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A Palm Calculus Approach to the Distribution of
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Abstract—A key metric to express the timeliness of status
updates in latency-sensitive networked systems is the age of
information (AoI), i.e., the time elapsed since the generation
of the last received informative status message. This metric
allows studying a number of applications including updates of
sensory and control information in cyber-physical systems and
vehicular networks as well as, job and resource allocation in
cloud clusters. State-of-the-art approaches to analyzing the AoI
rely on queueing models that are composed of one or many
queuing systems endowed with service order, e.g., FIFO, LIFO,
or last-generated-first-out order. A major difficulty arising in
these analysis methods is capturing the AoI under message
reordering when the delivery is non-preemptive and non-FIFO,
i.e., when messages can overtake each other and the reception
of informative messages may obsolete some messages that are
underway. In this paper, we derive an exact formulation for
the distribution of AoI in non-preemptive, non-FIFO systems
where the main ingredients of our analysis are Palm calculus and
time inversion. Owing to the rationality of the Laplace-Stieltjes
transforms that are used in our approach, we obtain computable
exact expressions for the distribution of AoI.

I. INTRODUCTION

Cyber-physical systems (CPS) constitute a type of hybrid
system hat combines physical processes and computation [1].
Often, the considered physical process such as those arising
in chemical plants or platoons of automated vehicles are
controlled via feedback loops. Due to this sensor-computation-
actuator feedback loop, CPS are characterized by the mutual
interaction of the physical process, the software computation,
and essentially, the network.

While CPS encompass diverse key interactions worth accu-
rate modeling such as control correctness and concurrency we
are concerned in the following with the effort of characterizing
the timeliness of sensor data when received at the controller.
This is the first step to ensure that the actions taken by the con-
troller and hence executed by the actuator are based on fresh
information. A key metric to express this timeliness of sensor
data at the controller is the Age of Information (AoI) [2],
which has recently been a vivid object of study [3, 4]. AoI
is a semi-continuous function that denotes the age of the
sensor (sender) status at the controller (receiver). The status
age is hence best described by a jump-and-drift process that
grows linearly with time and jumps downwards at the time
points when informative messages arrive at the receiver. An
informative message is defined as a message containing an
update that was generated after the generation time point
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of the last received update at the controller. Now, the time
points at which messages arrive at the receiver, as well as
the timestamps contained in these messages, are random and
essentially dependent on the generation and transmission of
messages at the sender and at every network node on the path
from the sender to the receiver. Figure 2 shows a sketch of
this scenario where a newer message1 (m2) overtakes an older
message (m1). Note that the age at the receiver does not jump
downwards at the reception of the outdated message m1.

One research direction to optimize the timeliness of sensor
information in CPS is through advancing the state-of-the-art
physical layer techniques such as deterministically reserved
transmission time slots over all available frequencies as in low-
latency 5G network slices known as URLLC [5]. While this
eliminates contention on the wireless link in 5G, data packet
interactions and sporadic network congestion still occur on the
end-to-end path between the sensors and the controller.

Research on the topic of AoI has been characterized by the
analysis of mathematical models that capture the stochastic
process of the age at the receiver given a combination of ingre-
dients, i.e., (i) the process of data generation and transmission
at the source, (ii) a model of the network interactions such as
traffic scheduling and the variability of the link transmission
rate. The prevalent approach in many works on AoI is to
capture these ingredients in form of a queueing system (or a
series thereof) that naturally capture the former and models
the latter through the service process. In many works the
arrival process is often considered as a Poisson process for
tractability [6, 7] or as a periodic process to capture simple
sensor device implementations [8]. The variety of queueing
models ranges from simple M/M/1 queues with FIFO service
to preemptive Last-Generated, First-Served (LGFS) systems.
A remarkable difficulty of some AoI models is due to the
lack of FIFO service. Allowing messages to overtake each
other leads to considerable complexity as shown in the basic
example in Figure 2. A direct approach to model AoI systems
with non-FIFO service is presented in [9] using the Stochastic-
Hybrid-System (SHS) technique. This technique essentially
depends on the Fokker-Planck partial differential equation
(PDE) satisfied by the time-dependent probability density of
the AoI as shown in [3] and quickly becomes intractable. For
a comprehensive overview we point the reader to [10].

The key differences of this work to the works in [7, 10, 11]
are: (i) Instead of considering the time variant PDE of the
density of the age we reduce the problem to a simple model
where we are interested in the stationary distribution of the
age in a system where message overtaking is allowed. (ii)

1in terms of the generation time point
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Fig. 1: The sensory information is generated and immediately trans-
mitted in form of messages. These can overtake each other
on the network. Informative messages keep the total message
order at the receiver and reduce the age of the status infor-
mation at the receiver to their respective one way delay.

We obtain the distribution of the age using Palm calculus and
time inversion where we essentially require to know the joint
distribution of the age when a message arrives and the time
until the next message arrives. Note that the obtained inversion
formula applies to all types of arrivals in this model but we
apply it to the informative messages to obtain the age density
at the receiver. This model naturally captures the distribution
of functions of the age. (iii) Due to the used mathematical tools
our results only require stationarity of the underlying queuing
model, which is a Markov process on a discrete state space
and can thus be analyzed with elementary techniques. (iv) The
model considered in this paper is different from [7, 11] as we
consider a window flow controlled sender that injects at most
a fixed number of non-obsolete messages into the network
channel. We denote this model as M/M/Imax/I

∗
max.

Our contributions in this paper are summarized as follows:
• We use Palm calculus and time inversion to derive the

probability distribution of the age of information in a
stationary M/M/Imax/I

∗
max system.

• We calculate the Laplace-Stieltjes transform of the distri-
bution of the age at the arrival time points of informative
messages as well as at any point in time.

II. PROBLEM STATEMENT AND SYSTEM MODEL

We consider cyber-physical systems as depicted in Fig. 1
where sensors transmit status updates to a central control
and data acquisition function. We assume that timestamped
messages are transmitted at the sender according to some
parameterized stochastic process. When a message is gen-
erated, it obsoletes any previous message. However, every
message is subject to a one way delay and messages can
overtake each other. We say that a message is “informative”
if its timestamp was generated after the generation time of all
messages received so far. When a non informative message
arrives, it is of no use and is discarded.

We are interested in the age of information at the receiver,
Xt, which is formally defined as follows. Timestamped mes-
sages are generated at times {τi} and received at times {τ ′i}
respectively (with τi ≤ τ ′i ). Then

Xt = t− max
i:τ ′i≤t

τi (1)

The dynamic evolution of Xt is such that the age Xt increases
at rate 1 between arrival events; furthermore, when message i

Fig. 2: The age process Xt. Message mi is emitted at time τi and
received at time τ ′i . Observe that message m1 is overtaken by
message m2 hence the age process at the receiver does not
change when m1 arrives.

arrives, the value of Xt just after the arrival, namely Xτ+
i

, is

set to min
(
τ ′i − τi , Xτ−i

)
as seen in Figure 2.

We assume that messages are generated according to a
Poisson process of rate λ. The channel is modelled as a
number of independent parallel servers each serving at most
one message at a time with exponentially distributed service
times, i.e. the random variables τ ′i−τi are independent of each
other and of the arrival process {τi} and they are exponentially
distributed with same parameter µ. Furthermore, in order
to not overwhelm the channel the sender is window-flow-
controlled and allows only a fixed number of outstanding
informative messages Imax in the channel: arriving messages
are dropped if the number of outstanding informative messages
is equal to Imax. We assume that the sender knows the
number of informative messages in the channel (presumably
via some instantaneous reverse channel). We use the notation
M/M/Imax/I

∗
max for this queueing system, where the ∗

here means that the departure of a message flushes all older
messages out of the system.

In this paper we are interested in the stationary distribution
of the age Xt given the process parameters λ, µ and Imax.

The global notation used in the paper is recalled in Table I.

III. A PALM CALCULUS APPROACH TO THE AOI

A. The Underlying Queuing Model

First we consider a continuous time Markov jump process
{Zt}t≥0 that models the M/M/Imax/I

∗
max queue described in

the previous section. Let Zt represent the number of messages
underway from the sender to the receiver, for t ∈ R+, with
Zt ∈ E = {0, 1, ..., Imax}. Recall that, by our modelling
assumption, this counts only informative messages. At any
time t such that Zt = n > 0, and for i ∈ {1, ..., n} we call ith
message, the message with the ith smallest timestamp among
all messages present in the channel.

When the sender generates a new message at time t (which
occurs at constant rate λ), if Zt− < Imax then the message
is accepted in the channel and Zt is incremented by 1, i.e.
Zt+ = Zt− + 1; else, i.e. if Zt− = Imax, the message is
discarded and Zt is unchanged.

Consider now message departures from the channel. When-
ever Zt = n > 0 all n messages in the channel can leave the
channel with same rate µ, thus the rate of message departure
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TABLE I: Notation List

d̃n, d′n d̃n =
∑

n′ Qn,n′ , d′n =
∑

n′ Q
′
n,n′

f(x) PDF of age of information at received at an arbitrary
point in time;

f◦(x0, t1) Joint PDF of age of information x0 and time to wait
until next delivery of informative message, sampled
when an informative message arrives at receiver;

f◦A(x0) PDF of age of information sampled when an infor-
mative message arrives at receiver;

fn′,n Laplace-Stieltjes Transform of x0 7→ g◦(x0|n′, n)

f̃n Laplace-Stieltjes Transform of t1 7→ h(t1|n)

g◦(x0|n′, n) PDF of the age x0 just after an informative message
arrival given that the state of the Markov chain is
n′ just before the arrival of the informative message
and n just after the arrival;

h(t1|n) PDF of the time that will elapse from time t until the
next informative message arrives, given that Zt = n;

Imax Maximum number of messages in transit; messages
generated when Zt = Imax are discarded;

λ Rate of generation of messages;
µ Message transit time is exponential with rate µ;
N̄ =

∑Imax
i=1 ipi

pn Stationary probability of Zt

p◦
n′,n Probability that an arbitrary informative message

arrival happens at a transition (n′ → n) of the
Markov chain Zt

Qi,j , Q
′
i,j Rate of transition of Zt [resp. Zr

t ] from state i to
state j

Xt Age of information at receiver at time t;
Zt Number of messages in transit at time t;
Zr
t Time-reversed process derived from Zt

is nµ and all messages are equally likely to leave the channel.
Assume that a departure occurs at time t and Zt− = n > 0.
For i ∈ {1...n}, the probability that the departing message is
the ith message is 1

n . In this case, Zt is decremented by i,
i.e. Zt+ = Zt− − i; in other words, the transition n → n − i
occurs at rate µ for every i ∈ {1...n}.

Thus Zt is a continuous-time Markov chain with finite state
space E and with transition rates (Fig. 3):

Qi,i+1 = λ, i = 0...Imax − 1

Qi,j = µ, i = 1...Imax, 0 ≤ j ≤ i− 1

Qi,j = 0, otherwise. (2)

Observe that Zt can be regarded as the number of messages
in a FIFO queue with Poisson arrivals of rate λ and drained
using a batch service process. It is ergodic as the state space
is finite and fully connected.

Using the balance equation, the steady state probabilities pn
can be computed and are given by:

pn =



(n+1)λnµ
n+1∏
j=1

(λ+jµ)

for 0 ≤ n < Imax

λn
n∏
j=1

(λ+jµ)
for n = Imax

(3)

The derivation of (3) is given in appendix IX-A.
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Fig. 3: State transition diagram of the Markov chain Zt representing
the number of non-obsolete messages underway.
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Fig. 4: Our system model assumes that messages are transmitted
upon generation and take random iid one way delay to reach
the receiver. Hence the system model assumes for every
message an independent channel each with exponentially dis-
tributed service time with identical parameter µ. We assume a
network channel (as sketched in Fig. 1) that is constrained by
a finite number of informative messages under way denoted
by Imax. This assumption corresponds to a window flow
constrained sender with a maximum number of outstanding
informative messages Imax given a perfect reverse channel.

B. A Palm Calculus Approach

In the following we use Palm Calculus to compute the
stationary distribution of age. To this end, we assume that the
continuous time Markov chain Zt is in its unique stationary
regime, which, since it is ergodic, occurs in practice if the
system has been operating for a long time. With Palm calculus,
we are able to relate the stationary distribution of the age to
quantities that are computed for the Markov chain Zt.

Palm calculus [12, 13, 14] applies to a stationary point
process Tn (n ∈ Z) and an observable (random) process
Xt (t ∈ R) that are jointly stationary. Here we take for Tn
the sequence of times at which a departure occurs from the
M/M/Imax/I

∗
max queue Zt (i.e. when Zt is decremented,

which also corresponds to arrivals of informative messages
at the receiver). Since we assume Zt is in its stationary
regime, this point process is also stationary. In the context of
Palm calculus, it is customary to assume that the numbering
convention is such that T0 ≤ 0 < T1. The observable Xt is the
age of information at the receiver, as defined earlier. Note that
Xt can be computed in a deterministic way from the trajectory
Z(−∞,t] and is invariant with respect to change of time origins,
therefore it is jointly stationary with Zt, hence with Tn [14,
Section 7.2.1]. Also note that Palm calculus does not require
the point process to be Poisson (the arrival process is Poisson
by definition, but it can be seen that the departure process is
not).

We can now apply Palm’s inversion formula [14, Theorem
7.1], which states that, for any bounded, measurable test
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function ϕ we have

E [ϕ(Xt)] = λ̂E◦
[∫ T1

T0=0

ϕ(Xs)ds

]
(4)

In the above, E◦ stands for the Palm expectation, which is
the conditional expectation given that the point process has
a point at time 0 (i.e. given that there is a departure from
the M/M/Imax/I

∗
max queue at time 0)2. Also, under this

conditional expectation, T0 = 0 and T1 is the following
departure instant. Last, λ̂ is the intensity of the point process
of departures, which can be calculated from the Markov chain
as λ̂ =

∑
i ipiµ = µN̄ with the stationary expectation of Zt

denoted as N̄ :=
∑Imax

i=1 ipi.
Observe that obtaining E [ϕ(Xt)] for arbitrary ϕ is equiv-

alent to finding the stationary distribution of the age of
information at an arbitrary point in time. Applying these ideas
to the AoI gives the following theorem:

Theorem III.1. The stationary PDF of the age of information
at an arbitrary point in time, f(x), is given by

f(x) = λ̂

∫ ∞
x−x0

∫ x

0

f◦(x0, t1)dx0dt1 (5)

where f◦(x0, t1) denotes the joint PDF of the age x0 just
after an informative message arrival and of the time t1 that
will elapse until the next informative message arrives.

Note that f◦(x0, t1) is a Palm PDF, i.e. it corresponds to
observations made upon the arrival of an informative message.
Following the conventions in [12], we use a ◦ superscript to
denote a Palm PDF.

Proof: We apply Palm’s inversion formula (4). Next, note
that for 0 ≤ s ≤ T1 we have Xs = s+X0+ , therefore

E◦
[∫ T1

0

ϕ(Xs)ds

]
= E◦

[∫ T1

0

ϕ(s+X0+)ds

]
(6)

By definition of f◦(x0, t1), it follows that

E◦
[∫ T1

0

ϕ(Xs)ds

]

=

∫ ∞
0

∫ ∞
0

∫ t1

0

ϕ(x0 + s)dsf◦(x0, t1)dx0dt1

=

∫ ∞
0

ϕ(u)

∫ u

0

∫ ∞
u−x0

f◦(x0, t1)dt1dx0du , (7)

where, in the last line we substituted u = x+ s with x ≤ u ≤
x+ t.

Now we find the PDF of the age at any arbitrary point in
time f(x) from comparing (7) with

E [ϕ(Xt)] =

∫ ∞
0

ϕ(x)f(x)dx (8)

where we find

f(x) = λ̂

∫ x

0

∫ ∞
x−x0

f◦(x0, t1)dt1dx0 (9)

2Note that the definition of the conditional expectation can be given a
meaning even though the probability of the point process having a point at
time 0 exactly is 0 [14, Section 7.2.2].

In the following, we calculate the Palm distribution
f◦(x0, t1). This is tractable because it involves Zt only, which
is a Markov process on a finite state space.

IV. COMPUTING THE PALM DISTRIBUTIONS

A. Decomposition into Forward and Backward Components

In order to compute the Palm PDF f◦(x0, t1) we observe
that the part on x0 (the age) involves the past of Zt whereas
the part on t1 (time until a new arrival) involves the future of
Zt. This is captured by the following theorem.

Theorem IV.1. The joint PDF of both the age x0 just after
the informative message arrival and the length of the cycle t1
until the arrival of the next informative message is given by

f◦(x0, t1) =
∑

(n′,n) s.t.1≤n+1≤n′≤Imax

p◦n′,ng
◦(x0|n′, n)h(t1|n)

(10)

where
• p◦n′,n is the probability that an arbitrary message arrival

happens at a transition (n′ → n) of the Markov chain
Zt and is given by

p◦n′,n =
pn′

N̄
11≤n+1≤n′≤Imax (11)

in the above, N̄ is the stationary expectation of Zt and
pi is given in (3);

• g◦(x0|n′, n) is the PDF of the Palm distribution of the
age x0 just after the informative message arrival given
that the state of the Markov chain is n′ just before the
arrival of the informative message and n just after the
arrival, where n′ ≥ n+ 1;

• h(t1|n) is the stationary PDF of the time that will elapse
from time t until the next informative message arrives,
given that Zt = n.

The proof exploits the Markov property of Zt, which
expresses that the future depends on the past only through
the present state.

Proof: Define f◦(x0, t1|n′, n) as the joint PDF of the
Palm distribution of both the age x0 just after the informative
message arrival and the length of the cycle t1 until the arrival
of the next informative message, given that the state of the
Markov chain is n′ just before the arrival of the informative
message and n just after the arrival, where n′ ≥ n + 1. It
follows that the required PDF f◦(x0, t1) is given by

f◦(x0, t1) =
∑

(n′,n) s.t.1≤n+1≤n′≤Imax

p◦n′,nf
◦(x0, t1|n′, n)

(12)

where p◦n′,n is the probability that an arbitrary message arrival
happens at a transition (n′ → n) of the Markov chain Zt. By
[15, Thm 7.1.2], such a probability is given by

p◦n′,n = ηpn′Qn′,n, 11≤n+1≤n′≤Imax (13)

where 1{·} is the indicator function, equal to 1 when the con-
dition is true and 0 otherwise, pn′ is the stationary probability
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given in (3), Qn′,n is the transition rate in (2) and η is a
normalizing constant. Observe that Qn′,n = µ, which gives
η−1 =

∑Imax

i=1 ipi = N̄ where N̄ is the stationary expectation
of Zt. It finally comes

p◦n′,n =
pn′

N̄
11≤n+1≤n′≤Imax

(14)

Let g◦(x0|n′, n) denote the PDF of the Palm distribution
of the age x0 just after the informative message arrival given
that the state of the Markov chain is n′ just before the arrival
of the informative message and n just after the arrival, where
n′ ≥ n+ 1.

Recall that h(t1|n) denotes the stationary PDF of the time
that will elapse from time t until the next informative message
arrives, given that Zt = n. By the Markov property, this is
also the PDF of the Palm distribution of the time until the
next informative message arrives given that the state of the
Markov chain is n′ just before the arrival of the informative
message and n just after the arrival. Again by the Markov
property, f(x0, t1|n′n) = g◦(x0|n′, n)h(t1|n), which proves
(10).

We next compute h(t1|n), which we call the forward com-
ponent of (10). The computation of the backward component
g◦(x0|n′, n) will involve a similar method plus a time-reversal
argument.

B. Computation of the Forward Component

First, we will introduce the following lemma to calculate
the Laplace-Stieltjes Transform (LST) of the time until the
occurrence of the next transition of interest in a continuous-
time Markov chain {Z̃(t)}t∈R+ conditioned on Zt = n. The
transitions of interest are defined by some subset F̃ of E×E,
where E ⊆ N is the state-space of the Markov chain.

Lemma IV.2. Consider a time-homogeneous, continuous-time
Markov chain (Z̃t)t∈R+

with state space E ⊆ N and with
transition rates Q̃n,n′ ; let d̃n =

∑
n′∈E Q̃n,n′ denote the sum

of all outgoing rates from state n and assume that d̃n > 0 for
all n ∈ E. Let F̃ ⊆ E such that Q̃n,n′ > 0 for all (n, n′) ∈ F̃ .

Call Ỹt the time that will elapse from t until the next
jump in F̃ of the Markov chain, i.e. Ỹt = inf{s >
0, (Z(t+s)− , Z(t+s)+) ∈ F̃}. The conditional LST of Ỹt given
that Z̃t = n, denoted as f̃n(ν), satisfies

f̃n(ν) := E
[
e−νỸt |Z̃t = n

]

=
1

d̃n + ν

 ∑
n′,

(n,n′)/∈F̃

f̃n′(ν)Q̃n,n′ +
∑
n′,

(n,n′)∈F̃

Q̃n,n′

 . (15)

Proof: Fix some arbitrary time t and define S̃t as the
time until the next transition (of interest or not) out of state
Z̃t and let N ′t := Zt+S̃t denote the next state. It is known
[16] that, conditional to Z̃t = n, N ′t and S̃t are independent,
the distribution of S̃t is exponential with rate d̃n and the
distribution of N ′t is given by P(N ′t = n′|Z̃t = n) =

Q̃n,n′

d̃n
.

It follows that

P
[
N ′t = n′|Z̃t = n, S̃t = s

]
=
Q̃n,n′

d̃n
(16)

and

E
[
e−νS̃t

]
=

d̃n

d̃n + ν
(17)

Also let R̃t denote the residual time from the next transition
until the next transition of interest, i.e. R̃t = 0 whenever
(Z̃t, N

′
t) ∈ F̃ and otherwise R̃t = Ỹt+S̃t . Hence

Ỹt = S̃t + R̃t (18)

By conditioning on S̃t = s we can write

E
[
e−νỸt |Z̃t = n, S̃t = s

]
= e−νsE

[
e−νR̃t |Z̃t = n, S̃t = s

]
(19)

By conditioning with respect to N ′t in the latter term and
applying (16) we obtain

E
[
e−νR̃t |Z̃t = n, S̃t = s

]
=
∑
n′∈E

(
E
[
e−νR̃t |Z̃t = n, S̃t = s,N ′t = n′

]
×

P
[
N ′t = n′|Z̃t = n, S̃t = s

])
=
∑
n′∈E

(
E
[
e−νR̃t |Z̃t = n, S̃t = s,N ′t = n′

] Q̃n,n′
d̃n

)
(20)

Now if (n, n′) ∈ F̃ then R̃t = 0 hence

E
[
e−νR̃t |Z̃t = n, S̃t = s,N ′t = n′

]
= 1 if (n, n′) ∈ F̃ (21)

Else, i.e. if (n, n′) is not in F̃ , R̃t = Ỹt+S̃t is the time that
remains to elapse until the next transition of interest; by the
Markov property, the future of the Markov chain depends on
the history only via the current state, i.e.

E
[
e−νỸt+S̃t |Z̃t = n, S̃t = s,N ′t = n′

]
= E

[
e−νỸt+s |N ′t = n′

]
= E

[
e−νỸt+s |Zt+s = n′

]
= f̃n′(ν) (22)

where the last equality is because the Markov chain is time-
homogeneous.

Combining (19) with (20)-(22) gives

E
[
e−νỸt |Z̃t = n, S̃t = s

]

= e−νs

 ∑
n′,

(n,n′)/∈F̃

f̃n′(ν)
Q̃n,n′

d̃n
+

∑
n′,

(n,n′)∈F̃

Q̃n,n′

d̃n

 (23)
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Fig. 5: A sample path of the number of non-obsolete messages under
way given the system model from Sect. II. Looking at the
forward process: The downward jumps mark the arrival of
informative messages at the receiver which make previous
messages obsolete. As messages depart in batches of random
sizes in this model the waiting time of the freshest message
of the batch corresponds to the age value set upon the arrival
of that message at the receiver.

By the law of total expectation we can now write

f̃n(ν) = E
[
e−νỸt |Z̃t = n

]
= E

[
E
[
e−νỸt |Z̃t = n, S̃t

]]

= E
[
e−νS̃t

] ∑
n′,

(n,n′)/∈F̃

f̃n′(ν)
Q̃n,n′

d̃n
+

∑
n′,

(n,n′)∈F̃

Q̃n,n′

d̃n


(24)

Using (17) completes the proof.

Now we can use Lem. IV.2 to calculate the stationary PDF
h(t1|n) of the time that will elapse from a fixed time t until
the next informative message arrives conditioned on Zt = n.
The set of transitions of interest is F̃ := {(i, j)}i>j , i.e. the
transitions associated with the arrival of informative messages.
The transition rates Qi,j are given in (2) and

d̃n = λ1{n<Imax} + µn (25)

where 1{·} is the indicator function, equal to 1 when the
condition is true and 0 otherwise.

The Laplace-Stieltjes Transform of h(t1|n) continues to be
denoted by f̃n(ν); the application of Lem. IV.2 gives:

f̃n(ν) =
1

d̃n + ν

[
nµ+ λf̃n+1(ν)

]
. (26)

This recursive relation can be rewritten using matrix notation
as

(νI + D̃)f̃ = µ̄̄µ̄µ+ Λ̄f̃ (27)

with the identity matrix I, the vectors f̃ =
[f̃0(ν), . . . , f̃Imax

(ν)] T , and µ̄̄µ̄µ = [0, µ, 2µ . . . , Imaxµ] T ,

and the matrices D̃ := diag (d̃0, d̃1, . . . , d̃Imax
), and

Λ̄̄Λ̄Λ :=


0 λ . . . 0
...

. . . λ
...

...
. . . . . . λ

0 . . . 0 0

 . (28)

Now we can directly solve for the conditional LSTs as

f̃ = (νI + D̃− Λ̄)−1µ̄̄µ̄µ (29)

C. Computation of the Backward Component

Recall that g◦(x0|n′, n) denotes the PDF of the Palm distri-
bution of the age x0 just after the informative message arrival
given that the state of the Markov chain is n′ just before the
arrival of the informative message and n just after the arrival,
where n′ ≥ n + 1. since the arrival of the freshest message
in the served batch. For the computation of g◦(x0|n′, n) we
resort to time-reversal as this allows to use a similar method
as for the forward component.

The time-reversed process Zrt is defined by Zrt = Z−t. In
a nutshell, time reversal allows us to change the underlying
queueing model from Sect. III-A into a FIFO queue where
arrivals occur in message batches of random size while the
server removes exactly one message on each visit. To illustrate
this, consider the sample path shown in Fig. 5 in the reverse
time direction.

It is shown in [17] [Section 1.7] that if Zt is endowed
with its stationary probability, then the time-reversed process
is also a time-homogeneous continuous time Markov chain
with same state space and same stationary probability, but with
different transitions rates. Specifically, by [17] [Theorem 1.12]
the transition rates Q′i,j for Zrt depend on the transition rates of
the original Markov process (2) and its stationary distribution
(3). We obtain Q′i,i−1 = λ′i for i = 1...Imax, Q′i,j = µ′ij for
i = 0...Imax − 1, i < j ≤ Imax and Q′i,j = 0 otherwise, with

λ′i =


i
i+1 (λ+ (i+ 1)µ) for 1 ≤ i < Imax

Imaxµ for i = Imax

(30)

and

µ′ij =



(j+1)µλj−i

(i+1)
j+1∏
k=i+2

(λ+kµ)

for j 6= Imax

λImax−i

(i+1)
Imax∏
k=i+2

(λ+kµ)

for j = Imax

(31)

for 0 ≤ i < Imax. The derivation of (30), (31) is given in the
appendix.

In Zt, upon serving a batch of messages, the sojourn time of
the freshest message of that batch is the age of that particular
informative message. In Zrt , this is given by the sojourn time
of the (n+1)st message of an arriving batch of size n′−n. In
Zrt , the arrival of a batch corresponds to a transition n→ n′

with n′ ≥ n+ 1 and the size of the arriving batch is n′−n. It
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follows that, for n′ ≥ n+1, g◦(x0|n′, n) can be re-interpreted
as the PDF of the time from now until the (n+ 1)st departure
of Zrt , given that Zrt is doing a transition n→ n′ now. Since
Zrt is also Markov, we can apply the Markov property and
obtain that this is simply the PDF of the time from now until
the (n+1)st departure of Zrt given that Zrt = n′. For n+1 = 1
this is the conditional PDF of the time until a next departure,
which is exactly the problem that is solved in Lemma IV.2,
and which we now extend as follows (the proof is similar and
is not given).

Lemma IV.3. Consider a time-homogeneous, continuous-time
Markov chain (Z̃t)t∈R+

with state space E ⊆ N and with
transition rates Q̃n,n′ ; let d̃n =

∑
n′∈E Q̃n,n′ denote the sum

of all outgoing rates from state n and assume that d̃n > 0 for
all n ∈ E. Let F̃ ⊆ E such that Q̃n,n′ > 0 for all (n, n′) ∈ F̃ .

For k ≥ 1, call Ỹ kt the time that will elapse from t until
the kth jump in F̃ of the Markov chain, i.e. Ỹ 1

t = inf{s ≥
0, (Z̃(t+s)− , Z̃(t+s)+) ∈ F̃} and for k ≥ 2, Ỹ kt = inf{s >
Y k−1, (Z̃(t+s)− , Z̃(t+s)+) ∈ F̃}. The conditional LST of Ỹ kt
given that Z̃t = n, denoted as f̃n,k(θ), satisfies, for k ≥ 1:

f̃n,k(θ) =
1

d̃n + θ
× ∑

n′,

(n,n′)/∈F̃

f̃n′,k(θ)Q̃n,n′ +
∑
n′,

(n,n′)∈F̃

f̃n′,k−1(θ)Q̃n,n′

 .

(32)

where f̃n,0(θ) = 1 by convention.

Let fn′,k(θ) be the LST of the time from now until the
kth departure of Zrt given that Zrt = n′, so that the LST of
g◦(x0|n′, n) is fn′,n+1. To compute fn′,k(θ), we now apply
Lemma IV.3 to the Markov chain Zrt , with transition rate
matrix Q′, and obtain:

fn′,1(θ) [d′n′ + θ]=λ′n′1n′>0 +
∑
j>n′

µ′n′,jfj,1(θ) (33)

fn′,k(θ) [d′n′ + θ]=λ′n′1n′>0fn′,k−1(θ) +
∑
j>n′

µ′n′,jfj,1(θ) (34)

for 0 ≤ n′ ≤ Imax and k ≥ 2. In the above, λ′ and ν′ are
given in (30) and (31) and

d′n′ =

Imax∑
n=0

Q′n′,n (35)

We use the following matrix notation: D :=
diag (d′0, d

′
1, . . . , d

′
Imax

), f·,k = [f0,k(θ), . . . , fImax,k(θ)] T ,
λ̄
′

λ̄
′

λ̄
′

= [0, λ′1, . . . , λ
′
Imax

] T . M is the upper triangular matrix

M =

{
µ′ij for i < j

0 for i ≥ j

and ΛΛΛ is the matrix with λ′n on the subdiagonal defined by

ΛΛΛ :=


0 . . . . . . 0

λ′1
. . .

...
...

. . . . . .
...

0 . . . λ′Imax
0

 . (36)

for i, j ∈ {0, 1, . . . , Imax}, We can rewrite the recursive
relation of the conditional LST in (33) as

(θI + D)f·,1 = λ̄
′

λ̄
′

λ̄
′
+ Mf·,1 (37)

The previous equation can be solved and we obtain:

f·,1 = (θI + D−M)−1λ̄
′

λ̄
′

λ̄
′ (38)

Similarly, we can re-write (34) as

(θI + D)f·,k = ΛΛΛf·,k−1 + Mf·,k (39)

for k ≥ 2. Now we can construct a block matrix form that
takes (37) as well as (39) to follow the form
θI + D 0

. . .

0 θI + D




f·,1
...

f·,Imax

 =


λ̄
′

λ̄
′

λ̄
′

...
0

+


M 0

ΛΛΛ
. . .

0 ΛΛΛ M




f·,1
...

f·,Imax


(40)

We can directly find the vector of conditional LST as
f·,1

...
f·,Imax

 =


θI + D−M 0

−Λ−Λ−Λ
. . .

0 −Λ−Λ−Λ θI + D−M


−1 

λ̄
′

λ̄
′

λ̄
′

...
0


(41)

Since the computation of (41) requires the inversion of a
matrix of the order of I2

max × I2
max we show in the following

how to calculate the conditional LST recursively from (40). We
observe that M−D = Q′ −Λ where Q′ denotes the transi-
tion rate matrix of the continuous Markov chain associated
with the reversed process Zrt . We define Φ := θI + D−M
and obtain the following recursion in block matrix form

Φ

−Λ−Λ−Λ
. . . 0

0
. . . . . .

0 0 −Λ−Λ−Λ Φ




f·,1

...

...
f·,Imax

 =


λ̄
′

λ̄
′

λ̄
′

...

...
0


Now we obtain the conditional LST f·,n recursively with the
initial condition

f·,1 = Φ−1λ̄
′

λ̄
′

λ̄
′ (42)

and for k ≥ 2

f·,k = Ψk−1Φ−1λ̄
′

λ̄
′

λ̄
′ (43)

where we used the shorthand notation Ψ := Φ−1Λ.
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Fig. 6: (a) CCDF of the age at the arrival times of informative messages for arrival rate λ = 1 and varying OWD parameter µ. Imax = 20.
(b) Probability density of the age f(x) at any point in time obtained from (9) for λ = 1 and varying OWD parameter µ. Imax = 20.

D. Computing f◦(x0, t1)

We can now put together the forward and backward ele-
ments. Let f̂(ν, θ) denote the LST of f◦(x0, t1), specifically

f̂(ν, θ) :=

∫ ∞
0

∫ ∞
0

f◦(x0, t1)e−νt1e−θx0dt1dx0

From (10) this becomes

f̂(ν, θ) =
∑

(n′,n) s.t.1≤n+1≤n′≤Imax

p◦n′,nfn′,n+1(θ)f̃n(ν)

(44)

where p◦n′,n is in (11), f̃n(ν) is the nth component of (29)
and fn′,n+1(θ) is obtained by setting k = n+ 1 in (43).

As all the Laplace-Stieltjes transforms encountered here are
rational fractions in θ [resp. ν], the distributions associated
with them are matrix-exponential and can be computed in
closed form given λ, µ. Specifically, we obtain

g◦(x0|n′, n) =

Imax∑
i=0

πi,n
′,n(x0)e−x0d

′
i (45)

where d′i is given in (35) and πi,n
′,n is a polynomial in x0,

the coefficients of which are computed numerically for every
(λ, µ). Similarly, we obtain

h(t1|n) =

Imax∑
j=0

π̃j,n(t1)e−t1d̃j (46)

where d̃j is given in (25) and π̃j,n is a polynomial in t1,
the coefficients of which are computed numerically for every
(λ, µ). Putting things together we obtain

f◦(x0, t1) =

Imax∑
i=0

Imax∑
j=0

e−x0d
′
i−t1d̃j (47)∑

(n′,n) s.t.1≤n+1≤n′≤Imax

p◦n′,nπ
i,n′,n(x0)π̃j,n(t1)

V. COMPUTING AGE PERFORMANCE METRICS

A. Age Distribution at Arbitrary Points in Time
To obtain the PDF of the age at any point in time we insert

the formulation of the PDF (47) into (9). To calculate this
expression, we first show the calculation of a generic term
that represents the core of this expression. We compute∫ x

0

∫ +∞

x−x0

xk0t
`
1e
−d′x0−d̃t1dt1dx0

=

∫ x

0

xk0e
−d′x0

[
−e−d̃t1

∑̀
i=0

`!

i!d̃l−i+1
ti1

]∞
x−x0

dx0

=

∫ x

0

xk0e
−d′x0

(
e−d̃(x−x0)

∑̀
i=0

`!

i!d̃l−i+1
(x− x0)i

)
dx0.

(48)

The expression in (48) stems from the fact that a prim-
itive of e−d̃t1P (t1), with polynomial P (t1) = t`1, is
−e−d̃t1

∑deg(P )
i=0

P (i)(t1)

d̃i+1
where P (i) is the ith derivative of

P and P (0) = P . This sum can be written in a compact form
as
∑`
i=0

`!
i!d̃l−i+1

ti1. For the evaluation of the integral we used
that limt1→∞ t`1e

−d̃t1 = 0 for any fixed ` and positive d̃.
Using the binomial theorem to expand the term (x − x0)i

in the expression above we can rewrite (48) as

`!e−d̃x

d̃`+1

∫ x

0

xk0e
−(d′−d̃)x0

∑̀
i=0

d̃i

i!
(x− x0)idx0

=
`!e−d̃x

d̃`+1

∫ x

0

xk0e
−(d′−d̃)x0

∑̀
i=0

ci,`(x)xi0dx0. (49)

where we expanded (x−x0)i =
∑i
k=0(−1)k

(
i
k

)
xi−kxk0 . Then

we rearrange the sum terms in the first line to express it as a
polynomial in x0 with coefficients

ci,`(x) =

l∑
j=i

(−1)i
(
j

i

)
xj−i

`!

j!
(50)
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with j ≥ i. Here, we explicitly express the dependency of the
coefficients on x through ci,`(x).

In a last step to compute (49) we calculate for d′ 6= d̃

`!e−d̃x

d̃`+1

∑̀
i=0

ci,`(x)

∫ x

0

xk+i
0 e−(d′−d̃)x0dx0

=
`!e−d̃x

d̃`+1

∑̀
i=0

ci,`(x)

−e−(d′−d̃)x0

k+i∑
j=0

(k + i)!xj0
j!(d′ − d̃)k+i−j+1

x
0

=
`!e−d̃x

d̃`+1

∑̀
i=0

ci,`(x)

[
(k + i)!

(d′ − d̃)k+i+1

−e−(d′−d̃)x
k+i∑
j=0

(k + i)!xj

j!(d′ − d̃)k+i−j+1

 . (51)

For the case when d′ = d̃ we obtain as a solution of (49)

`!e−d̃x

d̃`+1

∑̀
i=0

ci,`(x)
xk+i+1

k + i+ 1
(52)

Now, using the steps from above we insert the formulation
of the PDF (47) into (9) and obtain the PDF of the age at any
point in time in the following theorem.

Theorem V.1. In a stationary M/M/Imax/I
∗
max system, the

PDF of the age of information at an arbitrary point in time,
f(x), is given by

f(x) = λ̂

Imax∑
i=0

Imax∑
j=0

∑
(n′,n) s.t.1≤n+1≤n′≤Imax

p◦n′,n e
−xd̃j ×

ξ̃j,n+ξi,n′,n∑
l=0

c̃l(x)

(
l!

(d′i − d̃j)
l+1
− e−x(d′i−d̃j)

l∑
v=0

l!

v!(d′i − d̃j)
l−v+1

xv

)
(53)

where
• λ is the message generation rate at the sender, 1/µ is

the mean message transit time and Imax is the maximum
number of messages in transit;

• p◦n′,n from (11), d′i from (35), and d̃j from (25);
• ξi,n′,n, ξ̃j,n are the degrees of the polynomials πi,n

′,n(x0)
and π̃j,n(t1) from (45) and (46). Specifically, these are
given as

πi,n
′,n(x0) :=

ξi,n′,n∑
k=0

ai,n
′,n

k xk0

and

π̃j,n(t1) :=

ξ̃j,n∑
k=0

ãj,nk tk1 .

• c̃l(x) are the polynomial coefficients obtained through the
convolution

c̃l(x) =

l∑
v=0

z̃j,nv (x)ai,n
′,n

l−v (54)

with z̃j,nk (x) =
∑ξ̃j,n
i=k ã

j,n
i ck,i(x), where ck,i(x) is given

in (50).

Proof: By inserting the formulation of the PDF (47) into
(9) we obtain the PDF of the age at any point in time as

f(x) = λ̂

∫ x

0

∫ ∞
x−x0

f◦(x0, t1)dt1dx0

= λ̂

Imax∑
i=0

Imax∑
j=0

∑
(n′,n) s.t.1≤n+1≤n′≤Imax

p◦n′,n×∫ x

0

e−x0d
′
iπi,n

′,n(x0)e−(x−x0)d̃j ×∫ ∞
x−x0

π̃j,n(t1)e−t1d̃jdt1dx0

= λ̂

Imax∑
i=0

Imax∑
j=0

∑
(n′,n) s.t.1≤n+1≤n′≤Imax

p◦n′,n×

∫ x

0

e−x0d
′
i

ξi,n′,n∑
k=0

ai,n
′,n

k xk0e
−(x−x0)d̃j ×

∫ ∞
x−x0

ξ̃j,n∑
k=0

ãj,nk tk1e
−t1d̃jdt1dx0 (55)

Looking closely at (55) after rearranging terms and swapping
the sum in π̃j,n(t1) and the integral over t1 we observe that
at the core of the problem we need to compute the expression
in (48). The additional complexity compared to the result in
(51) arises due to the sums in π̃j,n(t1) and πi,n

′,n(x0). In the
next step, we evaluate the second integral in (55) using the
same method as for (48) to obtain

λ̂

Imax∑
i=0

Imax∑
j=0

∑
(n′,n) s.t.1≤n+1≤n′≤Imax

p◦n′,n×

∫ x

0

e−x0d
′
i

ξi,n′,n∑
k=0

ai,n
′,n

k xk0

ξ̃j,n∑
k=0

ãj,nk

k∑
v=0

k!

v!d̃k−v+1
j

(x− x0)vdx0

= λ̂

Imax∑
i=0

Imax∑
j=0

∑
(n′,n) s.t.1≤n+1≤n′≤Imax

p◦n′,n×

∫ x

0

e−x0d
′
i

ξi,n′,n∑
k=0

ai,n
′,n

k xk0

ξ̃j,n∑
k=0

z̃j,nk (x)xk0dx0. (56)

Here, in the second line we expanded (x − x0)v in
the same way as in (49). The difference to (49) stems
from the additional sum leading to the intermediate form∑ξ̃j,n
k=0 ã

j,n
k

∑k
i=0 ci,k(x)xi0 after using the expansion in (49).

Now, after collecting the terms we can rewrite this sum as∑ξ̃j,n
k=0 z̃

j,n
k (x)xk0 with z̃j,nk (x) =

∑ξ̃j,n
i=k ã

j,n
i ck,i(x), where

ck,i(x) is given in (50).
Inspecting (56), we see that the product of the two

given polynomials in x0 can be rewritten as one polynomial∑ξ̃j,n+ξi,n′,n
l=0 c̃l(x)xl0 with c̃l(x) =

∑l
v=0 z̃

j,n
v (x)ai,n

′,n
l−v , i.e.,

the convolution of the coefficients of the two polynomials.
Equipped with the integral evaluation in (51) we can now
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compute

λ̂

Imax∑
i=0

Imax∑
j=0

∑
(n′,n) s.t.1≤n+1≤n′≤Imax

p◦n′,n×

∫ x

0

e−x0d
′
i

ξi,n′,n+ξ̃j,n∑
l=0

c̃l(x)xl0dx0

= λ̂

Imax∑
i=0

Imax∑
j=0

∑
(n′,n) s.t.1≤n+1≤n′≤Imax

p◦n′,n e
−xd̃j ×

ξ̃j,n+ξi,n′,n∑
l=0

c̃l(x)

(
l!

(d′i − d̃j)
l+1
− e−x(d′i−d̃j)

l∑
v=0

l!

v!(d′i − d̃j)
l−v+1

xv

)
(57)

B. Age Distribution at the Arrival of Informative Messages

In addition to calculating the age distribution at any point in
time we can easily calculate the distribution of the age at the
arrival instants of informative messages. The corresponding
PDF f◦A(x0) is readily obtained as

f◦A(x0) =
∑

(n′,n) s.t.1≤n+1≤n′≤Imax

p◦n′,ng
◦(x0|n′, n)

Using (45) we obtain

f◦A(x0) =

Imax∑
i=0

e−x0d
′
i

∑
(n′,n) s.t.1≤n+1≤n′≤Imax

p◦n′,nπ
i,n′,n(x0)

(58)

VI. EVALUATION

In this section, we compare the obtained expressions for
the age distributions to results from empirical discrete event
simulations. We consider the system as described in Sect. III
with messages arriving as a Poisson process with rate λ
where each message observes a service time sampled from
an exponential distribution with parameter µ. The system
simulation results are obtained from simulation runs over 105

messages and we set the number of non-obsolete messages
under way to Imax = 20 .

Figure 6a shows the age distribution at the arrival time
points of informative messages. The dashed curve is obtained
from the model (8) (with test function ϕ being the identity
function). The figure also shows the empirical age distribution
obtained from simulations. We observe that these two distri-
butions match very well and the impact of the average service
rate of one message µ on the tail of the age distribution. Fig. 6b
shows the probability density of the age at any point in time
that is obtained from (9) using the Laplace inverse of (44).
Observe the skewness of the density function. This shows that
approximations based on the first few (two) moments, e.g.
obtained based on work that calculate the moments of the age
distribution [3], will be inaccurate.

Figure 7a shows a comparison of the expected age at any
point in time as a function of the message arrival rate λ. The
expected age that is obtained from the model is computed
using the density in (9) in closed form.

To empirically obtain the average age from the event based
simulation we utilize the Palm inversion formula (4) with ϕ
set as identity function. Hence we can write

E [Xt] = µN̄E◦
[∫ T1

T0

Xsds

]
= µN̄E◦

[∫ T1

0

(A0 + s) ds

]

= µN̄E◦
[
A0(T1 − T0) +

1

2
(T1 − T0)2

]
(59)

where A0 is the age of the informative message received at
time T0. The estimate of E [Xt] obtained from one simulation
run is

µN̂

ntot−1∑
n=1

(
An(Tn+1 − Tn) +

1

2
(Tn+1 − Tn)2

)
(60)

where An [resp. Tn] is the age upon delivery at the receiver
[resp. delivery time] of the nth informative message, ntot is
the total number of informative messages delivered in the
simulation run, and N̂ is the time-average number of messages
in the channel.

Here too, the comparison with the empirically obtained
average age from (59) shows a close match. Note that the
empirically obtained average age still requires invoking the
Palm inversion formula (4) as given in (59). We observe in
Fig. 7a that the expected age decreases monotonically with
the message arrival rate λ. This stand in line with similar
age models with finite message capacity assuming, however,
FIFO message delivery, such as in [18]. In Fig. 7b we show
the quantiles of the age at any point in time based on the
age probability density in (9). These quantiles can be utilized
for system dimensioning by providing operating points, in
terms of setting the service rate µ or throttling the message
generation rate λ, to retain a corresponding age quantile xε
that is only violated with probability P [X > xε] = ε.

VII. RELATED WORK

The problem of status updating to combat data staleness in
distributed systems that use a shared and unreliable network
was first discussed in the context of real-time database systems
in [19]. Essentially, a recent reincarnation of this problem
in the context of IoT that is known as Age of information
(AoI) considers transmission scheduling strategies to update
the status at some receiver in a way that optimizes the
freshness of that information [2, 20, 21]. This problem has
been in particular of interest in the context of vehicular
networks [22, 23] and sensory information transmission over
wireless networks [24, 25] as the freshness of information such
as the captured environment model that is exchanged between
vehicles is safety critical. For a comprehensive review see [10].

Given a single sender and a system modeled as an
M/M/1 queue the work in [2] derives the sample path
average age at the receiver as limT→∞

1
T

∫ T
0

∆(t)dt =
λ
(
E[XS] + E[X2]/2

)
with ∆(t) denoting the age of infor-

mation at the receiver at time t, λ being the message arrival
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Fig. 7: (a) Expected age E[X] obtained from simulations compared to the model in (8) with ϕ being the identity function for Imax = 20
and µ = 1. (b) Quantiles of the age P [X > xε] = ε obtained from integrating the age density in (9) for Imax = 20 and µ = 1.

rate and the random variables X,S that denote the message
inter-arrival time and message response time, respectively. The
same seminal work provides expressions for the sample path
average age in a D/M/1 system using a transcendental function.
Given the forms derived above the work [2] also provides the
parametrization that minimizes the average age.

Similarly, works such as [6, 7] consider the age at the
receiver given a D/G/1 and M/M/∞ systems where mes-
sages may arrive out of order. The work in [6] considers the
distribution of the age process for a deterministic transmis-
sion schedule and a single server with general service time
distribution under the FIFO assumption. The authors derive
in [7] an expression for the average age using a similar
reasoning as [2] as a function of the average message arrival
rate and service time distribution. Note that the provided
expression there is not directly computable as it contains
multiple infinite sums and infinite products. Applications of
the methods above to the special case of G/G/1/1 queueing
systems under message blocking and message preemption is
found in [26]. In contrast to this work, however, our approach
here provides the distribution of the age using a computable
closed form that is constructed as the combination of Laplace-
Stieltjes transforms of elementary functions

Going beyond elementary queues, the work in [27] con-
siders the AoI for a path consisting of a concatenation of
multiple links where the random delay at each of the links
is only due random access. The authors show that given this
delay model and a graph model of the network the problem
of finding a transmission strategy for minimizing the AoI at
N sender-receiver pairs can be decomposed into a simpler
equivalent optimization problem. We believe that the main
reason for this lies in the delay due to random access model
that does not incorporate queueing and scheduling effects.
A similar work considering multihop networks, i.e., [4], that
considers, however, a multihop queueing network, shows that
a preemptive Last Generated First Served (LGFS) policy at
all nodes minimizes any non-decreasing functional of the age

in stochastic dominance sense. This result is obtained under
the assumption that all message transmission times are iid
exponentially distributed at all nodes.

The works in [3, 9] provide a method to calculate the
MGF and the moments of the AoI at a network monitor
for networks of preemptive finite buffer servers based on the
so called stochastic hybrid system (SHS) framework [28] by
leveraging a notion of a hybrid state [{q(t)}t≥0,x(t)] where
{q(t)}t≥0 describes a continuous time Markov chain over
finite state and x(t) ≥ 0 ∈ R1×n describes a vector of
positive real values of the age. By attaching deterministic
matrices Al ∈ {0, 1}n×n to the transitions l ∈ L of the
Markov chain {q(t)}t≥0, where L denotes the set transitions,
one is able to track the jumps of the age vector as x′ = xAl.
The key to finding a formulation for the expected age and
for the Moment generating function (MGF) of the age is
based on a set of first order differential equations that assume
{q(t)}t≥0 is ergodic and utilize its steady state stationary
probability distribution [3, 9] Note that the exists a direct
relation between the presented SHS framework and utilizing
the Master equation d

dtE [ϕ(qt, Xt)] = E [Gϕ(qt, Xt)] with ϕ
being a test function, G a generator and qt and Xt describing
the queue state, as well as, the age at time t respectively. This
relation is explored in [3, 9] to simplify the SHS formulation.
We note that, in general, applying the master equation to
the infinitesimal generator that describes the jump and drift
evolution of the age results in the Fokker-Plank equation
describing the time evolution of the age density. Analytical
closed-form results to solve this formulation, even for the
stationary age distribution, are yet to be shown. Computable
solutions to the presented SHS system of equations in are
provided for the examples of a single M/M/1/1 queue, a
line network of M/M/1/1 queues in[3]. Note that the SHS
framework was applied in [11] to obtain a close form for the
expected age for a system of parallel servers where a new
message arrival preempts the oldest message under way.

Concerning message reordering, a seminal work on packet
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reordering is [29] that provides a recursive expression for
the total delay distribution of a system in which messages
that arrive in order are delivered through a disordering sys-
tem, hence the out-of-order arrivals require resequencing. The
author provides an analytical solution for the case of an
M/G/∞ disordering system given in terms of a Laplace-
Stieltjes transform.

A min-plus approach to the Age of Information is given
in [8] showing that the virtual delay at a FIFO system, i.e.,
the horizontal deviation of cumulative arrivals and departures
at a min-plus system, is an upper bound on the age. Equipped
with lower bounds on the cumulative arrival traffic, the work
in [8] shows deterministic and statistical upper bound on
the age of information for different combinations of arrivals
and systems with deterministic or probabilistic description.
In contrast to [8], we consider here non-FIFO systems with
possible message reordering.

VIII. CONCLUSION

In this paper, we considered the problem of computing the
distribution of the Age of Information (AoI) at any point in
time for non-preemptive, non-FIFO systems. Our key observa-
tion is that this networked system can be modeled as a batch
queueing system where the served batch size is random and the
sojourn time of the freshest message in the batch corresponds
to the age of an arriving informative message. The batch
(except for the its freshest message) essentially models the set
of messages that are generated before the freshest message
and hence are rendered obsolete by its arrival. This captures
message reordering due to the non-FIFO system property.

Equipped with this queueing model we use Palm calculus
together with time inversion to decompose the elements that
form the joint distribution of the age and the time between the
arrival of informative messages at the receiver. Then, Palm
inversion allows us to compute the distribution of the age
at any point in time given this joint distribution. We find
recursions for the corresponding Laplace-Stieltjes transforms
of the conditional age and informative message inter-arrival
time distributions owing to the Markovian nature of the
underlying model. As these transforms turn to be rational
we obtain a computable expression for the AoI distribution
composed of matrix-exponential terms. This main result allows
further to deduce formulations for the expected age, as well as,
the age distribution at the arrival time points of informative
messages. We validate the exact model using discrete-event
simulations and show the skewness of the PDFs of the age.
Further, we show the impact of the arrival and service rates
on the age CDF and its quantiles. We leave the extension of
this model to multi-stage queueing networks to future work.

IX. APPENDIX

A. Calculation of the steady state probabilities in (3)

We consider the queueing model from Sect. III-A with
the corresponding Markov chain as sketched in Fig. 3. In
the following we prove the formulation of the steady state
probabilities pn of the given Markov chain through induction.
We first show that the formulation holds for p0 and p1. Then

we show that given that the formulation holds for all pk for
k < n it also holds for pn.

From the balance equations we can write poλ =
∑Imax

i=1 piµ.
From the normalization condition

∑Imax

i=0 pi = 1 we obtain p =
µ

λ+µ as
∑Imax

i=1 pi = 1− p0. For p1 we can write p1(λ+µ) =

p0λ +
∑Imax

i=2 piµ. Using p0 and the normalization condition
this reduces to p1λ = p0λ+µ(1−p0−p1)−p1µ which leads
to p1 = 2λµ

(λ+µ)(λ+2µ) .
Now, considering (3) we directly see that it holds for n = 0

and n = 1. For a state k of the given Markov chain we can
write using the balance equations

pk(λ+ kµ) = pk−1λ+ µ

Imax∑
i=k+1

pi

= pk−1λ+ µ(1−
k∑
i=0

pi) , (61)

which we can rewrite as

pk(λ+ (k + 1)µ)

= pk−1(λ− µ) + µ− µ
k−2∑
i=0

pi

=
kλk−1µ(λ− µ)∏k

j=1(λ+ jµ)
+ µ− µ

k−2∑
i=0

(i+ 1)λiµ∏i+1
j=1(λ+ jµ)

=
kλk−1µ(λ− µ)Γ

(
λ+µ
µ

)
µkΓ

(
λ+(k+1)µ

µ

) + µ

− µΓ

(
λ+ µ

µ

) λ+ µ

µΓ
(
λ+2µ
µ

) − λk−1(kµ+ λ)

µkΓ
(
λ+(k+1)µ

µ

)
 ,

(62)

where we used the identity
∏k
j=1(λ + jµ) =

µkΓ(λ+(k+1)µ
µ )

Γ(λ+µµ )
.

Now, we can further simplify (62) using an instance of
this the identity Γ

(
λ+2µ
µ

)
= λ+µ

µ Γ
(
λ+µ
µ

)
. Finally through

rearranging terms we obtain

pk =
(k + 1)λkµΓ

(
λ+µ
µ

)
µkΓ

(
λ+(k+1)µ

µ

) , (63)

which completes the proof. Calculating pk for k = Imax

follows along using the balance equation as shown above.

B. Calculation of the transition rates of the reversed process
(30), (31)

The transition rates for the reversed Markov process are
obtained directly from [Theorem 1.12] from [17] as Q′(i, j) =
pjQ(j,i)

pi
, i, j ∈ E with the same steady state distribution pnn ∈

E. Now given the forward Markov process with transition rates
in (2) (as sketched in Fig. 3) we obtain the following transition
rates for the reverse process Q′i,i−1 := λ′i for i = 1...Imax,
Q′i,j := µ′ij for i = 0...Imax − 1, i < j ≤ Imax and Q′i,j := 0
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otherwise. Hence, we obtain from (2) and (3) for i < Imax

λ′i = λ
pi−1

pi
= λ

iλi−1µ∏i
j=1 (λ+ jµ)

∏i+1
j=1 (λ+ jµ)

(i+ 1)λiµ

=
i

i+ 1
(λ+ (i+ 1)µ) . (64)

For i = Imax the derivation goes accordingly to find λ′i =
Imaxµ. Similarly, for i < j < Imax we obtain

µ′ij = µ
pj
pi

= µ
(j + 1)λjµ∏j+1
k=1 (λ+ kµ)

∏i+1
k=1 (λ+ kµ)

(i+ 1)λiµ

=
(j + 1)µλj−i

(i+ 1)
j+1∏
k=i+2

(λ+ kµ)

. (65)

Again, for j = Imax the derivation goes similarly.

C. On the numerical calculation of the LSTs in (44)

For completeness, we show in the following an alternative
method to the direct calculation of the conditional LST in (44)
that we used in this paper. We underline that the following
numerical computation may be beneficial in speeding up
computations especially for evaluation purposes.

The direct computation of (44) by computing the conditional
LST vectors (43) through recursion and matrix inversions, as
well as, the LST vector in (29) and the following insertion
of the vector components fn,k and f̃n into (44) becomes
computationally intensive when Imax is large. The reason for
this is the computation of the matrix inverse Φ−1 in (42)
as well its exponentiation in form of Ψk−1 in (43). Next
we discuss an alternative numerical method to compute the
quantities in (42) - (43).

First, we recognize that Φ−1 = (θI + D−M)−1 used in
(42) is a fraction by the adjugate matrix formula, i.e.,

Φ−1 =
R(θ)

ρ(θ)
, (66)

where R(θ) is a polynomial with matrix coefficients given by

R(θ) =

Imax∑
k=0

θkPk , (67)

and the denominator is the characteristic polynomial of
M−D, i.e.

ρ(θ) :=

Imax+1∑
k=0

rkθ
k = det (Φ) (68)

Also observe that r0 = det (D−M) and that rImax+1 = 1.
Note that the matrices Pk are of dimensions (Imax + 1) ×
(Imax + 1) large. Next, we obtain Pk iteratively using LeV-
errier’s method. In a nutshell, we plug (66) into the identity
Φ−1Φ = I and rearrange the terms to obtain

Imax+1∑
k=1

θkPk−1 +

Imax∑
k=0

θkPk(D−M) =

(
Imax+1∑
k=0

rkθ
k

)
I .

(69)

Now, we can compare the coefficients of θk on both sides of
(69) and obtain the recursive form for the matrices Pk as

Pk = rk+1I−Pk+1(D−M) , (70)

for k ∈ {Imax−1, .., 1}. From the comparison of the coeffi-
cients in (69) we know that P0 = (det(D−M)) (D−M)−1

and PImax
= I such that we can iteratively find the matrices

Pk using (70), hence, calculate the coefficients of R(θ).
Now, given that we calculate Φ−1 using the method above

we can use this result to simplify the matrix multiplication in
Ψk as Ψ = Φ−1Λ. Hence, we can write

Ψk =
R̃(θ)k

ρ(θ)k
, (71)

where we used the polynomial R̃(θ) that is defined as

R̃(θ) =

Imax∑
k=0

θkP̃k , (72)

with P̃k = PkΛ. Now calculating the denominator of (71) is
simple as Φ is triangular and its determinant is obtained in
closed form as

det (Φ) =

Imax∏
i=0

θ +
∑
j

Q′i,j

 . (73)

As R̃(θ)k is a product of polynomials with matrix coeffi-
cients, we calculate the numerator in (71) using an iterative
convolution operation of the coefficients P̃k. Now, given the
calculation method above we can numerically obtain Ψk for
insertion in (43). Note that the same procedure can be used to
obtain the elements f̃n(ν) in (44) by numerically calculating
the inversion in (29).

Finally, calculating the inverse Laplace transform of the
Palm joint density f◦(t1, x0) entails taking the inverse Laplace
transform of the right hand side (RHS) of (44). Given the
factorization of ρ(θ) and the matrix coefficient form of the
polynomial R(θ) =

∑Imax

k=0 θ
kPk we observe that fn′,n+1(θ)

on the RHS of (44) has the form
∑
i

αi
(θ+d′i)

κi
with constants

αi and κi ≤ n due to the partial fraction decomposition of
(71). To obtain the Palm joint density f◦(t1, x0) we calculate
the inverse Laplace-Stieltjes transform of the RHS of (44).
Given the observation that fn′,n+1(θ) can be rewritten as∑
i

αi
(θ+d′i)

κi
we know that the inverse LST of fn′,n+1(θ) has

the form
∑
i cix

κi
0 e
−d′ix0 with constants ci and κi ≤ n. The

same observation holds for f̃n(ν) in (44), i.e., by calculating
the inversion of (29) using the method above we finally obtain
a partial fraction decomposition and subsequent inverse LST
that has the form

∑
j hjt

ςj
1 e
−d̃jt1 .
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