform of a Gaussian): The
IFT of a square exponential (Gaussian), radial spectral function

exp(−ck2) where c > 0 and k = ∥k∥ for k ∈ Rd (d ∈ N),
is a Gaussian radial function of r = ∥r∥ where r ∈ Rd is a
vector in the direct space. More precisely, for c = a2/4 where
a > 0 it holds that [4, p. 160]

IFT[ e−a2 k2/4] = e−(r/a)2/
(
a
√
π
)d
. (66)

Hence, setting a2 = 2b|τ |βj/τ̃c + 4ϵ for j = s, f , it follows
from Lemma 3 that the functions Cj(r, τ) in (65) are given
by

Cj(r, τ) =
τ̃
d/2
c e−

βj |τ|
2τ̃c e

− r2τ̃c
2b|τ|βj+4ϵτ̃c

(2πb βj |τ |+ 4πϵτ̃c)
d/2

. (67)

Finally, the overdamped LDHO covariance kernel (28) is
obtained from (64) and (67).

C. LDHO kernel in critical-damping regime

Proof: The LDHO temporal Fourier modes are obtained
from (9d) by inserting the dispersion functions (16) and (19)
and using the scaling relations (18). Thus, we get

C̃−ω(k, τ) = c0e
− |τ|B(k)

2τ̃c
−ϵk2

[
1 +

|τ |B(k)

2τ̃c

]
. (68)

Recalling (19a) for B(k), it follows that

C̃−ω(k, τ) = c0e
− |τ|(1+bk2)

2τ̃c
−ϵk2

(
1 +

|τ |
2τ̃c

+
b k2|τ |
2τ̃c

)
.

(69)
Based on the linearity of the IFT we obtain

C(r, τ) =c0e
− |τ|

2τ̃c

(
1 +

|τ |
2τ̃c

)
C1(r, τ)

+
c0b |τ |
2τ̃c

e−
|τ|
2τ̃c C2(r, τ), (70)

where

C1(r, τ) =IFT
[
e−k2(ϵ+ b|τ|

2τ̃c
)
]
, (71a)

C2(r, τ) =IFT
[
k2 e−k2(ϵ+ b|τ|

2τ̃c
)
]
. (71b)

The IFTs in (71) can be calculated using Lemma 3; more
precisely, by setting a2 = 4ϵ+ 2b|τ |

τ̃c
it follows that

C1(r, τ) =

(
τ̃c

2π b|τ |+ 4πϵτ̃c

)d/2

e−r2τ̃c/(2 b|τ |+4ϵτ̃c). (72)

To calculate C2(r, τ) we use the fact that ∥k∥2 is the
image of the Laplace operator −∇2 =

∑d
i=1 ∂

2/∂r2i under
the Fourier transform [31]. Hence, it follows from (70) that
C2(r, τ) = −∇2C1(r, τ).

Lemma 4 (The Laplacian of Gaussian): Let r = ∥r∥, r ∈
Rd and assume that C1(r, τ) = e−c(τ)r2 , where c(τ) > 0 for
all τ ∈ R. Then, the Laplacian of C1(r, τ) is given by

∇2 e−c(τ)r2 =
[
4r2 c2(τ)− 2d c(τ)

]
e−c(τ)r2 . (73)

Proof: The Laplacian of a radial function, i.e., C1(r, τ),
is given by [4, p. 190]

∇2C1(r, τ) =
d2C1(r, τ)

dr2
+

(
d− 1

r

)
dC1(r, τ)

dr
.
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The Laplacian of the square exponential (73) follows from
the above and the independence of c(τ) on r.

Next, we apply Lemma 4 to C2(r, τ) = −∇2C1(r, τ),
where c(τ) → τ̃c/ (2 b|τ |+ 4ϵτ̃c), to obtain

C2(r, τ) =

(
dτ̃c

b|τ |+ 2ϵτ̃c
− r2τ̃2c

(b|τ |+ 2ϵτ̃c)2

)
e−

r2τ̃c
2 b|τ|+4ϵτ̃c .

(74)
Finally, by combining (70) with (72) and (74) the critically

damped LDHO kernel (31) is obtained.
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Supplementary Information

S1. ESTIMATION OF LDHO MODEL FROM SYNTHETIC DATA

In this section we focus on estimating the hyperparameters of the LDHO covariance kernel in the underdamped regime
using a synthetic dataset.

A. Data

The synthetic data are simulated on a space-time grid (si, tj) with dimensions 64 × 64 × 128 where i = 1, . . . , 64 and
j = 1, . . . , 128. The data are drawn from a joint Gaussian distribution with an underdamped LDHO covariance kernel using
the Fast Fourier transform spectral simulation method [4]. In Fig. 4 we illustrate the spatial distribution of the data for the first
nine time slices. Fig. 5 shows nine time series of the data drawn from the nodes with coordinates

(
si, si, {tj}Nt

j=1

)
, where

i ∈ {1, 8, 15, 22, 29, 36, 43, 50, 57}, where Nt = 128 is the number of times and Ns = 64× 64 is the total number of spatial
nodes.

Fig. 4. First nine time slices of the synthetic data corresponding to z(s, t), where t = 1, . . . , 9.

B. Estimation Method

The method of maximum likelihood estimation (MLE) is commonly used to determine kernel hyperparameters [1] since
it is computationally efficient [21]. However, MLE is computationally intensive and thus impractical for the current dataset
which contains N ⪆ 105 sampling points. Hence, for large datasets approximations based on composite likelihoods are often
used [57].

Herein we opt for the method of moments in which the hyperparameters are fitted by fitting the “theoretical” kernel function
to sample-based kernel estimates [58]. The method of moments is computationally more efficient and provides an easy visual
assessment of the quality of the fit. More specifically, instead of the covariance we use the semi-variogram function (also
known as structure function, henceforward “variogram” for short) defined by [13], [58]

γ(r, τ) =
1

2
Var [z(s+ r, t+ τ)− z(s, t)] , (75)
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Fig. 5. Time series of the synthetic data corresponding to z(si, si, t) where si = 7 (i− 1) + 1, and i = 1, 2, . . . , 9.

where Var[·] ≜ E[·2]− E2[·] is the variance operator. For stationary processes, it holds that

γ(r, τ) = C(0, 0)− C(r, τ) .

Hence, the variogram is equivalent to the covariance for stationary processes. However, estimation of the former is often
preferred because (i) the variogram is purely a function of the space-time lags for processes that are non-stationary but satisfy
the intrinsic hypothesis—the process z(s, t) is non-stationary but the increments z(s+ r, t+ τ)− z(s, t) are stationary—and
(ii) if the mean of z(s, t) is constant but unknown, the sample-based variogram is an unbiased estimator while the covariance
is not.

The variogram fitting is performed by means of the approximate weighted least squares method [58, Eq. (2.6.12]. The
Matlab® constrained minimization function fmincon is employed using the interior point algorithm, a maximum of 104

function evaluations and iterations, and tolerances equal to 10−4. We first fit the marginal spatial and temporal variograms [17],
[59] to obtain initial estimates of the hyperparameters followed by a fit of the full LDHO kernel to the space-time variogram.
The main steps of the estimation procedure are as follows:

1) The spatial omnidirectional marginal variogram is estimated from the data for Nc;S spatial classes by averaging the
spatial variograms obtained for each time instant as follows:

γ̂t(rk) =
1

2N(rk)

NS∑
j=1

NS∑
j=1

I (Ark;i,j) [z(si, t)− z(sj , t)]
2
, k = 1, . . . , Nc;S , t = 1, . . . , NT , (76a)

Ar;i,j = true if r − δr ≤ ∥si − sj∥ ≤ r + δr and Ar;i,j = false otherwise, (76b)

γ̂S(rk) =
1

NT

NT∑
t=1

γ̂t(rk) . (76c)

I(A) is the indicator function: I(A) = 1 if A is true and I(A) = 0 if A is false, while δr is the tolerance of the spatial
lag (all lags in [r − δr, r + δr] are considered in the lag bin associated with r). NS = 642 is the number of grid nodes
per time slice, while NT = 128 is the number of time slices. N(rk) =

∑NS

j=1

∑NS

j=1 I (Ark;i,j) is the number of node
pairs that contribute to the lag rk, k = 1, . . . , Nc;S .

2) The spatial marginal variogram is fitted to the respective LDHO marginal model using the method of weighted least
squares. This leads to estimates for the hyperparameters ĉ0, ϵ̂, and an uncorrelated noise variance, σ̂2

η;S .
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Fig. 6. Marginal spatial (left) and temporal (right) variograms. The broken line (blue online) and circle markers denote the sample-based variograms while
the continuous line (orange online) denotes the optimal fit to the LDHO marginal variograms.

3) Next, we estimate the temporal marginal variogram for Nc;T temporal classes based on a spatial averaging of the temporal
variograms per location, i.e.,

γ̂i(τm) =
1

2(NT −m)

NT−m∑
ℓ=1

[z(si, tℓ+m)− z(si, tℓ)]
2
, i = 1, . . . , NS ; m = 1, . . . Nc;T , (77a)

γ̂T(τm) =
1

NS

NS∑
i=1

γ̂i(τm) , (77b)

where NS and NT are respectively the number of sampling points per time slice, and the number of sampling times at
each location.

4) The temporal marginal variogram is fitted to the respective LDHO marginal model. This leads to estimates for the
hyperparameters b, ωd, τc and an uncorrelated noise variance, σ̂2

η;T .
5) We then estimate the space-time variogram based on

γ̂(rk, τm) =
1

Nk,m

NS∑
i=1

NS∑
j=1

NT−ℓ∑
ℓ=1

I (Ark;i,j) [z(si, tℓ+m)− z(sj , tℓ)]
2
, (78)

where Nk,m = (NT −m)N(rk).
6) We fit the estimate γ̂(rk, τm) to the LDHO model using as initial estimates for the hyperparameters the estimates derived

from the marginal variograms—for the noise variance which is estimated from both the temporal and spatial marginal
variograms, we use min(σ̂2

η;T , σ̂
2
η;S).

C. Parameter estimation for the synthetic data

For the underdamped LDHO model, the marginal variograms are given by the equations below.
Spatial marginal variogram:

γS(r) = c1

(
1− e−r2/4ϵ

)
+ σ̂2

η;S I(r > 0), c1 =
c0

(4πϵ)d/2
, (79)

Temporal marginal variogram:

γT(τ) =
c1

{
1− e−

|τ|
2τ̃c

[
cos

(
ω̃d|τ |+ dϕ

2

)
+ 1

2 ω̃dτ̃c
sin

(
ω̃d|τ |+ dϕ

2

)]}
[(

b|τ |
2τ̃cϵ

+ 1
)2

+
(

b ω̃d |τ |
ϵ

)2
]d/4 + σ̂2

η;T I(|τ | > 0) , (80)

where ϕ = tan−1
(

−2b ω̃d |τ |τ̃c
b |τ |+2ϵτ̃c

)
and σ̂2

η;T , σ̂2
η;S are noise variances. The hyperparameters are defined in Section V.C.1 of the

main manuscript.
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Fig. 7. Space-time variogram curves for fixed temporal lags. The two columns on the left compare the sample-based variograms (continuous lines) with the
respective curves obtained from the theoretical expression (circle markers) using the initial hyperparameter estimates (based on fitting the marginal functions).
The respective columns on the right represent the same comparison, but the theoretical expressions are used with the hyperparameters obtained by fitting the
full space-time variogram obtained by (78). The horizontal axis in the plots represents the spatial lag.

The fits between the sample-based marginal variograms obtained from (76)-(77) and the respective theoretical models (79)-
(80) are shown in Fig. 6. The plots reveal excellent agreement between the theoretical values and the sample estimates. The
estimates of the LDHO kernel hyperparameter vector θ0 based on the marginal kernels is:

ĉ1 = 450.75× 103, ϵ̂ = 17.0, σ̂2
η;S = 330.4, ω̂d = 0.78, τ̂c = 8.04, b̂ = 0.19, σ̂2

η;S = 305.59 . (81)

The space-time sample-based variogram is then estimated using (78). Using θ0 as initial values in the constrained minimization
procedure, we obtain the following estimates for the LDHO kernel hyperparameter vector θ∗:

c∗1 = 444.19× 103, ϵ∗ = 14.51, ω∗
d = 0.75, τ∗c = 5.24, b∗ = 0.44, σ∗

η
2 = 366.71 . (82)

We illustrate the fitness of the kernel hyperparameters by plotting the sample-based variogram (78) against the theoretical
expression corresponding to (23). To ease the comparison, we use parametric plots obtained first by keeping τ fixed (cf. Fig. 7)
and then by keeping r fixed (cf. Fig. 8). The first two columns of each figure compare the estimated space-time variogram
curves with the respective theoretical expressions derived from (23) equipped with the initial parameter vector θ0 (81). The
last two columns repeat the comparison using θ from (81). Each curve in Fig. 8 corresponds to a different fixed τ , while the
curves in Fig. 7 correspond to different fixed r. As evidenced in these plots, improved agreement between the sample-based and
the theoretical variogram is obtained by using θ instead of θ0. Overall, there are more discrepancies between the theoretical
model and the sample-based variogram than in the case of the marginal variograms. This is due to the fact that sample-based
marginal variograms are subject to smoothing caused by averaging over multiple time slices or spatial locations.

S2. THE ROLE OF THE INTERACTION RATIO ON PREDICTION

In Gaussian process regression, the prediction at an unmeasured point (s∗, t∗) is determined by the conditional mean [1], [4]
which involves the covariance kernel. Let us consider the following thought experiment: We assume a stationary process z(s, t)
with known constant mean m and covariance model C(r, τ). We aim to predict the values of the process (s∗, t∗) assuming
that there is only one sampling point, (s0, t0), in the “neighborhood” of (s∗, t∗) (this means that other sampling points are
sufficiently far in space-time to consider their influence negligible. Then, the forecast can be expressed as [4], [13]

ẑ∗ = m+
C(∥s∗ − s0∥, τ∗ − τ0)

C(0, 0)
(z0 −m) , (83)

where ẑ∗ is the conditional mean at (s∗, t∗), z0 is the sample value at (s0, t0), and C(∥s∗ − s0∥, τ∗ − τ0) is the non-separable
LDHO kernel.

The predictive equation can also be expressed as

ẑ′∗ =
C(∥s∗ − s0∥, τ∗ − τ0)

C(0, 0)
z′0 , (84)

where ẑ′∗ = ẑ∗ −m and z′0 = z0 −m are fluctuations of the process around the global mean.



IEEE TRANSACTIONS ON INFORMATION THEORY 21

Fig. 8. Space-time variogram curves for fixed spatial lags. The two columns on the left compare the estimated variograms (continuous lines) with the respective
curves obtained from the theoretical expression (circle markers) using the initial hyperparameter estimates (derived by fitting the marginal functions). The
respective columns on the right represent the same comparison, but the theoretical expressions are used with the hyperparameters obtained by fitting the full
space-time variogram. The horizontal axis in the plots represents time lags.

Let us now consider that instead of using the non-separable covariance kernel, we use the separable model K(r, τ) =
K1(r)K2(τ). Furthermore, we assume that the separable model has the same marginal kernels as the non-separable model,
i.e., KS(r) = CS(r) and KT (τ) = CT(τ). The following relations hold between the separable model and the marginals of the
non-separable model:

CS(r) ≜ K(r, 0) = K2(0)K1(r) ,

CT(τ) ≜ K(0, τ) = K1(0)K2(τ) ,

Thus, the product of the non-separable model’s marginal kernels is given by

CS(r)CT(τ) = K1(0)K2(0)K1(r)K2(τ) = C(0, 0)K1(r)K2(τ) , (85)

where in deriving the above we took into account that C(0, 0) = K(0, 0).
The predictive equation for the separable model becomes

z̃′∗ =
K(∥s∗ − s0∥, τ∗ − τ0)

K(0, 0)
z′0 =

K1(∥s∗ − s0∥)K2(τ∗ − τ0)

C(0, 0)
z′0 , (86)

where z̃′∗ is the conditional mean under the separable model. Then, using (85) it follows that

z̃′∗ =
CS(∥s∗ − s0∥)CT(τ∗ − τ0)

C2(0, 0)
z′0 . (87)

Finally, assuming that z′0 ̸= 0, it follows from (84) and (87) that the ratio of the two predictors (i.e., ẑ′∗ for the non-separable
model over z̃′∗ for the separable model) is given by

ẑ′∗
z̃′∗

=
C(∥s∗ − s0∥, τ∗ − τ0)C(0, 0)

CS(∥s∗ − s0∥)CT(τ∗ − τ0)
= Qint(∥s∗ − s0∥, τ∗ − τ0) . (88)

Hence, the interaction ratio Qint(∥s∗ − s0∥, τ∗ − τ0) determines the relative change obtained by introducing a non-separable
kernel with space-time interactions to the prediction obtained from the separable kernel. Note that the LDHO marginal temporal
kernel given by (26) in the main text has a harmonic dependence that involves τ but not r, while the space-time kernel given
by (23) in the main manuscript involves a harmonic term that depends on both r and τ .

The dependence of the interaction ratio on the hyperparameter values and the space/time lags is illustrated in Fig. 9 which
shows parametric plots of Qint(r, τ) for the LDHO kernel in the underdamped regime. Considering the interaction ratio as
a function of r under constant τ , we observe that values of larger magnitude tend to appear for increasing r; both the sign
and magnitude of Qint(r, τi) for fixed τi depend on the value of the interaction parameter b. On the other hand, the plots
Qint(ri, τ) display characteristic peaks at certain times which are caused by near-zero values of the LDHO marginal temporal
kernel.
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Fig. 9. Parametric plots of the interaction ratio for the LDHO kernel in the underdamped regime with two different values of the interaction parameter
b = 0.4 (top) and b = 4 (bottom). The left column presents Qint(r, τ) as functions of r for fixed τ , while the right column presents plots of Qint(r, τ) as
functions of τ for fixed r. The other hyperparameter values are: d = 2, ωd = 3π/2, τc = 2, ϵ = 3.

S3. LDHO COVARIANCE KERNEL: MODEL WITH LINEAR B(k) AND EXPONENTIAL DECAY OF A(k)

A. General

In order to construct the spatiotemporal kernels by means of the hybrid spectral matching approach, we use temporal Fourier
modes, C̃−ω(k, τ ;θ) which are obtained from the purely temporal kernels, derived from the respective ODE, by replacing the
constant coefficients with suitable dispersion functions.

The spatiotemporal kernel is then given by means of the inverse Fourier transform (22b). In the LDHO case the temporal
kernels are given in each regime by means of the functions (9).

The general form of the dispersion functions for radial dependence is given by

σ2 → σ2(k) = σ2
0A(k), τc → τc(k) =

τ̃c
B(k)

, ω0 → ω0(k) = ω̃0B(k), (89)

where ω̃0, τ̃c ∈ R+, A(k), B(k) > 0 for all k > 0.
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Definition 6 (Dispersion functions with linear in k dependence): Let us assume that A(k) and B(k) are given by the
following radial dispersion functions:

B(k) =1 + ξk, ξ > 0, (90a)

A(k) =e−ϵk B(k), ϵ > 0. (90b)

The function B(k) in (90a) implies that τc(k) ∼ k, whereas ω0(k) ∼ k for k → ∞. The function A(k) defined in (90b) is
dominated by the exponential decay, implying a rapid decrease of σ2(k) for k → ∞. The choice A(k) = e−ϵkB(k) leads to
A(k)/B(k) = e−ϵk.

The resulting spatiotemporal LDHO covariance kernels for each regime are derived below. For notational convenience the
hyperparameter c0 ≜ σ2

0/2τ̃cω̃
2
0 is introduced.

B. Underdamping

This regime is obtained for ω̃0τ̃c > 1/2. The temporal Fourier modes, based on (9a) and the dispersion relations, are given
by

C̃−ω(k, τ) = c0 e
−|τ | (1+ξk)/2τ̃c−ϵ k

[
cos (ω̃d (1 + ξk) τ) +

sin (ω̃d (1 + ξk) |τ |)
2ω̃dτ̃c

]
. (91)

Theorem 8 (LDHO kernel in underdamped regime): In this case, the LDHO spatiotemporal kernel generated by the IFT of
the temporal Fourier modes (91). This leads to the following expressions:

C(r, τ) = c0 e
− |τ|

2τ̃c [F1(r, τ) + F2(r, τ)] , (92a)

F1(r, τ) = cos(ω̃dτ) gre(r, τ)− sin(ω̃d|τ |) gim(r, τ), (92b)

F2(r, τ) =
sin(ω̃d|τ |)
2 ω̃dτ̃c

gre(r, τ) +
cos(ω̃d|τ |)
2 ω̃dτ̃c

gim(r, τ) , (92c)

gre(r, τ) =
Γ(d+1

2 )

π(d+1)/2

√
a2Re + a2Im cos

(
(d+1)γ

2 − ϕ
)

[
(a2Re + a2Im + r2)

2 − 4a2Im r
2
](d+1)/4

, (92d)

gim(r, τ) =
Γ(d+1

2 )

π(d+1)/2

√
a2Re + a2Im sin

(
(d+1)γ

2 − ϕ
)

[
(a2Re + a2Im + r2)

2 − 4a2Im r
2
](d+1)/4

, (92e)

where r, τ are, respectively, the spatial and temporal lags. The quantities aRe, aIm, γ and ϕ are space-time interaction functions
given by

aRe =
ξ |τ |
2τ̃c

+ ϵ , (92f)

aIm = ξ |τ | ω̃d , (92g)

tan γ =
2aIm aRe

a2Re − a2Im + r2
, (92h)

tanϕ =
aIm
aRe

. (92i)

Proof: The temporal Fourier modes are obtained from (91).

C̃−ω(k, τ) = c0 e
− |τ|

2τ̃c

[
F̃1(k) + F̃2(k)

]
, (93a)

F̃1(k) = e−k( |τ| ξ
2τ̃c

+ϵ) cos
(
ω̃d(1 + kξ)|τ |

)
, (93b)

F̃2(k) = e−k( |τ| ξ
2τ̃c

+ϵ) sin
(
ω̃d(1 + kξ)|τ |

)
2ω̃dτ̃c

. (93c)

For reasons of brevity, in the following only the dependence of F̃i(·) on k (in the Fourier domain) and of Fi(·) on r are
shown explicitly. Based on (93), C(r, τ) is given by the following function

C(r, τ) = c0 e
− |τ|

2τ̃c [F1(r) + F2(r)] , (94)
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where Fi(r) = IFTk[F̃i(k)], i = 1, 2. In order to evaluate Fi(r) we express the harmonic terms as linear combinations of
e±ȷx using Euler’s formula eȷx = cosx + ȷ sinx, for x ∈ R. By defining aRe ≜ |τ | ξ

2τ̃c
+ ϵ, it follows that aRe > 0 and the

F̃1(k), F̃2(k) are given by

F̃1(k) =
e−aRek

2

[
eȷ(ω̃d|τ |+ξω̃d|τ | k) + e−ȷ(ω̃d|τ |+ξω̃d|τ |k)

]
,

F̃2(k) =
e−aRek

4ȷ ω̃dτ̃c

[
eȷ(ω̃d|τ |+ξω̃d|τ |k) − e−ȷ(ω̃d|τ |+ξω̃d|τ |k)

]
.

Hence, the k-dependent parts of F̃1(k), F̃2(k) comprise the functions Ĩ±(k) = exp [− (aRe ± ȷ ξ ω̃d |τ |) k] :

F̃1(k) =
1

2

[
eȷω̃d|τ | Ĩ+(k) + e−ȷω̃d|τ | Ĩ−(k)

]
,

F̃2(k) =
1

4ȷ ω̃dτ̃c

[
eȷω̃d|τ | Ĩ+(k)− e−ȷω̃d|τ | Ĩ−(k)

]
.

Using the identities Ĩ−(k) = I†+(k), e
−ȷω̃d|τ | =

(
eȷω̃d|τ |

)†
, and z†1z

†
2 = (z1z2)

† for any z1, z2 ∈ C, the functions F̃1(k), F̃2(k)

are expressed in terms of the real and imaginary parts of the function eȷω̃dτ Ĩ+(k), i.e.,

F̃1(k) = Re
[
eȷω̃d|τ | Ĩ+(k)

]
= cos(ω̃d|τ |)Re

[
Ĩ+(k)

]
− sin(ω̃d|τ |) Im

[
Ĩ+(k)

]
, (95a)

F̃2(k) =
1

2 ω̃dτ̃c
Im

[
eȷω̃d|τ | Ĩ+(k)

]
=

sin(ω̃d|τ |)
2 ω̃dτ̃c

Re
[
Ĩ+(k)

]
+

cos(ω̃d|τ |)
2 ω̃dτ̃c

Im
[
Ĩ+(k)

]
. (95b)

Since both Re
[
Ĩ+(k)

]
and Im

[
Ĩ+(k)

]
are radial functions of k, their inverse Fourier transforms are real-valued, radial

functions of r according to (22b). Let I+(r) ≜ IFTk

[
Ĩ+(k)

]
denote the inverse Fourier transform of Ĩ+(k). I+(r) comprises

real and imaginary parts denoted by gre(r) ≜ Re[I+(r)] and gim(r) ≜ Im[I+(r)]. Then,

IFT
{
Re[Ĩ+(k)]

}
= Re

{
IFT[Ĩ+(k)]

}
= gre(r),

IFT
{
Im[Ĩ+(k)]

}
= Im

{
IFT[Ĩ+(k)]

}
= gim(r) .

Based on the above IFTs and the spectral functions (95), the inverse Fourier transforms Fi(r) = IFTk[F̃i(k)], where i = 1, 2
are given by (55).

The function I+(r) is evaluated by means of the spectral representation (22b) which involves the following integral

I+(r) ≜
r

(2πr)d/2

∫ ∞

0

kd/2Jd/2−1(kr) e
−(aRe+ȷ ξ ω̃d |τ |)k dk . (96)

Hence, I+(r) can be evaluated using the lemma [52, Eq. (6.623.2)].
Lemma 5 (Spectral integral for radial functions): Let Jν(x) represent the Bessel function of the first kind of order ν ∈ C,

where Re(ν) > −1. Furthermore, let a ∈ C be a constant coefficient with Re(a) > 0. Then, the following is true∫ ∞

0

kν+1 Jν(rk) e
−akdk =

2a (2r)ν

(a2 + r2)
ν+3/2

Γ
(
ν + 3

2

)
√
π

. (97)

Hence, in light of Lemma (5) and by setting ν = d/2 − 1, the function I+(r) defined in (96) is given by the following
complex-valued expression

I+(r) =
2a r (2r)ν

(2πr)d/2 (a2 + r2)
ν+3/2

Γ
(
ν + 3

2

)
√
π

=
Γ(d+1

2 )

π(d+1)/2

a

(a2 + r2)
(d+1)/2

, (98)

where a = aRe + ȷ ξ ω̃d |τ | . Then, using gre(r) ≜ Re[I+(r)] and gim(r) ≜ Im[I+(r)] we obtain

gre(r, τ) =
Γ(d+1

2 )

π(d+1)/2

aRe cos
(

(d+1)γ
2

)
+ aIm sin

(
(d+1)γ

2

)
[
(a2Re + a2Im + r2)

2 − 4a2Im r
2
](d+1)/4

, (99a)

gim(r, τ) =
Γ(d+1

2 )

π(d+1)/2

aRe sin
(

(d+1)γ
2

)
− aIm cos

(
(d+1)γ

2

)
[
(a2Re + a2Im + r2)

2 − 4a2Im r
2
](d+1)/4

, (99b)
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where tan γ = 2aReaIm/(a
2
Re − a2Im + r2). Equations (92d) and (92e) follow by defining ϕ = tan−1(aIm/aRe). Finally, the

LDHO kernel (92) is obtained by combining (94), (55) and (99).

The kernel equations can be cast in a different but equivalent form (see main text) by defining

g0(r, τ) =
Γ(d+1

2 )

π(d+1)/2

(
a2Re + a2Im

)1/2[
(a2Re + a2Im + r2)

2 − 4a2Imr
2
](d+1)/4

(100)

and using trigonometric identities so that

F1(r, τ) = g0(r, τ) cos

(
ω̃dτ +

(d+ 1)γ

2
− ϕ

)
, (101a)

F2(r, τ) =
g0(r, τ)

2ω̃dτ̃c
sin

(
ω̃dτ +

(d+ 1)γ

2
− ϕ

)
. (101b)

a) Kernel hyperparameters: The kernel function (23) includes five independent hyperparameters: c0, τ̃c, ω̃d, ϵ, ξ. The first
three have the same physical significance as their counterparts of the LDHO model with O(k2) dependence of the dispersion
relation. The hyperparameter ϵ plays a similar role but has length dimensions (instead of length squared). The hyperparameter
ξ, which replaces b, has dimensions of length and—like b—determines the rate at which the non-damped resonance frequency
increases and the damping time drops with k. The phase of the oscillatory kernel functions depends on the space-time phase
γ(r, τ) and the time-dependent phase ϕ(τ).

Remark 12 (Kernel dependence on d): C(r, τ) depends on the spatial dimension d via the factor Γ(d+1
2 )/π(d+1)/2, the phase

factor (d+ 1)γ(r, τ)/2, and the denominators in the damped oscillatory functions gre(r, τ) and gim(r, τ)—or equivalently of
the non-oscillating function g0(r, τ).

The LDHO covariance kernel is illustrated in Fig. 10. A combination of a relatively slow damping time τ̃c = 3 and a
fast oscillation frequency, ω̃d = 3π/2, generate four ridges with decaying amplitude as τ increases. A smaller value of τ̃c
(not shown) leads to faster decay and fewer oscillation peaks. The plot also exhibits spatiotemporal interaction, i.e., spatial
oscillation patterns that appear as ripples on the (r, τ) plane.

Remark 13 (Variance decay scale): The variance decay scale ϵ ensures that the variance C(r = 0, τ = 0) is stable. For τ = 0
it holds that ϕ(0) = γ(r, 0) = 0 because aIm = 0. This also leads to F2(r, 0) = 0. Hence, C(r, 0) = c0 F1(r, 0) = c0 g0(r, 0),
where

g0(r, 0) =
Γ(d+1

2 )

π(d+1)/2

ϵ

(ϵ2 + r2)
(d+1)/2

. (102)

Hence, g0(0, 0) = ϵ−d Γ( d+1
2 )

π(d+1)/2 . If ϵ = 0, the limit of C(0, τ) as τ → 0 does not exist.

Proposition 4 (Spatial marginal covariance): In the underdamped regime, the spatial marginal covariance of the LDHO
kernel (23) at τ = 0 is given by the square exponential kernel

CS(r) = c0
Γ(d+1

2 )

π(d+1)/2

ϵ

(ϵ2 + r2)
(d+1)/2

. (103)

Proof: From (23) for τ = 0 it follows that CS(r) = c0 [F1(r, 0) + F2(r, 0)]. Furthermore, F1(r, 0) = g0(r, 0) and
F2(r, 0) = 0. Using (102) for g0(r, 0) we obtain (103).

Proposition 5 (Temporal marginal covariance): In the underdamped regime, the temporal marginal covariance of the LDHO
kernel (23) at r = 0 is given by

CT(τ) =
c0 e

− |τ|
2τ̃c Γ(d+1

2 )

π(d+1)/2

(
a2Re + a2Im

)−d/2
[
cos (ω̃dτ + φ(τ)) +

1

2ω̃dτ̃c
sin (ω̃dτ + φ(τ))

]
, (104)

where φ(τ) = (d+1)
2 γ0(τ) − ϕ(τ), tan γ0(τ) = 2aIm(τ)aRe(τ)

a2
Re(τ)−a2

Im(τ)
; aRe, aIm are defined in (92f) and (92g) respectively, γ0(τ)

in (92h), and ϕ(τ) in (92i).
Proof: The result is obtained from (94) using (100) and (101). Setting r = 0 in g0(r, τ), the following expression is

obtained

g0(r = 0, τ) =
Γ(d+1

2 )

π(d+1)/2

(
a2Re + a2Im

)−d/2
. (105)

Plugging this in (101), the equation (101) leads to (104).



IEEE TRANSACTIONS ON INFORMATION THEORY 26

Fig. 10. Normalized C(r, τ) and isolevel contour lines (red online) in the underdamped regime, obtained from (23) using ω̃d = 3π/2, τ̃c = 3, ξ = 0.4,
ϵ = 1, and d = 2.

C. Overdamping

This regime is obtained for ω̃0τ̃c < 1/2. The temporal Fourier modes, based on (9b) and the dispersion relations, are given
by

C̃−ω(k, τ) =
c0 e

−ϵk

2ω̃dB(k)

e−
|τ|

τs(k)

τf (k)
− e

− |τ|
τf (k)

τs(k)

 . (106)

Theorem 9 (LDHO kernel in overdamped regime): The LDHO spatiotemporal kernel is given by

C(r, τ) =
c∗0 βf e

− βs|τ|
2τ̃c[(

ξβs|τ |
2τ̃c

+ ϵ
)2

+ r2
](d+1)/2

− c∗0 βs e
−

βf |τ|
2τ̃c[(

ξβf |τ |
2τ̃c

+ ϵ
)2

+ r2
](d+1)/2

, (107)

where c∗0 =
c0 Γ(

d+1
2 )

4ω̃d τ̃c π(d+1)/2
, βs = 1− 2τ̃cω̃d, βf = 1 + 2τ̃cω̃d.

Proof: The temporal Fourier modes of the LDHO kernel are obtained from (9b) leading to (106). In light of (9c) and
taking account the dispersion relations, the fast and slow decay times transform as follows

τs(k) =
2τ̃c

B(k) (1− 2τ̃cω̃d)
, (108a)

τf (k) =
2τ̃c

B(k) (1 + 2τ̃cω̃d)
. (108b)
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Based on (108), the functions B(k) in (106) cancel out, and the temporal Fourier modes are given by

C̃−ω(k, τ) =
c0 e

−ϵk

4ω̃dτ̃c

[
βf e

− βs|τ|B(k)
2τ̃c − βs e

−
βf |τ|B(k)

2τ̃c

]
, (109)

where βs = 1− 2τ̃cω̃d and βf = 1+ 2τ̃cω̃d. Recalling (19a) for B(k), the IFT expression (22b), and the linearity of the IFT,
it follows that

C(r, τ) =
c0

4ω̃dτ̃c
[βfCs(r, τ)− βsCf (r, τ) ] , (110)

where

Cj(r, τ) = e−
βj |τ|
2τ̃c IFT

[
e−

ξ βj |τ| k
2τ̃c

−ϵk

]
=

e−
βj |τ|
2τ̃c

(2π)d/2 rν

∫ ∞

0

dkkd/2 Jν(kr) e
−ajk , j = s, f , (111)

where aj =
βjξ|τ |
2τ̃c

+ ϵ. The integral above can be calculated using [52, 6.623.2]:∫ ∞

0

dk kd/2 Jν(kr) e
−ajk =

2aj(2r)
ν Γ(ν + 3/2)

√
π
(
a2j + r2

)(d+1)/2
, where ν = d/2− 1 . (112)

In view of the above, the functions Cj(r, τ) in (111) are given by

Cj(r, τ) = e−
βj |τ|
2τ̃c

Γ(d+1
2 )

π(d+1)/2

1(
a2j + r2

)(d+1)/2
. (113)

Finally, the overdamped LDHO covariance kernel (38) is obtained from (110) and (113).
An example of the overdamped kernel C(r, τ) is shown in Fig. 11.
Remark 14 (Variance stablilization): As in the underdamped case, the spectral decay hyperparameter ϵ stabilizes the variance

(i.e., the behavior at τ = 0), and ξ adjusts the space-time interaction since for ξ = 0 the space and time dependence in (38)
decouple.

a) Zero-lag marginal covariances: The spatial and temporal marginal kernels are obtained from (38) by setting τ = 0
and r = 0 respectively, following simple algebraic calculations. Thus we obtain

CS(r) =
c∗0 (βf − βs)

(ϵ2 + r2)
(d+1)/2

, (114)

CT(τ) =
c∗0 βf e

− βs|τ|
2τ̃c(

ξβs|τ |
2τ̃c

+ ϵ
)d+1

− c∗0 βs e
−

βf |τ|
2τ̃c(

ξβf |τ |
2τ̃c

+ ϵ
)d+1

. (115)

The spatial marginal kernel (114) is proportional to (ϵ2+r2)−(d+1)/2 as in the underdamped case (103). The temporal marginal
kernel (115) comprises a combination of slow and fast exponential kernels. This is analogous to the purely temporal case (9b),
albeit the coefficients of the exponentials are renormalized and include temporal dependence.

D. Critical damping

In this regime it holds that ω̃0τ̃c = 1/2. The temporal Fourier modes, based on (9d) and the dispersion relations, are given
by

C̃−ω(k, τ) = c0e
− |τ|B(k)

2τ̃c
−ϵk

[
1 +

|τ |B(k)

2τ̃c

]
. (116)

Theorem 10 (LDHO kernel in critical damping regime): In this case, the LDHO spatiotemporal kernel generated by the IFT
of the temporal Fourier modes (116). The spatiotemporal LDHO kernel in the critical damping regime is given by (39).

Proof: The LDHO temporal Fourier modes are obtained from (9d) by inserting the dispersion functions (89) and (90).
Recalling (90a) for B(k), it follows that

C̃−ω(k, τ) = c0e
− |τ|(1+ξk)

2τ̃c
−ξk

(
1 +

|τ |
2τc

+
ξ k|τ |
2τc

)
. (117)

Based on the linearity of the IFT we obtain

C(r, τ) =c0e
− |τ|

2τ̃c

(
1 +

|τ |
2τc

)
C1(r, τ) +

c0ξ |τ |
2τ̃c

e−
|τ|
2τ̃c C2(r, τ), (118)
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Fig. 11. Normalized C(r, τ) and isolevel contour lines (red online) in the overdamped regime, obtained from (38) using ω̃d = π/10, τ̃c = 0.8, ξ = 0.4,
ϵ = 8, and d = 2.

where C1(r, τ) and C2(r, τ) are given by

C1(r, τ) =IFTk

[
e−k(ϵ+ ξ|τ|

2τ̃c
)
]
, (119a)

C2(r, τ) =IFTk

[
k e−k(ϵ+ ξ|τ|

2τ̃c
)
]
. (119b)

Based on (22b), the IFTk (119a) can be expressed as

C1(r, τ) =
1

(2π)d/2 rν

∫ ∞

0

dkkd/2 Jν(kr) e
−aRek, where aRe = ϵ+

ξ|τ |
2τ̃c

.

The integral in the above equation has been evaluated in (112), based on which we obtain

C1(r, τ) =
Γ(d+1

2 )

π(d+1)/2 (r2 + a2Re)
(d+1)/2

. (120)

Similarly, the IFT in (119b) can be expressed as

C2(r, τ) =
1

(2π)d/2 rν

∫ ∞

0

dkkd/2+1 Jν(kr) e
−aRek, where aRe = ϵ+

ξ|τ |
2τ̃c

.

The latter can be expressed in terms of C1(r, τ) by noticing that the only difference between the two is an extra factor of k
in the integral for C2(r, τ). Therefore, by taking advantage that C2(r, τ) depends on aRe only via e−aRek, it follows that

C2(r, τ) = −∂C1(r, τ)

∂aRe
.
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Thus, we obtain by differentiating C1(r, τ) in (120)

C2(r, τ) =
Γ(d+1

2 ) (d+ 1) aRe

π(d+1)/2 (r2 + a2Re)
(d+3)/2

. (121)

This concludes the proof.

Remark 15 (Hyperparameters at critical damping): The critically damped LDHO kernel (39) includes four independent
hyperparameters: c0, τ̃c, ϵ, ξ; ω̃d = 0 at critical damping. The critical-damping kernel (39) can be viewed as the limit of the
overdamped kernel (38) for ω̃d → 0, which implies βs → 1, βf → 1. The comments in Remark 10 regarding the role of ξ
and ϵ also hold for the critically damped case.

a) Zero-lag marginal covariances: The spatial and temporal marginal kernels are obtained from (39) by setting τ = 0
and r = 0 respectively. We thus obtain

CS(r) = c0 C1(r, 0) =
c0Γ(

d+1
2 )

π(d+1)/2 (r2 + ϵ2)
(d+1)/2

, (122)

CT(τ) = c0
Γ(d+1

2 )

π(d+1)/2 ad+1
Re

e−
|τ|
2τ̃c

[(
1 +

|τ |
2τ̃c

)
+
ξ|τ |
2τ̃c

(d+ 1)

aRe

]
. (123)

S4. KERNELS BASED ON THE ORNSTEIN-UHLENBECK ODE

The covariance of the O-U process is given by C(τ) = σ2 exp(−|τ |/τc) where σ2 = σ2
ητc/2 [51, p. 448]. The radial

dispersion relations are given by σ2 → σ2(k) = σ2
0A(k), τc → τc(k) = τ̃c/B(k). The O-U temporal Fourier modes for radial

dispersion functions are thus given by

C̃−ω(k, τ) = σ2
0 A(k) exp [−|τ |B(k)/τ̃c] . (124)

Since A(k) is dimensionless, [σ2
0 ] = [X]2[L]d, where L represents length, so that the FT (124) be dimensionally correct. Based

on the IFT (22b), the O-U covariance kernel is given by the integral (ν = d/2− 1):

C(r, τ) =
σ2
0

(2π)d/2rν

∫ ∞

0

kd/2 Jν(kr)A(k) e
−|τ |B(k)/τ̃c dk . (125)

In the following, we derive spatiotemporal kernel expressions for two different choices of dispersion functions.

1) A(k) = e−βk2

, B(k) = a+ bk2 where a, b, β > 0 are hyperparameters with units [b] = [β] = [L]2, [a] = [L]0:
The spectral integral (125) becomes

C(r, τ) =
σ2
0 e

−a |τ |/τ̃c

(2π)d/2 rν

∫ ∞

0

kd/2Jν(kr) e
−bk2|τ | /τ̃c−βk2

dk .

Using the table of integrals [52, 6.631.4, p. 706] it follows that

C(r, τ) =
σ2
0 e

−a |τ |/τ̃c

(2π)d/2
e−r2/4(β+b |τ |/τ̃c)(

2b|τ |
τ̃c

+ 2β
)d/2

. (126)

The kernel (126) involves four free hyperparameters: σ0, τ̃c/a, τ̃c/b and β. The spatial and temporal marginal kernels are
given respectively by

CS(r) =
σ2
0

(4π β)d/2
e−r2/4β , (127a)

CT(τ) =
σ2
0 (1 + b |τ |/βτ̃c)−d/2

(4π β)d/2
e−a |τ |/τ̃c . (127b)

Hence, the spatial marginal covariance is given by the square exponential kernel while the temporal marginal is a modified
exponential kernel.

2) A(k) = e−βk, B(k) = a+ ξ k, where a, ξ, β > 0 are hyperparameters with units [b] = [β] = [L], [a] = [L]0:
The spectral integral (125) becomes (ν = d/2− 1):

C(r, τ) =
σ2
0 e

−a |τ |/τ̃c

(2π)d/2 rν

∫ ∞

0

kν+1Jν(kr) e
−k(β+ξ |τ | /τ̃c) dk .
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Fig. 12. Normalized C(r, τ) and isolevel contour lines (red online) of the Ornstein-Uhlenbeck kernels in d = 2 spatial dimensions. Left: obtained from
the dispersion function (126) with k2 dependence using the hyperparameters τ̃c = 0.8, b = 0.4, a = 0.5, β = 8. Right: obtained from the dispersion
functions (128) with k dependence using the hyperparameters τ̃c = 0.8, ξ = 0.4, a = 0.5, β = 8.

Using the table of integrals [52, 6.623.2, p. 702] we obtain

C(r, τ) =
σ2
0 Γ(

d+1
2 )

π(d+1)/2

(βτ̃c + ξ |τ | ) e−a |τ |/τ̃c

τ̃c

[
r2 +

(
β + ξ|τ |

τ̃c

)2
](d+1)/2

. (128)

The kernel (128) involves four free hyperparameters: σ0, τ̃c/a, τ̃c/ξ and β. The spatial and temporal marginal kernels are
given respectively by

CS(r) =
σ2
0 Γ(

d+1
2 )

π(d+1)/2

β

(r2 + β2)
(d+1)/2

, (129a)

CT(τ) =
σ2
0 Γ(

d+1
2 )

π(d+1)/2

e−a |τ |/τ̃c(
β + ξ|τ |

τ̃c

)d
. (129b)

The Ornstein-Uhlenbeck covariance kernels with square and linear k dependence of the dispersion functions are illustrated
in Fig. 12.


