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Linear-Quantized Precoding in Massive MIMO
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Abstract

A promising approach to deal with the high hardware cost and energy consumption of massive

MIMO transmitters is to use low-resolution digital-to-analog converters (DACs) at each antenna element.

This leads to a transmission scheme where the transmitted signals are restricted to a finite set of voltage

levels. This paper is concerned with the analysis and optimization of a low-cost quantized precoding

strategy, referred to as linear-quantized precoding, for a downlink massive MIMO system under Rayleigh

fading. In linear-quantized precoding, the signals are first processed by a linear precoding matrix and

subsequently quantized component-wise by the DAC. In this paper, we analyze both the signal-to-

interference-plus-noise ratio (SINR) and the symbol error probability (SEP) performances of such linear-

quantized precoding schemes in an asymptotic framework where the number of transmit antennas and

the number of users grow large with a fixed ratio. Our results provide a rigorous justification for the

heuristic arguments based on the Bussgang decomposition that are commonly used in prior works. Based

on the asymptotic analysis, we further derive the optimal precoder within a class of linear-quantized

precoders that includes several popular precoders as special cases. Our numerical results demonstrate

the excellent accuracy of the asymptotic analysis for finite systems and the optimality of the derived

precoder.
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I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a key technology for 5G wireless commu-

nication systems. By equipping the base station (BS) with many antennas, massive MIMO can

significantly improve the channel capacity, energy efficiency, and spectral efficiency of wireless

communication systems [1]–[3]. Despite the great potential of massive MIMO systems, high

power consumption and hardware cost are serious practical challenges for their commercial

deployment.

One of the main power-hungry components in a massive MIMO system is the digital-to-

analog-converter (DAC) [4], the number of which scales linearly with the number of antennas at

the BS. To reduce circuit complexity and power consumption, low-resolution DACs have been

considered for massive MIMO systems [5]–[11]. Unlike conventional precoding schemes where

at the symbol sampling points the transmitted signals can be freely chosen from a continuous

set, only a small finite set of signals can be transmitted to convey information when low-

resolution DACs are employed. The analysis and design of quantized precoding with the use of

low-resolution DACs has become an active research topics in recent years [5]–[11].

Power ampifiers (PAs) are another main source of power consumption in massive MIMO

systems. To achieve the highest power efficiency, the PAs need to operate close to saturation, but

for continuous-valued signals this incurs nonlinear distortion and causes difficulties for signals

with high peak-to-average power ratio (PAPR) [12]. A popular way to handle such difficulty

is to restrict the transmitted signal from each antenna to have the same amplitude [13]–[15],

which minimizes the PAPR and enables the employment of the most efficient and cheapest

PAs. Combining such a constant envelope (CE) constraint with the use of low-resolution DACs

motivates a new quantized precoding scheme, quantized constant envelope (QCE) precoding,

where at the symbol sampling points the transmitted signals are restricted to have a fixed

amplitude and their phases are limited to finite values. The QCE precoding scheme has attracted

significant research interest [16]–[22] as it combines the advantage of using low-resolution

DACs and energy-efficient PAs. In particular, as an extreme case of both QCE and traditional

quantized precoding, one-bit precoding (where one-bit DACs are employed) has been widely
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and extensively studied [23]–[33]. The power efficiency gain can be several dB, and in many

cases is sufficient to overcome the loss in fidelity due to the coarse quantization.

We note here that traditional quantized precoding (without the CE constraint) and QCE

precoding are both realized by the use of low-resolution DACs and have a common feature

that the transmitted signals are only allowed to be selected from a finite set. In the following

discussion, we will refer to them (and possibly other precoding schemes with the finite transmis-

sion set feature) collectively as quantized precoding. Existing quantized precoding schemes can

be broadly categorized into two classes: linear-quantized precoding and nonlinear precoding.

A linear-quantized precoding scheme1 simply quantizes the output of a linear precoder [5]–[8],

[23]–[28]. In contrast, nonlinear precoders do not have this simple structure and are typically

obtained by solving appropriate optimization problems [9]–[11], [17]–[22], [29]–[34].

In this paper, we focus on the analysis and optimization of linear-quantized precoding schemes,

which are arguably more practical than the computationally expensive nonlinear schemes. Unlike

existing works that focus on either traditional quantized precoding or QCE precoding, this paper

deals with these two types of quantized precoding in a unified framework. In what follows, we

first give a brief review of related works and then present the main contributions of this paper.

A. Related Work

1) Linear-quantized precoding: A direct approach to obtain linear-quantized precoders is to

quantize the output of classical linear precoders such as the matched filter (MF) and zero-

forcing (ZF) precoders [5]. However, this approach does not take into account the effect of

quantization and thus yields precoders that, although simple, are suboptimal in the context of

quantized precoding. Noting this, the authors in [6] characterized the mean square error (MSE)

between the desired symbol and the received signal with the presence of low-resolution DACs

and proposed the quantized transmit Wiener filter (TxWFQ) precoder that minimizes the MSE.

Under the same setup as [6], the authors of [7] proposed a gradient-based approach to maximize

the weighted sum rate of the system. For the one-bit case, the authors in [23] proposed a

minimum mean square error (MMSE) based precoder. Later, a higher-rank linear precoder was

designed in [24] for a downlink one-bit massive MIMO system, showing superior performance

1Note that the overall operation of a linear-quantized scheme is not linear due to the presence of the quantization step, but

for convenience we will use this term throughout this paper.
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to traditional linear-quantized precoders of channel rank. We remark here that all existing works

on the design of linear-quantized precoding focus on traditional quantized precoding or the

special one-bit case. To the best of our knowledge, no existing work considers the design of

linear-quantized precoding in the QCE context.

There are also some works focusing on the performance analysis of linear-quantized schemes,

e.g., [5], [8] for traditional quantized precoding, [25]–[28] for one-bit precoding, and [16], [35]

for QCE precoding. Specifically, the authors in [5] and [8] derived lower-bounds on the downlink

achievable rates of linear-quantized precoding for a flat-fading and a frequency-selective channel,

respectively. For a one-bit massive MIMO system, [25] derived a lower bound on the achievable

rate for MF precoding with estimated channel state information (CSI). The performance of the

one-bit ZF precoder was investigated in [26], in which a closed-form expression of the symbol

error probability (SEP) was derived in the asymptotic setting where the numbers of transmit

antennas and users both tend to infinity with a fixed ratio. The same problem was considered

in [27] and [28], where the input-output correlation relationship was expanded up to third-order

instead of first-order as in [26], and the derived SEP expression shows better accuracy than that

in [26] when the number of users is small relative to the number of transmit antennas.

A widely used technique for analyzing the performances of linear-quantized precoding schemes

is the Bussgang decomposition [36], which decomposes a non-linear function of a Gaussian signal

as the sum of a linear signal term and an uncorrelated distortion term. We remark that although

the Bussgang decomposition is per se rigorous, it is often used in conjunction with various

heuristics to analyze the performance of linear-quantized precoding. For instance, the distortion

term is often treated as a random variable that is independent of all other random variables in

the system. Although there is strong numerical evidence that the heuristic treatments can yield

accurate predictions (e.g., SEP performance) for large systems [26]–[28], a rigorous analysis

of such heuristics in the context of linear-quantized precoding is still lacking. Please refer to

Section II-C for a detailed discussion of the Bussgang decomposition technique.

Beyond the analyses of traditional quantized precoding and one-bit precoding, there are also

some preliminary attempts to analyze the performance of QCE precoding. Specifically, [35]

studied the statistical properties of the CE quantizer (which models the overall operation of low-

resolution DACs and the CE constraint and generates signals satisfying the QCE constraint) and

derived closed-form expressions of the cross-correlation factors between the input and output

signals of the CE quantizer. Very recently, the authors in [16] considered QCE precoding for a
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multiple-input single-output (MISO) system and derived the diversity order of the MF precoder,

which characterized how fast the system SEP tends to zero as the signal-to-noise ratio (SNR)

grows [37].

2) Nonlinear precoding: Besides linear-quantized precoding schemes, various nonlinear pre-

coders based on different criteria have been proposed in recent years, see, e.g., [9]–[11] for

traditional quantized precoding and [17]–[22] for QCE precoding. There are also many algo-

rithms designed specifically for one-bit precoding, see, e.g., [29]–[33]. Nonlinear precoding

schemes (especially symbol-level nonlinear precoders) usually have better symbol error rate

(SER) performance than their linear counterparts but their computational complexity is much

higher.

Although there have been substantial progress in the design of nonlinear precoding schemes,

the performance analysis of nonlinear precoding remains an open problem. This is because

nonlinear precoders are typically solutions to complicated optimization problems without closed-

form expressions. In addition, the discrete nature of the transmitted signals in quantized precoding

leads to discrete constraints in the corresponding optimization problem, which further complicates

the analysis. Analyzing and designing nonlinear precoding schemes are beyond the scope of this

paper and can be considered as a future work.

B. Our Contributions

In this paper, we analyze the performance of a broad class of linear-quantized precoding

schemes for a downlink massive MIMO system. Our results rigorously justify and substantially

generalize existing results for MF and ZF based schemes derived using heuristic Bussgang

decomposition arguments. The main contributions are summarized as follows.

1) Statistically equivalent model: By exploiting a recursive characterization of the Haar ran-

dom matrix [38], we derive a model that is statistically equivalent to the original system

model. The statistically equivalent model is close to a “signal plus independent Gaus-

sian noise” form and is more amenable to analysis. This step is non-asymptotic and the

technique we use may be applicable to other problems as well.

2) Asymptotic analysis: We further consider the large system limit as in [26] and show

that in the asymptotic regime, the statistically equivalent model is exactly in a “signal

plus independent Gaussian noise” form. This provides a rigorous justification for the
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heuristic analyzes based on the Bussgang decomposition. We also prove that the signal-

to-interference-plus-noise ratio (SINR) and SEP of the original model converge to those

of the asymptotic model. Simulations show that the asymptotic results are accurate for

realistic systems with finite dimensions.

3) Optimal linear-quantized precoder: Based on the asymptotic analysis, we derive the optimal

linear-quantized precoder that optimizes both the asymptotic SINR and the asymptotic SEP

performance. We show that the optimal linear-quantized precoder is a regularized ZF (RZF)

precoder, whose regularization parameter is determined by the quantization type/level as

well as the system parameters. To the best of our knowledge, the optimal RZF precoder

derived in this paper is the first linear-quantized precoder applicable to general forms of

quantization.

C. Organization and Notations

The remaining parts of the paper are organized as follows. Section II describes the system

model and the problem formulation. Some preliminaries for analysis are introduced in Section

III. Section IV derives the statistically equivalent model and gives the asymptotic analysis. The

optimal linear-quantized precoder is then given in Section V. Simulation results are shown in

Section VI and the paper is concluded in Section VII.

Notation: Throughout the paper, we use the typefaces x, x, X, and X to denote scalar, vector,

matrix, and set, respectively. For a vector x ∈ Cn, x[i1 : i2] denotes a sub-vector of x consisting

of its i1-th to i2-th elements, where 1 ≤ i1 ≤ i2 ≤ n; in particular, x[i] is the i-th entry of

x, and xi is also used if it does not cause any ambiguity. For a matrix X, X[i1, i2] is the

(i1, i2)-th entry of X. The operators arg(·), R(·), I(·), (·)†, (·)T, (·)H, and (·)−1 return the angle,

the real part, the imaginary part, the conjugate, the transpose, the conjugate transpose, and the

inverse of their corresponding arguments, respectively. We use ∥ · ∥ to denote the ℓ2 norm of the

corresponding vector or the spectral norm of the corresponding matrix. For m,n ∈ N, we denote

the m × m identity matrix by Im and the m × n matrix of all zero entries by 0m×n. We use

diag(x1, x2, . . . , xn) to refer to a diagonal matrix with {xi}ni=1 as its diagonal entries. We use

U(n) to denote the set of n×n unitary matrices over C. The operators E[·], var(·), and P(·) return

the expectation, the variance, and the probability of their corresponding argument, respectively.

For two random variables X and Y , X d
= Y means that they have the same distribution. We

denote almost sure convergence by a.s.−−→. We use CN (0, σ2I) to denote the zero-mean circularly
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Fig. 1. An illustration of the linear-quantized precoding scheme.

symmetric complex Gaussian distribution with covariance matrix σ2I, and Unif(S) to denote

uniform distribution on set S . We reserve the sans serif font (e.g., g) for vectors with i.i.d.

standard Gaussian random variables. Finally, j is the imaginary unit satisfying j2 = −1.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Linear-Quantized Precoding

Consider the downlink of a multiuser massive MIMO system in which an N -antenna BS

simultaneously serves K single-antenna users, where K < N . The received signals at the users

can be modeled as

y = Hx+ n,

where y ∈ CK is the received signal vector of the users; x ∈ CN is the transmitted signal vector

from the BS; H ∈ CK×N models the channel matrix between the BS and the users, and n ∈ CK

is the additive noise. We assume that the analog-to-digital converters (ADCs) equipped at the

user side are ideal and have infinite resolution and that perfect CSI is available at the BS. We

model the DAC as a quantization function and ignore various practical effects such as glitches,

element mismatch, slewing, thermal noise, clipping, etc [39]–[41].

In this paper, we consider the linear-quantized precoding scheme, where the signal vector to

be transmitted at the BS has the following form

x = η q(Ps). (1)

In the above expression, s ∈ CK is the desired data vector; P ∈ CN×K is a precoding matrix;

q(·) : C → XL is a quantization function that acts component-wise on its input vector, where
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XL is a finite set with L elements and L is referred to as the quantization level; η is a scaling

factor to ensure that the following average transmit power constraint is satisfied:

1

N
E[∥x∥22] ≤ PT , (2)

where PT > 0 is the maximum average transmit power. See Fig. 1 for an illustration of the

linear-quantized precoding scheme.

We now introduce the quantization function corresponding to traditional quantized precoding

and QCE precoding, which are most relevant for applications.

• Traditional quantized precoding: In this case, the real and imaginary parts of the input signal

are quantized independently with a pair of low-resolution DACs and XL can be expressed

as

XL =

{
x | R(x), I(x) ∈

{
∆

2

(
2ℓ− 1−

√
L
)
, ℓ = 1, . . . ,

√
L

}}
, (3)

where ∆ is the quantization interval. The corresponding quantization function maps its

input to the nearest point in (3). In the following, we call it independent quantizer since

the quantizer acts independently on the real and imaginary parts of its input, and denote it

by qI(·). For an L-level independent quantizer, the resolution of the DACs is 1
2
log2 L bits,

where L≥ 4 and is a power of 2.

• QCE precoding: In this case, the CE constraint is combined with the use of low-resolution

DACs and XL has the following expression:

XL =
{
ej

(2ℓ−1)π
L | ℓ = 1, 2, . . . , L

}
. (4)

The corresponding quantization function maps its input to the nearest point in (4). In the

following, we call it CE quantizer and denote it by qCE(·). The resolution of the DACs is

log2
L
2

bits for an L-level CE quantizer, where L≥ 4 and is a power of 2.

Note that when L = 4 and ∆ = 2, the independent quantizer and the CE quantizer are the same,

both reducing to the one-bit precoding case.

Let H = UDVH be the singular value decomposition (SVD) of H, where U ∈ U(K),V ∈

U(N), and D =
(

diag(d1, d2, . . . , dK) 0K×(N−K)

)
∈ RK×N with d1, d2, . . . , dK representing
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Fig. 2. The structure of the precoding matrix in consideration.

the non-zero singular values2 of H. In this paper, we focus on precoding matrices with the

following structure:

P = Vf(D)TUH, (5)

where f(·) acts independently on the nonzero singular values of H, i.e.,

f(D) =
(

diag(f(d1), f(d2), . . . , f(dK)) 0K×(N−K)

)
.

See Fig. 2 for an illustration of the structure of P. The motivations to consider the special class

of the precoding matrix in (5) are twofold. First, as will be shown in Section III, the structure of

P in (5) enables us to apply existing results in random matrix theory for performance analysis.

Second, the structure of P is fairly general and includes the following popular precoders as

special cases:

• MF: P = HH, which corresponds to f(x) = x in (5);

• ZF: P = HH(HHH)−1, which corresponds to f(x) = x−1 in (5);

• RZF: P = HH(HHH + ρIK)
−1, which corresponds to f(x) = x

x2+ρ
in (5).

With the above linear-quantized precoding scheme, the received signals at the user side read

y = ηHq(Ps) + n = ηUDVHq(Vf(D)TUHs) + n. (6)

As in [18]–[21], we assume that each user is able to rescale the received signal yk by a factor

βk ∈ C, i.e., rk = βkyk. (This corresponds to removing the effective channel gain.) After the

2We assume throughout the paper that H is of full row rank. This holds with probability one if Assumption 1 further ahead

is satisfied, i.e., if the entries of H are i.i.d. following CN (0, 1
N
).
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rescaling step, the users employ symbol-wise nearest-neighbor decoding, i.e., each user k maps

rk to the nearest constellation point.

As will be shown below, the nonlinear function f(·) in P has a major impact on the perfor-

mance of the overall system. In this paper, we will first analyze the performance of the linear-

quantized scheme in the asymptotic regime where N and K tend to infinity simultaneously, and

then optimize f(·) based on the asymptotic analysis.

B. Assumptions

In this subsection, we specify our assumptions on the system model in (6). We first make a

few standard assumptions on H, n, and s.

Assumption 1. The entries of H and n are independently drawn from CN
(
0, 1

N

)
and CN (0, σ2),

respectively. The entries of s are independently and uniformly drawn from a finite set SM with

nonzero elements (i.e., 0 /∈ SM ), and E[|s1|2] = σ2
s . Furthermore, H, s, and n are mutually

independent.

The i.i.d. Gaussian assumption on the channel H is widely adopted in the massive MIMO

literature for ease of analysis, see, e.g., [26]–[28]. This assumption is reasonable in a rich

scattering environment where the number of scattered components is large and independent.

Such a scenario arises when the antennas are widely spaced or when the physical environment

exhibits scattering in all directions [42]. Note that we have assumed Hij ∼ CN (0, 1
N
) instead

of Hij ∼ CN (0, 1). This normalization is introduced as in [43]–[45] to ensure that the received

power of the users does not grow with N . We would like to emphasize that the i.i.d. Gaussian

assumption on the channel H is not essential to our analysis. Our results can be extended to a

broader class of channel models, as discussed in Remark 3 below Theorem 2. The assumption

on s is quite general and is satisfied by common constellation schemes including phase shift

keying (PSK) and quadrature amplitude modulation (QAM).

For technical reasons, we impose the following assumption on the nonlinear function f(·) in

P in (5).

Assumption 2. The function f(·) is positive, continuous almost everywhere (a.e.), and bounded

on any compact set of (0,∞).
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Notice that the f functions corresponding to the MF, ZF, and RZF precoders discussed in the

previous subsection all satisfy Assumption 2. We emphasize that the positivity assumption on f

is not essential and can be relaxed to P (f(D) = 0) = 0. Further, as will be shown in Section V,

there always exists an optimal precoder satisfying f > 0, implying that the positivity assumption

does not impose any restriction in terms of the best achievable performance.

Finally, we assume that the quantization function q in (1) satisfies some regularity conditions,

as stated in Assumption 3 below.

Assumption 3. The quantization function q : C → XL is continuous a.e. and bounded.

It is straightforward to verify that the independent quantizer qI(·) and the CE quantizer qCE(·)

both satisfy Assumption 3 (as they are piecewise constant). We emphasize that some of our

results can be simplified for QCE precoding, i.e., when q(·) = qCE(·). In the following, we will

first present our results in the most general form and then discuss the case of QCE precoding

separately.

C. Heuristic Analysis Via Bussgang Decomposition

The nonlinear quantization function q(·) causes some difficulties for performance analysis.

A popular technique to deal with it is the Busggang decomposition [5], [8], [25]–[28], which

decomposes a nonlinear function of Gaussian random variables into a linear signal term and an

uncorrelated nonlinear distortion term. We now outline a heuristic analysis of the problem using

the Bussgang decomposition technique.

Consider the nonlinear quantization process q(Ps), where P = Vf(D)TUH. Under Assump-

tion 1, V and U are Haar distributed (see Definition 1 and Lemma 1 further ahead) and it can

be shown that Ps is approximately distributed as

Ps
d
≈ CN (0, ᾱ2IN),

where

ᾱ2 =
1

N
E[∥Ps∥2].

Based on the Busggang decomposition technique [36], we can write q(Ps) as

q(Ps) = C1(Ps) + q⊥,
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where C1 = E[Z†q(ᾱZ)]/ᾱ, Z ∼ CN (0, 1), and q⊥ is the residual nonlinear distortion which is

approximately orthogonal to Ps. Substituting this decomposition into (6) gives

y = ηHq(Ps) + n

= η C1HPs+ ηHq⊥ + n

= η
C1

K
tr(HP)s+ η C1

(
HP− 1

K
tr(HP)I

)
s+ ηHq⊥ + n.

(7)

In the above decomposition, the first term is a signal term and the last three terms are effective

noise terms. This demonstrates the advantage of the Bussgang decomposition: it can transform

a nonlinear system into a linear one so that the useful signal and the effective noise can be

distinguished. However, the problem is that the distribution of q⊥ and its correlation with (H, s)

are hard to characterize, which makes it still highly non-trivial to analyze the performance (e.g.,

SEP performance) of the system with (7). Heuristically, one may treat q⊥ as if it is independent

of both H and s, so that Hq⊥ can be approximated as independent Gaussian noise. It turns out

that this treatment, though heuristic, leads to very accurate predictions [26]. Developing a new

analytical framework that can rigorously justify the above heuristics is a main motivation behind

this work.

III. PRELIMINARIES

Our analysis is based on Householder dice [38], a technique for recursively generating Haar

random matrices. Before presenting our main results, in this section we first give some prelim-

inaries on the Haar random matrix and the Householder dice technique.

We begin with the definition of the Haar measure and the Haar random matrix.

Definition 1 (Haar measure [46]). The Haar measure on U(N) is defined as the unique prob-

ability measure µ on U(N) that satisfies the following translation invariant property: for any

measurable subset A ⊂ U(N) and any fixed M ∈ U(N),

µ(MA) = µ(AM) = µ(A),

where MA denotes the set obtained by taking all the elements of A and multiplying them by

M.

In the following, we denote by Haar(N) the ensemble of random unitary matrices drawn from

the Haar measure on U(N).
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Lemma 1 below is a well-known fact in random matrix theory [47] and suggests the crucial

role of the Haar random matrix plays in our analysis.

Lemma 1. Let H = UDVH be the SVD of H. Under Assumption 1, U,D,V are mutually

independent and U,V are Haar distributed random matrices.

We now introduce the Householder dice (HD) technique proposed in [38], which deals with

an iterative process involving Haar matrices as follows:

xt+1 = ft(Qxt), 0 ≤ t ≤ T − 1, (8)

where Q ∼ Haar(N) and x0 ∈ CN are independent. HD was originally proposed as an efficient

numerical method for simulating iterations like (8) of large dimension. In our paper, we employ

it as a tool for performance analysis, which is a novel application of this technique. Specifically,

using HD, one can show that the sequence {x0,x1,x2, . . . ,xT} generated by (8) is statistically

equivalent to another sequence that is fully determined by the initial vector x0 and a sequence of

independent standard Gaussian random vectors. Compared to the original sequence that exhibits

complicated correlation through the Haar matrix Q, the new sequence is more amenable to

analysis, particularly in the high-dimensional case, which enables us to study the statistical

properties of the original sequence with greater ease.

To get some insight on how HD facilitates analysis, we consider the following simple example

that contains only two iterations: x1 = f0(Qx0),

x2 = f1(Qx1),
(9)

where Q ∼ Haar(N) and x0 ∈ CN are independent. Using HD, one can show that (x0,x1,x2)

is statistically equivalent to (x0, x̃1, x̃2) given below:x̃1 = f0(a
1
0g1),

x̃2 = f1(a
1
1g1 + a21g2),

(10)

where g1 ∼ CN (0, IN) and g2 ∼ CN (0, IN) are independent and both are independent of x0,
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and the random variables {a10, a11, a21} are defined by

a10 =
∥x0∥
∥g1∥

,

a11 =
xH
0 x̃1

∥g1∥
− gH1 g2

∥g1∥∥x0∥

√
∥x̃1∥2∥x0∥2 −

∣∣xH
0 x̃1

∣∣2√
∥g1∥2∥g2∥2 − |gH1 g2|2

,

a21 =
∥g1∥

√
∥x̃1∥2∥x0∥2 −

∣∣xH
0 x̃1

∣∣2
∥x0∥

√
∥g1∥2∥g2∥2 − |gH1 g2|2

.

The statistical equivalence between (9) and (10) can be proved using a technique similar to that

in [38, Section 3.3] and thus we omit the details here. Clearly, x̃1 and x̃2 are fully specified by the

initial vector x0 and the two Gaussian vectors g1 and g2. The scaling factors {a10, a11, a21}, though

correlated with {x0, g1, g2} in a complicated way, converge in many cases to deterministic values

as the matrix dimension N tends to infinity. For instance, when f0(·) is separable and satisfies

some mild regularity conditions and the entries of x0 are i.i.d., the convergence of {a10, a11, a21}

can be easily proved via the law of large numbers.

The above example illustrates the strength of the HD technique: it transforms the original

sequence, which is specified by the N × N Haar matrix Q, into another sequence that is

determined by only a few Gaussian vectors (e.g., two Gaussian vectors of dimension N for

the above example) with an explicit form. The new sequence is usually more convenient for

analysis. The interested reader is referred to [38] for a detailed description of the HD technique.

We will provide a comprehensive description of the HD technique for handling our specific

problem in Appendix A and Appendix B.

IV. STATISTICALLY EQUIVALENT MODEL AND ASYMPTOTIC ANALYSIS

In this section, we first use the HD technique to derive a statistically equivalent model for (6),

which is close to a “signal plus independent Gaussian noise” form. This step is non-asymptotic

and the equivalence holds for any finite dimension when N,K ≥ 3. The “signal plus Gaussian

noise” insight is made precise by further considering the large system limit where N and K

tend to infinity at a fixed ratio. We will derive sharp asymptotic expressions for the SINR and

SEP performances of the linear-quantized precoding scheme.

A. Statistically Equivalent Model

Recall that our system model is

y = ηHq(Ps) + n = ηUDVHq(Vf(D)TUHs) + n,



15

where U ∼ Haar(K),V ∼ Haar(N), and {U,V,D, s,n} are mutually independent. The

received signal y can be seen as being obtained by performing the following iterations:

s1 = f(D)TUHs,

s2 = q(Vs1),

s3 = DVHs2,

y = ηUs3 + n,

(11)

The above iterative process has a form similar to (8). At each iteration, it involves one multiplica-

tion of a Haar random matrix and a random vector, while the other operations can be modeled as

ft(·) in (8), since {D,n} are independent of {U,V, s}. Specifically, f0(x) = f(D)Tx, f1(x) =

q(x), f2(x) = Dx, f3(x) = ηx+ n, where x is a vector of an appropriate dimension. The only

minor difference with (8) is that two different Haar matrices and their conjugate transposes are

included in the above iterations. However, this difference is not important and the HD technique

can still be applied. With the help of the HD technique, we can obtain the following statistically

equivalent model, which is more convenient for analysis.

Theorem 1 (Statistically Equivalent Model). When N ≥ 3, K ≥ 3, the distribution of (y, s) in

the original model (6) is the same as that of (ŷ, s) specified by the following model:

ŷ = ηTs s+ ηTg g2 + n, (12)

where

Ts =
gH1 {C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}

∥g1∥∥s∥
− Tg

(R(s)−1g2)[1]

∥s∥
,

Tg =
∥B(g1)

H{C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}∥
∥(R(s)−1g2)[2 : K]∥

,

C1=
zH1 q

(
∥ŝ1∥
∥z1∥ z1

)
∥ŝ1∥∥z1∥

, C2 =

∥∥∥B(z1)
Hq
(

∥ŝ1∥
∥z1∥ z1

)∥∥∥
∥z2[2 : N ]∥

,

ŝ1 =
∥s∥
∥g1∥

f(D)Tg1.

(13)

In the above expressions, g1∼ CN (0, IK), g2 ∼ CN (0, IK) , z1 ∼ CN (0, IN) , z2 ∼ CN (0, IN)

are mutually independent standard Gaussian random vectors, which are further independent of

the signal vector s, the singular value matrix D, and the noise vector n; f(·) is a processing

function involved in the precoder (5); R(·) denotes the Householder transform of the input vector
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and B(·) represents the submatrix of R(·) with the first column removed (see (39) and (40) in

Appendix A).

Proof. See Appendix B.

Before proceeding, let us take a look at the statistically equivalent model in (12): the first

term is the (scaled) signal vector, the second term is an equivalent noise that captures both the

multi-user interference and the distortion caused by quantization, and the last term is the channel

noise. Note, however, it is still difficult to exactly analyze the performance of the system (e.g.,

SEP performance) based on the statistically equivalent model in (12). This is because Ts and

Tg therein are correlated with s and g2 in a complicated way. Fortunately, as N,K → ∞ and

N/K → γ ∈ (1,∞), both Ts and Tg converge to deterministic quantities, enabling us to derive

sharp asymptotic formulas for both the SINR and SEP performance.

B. Asymptotic Analysis

In this subsection, we consider the large system limit where both N and K tend to infinity

while keeping a finite ratio N
K

→ γ ∈ (1,∞). This is a common assumption in the performance

analysis of massive MIMO systems, and such asymptotic analyses can usually provide tight

approximations for realistic systems with finite N,K (see, e.g., [43]–[45], [48]). In what follows,

all vectors and matrices should be understood as sequences of vectors and matrices of growing

dimensions. For simplicity, their dependence on N and K is not explicitly shown.

Our main asymptotic result is summarized in the following theorem. Its proof is given in

Appendix C.

Theorem 2 (Asymptotic Model). Define the following asymptotic model:

ȳ := ηT s s+ ηT g g2 + n, (14)

where

T s = C1 E[d f(d)],

T g =

√
σ2
s |C1|2var[d f(d)] + C

2

2,

C1 =
E[Z†q(ᾱZ)]

ᾱ
,

C2 =
√

E[|q(ᾱZ)|2]− |E[Z†q(ᾱZ)]|2,

ᾱ =

√
σ2
s E[f 2(d)]

γ
,

(15)
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Z ∼ CN (0, 1), d =
√
λ, and λ follows the Marchenko-Pastur distribution, whose probability

density function is given by

pλ(x) =

√
(x− a)+(b− x)+

2πcx
(16)

with a = (1−
√
c)2, b = (1 +

√
c)2, c = 1

γ
; (x)+ = max{x, 0}. Then under Assumptions 1-3, the

following holds as N,K → ∞, and N
K

→ γ ∈ (1,∞):

(ŷk, sk)
a.s.−−→ (ȳk, sk), ∀ k ∈ [K],

where (ŷk, sk) and (ȳk, sk) are given in (12) and (14), respectively.

Several remarks on Theorems 1 and 2 are in order.

Remark 1. It is worth noting that the conditioning technique developed in [49] [50] may be

used to derive the asymptotic model in Theorem 2, though the model analyzed in the current

paper is more complicated than that in [50]; compare (6) and [50, Eq. (15)]. Note that both the

HD technique and the conditioning method of [49] [50] heavily rely on the rotational invariance

of the Haar random matrix. For our problem, the HD technique is more direct and transparent.

Remark 2 (Connection with Bussgang decomposition). The asymptotic model (14) gives a

precise characterization of the Bussgang decomposition and results in (7):

y = η
C1

K
tr(HP)s+ η C1

(
HP− 1

K
tr(HP)I

)
s+ ηHq⊥ + n. (17)

Loosely speaking, we have the following correspondence between (14) and (17):

ηT s s ↔ η
C1

K
tr(HP)s

ηT g g2 ↔ η C1

(
HP− 1

K
tr(HP)I

)
s+ ηHq⊥

The above correspondence is in a distributional sense, i.e., the corresponding terms have the

same (asymptotic) distribution, and is implied by our proof of Theorem 2.

Remark 3 (Assumption on channel H). Theorems 1 and 2 are stated under the assumption that

H is i.i.d. Gaussian, but can be extended to the following more general models.

• (Unitarily invariant model) For the unitarily invariant model, the SVD of H satisfies U ∼

Haar(K),V ∼ Haar(N), and {U,D,V} are independent [47], and hence Theorem 1

holds. In addition, Theorem 2 holds as long as the empirical spectral distribution (see
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Definition 3 in Appendix C) of HHH further has a continuous limiting distribution with a

bounded support, with λ in Theorem 2 following the limiting e.s.d. of HHH.

• (Large scale fading) In the case where the users have different large scale fading variances,

the channel can be modeled as H = Σ0H̃, where H̃ satisfies Assumption 1 and Σ0 =

diag(σ1, σ2, . . . , σK) is a diagonal matrix with σk representing the standard deviation of

the large scale fading of user k, k = 1, 2, . . . , K. Let H̃ = UDVH be the SVD of H̃.

Theorems 1 and 2 can be directly generalized to this more general channel model with

precoding matrices of the following form:

P = Vf(D)TUHg(Σ0),

where Σ0 and g satisfy some mild regularity conditions. The above class of precoding

matrices still includes MF precoding and ZF precoding as special cases.

Theorem 2 shows that in the asymptotic regime, the system model is in a simple “signal plus

independent Gaussian noise” form as (14). In the following, we will characterize the individual

performance of the K users with the help of Theorem 2. Two commonly used performance

measures are the SINR:

SINRk :=
|ρk|2 E[|sk|2]

E[|yk|2]− |ρk|2 E[|sk|2]
, (18)

where ρk = E[s†kyk]/E[|sk|2], and the SEP:

SEPk(β) := P (dec(βyk) ̸= sk) , (19)

where dec(·) is the decision function that maps its argument to the nearest constellation point

in SM .

We note that the SINR and SEP performance of the K users in the asymptotic model (14)

are the same and can be characterized by the following asymptotic scalar model:

ȳ := ηT s s+ ηT g g + n, (20)

where s ∼ Unif(SM), g ∼ CN (0, 1), n ∼ CN (0, σ2) are independent. Following the definitions

in (18) and (19), the SINR and SEP of the above scalar asymptotic model are given by

SINR =
σ2
s η

2 T
2

s

η2 T
2

g + σ2
=

E2[d f(d)]

var[d f(d)] + ϕ(ᾱ, η) E[f2(d)]
γ

, (21)

where ᾱ =
√
σ2
s E[f 2(d)]/γ and

ϕ(ᾱ, η) :=
E[|q(ᾱZ)|2]− |E[Z†q(ᾱZ)]|2 + σ2/η2

|E[Z†q(ᾱZ)]|2
, (22)
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and

SEP(β) = P (dec(βȳ) ̸= s) .

The second step of (21) is obtained based on the definitions of T s and T g in (15).

Theorem 3 below shows that both the SINR and the SEP performance of the original model

converge to those of the scalar asymptotic model in (20). Its proof can be found in Appendix

D.

Theorem 3. Denote ŜINRk and ŜEPk(β) as the SINR and SEP of user k of the model in (12),

respectively. Under the asymptotic setting in Theorem 2, the following hold for any k ∈ [K] and

β ∈ C:

(i) limN,K→∞ ŜINRk = SINR;

(ii) limN,K→∞ ŜEPk(β) = SEP(β).

With the above theorem, we can give predictions of the SINR and SEP performance of the

original model based on the asymptotic scalar model in (20). Note that SEP(β) is defined for

a scalar additive white Gaussian noise (AWGN) channel and therefore can be easily computed

for specific constellation types. Clearly, a natural scaling factor should be

β =
T

†
s

η|T s|2
. (23)

We denote the corresponding asymptotic SEP as SEP. When M -PSK modulation is adopted,

SEP can be tightly approximated as [51, Section 4.3-2]:

SEP ≈ 2Q
(√

2 sin
π

M

√
SINR

)
, (24)

where Q(x) = 1√
2π

∫∞
x

e−
t2

2 dt. For M -QAM modulation, the SEP has an explicit expression

[51, Section 4.3-3]:

SEP = 4

(
1− 1√

M

)
E0 − 4

(
1− 1√

M

)2

E2
0 (25)

where

E0 = Q

(√
3

M − 1
SINR

)
. (26)

In the rest of this paper, we assume that β in (23) is used unless otherwise stated. It is worth

noting that the asymptotic SEP formulas in (24) and (25), though derived under the asymptotic

assumption that the system dimension grows to infinity, are also accurate for practical systems

with moderate dimensions; see the simulation results in Section VI.
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C. Example: QCE Precoding

So far, our results hold for general q(·) satisfying Assumption 3. In this subsection, we specify

our results to the case of CE quantizer qCE(·). We start with a few properties of qCE(·).

Lemma 2 (Properties of qCE(·)).

(i) |qCE(x)| = 1, ∀x ∈ C;

(ii) qCE(αx) = qCE(x), ∀x ∈ C, α > 0;

(iii) E[Z†qCE(Z)] =
L sin π

L

2
√
π

, where Z ∼ CN (0, 1) and L is the number of quantization levels

[35].

Under the above properties of qCE(·), the asymptotic SINR in (21) simplifies to

SINRQCE =
E2[d f(d)]

var[d f(d)] + CL,σ,η

γ
E[f 2(d)]

, (27)

where

CL,σ,η =
1− L2 sin2 π

L

4π
+ σ2/η2

L2 sin2 π
L

4π

. (28)

The asymptotic SEP is a simple function of the SINR, as discussed above.

By further specifying the nonlinear function f(·) as f(x) = x and f(x) = x−1 respectively (see

discussions in Section II-A) and using [47, Eq. (2.104)], we can obtain the following asymptotic

SINR formulas for the quantized MF and ZF precoders:

SINR
MF
QCE =

γ

CL,σ,η + 1
,

SINR
ZF
QCE =

γ − 1

CL,σ,η

,

where CL,σ,η is defined in (28). The above SINR formula for quantized ZF precoding has been

obtained for the one-bit case (i.e., L = 4) using the Bussgang decomposition technique in [26].

V. OPTIMAL LINEAR-QUANTIZED PRECODING

For the precoding scheme in (5), the function f(·) can be designed to optimize the system SEP

performance. In this section, we derive the optimal f(·) based on the asymptotic characterization

developed in Theorem 2.
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A. Optimal Linear-Quantized Precoding

Our goal is to find the optimal f(·) in terms of the asymptotic SEP performance. First,

maximizing SINR is equivalent to minimizing SEP, as shown in Appendix E. In what follows,

we shall focus on the following SINR maximization problem (see (21)):

ζ∗ := sup
f,η>0,ᾱ>0

E2[d f(d)]

var[d f(d)] + ϕ(ᾱ, η) E[f2(d)]
γ

s.t. η2 E[|q(ᾱZ)|2] ≤ PT ,

E[f 2(d)] =
γ

σ2
s

ᾱ2,

(29)

where Z ∼ CN (0, 1), PT > 0 is the maximum average transmit power in (2), d is defined

in Theorem 2, and ϕ(ᾱ, η) is defined in (22). If ᾱ in the second constraint is eliminated

and substituted into the first constraint, then the obtained constraint represents the asymptotic

counterpart of the actual average power constraint in (2). Therefore, the function f(·) and the

transmit power η are jointly optimized in problem (29).

The SINR maximization problem (29) may seem challenging to solve as it involves optimiza-

tion over a function f(·). Moreover, the variables (ᾱ, η, f) are coupled by the constraints, which

further complicates the problem. Fortunately, the optimal solution of (29) has a simple structure,

as shown by the following theorem.

Theorem 4. Suppose that the following infimum is attained by some ᾱ∗ > 0:

ϕ∗ :=

(
1 +

σ2

PT

)
inf
ᾱ>0

E[|q(ᾱZ)|2]
|E[Z†q(ᾱZ)]|2

− 1. (30a)

Then, (ᾱ∗, η∗, f ∗) is an optimal solution to the problem in (29) where

η∗ :=

√
PT

E[|q(ᾱ∗Z)|2]
, (30b)

f ∗(d) := ± d

τ ∗(d2 + ϕ∗

γ
)
, (30c)

τ ∗ :=

√√√√√ σ2
s

γ(ᾱ∗)2
E

( d

d2 + ϕ∗

γ

)2
. (30d)

Furthermore, the maximum SINR in (29) is equal to

ζ∗ =
1

1− E
[

d2

d2+ϕ∗
γ

] − 1. (30e)
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Proof. See Appendix F.

Remark 4. Some comments on Theorem 4 are in order.

1) In Theorem 4, we do not impose the positivity constraint on f , and an optimal f satisfying

f > 0 always exists; see (30c). This supports our claim below Assumption 2 that the

positivity assumption on f does not impose any restriction in terms of the best achievable

performance.

2) We assume that the infimum in (30a) is attainable. Our numerical results suggest that

this holds for commonly used quantization functions q(·). In cases where the infimum in

(30a) is not attainable, we may modify the theorem using a simple truncation argument.

Specifically, we add an additional constraint 1
M

≤ ᾱ ≤ M to (30a) and let ᾱ∗
M be any

optimal solution to the constrained problem. We define ϕ∗
M , η∗M and f ∗

M as in (30) with

ᾱ∗ replaced by ᾱ∗
M . Then, it can be shown that the SINR achieved by (ᾱ∗

M , η∗M , f ∗
M) tends

to ζ∗ as M → ∞.

We now take a closer look at (30a). Loosely speaking, it may be interpreted as finding the

optimal input power for the quantization function q(·). More precisely, using the Baussgang

decomposition technique, we can decompose q(ᾱZ) as

q(ᾱZ)
d
= E[Z†q(ᾱZ)]Z+ d,

where Z ∼ CN (0, 1) and d models the quantization error which is uncorrelated with Z. Then,

problem (30a) can be viewed as maximizing the signal to quantization error plus noise ratio

(SQNR):

SQNR :=
|E[Z†q(ᾱZ)]|2 E[|Z|2]

E[|d|2]

=
|E[Z†q(ᾱZ)]|2

E[|q(ᾱZ)|2]− |E[Z†q(ᾱZ)]|2

=
1

E[|q(ᾱZ)|2]
|E[Z†q(ᾱZ)]|2 − 1

.

For a general q(·), problem (30a) can be solved by a one-dimensional search. For the special

case of the CE quantizer, the objective function of (30a) is actually constant (see Lemma 2) and

the problem is trivial; see details in the next subsection.
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Remark 5 (Connection with the WFQ precoder [6]). Theorem 4 shows that for precoding

matrices of the form P = Vf(D)TUH, the asymptotically optimal one is precisely the RZF

precoder:

P∗ =
1

τ ∗
HH

(
HHH +

ϕ∗

γ
IK

)−1

, (31)

where τ ∗ and ϕ∗ can be obtained by solving the one-dimensional optimization problem in (30a).

Interestingly, (31) is closely related to the WFQ precoder [6] designed for traditional quantized

precoding:

PWFQ =
1

g0

(
HHH− ρqnondiag(HHH) +

σ2

γPT

IN

)−1

HH,

where g0 is a scaling factor that ensures a certain power constraint to be satisfied. As N,K → ∞,

the diagonal entries of HHH converge to

(HHH)[i, i] =
K∑
j=1

|H[j, i]|2 a.s.−−→ 1

γ
, i = 1, 2, . . . , N. (32)

Therefore, PWFQ can be approximated as

PWFQ =
1

g0

(
HHH− ρqnondiag(HHH) +

σ2

γPT

IN

)−1

HH

=
1

g0

(
(1− ρq)H

HH+ ρqdiag(HHH) +
σ2

γPT

IN

)−1

HH

(a)
≈ 1

g0

(
(1− ρq)H

HH+
ρq +

σ2

PT

γ
IN

)−1

HH

(b)
=

1

g0
HH

(
(1− ρq)HHH +

ρq +
σ2

PT

γ
IK

)−1

(c)
=

1

g0(1− ρq)
HH

(
HHH +

ρq +
σ2

PT

γ(1− ρq)
IK

)−1

,

(33)

where (a) is due to (32), (b) uses the fact that
(
XHX+ ρIN

)−1
XH = XH

(
XXH + ρIK

)−1 for

any X ∈ CK×N and ρ > 0, and (c) is obtained by extracting the coefficient 1 − ρq from the

inverse matrix. Comparing the last line of (33) with (31), we see that both PWFQ and P∗ are

RZF precoders, and are identical if the regularization parameters and the scaling factors are

the same:

ϕ∗ =
ρq +

σ2

PT

1− ρq
, τ ∗ = g0(1− ρq).
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Note that PWFQ and P∗ are derived based on different criteria and motivations, and not directly

comparable. For the WFQ precoder, the independent quantizer qI(·) is optimized together with

the linear precoder (see also [52], [53] for optimization of the independent quantizer qI(·)), and

the quantization intervals for qI(·) have to be chosen carefully to satisfy several conditions (see

[6, Eqs. (7)-(9)]). On the other hand, q(·) is a generic fixed function in this work, and the input

power of q(·) (dictated by ᾱ) is properly optimized.

B. Example: QCE Precoding

In this subsection, we consider the special case of QCE precoding. As a direct corollary of

Theorem 4, we have the following result.

Corollary 1. When q(·) is specified as qCE(·) in problem (29), the optimal η is η∗ =
√
PT , and

the optimal f has a closed-form expression:

f ∗(d) =
d

d2 +
CL,σ,η∗

γ

, (34)

where CL,σ,η∗ is given in (28). In this case, the asymptotically optimal precoding matrix is given

by

P∗
QCE = HH

(
HHH +

CL,σ,η∗

γ
IK

)−1

, (35)

and its asymptotic SINR is

SINR
∗
QCE =

√
u2 + 4CL,σ,η∗ + u

2CL,σ,η∗
− 1,

where u = CL,σ,η∗ + γ − 1.

Proof. When q(·) = qCE(·), it follows from Lemma 2 and (30b) that η∗ =
√
PT and the objective

function of problem (30a) is a constant CL,σ,η∗ , which is independent of ᾱ. Hence, the optimal

solution set of problem (30a) is {ᾱ∗ | ᾱ∗ > 0} and τ ∗ can be any positive number. Without

loss of generality, here we set τ ∗ = 1. This further gives the optimal f ∗(·) and the optimal

precoding matrix P∗
QCE in (34) and (35), respectively. Finally, SINR

∗
QCE can be obtained by

plugging ϕ∗ = CL,σ,η∗ into (30e) and using [47, Eq. (2.42)].

We note that when γ is large,
√
u2 + 4CL,σ,η∗ ≈ u, which implies that

SINR
∗
QCE ≈ u

CL,σ,η∗
− 1 =

γ − 1

CL,σ,η∗
= SINR

ZF
QCE, (36)

i.e., the performance of quantized ZF precoding is nearly optimal when the antenna-user ratio

is large.
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VI. SIMULATION RESULTS

In this section, we present simulation results to demonstrate the theoretical results obtained

in previous sections. We consider both traditional quantized precoding (where the independent

quantizer is used) and QCE precoding (where the CE quantizer is used), and assume that the

precoding factor (namely, the linear scaling applied at the receiver side before detection) in (23)

is used. We also assume that the precoder adopted in this section has the optimal input power

for the corresponding quantization function, i.e., ᾱ = ᾱ∗, where ᾱ∗ is an optimal solution to

problem (30a). The transmit power is set as PT = 1. All results are averaged over 105 channel

realizations.

A. Numerical Validation of SEP Formulas

We first verify the accuracy of the SEP formulas given in (24)–(26).

In Fig. 3, we plot the symbol error rate (SER) as a function of the ratio of the number of

antennas to users γ for the quantized MF and ZF precoding schemes. Both the cases of a large

system with K = 100 and a more practical system with K = 20 are investigated, where the

number of transmit antennas is set as N = γK. We consider three types of signal constellations:

QPSK, 8-PSK, and 16-QAM, and two types of quantization: CE quantization and independent

quantization. The channel noise is set as σ = 0. As shown in the figure, there is a slight

mismatch between simulations and asymptotic predictions when K = 20, and the differences

become indistinguishable when K = 100.

We can also draw some interesting observations from Fig. 3. First, the logarithm of SEP/SER

decreases linearly with γ, i.e., the antenna-user ratio, which reveals the gain of increasing

the number of transmit antennas at the BS, and the slope of the decrease is determined by

the precoder, the quantizer, and the constellation that are employed. Second, the independent

quantizer and the CE quantizer have different behaviors under different precoding schemes. For

example, the superiority (in terms of SEP/SER) of the 2-bit independent quantizer over the 2-bit

CE quantizer under ZF precoding is much more prominent than that under MF precoding.

In fact, the above observations are clear from our asymptotic analysis. To be specific, applying

the approximation Q(x) ≈ 1
2
e−

1
2
x2

[51] to the SEP predictions for M -PSK and M -QAM
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Fig. 3. SER performance versus γ for quantized MF and ZF precoding with σ = 0, where PSK and QAM represent the type

of constellation and “independent” and “CE” represent the type of quantization. The quantization interval for the independent

quantizer in (3) is ∆ = 2.

TABLE I

ϕ∗ IN (30a) FOR SCALAR AND CE QUANTIZERS WITH σ = 0.

1 bit 2 bits 3 bits 4 bits

scalar 0.57 0.14 0.04 0.01

CE 0.57 0.34 0.29 0.28

constellations in (24) and (25), we get

lnSEP ≈


−2 sin2 π

M
SINR, for PSK;

− 3

2(M − 1)
SINR + log(2− 2√

M
), for QAM,

(37)

i.e., the logarithm of SEP decreases linearly with SINR. According to (21), SINR for MF and

ZF precoding can be expressed as

SINR =


γ

ϕ∗ + 1
, for MF;

γ − 1

ϕ∗ , for ZF,
(38)

where ϕ∗ is given in (30a) and is determined by the quantization type. The values of ϕ∗ for

scalar and CE quantizers with σ = 0 are given in Table I. Eqs (37) and (38) demonstrate the

linear decrease in the logarithm of the SEP with γ, and quantitatively characterize the effects
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Fig. 4. SER performance versus DAC resolution for quantized MF with γ = 6 and QPSK modulation and quantized ZF with

γ = 3 and 8-PSK modulation; σ = 0.

of precoding, quantization, and constellation on the slope of the decrease. In particular, we can

see that ϕ∗ has a stronger impact on ZF than on MF, since the slope of decrease is proportional

to 1
ϕ∗ and 1

ϕ∗+1
for ZF and MF, respectively, and ϕ∗ is on the order of 10−2 − 10−1 as shown

in Table I. This explains why the 2-bit independent quantizer has a greater performance gain

compared with the 2-bit CE quantizer under ZF precoding than under MF precoding.

In Fig. 4, we plot the SER performance of quantized MF and ZF for both traditional quantized

precoding and QCE precoding as a function of the DAC resolution. For MF, the performance

gain of both quantizers is small as the DAC resolution increases, especially when the resolution

is larger than 2 bits. The same happens for ZF precoding with CE quantization. However, there

is a remarkable gain for ZF precoding with independent quantization as the DAC resolution

increases. These observations can also be interpreted by our previous discussions.

Finally, Fig. 5 shows the SER of quantized MF and ZF as a function of the channel SNR (i.e.,

1/σ2) for a one-bit system with γ = 6 and QPSK modulation. We see that ZF has a noticeable

performance gain compared with MF in the high SNR region.

B. Optimality of Quantized RZF Precoding

In this subsection, we present some simulation results to demonstrate the optimality of the

quantized RZF precoding matrix given in (31).
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Fig. 5. SER performance versus SNR for one-bit quantized MF and ZF precoding with γ = 6 and QPSK modulation.
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Fig. 6. SER performance versus regularization parameter for a one-bit system with γ = 3 and QPSK modulation.

In Fig. 6, we consider quantized RZF precoding and depict the SER as a function of the

regularization parameter for a one-bit system with γ = 3, σ = 0, and QPSK modulation. As

shown in the figure, the errors between the asymptotic SER and the actual SER are within 0.002

and 0.005 for K = 100 and K = 20, respectively, which again validates the accuracy of our

analytical results. In addition, it can be observed that the simulation curves and the (asymptotic)

analysis curve show almost the same trends and all attain their minimum at approximately 0.2,

which agrees well with the predicted value of 0.19 for the optimal regularization parameter. This
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Fig. 7. Comparison of the SER performance between different linear-quantized precoders with K = 20, for 2-bit independent

quantization with QPSK.
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Fig. 8. Comparison of the SER performance between different linear-quantized precoders with K = 20, for 2-bit CE quantization

with QPSK.

demonstrates the optimality of the RZF precoding matrix P∗ in (31).

In Figs. 7 and 8, we further consider realistic systems with K = 20. We plot the SER

performance of quantized MF, ZF, and the proposed RZF precoding as a function of the SNR for

both independent quantization and CE quantization. We investigate two different cases: γ = 1.5

and γ = 4, which corresponds to small and large antenna-user ratio, respectively. Compared with
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the quantized MF and ZF precoder, the proposed quantized RZF precoder enjoys a substantial

performance gain for small γ. When γ is large, the proposed quantized RZF precoder performs

similarly to the quantized ZF precoder (which is consistent with our discussion in (36)), and

they both yield a much lower SER than the quantized MF precoder.

VII. CONCLUSION

In this paper, we studied the performance of linear-quantized precoding in massive MIMO

downlink systems. Assuming an i.i.d. Gaussian channel matrix, we showed that the linear-

quantized precoding scheme is statistically equivalent to a simple scalar model in the asymptotic

sense when the number of antennas N and the number of users K tend to infinity with a

fixed ratio. We further derived the optimal precoding strategy within a class of linear-quantized

precoders, and found that it is precisely the RZF precoder where the optimal regularization

parameter depends on the type and level of quantization and various system parameters. For

future work, it would be interesting to extend the current analysis to encompass more general

scenarios, such as general correlated channels and imperfect CSI. It is also interesting to give

performance analysis of the more challenging nonlinear precoding schemes.

APPENDIX A

PRELIMINARIES OF THE HOUSEHOLDER DICE TECHNIQUE [38]

In this appendix, we collect some useful results about the HD technique. We begin with the

definition of the Householder transform.

Definition 2 (Householder Transform). For a given vector v = (v1, v2, . . . , vN)
T ∈ CN\{0},

denote

pv = −ej arg(vs), where s = min
i

{i | vi ̸= 0} .

Let H(v) be the Householder transform of v, i.e.,

H(v) = I− 2
uuH

∥u∥2

with u = v − pv∥v∥e1, e1 = (1, 0, . . . , 0)T. Further, define

R(v) = pv H(v). (39)
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With a slight abuse of notation, R(v) will also be called the Householder transform matrix

associated with v. We further define a generalized Householder transform as [38]

Rk(v) =

Ik−1 0

0 R(v[k : N ])

 .

The following lemma collects some useful properties of R(v) that will be used in the

subsequent analysis. The proofs are straightforward and thus omitted.

Lemma 3 (Facts and properties of R(v)). For a given vector v ∈ CN\{0}, the Householder

transform R(v) defined in (39) satisfies:

(i) R(v) ∈ U(N);

(ii) R(v)Hv = ∥v∥e1;

(iii) R(v)e1 =
v

∥v∥ , i.e., R(v) can be expressed as

R(v) =
(

v
∥v∥ B(v)

)
, (40)

where B(v) ∈ CN×(N−1) is a basis matrix for {v}⊥.

The generalized Householder transform Rk(v) has similar properties as R(v), except that it

leaves the first k − 1 entries of v unchanged and applies a Householder transform on v[k : N ].

The following lemma is a recursive characterization of the Haar random matrix introduced in

[38, Lemma 1], which serves as the theoretical basis of the HD technique. The only difference

is that we consider complex unitary matrices instead of real orthogonal matrices.

Lemma 4. Let g ∼ CN (0, IN), QN−1 ∼ Haar(N − 1), and v ∈ CN\{0}, all of which are

independent, where N ≥ 2. Then

QN := R1(g)

1 0

0 QN−1

R1(v)
H ∼ Haar(N) (41)

and

Q̃N := R1(v)

1 0

0 QN−1

R1(g)
H ∼ Haar(N). (42)

Moreover, QN and Q̃N are independent of v.
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Proof. We first note that the first column of R1(g) is g
∥g∥ , which is uniformly distributed on the

unit sphere SN−1 ⊆ CN . Then according to [46, page 21], we have

R1(g)

1 0

0 QN−1

 ∼ Haar(N).

Moreover, since a Haar matrix is both left and right translation invariant, we are free to multiply

unitary matrices (either deterministic or independent of the Haar matrix) from left or right, hence

(41) is correct. The above discussions imply that the conditional distribution of QN given v is

the same as the distribution of QN (both are Haar distributed), i.e.,

µQN |v = µQN
= µ, ∀v ∈ CN\{0}, (43)

where µ denotes the Haar measure on U(N). Therefore, QN and v are independent. Finally,

(42) is also true since Q ∼ Haar(N) implies QH ∼ Haar(N), and the independence between

Q̃N and v can be justified in a similar way as (43).

APPENDIX B

PROOF OF THEOREM 1

In this section, we provide the detailed proof of Theorem 1. This section is long and is

organized as follows:

• Section B-A contains the main proof of Theorem 1, relying on two auxiliary results: Lemma

5 and Lemma 6;

• Lemma 5 is critical to the proof of Theorem 1. For better understanding, we present some

high-level ideas about the proof of Lemma 5 in Section B-B;

• Section B-C contains the complete proof of Lemma 5;

• Section B-D contains the proof of Lemma 6.

A. Proof of Theorem 1

The proof of Theorem 1 contains two major steps. The first step is to apply the HD technique

[38] to our model in (11) to obtain a statistically equivalent model that is more amenable to

analysis. The result of this step is summarized in the following lemma and the proof is given

in Appendix B-C.
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Lemma 5. The distribution of (s,y) given in (11) is the same as that of (s, ỹ) specified by the

following model: 

s̃1 = f(D)TR1(g1)R1(s)
Hs,

s̃2 = q(R1(z1)R1(s̃1)
Hs̃1),

s̃3 = DR1(s̃1)R2(z2)R1(v1)
Hv1,

ỹ = ηR1(s)R2(g2)R2(v2)
Hv2 + n,

(44)

where v1 = R1(z1)
Hs̃2 and v2 = R1(g1)

Hs̃3; g1 ∼ CN (0, IK), g2 ∼ CN (0, IK), z1 ∼ CN (0, IN),

z2 ∼ CN (0, IN); g1, g2, z1, z2, s,n,D are mutually independent.

The second step is to simplify the above statistically equivalent model (s, ỹ) using basic

properties of the Householder transform in Lemma 3 to obtain the explicit model (12) in Theorem

1. This step requires careful calculation and we leave the details to Appendix B-D.

Lemma 6. The distribution of (s, ỹ) given in (44) is the same as that of (s, ȳ) given in (12) in

Theorem 1.

Combining Lemmas 5 and 6, we get the desired result in Theorem 1.

B. Discussions on Lemma 5

Since Lemma 5 is critical to the proof of Theorem 1, we would like to provide some high-level

ideas and informal discussions before we present its full proof in Appendix B-C.

Recall that our original model in (11) reads

s1 = f(D)TUHs;

s2 = q(Vs1);

s3 = DVHs2;

y = Us3 + n.

Our goal is to characterize the joint distribution of (s, s1, s2, s3,y). Roughly speaking, for N,K ≥

3, fixing the distribution of (s, s1, s2, s3,y) does not fully fix the randomness of the Haar matrices

U and V, and we still have freedom to generate the remaining randomness in a convenient way.

A systematic way of carrying out this process is via the HD technique in [38]. To be clear, we use

(s, s1, s2, s3,y) to denote the random vectors from the original model, and use (s, s̃1, s̃2, s̃3, ỹ)

to denote the corresponding vectors generated via the HD method in the following discussion.
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The main idea of HD is to generate the Haar random matrices U and V involved in the

above iterations in a recursive way by repeatedly applying Lemma 4. More specifically, the HD

technique tells that at each iteration we only need to generate a single Gaussian vector to unfold

the randomness of U (or V) in one dimension, and the resulting sequence will only depend on

the initial condition {s,D,n} and the exposed Gaussian vectors.

Here we take the first iteration of (11) as an example to shed some light on this. To compute

UHs, we can construct a Haar random matrix UH according to Lemma 4 as

ŨH = R1(g1)

1 0

0 QK−1

R1(s)
H, (45)

where g1 ∼ CN (0, IK) and QK−1 ∼ Haar(K − 1) are independent of each other and of s, D,

and n. Then we have
s̃1 := f(D)TŨHs

= f(D)TR1(g1)

1 0

0 QK−1

R1(s)
Hs

= f(D)TR1(g1)R1(s)
Hs,

where the last equality holds since R1(s)
Hs is only nonzero in its first element due to Lemma

3. An important observation is that s̃1 depends on the Haar matrix Ũ only through a Gaussian

vector g1, and is invariant to the remaining Haar matrix QK−1. Since QK−1 involved in (45) is

Haar distributed and independent of all the other random variables generated up to this point, we

can apply the same technique to QK−1 when another multiplication involving U is required, and

a new Gaussian vector g2 ∼ CN (0, IK) will be exposed (see the expression of ỹ in (44)). The

Haar matrix V can be constructed similarly when we deal with the second and third iterations,

and two Gaussian vectors z1 ∼ CN (0, IN) and z2 ∼ CN (0, IN) will be exposed in these two

iterations after applying the HD technique (see the expression of s̃2 and s̃3 in (44)). A detailed

derivation of (11) using the HD technique is provided in Appendix B-C1.

To gain some further insight, we directly give the form of the two Haar matrices constructed

using the HD technique without proof (see Appendix B-C1 for a detailed proof):

Ũ = R1(s)R2(g2)

I2 0

0 QK−2

R2(v2)
HR1(g1)

H (46)

and

Ṽ = R1(z1)R2(v1)

I2 0

0 PN−2

R2(z2)
HR1(s̃1)

H. (47)
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In the above expressions, QK−2 and PN−2 are Haar matrices independent of all the other random

variables, which are the unexposed random matrices that are absent in the final result; g1, g2, z1, z2

are the exposed Gaussian vectors; s̃1,v1, and v2 are some intermediate random vectors generated

due to the recursive nature of the HD technique. Equation (44) can be interpreted as replacing

the Haar random matrices U and V in the original model (11) by the two unitary matrices

Ũ and Ṽ given above. Here, we use the notation Ũ and Ṽ to emphasize the fact that their

distributional properties are yet to be proved. To show (s,y)
d
= (s, ỹ), it remains to check that

Ũ and Ṽ have the desired properties, i.e., Ũ ∼ Haar(K), Ṽ ∼ Haar(N), and Ũ, Ṽ,D, s,n are

mutually independent. We relegate the details to Appendix B-C2.

C. Proof of Lemma 5

In this subsection, we give the complete proof of Lemma 5, which consists of the following

two steps:

• We first show that (44) is the sequence generated by applying the HD technique to (11);

• We then prove (44) is statistically equivalent to (11).

1) Derivation of (44): We first give a detailed derivation of how (44) is obtained via the HD

technique. Recall that our original model (6) can be written as the following iterative process

(see (11)): 

s1 = f(D)TUHs;

s2 = q(Vs1);

s3 = DVHs2;

y = Us3 + n.

Next, we apply the HD technique to deal with the above model.

For the first iteration, we construct UH according to Lemma 4 as

(
U(1)

)H
= R1(g1)

1 0

0 QK−1

R1(s)
H, (48)
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where g1 ∼ CN (0, IK) and QK−1 ∼ Haar(K − 1) are independent of each other and of s, D,

and n. Then we have
s̃1 = f(D)T

(
U(1)

)H
s

= f(D)TR1(g1)

1 0

0 QK−1

R1(s)
Hs

= f(D)TR1(g1)R1(s)
Hs,

where the last equality holds since R1(s)
Hs is only nonzero in its first element.

For the second iteration, we use a similar technique to construct the Haar matrix V according

to Lemma 4 as

V(1) = R1(z1)

1 0

0 PN−1

R1(s̃1)
H, (49)

where z1 ∼ CN (0, IN) and PN−1 ∼ Haar(N − 1) are independent of each other and of all the

existing random variables. It follows immediately that

V(1)s̃1 = R1(z1)

1 0

0 PN−1

R1(s̃1)
Hs̃1

= R1(z1)R1(s̃1)
Hs̃1,

and thus

s̃2 = q(V(1)s̃1)=q(R1(z1)R1(s̃1)
Hs̃1).

For the third iteration, we need to calculate DVHs̃2. From (49), we get

(
V(1)

)H
= R1(s̃1)

1 0

0 PH
N−1

R1(z1)
H.

Let v1 = R1(z1)
Hs̃2. Since PH

N−1 is Haar distributed and independent of v1, we can still apply

the above technique to construct PH
N−1 as

PH
N−1 = R1(z2[2 : N ])

1 0

0 PH
N−2

R1(v1[2 : N ])H,

where z2 ∼ CN (0, IN) and PN−2 ∼ Haar(N − 2) are independent of each other and of all the

existing random variables. Then we have

(
V(2)

)H
= R1(s̃1)R2(z2)

I2 0

0 PH
N−2

R2(v1)
HR1(z1)

H
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and
s̃3 = D

(
V(2)

)H
s̃2

= DR1(s̃1)R2(z2)

I2 0

0 PH
N−2

R2(v1)
Hv1

= DR1(s̃1)R2(z2)R2(v1)
Hv1,

where PH
N−2 disappears in the second equality since R2(v1)

Hv1 is only nonzero in its first two

elements.

Finally, we calculate ỹ = Us̃3 + n. According to (48),

U(1) = R1(s)

1 0

0 QH
K−1

R1(g1)
H.

Similarly, let v2 = R1(g1)
Hs̃3 and construct QH

K−1 as

QH
K−1 = R1(g2[2 : K])

1 0

0 QK−2

R1(v2[2 : K])H,

where g2 ∼ CN (0, IK) and QK−2 ∼ Haar(K − 2) are independent of each other and of all the

existing random variables. Then we have

U(2) = R1(s)R2(g2)

I2 0

0 QK−2

R2(v2)
HR1(g1)

H

and
ỹ = U(2)s̃3 + n

= R1(s)R2(g2)

I2 0

0 QK−2

R2(v2)
HR1(g1)

Hs̃3 + n

= R1(s)R2(g2)R2(v2)
Hv2 + n.

This gives the sequence (s̃1, s̃2, s̃3, ỹ) in (44), and the two constructed Haar matrices are Ũ =

U(2) and Ṽ = V(2), which are exactly those given in (46) and (47).

2) Statistical Equivalence of (44) and (11): The proof follows the general principle proposed

in [38, Theorem 2]. Here we provide a complete proof to make the paper self-contained.
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First, it is easy to check that (s, ỹ) given in (44) can be obtained by substituting Ũ in (46)

and Ṽ in (47) into (11). To show the statistical equivalence, we still need to prove that Ũ and

Ṽ in (46) and (47) have the following desired properties:

• Ũ ∼ Haar(K), Ṽ ∼ Haar(N); (50a)

• Ũ, Ṽ, s,D,nare mutually independent. (50b)

Next, we prove the above properties for Ũ, and those for Ṽ can be proved by similar arguments.

We first analyze the inner term R2(g2)
(
I2 0
0 QK−2

)
R2(v2)

H in Ũ:

R2(g2)

I2 0

0 QK−2

R2(v2)
H =

1 0

0 R1(g2[2 : K])
(
1 0
0 QK−2

)
R1(v2[2 : K])H


:=

1 0

0 QK−1

 .

By the definition of v2 and from the method of generating QK−2 and g2, it is clear that g2,QK−2,

and v2 are mutually independent. It follows immediately from Lemma 4 that QK−1 ∼ Haar(K−

1) and is independent of v2, and hence independent of all other random variables except QK−2

and g2 that construct QK−1. We then investigate

Ũ = R1(s)

1 0

0 QK−1

R1(g1)
H.

Again from Lemma 4, we know that Ũ ∼ Haar(K) and is independent of all other random

variables (except QK−2, g2, and g1), i.e., Ũ has the desired properties in (50). This completes

our proof of the statistical equivalence between (s,y) in (11) and (s, ỹ) in (44).

D. Proof of Lemma 6

In this subsection, we give the proof of Lemma 6, i.e., we derive (12) from (44). For clarity,

we copy the expressions of s̃1, s̃2, s̃3, ỹ in (44) here.

s̃1 = f(D)TR1(g1)R1(s)
Hs;

s̃2 = q(R1(z1)R1(s̃1)
Hs̃1);

s̃3 = DR1(s̃1)R2(z2)R1(v1)
Hv1;

ỹ = ηR1(s)R2(g2)R2(v2)
Hv2 + n,
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where v1 = R1(z1)
Hs̃2 and v2 = R1(g1)

Hs̃3. In the subsequent analysis, we will frequently

encounter Householder transform-vector multiplications of the following form:

R1(g)R1(v)
Hv,

where g ∼ CN (0, I) and v is a random vector independent of g. According to the properties of

the Householder transform, i.e., (ii) and (iii) of Lemma 3, we have

R1(g)R1(v)
Hv = ∥v∥R1(g)e1 =

∥v∥
∥g∥

g. (51)

It follows immediately that

s̃1 = f(D)TR1(g1)R1(s)
Hs =

∥s∥
∥g1∥

f(D)Tg1 = ŝ1, (52)

where the last equality is due to the definition of ŝ1 in (13).

Next we begin our derivation of (12). First, we compute R2(g2)R2(v2)
Hv2 in ỹ using (51):

R2(g2)R2(v2)
Hv2 =

1 0

0 R1(g2[2 : K])R1(v2[2 : K])H

 v2[1]

v2[2 : K]


=

 v2[1]

R1(g2[2 : K])R1(v2[2 : K])Hv2[2 : K]


=

 v2[1]

∥v2[2:K]∥
∥g2[2:K]∥ g2[2 : K]

 .

Combining the above equation with the definition R1(s) =
(

s
∥s∥ B(s)

)
, we can express ỹ as

ỹ = ηR1(s)R2(g2)R2(v2)
Hv2 + n

= η
(

s
∥s∥ B(s)

) v2[1]

∥v2[2:K]∥
∥g2[2:K]∥ g2[2 : K]

+ n

= η
v2[1]

∥s∥
s+ η

∥v2[2 : K]∥
∥g2[2 : K]∥

B(s)g2[2 : K] + n.

(53)

By further noting that

B(s)g2[2 : K] = R(s)g2 −
g2[1]

∥s∥
s

and substituting it into (53), we get

ỹ =η

(
v2[1]

∥s∥
− g2[1]

∥s∥
∥v2[2 : K]∥
∥g2[2 : K]∥

)
s+ η

∥v2[2 : K]∥
∥g2[2 : K]∥

R(s)g2 + n. (54)
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Note that if g ∼ CN (0, I), then for any unitary matrix U independent of g, Ug ∼ CN (0, I), i.e.,

Ug
d
= g, and Ug is independent of U. Therefore, since g2 is independent of all other random

variables in (54), i.e., s,v2, and n, R(s)−1g2
d
= g2 and R(s)−1g2 is also independent of s, v2

and n, and hence we can replace g2 with R(s)−1g2 in (54), which yields

ỹ
d
= η

(
v2[1]

∥s∥
− (R(s)−1g2)[1]

∥s∥
∥v2[2 : K]∥

∥(R(s)−1g2)[2 : K]∥

)
s+ η

∥v2[2 : K]∥
∥(R(s)−1g2)[2 : K]∥

g2 + n.

(55)

We next analyze

v2 = R1(g1)
Hs̃3 = R1(g1)

HDR1(s̃1)R2(z2)R2(v1)
Hv1 (56)

step by step. First, from the definitions of v1 and s̃2, we have

v1 = R1(z1)
Hq(R1(z1)R1(s̃1)

Hs̃1)

= R1(z1)
Hq

(
∥s̃1∥
∥z1∥

z1

)
(from (51))

= R1(z1)
Hq

(
∥ŝ1∥
∥z1∥

z1

)
(from (52))

=

 zH1
∥z1∥

B(z1)
H

 q

(
∥ŝ1∥
∥z1∥

z1

)
(from (40))

=

 zH1 q
(

∥ŝ1∥
∥z1∥

z1
)

∥z1∥

B(z1)
Hq
(

∥ŝ1∥
∥z1∥z1

)
 .

(57)

Then we have

R2(z2)R2(v1)
Hv1 =

1 0

0 R1(z2[2 : N ])R1(v1[2 : N ])H

 v1[1]

v1[2 : N ]


=

 v1[1]

R1(z2[2 : N ])R1(v1[2 : N ])Hv1[2 : N ]


=

 zH1 q
(

∥ŝ1∥
∥z1∥

z1
)

∥z1∥∥∥∥B(z1)Hq
(

∥ŝ1∥
∥z1∥

z1
)∥∥∥

∥z2[2:N ]∥ z2[2 : N ]

 ,
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where the last equality comes from (51) and (57). It follows from the above equality, (40), and

(52) that
R1(s̃1)R2(z2)R2(v1)

Hv1

=R1(ŝ1)R2(z2)R2(v1)
Hv1

=
(

ŝ1
∥ŝ1∥ B(ŝ1)

) zH1 q
(

∥ŝ1∥
∥z1∥

z1
)

∥z1∥∥∥∥B(z1)Hq
(

∥ŝ1∥
∥z1∥

z1
)∥∥∥

∥z2[2:N ]∥ z2[2 : N ]


=

zH1 q
(

∥ŝ1∥
∥z1∥ z1

)
∥z1∥∥ŝ1∥

ŝ1 +

∥∥∥B(z1)
Hq
(

∥ŝ1∥
∥z1∥ z1

)∥∥∥
∥z2[2 : N ]∥

B(ŝ1)z2[2 : N ]

:=C1ŝ1 + C2B(ŝ1)z2[2 : N ].

Finally, from the above equality, (40), and (56), we have

v2 =

 gH1
∥g1∥

B(g1)
H

 (C1Dŝ1 + C2DB(ŝ1)z2[2 : N ])

=

 gH1 {C1Dŝ1+C2DB(ŝ1)z2[2:N ])}
∥g1∥

B(g1)
H{C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}

 .

(58)

Plugging (58) into (55), we can get the desired model (12).

APPENDIX C

PROOF OF THEOREM 2

In this section, we provide a detailed proof of Theorem 2. In Section C-A, we first give some

definitions and preliminary results of the asymptotic analysis. Section C-B gives two useful

auxiliary results that are important for the proof, and Section C-C contains the main proof of

Theorem 2.

A. Preliminaries

Lemma 7. Let {XN} and {YN} be sequences of random variables. If

XN
a.s.−−→ X, YN

a.s.−−→ Y,

then

XN + YN
a.s.−−→ X + Y, XNYN

a.s.−−→ XY,
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and
XN

YN

a.s.−−→ X

Y
(if YN , Y ̸= 0).

Lemma 8 (Kolmogorov’s strong law of large numbers [54]). Assume that X1, X2, . . . are

independent with means µ1, µ2, . . . and variances σ2
1, σ

2
2, . . . such that

∑
N

σ2
N

N2 < ∞. Then

X1 +X2 + · · ·+XN − (µ1 + µ2 + · · ·+ µN)

N

a.s.−−→ 0.

As a corollary, if X1, X2, . . . are i.i.d. with mean µ, then

X1 +X2 + · · ·+XN

N
− µ

a.s.−−→ 0.

Lemma 9 ( [55, Theorem 3]). Let {XN} be a sequence of random variables. If {XN} converges

in distribution to X , then

E[g(XN)] → E[g(X)]

for all bounded measurable functions g such that P{X ∈ C(g)} = 1, where C(g) = {x |

g is continuous at x} denotes the continuity set of g.

Definition 3 (Empirical Spectral Distribution [56]). Consider an N ×N Hermitian matrix TN .

Define its empirical spectral distribution (e.s.d.) FTN to be the distribution function of the

eigenvalues of TN , i.e., for x ∈ R,

FTN (x) =
1

N

N∑
j=1

1{λj≤x}(x),

where λ1, . . . , λN are the eigenvalues of TN .

Lemma 10 ( [56, Section 3.2 and Section 7.1]). Consider a matrix X ∈ CK×N with i.i.d. entries

following CN
(
0, 1

N

)
. As K,N → ∞ with K

N
→ c ∈ (0, 1), the following results hold:

(i) the e.s.d. of XXH converges weakly and almost surely to a distribution function F with

density given by:

p(x) =
1

2πcx

√
(x− a)+(b− x)+,

where a = (1−
√
c)2, b = (1 +

√
c)2, and (x)+ = max{x, 0};

(ii) the largest eigenvalue of XXH, denoted by λmax, satisfies

λmax
a.s.−−→ (1 +

√
c)2.
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B. Auxiliary Lemma

This subsection introduces two auxiliary lemmas used in the main proof in Section C-C.

Lemma 11. Define D̃ = diag(d1, d2, . . . , dK), where d1, d2, . . . , dK are the nonzero singular

values of H (satisfying Assumption 1). Assume that σ(·) is a function that is continuous a.e. and

bounded on any compact set of (0,∞); g1 ∼ CN (0, IK), g2 ∼ CN (0, IK), and D̃ are mutually

independent. Then as N,K → ∞ and N
K

→ γ > 1, it holds that

(i)
gH1 σ(D̃)g1

K

a.s.−−→ E[σ(d)];

(ii)
gH1 σ(D̃)g2

K

a.s.−−→ 0,

where d =
√
λ and λ follows the Marchenko-Pastur distribution, whose density is given in (16).

Proof. First, from the definition of σ(·) and (ii) of Lemma 10, we know that for sufficiently

large N and K, there exists a constant M > 0 such that

sup
1≤i≤K

|σ(di)| ≤ M

with probability one. Then according to the strong law of large numbers in Lemma 8, we have

gH1 σ(D̃)g1
K

− 1

K

K∑
i=1

σ(di) =
1

K

K∑
i=1

σ(di)|g1[i]|2 −
1

K

K∑
i=1

σ(di)
a.s.−−→ 0,

and
gH1 σ(D̃)g2

K
=

1

K

K∑
i=1

σ(di)g1[i]
†g2[i]

a.s.−−→ 0,

which immediately gives (ii) of Lemma 11. Next we continue to prove (i) of Lemma 11. Note

that
1

K

K∑
i=1

σ(di) =
1

K

K∑
i=1

σ(
√
λi),

where λ1, λ2, . . . , λK are the eigenvalues of HHH. Let XK be a random variable following the

e.s.d. of HHH, then
1

K

K∑
i=1

σ(
√

λi) = E
[
σ(
√
XK)

]
.

Define

g(x) =

σ(
√
x), if x ∈ [0, (1 +

√
c)2 + 1];

0, otherwise,
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where c = 1
γ

. Then g(·) is continuous a.e. and bounded. It follows from (ii) of Lemma 10 that

with probability one, the largest eigenvalue of HHH is bounded by (1+
√
c)2+1 for sufficiently

large K, which implies that

E
[
σ(
√
XK)

]
→ E [g(XK)] .

Let λ be a random variable following the Marchenko-Pastur distribution. Then we have P{λ ∈

C(g)} = 1 since λ is a continuous random variable and g is continuous a.e., where the definition

of C(g) is given in Lemma 9. Therefore, according to (i) of Lemma 10, we can apply Lemma

9 to {XK} and λ to obtain

E[g(XK)] → E[g(λ)] = E
[
σ(
√
λ)
]
.

Combining the above discussions, we get the desired result

gH1 σ(D̃)g1
K

a.s.−−→ E
[
σ(
√
λ)
]
= E [σ(d)] .

The proof is completed.

Lemma 12. Assume that z ∼ CN (0, IN), α
a.s.−−→ ᾱ, and q(·) satisfies Assumption 3. Then,

zHq(αz)

N

a.s.−−→ E
[
Z†q(ᾱZ)

]
, where Z ∼ CN (0, 1) .

Proof. Note that

zHq(αz)

N
=

1

N

N∑
i=1

z†i q(αzi)

=
1

N

N∑
i=1

R(zi)R(q(αzi)) +
1

N

N∑
i=1

I(zi)I(q(αzi))

+ j
1

N

N∑
i=1

R(zi)I(q(αzi))− j
1

N

N∑
i=1

I(zi)R(q(αzi)).

To show the almost sure convergence, it suffices to show that each of the above four terms

converges almost surely to a constant. Next, we will prove that

1

N

N∑
i=1

R(zi)R(q(αzi))
a.s.−−→ E [R(Z)R(q(ᾱZ))] ,

where Z ∼ CN (0, 1), and the convergence of the other three terms can be proved using similar

arguments. Let g(x) = R(q(x)). For any given ϵ > 0, we construct the following lower and

upper bounds of g:

lϵ(x) = inf
y

{
g(y) +

1

ϵ
|y − x|

}
,
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uϵ(x) = sup
y

{
g(y)− 1

ϵ
|y − x|

}
.

According to [55, page 15], lϵ and uϵ satisfy

(i) lϵ(x) ≤ g(x) ≤ uϵ(x),∀x ∈ C.

(ii) lϵ and uϵ are Lipschitz continuous with Lipschitz constant 1
ϵ
, i.e., |lϵ(x1) − lϵ(x2)| ≤

1
ϵ
|x1 − x2| and |uϵ(x1)− uϵ(x2)| ≤ 1

ϵ
|x1 − x2|.

(iii) lϵ(x) and uϵ(x) are bounded, i.e., ∃B > 0 not depending on ϵ such that |lϵ(x)| ≤ B and

|uϵ(x)| ≤ B, ∀x ∈ C.

(iv) If x is a continuous point of g(·), then lim
ϵ↓0

lϵ(x) = g(x) = lim
ϵ↓0

uϵ(x).

Denote G(x, α) = R(x)R(q(αx)) = R(x)g(αx). Based on the above upper and lower bounds

of g(x), we can upper and lower bound G(x, α) as

G(x, α) ≤ R(x)+uϵ(αx) +R(x)−lϵ(αx) ≜ Uϵ(x, α)

and

G(x, α) ≥ R(x)+lϵ(αx) +R(x)−uϵ(αx) ≜ Lϵ(x, α),

where x+ = max{x, 0} and x− = min{x, 0}. It follows that for any ϵ > 0,

1

N

N∑
i=1

Lϵ(zi, α) ≤
1

N

N∑
i=1

G(zi, α) ≤
1

N

N∑
i=1

Uϵ(zi, α). (59)

To show that 1
N

∑N
i=1G(zi, α)

a.s.−−→ E[G(Z, ᾱ)], we will first prove that for a given ϵ > 0,

1

N

N∑
i=1

Lϵ(zi, α)
a.s.−−→ E[Lϵ(Z, ᾱ)], (60a)

1

N

N∑
i=1

Uϵ(zi, α)
a.s.−−→ E[Uϵ(Z, ᾱ)], (60b)

which, together with (59), implies

lim inf
N→∞

1

N

N∑
i=1

G(zi, α) ≥ E[Lϵ(Z, ᾱ)] a.s. (61a)

lim sup
N→∞

1

N

N∑
i=1

G(zi, α) ≤ E[Uϵ(Z, ᾱ)] a.s. (61b)

Then we will show that

lim
ϵ↓0

E[Lϵ(Z, ᾱ)] = lim
ϵ↓0

E[Uϵ(Z, ᾱ)] = E[G(Z, ᾱ)]. (62)
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Letting ϵ ↓ 0 in (61) and using (62) give the desired result:

1

N

N∑
i=1

G(zi, α)
a.s.−−→ E[G(Z, ᾱ)].

It remains to prove (60) and (62). We will only provide the proof of (60) and (62) for the

lower bound Lϵ since the upper bound can be proved in exactly the same way. First,∣∣∣∣∣ 1N
N∑
i=1

Lϵ(zi, α)− E[Lϵ(Z, ᾱ)]

∣∣∣∣∣
≤

∣∣∣∣∣ 1N
N∑
i=1

Lϵ(zi, α)−
1

N

N∑
i=1

Lϵ(zi, ᾱ)

∣∣∣∣∣+
∣∣∣∣∣ 1N

N∑
i=1

Lϵ(zi, ᾱ)− E[Lϵ(Z, ᾱ)]

∣∣∣∣∣ .
It follows immediately from the strong law of large numbers (i.e., Lemma 8) that the second

term tends to zero almost surely. For the first term, we have∣∣∣∣∣ 1N
N∑
i=1

Lϵ(zi, α)−
1

N

N∑
i=1

Lϵ(zi, ᾱ)

∣∣∣∣∣ ≤ 1

N

N∑
i=1

|Lϵ(zi, α)− Lϵ(zi, ᾱ)|

≤ 1

N

N∑
i=1

|R(zi)|
|zi(α− ᾱ)|

ϵ

≤|α− ᾱ|
ϵ

1

N

N∑
i=1

|zi|2
a.s.−−→ 0,

where the second inequality holds due to Lipschitz continuity (i.e., property (ii))) of lϵ(x) and

uϵ(x), and the almost convergence is due to the assumption α
a.s.−−→ ᾱ, Lemma 8, and Lemma 7.

This proves (60). Since lϵ and uϵ are bounded (i.e., property (iii))), we have

|Lϵ(x, ᾱ)| ≤ B|R(x)|.

According to the dominated convergence theorem [54],

lim
ϵ↓0

E[Lϵ(Z, ᾱ)] = E
[
lim
ϵ↓0

Lϵ(Z, ᾱ)

]
.

Property (iv) of lϵ implies that limϵ↓0 Lϵ(x, ᾱ) = G(x, ᾱ), if ᾱx is a continuous point of g(x),

i.e., limϵ↓0 Lϵ(x, ᾱ) = G(x, ᾱ) almost everywhere. Therefore,

lim
ϵ↓0

E[Lϵ(Z, ᾱ)] = E
[
lim
ϵ↓0

Lϵ(Z, ᾱ)

]
= E[G(Z, ᾱ)],

which completes the proof.
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C. Main proof of Theorem 2

To prove Theorem 2, it suffices to prove (see Lemma 7)

Ts
a.s.−−→ T s and Tg

a.s.−−→ T g,

where

Ts =
gH1 {C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}

∥g1∥∥s∥
− Tg

(R(s)−1g2)[1]

∥s∥
,

Tg =
∥B(g1)

H{C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}∥
∥(R(s)−1g2)[2 : K]∥

,

and

T s = C1 E[d f(d)],

T g =

√
σ2
s |C1|2 var[d f(d)] + C

2

2.

In the above equations,

C1 =
zH1 q

(
∥ŝ1∥
∥z1∥ z1

)
∥ŝ1∥∥z1∥

, C2 =

∥∥∥B(z1)
Hq
(

∥ŝ1∥
∥z1∥ z1

)∥∥∥
∥z2[2 : N ]∥

,

C1 =
E[Z†q(ᾱZ)]

ᾱ
, C2 =

√
E[|q(ᾱZ)|2]− |E[Z†q(ᾱZ)]|2.

Further, ŝ1 =
∥s∥
∥g1∥f(D)Tg1 and ᾱ =

√
σ2
s E[f2(d)]

γ
.

We start with analyzing the limiting values of C1 and C2. From the strong law of large numbers

in Lemma 8, we have

∥z1∥2

N

a.s.−−→ 1,
∥g1∥2

K

a.s.−−→ 1,
∥s∥2

K

a.s.−−→ σ2
s . (63)

Furthermore, applying Lemma 11 in Section C-B with σ(x) = f 2(x) yields

∥f(D)Tg1∥2

K
=

gH1 f(D)f(D)Tg1
K

a.s.−−→ E[f 2(d)]. (64)

It follows immediately from (63), (64), and Lemma 7 that

α :=
∥ŝ1∥
∥z1∥

=
∥s∥
∥g1∥

∥f(D)Tg1∥
∥z1∥

a.s.−−→

√
E[f 2(d)]σ2

s

γ
= ᾱ. (65)

Note that C1 can be expressed as

C1 =
zH1 q

(
∥ŝ1∥
∥z1∥z1

)
∥ŝ1∥∥z1∥

=
zH1 q(αz1)

α∥z1∥2
.

According to Lemma 12 in Section C-B and noting that α a.s.−−→ ᾱ, we have

zH1 q(αz1)

N

a.s.−−→ E[Z†q(ᾱZ)], (66)
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where Z ∼ CN (0, 1). This, together with (63), (65), and Lemma 7, proves the convergence of

C1:

C1 =
zH1 q(αz1)

α∥z1∥2
a.s.−−→ E[Z†q(ᾱZ)]

ᾱ
= C1.

To show the convergence of C2 =
∥B(z1)Hq(αz1)∥

∥z2[2:N ]∥ , we first note that∥∥B(z1)
Hq (αz1)

∥∥2
N

=

∥∥∥∥( zH1
∥z1∥

B(z1)H

)
q (αz1)

∥∥∥∥2 − ∣∣∣ zH1 q(αz1)∥z1∥

∣∣∣2
N

=
∥q(αz1)∥2

N
−
∣∣∣∣zH1 q(αz1)N

∣∣∣∣2 N

∥z1∥2
,

(67)

where the second equality holds because R(z1)
H =

(
zH1

∥z1∥

B(z1)H

)
and ∥ · ∥ is rotationally invariant.

Similar to Lemma 12, we can show that

∥q(αz1)∥2

N

a.s.−−→ E[|q(ᾱZ)|2].

Combining this with (63), (66), and (67), and noticing that ∥z2[2:N ]∥2
N

a.s.−−→ 1, we have

C2
a.s.−−→

√
E[|q(ᾱZ)|2]− |E[Z†q(ᾱZ)]|2 = C2.

Next, we analyze the convergence of Ts and Tg. We begin with Ts:

Ts =
gH1 {C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}

∥g1∥∥s∥
− Tg

(R(s)−1g2)[1]

∥s∥

=C1
gH1Df(D)Tg1

∥g1∥2
+ C2

gH1DB(ŝ1)z2[2 : N ]

∥g1∥∥s∥
− Tg

(R(s)−1g2)[1]

∥s∥

:=T11 + T12 + T13,

where the second equality uses the definition of ŝ1 in (13). In what follows, we will show

T11
a.s.−−→ C1 E [d f(d)] , (68a)

T12
a.s.−−→ 0, (68b)

T13
a.s.−−→ 0. (68c)

Substituting σ(x) = xf(x) into Lemma 11, we have

gH1Df(D)Tg1
K

a.s.−−→ E [d f(d)] ,
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which, together with ∥g1∥2
K

a.s.−−→ 1 and C1
a.s.−−→ C1, implies (68a). We next show that T12 vanishes

asymptotically. Recalling the definition R(ŝ1) =
(

ŝ1
∥ŝ1∥ B(ŝ1)

)
, we then have

B(ŝ1)z2[2 : N ] = R(ŝ1)z2 − z2[1]
ŝ1
∥ŝ1∥

. (69)

Using (69) and the definition of ŝ1 in (13), we can upper bound T12 by

|T12| = C2

∣∣∣∣gH1DB(ŝ1)z2[2 : N ]

∥g1∥∥s∥

∣∣∣∣
≤ C2

∣∣∣∣gH1DR(ŝ1)z2
∥g1∥∥s∥

∣∣∣∣+ C2

∣∣∣∣∣z2[1] g
H
1D

ŝ1
∥ŝ1∥

∥g1∥∥s∥

∣∣∣∣∣
= C2

∣∣∣∣gH1DR(ŝ1)z2
∥g1∥∥s∥

∣∣∣∣+ C2

∣∣∣∣z2[1] gH1Df(D)Tg1
∥f(D)Tg1∥∥g1∥∥s∥

∣∣∣∣
≤ C2

∣∣∣∣gH1DR(ŝ1)z2
∥g1∥∥s∥

∣∣∣∣+ C2

∣∣∣∣z2[1]∥s∥
∥D∥

∣∣∣∣ .
Since both ŝ1 and g1 are independent of z2, R(ŝ1)z2

d
= z2 and R(ŝ1)z2 is independent of g1. It

follows immediately from (63) and Lemmas 7 and 11 that

gH1DR(ŝ1)z2
∥g1∥∥s∥

a.s.−−→ 0.

In addition, since z2[1]
∥s∥

a.s.−−→ 0 and ∥D∥ a.s.−−→ 1 +
√

1/γ (see (ii) of Lemma 10), we have∣∣∣ z2[1]∥s∥ ∥D∥
∣∣∣ a.s.−−→ 0. Noting that C2

a.s.−−→ C2, we further have (68b). Finally, since R(s)−1g2[1]
∥s∥

a.s.−−→ 0

and Tg converges almost surely to a constant (which will be shown in the sequel), we have

(68c). Combining the above discussions, we get

Ts = T11 + T12 + T13
a.s.−−→ C1 E [d f(d)] .

We next show the almost sure convergence of Tg to a constant. Note that R(s)−1g2
d
= g2 due

to the independence between s and g2. Hence the following holds for the denominator of Tg:

∥ (R(s)−1g2) [2 : K]∥√
K

a.s.−−→ 1.

For the numerator, using (69) and the definition of ŝ1 in (13), we have∣∣∣∣∥B(g1)
H{C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}∥√

K
− ∥B(g1)

H{C1Dŝ1 + C2DR(ŝ1)z2}∥√
K

∣∣∣∣
≤C2

∥z2[1]B(g1)
HD ŝ1

∥ŝ1∥∥√
K

=C2
|z2[1]| ∥B(g1)

HDf(D)Tg1∥√
K ∥f(D)Tg1∥

≤C2
|z2[1]|∥B(g1)∥∥D∥√

K

a.s.−−→ 0,
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where the almost sure convergence uses the facts that ∥D∥ a.s.−−→ 1 +
√
1/γ, ∥B(g1)∥ ≤ 1, and

C2
a.s.−−→ C2. Furthermore,

∥B(g1)
H{C1Dŝ1 + C2DR(ŝ1)z2}∥2

K

d
=

∥B(g1)
H{C1Dŝ1 + C2Dz2}∥2

K

=

∥∥R(g1)
H{C1Dŝ1 + C2Dz2}

∥∥2
K

−

∥∥∥ gH1
∥g1∥{C1Dŝ1 + C2Dz2}

∥∥∥2
K

=
∥C1

∥s∥
∥g1∥Df(D)Tg1 + C2Dz2∥2

K
− 1

K

∣∣∣∣∣g
H
1 {C1

∥s∥
∥g1∥Df(D)Tg1 + C2Dz2}

∥g1∥

∣∣∣∣∣
2

:=T21 − T22,

(70)

where the first equality holds since z2 is independent of g1,D, and ŝ1; the second equality is

due to the definition of B(·) in (40); the third equality uses the definition of ŝ1 in (13) and the

rotational invariance of ∥ · ∥. The first term T21 in (70) can be expressed as

T21 =|C1|2
∥s∥2

∥g1∥2
gH1 f(D)DTDf(D)Tg1

K
+ C2

2

zH2D
TDz2
K

+ 2
∥s∥
∥g1∥

R
(
C1C2z

H
2D

TDf(D)Tg1
)

K
.

Applying Lemma 11 with σ(x) = x2f 2(x), σ(x) = x2, and σ(x) = x2f(x), and using the almost

sure convergence of C1 and C2, we have

T21
a.s.−−→ σ2

s |C1|2 E[d2f 2(d)] + C
2

2 E[d2].

Similarly, for the second term T22 in (70), we have

T22 =

∣∣∣∣∣C1

√
K∥s∥
∥g1∥2

gH1Df(D)Tg1
K

+ C2

√
K

∥g1∥
gH1Dz2
K

∣∣∣∣∣
2

a.s.−−→ σ2
s |C1|2 E2[d f(d)].

Combining the above discussions and noting that E[d2] = 1 [47], we can conclude that

Tg
a.s.−−→

√
σ2
s |C1|2 var[d f(d)] + C

2

2,

which completes our proof.

APPENDIX D

PROOF OF THEOREM 3

In this section, we give the proof of Theorem 3. We first prove the convergence of ŜINRk

and then show the convergence of ŜEPk(β).
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A. Proof of Convergence of ŜINRk

Note that E[|sk|2] = σ2
s is a constant (see Assumption 1). If we can show that E[|ŷk|2] →

E[|ȳk|2] and E[s†kŷk] → E[s†kȳk], then according to the definition of the SINR in (18), we have

ŜINRk → SINR.

In the following, we will only prove the convergence of E[|ŷk|2], and the convergence of E[s†kŷk]

can be shown similarly.

Firstly, it follows from Theorem 2 that ŷk
a.s.−−→ ȳk, and thus

|ŷk|2
a.s.−−→ |ȳk|2.

To show the convergence of expectation, we only need to prove that {|ŷk|2} is uniformly

integrable [54]. Note that for a sequence of random variables {XN , N ≥ 1}, the boundedness

of E[|XN |2] can imply uniform integrability of {XN} (see [54, Section 9.5] for details about

uniform integrability of random variables). Therefore, it suffices to prove that the sequence

{E[|yk|4} is bounded. According to (12), we have

|ŷk|4 = |ηTssk + ηTgg2[k] + nk|4

≤ 27|ηTssk|4 + 27|ηTgg2[k]|4 + 27|nk|4

≤ 27

2
(η8|Ts|8 + |sk|8 + η8|Tg|8 + |g2[k]|8 + 2|nk|4),

(71)

where the first inequality holds since |a+ b+ c|2 ≤ 3|a|2 + 3|b|2 + 3|c|2. From Theorem 2 and

Lemma 7, we have

|Ts|8
a.s.−−→ |T s|8 and |Tg|8

a.s.−−→ |T g|8,

where T s and T g are both constants, and thus

E[|Ts|8] → |T s|8 and E[|T g|8] → |T g|8. (72)

Taking expectations over both the left-hand and the right-hand sides of (71) and using (72), we

can conclude that

sup
k

E[|ŷk|4] < +∞,

which completes the proof.



52

B. Proof of Convergence of ŜEPk(β)

Given a constellation symbol s, we use Ds to denote its decision region, i.e., the region within

which s will be recovered. With this notation, ŜEPk(β) can be expressed as

ŜEPk(β) = 1− P (βŷk ∈ Dsk)

= 1−
M∑

m=1

P
(
sk = s(m)

)
P
(
βŷk ∈ Dsk | sk = s(m)

)
=1− 1

M

M∑
m=1

P
(
βŷk ∈ Dsk | sk = s(m)

)
,

(73)

where the third equality holds since sk is uniformly drawn from SM . Similarly,

SEPk(β) = 1− 1

M

M∑
m=1

P
(
βȳk ∈ Dsk | sk = s(m)

)
.

From Theorem 2, we have (sk, ŷk)
a.s.−−→ (sk, ȳk). Hence, the joint distribution of (sk, ŷk) converges

weakly to that of (sk, ȳk). If we can further show

P
(
βȳk ∈ δDsk | sk = s(m)

)
= 0, (74)

where δDsk denotes the boundary of Dsk , then according to [57, Lemma 2.2],

P
(
βŷk ∈ Dsk | sk = s(m)

)
→ P

(
βȳk ∈ Dsk | sk = s(m)

)
,

and hence ŜEPk(β) → SEPk(β) = SEP(β).

We next show (74). When nearest-neighbor decoding is employed as assumed in this paper,

the decision region of s can be expressed as3

Ds =
{
r | |r − s|2 <

∣∣r − s(i)
∣∣2 , ∀ s(i) ∈ SM , s(i) ̸= s

}
,

or equivalently,

Ds =
{
r | 2R((s(i) − s)†r) + |s|2 − |s(i)|2 < 0, ∀ s(i) ∈ SM , s(i) ̸= s

}
. (75)

It follows that the boundary of Ds can be expressed as

δDs =

{
r | max

i,s(i) ̸=s

{
2R((s(i) − s)†r) + |s|2 − |s(i)|2

}
= 0

}
.

3A minor problem is that the decision regions given here are all open sets and cannot cover the whole complex space. This is

not an essential problem: if r lies on the boundary of two decision regions, we can just randomly choose one of the corresponding

constellation point as the recovered symbol.
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Recall that βȳk = β(ηT s s+ ηT g g2[k] + nk). Then

P
(
βȳk ∈ δDsk | sk = s(m)

)
=P

(
β
(
ηT s s

(m) + ηT g g2[k] + nk

)
∈ δDs(m)

)
=P

(
max
i ̸=m

{
R
(
a†m,i(ηT g g2[k] + nk)

)
+ Cm,i

}
= 0

)
,

where am,i = 2β(s(i) − s(m)) and Cm,i = 2R(ηT sa
†
m,is

(m)) + |s(m)|2 − |s(i)|2 are both constants.

The last probability can further be upper bounded as

P
(
max
i ̸=m

{
R
(
a†m,i(ηT g g2[k] + nk)

)
+ Cm,i

}
= 0

)
≤
∑
i ̸=m

P
(
R
(
a†m,i(ηT g g2[k] + nk)

)
+ Cm,i = 0

)
.

Since ηT g g2[k] + nk is Gaussian, each term of the right-hand side of the above inequality is 0,

which further implies that P
(
βȳk ∈ δDsk | sk = s(m)

)
= 0. This completes our proof.

APPENDIX E

EQUIVALENCE OF MAXIMIZING THE ASYMPTOTIC SINR AND MINIMIZING THE

ASYMPTOTIC SEP

For the scalar asymptotic model (20) with precoding factor β in (23), the received signal is

βȳ = s+
T

†
s

η|T s|2
(ηT g g + n) ≜ s+ n̄, (76)

where n̄ ∼ CN
(
0,

η2T
2
g+σ2

η2|T s|2

)
since g ∼ CN (0, 1) and n ∼ CN (0, σ2) are independent. Following

(73) in Appendix D, we can express the asymptotic SEP as

SEP = 1− 1

M

M∑
m=1

P
(
βȳ ∈ Ds | s = s(m)

)
.

Each probability in the above summation can further be expressed as

P
(
βȳ ∈ Ds | s = s(m)

)
= P

(
n̄ ∈ Ds(m) − s(m)

)
= P

(
Z ∈ SINR

σ2
s

(
Ds(m) − s(m)

))
,

where we have rewritten n̄ as n̄ = σ2
s

SINR
Z with Z ∼ CN (0, 1). From (75), it is easy to check

that Ds(m) − s(m) is a polyhedron containing 0, and thus the above probability is increasing in

SINR, i.e., SEP is a decreasing function of SINR.
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APPENDIX F

PROOF OF THEOREM 4

In this section, we give the proof of Theorem 4, i.e., we prove that (ᾱ∗, η∗, f ∗) given in (30)

is the optimal solution to the following problem:

ζ∗ := sup
f,η>0,ᾱ>0

E2[d f(d)]

var[d f(d)] + ϕ(ᾱ, η) E[f2(d)]
γ

s.t. η2 E[|q(ᾱZ)|2] ≤ PT ,

E[f 2(d)] =
γ

σ2
s

ᾱ2.

(77)

We first note that ϕ∗ = ∞ (see the definition in (30a)) is a pathological case where the SINR in

(77) is identically zero4 and any (ᾱ, η, f) is optimal. This happens, e.g., when q(·) is a constant

function. In the rest of the proof, we assume ϕ∗ < ∞.

It is convenient to work with the inverse of the objective function in (77) and consider the

following equivalent problem:

Φ∗ := inf
η>0,ᾱ>0,f

E[d2f 2(d)] + ϕ(ᾱ,η)
γ

E[f 2(d)]

E2[d f(d)]
− 1

s.t. η2 E[|q(ᾱZ)|2] ≤ PT ,

E[f 2(d)] =
γ

σ2
s

ᾱ2.

(78)

We first ignore the constraints. By the Cauchy-Swarchz inequality, we can upper bound the

denominator of the objective function of (78) by

E2[d f(d)] ≤ E
[(

d2 +
ϕ(ᾱ, η)

γ

)
f 2(d)

]
E

[
d2

d2 + ϕ(ᾱ,η)
γ

]
,

and thus

E[d2f 2(d)] + ϕ(ᾱ,η)
γ

E[f 2(d)]

E2[d f(d)]
=

E
[(

d2 + ϕ(ᾱ,η)
γ

)
f 2(d)

]
E2[d f(d)]

≥ 1

E
[

d2

d2+ϕ(ᾱ,η)/γ

] ,
where the inequality holds with equality when

f(x) :=
x

τ
(
x2 + ϕ(ᾱ,η)

γ

) , ∀ τ ̸= 0.

4This is not the case for quantization functions used in practice.
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By the above inequality, the constrained infimum in (78) is further lower bounded by

Φ∗ ≥ inf
η>0,ᾱ>0

1

E
[

d2

d2+ϕ(ᾱ,η)/γ

] − 1

s.t. η2 E[|q(ᾱZ)|2] ≤ PT ,

E[f 2(d)] =
γ

σ2
s

ᾱ2.

(79)

Note that the objective function of (79) is independent of f(·), and thus the second constraint

can be removed. In addition, E[d2/(d2+x)] is decreasing in x ∈ [0,∞) and it is straightforward

to check that ϕ(ᾱ, η) ≥ 0 (see (22)). Hence, the optimization problem in the right-hand side of

(79) is equivalent to

inf
η>0,ᾱ>0

ϕ(ᾱ, η)

s.t. η2 E[|q(ᾱZ)|2] ≤ PT .

(80)

Since ϕ(ᾱ, η) is decreasing in η (see (22)), the power constraint in (80) must be satisfied with

equality at the infimum, namely,

η =

√
PT

E[|q(ᾱZ)|2]
. (81)

Substituting (81) into (80) yields the optimization problem in (30a), whose optimal value is

given by ϕ∗. Hence,

ζ∗ =
1

Φ∗ ≤ 1

1− E
[

d2

d2+ϕ∗
γ

] − 1.

The proof is complete by further verifying that (ᾱ∗, η∗, f ∗) is feasible for (78) and Φ∗ is attained

at (ᾱ∗, η∗, f ∗).
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