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Wireless Network Scheduling with Discrete

Propagation Delays: Theorems and Algorithms

Shenghao Yang, Jun Ma and Yanxiao Liu

Abstract

The literature provides evidence that considering signal propagation delays can significantly enhance the schedul-

ing rate region of wireless networks. This paper focuses on the link scheduling problem in networks where signal delays

between nodes are multiples of a time interval. To model such networks, a directed hypergraph is employed, along

with an integer matrix that specifies the delays. The link scheduling problem is closely connected to the independent

sets of the periodic hypergraph induced by the network model. However, due to the infinite number of vertices, it is

impractical to enumerate the independent sets of the periodic hypergraph using generic graph algorithms. To tackle

this challenge, a graphical approach is proposed in this paper. The link scheduling rate region is characterized using

a finite directed graph called a scheduling graph, which is derived from the network model. A collision-free schedule

of the network corresponds to a path in the scheduling graph, and the rate region is determined by the convex hull of

the rate vectors associated with the cycles in the scheduling graph. Although existing cycle enumeration algorithms

can be employed to calculate the rate region, their computational complexity becomes prohibitively high as the size

of the scheduling graph grows exponentially with the number of network links. To address this issue, the dominance

property of a special scheduling graph called the step-T scheduling graph is investigated. This property allows the

utilization of specific subgraphs of the step-T scheduling graph to characterize the scheduling rate region, achieving

a reduction in both the number of cycles and their lengths. For common problems such as calculating the rate region

and maximizing a weighted sum of the scheduling rates, algorithms leveraging the dominance property are developed.

These algorithms can be more efficient than using generic graph algorithms directly on the scheduling graphs.

I. INTRODUCTION

Wireless communication media, such as radio, light, and sound, all have nonzero signal propagation delays

between two communicating devices separated by a nonzero distance. In the existing theory of wireless commu-

nications, these signal propagation delays are typically regarded as a factor that can potentially generate interfer-

ence [2]. However, studies on underwater acoustic communications and interference channels have observed that
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wireless communication networks can actually benefit from these signal propagation delays [3]–[9]. To gain a better

understanding of the utilization of propagation delays, we present a theoretical framework for studying network

scheduling when considering these signal propagation delays.

A. Background and Related Results

In most terrestrial radio-based wireless communication systems, such as the 5G cellular network, guard intervals

are employed in network scheduling to mitigate the interference caused by signal propagation delays. The inclusion

of guard intervals does not significantly degrade system performance since the duration for transmitting signals is

much greater than the signal propagation delay between devices. For communication within a few kilometers, the

propagation delay of radio waves typically falls within the range of tens of microseconds. In contrast, the signal

frame length is typically a few milliseconds. This scheduling approach, characterized by a long signal frame length,

is referred to as framed scheduling and constitutes a focal point of research in wireless network scheduling for

terrestrial radio-based communications [10]–[13].

In underwater acoustic communications, the propagation delay of sound can be significantly longer, measured

in seconds. For instance, the sound speed in underwater environments is approximately 1, 500 meters per second,

resulting in a delay of around 2 seconds for sound to propagate over a distance of 3 kilometers. If framed scheduling

is adopted in this scenario, the frame length should be on the order of tens or hundreds of seconds [14]. Researchers

in underwater acoustic networks have been motivated to address delays in the network scheduling problem [3],

[4], [6]–[9]. They have observed substantial performance advantages, such as improved energy consumption and

throughput, by allowing smaller frame lengths that are comparable to the propagation delay between communication

devices.

Researchers have demonstrated that in a network consisting of K pairs of closely located communication devices,

framed scheduling allows only one device to transmit a signal at a given timeslot without collision. By carefully

considering the delays, it is feasible to devise scheduling schemes where all K pairs can transmit simultaneously

without generating collisions [6]. Moreover, recent work [15] has provided examples with relaxed delay constraints

to illustrate the unbounded advantages of scheduling with propagation delays, particularly when the network size

is large.

The advantage of utilizing propagation delays has also been discovered in the study of the time-domain interfer-

ence alignment approach for multi-user interference channels [5]. Though the time-domain interference alignment

and network scheduling are not equivalent problems,1 it is possible to transform a network schedule into an

achievable scheme for the interference channel [5]. Using this approach, it is shown in [5] that there exists a

non-vanishing rate for each user when the number of users tends to infinity. Additionally, some papers discussing

underwater acoustic networks also refer to scheduling with propagation delays as interference alignment [16], [17].

1For instance, in time-domain interference alignment, the timeslot size corresponds to the sampling time interval, and each timeslot contains

a single sample value [5]. In contrast, in the network scheduling problem, each timeslot is typically considered as a radio frame containing a

sequence of sample values.
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TABLE I

COMPARISON OF THE SIGNAL PROPAGATION DELAY AND THE OFDM SYMBOL LENGTH IN BOTH UNDERWATER ACOUSTIC

COMMUNICATION AND TERRITORY RADIO COMMUNICATION. THE OFDM SUBCARRIER SPACING FOR UNDERWATER ACOUSTIC

COMMUNICATION REFERS TO [18]. THE 15 KHZ OFDM SUBCARRIER SPACING IS USED IN BOTH 4G LTE AND 5G NR, AND THE 15× 26

KHZ OFDM SUBCARRIER SPACING IS USED IN 5G NR. THE OFDM SYMBOL LENGTH DOES NOT INCLUDE THE CYCLIC PREFIX.

propagation transmission propagation OFDM subcarrier OFDM symbol

speed (km/s) range (km) delay (s) spacing (kHz) length (s)

underwater acoustic 1.5 3 2 0.005 0.2

4G LTE 3× 105 3 1× 10−5 15 6.67× 10−5

5G NR 3× 105 3 1× 10−5 15× 26 1.04× 10−6

The benefit of using propagation delays can be achieved in terrestrial radio communications when a sufficiently

large bandwidth is utilized. We can consider orthogonal frequency-division multiplexing (OFDM) as an example,

which is employed in many modern wireless communication systems. In OFDM, a frame is typically composed

of multiple OFDM symbols. A comparison of OFDM numerology in different systems is presented in Table I. In

underwater acoustic communications, the OFDM symbol length can often be much shorter than the typical signal

propagation delay. However, for 4G LTE with a 15 kHz OFDM subcarrier spacing, the OFDM symbol length is

more than 6 times the typical signal propagation delay. In 5G NR, larger OFDM subcarrier spacings up to 15× 26

kHz are proposed for bandwidths up to 400 MHz in millimeter-wave frequencies. In this case, the OFDM symbol

length can be approximately 1/10 of the typical signal propagation delay. Furthermore, wireless communication in

the frequency range of 100 GHz to 10 THz has been discussed for the next generation of cellular networks [19]. In

such scenarios, the bandwidth can reach tens of gigahertz, and the OFDM symbol length can be several nanoseconds.

Although the study of wireless networks with propagation delays shows promise, it is still in its preliminary

stages. Early works [3], [4] have utilized mixed integer linear programming models to capture collision constraints

and derive heuristic algorithms. In cases where delays are integers, the scheduling problem with propagation delays

is formulated as a weighted directed graph. In this graph, the vertices represent communication links, directed edges

model collision relations between two links, and the weight of an edge denotes the corresponding delay [3], [5]. For

complete weighted directed graphs (where any two links can generate collisions with each other), existing works [5],

[6] have discovered that the network scheduling problem exhibits a periodic property. Dynamic programming

approaches have been employed to maximize the (weighted) total scheduling rate. However, these approaches suffer

from high computation costs due to the exponential state space and do not provide an explicit characterization of

the scheduling rate region.

Without considering propagation delays, the network scheduling problem can be formulated using a graph or a

hypergraph [10]–[13], [20]–[29]. In this formulation, a vertex represents a network link and an edge represent the

collision relation among the links. When considering a protocol or binary collision model [10], [12], a graph can

be used to capture the pair-wise collision relation among the network links. In a more practical physical Signal-to-

Interference-and-Noise Ratio (SINR) model [30], a group of links can collectively generate a collision with another
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link, which is described using a hypergraph. Although the network links can be directed, the graphical representation

of collision is usually undirected.

The graphical model of collisions plays a crucial role in network scheduling research. It allows for the explicit

characterization of the scheduling rate region using the independent sets of the graph or hypergraph, enabling the

analysis of the wireless network’s performance based on graphical properties. However, when it comes to scheduling

with delays, a graphical theory specifically addressing this aspect is currently lacking but highly desired. In this

paper, our objective is to fill this gap by proposing a graphical approach that characterizes the scheduling rate region

with delays.

B. Main Contributions

For a wireless network, if all the signal propagation delays are multiples of a fixed timeslot length, we say the

delays are discrete. In this paper, we study wireless networks scheduling with discrete propagation delays, which

serves as an initial step towards understanding networks with general real number delays. For a network with

general delays, the rate region can be approximated by the rate region of a network with discrete delays [15]. A

general approach is also presented in [15] to approximate a network with general delays using one that has discrete

delays, with a controlled performance difference. Additionally, the problem of time-domain interference alignment

can also be approximated as a problem with discrete signal propagation delays [5].

We propose a comprehensive network model that incorporates a matrix to represent delays and a directed

hypergraph to describe collision relations. In the case of a binary collision model, the directed hypergraph simplifies

to a directed graph. When all delays are zero, the model reduces to one without considering delays, allowing for

the omission of edge direction without impacting the network scheduling problem. However, in the presence of

general delays, edge direction becomes crucial, and the network scheduling problem is connected to independent

sets within the periodic (undirected) hypergraph induced by our network model.

Despite the connection between the network scheduling problem and independent sets within the periodic

hypergraph, finding a complete solution remains elusive due to the infinite nature of the periodic hypergraph.

Notably, independent sets can have unbounded sizes, and there exists an infinite number of them. Consequently,

existing approaches can only provide approximations of the scheduling rate region, and the computational cost

is high, as demonstrated in prior research [5], [6]. In this paper, we address the challenges associated with the

infinite number of independent sets in the periodic hypergraph, and our main contributions are twofold: i) exact and

explicit characterizations of the scheduling rate region, and ii) efficient algorithms for calculating the rate region

and maximizing a weighted sum of the link rates.

We show that the scheduling rate region of a network can be achieved using collision-free, periodic schedules.

To provide an explicit characterization of this scheduling rate region, we adopt a graphical approach. For our

network model, we establish a series of directed graphs called scheduling graphs. Each scheduling graph has two

parameters: a blocklength T and a step size Q (where 1 ≤ Q ≤ T ). We show in general that a collision-free

schedule is equivalent to a path within a scheduling graph with T ≥ 2D∗, where D∗ is a parameter derived from

the delay matrix. Consequently, the scheduling rate region is the convex hull of the rate vectors associated with
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the cycles of the scheduling graph, and hence is a polytope.2 In the case of binary collision, the characterization

of the scheduling rate region can be achieved using a scheduling graph with T ≥ D∗. It is worth noting that the

scheduling graphs, regardless of whether they are induced by graph-based or hypergraph-based network models,

share common properties, except for the variation in the bounds imposed on T . These common properties allow

for a unified study of scheduling related problems based on the scheduling graphs.

We further study scheduling-related algorithms, specifically focusing on computing the rate region and maximizing

a weighted sum of the link rates. Based on the characterization of the scheduling rate region, we explore various

approaches to address these computational problems. As a straightforward approach, one can employ a backtracking

algorithm, such as Johnson’s algorithm [31], to enumerate cycles within a scheduling graph and consequently obtain

the rate region. However, the computational cost of this approach becomes prohibitively high as the network size

increases. This can be attributed to two main factors: the exponential growth of vertices and edges in a scheduling

graph relative to the number of network links, and the exponential growth in the number of cycles as the size of

the scheduling graph increases.

To simplify the characterization of the rate region, we investigate an additional property of the scheduling problem.

Specifically, we introduce a dominance property for the step-T scheduling graph, where the step size Q = T .

This property allows us to leverage subgraphs of the step-T scheduling graph to characterize the scheduling rate

region, achieving a reduction in both the number of cycles and their respective lengths. To illustrate the benefits

of the dominance property in the step-T scheduling graph, we provide an example involving a sequence of step-T

scheduling graphs. In these scheduling graphs, the numbers of edges and vertices are exponential in the number of

links, but the corresponding reduced scheduling graphs possess a constant number of cycles with constant lengths.

Based on the dominance property, we develop two algorithms for calculating the scheduling rate region. The

first algorithm enables the calculation of the entire rate region by enumerating only the cycles present in a reduced

scheduling graph. This approach proves to be more efficient than enumerating all cycles in the original scheduling

graph. The second algorithm takes an incremental approach, specifically targeting a subset of the scheduling

rate region characterized by cycles up to a certain length. Numerical evaluations demonstrate that this algorithm

outperforms the direct enumeration of cycles up to a specific length, particularly in scenarios involving large network

sizes.

To solve a maximization problem on the scheduling rate region, the straightforward approach involves two steps:

computing the scheduling rate region or a subset thereof, and then maximizing the objective function within the

feasible rate vectors obtained. However, this approach can become impractical for larger networks due to the

substantial computational cost associated with calculating the rate region. To address this challenge, we propose

an algorithm that leverages the insights from the dominance property. This algorithm maximizes a linear function

without the need to compute the entire rate region, resulting in significantly lower computation costs compared to

the straightforward approach.

2In this paper, a cycle in a directed graph has no repeated vertices (which is also called a simple circuit) and hence the total number of cycles

of a finite graph is finite.
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Last, our characterization of the independent sets in periodic hypergraphs holds potential for various applications

in operational research problems [32], [33] as well as transportation systems [34]. The insights gained from our

research can be leveraged to optimize decision-making processes in these domains.

C. Paper Organization

The remainder sections of the paper are organized as follows. In Sec. II, we present the network model and

introduce the fundamental properties of the periodic graph induced by the network model. Additionally, we extend

the isomorphism and connectivity properties of periodic graphs to periodic hypergraphs. Sec. III focuses on basic

theoretical results. We provide a proof that the scheduling rate region can be attained through collision-free, periodic

schedules, and establish the convexity of the scheduling rate region. Moreover, we explore how the isomorphism

and connectivity properties of periodic hypergraphs can simplify the rate region problem. Moving on to Sec. III-C,

we characterize the achievable rates using scheduling with guard intervals.

Our main results are presented from Sec. IV to Sec. VI. In Sec. IV, we introduce the concept of scheduling

graphs and demonstrate that a collision-free schedule is equivalent to a directed path in a scheduling graph. We

explore the use of cycles and paths within a scheduling graph to characterize the scheduling rate region effectively.

Additionally, in Sec. IV-C, we enhance certain results specifically for the binary collision model. Moving on to

Sec. V, we investigate the dominance property of step-T scheduling graphs. By analyzing this property, we derive

refined characterizations of the rate region and develop algorithms to compute the scheduling rate region. In Sec. VI,

we study how to maximize a linear function over the scheduling rate region.

Lastly, Sec. VII serves as the concluding remarks, where we discuss possible extensions of our results and future

research directions. To facilitate understanding and reference, we have compiled a list of notations used throughout

the paper in Table II.

II. HYPERGRAPH NETWORK MODEL AND PERIODIC HYPERGRAPH

We propose a general network model that consists of a matrix that specifies the delays and a directed hypergraph

that describes the collision relations. Since the matrix contains only integer values, this model is also known as

a discrete network model. We formulate the scheduling problem and demonstrate its relationship to the periodic

hypergraph induced by the network model.

Let Z denote the set of integers and Z+ represent the set of nonnegative integers. Similarly, let R denote the set

of real numbers, and R+ correspond to the set of non-negative real numbers.

A. Discrete Network Model

We start with a node-based network model, but as we progress, we will discover that utilizing only network links

is adequate for solving the network scheduling problem.

Suppose time is slotted and each timeslot is indexed by an integer t ∈ Z. Consider a network of N nodes indexed

by 1, 2, . . . , N . Each node has the capability to both transmit and receive a specific communication signal within a

timeslot. The signal transmitted by node i at timeslot t propagates to node j at time t+D(i, j), where D(i, j) ∈ Z+
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TABLE II

SOME NOTATIONS USED IN THE PAPER, LISTED IN THE ALPHABETICAL ORDER.

Notation Explanation Section

convA the convex hull of a set A IV-B

cl(P ) the cycle generated from a path P = (A0, . . . , Ak) in (MT , ET ) V-B

DL the link-wise delay matrix II-B

D∗
N

, D∗ the character of network N III-A

domA the collection of all B ∈ (R+)m×n that is dominated by some elements in A V-B

E∗ E∗ = M∗
2T V-A

I(l) the collision set of a link l II-A

I the collision profile, I = (I(l), l ∈ L) II-A

L the set of communication links II-A

max< A the set of maximal elements of the partially ordered set (A,<) V

(MT , ET,Q) the scheduling graph with vertex set MT and edge set ET,Q IV-A

(MT , ET ) the step-T scheduling graph, ET = ET,T IV-A

M∗
L

{B : (B,B′) ∈ E∗ for certain B′} V-A

M∗
R

{B′ : (B,B′) ∈ E∗ for certain B} V-A

N the (link-wise) network model, N = (L, I,DL) II-B

N∞ the periodic hypergraph induced by N II-B

N line
L,K

the uniform line network of L hops with the K-hop collision model II-B

NT the subgraph of N∞ of T columns III-C

Q the step size of a scheduling graph IV-A

RP the rate vector of a closed path in a scheduling graph IV-B

RN
S , RS the rate vector of schedule S for network N III-A

RN , R the (scheduling) rate region of network N III-A

R(MT ,ET,Q) the convex hull of the rate vectors of all the cycles in (MT , ET,Q) IV-B

Rk the subset of R(MT ,ET ) generated by the cycles of (MT , ET ) up to length k V-B

R̃N
T

the convex hull of the rate vectors of all the independent sets of NT III-C

R, R+ R is the set of real numbers, R+ is the set of non-negative real numbers II

S(l, t) the entry of a schedule S indexed by the link l and time t II

S[T,Q, k] the submatrix of a schedule S of T columns, starting from the kQ column IV-A

T the blocklength of a scheduling graph IV-A

(V ,F) the reduced scheduling graph V-D

Z, Z+ Z is the set of integers, Z+ is set of nonnegative integers II

4, < the partial order relation defined on R, and can be applied on matrices of the same size component-wisely III

∧ the minimum function of two real numbers, and can be applied on two matrices of the same size

component-wisely

V

1 a column vector with all entries 1 V-C
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represents the signal propagation delay from node i to node j. The transmission of node i in the timeslot t does

not affect the reception of node j in any other timeslots. The matrix D = (D(i, j), 1 ≤ i, j ≤ N) is called the

delay matrix of the network.

In our network model, a (communication) link is represented by an ordered pair (s, r), where 1 ≤ s 6= r ≤ N ,

indicating the transmitting and receiving nodes, respectively. Links are directional, meaning that (i, j) and (j, i) are

considered distinct links. Let L denote a finite set of all the links. For a given link l, we use sl and rl to denote the

transmitting node and the receiving node of l, respectively. Each link can be in one of two states: active or inactive.

A link l is considered active in a timeslot t if the transmitting node sl sends a signal in timeslot t intended to be

received by node rl in timeslot t+D(sl, rl). Conversely, a link l is deemed inactive in a timeslot t if no signal is

transmitted by node sl during that timeslot.

Example 1 (Uniform line networks). A line network consisting of L hops comprises L+1 nodes and the link set

defined as:

L = {li , (i, i+ 1) : i = 1, . . . , L}.

In this network, the delay matrix D is defined such that D(i, j) = |i − j| for 1 ≤ i, j ≤ L + 1. Throughout this

paper, we will utilize this network as an example for various definitions and results.

To incorporate the constraints of link activation, we assign to each link l a subset I(l) of 2L, called the collision

set of l. Each subset of links in the collision set I(l) has the potential to impact the reception of node rl. In general,

when link l is active in timeslot t, we declare that a collision occurs if there exists a subset θ ∈ I(l) such that

each link l′ ∈ θ is also active in timeslot t+D(sl, rl)−D(sl′ , rl), i.e., the signal transmitted by sl′ propagates to rl

in the timeslot t+D(sl, rl). In other words, when all the links in θ are active in specific timeslots such that their

signals simultaneously propagate to node rl at the same timeslot t+D(sl, rl), the transmission of link l in timeslot

t fails due to a collision.

The collision set defined above is flexible and inclusive of various collision scenarios. To specifically model the

scenario where two links l and l′ with the same transmitting node (i.e., sl = sl′ ) cannot be active simultaneously,

we can define the collision sets with l′ ∈ I(l) and l ∈ I(l′). To model the constraint of half-duplex communication,

where a node cannot transmit and receive signals simultaneously, the collision set I(l) should include all non-empty

subsets of {l′ : sl′ = rl}.

Example 2. For the line network in Example 1 with L = 4, the collision sets of the links can be defined as follows:

I(l1) = {{l2}}, I(l2) = {{l3}, {l1, l4}},

I(l3) = {{l4}}, I(l4) = ∅.

From these collision sets, we can observe that {li+1} ∈ I(li) for i = 1, 2, 3. This implies that nodes 2, 3, 4 cannot

transmit and receive signals simultaneously. Additionally, the set {l1, l4} is in the collision set of link l2. This

means that if link l1 is active in timeslot t− 1 and link l4 is active in timeslot t, a collision will occur if link l2 is

active in timeslot t.
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In the network model described above, we define I = (I(l), l ∈ L) as the collision profile. The collision relation

among links can be represented as a directed hypergraph, denoted as (L, I), with the vertex set L and the directed

edge set {(l, θ) : l ∈ L, θ ∈ I(l)}. It is worth noting that in a general directed hypergraph with the vertex set L, an

edge belongs to 2L× 2L [35]. However, our directed hypergraph (L, I) is a special case where the tail of an edge

must be a singleton. Therefore, we represent an edge in the hypergraph of our network model as (l, θ) ∈ L×2L. The

relation of the hypergraph model and the physical model has been discussed in [5]. For the sake of completeness,

we provide details in the Appendix on how to transform the results obtained to a wireless network in the physical

model.

When all the collision sets I(l) consist only of singletons (i.e., for any θ ∈ I(l), |θ| = 1), the collision model

and the network model are said to be binary. For a binary collision model, we can represent I(l) as a subset

of L to simplify the notation, and (L, I) becomes a directed graph. For scheduling with propagation delays, the

network model studied in [5], [6] is a binary model with I(l) = L\{l}. While our primary focus is on the general

hypergraph model, we will demonstrate that some of our results can be further improved for the binary collision

model.

Example 3 (Line network with the K-hop collision model). For the line network defined in Example 1, we consider

a binary collision model called the K-hop model, where the reception of a node can only have collisions from

nodes within K hops distance [13]. For each link li with i = 1, . . . , L, the collision set I(li) of the K-hop model

is defined as:

I(li) = {lj : j 6= i, |j − i− 1| ≤ K}. (1)

When K ≥ 1, it can be observed that for i = 1, . . . , L−1, li+1 ∈ I(li). This implies that node i+1 is half-duplex,

meaning it cannot transmit and receive signals simultaneously. In the case of L = 4 and K = 1, the collision sets

are as follows:
I(l1) = {l2, l3}, I(l2) = {l3, l4},

I(l3) = {l4}, I(l4) = ∅. (2)

Note that the collision relation among links is not necessarily symmetric. In the example where L = 4 and K = 1,

link l3 may generate collisions for l1, but l1 does not generate collisions for l3. This can be understood by examining

the corresponding network nodes: link l1 represents the communication from node 1 to node 2, while l3 represents

the communication from node 3 to node 4. In the K-hop model with K = 1, the transmission of node 3 can affect

the reception of node 2, but the transmission of node 1 cannot affect the reception of node 4.

When all delays are set to 0, the network model we defined corresponds to a model without considering delays.

In the literature, undirected hypergraphs (or graphs) are commonly used to model collisions in such scenarios [10]–

[12], [20], [22]–[29]. The reason for the collision model being undirectional is that the link scheduling does not

depend on the direction in this special case. However, when considering general delays, it becomes necessary to

use a directed hypergraph (or graph) to accurately model collisions. The necessity of using a directed hypergraph

will be further elaborated after the link scheduling problem is formulated.
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l1 l2 l3 l4

1 1 1

0 0

(a) N line
4,1

l1 l2 l3 l4

1

−1

1

−1

1

−1

0 0

−1

(b) N line
4,2

Fig. 1. The graphical representation of N line
4,1 and N line

4,2 . In these graphs, as well as the following graphical representation of our discrete

network models, the vertices in a graph represent links in the network. The number on an edge (l, l′) is the value of DL(l, l
′).

B. Link-wise Network Model and Link Schedule

To simplify the network model, we define the |L| × |L| link-wise delay matrix DL with

DL(l, l
′) = D(sl, rl)−D(sl′ , rl).

The definition of the link-wise delay matrix does not depend on the collision profile. Collision can be determined

using DL. Specifically, if a link l is active in a timeslot t, it has a collision if for a certain θ ∈ I(l), every link

l′ ∈ θ is also active in the timeslot t+DL(l, l
′). By utilizing the link-wise delay matrix DL, it is not necessary to

directly refer to the network nodes when verifying collisions.

We define the (link-based) network model as N , (L, I, DL). It is sufficient for us to use this link-based model

in the following discussion. In the network model, (L, I) represents a directed hypergraph of finite size. The entries

of DL are integers and can be negative. If l′ ∈ ∪θ∈I(l)θ, then the value DL(l, l
′) is required in collision checking

and we consider the (l, l′) entry of DL as relevant. On the other hand, if the (l, l′) entry of DL is not relevant,

meaning l′ /∈ ∪θ∈I(l)θ, then DL(l, l
′) is not involved in collision checking. When the (l, l′) entry of DL is not

relevant, we mark this entry as ∗ in a link-wise delay matrix. When the context is clear, we also call DL the delay

matrix.

Example 4. Following Example 3, the link-wise delay matrix DL of the L-length, K-hop collision line network

is given by:

DL(li, lj) = D(i, i+ 1)−D(j, i + 1) = 1− |j − i− 1|. (3)

The network is denoted as N line
L,K = (L, I, DL), where L = {l1, . . . , lL}, I is defined in (1), and DL is defined in

(3). The graphical representation of N line
4,1 and N line

4,2 are shown in Fig. 1.

One fundamental question related to a discrete network N = (L, I, DL) is the efficiency of link activation

scheduling. A (link) schedule S is a matrix of binary digits indexed by pairs (l, t) ∈ L × Z, where S(l, t) = 1

indicates that l is active in timeslot t, and S(l, t) = 0 indicates that link l is inactive in timeslot t.

Definition 1 (Collision-free schedule). For a given schedule S and a pair (l, t) ∈ L× Z, we say that S(l, t) has a

collision in the network N = (L, I, DL) if for a certain θ ∈ I(l), we have S(l′, t+DL(l, l
′)) = 1 for every l′ ∈ θ.
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l1 . . .

l2 . . .

l3 . . .

l4 . . .

(a)

l1 . . .

l2 . . .

l3 . . .

l4 . . .

(b)

Fig. 2. Illustration of the periodic graphs. (a) is the periodic graph induced by N line
4,1 . (b) is the periodic graph induced by a network that shares

the same link set and collision profile as N line
4,1 , but has 0 as the delay matrix.

On the other hand, if for all θ ∈ I(l), S(l′, t+DL(l, l
′)) = 0 for a certain l′ ∈ θ, we say S(l, t) is collision-free.

A schedule S is said to be collision-free if S(l, t) is collision-free for all (l, t) ∈ L × Z with S(l, t) = 1.

Definition 2 (Periodic hypergraph). Consider a network N = (L, I, DL). The periodic (undirected) hypergraph

induced by N , denoted by N∞, has the vertex set L×Z. In N∞, a subset {(li, ti) : i = 1, . . . , k} ⊂ L×Z is an

edge if and only if there exists j ∈ {1, . . . , k} such that {li : i ∈ {1, . . . , k}, i 6= j} ∈ I(lj) and ti = tj +DL(lj , li)

for all i 6= j ∈ {1, . . . , k}. In other words, an edge is always of the form {(l, t), (l′, t + DL(l, l
′)) : l′ ∈ θ} for

some θ ∈ I(l).

When all the collision sets are binary, N∞ becomes a graph with edges of the form {(l, t), (l′, t+D(l, l′))} for

all l′ ∈ I(l). See Fig. 2-(a) for an illustration of the periodic graph induced by N line
4,1 . For a general hypergraph

with the vertex set V and edge set E ⊂ 2V , a subset A of V is said to be independent if for any U ∈ E , U * A.

The following theorem establishes the relation between a collision-free schedule of N and an independent set of

N∞.

Theorem 1. A schedule S is collision-free for a network N = (L, I, DL) if and only if the set {(l, t) ∈ L × Z :

S(l, t) = 1} is an independent set in N∞.

Proof: For a schedule S, let A = {(l, t) ∈ L × Z : S(l, t) = 1}. For any edge e of N∞, e = {(l, t), (l′, t+

DL(l, l
′)) : l′ ∈ θ} for some θ ∈ I(l). When S is collision-free, either S(l, t) = 0, or S(l, t) = 1 and there exists

l′ ∈ θ such that S(l′, t +DL(l, l
′)) = 0. Therefore, e is not a subset of A and hence A is an independent set of

N∞.

Suppose S is not collision-free. Then there exists (l, t) ∈ L × Z with S(l, t) = 1, and a certain θ ∈ I(l) such

that S(l′, t+DL(l, l
′)) = 1 for all l′ ∈ θ. We observe in this case that e = {(l, t), (l′, t+DL(l, l

′)) : l′ ∈ θ} is an

edge of N∞ and e ⊂ A. Therefore, A is not an independent set in N∞.

Theorem 1 gives an equivalence relation between a collision-free schedule S of N and an independent set I of

N∞. Specifically, the support of S forms an independent set in N∞, and the indicator function of I , represented

as a binary matrix, serves as a collision-free schedule for N . Based on this equivalence relation, we can use one

representation to refer to the other interchangeably.



12

Denote by 0 the matrix with all the entries 0. The network (L, I,0) has a special periodic graph where for each

t ∈ Z, the set {(l, t), l ∈ L} forms a component that is isomorphic to (L, I), with the edge directions ignored.

Fig. 2-(b) illustrates the periodic graph of the network generated by replacing the delay matrix in N line
4,1 as 0. The

independent sets of the periodic graph of (L, I,0) can be completely characterized by the independent sets of

(L, I), where the edge directions are ignored. This is the reason why the scheduling problem without considering

delays does not require the edge directions in (L, I).

The equivalence between a collision-free schedule of N and an independent set of N∞ cannot provide an explicit

and exactly solution to the scheduling problem in general when DL 6= 0. This is because the periodic graph has

infinitely many vertices, which means that not only can an independent set have an unbounded size, but also the

number of independent sets is infinite. In Sec. III-C, we will discuss how existing approaches to independent sets

can only approximate the optimal scheduling solutions, and the corresponding computation cost is high. While

some properties of periodic graphs, such as isomorphism and connectivity, have been studied in the literature [36],

[37], the independent set problem has not been well understood. In Sec. III, we will formally define the scheduling

rate region problem. In Sec. IV, we will further investigate the properties of the periodic hypergraph to enable an

exact and explicit solution of the scheduling problem.

C. Useful Properties of Periodic Hypergraphs

Here, we will briefly introduce the isomorphism and connectivity properties of periodic graphs and discuss their

extension to periodic hypergraphs. In Sec. III-B, we will leverage these properties to simplify the scheduling rate

region problem.

1) Isomorphism: A vertex assignment for a network N = (L, I, DL) is an integer-valued vector b = (bl, l ∈ L).

Each vertex assignment b induces a new link-wise delay matrix Db

L = (Db

L(l, l
′)) where

Db

L(l, l
′) = DL(l, l

′) + bl − bl′ , (4)

and hence a new network Nb = (L, I, Db

L). According to [36], if (L, I) is a graph, N∞ and N∞
b

are isomorphic

with respect to the bijection f : L × Z → L × Z with f(l, t) = (l, t + bl). In other words, N∞
b

is obtained by

shifting all the vertices in the row l of N∞ by bl. The mapping is still an isomorphism when (L, I) is a hypergraph

as the argument in [36] involves only the delay matrix.

2) Connectivity: In an undirected graph, two vertices are said to be connected if there exists a path between these

two vertices. Exploring the connectivity of N∞ can potentially simplify the scheduling problem by considering

each component of N∞ individually. We first discuss the connectivity when (L, I) is a graph, which has been

studied in [36]. Let gN be the greatest common divisor of DL(l, l
′) for all l ∈ L and l′ ∈ I(l). Under the condition

that DL 6= 0, gN is well-defined. Then DL/gN is an integer matrix. According to [36], N∞ has gN components

isomorphic to the periodic graph of (L, I, DL/gN ). Fig. 3 illustrates a periodic graph with three components. In

contrast to the case DL = 0, the components of N∞ in general have an infinite size.

If (L, I) is a hypergraph, for l ∈ L, define I ′(l) =
⋃

θ∈I(l) θ. Let I ′ = (I ′(l), l ∈ L). Then N ′ = (L, I ′, DL)

is a new network with a binary collision model. By [37], two vertices in N∞ are connected if and only if the two
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Fig. 3. An periodic graph with three components. Each component is illustrated by a different color (gray scale).

corresponding vertices in (N ′)∞ are connected. Let gN ′ be the greatest common divisor of DL(l, l
′) for all l ∈ L

and l′ ∈ I ′(l). We know that N∞ has gN , gN ′ components isomorphic to the periodic graph of (L, I, DL/gN ).

III. SCHEDULING RATE REGION

When delays are all 0, an independent set of (L, I) with the edge directions ignored represents an achievable

scheduling rate vector, and the set of all maximal independent sets determines the scheduling rate region [11]–[13].

However, for networks with general delays, the concepts of achievable scheduling rate vectors and the scheduling

rate region need to be extended to account for the characteristics of general periodic hypergraphs. In this section,

we will formally define the schedule rate vector and the scheduling rate region for a general network with delays.

We will discuss some fundamental properties of the scheduling rate region, and study a class of special schedules

known as guarded schedules.

For two real matrices A and B of the same size, we write A 4 B if all the entries of A are not larger than the

corresponding entries of B at the same position. We similarly define A < B to indicate that all entries of A are not

smaller than the corresponding entries of B at the same position. For a matrix A and a scalar a, we write A+ a

to denote the matrix obtained by adding a to each entry of A. We similarly define A− a to be the matrix obtained

by subtracting a from each entry of A.

A. Scheduling Rate Vector

For a network N = (L, I, DL), we denote for each schedule S and link l

RN
S (l) = lim

T→∞

1

T

T−1∑

t=0

ι(S(l, t) = 1, S(l, t) is collision-free), (5)

where ι(A1, A2, . . .) is the indicator function with a value 1 if the sequence of conditions Ai are all true, and 0

otherwise. To maintain consistency with network scheduling conventions, we only consider S(l, t) with t ≥ 0 when

defining RN
S (l). If the limit on the right-hand side of (5) exists, we say that RN

S (l) exists. When RN
S (l) exists, we

call RN
S (l) the (scheduling) rate of link l. If RN

S (l) exists for all l ∈ L, we call RN
S = (RN

S (l), l ∈ L) the rate

vector of S for N . We may omit the superscript in RN
S and RN

S (l) when the network N is implied.

Definition 3 (Scheduling rate region). For a network N = (L, I, DL), a rate vector R = (R(l), l ∈ L) is said to

be achievable if for any ǫ > 0, there exists a schedule S such that RS < R− ǫ. The set RN of all the achievable

rate vectors is called the scheduling rate region of N .
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Define the character of the network N as

D∗
N = max

l∈L
max
θ∈I(l)

max
l′∈θ
|DL(l, l

′)|. (6)

In other words, D∗
N is the maximum relevant delay in DL. When N is known from the context, we also write D∗

N

as D∗.

Example 5. For N line
L,K defined in Example 4, by (1) and (3),

D∗ = max
1≤i6=j≤L,|j−i−1|≤K

|1− |j − i− 1||

= max{min{L,K} − 1, 1}.

So, when K = 1, D∗ = 1, and when L ≥ K ≥ 2, D∗ = K − 1.

Definition 4 (Periodic schedule). A schedule S is considered periodic if there exists a positive integer Tp such

that S(l, t) = S(l, t+ Tp) for all (l, t) ∈ L × Z. The positive integer Tp in this context is called a period of the

schedule.

Similar to Definition 3, a rate vector R is considered achievable by collision-free, periodic schedules if for any

ǫ > 0, there exists a collision-free, periodic schedule S such that RS < R− ǫ. Although the scheduling rate region

RN is defined for general schedules, the following lemma states that collision-free, periodic schedules achieve the

rate region RN . Our result directly implies the special cases observed in the existing papers [5], [6] when the

network has a binary collision with I(l) = L \ {l}. Note that we do not limit the period of the periodic schedules

in Lemma 1. In the next section, we will further enhance the result by showing that we only need a finite set of

periodic schedules to completely characterize RN .

Lemma 1. For a network N , the rate region RN can be achieved using only collision-free, periodic schedules.

Remark 1. Our proof is based on a constructive approach. First, for any given schedule, we can always find a

collision-free schedule with the same rate vector by setting all the entries corresponding to collisions to 0. Second,

for any collision-free schedule with a rate vector R, we can construct a periodic schedule using a segment of the

schedule from time 0 to T − 1, such that the rate vector of the periodic schedule converges to R as T tends to

infinity.

Proof: Fix R ∈ R and ǫ > 0. By Definition 3, there exists a schedule S such that

RS(l) ≥ R(l)− ǫ/2, for all l ∈ L. (7)

Define a schedule S′ such that

S′(l, t) =






1 S(l, t) = 1 and is collision-free

0 otherwise.

We see that S′ is collision-free and RS′ = RS .
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By the definition in (5), there exists a sufficiently large T0 such that for all T ≥ T0 and all l ∈ L,
∣∣∣∣∣RS′(l)−

1

T

T−1∑

t=0

S′(l, t)

∣∣∣∣∣ ≤
ǫ

4
. (8)

Fix any T ∗ ≥ max{T0 +D∗, 4D∗/ǫ}. Define a schedule S∗ with period T ∗:

S∗(l, t) =





S′(l, t) t = 0, 1, . . . , T ∗ − 1−D∗,

0 t = T ∗ −D∗, . . . , T ∗ − 1.

Now we argue that S∗ is collision-free.

Fix (l, t) with S∗(l, t) = 1. According to the definition of S∗, there exists t0 ∈ {0, 1, . . . , T ∗ − 1 −D∗} such

that t = kT ∗ + t0. We show that S∗(l, t) is collision-free by contradiction. Assume there exists θ ∈ I(l) such

that S∗(l′, t +DL(l, l
′)) = 1 for every l′ ∈ θ, i.e., S∗(l, t) has a collision. For l′ ∈ θ, let t′ = t + DL(l, l

′). As

l′ ∈ θ ∈ I(l), we have |DL(l, l
′)| ≤ D∗, and hence kT ∗−D∗ ≤ t′ ≤ kT ∗+T ∗− 1. We discuss the possible range

of t′ in three cases:

1) When kT ∗ −D∗ ≤ t′ < kT ∗, by the definition of S∗, S∗(l′, t′) = 0.

2) When (k + 1)T ∗ −D∗ ≤ t′ ≤ (k + 1)T ∗ − 1, by the definition of S∗, S∗(l′, t′) = 0.

3) When kT ∗ ≤ t′ ≤ (k + 1)T ∗ − 1 − D∗, write t′ = kT ∗ + t′0. Due to the periodical property of S∗,

S∗(l′, t′) = S∗(l′, t′0). As t′0 ∈ {0, 1, . . . , T
∗ − 1 − D∗}, by the definition of S∗, S∗(l′, t′0) = S′(l′, t′0).

Similarly, we have S′(l, t0) = S∗(l, t0) = S∗(l, t) = 1. As S′(l, t0) is collision-free, for certain l′ ∈ θ,

S′(l′, t′0) = 0, i.e., S∗(l′, t′) = 0.

Therefore, for all the three cases of t′, we get a contradiction to the assumption that S∗(l, t) has a collision.

As S∗ is periodic and collision-free, we further have

RS∗(l) =
1

T ∗

T∗−1∑

t=0

S∗(l, t)

=

(
1−

D∗

T ∗

)
1

T ∗ −D∗

T∗−1−D∗∑

t=0

S′(l, t)

≥ (1−D∗/T ∗) (RS′(l)− ǫ/4)

≥ RS′(l)− ǫ/4−D∗/T ∗

≥ RS′(l)− ǫ/2

≥ R(l)− ǫ,

where the first inequality follows from T ∗ ≥ T0 +D∗ and (8), the third inequality follows from T ∗ ≥ 4D∗/ǫ, and

the last inequality is obtained by substituting (7). The proof of the theorem is complete.

The convexity is another fundamental property of the scheduling rate region RN . In the next section, we will

further show that RN is a polytope with a finite vertices.

Lemma 2. The rate region RN of a network N is convex.
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Remark 2. Our proof is based on a constructive approach. For any two collision-free, periodic schedules, we can

construct a new periodic schedule that has a rate vector close to a convex combination of the rate vectors of the

two original schedules.

Proof: Fix R1 and R2 in RN . Let R = αR1+(1−α)R2 where 0 < α < 1. The lemma is proved by showing

R ∈ RN . Fix ǫ > 0. By Lemma 1, there exists a collision-free schedule S1 of period T1 such that RS1
< R1− ǫ/2,

and a collision-free schedule S2 of period T2 such that RS2
< R2 − ǫ/2.

For a positive integer k1, let k2 = ⌈ 1−α
α

T1

T2
k1⌉. Construct a schedule S of period k1T1 + k2T2 + 2D∗ such that

S(l, t) = S1(l, t) for t ∈ {0, 1, . . . , k1T1−1}, S(l, t) = S2(l, t−k1T1−D∗) for t ∈ k1T1+D∗+{0, 1, . . . , k2T2−1},

and S(l, t) = 0 for other values of t in the first period. Similar to the proof of Lemma 1, we can argue that the

schedule S is collision-free. The rate vector RS satisfies

RS =
k1T1RS1

+ k2T2RS2

k1T1 + k2T2 + 2D∗

<
k1T1RS1

+ 1−α
α T1k1RS2

k1T1 +
1−α
α T1k1 + T2 + 2D∗

=
αRS1

+ (1 − α)RS2

1 + α(T2 + 2D∗)/(T1k1)

<
R − ǫ/2

1 + α(T2 + 2D∗)/(T1k1)

= R−
Rα(T2 + 2D∗)/(T1k1) + ǫ/2

1 + α(T2 + 2D∗)/(T1k1)
.

Therefore, when k1 is sufficiently large, RS < R− ǫ, and hence R ∈ RN .

B. Simplification by Isomorphism and Connectivity

In Section II-C, we have discussed the concepts of isomorphism and connectivity of periodic hypergraphs. Now,

we will demonstrate how these properties can be utilized to simplify the problem of scheduling rate region. Our

discussion is self-contained, as we solely rely on the properties of schedules and rate regions introduced earlier.

Consider a network N = (L, I, DL) and a vector b = (bl, l ∈ L). For a collision-free schedule S of N , we

define a schedule Sb as

Sb(l, t) = S(l, t+ bl),

which has the same rate vector as S. Then by Definition 1, we can verify that Sb is collision-free for Nb =

(L, I, Db

L), where Db

L is defined in (4). Due to symmetry, we can similarly argue that a collision-free schedule of

Nb induces a collision-free schedule of N of the same rate vector. The above discussion is summarized as follows:

Proposition 1. For a network N and a vertex assignment b, RN = RNb .

Though N and Nb are equivalent in terms of rate region, they may have different characters (see Example 6).

Note that the character of a network may affect the complexity for the rate region calculation according to the

characterization in Sec. III. Therefore, it is possible to use isomorphism to simplify the calculation of the rate

region. In an extreme case, if Db

L becomes 0, the problem is resolved.
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Example 6. Consider a network N = (L, I, DL) with the link set L = {l1, l2, l3, l4}, the collision sets

I(l1) = {l2, l3, l4}, I(l2) = {l1, l3, l4},

I(l3) = {l2, l4}, I(l4) = {l3},

and the link-wise propagation delay matrix

DL =




∗ 0 −2 −4

0 ∗ 0 −2

∗ 0 ∗ 0

∗ ∗ 0 ∗



.

The character D∗
N = 4. For the vertex assignment b = (4, 3, 2, 1), the link-wise delay matrix becomes

Db

L =




∗ 1 0 −1

−1 ∗ 1 0

∗ −1 ∗ 1

∗ ∗ −1 ∗



.

The character of Nb = (L, I, Db

L) is 1.

Consider a network N = (L, I, DL) with DL 6= 0. Let g be the greatest common divisor of DL(l, l
′) for all

l ∈ L and l′ ∈ ∪θ∈I(l)θ. As we have discussed in Sec. II-C, N∞ has g isomorphic components. We prove that

the rate region of N is the same as the rate region of (L, I, DL/g). Our proof also gives the connection of the

schedules for N and (L, I, DL/g).

Proposition 2. Consider a network N = (L, I, DL) with DL 6= 0. Let g be the greatest common divisor of

DL(l, l
′) for all l ∈ L and l′ ∈ ∪θ∈I(l)θ. Then, RN = R(L,I,DL/g).

Proof: As DL 6= 0, g > 0. For a collision-free schedule S of N , we define schedules S1, . . . , Sg as:

Si(l, t) = S(l, tg + i).

Let’s verify that Si is collision-free for (L, I, DL/g). Suppose Si(l, t) = S(l, tg + i) = 1. As S is collision-free

for N , we have for any θ ∈ I(l), there exists l′ ∈ θ such that S(l, tg+ i+DL(l, l
′)) = Si(l, t+DL(l, l

′)/g) = 0.

Therefore, Si is collision-free for (L, I, DL/g). Hence RS = 1
g (RS1

+ · · · + RSg
) ∈ R(L,I,DL/g), and RN ⊂

R(L,I,DL/g).

To prove RN ⊃ R(L,I,DL/g), consider a collision-free schedule S′ of (L, I, DL/g). Define a schedule S′′ for

N such that,

S′′(l, ig + j) = S′(l, i), i = 0, 1, . . . , j = 0, 1, . . . , g − 1.

To verify that S′′ is collision-free for N , consider (l, t) such that S′′(l, t) = 1. Write t = ig+ j, where i and j are

integers such that i ≥ 0 and 0 ≤ j < g. So S′(l, i) = S′′(l, t) = 1. Since S′ is collision-free for (L, I, DL/g), for

any θ ∈ I(l), there exists l′ ∈ θ such that S′′(l′, ig +DL(l, l
′) + j) = S′(l′, i +DL(l, l

′)/g) = 0. Hence S′′(l, t)
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is collision-free for N as for any θ ∈ I(l), there exists l′ ∈ θ such that S′′(l′, t + DL(l, l
′)) = 0. The proof is

completed as S′′ and S′ have the same rate vector.

In the following example, we illustrate how to combine isomorphism and connectivity to simplify a network.

Example 7. Consider a network N = (L, I, DL) with the link set L = {l1, l2, l3, l4}, the collision sets

I(l1) = {l2, l3}, I(l2) = {l3, l4},

I(l3) = {l4}, I(l4) = ∅,

and the link-wise propagation delay

DL =




∗ 1 5 ∗

∗ ∗ 1 5

∗ ∗ ∗ 1

∗ ∗ ∗ ∗



.

This network has D∗
N = 5. Given a vertex assignment b = [0, 1, 2, 3], we get a new network Nb = (L, I, Db

L),

where

Db

L =




∗ 0 3 ∗

∗ ∗ 0 3

∗ ∗ ∗ 0

∗ ∗ ∗ ∗



.

The periodic graph induced by Nb is shown in Fig. 3. As the greatest common divisor of the relevant entries of

Db

L is 3, we have RN = RNb = RN ′

, where N ′ = (L, I, Db

L/3). The character D∗
N ′ is 1.

C. Scheduling with Guard Intervals

Lastly in this section, we discuss the classical approach known as guarded scheduling, which involves using guard

intervals to prevent collisions. While it is not necessary to be familiar with guarded scheduling in order to proceed

with our approach of characterizing the scheduling rate region, this discussion can provide additional insights into

the connection and distinction between scheduling with and without delays.

Consider a network N = (L, I, DL) with character D∗. We fix an integer TF ≥ D∗ + 1, which is called the

frame length. All timeslots t, t ≥ 0, are grouped into frames, each consisting of TF consecutive timeslots. For

instance, frame k (k = 0, 1, . . .) includes timeslots kTF + i, i = 0, 1, . . . , TF − 1. In the context of this frame

structure, a schedule S is considered a guarded schedule if the last D∗ timeslots in each frame remain inactive.

More precisely, for any frame k, the timeslots kTF + i, i = TF −D∗, . . . , TF −1 are inactive. The last D∗ timeslots

in each frame are referred to as the guard interval. We illustrate a guarded schedule as follows, where TF = 5 and

D∗ = 2: 


· · · x x x 0 0 x x x 0 0 x x x 0 0 · · ·

· · · x x x 0 0 x x x 0 0 x x x 0 0 · · ·

· · · x x x 0 0 x x x 0 0 x x x 0 0 · · ·

· · · x x x 0 0 x x x 0 0 x x x 0 0 · · ·



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One notable property of a guarded schedule is that it eliminates inter-frame collisions by utilizing the guard

interval. This characteristic allows us to analyze the schedule in each frame independently. To achieve high frame

efficiency, the frame length TF is typically chosen to be significantly larger than the character D∗.

1) Rate Region Approximation: In the context of framed scheduling, the schedule of each frame, excluding the

guard interval, can be regarded as an independent set. Consider guarded scheduling with a frame length of T +D∗.

Define N T as the subgraph of N∞ induced by the vertex set L × {0, 1, . . . , T − 1}. An independent set of N T

can be represented by a binary |L|×T matrix. For instance, the empty set is an independent set in N T represented

by the all zero |L| × T matrix. For the guarded scheduling, each frame is collision-free if and only if the schedule

of the first T time slots of the frame represents an independent set of N T .

The rate vector of an independent set of N T is the vector obtained by summing the columns of the corresponding

matrix presentation and normalizing the result by T . We define R̃NT

as the convex hull of rate vectors associated

with all independent sets of N T . Consequently, the achievable rate region using guarded scheduling with a frame

length of T +D∗ is given by T
T+D∗ R̃NT

, which is a subset of RN .

Proposition 3. For a discrete network N , RN is equal to the closure of ∪T=1,2,...
T

T+D∗ R̃NT

.

Remark 3. This characterization of the rate region RN in this proposition involves the union of infinitely many sets,

making it non-explicit. As the frame length T increases, the approximation ofRN by ∪t=1,2,...,T
t

t+D∗ R̃N t

becomes

more accurate. Nevertheless, calculating R̃NT

using generic algorithms for enumerating maximal independent sets

of N T can become computationally expensive as T grows. This computational complexity arises because a graph

with n vertices can have up to 3n/3 maximal independent sets [38]. Therefore, although the approximation becomes

more accurate with larger T , the computational cost of obtaining the exact characterization of RN can be prohibitive

due to the exponential growth in the number of maximal independent sets for larger graphs.

Proof: As ∪T=1,2,...
T

T+D∗ R̃NT

⊂ RN , we only need to show RN ⊂ ∪T=1,2,...
T

T+D∗ R̃NT

. For any R ∈ RN

and ǫ > 0, by Lemma 1, there exists a collision-free, periodic schedule S such that

RS(l) ≥ R(l)− ǫ for every l ∈ L.

Let T0 ≥ D∗/ǫ be a period of S. We have RS ∈ R̃NT0
and hence

1

1 + ǫ
(R− ǫ) ∈

T0

T0 +D∗
R̃NT0

.

As the above holds for any ǫ > 0, R is in the closure of ∪T=1,2,...
T

T+D∗ R̃NT

.

2) Framed Scheduling: Framed scheduling is a special type of guarded scheduling where each link is either active

or inactive simultaneously for all the timeslots within a frame, except for the guard interval. Framed scheduling is

motivated by the network scheduling schemes extensively used in the existing wireless networks. We illustrate a
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framed schedule as follows, where TF = 5 and D∗ = 2:



· · · 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

· · · 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 · · ·

· · · 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 · · ·

· · · 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 · · ·




Consider a network N = (L, I, DL). Recall that (L, I,0) is a network with the all-0 delay matrix and R(L,I,0)

can be characterized by the independent sets of (L, I) while ignoring the direction of edges. In other words,

R(L,I,0) is the convex hull of the indicator vectors of all the independent sets of (L, I) with the edge directions

ignored. We prove that R(L,I,0) is the achievable rate region of framed scheduling for N when TF ≥ 3D∗ + 1.

Lemma 3. A framed schedule S with a frame length TF ≥ 3D∗ + 1 is collision-free if and only if for any link l

that is active in a frame, for all θ ∈ I(l), there exists a certain l′ ∈ θ that is inactive in the same frame.

Proof: A framed schedule is also a guarded schedule, where a collision can only be generated by links within

the same frame. Therefore, the sufficiency of the lemma holds (even without the condition that TF ≥ 3D∗ + 1).

To prove the necessary condition, consider that link l is active in the first frame, and for a certain θ ∈ I(l), all

l′ ∈ θ are active in the first frame. As |DL(l, l
′)| ≤ D∗ for all l′ ∈ θ, we have D∗ +DL(l, l

′) ∈ {0, 1, . . . , 2D∗}

for all l′ ∈ θ. As TF ≥ 3D∗ + 1, for all l′ ∈ θ, S(l′, D∗ +DL(l, l
′)) = 1, and hence S(l, D∗) has a collision.

Based on the above lemma, the following statement is straightforward.

Proposition 4. Consider a network (L, I, DL). For a framed schedule of frame length TF ≥ 3D∗ + 1, if its rate

vector exists, the rate vector is in (1 −D∗/TF )R(L,I,0). Moreover, any rate vector in R(L,I,0) can be achieved

by collision-free, framed schedules.

Proof outline: First, the scheduling rate within each frame is in (1−D∗/TF )R(L,I,0). Therefore, if the average

rate of all the frames converge, it must be also in (1−D∗/TF )R(L,I,0). Second, an independent set of (L, I) with

edge direction ignored can be used to design a collision-free framed schedule, and hence the achievable part can

be shown using a large TF .

For a network with a binary collision profile (i.e., I(l) is a subset of L for all l ∈ L), the above discussion

for framed scheduling can be improved by relaxing the condition TF ≥ 3D∗ + 1 to TF ≥ 2D∗ + 1 in Lemma 3

and Proposition 4. The proof of the necessary condition of Lemma 3 can be modified as follows: Consider a

certain l′ ∈ I(l) is active in the first frame. As |DL(l, l
′)| ≤ D∗, there exists t0 ∈ {0, 1, . . . , D∗} such that

t0 +DL(l, l
′) ∈ {0, 1, . . . , D∗}. As TF ≥ 2D∗ + 1, S(l′, t0 +DL(l, l

′)) = 1, and hence S(l, t0) has a collision.

IV. SCHEDULING GRAPHS AND RATE REGION

The characterization of the scheduling rate regionRN using guarded scheduling (Proposition 3) cannot be exactly

computed in finite time. In this section, we provide an explicit characterization of RN (Theorem 4 and Theorem

5 below) that enables the computation of this region in finite time. Our approach leverages the periodic structure

of N∞.
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l1 . . .

l2 . . .

l3 . . .

l4 . . .

S[3, 2, 0] S[3, 2, 1] S[3, 2, 2]

(a) S[3, 2, k] for k = 0, 1, 2

l1 . . .

l2 . . .

l3 . . .

l4 . . .

S[2, 2, 0] S[2, 2, 1] S[2, 2, 2]

(b) S[2, 2, k] for k = 0, 1, 2

Fig. 4. Illustration of the associated part in the periodic graph of S[T,Q, k].

We need some further concepts about directed graphs: In a directed graph G, a path of length k is a sequence of

vertices v0, v1, . . . , vk where (vi, vi+1) (i = 0, 1, . . . , k− 1) is a directed edge in G. A path of length 0 is a vertex,

while a path of length 1 is an edge. A path (v0, v1, . . . , vk) is said to be closed if vk = v0. A path (v0, v1, . . .) of

infinite length is said to be periodic if there exists a positive integer T such that vi = vi+T for any i ≥ 0, where

each such value of T is called a period. For a periodic path with a period of T , the sub-path (v0, v1, . . . , vT ) is

closed. A cycle in G is a closed path (v0, v1, . . . , vk) where vi 6= vj for any 0 ≤ i 6= j ≤ k− 1. In other words, the

only repeated vertices in the cycle are the first and the last vertices. A cycle of length k is also called a k-cycle.

A. Scheduling Graphs and Collision-free Schedules

Recall that a schedule S is a matrix with columns indexed by t ∈ Z. We begin by dividing S into submatrices,

which are formed by consecutive columns, and then proceed to verify whether S is collision-free using these

submatrices. For integers T , Q, and k satisfying T ≥ 1 and 1 ≤ Q ≤ T , we denote S[T,Q, k] as the submatrix of

S with columns kQ, kQ+ 1, . . . , kQ + T − 1. We refer to T as the blocklength, Q as the step size, and k as the

block index. The definition is illustrated in Fig. 4. Note that S[T,Q, 0] = S[T, T, 0] for all Q. When Q < T , there

is overlap between S[T,Q, k] and S[T,Q, k+ 1]. However, S[T, T, k] and S[T, T, k+ 1] are disjoint but adjacent.

For a positive integer T and a network N , an |L| × T binary matrices A is considered collision-free for N if

A = S′[T, T, 0] for some collision-free schedule S′, or equivalently, A represents an independent set of N T . Fix

an integer Q with 1 ≤ Q ≤ T . If a schedule S is collision-free, then S[T,Q, k], k = 0, 1, . . . are all collision-free.
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Conversely, we will show that for sufficiently large T , a schedule S is collision-free if (S[T,Q, k], S[T,Q, k+1]),

k = 0, 1, . . . satisfy a certain condition. To present this condition, we adopt a graphical approach that enables us

to leverage results from graph theory conveniently. A pair of matrices (A1, A2), where Ai ∈ {0, 1}|L|×ti, is also

regarded as a matrix obtained by juxtaposing them.

Definition 5 (Scheduling graph). For a network N and integers 1 ≤ Q ≤ T , a scheduling graph is a directed graph,

denoted by (MT , ET,Q), defined as follows: The vertex set MT consists of all |L| × T binary matrices that are

collision-free forN . The edge set ET,Q includes all pairs of vertices (A,B) such that A[T−Q,Q, 1] = B[T−Q,Q, 0]

and (A[Q,Q, 0], B) (considered as an |L| × T matrix) is collision-free for N .

The setsMT and ET,Q can be determined by the independent sets of N T and N T+Q, respectively, as discussed

in more detail in Sec. V-A. We also call (MT , ET,Q) the step-Q scheduling graph. When Q < T , a necessary

condition for (A,B) ∈ ET,Q is that the last T −Q columns of A and the first T −Q columns of B are the same.

Moreover, (A,B) ∈ ET,Q if and only if A = S[T,Q, 0] and B = S[T,Q, 1] for a certain collision-free schedule S.

We also write the step-T scheduling graph as (MT , ET ). A necessary and sufficient condition for (A,B) ∈ ET is

that (A,B) as an |L| × 2T binary matrix represents an independent set of N 2T .

Example 8 (Multihop line network). We give (M1, E1) ofN line
4,1 as an example. HereM1 includes the 4×1 matrices

v such that v can be a column of a certain collision-free schedule S of N line
4,1 . We have M1 = {v0, v1, . . . , v8},

where

[
v0 v1 · · · v8

]
=




0 1 0 0 0 1 1 0 0

0 0 1 0 0 0 1 1 0

0 0 0 1 0 0 0 1 1

0 0 0 0 1 1 0 0 1



.

E1 includes all the pairs (v, v′) such that [v, v′] is equal to two consecutive columns of a certain collision-free

schedule, and can be denoted by the adjacency matrix:

v0 v1 v2 v3 v4 v5 v6 v7 v8






v0 1 1 1 1 1 1 1 1 1

v1 1 1 0 1 1 1 0 0 1

v2 1 1 1 0 1 1 1 0 0

v3 1 1 1 1 0 0 1 1 0

v4 1 1 1 1 1 1 1 1 1

v5 1 1 0 1 1 1 0 0 1

v6 1 1 0 0 1 1 0 0 0

v7 1 1 1 0 0 0 1 0 0

v8 1 1 1 1 0 0 1 1 0

. (9)

The following two theorems show that a collision-free schedule of a network N is equivalent to a directed path

in a scheduling graph (MT , ET,Q) with T ≥ 2D∗. These results allow us to further investigate the scheduling
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problem using scheduling graphs.

Theorem 2. Consider a network N and a schedule S. If S is collision-free for N , then for any integers 1 ≤ Q ≤ T ,

the sequence (S[T,Q, k], k = 0, 1, . . .) forms a path in (MT , ET,Q).

Proof: Suppose S is collision-free. We see that for k = 0, 1, . . ., S[T,Q, k] is collision-free for N and hence

is in MT . Note that S[T,Q, k] and S[T,Q, k + 1] are the first and the last T columns of S[T +Q,Q, k], which

is collision-free for N . Hence, (S[T,Q, k], S[T,Q, k + 1]) ∈ ET,Q. Therefore, (S[T,Q, k], k = 0, 1, . . .) is a path

in (MT , ET,Q).

For N line
4,1 , any schedule S that forms a path in (M1, E1) as characterized in Example 8 is collision-free. However,

the converse of Theorem 2 can only be proved in general when T is sufficiently large. The next example shows

that for T < 2D∗, a schedule S that forms a path in (MT , ET,Q) may not be collision-free.

Example 9. Consider a network N4 = (L, I, DL), where L = {l1, l2, l3, l4}. The collision sets of the links are

I(l1) = ∅, I(l2) = {{l1, l3}},

I(l3) = {{l2, l4}}, I(l4) = ∅.

The link-wise delay matrix DL is

DL =




∗ ∗ ∗ ∗

−1 ∗ 1 ∗

∗ −1 ∗ 1

∗ ∗ ∗ ∗



. (10)

For this network, the character

D∗ = max
l∈L

max
θ∈I(l)

max
l′∈θ
|DL(l, l

′)| = 1. (11)

We illustrate that a schedule S that forms a path in (M1, E1) may not be collision-free. First, we see that (M1, E1)

is a complete graph with the vertices set {0, 1}4. Consider a schedule S with a submatrix S′ formed by three

consecutive columns:

S′ =




1 0 0

1 1 0

0 1 1

0 0 1



.

Because S′(l1, 0) = S′(l3, 2) = 1, S′(l2, 1) has a collision. As S′(l2, 1) = 1, S is not collision-free.

The next theorem proves a converse of Theorem 2 for blocklength T ≥ 2D∗. For binary collision, the converse

of can be proved for T ≥ D∗ (see Theorem 6).

Theorem 3. Consider a network N = (L, I, DL) and a schedule S. If for certain integers T and Q such that

T ≥ 2D∗ and T ≥ Q ≥ 1, the sequence (S[T,Q, k], k = 0, 1, . . .) forms a path in (MT , ET,Q), then S is

collision-free.
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time

(k − 1)Q kQ (k + c)Q kQ+ T

tt−D∗ t+D∗

(a) case 0 ≤ t0 < d

time

(k − 1)Q kQ (k + c)Q (k + 1)Q + T

tt−D∗ t+D∗

(b) case d ≤ t0 < Q

Fig. 5. Illustration of the proof of Theorem 3. A thick tick indicts the start position of a submatrix S[T,Q, k], and a thin tick indicts the time.

Proof: Fix any (l, t) ∈ L × Z+ such that S(l, t) = 1, and fix any θ ∈ I(l). To prove S(l, t) is collision-free,

we need to show that for a certain l′ ∈ θ S(l′, t +DL(l, l
′)) = 0. Find integers c ≥ 0 and 0 ≤ d < Q such that

D∗ = cQ+ d, and find integers k and 0 ≤ t0 < Q such that t = (k + c)Q+ t0. For any l′ ∈ θ, we have

t′ , t+DL(l, l
′)

∈ [t−D∗, t+D∗]

= [kQ+ t0 − d, kQ+ t0 − d+ 2D∗].

In the following, we discuss two cases of t0: 0 ≤ t0 < d and d ≤ t0 < Q.

When 0 ≤ t0 < d, we have −Q < t0 − d < 0. Hence for any l′ ∈ θ, as T ≥ 2D∗, (k − 1)Q < t′ < kQ + T

(see Fig. 5 (a)). In other words, to verify the collision of S(l, t) with respect to θ, we only need to consider

S[T,Q, k − 1] and S[T,Q, k]. As (S[T,Q, k − 1], S[T,Q, k]) ∈ ET,Q, we have S[T,Q, k − 1] = S′[T,Q, 0] and

S[T,Q, k] = S′[T,Q, 1] for a certain collision-free schedule S′. As S(l, t) = S′(l, t0− d+Q+D∗) = 1, we have

S(l′, t′) = S′(l′, t0 − d+Q+D∗ +DL(l, l
′)) = 0 for a certain l′ ∈ θ.

When d ≤ t0 < Q, we have 0 ≤ t0 − d < Q. Hence for any l′ ∈ θ, as T ≥ 2D∗, kQ ≤ t′ < (k + 1)Q + T

(see Fig. 5 (b)). In other words, to verify the collision of S(l, t) with respect to θ, we only need to consider

S[T,Q, k] and S[T,Q, k + 1]. As (S[T,Q, k], S[T,Q, k + 1]) ∈ ET,Q, we have S[T,Q, k] = S′[T,Q, 0] and

S[T,Q, k + 1] = S′[T,Q, 1] for certain collision-free schedule S′. Therefore, as S(l, t) = S′(l, t0 − d+D∗) = 1,

we have S(l′, t′) = S′(l′, t0 − d+D∗ +DL(l, l
′)) = 0 for a certain l′ ∈ θ.

For both cases, S(l′, t′) = 0 for a certain l′ ∈ θ. Therefore, S(l, t) is collision-free.

B. Periodic Schedules and Scheduling Graphs

Theorem 2 and Theorem 3 together show that a collision-free schedule is equivalent to a directed path in a

scheduling graph (MT , ET,Q) with T ≥ 2D∗. Hence we convert the independent set problem on a periodic

hypergraph to a path problem on a scheduling graph. Although a scheduling graph has a finite size, the number of

paths in it is infinite and the length of a path can be unbounded as well. We continue to study how to reduce the

number and length of the paths based on periodic scheduling, which is rate region achieving as shown in Lemma 1.
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We will establish a relationship between a periodic schedule and a closed path in a scheduling graph, thus providing

a characterization of RN by cycles in the scheduling graph.

Definition 6. The rate vector RP of a closed path P = (A0, A1, . . . , Ak) in (MT , ET,Q) is defined as follows:

RP =
1

kQ

k−1∑

i=0

Ai1Q,

where 1Q is a length-T column vector with the first Q entries equal to 1 and the remaining T −Q entries equal

to 0.

Denote cycle(G) as the collection of all cycles in a directed graph G. Define

R(MT ,ET,Q) = conv{RC : C ∈ cycle(MT , ET,Q)},

where convA is the convex hull of a set A. Since (MT , ET,Q) is finite, cycle(MT , ET,Q) is finite and hence

R(MT ,ET,Q) is a closed convex polytope. We will show that when T ≥ 2D∗, RN = R(MT ,ET,Q).

Lemma 4. For a network N and a collision-free, periodic schedule S, the following statements hold:

1) For any period K of S, (S[T,Q, i], i = 0, 1, . . . ,K) forms a closed path in the scheduling graph (MT , ET,Q).

2) The rate vector RS belongs to the set R(MT ,ET,Q).

Proof: By Theorem 2, (S[T,Q, i], i = 0, 1, . . .) forms a path in (MT , ET,Q). As KQ is also a period of S,

S[T,Q, i] = S[T,Q, i+K]. Therefore, the path (S[T,Q, i], i = 1, 2, . . .) has a period K and hence (S[T,Q, i], i =

0, 1, . . . ,K) is a closed path in (MT , ET,Q).

A closed path can be decomposed into a sequence of (not necessarily distinct) cycles (see, e.g., [39]). Suppose

(S[T,Q, i], i = 0, 1, 2, . . . ,K) has the decomposition of cycles C1, . . . , CK′ in cycle(MT , ET,Q), where Ci is of

length ki. Using this decomposition of the closed path, one obtains

RS =
1

K

K′∑

i=1

kiRCi
∈ R(MT ,ET,Q).

Theorem 4. For a network N , we have RN ⊂ R(MT ,ET,Q) for integers T ≥ Q ≥ 1.

Proof: Consider R ∈ RN . By Lemma 1, for any ǫ > 0, there exists a collision-free, periodic schedule S such

that RS < R − ǫ. By Lemma 4, RS ∈ R(MT ,ET,Q). As R(MT ,ET,Q) is closed, we have R ∈ R(MT ,ET,Q).

For the general collision model, the converse of the above theorem (R(MT ,ET,Q) ⊂ RN ) can be proved for

blocklength T ≥ 2D∗. To show the converse, we first show that for a periodic schedule, it is sufficient to check a

sufficiently long part of the schedule to verify whether it is collision-free.

Lemma 5. For a network N and integers T ≥ 2D∗ and 1 ≤ Q ≤ T , suppose S is a periodic schedule with period

kQ such that (S[T,Q, i], i = 0, . . . , k) is a closed path in (MT , ET,Q). Then S is collision-free for N .

Proof: Let Ai = S[T,Q, i] for i = 0, 1, . . . , k− 1. Fix any integer i = ak+ b where a ≥ 0 and 0 ≤ b ≤ k− 1.

First, S[T,Q, i] = S[T,Q, b] = Ab ∈ MT . Second, (S[T,Q, i], S[T,Q, i + 1]) = (S[T,Q, b], S[T,Q, b + 1]) =
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(Ab, Ab+1) ∈ ET,Q. Therefore, the sequence (S[T,Q, i], i = 1, 2, . . .) is a path in (MT , ET,Q). As T ≥ 2D∗, by

Theorem 3, S is collision-free.

Theorem 5. For a network N with a general collision profile and any integers T and Q such that T ≥ 2D∗ and

and 1 ≤ Q ≤ T , it holds that RN ⊃ R(MT ,ET,Q).

Proof: Fix R ∈ R(MT ,ET,Q). We can write

R =
∑

C∈cycle(MT ,ET,Q)

αCRC ,

where αC ≥ 0 and
∑

C∈cycle(MT ,ET ) αC = 1. For a cycle C = (C0, C1, . . . , Ck) in (MT , ET,Q), we define a

schedule S with period kQ such that S[T,Q, i] = Ci for i = 0, 1, . . . , k− 1. By Lemma 5, S is collision-free and

hence RC = RS ∈ RN . As RN is convex (see Lemma 2), we have R ∈ RN .

Theorem 4 and Theorem 5 together give an explicit characterization of RN , i.e., when T ≥ 2D∗, RN =

R(MT ,ET,Q), where R(MT ,ET,Q) is explicitly determined by the cycles in (MT , ET,Q). Now we see that using a

scheduling graph, only a finite number of cycles are required for determining the scheduling rate region. Moreover,

from the proofs of Lemma 4 and Lemma 5, we also see that a periodic, collision-free schedule can be formed by

cycles of (MT , ET,Q).

C. Enhanced Results for Binary Network Model

For the binary collision model, Theorem 5 can be proved for T ≥ D∗ (see Theorem 7 below). For the binary

collision model, the collision set I(l) has the property that for any θ ∈ I(l), |θ| = 1. In this case, we also write

I(l) as a subset of L, and the formula of character D∗ given in (6) can be simplified as

D∗
N = max

l∈L
max
l′∈I(l)

|DL(l, l
′)|.

The following theorem improves Theorem 3 for the binary collision model with the lower bound on T improved

from 2D∗ to D∗.

Theorem 6. Consider a network N = (L, I, DL) with a binary collision profile and a schedule S. If for certain

integers T and Q such that T ≥ D∗ and T ≥ Q ≥ 1, the sequence (S[T,Q, k], k = 0, 1, . . .) forms a path in

(MT , ET,Q), then S is collision-free.

Proof: Fix any (l, t) ∈ L × Z+ such that S(l, t) = 1, and fix any l′ ∈ I(l). To prove S(l, t) is collision-free,

we need to show that S(l′, t +DL(l, l
′)) = 0. Find integers c ≥ 0 and 0 ≤ d < Q such that D∗ = cQ + d, and

find integers k and 0 ≤ t0 < Q such that t = (k + c)Q+ t0. For l′, we have

t′ , t+DL(l, l
′)

∈ [t−D∗, t+D∗]

= [kQ+ t0 − d, kQ+ t0 − d+ 2D∗].

In the following, we discuss two cases of t0: 0 ≤ t0 < d and d ≤ t0 < Q.
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time

(k − 1)Q kQ (k + c)Q kQ+ T (k + c+ 1)Q + T

tt−D∗ t+D∗

(a) case 0 ≤ t0 < d

time

(k − 1)Q kQ (k + c)Q kQ+ T (k + c+ 1)Q + T

tt−D∗ t+D∗

(b) case d ≤ t0 < Q

Fig. 6. Illustration of the proof of Theorem 6. A thick tick indicts the start position of a submatrix S[T,Q, k], and a thin tick indicts the time.

When 0 ≤ t0 < d, we have −Q < t0 − d < 0, and hence (k − 1)Q < t′ < kQ + 2D∗. See Fig. 6 (a) for an

illustration. Consider three subcases of t′:

• t′ ∈ [(k− 1)Q, kQ+T − 1]. Note that t ∈ [kQ, kQ+T − 1]. As (S[T,Q, k− 1], S[T,Q, k]) ∈ ET,Q, we have

S[T,Q, k − 1] = S′[T,Q, 0] and S[T,Q, k] = S′[T,Q, 1] for certain collision-free schedule S′. Therefore, as

S(l, t) = S′(l, t0 + (1 + c)Q) = 1, S(l′, t′) = S′(l′, t0 + (1 + c)Q +DL(l, l
′)) = 0.

• t′ ∈ [(k + c)Q, (k+ c)Q+ T − 1]. Note that t ∈ [(k + c)Q, (k + c)Q+ T − 1] too. As S[T,Q, k+ c] ∈MT ,

we have S[T,Q, k + c] = S′[T, 0] for certain collision-free schedule S′. Therefore, as S(l, t) = S′(l, t0) = 1,

S(l′, t′) = S′(l′, t0 +DL(l, l
′)) = 0.

• t′ ∈ [(k + c + 1)Q, (k + c + 1)Q + T − 1]. Note that t ∈ [(k + c)Q, (k + c)Q + T − 1]. As (S[T,Q, k +

c], S[T,Q, k + c+ 1]) ∈ ET,Q, we have S[T,Q, k + c] = S′[T,Q, 0] and S[T,Q, k + c+ 1] = S′[T,Q, 1] for

certain collision-free schedule S′. Therefore, as S(l, t) = S′(l, t0) = 1, S(l′, t′) = S′(l′, t0 +DL(l, l
′)) = 0.

We see that for all the subcases of t′, S(l′, t′) = 0.

When d ≤ t0 < Q, we have 0 ≤ t0−d < Q, and hence kQ ≤ t′ < kQ+T +Q. See Fig. 6 (b) for an illustration.

Consider three subcases of t′:

• t′ ∈ [kQ, kQ+ T − 1]. Note that t ∈ [kQ, kQ+ T − 1].

• t′ ∈ [(k + c)Q, (k + c)Q+ T − 1]. Note that t ∈ [(k + c)Q, (k + c)Q + T − 1] too.

• t′ ∈ [(k + c+ 1)Q, (k + c+ 1)Q+ T − 1]. Note that t ∈ [(k + c)Q, (k + c)Q + T − 1].

These subcases can be analyzed similarly as when 0 ≤ t0 < d, and hence S(l′, t′) = 0.

For both cases of t0, S(l′, t′) = 0 for any l′ ∈ I(l). Therefore, S(l, t) is collision-free.

The following lemma improves Lemma 5 for the binary collision model. The proof is the same as that of Lemma 5

except that Theorem 6 is applied instead of Theorem 3.

Lemma 6. For a networkN with a binary collision profile and integers T and Q such that T ≥ D∗ and 1 ≤ Q ≤ T ,

suppose S is a periodic schedule with period kQ such that (S[T,Q, i], i = 0, . . . , k) is a closed path in (MT , ET,Q).

Then S is collision-free for N .

The following theorem improves Theorem 5 for the binary collision model. The proof is the same as that of
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Theorem 5 except that Lemma 6 is applied instead of Lemma 5.

Theorem 7. For a network N with a binary collision profile and any integers T and Q such that T ≥ D∗ and

1 ≤ Q ≤ T , it holds that RN ⊃ R(MT ,ET,Q).

V. ALGORITHMS FOR CALCULATING SCHEDULING RATE REGION

In this section, our focus is on developing algorithms for calculating the scheduling rate region of a network

N = (L, I, DL). Based on the discussion in Sec. IV, we understand that the rate region of N is determined

by cycles of the scheduling graph (MT , ET,Q) with a sufficiently large T . Therefore, a straightforward approach

to compute the rate region is to apply the existing cycle enumerating algorithms on the scheduling graphs (e.g.,

Johnson’s algorithm [31]). Though we may choose the minimum value of T to reduce the computation cost, the

straightforward approach in general incurs a high computation cost. Note that |MT | = O(2|L|T ) and the number

of cycles in (MT , ET,Q) can exceed 2|MT | [31]. Consequently, cycle enumerating algorithms designed for generic

graphs tend to exhibit a steep increase in computation cost as a function of |L|T .

In the existing scheduling researches, to avoid the high the computational complexity of enumerating all the

maximal independent sets, algorithms have been developed to achieve a subset of the scheduling rate region [24],

[40]. Similarly, due to the even greater computational challenge of enumerating all cycles in a scheduling graph, it

is also a reasonable approach to enumerate cycles up to a specific length k, which can provide an approximation

of the scheduling rate region. Although the maximum cycle length theoretically is O(|MT |), both analytical and

numerical evidence suggests that a small value of k can yield a good approximation of the rate region.

Though an algorithm designed for generic graphs can be applied on a scheduling graph to enumerate cycles up

to a specific length (e.g., [41]), its running time may not be optimal since it does not utilize the specific structure of

the scheduling graph. In this section, we present an approach specifically designed for the step-T scheduling graph

(MT , ET ). By leveraging a dominance property of (MT , ET ), we refine the characterization of the scheduling

rate region using only subgraphs of (MT , ET ). We derive algorithms that calculate the subset of the scheduling

rate region generated by the cycles of (MT , ET ) up to a specific length. Numerical evaluations demonstrate that

our algorithms can achieve faster computation compared to using generic cycle enumeration algorithms directly

on (MT , ET ), particularly when dealing with larger networks. Moreover, the techniques developed here can be

adopted in the next section for maximizing a linear function of the rate vectors.

We denote max<A as the set of maximal elements in the partially ordered set (A,<). In other words, max<A

is the smallest subset B in A such that any element of A is dominated by some elements in B. A sequence of

matrices A = (A0, A1, . . .), where Ai ∈ {0, 1}
|L|×ti, is regarded as a matrix obtained by juxtaposing A0, A1, . . ..

Therefore, the relation < and 4 defined on matrices can be applied to pairs of sequence of matrices. For two real

numbers a and b, we define a ∧ b as the minimum of a and b. For two matrices A = (aij) and B = (bij) of the

same size, we define A ∧B = (aij ∧ bij). When A and B are binary matrices, A ∧B is the matrix resulting from

the bitwise AND operation.
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Algorithm 1 A algorithm for calculating (MT , ET,Q) from M∗
T+Q. The function SchedGraph recursively call

ADDC to add vertices and edges to (MT , ET,Q).

1: function SCHEDGRAPH

2: Input: M∗
T+Q, T , Q

3: Output: (MT , ET,Q)

4: (MT , ET,Q)← (∅, ∅)

5: for each C ∈ M∗
T+Q do

6: ADDC(C)

7: procedure ADDC

8: Input: C

9: Output: update (MT , ET,Q)

10: if C[T,Q, 0] ∈MT , C[T,Q, 1] ∈MT and (C[T,Q, 0], C[T,Q, 1]) ∈ ET,Q then

11: return

12: MT ←MT ∪ {C[T,Q, 0], C[T,Q, 1]}

13: ET ← ET ∪ {(C[T,Q, 0], C[T,Q, 1])}

14: if C is the all-zero matrix then

15: return

16: for each C′ � C do

17: ADDC(C′)

A. Calculation of Scheduling Graphs

Before delving into our approach to the rate region, let’s discuss the calculation of scheduling graphs. We first

establish the equivalence between (MT , ET,Q) andMT+Q. According to Definition 5,MT+Q represents the subset

of |L| × (T +Q) binary matrices that correspond to the independent sets of N T+Q. On one hand, ET,Q consists

of pairs (A,B) ∈ MT ×MT such that (A[Q,Q, 0], B) ∈ MT+Q and the last T − Q columns of A and the

first T −Q columns of B are the same. On the other hand, for every |L| × (T +Q) binary matrix C ∈ MT+Q,

both C[T,Q, 0] and C[T,Q, 1] are elements of MT , resulting in (C[T,Q, 0], C[T,Q, 1]) ∈ ET,Q. Therefore, the

calculation of (MT , ET,Q) is equivalent to the calculation of MT+Q.

Denote M∗
t = max< Mt as the collection of the |L| × t binary matrices that represent the maximal independent

sets of N t. When dealing with a binary collision model, the Bron–Kerbosch algorithm and its refinements [42]–

[45] can be employed to enumerate M∗
t . In the case of a general collision model where N t forms a hypergraph,

the corresponding problem of finding maximal independent sets has been discussed in [46]–[48]. The worst-case

complexity of the Bron–Kerbosch algorithm is O(3n/3), where n is the number of vertices in the network [43]. In

our experience, the vertex pivoting technique [43], [44] can greatly improve the running time of the Bron–Kerbosch

algorithm for N t.

For the straightforward approach to calculating the scheduling rate region, we require MT+Q rather than just
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M∗
T+Q. Given M∗

T+Q, we can generate (MT , ET,Q) as follows: For each C ∈ M∗
T+Q, and recursively for each

C′ 4 C, we add C′[T,Q, 0] and C′[T,Q, 1] toMT , and we add (C′[T,Q, 0], C′[T,Q, 1]) to ET,Q. In Algorithm 1,

we provide pseudocode for calculating (MT , ET,Q) from M∗
T+Q. Line 10 checks whether C has already been

added to (MT , ET,Q) before.

In our approach to scheduling the rate region (to be elaborated in this section), we will use two subgraphs of the

step-T scheduling graph (MT , ET ). Therefore, we do not require the computation of the entire scheduling graph

based on M∗
2T . The first subgraph of interest corresponds to M∗

2T . If we consider (A,B) ∈ ET as an |L| × 2T

binary matrix, then (A,B) ∈M2T . Thus, we can express ET =M2T . Let E∗ = max< ET =M∗
2T , and let

M∗
L = {B : (B,B′) ∈ E∗ for certain B′},

M∗
R = {B′ : (B,B′) ∈ E∗ for certain B}.

As E∗ ⊂M∗
L×M

∗
R, E∗ can be represented using an adjacency matrix with rows and columns indexed by elements

in M∗
L and M∗

R, respectively. We see that (M∗
L,M

∗
R, E

∗) is just another representation of M∗
2T and serves as a

subgraph of (MT , ET ). The second subgraph of interest can be induced by (M∗
L,M

∗
R, E

∗), which will be discussed

later in this section.

B. Dominance Property

According to the definition of collision, if a schedule is collision-free, then the schedule obtained by inactivating

some entries is also collision-free. In other words, if A ∈ MT , then any A′ 4 A is also in MT . The similar

property applies to edges and paths in (MT , ET ). For two sequences A = (A0, A1, . . .) and B = (B0, B1, . . .) of

the same length (which can be unbounded) with Ai, Bi ∈ {0, 1}|L|×T , we say A dominates B if A < B.

Lemma 7 (Basic dominance property for (MT , ET )). For any k ≥ 0, if A = (A0, A1, . . . , Ak) is a path in

(MT , ET ), then any B = (B0, B1, . . . , Bk) with B 4 A is a path in (MT , ET ).

Proof: For any edge (A′, A′′) ∈ ET and any (B′, B′′), if (B′, B′′) 4 (A′, A′′), then (B′, B′′) is also an edge

of (MT , ET ). The lemma can then be proved by checking (Bi, Bi+1) 4 (Ai, Ai+1) for i = 0, 1, . . . , k − 1.

We now define some notations for presenting a main dominance property. Denote Pk as the set of length-k paths

and Ck as the set of length-k cycles in (MT , ET ). Let

P∗
k = max

<
Pk and C∗k = max

<
Ck.

In other words, the elements in P∗
k and C∗k are the maximal paths and cycles, respectively, with respect to the partial

order <. Note that Ck ⊂ Pk, but C∗k is not necessarily a subset of P∗
k . We are going to show that maximal paths

and cycles are sufficient for characterizing the scheduling rate region.

Let

Rk = conv{RC : C ∈ ∪ki=1Ci}, (12)

where RC is defined in Definition 6 with Q = T . It is worth noting that as k becomes sufficiently large, Rk

becomes R(MT ,ET ), which is equal to RN when T ≥ 2D∗ (or D∗ for binary collision). Therefore, when T ≥ 2D∗
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(or D∗ for binary collision) and k is sufficiently large, Rk is the scheduling rate region. The lower shadow of a

set A ⊂ (R+)m×n, denoted as domA, refers to the collection of all B ∈ (R+)m×n that are dominated by some

elements in A [49], [50]. The following lemma states that the lower shadow of Rk is equal to the set Rk itself.

Lemma 8. For each k ≥ 1, domRk = Rk.

Proof: As Rk ⊂ domRk, we show domRk ⊂ Rk. For R ∈ domRk, there exists R′ ∈ Rk such that R′ < R.

Let C∗ = ∪ki=1Ci. We can write R′ =
∑

C′∈C∗ αC′RC′ , where αC′ ≥ 0 and
∑

C′∈C∗ αC′ = 1. Assume R(l) < R′(l)

for a certain l ∈ L. For each C′ ∈ C∗, construct a cycle C by setting the entries of the matrices in C′ indexed by

l to zero. Let αl =
R(l)
R′(l) and

R′′ = αl

∑

C′∈C∗

αC′RC′ + (1− αl)
∑

C′∈C∗

αC′RC .

We have R′′ ∈ Rk as C′ ∈ C∗, R′′(l) = R(l) and R′′(l′) = R′(l′) for l′ 6= l. By repeating the similar procedure

for all the other links l′ with R′(l′) > R(l′), we can convert R′′ to R and hence prove R ∈ Rk .

For a path P = (A0, A1, . . . , Ak) of length k, we define cl(P ) as the closed path generated by

(A0 ∧Ak, A1, . . . , Ak−1, A0 ∧ Ak).

Hence, the rate vector Rcl(P ) is well-defined, following Definition 6 with Q = T . The following theorem shows

that Rk can be determined by P∗
i and C∗i , i = 1, . . . , k.

Theorem 8. For a scheduling graph (MT , ET ) and any integer k ≥ 1,

Rk = dom conv{RC : C ∈ ∪ki=1C
∗
i }

= dom conv{Rcl(P ) : P ∈ ∪
k
i=1P

∗
i }.

Proof: To simplify the notation, we use in the proof

A∗ = dom conv{RC : C ∈ ∪ki=1C
∗
i },

B∗ = dom conv{Rcl(P ) : P ∈ ∪
k
i=1P

∗
i }.

By definition, Rk ⊂ A∗.

For A = (A0, . . . , Ak−1, A0) ∈ C∗k , there exists P = (B0, . . . , Bk) ∈ P∗
k such that B < A. As B0 < A0 and

Bk < A0, B0 ∧Bk < A0. So, cl(P ) < A, and hence RA 4 conv{Rcl(P ) : P ∈ P ∗
k }. Therefore, A∗ ⊂ B∗.

Last, for any P = (B0, . . . , Bk) ∈ P∗
k , if cl(P ) is a cycle, then Rcl(P ) ∈ Rk. When k = 1, cl(P ) must be a

cycle. When k > 1, if cl(P ) is not a cycle, it can be decomposed into multiple cycles, each of which is of length

strictly less than k. Hence, Rcl(P ) ∈ Rk−1 ⊂ Rk. The proof is completed by B∗ ⊂ dom(Rk) = Rk where the

equality follows from Lemma 8.

C. An Incremental Approach for Rate Region

We are motivated to study the calculation of Rk due to it’s relation to the rate region. Based on Theorem 8, we

will derive an approach to calculate Rk using (M∗
L,M

∗
R, E

∗).
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As P∗
1 = E∗, according to Theorem 8, we have

R1 = dom conv{Rcl(P ) : P ∈ E
∗}. (13)

We can use an incremental approach to calculate Rk for k ≥ 2. Denote 1 as a column vector with all entries equal

to 1, where the length is known from the context. For A ∈M∗
L and B ∈M∗

R, let

W2(A,B) = max
<
{(B1 ∧ A2)1 : (A,B1), (A2, B) ∈ E∗}. (14)

For k ≥ 3, A ∈ M∗
L and B ∈ M∗

R, let

Wk(A,B) = max
<

⋃

B′∈M∗
R

(Wk−1(A,B
′) + {(B′ ∧ A′)1 : (A′, B) ∈ E∗}) , (15)

where the addition of two sets A + B is defined as {a + b : a ∈ A,b ∈ B}. The next theorem justifies the use

of Wk(A,B) to characterize the rate region Rk. The proof of this theorem will be provided at the end of this

subsection.

Theorem 9. Consider the step-T scheduling graph (MT , ET ). For k ≥ 1, we have Rk = dom conv R∗
1 ∪ R

∗
2 ∪

· · · ∪ R∗
k, where

R∗
1 =

1

T
max
<
{(A ∧B)1 : (A,B) ∈ E∗},

and for i ≥ 2

R∗
i =

1

iT
max
<

⋃

A∈M∗
L
,B∈M∗

R

(Wi(A,B) + {(A ∧B)1}) . (16)

Before presenting the proof of Theorem 9, we discuss the algorithms for calculatingWk(A,B) andR∗
k . According

to Theorem 9, using R∗
1, . . . ,R

∗
k, the vertex representation of the convex polytope Rk can be derived, which can

then be converted to the half-space representation [51].

1) Algorithm for Rate Region Calculation: Algorithm 2 provides the pseudocode for calculating Wk(A,B)

incrementally using (15), and Algorithm 3 provides the pseudocode for calculating R∗
k using the formula in

Theorem 9. These algorithms assume that (M∗
L,M

∗
R, E

∗) has already been calculated (as mentioned in Sec.V-A).

The explanations for these two algorithms are as follows. To simplify the notation, we write

Wk , (Wk(A,B), A ∈ M∗
L, B ∈ M

∗
R).

In Algorithm 2, three functions are provided: W2AB, WAB and MAXADD. The W2AB function calculates W2

using (14), and the WAB function calculates Wk from Wk−1 using (15). Line 7 and Line 16 call the function

MAXADD to add a vector u to a set S that contains all the existing maximal vectors. If u is dominated by some

vector in S, S remains unchanged. If some vectors in S are dominated by u, they are deleted from S, followed

by adding u to S.

The computation cost of WAB depends on the size of Wk(A,B). Let

Wk = max
A∈M∗

L
,B∈M∗

R

|Wk(A,B)|.
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Algorithm 2 The pseudocode for calculating Wk includes two functions: W2AB, which calculates W2, and WAB,

which calculates Wk from Wk−1 for any k > 2. Additionally, there is a helper function called MAXADD, which

is called by both W2AB and WAB to add an element to a set and output the maximal subset.

1: function W2AB

2: Input: M∗
L,M

∗
R, E

∗

3: Output: W2

4: for each A ∈ M∗
L and B ∈ M∗

R do

5: W2(A,B)← ∅

6: for each B1 s.t. (A,B1) ∈ E∗ and A2 s.t. (A2, B) ∈ E∗ do

7: W2(A,B)← MAXADD(W2(A,B), (B1 ∧ A2)1)

8: return W2

9: function WAB

10: Input: Wk−1,M∗
L,M

∗
R, E

∗

11: Output: Wk

12: for each A ∈ M∗
L and B ∈ M∗

R do

13: Wk(A,B)← ∅

14: for each B′ ∈M∗
R and A′ ∈M∗

L s.t. (A′, B) ∈ E∗ do

15: for each r ∈ Wk−1(A,B
′) do

16: Wk(A,B)← MAXADD(Wk(A,B), r+ (B′ ∧ A′)1)

17: return Wk

18: function MAXADD

19: Input: a set S of maximal vectors, a vector u

20: Output: max< S ∪ {u}

21: for each r ∈ S do

22: if u 4 r then

23: return

24: if r 4 u then

25: S ← S \ {r}

26: S ← S ∪ {u}

27: return S

According to the definitions in (14) and (15), we have W2 ≤ |M
∗
L||M

∗
R|, and for k > 2, Wk ≤ |M

∗
L||M

∗
R|Wk−1.

The computation cost from Wk−1 to Wk using WAB can be estimated as

O(|M∗
L|

2|M∗
R|

2Wk−1(Wk + |L|T ))

integer and logical operations.
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In Algorithm 3, two functions are provided: RateRegion and CALRR. The RateRegion function takes an integer

kmax as input and calculates R∗
k for k = 1, 2, . . . , kmax as output. The function calls W2AB and WAB to obtainWk

for k = 2, . . . , kmax and then calculates R∗
k by calling CALRR on Wk, using the formula provided in Theorem 9.

The value of kmax has an impact on both the computation cost and the subset of the rate region obtained. The

computation cost of CALRR forWk is O(|M∗
L|

2|M∗
R|

2W 2
k ) integer and logic operations. Assuming Wk ≥ |L|T , the

overall computation cost of RateRegion is O(kmax|M∗
L|

2|M∗
R|

2W 2
kmax

). In the worst case, Wk grows exponentially

with k, and hence using a larger value of kmax may significantly increase the computation cost. However, using a

larger value of kmax allows for obtaining a larger subset of the rate region.

Furthermore, it is worth noting that as k increases, Rk converges to R(MT ,ET ). In other words, for sufficiently

large values of k, evaluating R∗
k does not result in an increase in the polytope Rk. Let k∗ denote the smallest

value of k such that Rk = R(MT ,ET ). An upper bound on k∗ is the largest cycle length in (MT , ET ), which is not

greater than |MT |. However, it is important to highlight that k∗ can be much smaller than the largest cycle length

in (MT , ET ). This will be demonstrated later, showing that the convergence can occur much earlier than expected

based on the largest cycle length.

2) Proof of Theorem 9: The following lemma gives an incremental approach to enumerate a superset of P∗
k

incrementally.

Lemma 9. For any k ≥ 2, P∗
k is a subset of

{(B0, . . . , Bk−2, Bk−1 ∧B′
k−1, Bk) : (B

′
k−1, Bk) ∈ E

∗,

(B0, . . . , Bk−1) ∈ P
∗
k−1}.

Proof: For any (A0, A1, . . . , Ak) ∈ P∗
k , there exist (B0, B1, . . . , Bk−1) ∈ P∗

k−1 and (B′
k−1, Bk) ∈ E∗ such

that

(B0, B1, . . . , Bk−1) < (A0, A1, . . . , Ak−1),

(B′
k−1, Bk) < (Ak−1, Ak).

We see (B0, . . . , Bk−2, Bk−1 ∧ B′
k−1, Bk) is a path of length k and dominates (A0, A1, . . . , Ak). As the latter is

maximal, we further have Bi = Ai for i = 0, 1, . . . , k − 2, k and Bk−1 ∧B′
k−1 = Ak−1.

Let H1 = E∗. For k ≥ 2, let

Hk = {(A1, B1 ∧ A2, . . . , Bk−1 ∧Ak, Bk) : (Ai, Bi) ∈ E
∗, i = 1, . . . , k}.

Lemma 10. For k ≥ 1, each element of Hk is a path in (MT , ET ), and P∗
k ⊂ Hk. Moreover, for k ≥ 1,

Rk = dom conv{Rcl(P ) : P ∈ ∪
k
i=1Hi}.
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Algorithm 3 The pseudocode for calculating R∗
k for k = 1, 2, . . . , kmax includes two functions: RateRegion and

CALRR. The RateRegion function calculates R∗
k for k = 1, 2, . . . , kmax, while the CALRR function is called by

RateRegion to calculate R∗
i using Wi.

1: function RATEREGION

2: Input: (M∗
L,M

∗
R, E

∗), integer kmax

3: Output: (R∗
k, k = 2, . . . , kmax)

4: R∗
1 ← ∅

5: for each A ∈ M∗
L and B ∈ M∗

R s.t. (A,B) ∈ E∗ do

6: R∗
1 ← MAXADD(R∗

1, 1
T (B ∧ A)1)

7: W2 ← W2AB(M∗
L,M

∗
R, E

∗)

8: R∗
2 ←

1
2T CALRR(W2,M∗

L,M
∗
R)

9: for k from 3 to kmax do

10: Wk ← WAB(Wk−1,M∗
L,M

∗
R, E

∗)

11: R∗
k ←

1
Tk CALRR(Wk,M∗

L,M
∗
R)

12: return (R∗
k, k = 1, 2, . . . , kmax)

13: function CALRR

14: Input: Wk, M∗
L, M∗

R

15: Output: R̃k

16: R̃k ← ∅

17: for each A ∈ M∗
L and B ∈ M∗

R do

18: for each r ∈ Wk(A,B) do

19: R̃k ← MAXADD(R̃k, r+ (B ∧ A)1)

20: return R̃k

Proof: If (A0, A1, . . . , Ak) ∈ Hk, then (Ai−1, Ai) ∈ ET , i = 1, . . . , k. Hence, each element of Hk is a path

in (MT , ET ). The lemma holds directly when k = 1. Now we consider k ≥ 2. By Lemma 9, P∗
2 ⊂ H2. As

Hk = {(B0, . . . , Bk−2, Bk−1 ∧B′
k−1, Bk) :

(B′
k−1, Bk) ∈ E

∗, (B0, . . . , Bk−1) ∈ Hk−1},

by induction, P∗
k ⊂ Hk. By Theorem 8,

Rk = dom conv{Rcl(P ) : P ∈ ∪
k
i=1P

∗
i }

⊂ dom conv{Rcl(P ) : P ∈ ∪
k
i=1Hi}.

For any P ∈ ∪ki=1Hi, cl(P ) is a cycle of length at most k, and hence Rcl(P ) ∈ dom conv{RC : C ∈ ∪ki=1C
∗
i } = Rk.

The proof is complete.

Now we are ready to prove Theorem 9.
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Proof Theorem 9: The case for k = 1 is proved by (13). We first prove by induction that for k ≥ 2, for any

(A1, B1), . . . , (Ak, Bk) ∈ E∗,
k−1∑

i=1

(Bi ∧Ai+1)1 ∈ dom Wk(A1, Bk). (17)

First, (17) holds when k = 2 by the definition of W2(A,B) in (14). For k ≥ 3, suppose (17) holds for k− 1. Then

for any (A1, B1), . . . , (Ak, Bk) ∈ E∗,

k−1∑

i=1

(Bi ∧ Ai+1)1 =

k−2∑

i=1

(Bi ∧ Ai+1)1+ (Bk−1 ∧Ak)1

∈ dom Rk−1(A1, Bk−1) + (Bk−1 ∧ Ak)1

∈ dom Wk(A1, Bk).

Let

R̃k = {Rcl(P ) : P ∈ Hk}.

By Lemma 10, Rk = dom conv(∪ki=1R̃i) for k ≥ 1. As R1 = R̃1, the theorem is proved if we can show that for

k ≥ 2,

dom R̃k = dom R∗
k =

1

Tk
dom

⋃

A∈M∗
L
,B∈M∗

R

(Rk(A,B) + (A ∧B)1) .

For each R ∈ R̃k , there exists (A1, B1), . . . , (Ak, Bk) ∈ E∗ such that

TkR = (A1 ∧Bk)1+

k−1∑

i=1

(Bi ∧ Ai+1)1.

By (17),
∑k−1

i=1 (Bi∧Ai+1)1 ∈ domWk(A1, Bk), and hence R ∈ 1
Tkdom(Wk(A1, Bk)+ (A1 ∧Bk)1) = dom R∗

k.

Fix A ∈M∗
L and B ∈M∗

R. For R ∈ Rk(A,B), there exist A2 . . . , Ak ∈ M∗
L, B1, . . . , Bk−1 ∈ M∗

R such that

(A,B1), (A2, B2), . . . , (Ak−1, Bk−1), (Ak, B) ∈ E∗ and R =
∑k−1

i=1 (Bi ∧ Ai+1)1. Hence, 1
Tk (R + (A ∧ B)1) =

1
Tk

(∑k−1
i=1 (Bi ∧ Ai+1)1+ (A ∧B)1

)
∈ R̃k.

D. Reduced Scheduling Graph

Now, we provide an alternative representation of the dominance property. By utilizing (M∗
L,M

∗
R, E

∗), we will

derive a subgraph of (MT , ET ) and demonstrate that this subgraph can fulfill the same role as (MT , ET ) in

characterizing the scheduling rate region. Let

V = {B ∧B′ : B ∈M∗
R, B

′ ∈M∗
L},

F = {(B1 ∧ A2, B2 ∧ A3) : B1 ∈ M
∗
R, (A2, B2) ∈ E

∗, A3 ∈ M
∗
L}.

The pair (V ,F) forms a directed graph that serves as a subgraph of (MT , ET ).

In Table III, we evaluate the sizes of M1, E1,V ,F for the line network N line
L,2. The following example illustrates

a network with |MT | and |ET | of exponential functions of the number of links, while V and F have a constant

size.
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TABLE III

EVALUATIONS OF SIZES OF (M1, E1) AND (V ,F) FOR THE LINE NETWORK WITH THE 2-HOP COLLISION MODEL N LINE

L,2 .

L 4 5 6 7 8 9 10 11

|M1| 9 15 25 40 64 104 169 273

|E1| 49 121 304 676 1480 3481 8245 18769

|V| 9 9 16 30 49 72 100 156

|F| 49 49 120 324 800 1681 3074 6241

Example 10 (Single collision network). Consider a network of L links with the link set L = {l1, . . . , lL} and a

binary collision model, where I(l1) = {l2} and I(li) = ∅ for i > 1. The delay matrix DL has DL(l1, l2) = 1. We

denote this network as N 1-c
L , which has the character D∗ = 1. The scheduling graph (M1, E1) of this network has

M1 = {0, 1}L. For A,B ∈ M1, (A,B) ∈ E1 if either i) A(l1) = 0 or ii) A(l1) = 1 and B(l2) = 0. Therefore,

|M1| = 2L and |E1| = 22L−1 + 22L−2, which increases exponentially with L. The reduced representation of

(M1, E1) has

E∗ = {(1,v2), (v1,1)} ,

where 1 is the all-1 vector of L entries, v1 and v2 are obtained from 1 by setting the first and second entry to 0,

respectively. Further M∗
L = {v1,1} and M∗

R = {v2,1}. Let’s calculate (V ,F) for the single collision network

N 1-c
L . First, V = {1,v1,v2,v1 ∧ v2}. Then, F = {(v1,v1), (v1,1), (1,v1 ∧ v2), (1,v2), (v1 ∧ v2,v1), (v1 ∧

v2,1), (v2,v1∧v2), (v2,v2)}. We see that though the size of the scheduling graph (M1, E1) of N 1-c
L is exponential

in L, (V ,F) has a constant size.

The graph (V ,F), called the reduced scheduling graph, captures the essential connections and relationships from

(MT , ET ). It is worth noting that a cycle in (V ,F) is also a cycle in (MT , ET ). However, it is not necessarily true

that a cycle in (MT , ET ) is dominated by a cycle in (V ,F). The following theorem demonstrates the possibility

of characterizing the scheduling rate region using cycles in (V ,F).

Theorem 10. For a scheduling graph (MT , ET ), for k ≥ 1,

Rk = dom conv{RC : C is a length-i cycle in (V ,F), i ≤ k}.

Therefore, Rk = R(MT ,ET ) when k is the largest cycle length in (V ,F).

Proof: To simplify the notation, let

Ak = dom conv{RC : C is a length-i cycle in (V ,F), i ≤ k}.

Consider a length-k cycle V = (V0, V1, . . . , Vk−1, Vk = V0) of (V ,F). There exist (Ai, Bi) ∈ E∗ such that

(Ai, Bi) < (Vi−1, Vi) for i = 1, . . . , k. As P , (A1, B1 ∧ A2, . . . , Bk−1 ∧ Ak, Bk) < V and P ∈ Hk, we have

RV 4 Rcl(P ) ∈ Rk , where the inclusion follows from Lemma 10. Hence Ak ⊂ Rk .
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We prove by induction that Rk ⊂ Ak . First, R1 ⊂ A1 as E∗ ⊂ F . For k ≥ 2, assume that Rk−1 ⊂ Ak−1. For

each P ∈ Hk, cl(P ) is a closed path in (V ,F). If cl(P ) is a cycle, then Rcl(P ) ∈ Ak by the definition of Hk

and F . If cl(P ) is not a cycle, then it can be decomposed into multiple cycles of length strictly less than k. Then

Rcl(P ) ∈ Rk−1 ⊂ Ak−1 ⊂ Ak by induction. Hence for both cases, Rcl(P ) ∈ Ak. Last, by Lemma 10, Rk ⊂ Ak.

Theorem 10 shows that the largest cycle length in (V ,F) is a sufficient value of k such that Rk = R(MT ,ET ), and

this length is shorter than the largest cycle length in (MT , ET ). Consequently, (V ,F) can be used for calculating

the scheduling rate region with reduced computational complexity compared to using (MT , ET ). The complete

rate region can be obtained by employing Johnson’s algorithm [31] to enumerate cycles in (V ,F). To calculate the

subset of the rate region Rk, one can enumerate cycles in (V ,F) up to length k. In the following subsection, we

compare these approaches for calculating Rk with Algorithm 3.

E. Numerical Evaluation

We compare the different approaches for calculating the scheduling rate region by numerical evaluations on the

networks N line
L,2 for L = 4 to 11. Since each network has D∗ = 1, the only scheduling graph is (M1, E1). There

are two main scenarios in the numerical evaluation:

1) Calculating the entire scheduling rate region by enumerating cycles:

• SR-1: Enumerate cycles in in original scheduling graph (M1, E1).

• SR-2: Enumerate cycles in the reduced scheduling graph (V ,F).

2) Calculating a subset of the rate region Rk:

• Rk-1: Enumerate cycles up to length k in the original scheduling graph (M1, E1).

• Rk-2: Enumerate cycles up to length k in the reduced scheduling graph (V ,F).

• Rk-3: Use Algorithm 3 to calculate Rk.

All the approaches use N line
L,2 as the input. The operations of these approaches are summarized as follows:

• SR-1:

1) Evaluate M∗
2 using the Bron–Kerbosch algorithm with vertex pivoting [42]–[45].

2) Generate (M1, E1) using Algorithm 1.

3) Enumerate cycles of (M1, E1) using Johnson’s algorithm [31].

• SR-2:

1) Evaluate M∗
2 using the Bron–Kerbosch algorithm with vertex pivoting.

2) Generate (M∗
L,M

∗
R, E

∗) from M∗
2.

3) Generate (V ,F) from (M∗
L,M

∗
R, E

∗).

4) Enumerate cycles of (V ,F) using Johnson’s algorithm.

• Rk-1:

1) Evaluate M∗
2 using the Bron–Kerbosch algorithm with vertex pivoting.

2) Generate (M1, E1) using Algorithm 1.
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3) Enumerate cycles of (M1, E1) up to length 4.

• Rk-2:

1) Evaluate M∗
2 using the Bron–Kerbosch algorithm with vertex pivoting.

2) Generate (M∗
L,M

∗
R, E

∗) from M∗
2.

3) Generate (V ,F) from (M∗
L,M

∗
R, E

∗).

4) Enumerate cycles of (V ,F) up to length 4.

• Rk-3:

1) Evaluate M∗
2 using the Bron–Kerbosch algorithm with vertex pivoting.

2) Generate (M∗
L,M

∗
R, E

∗) from M∗
2.

3) Execute RateRegion in Algorithm 3 with kmax = 4.

In our evaluation, we implemented all these approaches using the Julia programming language. Johnson’s

algorithm and the algorithm for enumerating cycles up to a certain length were obtained from the Julia Graphs

package [52]. To measure the execution time accurately, we utilized the Julia BenchmarkTools package [53], which

runs a function multiple times to obtain a more stable estimate of the running time. Table IV presents a comparison

of the execution times for these approaches. Based on our evaluation, we have made the following observations:

When calculating the entire rate region by enumerating all the cycles, SR-2 proves to be more efficient than

SR-1. However, the computational costs of both approaches increase rapidly as the network length L increases. As

a result, when L reaches 6 for SR-1 and 7 for SR-2, the memory requirements become substantial, causing the

program to crash on our computer. As a result, we were unable to obtain the running time for larger networks using

these two approaches. This limitation highlights the challenge of enumerating all the cycles in larger networks, as

the computational and memory requirements become increasingly demanding.

All three approaches, Rk-1, Rk-2, and Rk-3, are capable of calculating R4 for networks with L = 11. Among

these approaches, Rk-2 is more efficient than Rk-1 for all the considered networks. While Rk-2 outperforms Rk-3

for smaller networks, the advantage of Rk-3 becomes evident as the network size increases. It is worth noting that

when compared to Johnson’s algorithm for enumerating all cycles, enumerating cycles up to a certain length tends

to be slower when the length is relatively large [41]. This is the case for N line
4,2 , where SR-1 is faster than Rk-1.

In conclusion, we would like to remark that R4 serves as the rate region, although we did not provide a formal

proof in this paper. If evaluated, it would become apparent that R4 = R5 = R6 = · · · . However, relying solely

on evaluating up to R|V| is not a feasible method to prove the rate region, as it would be impractical for larger

networks. In another work, we have demonstrated that R4 aligns with an upper bound on the rate region of N line
L,2,

obtained by leveraging a graphical property of the periodic graph associated with the network.

VI. ALGORITHMS FOR MAXIMIZING A LINEAR FUNCTION OF RATE VECTORS

In this section, our focus is on maximizing a linear function of rate vectors. This problem arises in network utility

maximization, where the goal is to find a scheduling rate vector that maximizes a weighted sum (see, e.g., [21],

[22]). For instance, one common objective is to maximize the sum rate of all the links in the network. While it is
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TABLE IV

COMPARISON OF THREE METHODS FOR CALCULATING THE RATE REGION OF N LINE

L,2 . ALL THE METHODS ARE IMPLEMENTED IN JULIA,

AND EXECUTED ON A COMPUTER WITH A 2.3 GHZ QUAD-CORE CPU, 8 GB MEMORY AND JULIA 1.9.2.

Approach N line
4,2 N line

5,2 N line
6,2 N line

7,2 N line
8,2 N line

9,2 N line
10,2 N line

11,2

SR-1 0.928 ms 5.538 s - - - - - -

SR-2 0.765 ms 0.765 ms 15.06 s - - - - -

Rk-1 0.981 ms 4.321 ms 21.38 ms 131.5 ms 794.1 ms 3.518 s 13.16 s 49.952 s

Rk-2 0.685 ms 0.857 ms 2.850 ms 15.93 ms 127.6 ms 466.7 ms 2.939 s 8.462 s

Rk-3 1.242 ms 1.388 ms 5.976 ms 22.79 ms 101.6 ms 246.8 ms 1.002 s 3.204 s

technically possible to solve the maximization problem given the rate region, as we discussed earlier, evaluating

the rate region can be challenging. To address this issue, we propose an algorithm that maximizes a linear function

without explicitly calculating the rate region. This approach allows us to find an optimal scheduling rate vector

without relying on the explicit determination of the rate region.

Previous works have considered this optimization problem for scheduling with delays [5], [6]. However, these

works provide only approximate solutions to the optimization problem. They treat the step-1 scheduling graph

(MT , ET,1) as a state transition graph and employ a dynamic programming approach similar to the Viterbi algorithm

to optimize the state sequence. Their objective is to find an optimal path (not cycle) of a given length k in the step-1

scheduling graph. In other words, they find the optimal rate vector in R̃NT+k

, which is not necessarily equal to

RN even when k = |MT |. However, as k tends to infinity, R̃NT+k

converges to RN (as discussed in Sec. III-C).

In this section, we propose an approach to accurately compute the optimal value of a linear function on the

rate vectors using the step-T scheduling graph (MT , ET ) and the dominance property in Sec. V-A. Our algorithm

identifies an optimal cycle of a given length k in (MT , ET ) and has a computation cost that is linear in k.

A. Problem Formulation and Simplification

Consider a network N = (L, I, DL), and a linear function f : R|L| → R. In (12), we defined Rk, which is the

subset of the rate region generated by the cycles up to length k in the step-T scheduling graph (MT , ET ). In this

context, we study how to calculate the optimal value maxR∈Rk
f(R) and identify a periodic schedule that achieves

this optimal value.

As f is linear, we can express it as f(R) =
∑

l∈L clR(l), where cl represents fixed linear combination coefficients.

For our analysis, we will specifically focus on maximizing a linear function f in which all the coefficients cl are

positive. For linear functions with a mixture of positive and negative coefficients, the problem can be transformed

into an equivalent problem with only positive coefficients, as discussed below.

Consider a linear function f with a coefficient cl0 ≤ 0. If R∗ ∈ Rk maximizes f(R), then the rate vector obtained

by setting R∗(l0) to 0 (which is also in Rk due to Lemma 8) is also optimal. This is because inactivating link l0

generates no collision with other links. Therefore, we can reduce the problem by removing link l0 as follows: First

let (L′, I ′) be the directed graph or hypergraph obtained by removing l0 from (L, I). In other words, L′ = L\{l0}
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and for l 6= l0, I ′(l) is obtained by excluding all θ ∈ I(l) with l0 ∈ θ. Second, let DL′ be the submatrix of

DL obtained by removing the row and the column indexed by l0. Last, define f ′(R) =
∑

l∈L′ clR(l). The new

optimization problem is to maximize f ′ for the network N ′ , (L′, I ′, DL′). By repeating this procedure, we can

continue removing links with negative coefficients until f ′ consists only of positive coefficients.

B. An Incremental Approach for Optimizing a Linear Function

Theorem 9 provides an approach for maximizing a linear function f : R|L| → R with positive coefficients. Specifi-

cally, since f(R1) ≥ f(R2) for any R1 < R2 ∈ R|L|, we know that maxR∈Rk
f(R) = maxi=1,...,k maxR∈R∗

k
f(R).

However, the complexity of this algorithm, however, can be exponential in k due to the size of Wk(A,B). If we

are only interested in the optimal value of f , we can simplify the algorithm by replacing the set Wk(A,B) with a

real value.

Define

U∗
1 = max

R∈R1

f(R) = max
P∈E∗

f(Rcl(P )),

where the second equality follows from (13). For A ∈M∗
L and B ∈M∗

R, define

U2(A,B) = max{f((B1 ∧A2)1) : (A,B1), (A2, B) ∈ E∗}, (18)

and for k ≥ 3, define

Uk(A,B) = max{Uk−1(A,B
′) + f((B′ ∧ A′)1) : (A′, B) ∈ E∗, B′ ∈M∗

R}. (19)

The next theorem gives an incremental algorithm for optimization a linear function over Rk.

Theorem 11. Let f : R|L| → R be a linear function with positive linear combination coefficients. For k ≥ 1,

maxR∈Rk
f(R) = max{U∗

1 , U
∗
2 , . . . , U

∗
k}, where for i ≥ 2,

U∗
i =

1

iT
max

A∈M∗
L,B∈M∗

R

Ui(A,B) + f((A ∧B)1). (20)

Proof: As the linear combination coefficients in U are non-negative, by Theorem 9,

max
R∈Rk

f(R) = max

{
max
R∈R∗

1

f(R) = U∗
1 , max

R∈R∗
i

f(R), i = 2, . . . , k

}
,

where for i ≥ 2,

max
R∈R∗

i

f(R) =
1

iT
max

R∈
⋃

A∈M∗
L

,B∈M∗
R
(Ri(A,B)+(A∧B)1)

f(R)

=
1

iT
max

A∈M∗
L
,B∈M∗

R

max
R∈Wi(A,B)

f(R) + f((A ∧B)1).

We show that maxR∈Wi(A,B) f(R) = Ui(A,B) for i ≥ 2 by induction. First, by the definition in (14) and (18),

U2(A,B) = maxR∈W2(A,B) f(R). For i > 2, assume that maxR∈Ri−1(A,B) f(R) = Ui−1(A,B). By the definition

in (15),

max
R∈Wi(A,B)

f(R) = max
B′∈M∗

R

max
A′:(A′,B)∈E∗

max
R∈Ri−1(A,B′)

f(R) + f((B′ ∧ A′)1)

= max
B′∈M∗

R

max
A′:(A′,B)∈E∗

Uk−1(A,B
′) + f((B′ ∧A′)1)

= Uk(A,B).
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The proof is completed by maxR∈R∗
i
f(R) = U∗

i .

In the subsequent subsections, algorithms are presented for computing the optimal value of the linear function

f(R) as well as identifying a cycle that attains this optimal value.

C. Algorithm for Optimal Value

Algorithm 4 provides the pseudocode for calculating Uk, and Algorithm 5 provides the pseudocode for determining

the optimal value of f(R) in Rk . The structure of Algorithm 4 and Algorithm 5 remains similar to that of

Algorithm 2 and Algorithm 3, respectively. The main difference lies in the computation of Uk(A,B) instead of

Wk(A,B).

Algorithm 4 and Algorithm 5 assume that (M∗
L,M

∗
R, E

∗) has already been calculated (see Sec.V-A). These two

algorithms are described below. To simplify the notation, we denote

Uk = (Uk(A,B), A ∈ M∗
L, B ∈M

∗
R).

In Algorithm 4, two functions are provided: U2AB and UAB. The U2AB function calculates U2 using (18),

while the UAB function calculates Uk from Uk−1 using (19). The computation cost of both U2AB and UAB is

O(|M∗
L|

2|M∗
R|

2|L|T ), accounting for the integer and logical operations involved in the calculation.

In Algorithm 5, two functions are provided: OptimalRate and UStar. The OptimalRate function takes an integer

kmax as the input, and calculates U∗
k for k = 1, 2, . . . , kmax as the output. The OptimalRate function calls U2AB

and UAB to obtain Uk for k = 2, . . . , kmax and then calculates U∗
k by calling UStar on Uk, applying the formula

in Theorem 11. The computation cost of UStar for U∗
k is O(|M∗

L||M
∗
R||L|T ) floating point operations. The overall

computation cost of OptimalRate is O(kmax|M∗
L|

2|M∗
R|

2|L|T ). To get the optimal value over the entire rate region,

it is sufficient to use kmax = |M∗
L||M

∗
R|, so that the computational complexity is O(|M∗

L|
3|M∗

R|
3|L|T ).

D. Algorithm for Optimizer

In addition to determining the optimal value U∗
k , it is also essential to identify the optimizer, which refers to the

cycle that achieves the optimal value. Such a cycle can be utilized to construct an optimal periodic schedule.

Assume that U∗
k and the Uk are already calculated for k = 1, . . . , kmax, which can be done by Algorithm 4 and

Algorithm 5. First, the optimizer of U∗
1 can be find by enumerating all elements P in E∗ until we find P such that

f(Rcl(P )) = U∗
1 .

The case with k ≥ 2 can be solved using backward searching. Enumerate A1 ∈ M∗
L and Bk ∈ M∗

R until we

find A1 and Bk such that

U∗
k = Uk(A1, Bk) + f((A1 ∧Bk)1).

The existence of such A1 and Bk is guaranteed by the definition of U∗
k (see (20)). Then for i = k, k − 1, . . . , 3,

enumerate Ai ∈M∗
L and Bi−1 ∈ M∗

R until we find Ai and Bi−1 such that (Ai, Bi) ∈ E∗ and

Ui(A1, Bi) = Ui−1(A1, Bi−1) + f((Bi−1 ∧Ai)1).
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Algorithm 4 The pseudocode for calculating Uk consists of two functions: U2AB and UAB. The function U2AB

is responsible for computing U2, while the function UAB is used to calculate Uk from Uk−1, and this process is

applicable for any value of k ≥ 2.

1: function U2AB

2: Input: M∗
L,M

∗
R, E

∗

3: Output: U2

4: for each A ∈ M∗
L and B ∈ M∗

R do

5: U2(A,B)← 0

6: for each B1 s.t. (A,B1) ∈ E∗ and A2 s.t. (A2, B) ∈ E∗ do

7: R = f((B1 ∧ A2)1)

8: if R > U2(A,B) then

9: U2(A,B)← R

10: return U2

11: function UAB

12: Input: Uk−1,M∗
L,M

∗
R, E

∗

13: Output: Uk

14: for each A ∈ M∗
L and B ∈ M∗

R do

15: Uk(A,B)← 0

16: for each B′ ∈M∗
R and A′ ∈M∗

L s.t. (A′, B) ∈ E∗ do

17: R = Uk−1(A,B
′) + f((B′ ∧ A′)1)

18: if R > Uk(A,B) then

19: Uk(A,B)← R

20: return Uk

The existence of such Ai and Bi−1 is guaranteed by the definition of Ui(A,B) (see (19)). Last, enumerate B1 ∈ M∗
R

and A2 ∈M∗
L such that (A1, B1), (A2, B2) ∈ E∗ and

U2(A1, B2) = f((B1 ∧ A2)1).

The existence of such A2 and B1 is guaranteed by the definition of U2(A,B) (see (18)).

According to the above construction, (A1, B1), . . . , (Ak, Bk) ∈ E∗ and

U∗
k = f((A1 ∧Bk)1) +

k∑

i=3

f((Bi−1 ∧Ai)1) + f((B1 ∧ A2)1).

Therefore, (B1 ∧ A2, B2 ∧ A3, . . . , Bk−1 ∧ Ak, Bk ∧ A1, B1 ∧ A2) is a k-cycle in (MT , ET ) that achieves the

optimal value U∗
k .

We give the pseudocode of this backward searching algorithm in Algorithm 6, where a function called Optimal-

Cycle is provided. The whole procedure is as follows:



44

Algorithm 5 The pseudocode for calculating U∗
k for k = 1, 2, . . . , kmax consists of two functions: OptimalRate and

UStar. The OptimalRate function is responsible for determining the optimal rate f(R), while the UStar function is

called by OptimalRate to calculate U∗
i from Ui.

1: function OPTIMALRATE

2: Input: f , (M∗
L,M

∗
R, E

∗) and integer kmax

3: Output: maxR∈Rk
f(R), k = 2, . . . , kmax

4: U∗
1 ← 0

5: for each A ∈ M∗
L and B ∈ M∗

R s.t. (A,B) ∈ E∗ do

6: R← 1
T (B ∧ A)1

7: if R > U∗
1 then

8: U∗
1 ← R

9: U2 ← U2AB(M∗
L,M

∗
R, E

∗)

10: U∗
2 ← UStar(U2,M∗

L,M
∗
R, 2)

11: for k from 3 to kmax do

12: Uk ← UAB(Uk−1, (M∗
L,M

∗
R, E

∗))

13: U∗
k ← UStar(Uk,M∗

L,M
∗
R, k)

14: return U∗
k , k = 2, . . . , kmax

15: function USTAR

16: Input: Uk, M∗
L, M∗

R, k

17: Output: maxR∈Rk
f(R)

18: U∗
k ← 0

19: for each A ∈ M∗
L and B ∈ M∗

R do

20: R = 1
kT (Uk(A,B) + f((A ∧B)1))

21: if R > U∗
k then

22: U∗
k ← R

return U∗
k

1) Calculate U∗
k and the Uk for k = 1, . . . , kmax by Algorithm 4 and Algorithm 5.

2) Determine k∗ such that U∗
k∗ = maxk=1,...,kmax

U∗
k .

3) Execute the OptimalCycle function to identify an optimizer for U∗
k∗ .

The extra computation cost of OptimalCycle is O(k∗|M∗
L||M

∗
R||L|T ).

VII. CONCLUDING REMARKS

This work introduces a graphical framework for wireless network scheduling with discrete signal propagation

delays. It extends the existing independent set-based scheduling framework, commonly used in traditional scheduling

with guard intervals to prevent collisions. To gain a better understanding of the advantages and the feasibility of

scheduling with delays in the real world, several further research directions can be explored:
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Algorithm 6 The pseudocode for identifying a cycle that achieves U∗
k where k ≥ 2. The values of Ui, i = 2, . . . , k

are known. The output is a cycle C such that U∗
k = f(RC).

1: function OPTIMALCYCLE

2: Input: U∗
k , k

3: Output: C = (C1, . . . , Ck, C1)

4: for each A ∈ M∗
L and B ∈ M∗

R do

5: if Uk(A,B) + f(A ∧B)1) = U∗
k then

6: A1 ← A, Bk ← B

7: Ck ← Bk ∧ A1

8: break

9: for i from k down to 3 do

10: for each A s.t. (A,Bi) ∈ E∗ and B ∈M∗
R do

11: if Ui−1(A1, B) + f(B ∧ A)1) = Ui(A1, Bi) then

12: Ai ← A, Bi−1 ← B

13: Ci−1 ← Bi−1 ∧ Ai

14: break

15: for each A and B s.t. (A,B2), (A1, B) ∈ E∗ do

16: if f(A ∧B)1) = U2(A1, B2) then

17: A2 ← A, B1 ← B

18: C1 ← B1 ∧ A2

19: break

20: return (C1, . . . , Ck, C1)

1) Outer bounds on the scheduling rate region: Due to the high computational cost involved in calculating the

complete scheduling rate region, it may only be feasible to compute a subset of it in practical cases. Evaluating

the quality of the computed subset can be facilitated by establishing an outer bound on the rate region.

2) Practical scheduling approaches: The algorithms proposed in this paper make ideal assumptions, such as

assuming synchronization of all network nodes to a common clock and having complete and accurate delay and

collision information. Further research is needed to relax these assumptions and develop practical scheduling

approaches that can handle real-world network scenarios.

3) Network flow control: The presented framework opens up possibilities for systematically studying end-to-end

communication flows in wireless networks with delays. Scheduling with delays should be jointly optimized

with routing and congestion control mechanisms to ensure efficient and reliable network operation.

4) Real-world demonstrations: Conducting practical experiments and demonstrations can help assess the perfor-

mance and practical advantages of such scheduling techniques in real-world wireless network environments.

This includes evaluating the impact on throughput, latency, energy efficiency, and overall system performance.
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APPENDIX

PHYSICAL NETWORK MODEL

We introduce a physical model of wireless networks in [30], and discuss how to apply the results for our network

model to the physical model. We denote this physical network model as N phy, which has the N nodes that share

the same communication channel of bandwidth W . Denote by Pi the transmitting power of node i, and by hij

the channel gain from the node i to the node j, where 1 ≤ i 6= j ≤ N . So when the node i transmits, the node

j can receive the signal power hijPi. Denote by Rcode
ij the coding rate from the node i to the node j, where

1 ≤ i 6= j ≤ N . Here we assume hij , Rcode
ij and Pi do not change over time.

Based on the physical model N phy, we can derive a network model N in Sec. II-A. The link set L = {lij ,

(i, j) : Rcode
ij > 0}. For any lij ∈ L and θ ⊂ L, we say θ is in the collision set I(lij) if

1

2
log (1 + SINR) ≤ Rcode

ij ,

where the signal-to-interference-and-noise ratio SINR =
hijPi∑

l∈θ hslj
Psl

+N0W
, and N0 is the power spectral density

of the white noise process. N phy and N share the same delay matrix.

If a collision-free schedule S of N is applied to N phy, for each link (i, j) ∈ L, rate Rcode
ij can be achieved for

any active timeslot. Hence, we obtain an achievable rate vector (Rij , 1 ≤ i 6= j ≤ N) for N phy, where

Rij =





Rcode
ij RN

S (lij), lij ∈ L,

0, otherwise.

Therefore, the rate region of N induces an achievable rate region of N phy.
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