
Root Tracking for Rate-Distortion: Approximating a
Solution Curve with Higher Implicit Multivariate

Derivatives

Shlomi Agmon1∗

1 School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Jerusalem, Israel

Email: shlomi.agmon@mail.huji.ac.il

Abstract
The rate-distortion curve captures the fundamental tradeoff between compression length

and resolution in lossy data compression. However, it conceals the underlying dynamics of
optimal source encodings or test channels. We argue that these typically follow a piecewise
smooth trajectory as the source information is compressed. These smooth dynamics are inter-
rupted at bifurcations, where solutions change qualitatively. Sub-optimal test channels may
collide or exchange optimality there, for example. There is typically a plethora of sub-optimal
solutions, which stems from restrictions of the reproduction alphabet.

We devise a family of algorithms that exploits the underlying dynamics to track a given
test channel along the rate-distortion curve. To that end, we express implicit derivatives at the
roots of a non-linear operator by higher derivative tensors. Providing closed-form formulae for
the derivative tensors of Blahut’s algorithm thus yields implicit derivatives of arbitrary order at
a given test channel, thereby approximating others in its vicinity. Finally, our understanding
of bifurcations guarantees the optimality of the root being traced, under mild assumptions,
while allowing us to detect when our assumptions fail.

Beyond the interest in rate distortion, this is an example of how understanding a problem’s
bifurcations can be translated to a numerical algorithm.

Keywords: Rate distortion theory, Bifurcation, Differential equations.

1 Introduction

The theory of lossy data compression was introduced in the seminal works of Shannon [1948, 1959],
and has since found multiple applications beyond the obvious ones of communications and storage
of information. Among others, clustering [Rose, 1998], perception [Blau and Michaeli, 2019, Sims,
2016], and it is intimately related to the information bottleneck principle [Tishby et al., 1999] in
learning, [Gilad-Bachrach et al., 2003].

Formally, let X ∼ pX and X̂ be discrete i.i.d. random variables on finite source and reproduc-
tion alphabets, respectively denoted X and X̂ . A rate distortion (RD) problem is defined by a

∗This work was supported by the ISF under grant 1641/21.
∗The author wishes to acknowledge the late Prof. Naftali Tishby for his involvement in the early stages of this

work. The author is grateful to Or Ordentlich, without whose continuous support this work could not have reached
its conclusion. The author thanks Shaul Zemel, Noam Agmon, Amitai Yuval and the reviewers for their helpful
comments.

ar
X

iv
:2

20
6.

11
36

9v
2

 [
cs

.I
T

]
 2

9
Ju

n
20

23

distortion measure d : X ×X̂ → R≥0 and a source distribution pX(x), or p(x) for short. One seeks
[Shannon, 1948, 1959] the minimal rate I(X; X̂) := Ep(x̂|x)pX(x) log

p(x̂|x)
p(x̂) subject to a constraint

D on the expected distortion. The optimal tradeoff between the information rate per message to
the distortion is encoded by the rate-distortion function

R(D) := min
p(x̂|x)

{
I(X; X̂) : Ep(x̂|x)pX(x) [d(x, x̂)] ≤ D

}
. (1.1)

Despite the interest in rate distortion, there are surprisingly few ways to calculate this tradeoff.
While the minimization problem (1.1) can be solved analytically in special cases, e.g., [Berger,

1971, 2.6] or [Cover and Thomas, 2006, 10.3], a solution is often obtained numerically by the
iterative Blahut-Arimoto (BA) algorithm, due to Blahut [1972]. Using alternating minimizations,
it converges to a test channel p(x̂|x) which achieves the minimum of (1.1), Csiszár [1974]. However,
the BA algorithm suffers from critical slowing down near critical points, Agmon et al. [2021], points
at which the number of symbols x̂ required for optimal reproduction decreases. That is, there is
a dramatic increase in the computational costs until convergence there. Further, one is often
interested in the entire R(D) curve. However, standard computation techniques solve (1.1) only
at specified grid points. This yields isolated samples along the curve while making little to no use
of previously computed solutions.

To alleviate computational costs, one could consider more efficient BA variants or its approxi-
mations thereof, such as the related [Yu, 2010, Matz and Duhamel, 2004, Sayir, 2000] for channel
capacity or [Sutter et al., 2015] for constrained capacity. Alternatively, the choice of initial condi-
tion could be improved. For example, deterministic annealing [Rose et al., 1990] uses the solution
at each grid-point as the initialization for the next, in analogy to annealing in statistical physics
[Rose, 1998]. The algorithms we propose aim to improve upon this choice significantly.

In an attempt to tackle the above shortcomings of BA, we propose a new family of algorithms
whose purpose is to follow the path of a known solution as some (scalar) control parameter is
varied. This is especially appealing for RD problems, as a solution at the extremities of the
curve is nearly trivial to obtain. For, the constant encoding to argminx̂ E[d(X, x̂)] and x 7→
argminx̂ d(x, x̂) are respectively optimal at zero rate or when the smallest distortion is desired.
Unlike BA, our algorithm for RD provides a piecewise polynomial approximation of the path
traversed by the distributions achieving (1.1), with uniform convergence guarantees outside a small
vicinity of the critical points. Building on the work of Agmon et al. [2021], our algorithm does not
suffer from an increased computational cost near critical points, but rather from a reduced accuracy
there. Nevertheless, it admits a comprehensible tradeoff between accuracy and computational
cost, permitting intelligible choices when high accuracy is desired. The computational cost of our
algorithm is comparable to that of BA with reverse deterministic annealing, with the advantage
of computing the entire curve of solutions rather than only solving on a grid.

Using the method of Lagrange multipliers for (1.1), with1 I(X; X̂)+βE [d(x, x̂)] and β > 0, one
obtains a pair of equations for p(x̂|x) and the marginal p(x̂). Iterating over these equations boils
down to the Blahut-Arimoto algorithm, [Cover and Thomas, 2006, 10.7-10.8]. That is, a necessary
condition for a distribution to achieve the minimum at (1.1) is that it is a fixed point of BA, or
equivalently a root of the operator

F := Id−BAβ , (1.2)

as noted by Agmon et al.. Where, BAβ denotes a single BA iteration at the multiplier value β, and
Id is the identity. The marginal p(x̂) may be taken as our variable (see Section I.2.3). However,
to facilitate the discussion we shall write x ∈ RT instead, for some T > 0. Namely, we consider
roots of an equation

F (x, β) = 0 , (1.3)
1The normalization constraint is omitted for clarity.

for an operator F (·, β) on RT , F : RT ×R→ RT , and β a real independent “time-like” parameter.
This work stems from the following intuition. Suppose that the Jacobian matrix DxF of F is

non-singular at a root (x0, β0) of (1.3). Then, by the Implicit Function Theorem, there not only
exists a function x(β) satisfying (1.3) through the root, x(β0) = x0, but x(β) also inherits the
differentiability properties of F , [Kielhöfer, 2012, I.1.7]. For example, x is analytic in β if F is
analytic. When F is particularly well-behaved, then one might expect the derivatives of x with
respect to β determine the path x(β). Indeed, when F is real-analytic as in rate-distortion (1.2),
then each coordinate of x(β) can be written as power-series around β0. If the series’ convergence
radii happen to be large or infinite, then the entire solution path x(β) can be extrapolated from the
point (x0, β0), at least in principle. But even if these radii are small (but non-zero), determining
x(β) only in some small vicinity of β0, then one can extrapolate the path x(β) segment by segment,
so long that DxF remains non-singular.

We provide three novelties to transform this intuition into an arguably practical algorithm.
The derivatives of x with respect to β are implied by the requirement F = 0 (1.3). To calculate
implicit derivatives, we first provide a recursive formula (Theorem 3 in Section I.2.2) for the
implicit derivatives dl

dβlx at a root in terms of the derivative tensors of F , for any order l > 0.
While Zemel [2019] already solved this for a univariate x, we are unaware of such formulae when
x is multivariate. Second, we provide arbitrary-order closed-form formulae (Theorem 4 in Section
I.2.3) for the derivative tensors of rate-distortion (1.2). Agmon et al. [2021] already provided its
Jacobian, while for the related channel capacity Yu [2010] provided the Jacobian and Nakagawa
et al. [2021] also the Hessian.

Together, the first two components allow us to calculate numerically the implicit derivatives

dlx

dβl

∣∣∣∣
(x0,β0)

(1.4)

of arbitrary order at a root of rate-distortion (1.2), under mild assumptions. In fact, we have
discovered a first-order ordinary differential equation (ODE) satisfied by RD roots (Theorem 14 in
Section II.5.3). Using the implicit derivatives (1.4) we can approximate x(β) nearby, for example
via

x(β0 +∆β) ∼= 1

0!
x0 +

1

1!

dx

dβ

∣∣∣∣
(x0,β0)

∆β +
1

2!

d2x

dβ2

∣∣∣∣
(x0,β0)

∆β2 + · · ·+ 1

l!

dlx

dβl

∣∣∣∣
(x0,β0)

∆βl , (1.5)

where ∆β := β − β0. One can then take a step ∆β and recompute expansion (1.5) repeatedly.
This simple algorithm based on the Taylor method [Butcher, 2016, Atkinson et al., 2011] gives a
piecewise polynomial approximation of the path x(β). After computing (1.5) along a grid, then
any off-grid point is obtained by merely evaluating a polynomial. e.g., the right of Figure 1.1. With
that, the above is not to be confused with the gradient flow towards a root at a fixed multiplier
value β0, which [Parker et al., 2010] describe in a related context by an ODE. In contrast, the
implicit derivatives (1.4) describe how a root evolves with β.

While the above goes a long way towards reconstructing the entire solution path, it is not
enough. For, as we show in Section II.6, RD problems typically have a plethora of sub-optimal
roots, not achieving the minimum in (1.1). RD roots can collide and merge into one, or exchange
optimality in some cases where the RD curve has a linear segment. These are instances of bi-
furcations — a change in the number of roots (1.3). To ensure that the root being traced is
optimal, some understanding of the solution structure is necessary. That is, of the bifurcations of
the fixed-point equations of RD, encoded by (1.2). Together with the two components above, the
understanding established in Section II.6 provides tools to detect and handle bifurcations (of some
types), culminating in our algorithm for tracking the path of an optimal RD root (Algorithm 3 in
Section I.3.2), subject to mild assumptions. In addition to the interest in rate distortion itself, this

0 1 2 3

log2 β

0.0

0.2

0.4

0.6

0.8

1.0

p(
x̂

)

A

Taylor, order 1

Taylor, order 3

Taylor, order 6

Taylor, order 17

0 1 2 3

log2 β

0.0

0.2

0.4

0.6

0.8

1.0

p(
x̂

)

RD root tracking, order 1

RD root tracking, order 2

RD root tracking, order 4

Figure 1.1: Approximating the entire solution curve with implicit derivatives (1.4),
for a binary source with a Hamming distortion, compared to its analytical solution in Section
III.F (thick blue). Each color depicts a marginal probability distribution p(x̂) as a function of
the Lagrange multiplier β, for x̂ ∈ {1, 2}; this suffices to parametrize a root (cf., Section I.2.3).
Left: Taylor expansions (1.5) of several orders around the point A. Right: root-tracking for
RD (Algorithm 3, with δ = 10−2) detects and handles the bifurcation (dashed red vertical).
Adding grid-points bootstraps the approximation towards higher accuracy, with each grid point
leveraging the computational cost invested earlier, to its right. Unlike BA, the entire solution curve
is extrapolated here from only 31 grid points.

provides an example of how an understanding of a problem’s bifurcations can be translated to a
numerical algorithm. As the computation of the rate-distortion function is equivalent to a process
of deterministic annealing [Rose, 1998], we believe that similar tools might facilitate the numerical
solution of other problems as well.

RD bifurcations were noted already by Berger [1971] and others due to the resulting non-
smoothness of the RD curve (1.1) at the points of bifurcation. Rose [1994] uses a mapping approach
to provide insights for continuous source alphabets, usually assuming a squared-error distortion,
d(x, x̂) = |x − x̂|2. While allowing for a much broader class of distortion measures, our results in
Section II.6 suggest a slightly different picture of RD bifurcations for sources of finite alphabet.
Further, they allow a clearer view of cases where BA with reverse deterministic annealing [Rose
et al., 1990, Rose, 1998] follows a sub-optimal solution path rather than the optimal one.

Our algorithm is perhaps best compared to solving an ODE numerically. Where, one usually
exploits derivatives only to the order dictated by the ODE in order to propagate the solution. On
the other hand, the mathematical machinery we provide allows us to compute implicit multivari-
ate derivatives dlx

dβl (1.4) of arbitrary order, which we specialize to RD. In principle, one may even
change the order at will with this machinery. With that, we have made several deliberate conces-
sions for the sake of simplicity. Among others, fixing the order and step-size results in inefficient
use of computational resources; see Section I.3.4 on various possible improvements and II.7 on the
root cause of the computational difficulty. Nevertheless, despite these concessions, the cost of an
entire solution curve appears to be roughly comparable to BA with reverse annealing, as suggested
by Figure 1.2. Furthermore, we handle only cluster-vanishing bifurcations as in [Agmon et al.,
2021], although our understanding of RD bifurcations (in Section II.6) permits more than that.

The error of an l-th order Taylor method for RD, as in expansion (1.5), is of order O(|∆β|l)
for small step sizes |∆β| (Theorem 5 in Section I.3.1); cf., Figure 1.1. Increasing l or taking |∆β|
smaller improves the approximation in general, as one might expect. Though, for simplicity, we
fix these parameters while computing. This method can be seen to have better accuracy in general
than interpolating the output distributions of BA, for example, at least for orders l > 1. Though,
the details of this are deferred to future work. The computational costs of Algorithm 3 are only
linear in source alphabet size |X | thanks to our choice of coordinates for x (in Section I.2.3), and
are asymptotically polynomial in |X̂ | when l is fixed. On the other hand, its computational costs
grow (hyper-)exponentially with the order l. However, despite this rapid growth rate, higher orders
l make much better use of the invested computational costs, in general, when the step size |∆β| is
small. The cost-to-error tradeoff is demonstrated in Figure 1.2, with details in Section I.3.3.

To assist the reader, this paper is divided into three. Part I focuses on the necessary details, such
as how to compute implicit derivatives for RD problems, and how these could be used to reconstruct
the solution curve. Supporting ideas are elaborated in Part II: an outline of the derivation of the
formulae for RD derivative tensors, a study of RD bifurcations and their relations to root-tracking,
and complexity and error analyses. Part III provides the proofs and technical details omitted
elsewhere. At the beginning of most parts and sections, we placed a short overview to help keep
track of the logical flow. We also provide an annotated source code of our implementation at
https://github.com/shlomiag/RTRD

Notations. Vectors are denoted boldface x, its j-th coordinate xj and scalars x in regular-font.
An initial vector condition is denoted x0. Also, α = (α0,α+) when considering α0 as the zeroth
coordinate of α, and α+ for the rest. ∆[S] denotes the probability simplex or simplex on a (finite)
set S, {p ∈ RS : p(s) ≥ 0 for s ∈ S, and

∑
s∈S p(s) = 1}. T is the dimension of an unspecified

operator F (x, β), x ∈ RT , as in (1.3). N := |X | and M := |X̂ | are the source and reproduction
alphabet sizes of a given RD problem (d, pX). A reproduction symbol x̂ ∈ X̂ is also called a cluster.

https://github.com/shlomiag/RTRD

−1 0 1 2

−12

−10

−8

−6

−4

−2

0

lo
g

1
0

of
L
∞

er
ro

r

Fewer grid points More grid points

Stopping condition 10−8

−1 0 1 2

−12

−10

−8

−6

−4

−2

0

lo
g

1
0

of
L
∞

er
ro

r

100 points

103 points

104 points

79

458

3944

79

1344

23150

81

158548

BA, reverse annealing

RD root tracking, order 1

RD root tracking, order 2

RD root tracking, order 3

RD root tracking, order 4

RD root tracking, order 5

RD root tracking, order 6

0.0 0.2 0.4 0.6 0.8 1.0

log10 of computation time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1.2: The tradeoff between error and computational cost, by the number of grid
points. For each number of equally spaced grid points, the maximal error from the true solution
(over all grid points) is plotted against the computation time, which serves as a rough measure
for the computational complexity of the entire solution curve. Computation time was measured
with our implementation, running single-threaded on a 1.80GHz Intel i7-8550U processor; see I.3.3
on complexities and cost-to-error tradeoff. Results are shown for RD root tracking (Algorithm 3)
of several orders, and for Blahut-Arimoto computed in reverse annealing. Unlike BA, RD root
tracking approximates the whole solution curve rather than just the grid points. The leftmost
marker for each algorithm represents a grid of about 80 points, with an ∼ 8% increase between
consecutive markers. When there are too few grid points, RD root tracking is sensitive to their
precise location, often failing to detect the bifurcation. This is manifested by large errors to the
top-left. Error calculation for root tracking ignores the point of heuristic itself, where a cluster
mass threshold of δ = 0.01 is crossed (see Section I.3.2). Solutions along the grid are compared
against the analytical ones for a binary source with a Hamming distortion, Section III.F. Grid
points were selected uniformly for all algorithms in an attempt to avoid bias in error estimation.
Left: BA’s grid size is increased gradually, from only 80 grid-points at the left to ∼ 760,000 at
the right, with a stopping condition of 10−8. As the grid becomes denser, BA computes at points
closer to the bifurcation. Due to BA’s critical slowing down, its accuracy is therefore reduced
as the grid becomes denser, which is clearly noticed to the right. cf., the bottom of Figure 2.3.
Right: BA’s stopping condition is varied gradually from 10−8 to ∼ 10−14, for a grid of fixed sizes
100, 103 or 104. The number of grid points is shown at several markers, for RD root tracking of
orders 1, 3, and 6. Notice the intersection of the plot for BA with 104 grid-points with RD root
tracking of order 6; the latter obtains the entire solution curve with only 458 points, at the same
cost and accuracy.

Part I

How to track operator roots for
rate-distortion problems
This part aims to present the details necessary for our root-tracking Algorithm 3, which recon-
structs the solution curve of a rate-distortion problem.

To that end, we start in 2.1 with the mathematical observation underlying the calculation
of higher implicit multivariate derivatives at an operator root. This is accompanied by direct
calculations of low-orders, and a simple yet non-trivial example in 2.1.1, before diving in 2.2 into
the machinery for implicit derivatives of arbitrary order. In 2.3, we provide closed-form formulae
for the derivative tensors of the Blahut-Arimoto operator. This allows us to specialize the above
machinery to implicit derivatives of rate-distortion problems of arbitrary order.

Once the results for implicit derivatives at a point are in place, we use them in 3.1 to reconstruct
the entire solution curve. This requires an understanding of the bifurcations of the operator at
hand. For rate-distortion problems, we build on the results of Agmon et al. [2021], which are
expanded significantly in Section II.6. This allows RD bifurcations to be handled in 3.2, completing
the algorithm. Error guarantees for our algorithm, its computational and memory complexities,
and its error-complexity tradeoff are discussed in 3.3. We conclude this part by discussing in 3.4
how our choices could be improved to yield a more efficient variant of the proposed algorithm.

Part II expands on these results, explaining details that are important yet not strictly necessary
for understanding the algorithm.

2 Implicit derivatives at an operator’s root, and for rate-distortion prob-
lems

This section provides the tools to calculate implicit derivatives at a root (x0, β0) of an arbitrary
operator F , culminating with the results necessary for implicit derivatives of rate-distortion prob-
lems.

2.1 How implicit derivatives at an operator’s root can be calculated

The sequel rests upon the following observation. Let F (·, β) be an operator on RT , F : RT ×R→
RT , and let (x0, β0) be its root, F (x0, β0) = 0 (1.3), such that

Assumption 1 (x can be written as a function of β). There exists a function x(β) defined in
some neighborhood of β0, such that x(β) is a root of F through x0.

Assumption 2. The function x(β) is differentiable at β0 as many times as needed.

We shall assume throughout that any derivative of F exists, as in the case of the Blahut-Arimoto
operators. Using x(β) from Assumption 1, we have a well-defined composition

β 7−→
(
x(β), β

)
7−→ F

(
x(β), β

)
(2.1)

in the vicinity of β0. Since
(
x(β), β

)
is a root, this composition is nothing but the constant path

β 7→ 0 in RT . Hence, by Assumption 2, its derivatives with respect to β must vanish, to any order.
That is,

dl

dβl
F
(
x(β), β

)∣∣∣
β0

= 0, (2.2)

for any l ≥ 0. In essence, all the results below are encoded in Equation (2.2), with the remainder
of this section dedicated to extracting the information of interest.

Before specifying how implicit derivatives dlx
dβl (1.4) can be calculated from (2.2), several clar-

ifications are due. We shall require throughout that Assumptions 1 and 2 hold at any root of F ,
except perhaps at points of bifurcation. However, we do not require a root x(β) at 1 to be unique.
That is, there may be multiple functions x(β), all of which are roots of F (1.3) through (x0, β0).
A-priori, it is not clear that x can be written as a function of β, nor that x(β) is sufficiently differ-
entiable. Both of these assumptions follow from the Implicit Function Theorem; e.g., [Kielhöfer,
2012, Theorem I.1.1]. For, write DxF (x0, β0) for the Jacobian matrix of F with respect to its x
coordinates, evaluated at (x0, β0). Recall, it is the matrix defined by (DxF)i,j :=

∂Fi

∂xj
. When it is

non-singular, then the theorem not only implies that there exists a unique function x(β) through
(x0, β0), but also that x(β) inherits the differentiability properties of F , [Kielhöfer, 2012, I.1.7].
That is, the derivatives dlx

dβl

∣∣
β0

(1.4) exist, to any order. However, we shall usually only require
that Assumptions 1 and 2 hold, rather than than the stronger condition that DxF is non-singular.
This is reasonable for rate-distortion problems — see Section 3.1 for details. In general, however,
understanding the bifurcations of F is necessary — e.g., Section II.6 for RD. For example, both
assumptions hold for the constant one-dimensional operator F (x, β) := 0, whose Jacobian vanishes
everywhere despite having no bifurcations. While on the other hand, the Jacobian of Example 2.1.1
below is singular precisely at the point of bifurcation there, where its two solution curves intersect
and annihilate each other (see Figure 2.1).

We start with a gentle low-dimensional introduction as to how the derivatives dlx
dβl (1.4) can be

calculated. Write F = (F1, . . . , FT) for the coordinates of F . Applying the multivariate chain-rule
to the first-order equation d

dβF = 0 (2.2) reads,

d

dβ
Fi =

T∑
j=1

∂Fi

∂xj

dxj

dβ
+

∂Fi

∂β
= 0 (2.3)

for each i = 1, . . . , T . Functions are understood henceforth to be evaluated at (x0, β0), unless
otherwise stated. Write DβF for the vector whose i-th entry is ∂Fi

∂β . The calculation of dx
dβ thus

boils down to solving the linear equation2

DxF
dx
dβ = −DβF . (2.4)

This is an implicit ordinary differential equation (ODE), describing how the root x evolves with
β. cf., Section 3.1 on the analyticity of RD roots. This ODE is an immediate consequence of
the Implicit Function Theorem, [de Oliveira, 2014, Theorem 5], at least when the Jacobian is
non-singular. We derive its explicit form (2.5) for RD later, in Theorem 14 (Section II.5.3). A
marginal distribution r of full support on the reproduction alphabet X̂ which is a fixed-point of
Blahut-Arimoto satisfies∑

x̂′

Ax̂,x̂′
dr(x̂′)

dβ
= Ep(x̂′,x) [q(x̂|x)d(x, x̂′)]− EpX

[q(x̂|x)d(x, x̂)] (2.5)

for every x̂, where Ax̂,x̂′ is given by (5.14), and q is the test channel or encoder corresponding to
r by the BA Equation (2.18).

Before proceeding to the higher-order counterparts of the implicit ODE (2.4), some classic
material on higher derivatives is necessary. e.g., [Dieudonné, 1969, VIII.12] or the very readable
[Aguilar, 2021, 10.3] for the following. Let f(x, β) be a real-valued function on RT×R, f : RT×R→

2It suffices to find a linear pre-image under DxF if it is not invertible.

R. Fixing β at β0 for a moment, its gradient is the vector (∂f
∂x1

, . . . , ∂f
∂xT

). The gradient can be
considered as a linear functional, mapping a vector v ∈ RT to v1 · ∂f

∂x1
+ · · ·+vT · ∂f

∂xT
. This is useful

when considering the first-order Taylor expansion f(x0, β0)+
∑

j vj
∂f
∂xj

of f(·, β0) about x0, where

v := x−x0 is the deviation from the point of expansion. Similarly, the Hessian matrix
(

∂2f
∂xi∂xj

)T
i,j=1

of f is a bi-linear map. Namely, it maps a pair of vectors u,v ∈ RT to
∑

i,j uivj · ∂2f
∂xi∂xj

, in a
manner which is separately linear in each of the two vectors. The second-order expansion of f

maps a deviation v ∈ RT from the basepoint x0 to f(x0, β0) +
∑

j vj
∂f
∂xj

+
∑

i,j vivj · ∂2f
∂xi∂xj

.
Next, replace the real-valued f with the i-th component Fi of the operator F = (F1, . . . , FT)

that we have started with, and allow derivatives also with respect to β. The above generalizes as
follows. For orders b,m ≥ 0 and a coordinate 1 ≤ i ≤ T (all integers), denote by Db+m

βb,xmFi the
following symmetric3 m-multilinear map, which is defined on v1, . . . ,vm ∈ RT by

Db+m
βb,xmFi

∣∣∣
(x0,β0)

[v1, . . . ,vm] :=
∑

1≤i1,i2,...,im≤T

v1,i1 · · · vm,im ·
∂m

∂xi1∂xi2 · · · ∂xim

∂bFi

∂βb
(x0, β0) .

(2.6)
Just as in the second-order Hessian, each index ij varies independently over all the coordinates
1, . . . , T of vj , for j = 1, . . . ,m. We write Db+m

βb,xmF for the vector whose i-th coordinate is
Db+m

βb,xmFi. Evaluation at (x0, β0) shall be omitted whenever clear from the context. For practical
purposes, the i-th multilinear map Db+m

βb,xmFi may be considered as a “matrix” with m axes, and
Db+m

βb,xmF as a “matrix” with m+1 axes. For example, the vector DxFi is the gradient of the (scalar)
function Fi, while DxF is the T -by-T Jacobian matrix of F . The integers b and m are the orders
of differentiation with respect to β and the coordinates of x, respectively. For b > 0, Db+1

βb,x
Fi and

Db+1
βb,x

F are derivative tensors of higher order, although of the same respective sizes as DxFi and
DxF . When b and i are given, one can think of the m-tuples (i1, i2, . . . , im) indexing Db+m

βb,xmFi in

(2.6) as differentiations in some particular order. First derive ∂bFi

∂βb with respect to xim , then with
respect to xim−1

, and so forth up to xi1 . This notation is redundant, in the sense that exchanging
distinct indices ij1 ̸= ij2 yields the same partial derivative when Fi is well-behaved.

When i is understood from the context, it is sometimes convenient to index Db+m
βb,xmFi by a

multi-index α = (α0,α+) ∈ N0 × NT
0 , with N0 the non-negative integers. α0 then represents the

number b of differentiations with respect to β, and αj the number of differentiations with respect
to xj for 1 ≤ j ≤ T . Define |α| :=∑j αj . When setting α = (1, 3, 2) ∈ N1+2

0 for an operator F on

T = 2 dimensions, ∂6

∂β ∂x3
1∂x

2
2
Fi for example is shortened to ∂|α|

∂βα0∂xα+ Fi =
∂6

∂β∂x(3,2)Fi, for i = 1, 2.
Because the order of differentiation does not matter when Fi is well-behaved, then α corresponds
not only to the entry (i1, . . . , i5) = (1, 1, 1, 2, 2) of D6

β1,x5Fi (2.6), but also to its permutations. See
also the multivariate notation definitions (4.3), in Section II.4.

At the next order, differentiating d
dβFi = 0 (2.3) with respect to β yields

d2

dβ2
Fi =

∑
j,k

∂2Fi

∂xk∂xj

dxj

dβ

dxk

dβ
+
∑
j

∂2Fi

∂β∂xj

dxj

dβ
+
∑
j

∂Fi

∂xj

d2xj

dβ2
+
∑
j

∂2Fi

∂xj∂β

dxj

dβ
+
∂2Fi

∂β2
= 0 . (2.7)

Unlike the first-order expansion (2.3), the second-order one (2.7) contains a 3-tensor term
∑ ∂2Fi

∂xk∂xj

dxj

dβ
dxk

dβ .
By definition (2.6), the latter is D2

x,xFi[
dx
dβ ,

dx
dβ], while the mixed-derivatives term following it is

3An m-multilinear map T is symmetric if its value is unchanged by an arbitrary permutation of its arguments:
T [v1, . . . ,vm] = T [vσ(1), . . . ,vσ(m)] for any permutation σ of {1, 2, . . . ,m}.

D2
β,xFi[

dx
dβ], and so forth. Rewriting the first few expansion orders dlF

dβl = 0 (2.2) in this notation,

0 = d0F
dβ0 = F (1.3)

0 = d1F
dβ1 = DxF [dxdβ] +DβF (2.8)

0 = d2F
dβ2 = DxF [d

2x
dβ2] +D2

x,xF [dxdβ ,
dx
dβ] + 2D2

β,xF [dxdβ] +D2
β,βF (2.9)

0 = d3F
dβ3 = DxF [d

3x
dβ3] +D3

x,x,xF [dxdβ ,
dx
dβ ,

dx
dβ] + 3D2

x,xF [d
2x

dβ2 ,
dx
dβ]

+ 3D3
β,x,xF [dxdβ ,

dx
dβ] + 3D2

β,xF [d
2x

dβ2] + 3D3
β,β,xF [dxdβ] +D3

β,β,βF (2.10)

where the third-order expansion (2.10) for d3

dβ3F follows from (2.9) by a straightforward calculation.

As can be seen in (2.8)-(2.10), the implicit derivative dlx
dβl (1.4) of highest-order appears only

once in the l-th order expansion, at the product DxF [d
lx

dβl] of dlx
dβl by the linear map DxF . While,

the other terms in each equation contain only derivatives dkx
dβk of lower orders 0 < k < l. This holds

for any order l > 0, as we show in Section 2.2 below. So, in principle, all one needs to do in order
to obtain the derivatives dlx

dβl (1.4) of any order l > 0 is to solve these equations recursively:

1. Suppose that the lower-order derivatives dkx
dβk are known for 0 < k < l.

2. Calculate all the derivative tensors of F , up to order l.

3. Evaluate the multilinear forms in the expansion of dl

dβlF = 0, except for DxF [d
lx

dβl].

4. Solve a linear equation in dlx
dβl with coefficients DxF .

Up to the technicalities of a general-order machinery this is the heart of Algorithm 1 below,
for computing implicit multivariate derivatives of arbitrary order. Once these technicalities are
settled in Section 2.2, there are two main tasks that one needs to tackle in order to obtain the
derivatives dlx

dβl (1.4) at an operator root, and to be able to use them. First, one needs to calculate
the derivative tensors of F , as in point 2 above. We have accomplished this for rate-distortion
problems, providing in Section 2.3 closed-form formulae for the derivative tensors of Id − BAβ

(1.2), of any order. Second, one needs to tell whether the Taylor series (1.5) for x(β) around β0

indeed approximates the true solution. For, operator roots may cease to be a function of β, cease
to be differentiable, or even cease to exist at critical β values. This boils down to understanding
the solution structure of F , or equivalently its bifurcations. While 2.1.1 below provides an example
where Assumption 1 breaks (two roots collide and annihilate), the discussion for rate-distortion is
subtler. We provide guarantees in Section 2.3, with the full details postponed till Section II.6.

2.1.1 Example: implicit derivatives of line intersections with a parabola

Before presenting in Section 2.2 the fully fledged machinery of arbitrary order, we give a simple
yet non-trivial example how implicit derivatives dlx

dβl can be calculated at an operator root.

A line y = ax + β in the plane typically intersects a parabola y = bx2 + cx + d (with b ̸= 0)
at either two points or none, as in Figure 2.1 for instance. In the special case when it is tangent
to the parabola, it intersects at a single point. Consider the problem of tracking the intersection
point as the line is being translated by varying β.

Setting

F (x, y;β) :=

(
−y + bx2 + cx+ d
−y + ax+ β

)
, (2.11)

1 0 1 2 3
2

4

6

8

10

Figure 2.1: Intersections of y = x2 + 3 with the lines y = x+ β. The line at β = 5 is dashed
blue, and at other integral β values in dotted blue. At βc = 2.75 (solid red line) the system F = 0
(2.11) undergoes a bifurcation: there are two distinct roots above βc, none below it, and exactly
one at the bifurcation point itself.

the intersection point is encoded by requiring F = 0. Assume that (x0, y0) is known to be an
intersection point at β0, F (x0, y0;β0) = 0, and that at the vicinity of (x0, y0), the intersection
point can be written as a function of β, (x, y) =

(
x(β), y(β)

)
. By calculating the derivative tensors

of F (2.11) and plugging them into the first few expansions of dlF
dβl = 0 (e.g., (2.8)-(2.10)), we can

solve for the implicit derivatives dlx
dβl ,

dly
dβl at (x0, y0;β0). See Section III.A for full details. Doing so

till fourth order yields a Taylor expansion (1.5) of the intersection point,(
x(β)
y(β)

)
≈
(
x0

y0

)
+

1

∆

(
1

a+∆

)
· (β − β0)−

b

∆3

(
1
a

)
· (β − β0)

2

+
2b2

∆5

(
1
a

)
· (β − β0)

3 − 5b3

∆7

(
1
a

)
· (β − β0)

4 (2.12)

Where, ∆ := 2bx0 + c − a vanishes precisely when the slopes 2bx0 + c of the parabola and a of
the line coincide. At this point a bifurcation occurs, as can be seen in Figure 2.1: the two distinct
intersection points of this problem merge then into one, and disappear beyond the critical β value.
That is, the point of intersection (x0, y0) can no longer be written as a function of β. Figure 2.2
demonstrates the first few expansion orders (2.12), when expanded near or far of the bifurcation.

For this simple problem, the equation F = 0 (2.11) can also be solved analytically, yielding

x(β) =
a− c

2b
±
√(

a− c

2b

)2

+
β − d

b
and y(β) = β + ax(β) (2.13)

Our approximation (2.12) is nothing but the fourth-order Taylor expansion of the exact solution
(2.13) around β0, as can be verified by expanding the latter directly. However, in contrast to the
Taylor expansion of (2.13), the calculations leading to (2.12) can be carried out even when an
exact solution is not available, as is typical for rate-distortion problems.

2.2 High-order implicit derivatives at an operator’s root

We provide a machinery for calculating high-order implicit derivatives at an operator’s root, built
on the reasoning of Section 2.1. In particular, we assume henceforth that Assumptions 1 and 2

1 1 3

2

4

6

8

10

0 = 5

1 1 3

2

4

6

8

10

0 = 3
Exact solution
1st order
2nd order
3rd order
4th order

3 4 5 6
12

10

8

6

4

2

0

2

lo
g 1

0(
L 2

er
ro

r)

3 4 5 6
12

10

8

6

4

2

0

2

lo
g 1

0(
L 2

er
ro

r)

Figure 2.2: Taylor approximations versus the exact solution (2.13) to F = 0 (2.11), by
order and choice of base-point, for the line-intersecting-parabola problem of Figure 2.1. Top:
the expansions (2.12) of (x(β), y(β)) around β0, colored by order, and the exact solution (2.13) in
black. Bottom: the expansions’ L2-error from the exact solution. The comparison ends at the
bifurcation point βc = 2.75 (dashed red verticals), beyond which no solution exists. Right: the
Jacobian DxF becomes increasingly singular as the base-point β0 is taken closer to βc (see Section
III.A). As a result, the implicit derivatives diverge and the approximations’ quality deteriorates.
cf., the comments after Theorem 3 (in Section 2.2) and Section II.7.3 on the latter implication.

there hold. As before, implicit derivatives and derivative tensors are understood to be evaluated
at (x0, β0).

But first, a few definitions. A partition of an integer n > 0 is a sequence of positive integers
0 < p1 ≤ p2 ≤ · · · ≤ pm whose sum is n,

∑m
i=1 pi = n. The integers pi are called the parts of

the partition. The partition function p(n) is the number of partitions of n. e.g., Andrews [1998].
When interested in the number of times mi a part pi appears (its multiplicity), we shall sometimes
write (m1) · p1 + · · · + (ms) · ps, with 0 < p1 < · · · < ps now the partition’s distinct parts. The
total multiplicity is the number of parts m := m1 + · · ·+ms in a partition. For example, there are
three partitions of the integer n = 3, p(3) = 3. Namely, 1+2, 1+1+1, and the trivial partition 3.
Written by multiplicity, these are (1) ·1+(1) ·2, (3) ·1 and (1) ·3 respectively, of total multiplicities
2, 3 and 1.

We shall need to apply the m-multilinear maps Db+m
βb,xmFi (2.6) with repeated arguments. For

a lack of better notation, if v1 appears as an argument m1 times, v2 appears m2 times, till vs

appearing ms times, we denote

Db+m
βb,xmFi[(v1)×m1

, . . . , (vs)×ms
] := Db+m

βb,xmFi[v1, . . . ,v1︸ ︷︷ ︸
m1 times

, . . . ,vs, . . . ,vs︸ ︷︷ ︸
ms times

] (2.14)

With that, the arbitrary-order counterparts dl

dβlF of (2.8)-(2.10) are as follows.

Theorem 1. Let F
(
x(β), β

)
be the composition of F : RT × R → RT with a path x(β) in RT ,

both of which are sufficiently differentiable. Its derivative of order l > 0 can be written as

dl

dβl
F (x(β), β) =

∑
partitions

m1·δ(p1=1)∑
b=0

l!

b!(m1 − b)!m2! · · ·ms! · (p1!)m1 · · · (ps!)ms

·Dm
βb,xm−bF

[(
dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

]
(2.15)

where the outer sum is over the integer partitions (m1) ·p1+ · · ·+(ms) ·ps of l, m := m1+ · · ·+ms,
and δ is Dirac’s delta function.

The inner summation at (2.15) goes up to the multiplicity of 1 in a partition, or zero if there
is no part of size 1. This theorem is an application of a modern version of the multivariate Faà di
Bruno’s formula, Ma [2009], which is elaborated in Section II.4. See Section III.B.1 for a proof.

To illustrate Theorem 1, we order the summands in the expansion of d3

dβ3F by integer partitions.
Recall the third-order expansion (2.10),

d3F
dβ3 = DxF [d

3x
dβ3] +D3

x,x,xF [dxdβ ,
dx
dβ ,

dx
dβ] + 3D2

x,xF [d
2x

dβ2 ,
dx
dβ]

+ 3D3
β,x,xF [dxdβ ,

dx
dβ] + 3D2

β,xF [d
2x

dβ2] + 3D3
β,β,xF [dxdβ] +D3

β,β,βF . (2.16)

Each term above corresponds to a partition and to a number b of differentiations with respect to
β, indexing the summations at (2.15). The part sizes and their multiplicities can be read off the
tensors’ arguments at (2.16). For example, DxF [d

3x
dβ3] corresponds to a partition with one part of

size 3, and b = 0 derivations with respect to β. While, D2
β,xF [d

2x
dβ2] corresponds to (1) · 1 + (1) · 2,

and b = 1; a first-order argument dx
dβ corresponding to the part of size 1 is left out because b > 0.

Proceeding this way, we obtain Table 1.

l = 3 (3) · 1 (1) · 1 + (1) · 2 (1) · 3

D3
x,x,xF [dxdβ ,

dx
dβ ,

dx
dβ] 3D2

x,xF [d
2x

dβ2 ,
dx
dβ] DxF [d

3x
dβ3] b = 0

3D3
β,x,xF [dxdβ ,

dx
dβ] 3D2

β,xF [d
2x

dβ2] b = 1

3D3
β,β,xF [dxdβ] b = 2

D3
β,β,βF b = 3

Table 1: The summands of Theorem 1 for l = 3. The expansion terms of d3F
dβ3 (2.16) are ordered

by the integer partitions of 3 and by the number b of differentiations with respect to β.

No part in a partition of l can be of size larger than l. Clearly, the trivial partition (1) · l
is the only one with a part of size l. Thus, among the derivatives dkx

dβk for k > 0, dlx
dβl is that of

highest-order which appears in dl

dβlF (2.15). It appears there once, at the term indexed by the
trivial partition (1) · l and b = 0.

Corollary 2. The derivative dlx
dβl appears once in the l-th order expansion (2.15) of dl

dβlF , at the

term DxF [d
lx

dβl]. Any other term there contains only derivatives dkx
dβk of lower orders, k < l.

With that, the derivative of highest-order dlx
dβl can be isolated easily from dl

dβlF = 0 (2.2). As
an immediate consequence of Theorem 1, we obtain

Theorem 3. Let l > 1, x = x(β) a root of F = 0 (1.3), and assume that the derivatives dkx
dβk are

known for all 0 < k < l. Then,

DxF
[
dlx
dβl

]
= −

∑
non-trivial
partitions

m1·δ(p1=1)∑
b=0

l!

b!(m1 − b)!m2! · · ·ms! · (p1!)m1 · · · (ps!)ms

·Dm
βb,xm−bF

[(
dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

]
(2.17)

where the l-th order derivative dlx
dβl appears only at the left-hand side; the outer sum is over the

non-trivial integer partitions of l. For l = 1, use DxF [dxdβ] = −DβF (2.4) instead.

While Zemel [2019] provides a formula for implicit derivatives of arbitrary order when x is
univariate, we are unaware of such a result in the literature for a multivariate x. Unlike our
Theorem 3 which is recursive and written as a sum over integer partitions, their formula (Theorem
15 therein) is explicit and written as a sum over vector partitions, while requiring that DxF is non-
singular. These differences make Theorem 3 computationally more efficient for our purposes, as
we compute all the derivatives up to a given order, dkx

dβk for k = 1, . . . , l. Our first-order expansion
(2.8) coincides with that of Zemel [2019] when x is univariate; a direct exercise shows that so do
our second and third order expansions (2.9)-(2.10) (see Equations (2)-(4) there). Verifying the
equivalence directly for higher or is more challenging.

Now that we’ve established that dl

dβlF = 0 (2.2) can be solved for dlx
dβl , we spell-out in Algorithm

1 the steps to solve it recursively from formula (2.17) in Theorem 3. The computational and
memory complexities of Algorithm 1 are elaborated in Section II.8. It requires an auxiliary method
(Calc Deriv Tensor) to compute the derivative tensors (2.6) of F . For rate-distortion problems,
these tensors are given in the next Section 2.3. When the latter are used, we refer to it as the
specialization of Algorithm 1 to rate-distortion, or simply Algorithm 1 for RD. To keep things
simple, Algorithm 1 is presented in a recursive form. Yet, implicit derivatives can be memorized
(cached) at little memory cost O(T · l), thus avoiding the recursion. Similar comments go also to
memorizing the derivative tensors of F — see Section 3.3 for details.

When F has multiple roots x(β) of through (x0, β0), then the Jacobian DxF must be singular,
by the Implicit Function Theorem. In accordance with that, formula (2.17) then has multiple
solutions for each derivative order dlx

dβl , as they are determined up to an element in kerDxF .
In the other way around, singularity of the Jacobian does not necessarily imply that there are
multiple roots x(β) through (x0, β0). For, the existence of multiple solutions dlx

dβl to (2.17) need
not imply that for each there is a root x(β) through (x0, β0) with the given implicit derivative. An
understanding of the bifurcations of F is then necessary to determine which of the possible outputs
of Algorithm 1 is indeed the implicit derivative of a root x(β) of F = 0 (1.3). We handle this in
Algorithm 3 (Section 3.2) for tracking an RD root by ensuring that the Jacobian is non-singular.
Algorithm 1 then has a unique and well-defined result, which by the Implicit Function Theorem
must pertain to a root. See also Section II.6 on RD bifurcations.

The derivatives computed by Algorithm 1 lose their accuracy when a Jacobian eigenvalue
approaches zero. e.g., when approaching a bifurcation. The effect is more pronounced as the

derivative’s order increases. Figure 2.3 below demonstrates this nicely for rate-distortion. Its
numerical error is negligible when far from bifurcation, and yet grows by the derivative’s order
when approaching it. This loss of accuracy can be traced back to the formula of Theorem 3. For,
the Jacobian DxF becomes ill-conditioned4 when an eigenvalue gradually vanishes. So long that
DxF is invertible, the l-th order derivative dlx

dβl essentially contains (DxF)
−1 to the l-th power,

amplifying numerical errors as l increases. This can be seen by multiplying both sides of (2.17) by
(DxF)

−1, and then repeatedly substituting into dlx
dβl the explicit lower-order expressions for dkx

dβk ,
for k < l.

Algorithm 1: High-order implicit derivatives of a root x(β) of an operator F

1: function Calculate Implicit Derivative(x0, β0, l; params)
Input:

Point of evaluation (x0, β0), derivative order l > 0,
additional parameters params needed for computing the derivative tensors.

Output: dlx
dβl

∣∣∣
(x0,β0)

, determined uniquely if DxF is non-singular (see main text).

Require:
A method Calc Deriv Tensor(m, b;x0, β0, params) which computes Dm+b

βb,xmF
∣∣
(x0,β0)

(2.6).
2: Initialize result← 0.
3: for k = 1 to l − 1 do
4: dkx

dβk ← Calculate Implicit Derivative(x0, β0, k; params)
▷ Cacheable; see main text.

5: end for
6: for partition (m1) · p1 + · · ·+ (ms) · ps of l do
7: bmax ← m1 if p1 = 1 else 0.
8: for b = 0 to bmax do
9: m← m1 + · · ·+ms

10: if m = 1 and b = 0 then ▷ Corresponds to DxF [d
lx

dβl], by Corollary 2.
11: Continue
12: else
13: coef ← l!

b!(m1−b)!m2!···ms!·(p1!)m1 ···(ps!)ms

14: tensor ← Calc Deriv Tensor(m− b, b;x0, β0) ▷ Cacheable; see main text.

15: result← result− coef · tensor
[(

dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

]
16: end if
17: end for
18: end for
19: DxF ← Calc Deriv Tensor(1, 0;x0, β0). ▷ Cacheable; see main text.
20: result← a linear pre-image of result under DxF .
21: return result
22: end function

4That is, its condition number is large. Where the condition number is defined as the ratio between its largest
and smallest eigenvalues, in absolute value.

−0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

log2 β

−2

−4

−6

−8

−10

−12

−14

−16

lo
g 1

0
of

er
ro

r
fr

om
ex

ac
t

d
er

iv
at

iv
es

Machine’s precision

1st derivative

2nd derivative

3rd derivative

4th derivative

5th derivative

6th derivative

−1 0 1 2 3 4 5

log2 β

−16

−14

−12

−10

−8

−6

−4

lo
g 1

0
of

er
ro

r
fr

om
ex

ac
t

so
lu

ti
on

Stopping condition for Blahut-Arimoto

Machine’s precision

Figure 2.3: Both Blahut-Arimoto and Algorithm 1 for RD can be remarkably accurate,
yet lose their accuracy near a bifurcation (dashed red verticals). To test the algorithms’
accuracies, we compared their outputs to the analytical solutions of a binary source with Hamming
distortion; see Section III.F for details. Top: Numerical derivatives were evaluated at the exact
solutions using Algorithm 1 for RD. Their L∞ distance to the analytical implicit derivatives is
colored by order. As noted after Theorem 3, error due to numeric imprecision is amplified when
approaching a bifurcation, by the derivatives’ order. Only the range between the critical point
βc (F.6) of this problem and log2 β = 1.5 is shown at the top (red and blue verticals). Outside
this region, the numerical derivatives’ accuracy for this example is near the machine’s precision.
Bottom: L∞-error of the solutions produced by Blahut-Arimoto, compared to the analytical
solutions. A stopping condition of 10−8 between consecutive iterates in L∞-norm was used, with
uniform initial conditions for each β. This plot is explained by BA’s critical slowing down, [Agmon
et al., 2021] — see main text, after Theorem 4 in Section 2.3. Note that all four axes are in a
logarithmic scale.

2.3 High-order derivative tensors of the Blahut-Arimoto operator

We provide closed-form formulae for the derivative tensors of the Blahut-Arimoto operator of
arbitrary order. These are necessary to compute implicit derivatives at a root with Algorithm 1
for RD (in Section 2.2). Our main result, in Theorem 4, requires the derivatives to be evaluated at
a marginal distribution of full support. This shall be dealt with when reconstructing the solution
curve in Section 3.1, by reducing the RD problem to a smaller reproduction alphabet (see there).

As noted in Section 1, an RD problem is defined by a source distribution pX , a reproduction
alphabet X̂ , and a distortion function d(x, x̂). In the sequel, we shall often assume that the
distortion is finite, and also non-degenerate: d(·, x̂1) ̸= d(·, x̂2) for all x̂1 ̸= x̂2. Write N := |X |
and M := |X̂ | for the source and reproduction alphabet sizes, respectively. When discussing
rate-distortion problems, our notation shall differ from that used for root-tracking of an arbitrary
operator F . Instead of x, we write r for our variable, which now stands for a marginal distribution
on X̂ . That is, F (·, β) shall be an operator on RM (previously RT). We further specialize F to
capture fixed points of the Blahut-Arimoto algorithm below.

Recall that the Blahut-Arimoto algorithm (BA) Blahut [1972], Arimoto [1972] is defined by
two equations; e.g., [Cover and Thomas, 2006, 10.8]. Given a marginal distribution r on the
reproduction alphabet X̂ , r(x̂), define a test channel or encoder q by

q(x̂|x) := r(x̂) e−βd(x,x̂)

Z(x, β)
, (2.18)

where Z(x, β) :=
∑

x̂′ r(x̂′)e−βd(x,x̂′). Given an encoder q, define a new marginal s,

s(x̂) :=
∑
x

pX(x)q(x̂|x) (2.19)

A necessary (though not sufficient) condition for r to achieve the minimum R(D) at (1.1) is that
it is a fixed point of Equations (2.18) and (2.19), s = r. e.g., Berger [1971]. It is then called a
curve achieving distribution, or simply an achieving distribution.

A curve-achieving marginal is determined by its test channel and vice-versa. So, a priori, it
may not seem to matter which of the two is taken as the variable. However, it turns out (Section
II.6.3) that only cluster-vanishing bifurcations can be detected in marginal coordinates. This shall
be dealt with later, when reconstructing the solution curve (Assumption 3 in Section 3.1). For
now, we define the BAβ operator as the composition of (2.18) followed by (2.19). It is a single
iteration of the BA algorithm. Explicitly,

BAβ [r] (x̂) := r(x̂)
∑
x

pX(x)e−βd(x,x̂)∑
x̂′ r(x̂′)e−βd(x,x̂′)

(2.20)

is the operator’s x̂ coordinate when evaluated at r. We could have taken instead the encoder q
as our variable, defining BAβ [q] by the composition in reverse order, (2.19) followed by (2.18).
However, to reduce computational costs, we select the lower-dimensional cluster marginal r as our
variable.

Csiszár [1974] showed that the Blahut-Arimoto algorithm converges to an achieving distribu-
tion. An achieving distribution need not be unique, as Berger [1971] notes for example. Yet, it is
a fixed point of BAβ (2.20), or equivalently a root of the operator F := Id−BAβ (1.2), as Agmon
et al. [2021] observed. Thus, to track fixed points of BA we calculate the derivative tensors of
Id−BAβ (1.2), below. See Section II.6 on its bifurcations. e.g., why should one expect RD prob-
lems to exhibit bifurcations, on types of RD bifurcations, and so forth. These shall be combined
with implicit derivatives in RD when reconstructing the solution curve, in Section 3.1.

A few definitions are needed to write down the derivative tensors of F := Id − BAβ (1.2).
Define the real polynomial ring on countably many variables as the following set of finite sums,

R[x0, x1, . . .] :=
{∑

ai x
di1
i1

x
di2
i2
· · ·xdik

ik
:

ai ∈ R, k ∈ N, 0 ≤ i1 < i2 < · · · < ik, and di1 , di2 , . . . , dik ∈ N0

}
(2.21)

where N stands for the natural numbers, and N0 for the non-negative integers. It consists of finite
sums of monomials x

di1
i1

x
di2
i2
· · ·xdik

ik
with real coefficients, with each dij ≥ 0. The degree of a

polynomial in R[x0, x1, . . .] is the highest among its monomial degrees, which in turn is defined as
di1 +di2 + · · ·+dik for the above. This slightly extends the usual definition of the (real) polynomial
ring R[x0, x1, . . . , xn] in multiple variables x0, x1, . . . , xn. e.g., [Dummit and Foote, 2004, 9.1].

Next, define an R-linear operator d̄ on polynomials R[x0, x1, . . .] (2.21) by the Leibniz product
rule d̄(f · g) = g · d̄f + f · d̄g. Except, that on the variables x0, x1, . . . , it is defined by

d̄x0 := 0, and d̄xk := x1 · xk − xk+1 for k > 0 , (2.22)

and d̄c := 0 for constant polynomials c ∈ R. We note that the usual rules of polynomial differenti-
ation such as d̄xn

i = nxn−1
i d̄xi follow from the Leibniz product rule. In algebraic context, a linear

operator on a function space satisfying the Leibniz rule is known as a derivation. e.g., [Rotman,
2017, C-2.6].

With the operator d̄ above, define as follows polynomials Pk in the k+1 variables x0, x1, . . . , xk,
for k = 0, 1, 2, First, set

P0(x0) := 1 . (2.23)

Then, define Pk+1 inductively in terms of Pk,

Pk+1(x0, x1, . . . , xk+1) := (x1 − x0) · Pk + d̄Pk (2.24)

With this, the first few polynomials are seen (in Section II.5.3) to be

P1(x0, x1) = x1 − x0 (2.25)

P2(x0, x1, x2) = x2
0 − 2x0x1 + 2x2

1 − x2 (2.26)

P3(x0, x1, x2, x3) = −x3
0 + 3x2

0x1 + 3x0x2 − 6x0x
2
1 + 6x3

1 − 6x1x2 + x3 (2.27)

For an encoder q and a distortion d(x, x̂), denote

Eq(x̂′|x)
[
d(x, x̂′)k

]
:=
∑
x̂′

q(x̂′|x)d(x, x̂′)k (2.28)

for k > 0 and a particular coordinate x ∈ X . By abuse of notation, define for k ≥ 0,

Pk[q; d](x̂, x) := Pk

(
d(x, x̂),Eq(x̂′|x) [d(x, x̂

′)] , . . . ,Eq(x̂′|x)
[
d(x, x̂′)k

])
(2.29)

That is, Pk[q; d] is a function of two variables x̂ and x, defined by a pointwise evaluation of the
polynomials Pk (2.23)-(2.24) at x0 := d(x, x̂) and xk := Eq(x̂′|x)

[
d(x, x̂′)k

]
for k > 0. We shall

write Pk(x̂, x) for short when the distortion d(x, x̂) and the point q of evaluation are understood.

We are now set to spell out the derivative tensors of (Id − BAβ)[r] (1.2). While the entries
of (Id− BAβ)[r] are indexed by x̂, we index the entries of its derivative tensors by a multi-index
α ∈ NM+1

0 , for convenience. See comments on indexation after definition (2.6) of a derivatives
tensor Db+m

βb,xmF (in Section 2.2).

Theorem 4 (High-order partial derivatives of Id−BAβ (1.2)). Let pX and d(x, x̂) define an RD
problem on the reproduction alphabet X̂ . Let r ∈ ∆[X̂], and let q be the encoder defined by it via
Equation (2.18). Then, for any integer α0 > 0,

∂α0

∂βα0

(
Id−BAβ

)
[r](x̂) = −

∑
x

pX(x)q(x̂|x)Pα0(x̂, x) , (2.30)

where Pα0
(x̂, x) is defined by (2.29).

Assume further that r is of full support, r(x̂) > 0 for every x̂. Let α = (α0,α+) ∈ NM+1
0 be a

multi-index with α+ ̸= 0. Then,

∂|α|

∂βα0∂rα+
(Id−BAβ) [r] (x̂)

= δα,ex̂
−(−1)|α+|−1(|α+|−1)! α!

∑
x

pX(x)

(
q(x̂′|x)
r(x̂′)

)α+ ∑
k∈NM

0 : |k|=α0

∏
i ̸=x̂

G
(
ki, αi; q, d

)
(x̂i,x)


·
[
αx̂ ·G

(
kx̂, αx̂; q, d

)
(x̂,x)

− |α+| · (1 + αx̂) · q(x̂|x) ·G
(
kx̂, 1 + αx̂; q, d

)
(x̂,x)

]
(2.31)

where G
(
k, a; q, d

)
is defined on integers k, a ≥ 0 by G = 0 if a = 0 < k, and otherwise

G
(
k, a; q, d

)
(x̂,x)

:=
∑

t∈Nk
0 : |t|≤a,∑
j j·tj=k

1

t! (a− |t|)!
k∏

j=1

(
Pj(x̂, x)

j!

)tj

. (2.32)

With the above derivative tensors of Id−BAβ (1.2), Algorithm 1 for computing higher implicit
derivatives (in Section 2.2) can now be specialized to RD. This allows us to compute the implicit
derivatives dlr

dβl (1.4) at an RD root r. The Theorem’s proof is outlined in Section II.5. In addition
to the RD ODE (Theorem 14), the main results there are the formulas for the encoder’s repeated
partial β-derivatives and its mixed ones (Propositions 12 and 15), which yield (2.30) and (2.31).
Section II.5.5 comments how the latter can be computed efficiently.

The implicit derivatives computed by Algorithm 1 for RD lose their numerical stability when
approaching a bifurcation, losing it faster if the order is higher (see after Theorem 3 in Section
2.2). Other than that, the first few implicit derivatives computed for RD are seen in Figure 2.3
(top) to be remarkably accurate. Further, note that the derivative tensors of Id− BAβ might be
numerically unstable when computed for high orders, due to the factorials at the denominators of
(2.32). Interestingly, the bifurcation’s presence also affects the classic Blahut-Arimoto algorithm,
Blahut [1972], Arimoto [1972]. It too suffers from accuracy loss near bifurcations, as demonstrated
by Figure 2.3 (bottom). This can be seen as a direct consequence of the critical slowing down near
RD bifurcations, Agmon et al. [2021].

3 Reconstructing an RD solution curve from implicit derivatives

In Section 2, we showed how to compute implicit derivatives at an RD root, using the specialization
of Algorithm 1 to RD. Now, we shall leverage these derivatives to reconstruct the entire solution
curve of a given RD problem.

In Section 3.1, we modify the vanilla fixed-step Taylor method to track an RD root numeri-
cally until a cluster-vanishing bifurcation is detected — which is Algorithm 2. We handle these
bifurcations in Algorithm 3 (in Section 3.2), thereby reconstructing the entire solution curve, as

seen in Figure 3.1. The algorithms’ error from the true solution is of order O(|∆β|l) (Theorem
5), for an l-th order Taylor method of step ∆β. Both Blahut-Arimoto and the implicit numerical
derivatives we use suffer from degraded accuracy near RD bifurcations, as shown earlier in Figure
2.3. However, while BA suffers from a hefty computational penalty near bifurcations due to its
critical slowing down, [Agmon et al., 2021], the added computational cost to our Algorithms 2 and
3 is negligible.

−1 0 1 2 3 4 5

log2 β

0.0

0.2

0.4

0.6

0.8

1.0

p(
x̂

)

A

−1 0 1 2 3 4 5

log2 β

101

103

105

B
A

it
er

at
io

n
sC

−1 0 1 2 3 4 5

log2 β

−4

−8

−12

−16lo
g

10
of
L
∞

-d
is

ta
n

ce

Machine’s precision
BA’s stopping condition

B

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

Distortion

0.0

0.5

1.0

1.5

R
at

e
(b

it
s)

D

Figure 3.1: Reconstructing a solution curve from implicit derivatives, with root-tracking
for RD (Algorithm 3). Reproducing the problem in [Agmon et al., 2021, Figure 1], defined by

d(x, x̂) = 1
8

0 1 1 2
4 1 5 2
4 5 1 2
8 5 5 2

 and pX = 1
10 (4, 3, 2, 1). Bifurcations are marked by dashed red verticals.

A. Cluster marginal p(x̂) as a function of β. A fixed-width grid of almost 400 points is selected
along the β-axis (gray verticals), with implicit derivatives computed to the 7th order at each
grid-point. Every point is extrapolated from the grid-point to its right using a modified Taylor
method (Algorithm 2 in Section 3.1), except for the rightmost one and near the bifurcations,
where Blahut-Arimoto’s algorithm is used. The cluster vanishing bifurcations of this problem are
handled by Algorithm 3 (with δ = 10−2,∆β = −31.5/400), which can either overshoot or undershoot
a bifurcation (Section 3.2). On undershooting, the bifurcation is detected too early (redundant red
vertical to the right), and the algorithm switches temporarily to a sub-optimal solution branch as
a result. This is magnified ×20 in the top-right inset, depicting an undershooting of the rightmost
bifurcation, with four nearby grid-points marked by blue stars. The entire solution curve (in blue)
is extrapolated from the grid. For comparison, Blahut-Arimoto’s is in green (a 10−13 stopping
condition, 5000 grid-points). The two are visually indistinguishable almost everywhere. B. The
L∞-distance between the solutions produced by BA and Algorithm 3 (this problem has no analytic
solution). Note the localized error in Algorithm 3 due to switching to the sub-optimal branch near
the rightmost bifurcation. C. Number of Blahut-Arimoto iterations. BA in reverse annealing is
in green; Algorithm 3 invokes BA only four times (blue stars): once for the initial condition, and
once per bifurcation. Note that Algorithm 3 avoids the critical slowing down exhibited by BA,
Agmon et al. [2021]; see Section 3.2. D. The rate-distortion curve of this problem. The results of
BA and Algorithm 3 are indistinguishable.

Bounds on the algorithms’ computational and memory complexities are provided in Section
3.3. One might expect the computational cost to increase if a smaller error is required. Indeed,
we estimate of this tradeoff for our algorithms. Unlike the Blahut-Arimoto algorithm, which
computes solutions only at specified grid points, when our root-tracking Algorithm 3 terminates,
only a fixed computational cost is needed to extrapolate any off-grid point. In principle, the entire
solution curve can be approximated from few grid points by using high-order expansions, at least
in well-behaved examples. Although high orders may not be practical due to their computational
costs, this is demonstrated in Figure 3.2. Suggestions on improving our algorithms’ efficiency are
discussed in Section 3.4.

This section is complemented by several Sections in Part II, corresponding to the subsections of
Section 3. In Section II.6, we provide several basic results on RD bifurcations, to our knowledge for
the first time. This allows us to tell when does our Algorithm 3 follow the optimal branch, explain
why it may fail, and consider improvements. Section II.7 follows standard error analysis results in
the literature to provide the guarantees and error estimates for our case. In the context of numerical
solutions of ODEs, a computational difficulty stems from the existence of bifurcations. Thus, in
a sense, our algorithm trades the bifurcations’ hefty computational cost due to Blahut-Arimoto’s
critical slowing down with reduced accuracy near bifurcations. Finally, Section II.8 bounds the
computational and memory costs, both of root-tracking in general, and of its specialization to
rate-distortion.

3.1 A modified Taylor method for RD root-tracking

We parameterize a root of Id−BAβ (1.2) by its cluster marginal r(x̂) rather than by the encoder
q(x̂|x) to reduce computational costs, as noted in Section 2.3. Write r̃βn or simply r̃n for a
numerical approximation of the true solution rβn

∈ ∆[X̂] at βn. Starting at r̃0 := rβ0
, set5

r̃n+1 := r̃n +∆β · Tl

(
r̃n, βn,∆β

)
. (3.1)

Where, Tl(x, β,∆β) := dx
dβ

∣∣
(x,β)

+ 1
2!

d2x
dβ2

∣∣
(x,β)

∆β + · · · + 1
l!

dlx
dβl

∣∣
(x,β)

∆βl−1 is the l-th order Taylor
remainder as in expansion (1.5), with the derivatives evaluated by Algorithm 1 for RD (Section
2.2) at (r̃n, βn). We extrapolate off-grid points r̃β from (3.1) using the last grid point, except in
some cases near a bifurcation (see Section 3.2). This numerical method is known as the Taylor
method ; e.g., Atkinson et al. [2011], Butcher [2016]. See Section II.7 for a recap and its error
analysis. While there are other numerical methods that use derivatives to approximate rβ , we
chose the Taylor method since it is simple and well-studied. cf., Section 3.4 on improvements.

Computing implicit derivatives with Algorithm 1 for RD requires the derivative tensors of BAβ ,
which were provided by Theorem 4 (Section 2.3). The formulae there require a marginal r to be of
full support. To handle this and to further reduce computational costs, define the following. For a
proper nonempty subset X̂ ′ of the reproduction alphabet X̂ , define the RD problem restricted to X̂ ′

by deleting letters x̂ ∈ X̂ outside X̂ ′ and the respective columns d(·, x̂) from the distortion matrix.
For practical purposes, deleting a letter x̂ is equivalent to allowing initializations r0 of BA only if
their x̂ coordinate is zero, r0(x̂) = 0, as can be seen by the explicit form (2.20) of BAβ . When
the marginal r is understood, we call the RD problem restricted to supp r the reduced problem.
Reducing a problem does not affect the solution, [Berger, 1971, Lemma 1 in Chapter 2].

We require henceforth that d(x, x̂) is finite and non-degenerate6. By definition, r is of full
support in the reduced problem. Therefore, the Jacobian Dr(Id − BAβ)|r is non-singular in
the reduced problem, [Agmon et al., 2021, Theorem 1 ff.], when r is also a fixed point of BAβ .

5We note that the approximations r̃n (3.1) need not be normalized distributions. However, Theorem 5 below
guarantees that r̃n does not deviate much from the true solution rβn when the step size |∆β| is small enough.
Thus, r̃n does not deviate much from being normalized. Note also the normalization on step 8 of Algorithm 3.

6Namely, the (x̂ indexed) columns of the distortion matrix d are distinct — see Section 2.3.

In particular, the numerical derivatives dlr
dβl produced by Algorithm 1 for RD are then defined

uniquely, as explained after Theorem 3 (in Section 2.2). These are vectors of a lower dimension
| supp r| ≤M , tracing the root’s path in the reduced problem; optimality of this path is discussed
below. The explicit form of Dr(Id − BAβ)|r at an arbitrary distribution r is given later, by
Corollary 10 (Section II.5.2). Its formula (5.7) shows that the Jacobian is non-singular even when
straying slightly off a stable fixed point of BAβ (e.g., due to accumulated approximation error).

The argument at Agmon et al. [2021] further shows that an eigenvalue of Dr(Id − BAβ)|r
vanishes if and only if r(x̂) vanishes for some x̂. This gives a simple way to detect cluster-vanishing
bifurcations. Namely, an RD bifurcation where r(x̂) gradually vanishes. We take only negative
steps ∆β < 0 when considering how fixed points evolve — see Section II.6.2 ff. As shown there,
cluster-vanishing bifurcations are indeed bifurcations, where two roots collide and merge. To detect
these, one can set a cluster-mass threshold δ > 0 below which r(x̂) is considered to have vanished.
Thus, iterating over a Taylor method step (3.1) until a cluster vanishes allows to reconstruct
the root’s path till the next bifurcation. This is summarized by Algorithm 2, with convergence
guarantees in Theorem 5 below. We handle the bifurcation later, in Section 3.2. A significant
part of the computational difficulty stems from approaching a bifurcation (Section II.7.2). Thus,
setting a threshold δ > 0 on the cluster mass effectively restricts the problem’s difficulty.

Algorithm 2: A modified l-th order Taylor method, tracking an RD root to a cluster-vanishing
bifurcation
1: function Track RD Root To Bifurcation(rβ0 , β0; ∆β, δ, l, d, pX)

Input:
β0, a root rβ0

of Id−BAβ0
(1.2) of full support, step-size ∆β < 0,

cluster mass threshold δ > 0, an order l > 0, and an RD problem (d, pX).
Output:

Approximations r̃i of the true solution rβi
at βi,

and the l-th order Taylor expansions pi around (r̃i, βi).
2: Initialize r̃0 ← rβ0 , n← 0.
3: while ∀x̂′ r̃n(x̂

′) > δ and βn > 0 do ▷ Stop if too close to a bifurcation.
4: for i = 1, . . . , l do
5: dir

dβi

∣∣∣
(r̃n,βn)

← Calculate Implicit Derivative(r̃n, βn, i; d, pX)

▷ Algorithm 1 for RD.
6: end for
7: pn(∆)← r̃n + ∆

1! · drdβ
∣∣∣
(r̃n,βn)

+ · · ·+ ∆l

l! · d
lr

dβl

∣∣∣
(r̃n,βn)

8: r̃n+1 ← pn(∆β)
9: βn+1 ← βn +∆β

10: n← n+ 1
11: end while
12: return {(r̃i, βi, pi)}ni=1 ▷ Approximations of the true solutions r(βn).
13: end function

Roots rβ of an RD problem are very well-behaved — namely, piecewise analytic in β. Reduction
of an RD problem mods out the kernel of the Jacobian in cluster-marginal coordinates r, leaving
it non-singular, and yet is simple and straightforward to implement. By the implicit function
theorem [Kielhöfer, 2012, (I.1.7)], there not only exists a unique root rβ of the reduced problem
(through a given rβ0

), but it is also (real) analytic. For, the BAβ (2.20) operator is a composition
of analytic functions. Recall, e.g., [Dieudonné, 1969, IX.3], that rβ is analytic (in some open set)
if its infinite-order Taylor expansion (1.5) about any β0 not only exists (rβ is smooth), but also
converges pointwise to the function itself, within some radius of convergence. Every coordinate

rβ(x̂) of rβ is nothing but an (infinite) power series in ∆β := β − β0. The partial sums of a power
series converge uniformly on closed intervals inside their radius of convergence. That is, only a
finite number of summands is needed to extrapolate the solution on an interval, at a given precision.
In principle, this allows us to extrapolate the entire solution curve by using Taylor expansions at
just a few points if the convergence radii are large enough, as demonstrated by Figure 3.2.

−1 0 1 2 3 4 5

log2 β

0.0

0.2

0.4

0.6

0.8

1.0

p(
x̂

)

A

0.0 0.1 0.2 0.3

Distortion

0.0

0.2

0.4

0.6

0.8

R
at

e
(b

it
s)

A

Exact

Extrapolated

−1 0 1 2 3 4 5

log2 β

−4

−7

−10

−13

−16lo
g

1
0

of
L
∞

-e
rr

or

Machine’s precision

A

Figure 3.2: Extrapolating the entire solution curve from 7 grid points (magenta circles),
using Algorithm 3 of order 20, for Binary source with Hamming distortion III.F, with δ = 10−2.
Although the error guarantees of Theorem 5 aim at small step-sizes, and high-order derivatives
are computationally expensive, this example demonstrates the predictive power achievable by
exploiting real-analyticity in well-behaved examples; see comments in the main text.
Top left: The extrapolations (in green) from the grid points overlap the exact solutions (in blue)
almost precisely, deviating visibly only near the bifurcation at log2 βc ≈ −0.24. The algorithm
overshoots the bifurcation slightly (Section 3.2), marked by an extra dashed red vertical to the
left. Two Blahut-Arimoto iterations were needed to compute the rightmost grid point, with the
next ones extrapolated using a 20th-order Taylor polynomial with a fixed step size of ∆β ≈ −4.57.
Bottom left: L∞-error between the extrapolation generated from Algorithm 3 and the analytical
solution of this problem, in Section III.F. For the most part, the achieved error is near the machine’s
precision (note the logarithmic scale of the horizontal axis), increasing notably near the bifurcation.
While the point of bifurcation is an essential difficulty, Section II.7, the decreased accuracy to the
left of point A could be improved upon, e.g., by varying the step-size; see Section 3.4. Right:
The problem’s exact RD curve is visually indistinguishable from the extrapolated one. While the
first few grid points cluster to the top-left, most of the curve happens to be extrapolated from the
single point A.

While the Jacobian Dr(Id − BAβ)|r in marginal coordinates r provides an appealing picture
of piecewise analytic roots, which alter their course only when colliding at the simplex boundary,
it does not tell the whole story. For, the Jacobian in these coordinates can detect only cluster-
vanishing bifurcations, as discussed later in Section II.6.3. Indeed, RD problems have a plethora
of sub-optimal solutions (Section II.6.1). These may, for example, exchange optimality in another
kind of bifurcation which we call support-switching, which is demonstrated by Figure 6.2 (in Section
II.6). We show later (Section II.6.5) that these can explain the linear segments seen in RD curves

[Berger, 1971], at least in some cases, as well as some instances of critical slowing down which are
not explained by Agmon et al. [2021] (see Section II.6.3 and Figure 6.2).

For our purposes, we would like to ensure that the root tracked by our algorithms remains
optimal (an achieving distribution), rather than a sub-optimal one. This is done in two steps.
First, ensure that Algorithm 2 starts at an achieving distribution rβ0 , by invoking Blahut-Arimoto
until convergence to an initial condition of full support, Csiszár [1974] (brought as Theorem 17 in
Section II.6.1). Second, so long that Algorithm 2 starts at an achieving distribution, then the root
it tracks remains optimal. Similarly, for the below Algorithm 3 (Section 3.2). This follows from
Assumption 3 below, as we show later (in Section II.6.4).

At a fixed point of BAβ (2.20), the cluster marginal rβ is determined by an encoder qβ via
Equation (2.19), and vice versa (2.18). However, the MN -by-MN Jacobian matrix Dq(Id −
BAβ)

∣∣
qβ

with respect to the encoder q contains more information than the M -by-M Jacobian
Dr(Id−BAβ)|rβ

with respect to the marginal r — see Section II.6.3. Where, recall that N := |X |
and M := |X̂ |. Indeed, the q-Jacobian can detect RD bifurcations of any kind, unlike the r-
Jacobian; see Corollary 21 (in Section II.6.3), and Proposition 23 for its explicit form. Therefore,
we require

Assumption 3. The q-Jacobian Dq(Id − BAβ)
∣∣
qβ

is non-singular when evaluated at achieving
distributions qβ, except at cluster-vanishing bifurcations.

This assumption guarantees that the RD problem is well-behaved (e.g., non-degenerate), and
that it has a unique optimal solution whose path undergoes only cluster vanishing bifurcations7.
It holds for most of the examples in this paper8. In particular, the earlier Assumptions 1 and 2 (of
Section 2.1) necessary for calculating implicit derivatives follow from Assumption 3 (see Section
II.6.4). The q-Jacobian Dq(Id−BAβ)

∣∣
qβ

is singular if the distortion matrix is degenerate (Section
II.6.3). However, other than that, we find it reasonable to require that the q-Jacobian is non-
singular outside of cluster-vanishing bifurcations (Assumption 3). Indeed, [Berger, 1971, Chapter
2] says that “usually, each point on the rate-distortion curve... is achieved by a unique conditional
probability assignment. However, if the distortion matrix exhibits certain form of symmetry and
degeneracy, there can be many choices of [a minimizer].”

One can test Assumption 3 directly, by calculating the eigenvalues of the q-Jacobian periodi-
cally. These are expected to vanish only if some cluster vanishes simultaneously — see Equation
(6.6) for details (Section II.6.3). While our algorithms can be extended to handle RD bifurcations
also of other kinds, using the bifurcations Section II.6, it is beyond the scope of this work.

We conclude this subsection with convergence guarantees for our modified Taylor method at
Algorithm 2 — see its error analysis in Section II.7. For δ > 0, the closed δ-interior of the simplex
∆[X̂] consists of the distributions r ∈ ∆[X̂] with r(x̂′) ≥ δ for all x̂′ ∈ X̂ . Note that this is not
the same as the interior of the simplex, which is an open set.

Theorem 5 (Taylor method converges uniformly between RD bifurcations, on a full support).
Let rβ be a root of the RD problem defined by pX and a finite non-degenerate distortion measure
d. Suppose that rβ is of full support at β0 > 0. Let δ > 0 be a cluster mass threshold, such that
δ < minx̂ rβ0

(x̂). Then there exists 0 ≤ βf (δ) < β0 such that,

1. rβ is in the closed δ-interior of ∆[X̂] for β ∈ [βf (δ), β0]; and

2. For l > 0, the error of an l-th order Taylor method satisfies

max
β∈[βf (δ),β0]

∥r̃β − rβ∥∞ = O(|∆β|l) (3.2)

7This does not rule out the possibility that sub-optimal roots undergo other kinds of bifurcations.
8Except for the right bifurcation in Figure 6.2, at Section II.6.

for |∆β| > 0 small enough, and r̃β the Taylor method approximations defined by (3.1).

Since Algorithm 2 tries to stop δ-away from a bifurcation, its error converges uniformly for
small enough step sizes, at a rate (3.2) proportional to its order l. All the RD roots we compute
are generated by Algorithm 2, except for the initial point and those too close to a bifurcation.
Bifurcations are handled by Algorithm 3 below (Section 3.2). It will reduce the problem at hand,
guaranteeing the full support required by Theorem 5. Thus, we obtain an error guarantee for
nearly all the generated grid points. The proof of Theorem 5 (in Section III.D.2) is based on
standard Taylor method error analysis, brought at Theorem 25 (in Section II.7.1). Its crux is that
implicit derivatives and the local Lipschitz constants of Taylor’s method are bounded uniformly,
on suitable compact subsets in the simplex interior; see Sections II.7.2-7.3.

The convergence guarantees of Theorem 5 suggest considerations for selecting the parameters
of Algorithm 2. The cluster mass threshold δ > 0 obviously should not be too large, so that
a bifurcation is not accidentally detected when there is none. On the other hand, increasing δ
restricts the algorithm’s computational difficulty, as discussed in Section II.7. One would then like
to select |∆β| small enough and the order l large enough such that Equation (3.2) (in Theorem
5) guarantees that r̃β does not deviate too much from the true solution rβ . This guarantees the
solution’s accuracy and ensures that comparing a cluster mass r̃β(x̂) against the threshold δ is
meaningful (on line 3 of Algorithm 2). On the other hand, decreasing |∆β| or increasing l impacts
the algorithms’ complexities, as elaborated in Section 3.3. See the Figures throughout and our
implementation for sample values. With that, the considerations implied by Theorem 5 are not the
only way to choose the algorithms’ parameters. For example, motivated by the earlier discussion
on analyticity, Figure 3.2 depicts high-quality approximations even though its step size ∆β is large.

3.2 RD root-tracking near bifurcations

We proceed with the solution’s handling where Algorithm 2 left off, once a cluster-vanishing bi-
furcation has been detected. The following heuristic re-gains accuracy while avoiding the compu-
tational cost due to Blahut-Arimoto’s critical slowing down near the bifurcation, [Agmon et al.,
2021]. Assumption 3 is required below.

2.20 2.25 2.30 2.35 2.40 2.45 2.50
log2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

p(
x)

cluster mass threshold

Figure 3.3: Undershooting a bifurcation. The bifurcation is detected early (right dashed red
vertical), slightly to the right of its true position (left vertical). Once the threshold is crossed, our
heuristic zeros the nearly-vanished cluster (at right vertical, not shown). The distribution it yields
(at right vertical, marked) achieves a sub-optimal branch (not shown), in which this symbol is
zero. However, optimality is re-gained shortly afterwards, when reaching the bifurcation; see main
text. The markers denote the output of Algorithm 3 of second-order on a 300-point grid, with BA
for comparison in blue, near the rightmost bifurcation of Figure 3.1.

Consider the first approximation (r̃n, βn) after the cluster mass threshold δ has been crossed.
We zero any cluster x̂ for which r̃n(x̂) < δ, normalize, and then use the resulting distribution
r̃′ as the initial condition for Blahut-Arimoto’s algorithm. r̃′ has precisely those nearly-vanished
clusters set to zero. Thus, Blahut-Arimoto converges to an achieving distribution r̃′′n of the problem
reduced to supp r̃′, [Csiszár, 1974] (see Section II.6.1). We then invoke Algorithm 2 anew on the
reduced problem, starting at the achieving distribution (r̃′′n, βn). This process repeats so long that
βn > 0 and the initial condition r̃′′n is non-trivial. We summarize this heuristic in Algorithm 3.

The first approximation (r̃n, βn) after crossing the threshold may either be earlier than9 the
true point of bifurcation βc, βc < βn, called an undershooting. Or the bifurcation may be detected
too late, βn ≤ βc, an overshooting. Either of these must happen when a bifurcation is detected,
usually with strict inequality. A sub-optimal root exists at a right vicinity of a bifurcation, β > βc,
as shown in Section II.6.2. It is a solution of the reduced problem to supp r̃′, with r̃′ the normalized
zeroization as above. The optimal and sub-optimal roots intersect at βc, merging there into one.
On an overshoot, βn ≤ βc, the initial condition r̃′′n produced by the heuristic will remain on the
optimal branch. On an undershoot, βc < βn, r̃′′n will be on the sub-optimal branch of smaller
support supp r̃′ while re-gaining optimality shortly thereafter, as demonstrated by Figure 3.3.

Invoking Blahut-Arimoto before starting anew with Algorithm 2 re-gains accuracy, compensat-
ing for the approximation errors accumulated so far, while also ensuring that the root being tracked
is optimal on the non-vanished clusters. Further, this allows us to avoid Blahut-Arimoto’s critical
slowing down. For, as shown by Agmon et al. [2021], the latter is exhibited due to a Jacobian
eigenvalue that gradually vanishes when approaching a bifurcation. This eigenvalue corresponds
to a cluster of vanishing marginal and so is removed once that cluster is removed, before invoking
Blahut-Arimoto on line 9 of Algorithm 3. The lack of critical slowing down is consistent with our
numerical results.

Algorithm 3: Root-tracking for RD, with l-th order Taylor method.
Input:

β0, a root rβ0 of Id−BAβ0 (1.2), a step-size ∆β < 0, a cluster mass threshold 0 < δ < 1,
an order l > 0, and an RD problem (d, pX).

Output:
Approximations r̃i of the true solution rβi

at βi,
and the l-th order Taylor expansions pi around (r̃i, βi).

1: Initialize r̃ ← rβ0 , β ← β0, results← {}.
2: while | supp r̃| > 1 and β > 0 do ▷ Stop if solution has a trivial support.
3: r̃, d̄← the reduction of r̃, d to supp r̃.
4: solution path← Track RD Root To Bifurcation(r̃, β; ∆β, δ, l, d̄, pX).

▷ Algorithm 2.
5: Append items in solution path to results, except for the last.
6: (r̃, β)← last item in solution path.
7: r̃(x̂)← 0 for any x̂ with r̃(x̂) < δ.
8: r̃ ← normalize r̃.
9: r̃ ← Blahut-Arimoto(r̃, βn). ▷ Iterate BAβ (2.20) until convergence.

10: end while
11: return results ▷ Approximations of the true solutions r(βn).

In practice, this heuristic works nicely so long that the bifurcation is not missed altogether due
to large approximation errors in Algorithm 2. Off-grid points are later extrapolated using a Taylor
step (3.1) at the last grid point, unless the extrapolation has a negative coordinate due to an

9Note that the step size ∆β is negative.

over-shot bifurcation. In this case, the point is extrapolated using the expansion at the next grid
point. As an alternative heuristic, the bifurcation could be handled by extrapolating it linearly
from the last point before the threshold is crossed and then using Blahut-Arimoto, exploiting the
accuracy of first-order derivatives; cf., Figure 2.3. This also works nicely in practice, on grids dense
enough.

3.3 Computational costs and cost-to-error tradeoff

We provide bounds on the computational and memory costs of root-tracking for RD (Algorithm
3), and estimate the tradeoff between its error and computational costs. While the cost of implicit
derivatives grows rapidly with the order, counter-intuitively, higher orders usually make much bet-
ter use of the computational cost. Blahut-Arimoto makes little to no use of the computational effort
invested at previous grid points and does not yield off-grid information. In contrast, our algorithm
leverages the derivatives at a point to improve the accuracy at subsequent ones, allowing also cheap
extrapolation of off-grid points. Despite the many improvements possible to root-tracking RD (in
Section 3.4 below), the cost of an entire solution curve is already roughly comparable to BA as
is, as seen in Figure 1.2 (Section 1). See also Section II.8, on the complexities of root-tracking in
general, with and without tensor memorization, and the complexities of RD derivative tensors.

The computational cost of RD root-tracking (Algorithm 3) is comprised of the cost of implicit
derivatives and of Blahut-Arimoto near bifurcations. However, the cost due to BA is typically
negligible since our heuristic avoids its critical slowing down near bifurcations (see Section 3.2).
Memorizing (caching) each computed tensor Db+m

βb,rm(Id − BAβ)[r] (at Theorem 4 in Section 2.3)
upon its first appearance reduces the computational costs drastically, as shown in Section II.8.
Similarly, also for memorizing implicit derivatives when calculating them recursively in Algorithm
1 (Section 2.2). Our implementation also memorizes some of the quantities en route, further
reducing costs. For the most part, these can be discarded once done computing at a point, so
the memory costs do not scale with the grid size. Thus, the computational cost of Algorithm 3
is essentially determined by the implicit derivatives’ cost at a point (times the number of grid
points). We provide the following (loose) bounds.

Theorem 6 (Complexity bounds for RD root tracking). For l ≥ 2, the computational complexity
of Algorithm 3 of order l with tensor memorization is bounded by

O
(
N · (M + l)(3l+

5/2)e(2M+l)He(ρ)+π
√

2l/3
)

(3.3)

times the number of grid-points. Where, N and M are the source and reproduction alphabet sizes
(respectively), ρ := 2M

2M+l , and He(·) is the binary entropy in nats. For l = 1, it is instead

O
(
M3N

)
. (3.4)

The algorithm’s memory complexity is bounded by

O
(
l(l+

5/2) ln l
)
+O

(
MNl2

)
+O

(
M ll

)
(3.5)

The bounds provided by Theorem 6 are rather loose in the derivative’s order l. The term
(M + l)(3l+5/2) in the computational complexity (3.3) is hyper-exponential in l primarily due to
inefficient copy operations used to simplify our implementation, and due to the loose bounds used
in the theorem’s proof (in Section III.E.3). Similarly, the first term in the memory complexity
(3.5) is in practice only of order O(l · 1.73l), at least for l ≤ 25; see Table 2 in Section II.8.
Nevertheless, the complexity of higher implicit multivariate derivatives is high even when the cost

of RD derivative tensors is set aside (Proposition 30 in Section II.8). This arguably stems from10

the combinatorics of partial derivatives, [Hardy, 2006]. With that, we note that the complexities of
Algorithm 3 (both in practice and the bounds (3.3)-(3.5)) do not depend on the problem’s details11,
but only on its dimensions N and M , and on the order l; denote by cost-per-grid-point(N,M, l)
its computational cost at a grid-point. On the other hand, the algorithm’s accuracy does depend
on the problem’s details.

Although the algorithm’s complexities grow rapidly with the order l, higher orders generally
provide a much better cost-to-error tradeoff, as shown below. Thanks to our choice of cluster-
marginal coordinates (in Section 2.3), the complexities are only linear in the source alphabet size
N . This is useful when computing with large source alphabets, |M | ≪ |N |. For any fixed order
l, e(2M+l)He(ρ) is asymptotically linear in M , and so the costs are polynomial in M . Further, the
reproduction alphabet size M in these bounds can be replaced by the solution’s support size, which
varies along the grid. For, Algorithm 3 reduces the problem after each bifurcation (in step 3).

0.5 1.0 1.5 2.0

log10 of computation time (sec)

−12

−10

−8

−6

−4

−2

0

lo
g 1

0
of
L
∞

er
ro

r

RD root tracking, order 1

RD root tracking, order 2

RD root tracking, order 3

RD root tracking, order 4

RD root tracking, order 5

RD root tracking, order 6

Figure 3.4: Higher order methods make better use of computational costs when small
error is required. To demonstrate Equation (3.6), a linear regression of slope (−l) (dashed line)
is matched to the rightmost markers per method order l. Plot details are as in Figure 1.2.

Ideally, it would be possible to tell the tradeoff between accuracy and computational cost in
advance, with better results expected as the computational effort is increased. Indeed, except for
δ-close to a bifurcation, an l-th order RD root-tracking with step-size |∆β| converges to the true
solution at a rate of O(|∆β|l), by Theorem 5 (in Section 3.1). So, write error ∝ |∆β|l, when the
step-size |∆β| is small. As the number of grid points is inversely proportional to the step size, the
total computational cost is of order |∆β|−1 · cost-per-grid-point(N,M, l). This yields

log error ∝ l · log (cost-per-grid-point(N,M, l))− l · log(total-cost) . (3.6)

Carefully note that, with other parameters fixed, increasing the computational effort reduces the
error at a rate of (total-cost)−l. Thus, despite their costs, derivatives of higher orders l generally
provide a much better tradeoff between the error and computational costs. This off-hand tradeoff is
demonstrated by Figure 3.4; it is increasingly accurate at higher costs (smaller |∆β|), as expected.
Similar plots are typical to the error analysis of the Taylor method; e.g., [Butcher, 2016, Figure
223(i)].

Unlike Algorithm 3, Blahut-Arimoto makes little use (if any) of the computational cost invested
in adjacent grid points. For, BA is usually computed independently along a grid (computing each

10cf., Theorem 7 (Section II.4), which is used to prove the formula of Theorem 3 (Section 2.2) for higher implicit
multivariate derivatives.

11e.g., examine the dependence of Equations (2.28)-(2.32) (in Section 2.3) on the problem definition (d, pX).

point anew) or in reverse annealing Rose et al. [1990], where the solution at one point is taken as
the initialization for the next. While reverse annealing reduces the computational costs noticeably,
it may follow sub-optimal solution branches. In a sense, reverse annealing is similar to root tracking
of zeroth order.

Since Algorithm 3 leverages each point to calculate the next, executing it on denser grids or
at higher orders will usually improve the overall accuracy (though not always – see Figure 1.2).
In contrast, adding grid points to BA usually degrades its overall accuracy due to critical slowing
down, [Agmon et al., 2021]; cf., Figure 2.3 (bottom). This is demonstrated by Figure 1.2. Judging
by our implementations of both, it is easy to find parameters where either algorithm outperforms
the other. With that, various improvements can be made to Algorithm 3, as we discuss next.

3.4 Possible improvements to RD root-tracking

We discuss several approaches which we believe could significantly improve the cost-to-error trade-
off of RD root tracking (Algorithm 3). Most notably, by making the derivative order and step size
adaptive. cf., the related Sections 3.3 and II.7 on the cost-to-error tradeoff and error analysis.

Tracking an operator’s root belong in general to a family of hard-to-solve numerical problems
called stiff (see Section II.7.2). While we acknowledge that much literature exists on stiff differential
equations, we have chosen to ignore it to avoid straying off our main line of discussion. Instead, we
focus on conspicuous improvements, which this work has not attended for the sake of simplicity.

Algorithm 3 uses both the classic Taylor method for solving ordinary differential equations
and Blahut-Arimoto’s algorithm. Numerical methods for solving dx

dβ = f(x, β) usually exploit
the values of f or its derivatives to approximate x(β), but often cannot directly reduce the error
accumulated from the true solution x(β0) at a point β0. cf., Section 22 in Butcher [2016] for
example. On the other hand, Blahut-Arimoto’s algorithm reduces the error from the true solution,
but does not follow its path x(β) as β varies. We note that these building blocks could have been
combined in ways other than those we have chosen. However, to our understanding, it is necessary
to use a component that directly reduces the error accumulated at a point, whether BA or another
algorithm. Otherwise, either the error accumulated until a bifurcation would get out of control, or
the computational costs. For, following an operator’s root is inherently stiff; see Section II.7.2.

Rather than using implicit derivatives to construct the Taylor expansion around a point, they
could be used to find the rational fraction which best matches the expansion, or Padé approximant ;
e.g., the classic Baker Jr [1975]. These are often superior to Taylor series, Weisstein.

However, even with the Taylor series method, neither fixing its step size nor its order are
optimal choices. For, there may be large spans along the β-axis where the solution changes very
little. For example, in Figure 3.2, most of the computational power is spent where the solution
barely changes (till point A there). Instead, big step sizes or low orders could have been more cost-
effective there, while using small step sizes or high orders where the solution changes rapidly (to
the left of A there). On the other hand, numerical derivatives of higher orders lose their accuracy
faster when approaching a bifurcation (Figure 2.3 top). An estimate of the local error is needed
to make the method adaptive, [Butcher, 2016, 226]. This can be achieved by estimating the local
Lipschitz constants of the Taylor expansion (3.1), by computing DrTl. These can be computed
easily using only the results presented so far and Proposition 27 (in Section II.7.3).

Last, our implementation for computing the derivative tensors could be optimized. In addition
to many non-algorithmic optimizations, note that it copies out each partial derivative to multiple
memory locations, which correspond to permutations of the derivatives’ order, as elaborated in
Section III.E.2.3.

Part II

The ideas underlying root-tracking for
rate-distortion
This part elaborates on the main ideas supporting the results of Part I.

Section 4 elaborates on the mathematical prerequisites of arbitrary-order derivative calcula-
tions. These are necessary for the formula of Theorem 3 for implicit derivatives of arbitrary-order
(Section I.2.2), and for Blahut-Arimoto’s derivative tensors (Section I.2.3). Section 5 outlines the
proof of the latter, provides related results such as the RD ODE, and comments how to compute
RD derivative tensors efficiently.

To reconstruct an RD solution curve from its implicit derivatives, Section 6 provides some
understanding of RD bifurcations. While its goal to show that Algorithms 2 and 3 follow the
optimal solution path subject to Assumption 3, we provide several basic results on RD bifurcations,
and the tools to detect and distinguish between two types of bifurcations.

In Section 7 we analyze the error accumulated by Algorithm 2 (in Section I.3.1). The analysis
not only reveals the source of the computational difficulty, but also provides a tool that could
be used to mitigate it (see Section I.3.4 on improvements). Finally, Section 8 provides results
supporting the computational and memory complexity bounds presented at Section I.3.3: for root
tracking in general, for RD root tracking (Algorithm 3), and for computing RD derivative tensors.

4 Preliminaries: the multivariate Faà di Bruno’s formula

We review the preliminaries needed to calculate the higher derivative tensors of Id − BAβ (1.2)
(in Section 5), and for the proof of the arbitrary-order expansion of dl

dβlF of Theorem 1 (in Section
III.B.1). These are based chiefly on the multivariate Faà di Bruno’s formula from Ma [2009], in
Theorem 7 below.

The n-th derivative of a product g(t) · f(t) of (scalar) functions f and g is given by the well-
known Leibniz rule,

dn

dtn
(
gf
)
=

n∑
k=0

(
n

k

)
dkg

dtk
· d

n−kf

dtn−k
. (4.1)

In comparison, the n-th derivative of the composite g (f(t)) is given by the less familiar Faà di
Bruno’s formula, Faà di Bruno [1855, 1857]. If all the necessary derivatives of g(t) and f(t) are
defined, it can be written [Roman, 1980, Theorem 2] as

dn

dtn
g
(
f(t)

)
=
∑ n!

k1! 1!k1 · · · kn! n!kn
· g(k1+···+kn) (f(t)) ·

(
f (1)(t)

)k1

· · ·
(
f (n)(t)

)kn

, (4.2)

where the sum is over all the non-negatives integers k1, . . . , kn satisfying k1 +2k2 + · · ·+nkn = n.
These represent a partition (as in Section I.2.2) of an n-sized set to k1 subsets of size 1, k2 subsets
of size 2, etc., hence k1 + k2 + · · ·+ kn subsets in total. cf., Hardy [2006] for a lucid combinatorial
interpretation of the formula’s coefficients, Johnson [2002] for further details and historical notes.

For our purposes, we shall also need a multivariate version of Faà di Bruno’s formula (4.2).
While its multivariate form is often attributed to12 Constantine and Savits [1996, Theorem 2.1],
we present a more modern form by Ma [2009], which generalizes the combinatorial arguments of
Hardy [2006] from the univariate case.

12cf., literature survey at the introduction of Ma [2009].

Following Ma [2009], we first recall some multivariate notation. Denote by N0 the non-negative
integers, and let x ∈ Rν . For a multi-index α = (α1, . . . , αν) ∈ Nν

0 of length ν, define

|α| :=
ν∑

j=1

αj , α! :=

ν∏
j=1

αj !, xα :=

ν∏
j=1

x
αj

j ,
∂|α|z

∂xα
:=

ν∏
j=1

(
∂

∂xj

)αj

z , (4.3)

with θ0 defined to be 1. A multi-index α ∈ Nν
0 is said to be decomposed into s parts p1, . . . ,ps ∈ Nν

0

with (respective) multiplicities m1, . . . ,ms ∈ Nµ
0 if the decomposition equation

α = |m1|p1 + |m2|p2 + · · ·+ |ms|ps (4.4)

holds, and the parts are distinct. Note that the parts p’s and the multiplicities m’s are multi-
indices of lengths ν and µ, respectively. The total multiplicity is defined to be

m := m1 +m2 + · · ·+ms . (4.5)

The list (s,p,m) is a µ-decomposition of α, or simply a decomposition. One way to ensure that
its parts are distinct is by requiring 0 ≪ p1 ≪ p2 ≪ · · · ≪ ps, Ma [2009], where ≪ is the total
order defined by α≪ β if there is j ≤ ν such that α1 = β1, . . . , αj−1 = βj−1, but αj < βj .

Theorem 7 (Multivariate Faà di Bruno’s, Ma [2009]). Let x ∈ Rν f−→ y ∈ Rµ g−→ z ∈ R, with
f, g sufficiently smooth functions. Write x = (x1, . . . , xν) and y = (y1, . . . , yµ) for the variables’
coordinates. Then,

∂|α|z

∂xα
= α!

∑
(s,p,m)∈D

∂|m|z

∂ym

s∏
k=1

1

mk!

[
1

pk!

∂|pk|y

∂xpk

]mk

(4.6)

where D is the set of all µ-decompositions of α. Explicitly, the summands to the right are given by

α!
∂r1+···+rµz

∂yr11 · · · ∂y
rµ
µ

s∏
k=1

µ∏
i=1

1

mk,i!

[
1

pk,1! · · · pk,ν !
∂pk,1+···+pk,νyi

∂x
pk,1

1 · · · ∂xpk,ν
ν

]mk,i

(4.7)

where pk = (pk,1, · · · , pk,ν) ,mk = (mk,1, · · · ,mk,µ) , ri := m1,i + · · · + ms,i, and hence m =
(r1, · · · , rµ).

The multivariate Faà di Bruno’s formula Ma [2009] at (4.6) simplifies when the outer composite
g in g ◦f is linear. The first term ∂|m|z

∂ym at (4.6) then vanishes, except for decompositions of a total
multiplicity |m| = 1. From definition (4.5), there is only one part of non-zero multiplicity in such
decompositions. They may be taken with s = 1, p1 = α and total multiplicity m = m1 (compare
to (4.6) and the decomposition equation (4.4)). That is, such µ-decompositions are determined by
picking a unit vector m1 = ej ∈ Nµ

0 , for j = 1, . . . , µ. We obtain,

Corollary 8. Under the conditions of Theorem 7, suppose that g : Rµ → R is linear. Then,

∂|α|z

∂xα
=

µ∑
j=1

∂z

∂yj
· ∂

|α|yj
∂xα

(4.8)

5 High order derivatives of the Blahut-Arimoto operator in cluster-
marginal coordinates

In this section we outline the proof of the closed-form formulae for the higher derivative tensors
of Id − BAβ (1.2) at Theorem 4 (in Section I.2.3). See Section III.C for details. On top of
intermediate results, Theorem 14 below (Section 5.3) provides the specialization to RD of the
implicit differential equation DxF

dx
dβ = −DβF (2.4). The efficient computations of the derivatives

tensors of Id − BAβ is discussed in Section 5.5. The results here are built on top of Section 4,
primarily on the multivariate Faà di Bruno’s formula at Ma [2009] (Theorem 7).

Recall the notations of Section I.2.3. Let pX and d(x, x̂) define an RD problem. Write N := |X |
and M := |X̂ | for the source and reproduction alphabet sizes, respectively. The BAβ operator in
marginal coordinates (2.20) is defined there as the composition of

q(x̂|x) := r(x̂) e−βd(x,x̂)

Z(x, β)
and (2.18)

s(x̂) :=
∑
x

pX(x)q(x̂|x) , (2.19)

in that order, where Z(x, β) :=
∑

x̂′ r(x̂′)e−βd(x,x̂′). We write s rather than r at the cluster-
marginal equation (2.19) to better distinguish input from output marginals. While our eventual
goal is to track RD solutions, calculations in this section do not assume r to be a fixed point of
BAβ , s := BAβ [r] = r, unless stated otherwise.

The encoder equation (2.18) can be considered as M × N real functions q(x̂|x) in the 1 +M
variables β and r(x̂), while the cluster marginal equation (2.19) are M functions s(x̂) in the M×N
variables q(x̂|x). That is, we view a Blahut-Arimoto iteration (2.20) as the composition

(β, r) ∈ R1+M
(2.18)

// q ∈ RM×N
(2.19)

// s ∈ RM . (5.1)

Of these two steps, the marginal equation (2.19) is linear. That renders the derivatives of s
with respect to q rather straightforward, in Section 5.1. As the encoder equation (2.18) is more
complicated, we untangle its high-order derivatives gradually. In Section 5.2 we tackle the repeated
derivatives of q with respect to r alone, and in Section 5.3 with respect to β alone. Only in 5.4
do we combine derivatives of both types, yielding formula (2.31) for mixed derivatives of arbitrary
order (Theorem 4 in Section I.2.3).

5.1 Deriving the marginal equation (2.19)

Denote high-order derivatives using multi-index notation, as in the multivariate Faà di Bruno’s
formula (in Section 4). A derivative of BAβ (2.20) with respect to its 1 + M variables (β, r) is
denoted by α ∈ N1+M

0 ; cf., the dependencies depicted in Equation (5.1). Considering β as the
zeroth coordinate, α0 stands for the number of differentiations with respect to β, and αj for that
with respect to r(x̂j), where 1 ≤ j ≤ M . We write α+ for α with its zeroth coordinate removed,
(α0,α+) := (α0, α1, . . . , αM).

Next, exploiting the linearity of the marginal’s equation (2.19), we apply Corollary 8 to the
multivariate Faà di Bruno’s formula (of Section 4). As the x̂′ output coordinate of BAβ is a real
function, we have

∂|α|BAβ [r] (x̂
′)

∂βα0∂rα+

(4.8)
=
∑
x,x̂

∂s(x̂′)

∂q(x̂|x)
∂|α|q(x̂|x)
∂βα0∂rα+

. (5.2)

For the marginal equation’s (2.19) first order derivative,

∂

∂q(x̂|x)s(x̂
′) =

∑
x′

pX(x′)
∂

∂q(x̂|x)q(x̂
′|x′) = δx̂,x̂′ · pX(x) (5.3)

As expected, this is constant in the variables q(x̂|x), and so all the higher derivatives of the output
marginal in (2.19) vanish. Thus,

∂|α|BAβ [r] (x̂
′)

∂βα0∂rα+

(5.2)
=
∑
x,x̂

∂s(x̂′)

∂q(x̂|x)
∂|α|q(x̂|x)
∂βα0∂rα+

(5.3)
=
∑
x,x̂

δx̂,x̂′ · pX(x)
∂|α|q(x̂|x)
∂βα0∂rα+

=
∑
x

pX(x)
∂|α|q(x̂′|x)
∂βα0∂rα+

(5.4)

To complete the calculation, we calculate the encoder’s derivatives in the following subsections.

5.2 Encoder’s (2.18) derivatives with respect to the marginal

Repeatedly deriving the encoder (2.18) with respect to the coordinates of the input marginal r
yields the following; it is proved in Section III.C.1 by induction on the order |α+| of differentiation.

Proposition 9. Let β > 0, r ∈ RM a distribution, and α a multi-index as above. Let q be defined
in terms of r by the encoder Equation (2.18). Its derivative of order 0 ̸= α+ ∈ NM

0 with respect
to r is,

∂|α+|

∂rα+
q(x̂′|x)

∣∣∣
r
=

(−1)|α+|−1(|α+| − 1)! e−β⟨α+,d(x,x̂)⟩

Z |α+|(x, β)
·
[
⟨α+, ex̂′⟩ − |α+| · q(x̂′|x)

]
(5.5)

where ⟨·, ·⟩ is the usual scalar product on RM , ex̂′ is the standard basis vector in RM at the x̂′

entry, and d(x, x̂) is considered as an x̂-indexed vector for x fixed.

To clarify (5.5), when x ∈ X is fixed, then d(x, x̂) is merely a vector in RM . As α+ is in
NM

0 ⊂ RM
0 , there is sense in taking the scalar product ⟨α+, d(x, x̂)⟩. For example, when α+ is the

j-th standard basis vector ej , then

⟨ej , d(x, x̂)⟩ = d(x, x̂j) . (5.6)

The first-order derivatives |α+| = 1 are an important special case,

Corollary 10. Outside the simplex boundary, ∀x̂ r(x̂) > 0, the Jacobian of Id − BAβ (1.2) in
marginal coordinates when evaluated at r is given by(

Dr (Id−BAβ)
∣∣
r

)
x̂i,x̂j

=
∑
x

pX(x)
q(x̂j |x)q(x̂i|x)

r(x̂j)
+ ∆[r]x̂i,x̂j (5.7)

where q is defined in terms of r by the encoder Equation (2.18), and ∆[r] := diag
(

r(x̂j)−BAβ [r](x̂j)
r(x̂j)

)
j
.

The term ∆[r] vanishes precisely at fixed points of BAβ , r = BAβ [r]. It can be considered as a
perturbation due to evaluating the Jacobian outside of fixed points. We shall need the general form
(5.7) for the proof of the convergence guarantees Theorem 5 of Taylor method for RD. Otherwise,
when evaluated at fixed points, this result agrees with Agmon et al. [2021] (A⊺ at Equation (7)
there). While the Jacobian can also be calculated at the simplex boundary, that shall not be
useful to us. Rather than calculating (5.7) directly, we prove it using Proposition 9 to illustrate
the multivariate notation.

Proof of Corollary 10. A first order derivative ∂/∂r(x̂j) is represented by the j-th standard basis
vector, α+ = ej . Differentiating its (x̂i, x) entry,

∂|α+|

∂rα+
q(x̂i|x) =

∂

∂r(x̂j)
q(x̂i|x)

(5.5)
=

(5.6)

e−βd(x,x̂j)

Z(x, β)
·
[
⟨ej , ei⟩ − q(x̂i|x)

]
(2.18)
=

q(x̂j |x)
r(x̂j)

[δi,j − q(x̂i|x)]
(5.8)

Setting α0 = 0 and plugging this back into formula (5.4) for the derivative of BAβ yields (5.7),

∂BAβ [r] (x̂i)

∂r(x̂j)

(5.4)
=
∑
x

pX(x)
∂q(x̂i|x)
∂r(x̂j)

(5.8)
=
∑
x

pX(x)
q(x̂j |x)
r(x̂j)

[δi,j − q(x̂i|x)]

(2.19)
= δi,j ·

BAβ [r](x̂j)

r(x̂j)
−
∑
x

pX(x)
q(x̂j |x)q(x̂i|x)

r(x̂j)
(5.9)

Where at the last equality, BAβ [r](x̂j) is the j-th output coordinate s(x̂j) (2.19) of a Blahut-
Arimoto iteration calculated at r.

At a fixed point of BAβ , the Jacobian’s properties relevant to us are the following, due to
Benger.

Theorem 11 (Agmon et al. [2021]). Let an RD problem be defined by pX and a finite non-
degenerate distortion d(x, x̂) (defined in Section I.2.3). Let r be a fixed point of BAβ outside the
simplex boundary, ∀x̂ r(x̂) > 0. Then, Dr (Id−BAβ)|r (5.7) is non-singular, diagonalizable, and
with real non-negative eigenvalues.

5.3 Encoder’s (2.18) partial derivative with respect to β

For derivatives with respect to β we need the polynomials Pk (2.23)-(2.24) defined in Section I.2.3.
Recall the derivation d̄ defined there on the infinite polynomial ring R [x0, x1, . . .],

d̄x0 := 0, and d̄xk := x1 · xk − xk+1 for k > 0 . (2.22)

To calculate d̄ on a monomial, apply the Leibniz rule d̄xj
i = jxj−1

i d̄xi, for j > 0,

d̄
(
xi0
0 xi1

1 xi2
2 · · ·xik

k

)
=
(
i0x

i0−1
0 d̄x0

)
xi1
1 xi2

2 · · ·xik
k + xi0

0

(
i1x

i1−1
1 d̄x1

)
xi2
2 · · ·xik

k + · · ·+ xi0
0 xi1

1 xi2
2 · · ·

(
ikx

ik−1
k d̄xk

)
(2.22)
= 0 + i1x

i0
0 xi1−1

1

(
x2
1 − x2

)
xi2
2 · · ·xik

k + · · ·+ ikx
i0
0 xi1

1 xi2
2 · · ·xik−1

k (x1xk − xk+1) (5.10)

where i0, i1, . . . , ik ≥ 0, and the j-th summand is understood to vanish if ij = 0. The first equality
follows from the usual rules of differentiation, the second from the definition (2.22) of d̄. With this,
one can calculate d̄Pk for a polynomial Pk, by linearity of d̄. Starting at P0(x0) = 1 (2.23), use the
inductive definition (2.24) to calculate Pk+1 from Pk. e.g., P1, P2 and P3 are given at (2.25)-(2.27).

The polynomials Pk are defined by simple algebraic formulae (2.23)-(2.24) which can be calcu-
lated easily, as in (5.10). They encapsulate the algebra involved in the encoder’s high-order partial
derivatives with respect to β. Plugging the distortion d(x, x̂) and the expectations Eq(x̂′|x)

[
d(x, x̂′)k

]
(2.28) in place of the variables x0, x1, . . . , xk of Pk, one can calculate the M -by-N matrices
Pk[q; d](x̂, x) (2.29), also denoted Pk(x̂, x) for short. This yields the following formula for the
encoder’s repeated partial β-derivatives — see Section III.C.2 for proof.

Proposition 12. Let β > 0, r ∈ RM a distribution, and q defined in terms of r by the encoder
Equation (2.18). Then for k > 0,

∂kq(x̂|x)
∂βk

∣∣∣
r
= q(x̂|x) · Pk(x̂, x) (5.11)

Plugging this into the expansion (5.4) of ∂|α|

∂βα0∂rα+BAβ [r] (x̂
′) (in Section 5.1) immediately

yields formula (2.30) of Theorem 4 (Section I.2.3) for the repeated β-derivative of Id−BAβ (1.2).
With P1 written explicitly, the first order can be written explicitly as follows (see Section III.C.3
for proof),

Corollary 13. With the notation of Proposition 12,

∂

∂β
(Id−BAβ)

∣∣∣
r
(x̂) = EpX(x) [q(x̂|x)d(x, x̂)]− Eq(x̂′|x)pX(x) [q(x̂|x)d(x, x̂′)] (5.12)

Now that Corollaries 10 and 13 provide all the first-order derivative tensors, we can specialize
the implicit differential equation DxF

dx
dβ = −DβF (2.4) to RD.

Theorem 14 (RD ODE). Let r be a fixed point of BAβ outside the simplex boundary, ∀x̂ r(x̂) > 0,
for which Assumptions 1 and 2 in Section I.2.1 hold. Then∑

x̂′

Ax̂,x̂′
dr(x̂′)

dβ
= Eq(x̂′|x)pX(x) [q(x̂|x)d(x, x̂′)]− EpX(x) [q(x̂|x)d(x, x̂)] (5.13)

where q is defined in terms of r by the encoder Equation (2.18), and

Ax̂,x̂′ :=
∑
x

pX(x)
q(x̂′|x)q(x̂|x)

r(x̂′)
. (5.14)

5.4 Encoder’s (2.18) mixed derivatives

The previous Sections 5.2 and 5.3 enabled us to calculate derivatives with respect to the coordinates
r alone or with respect to β alone. cf., the dependencies Equation (5.1). To derive simultaneously
with respect to both, recall G

(
k, a; q, d

)
(2.32) from Section I.2.3. It is defined on non-negative

integers k, a, and its values are M ×N matrices. We set G = 0 if a = 0 < k, and otherwise

G
(
k, a; q, d

)
(x̂,x)

:=
∑

t: |t|≤a,∑
j j·tj=k

1

t! (a− |t|)!
k∏

j=1

(
Pj(x̂, x)

j!

)tj

, (2.32)

where t ∈ Nk
0 , and Pj(x̂, x) are the matrices defined above (Equation (2.29) in Section I.2.3). Since

t represents the multiplicities of an integer partition of k, we may take t ∈ Nl
0 for any convenient

l ≥ k. With that,

Proposition 15. Let d(x, x̂) and pX define an RD problem, r ∈ ∆[X̂] be an input marginal outside
the simplex boundary, ∀x̂ r(x̂) > 0, and q the encoder its defines by the encoder Equation (2.18).
For α ∈ NM+1

0 a multi-index with α+ ̸= 0,

∂|α|

∂βα0 ∂rα+
q(x̂′|x)

∣∣∣
r
= (−1)|α+|−1(|α+|−1)!

(
q(x̂|x)
r(x̂)

)α+

α!
∑

k: |k|=α0

∏
i ̸=x̂′

G
(
ki, αi; q, d

)
(x̂i,x)


·
[
αx̂′ ·G

(
kx̂′ , αx̂′ ; q, d

)
(x̂′,x)

− |α+| · (1 + αx̂′) · q(x̂′|x) ·G
(
kx̂′ , 1 + αx̂′ ; q, d

)
(x̂′,x)

]
(5.15)

where k ∈ NM
0 , i = 1, . . . ,M , and G

(
k, a; q, d

)
is defined by (2.32).

This Proposition is proven in Section III.C.4 by differentiating the encoder’s r-derivative (5.5)
with respect to β, followed by an application of formula (5.11) for the encoder’s repeated par-
tial β-derivative, using the tools of Section 4. Plugging (5.15) back into the expansion (5.4) of

∂|α|

∂βα0∂rα+BAβ , we finally obtain formula (2.31) of Theorem 4 for the mixed derivative of Id−BAβ

(1.2), stated as Corollary 16 below. Together with Proposition 12 from the previous Subsection,
this concludes the proof of Theorem 4 in Section I.2.3.

Corollary 16. Under the conditions of Proposition 15,

∂|α|

∂βα0∂rα+
(Id−BAβ) [r] (x̂

′)

= δα,ex̂′ − (−1)|α+|−1(|α+| − 1)! α!
∑
x

pX(x)

(
q(x̂|x)
r(x̂)

)α+ ∑
k: |k|=α0

∏
i̸=x̂′

G
(
ki, αi; q, d

)
(x̂i,x)


·
[
αx̂′ ·G

(
kx̂′ , αx̂′ ; q, d

)
(x̂′,x)

− |α+| · (1 + αx̂′) · q(x̂′|x) ·G
(
kx̂′ , 1 + αx̂′ ; q, d

)
(x̂′,x)

]
(5.16)

As a sanity check, when differentiating only with respect to the marginal r, α0 = 0, then
Proposition 15 reduces to formula (5.5) for ∂|α+|

∂rα+ q(x̂|x), as one might expect. Indeed, k = 0 is
then the only vector in NM

0 satisfying |k| = α0 = 0. The sum G(0, a) at (2.32) then reduces to
1/a!, and so the summation at (5.15) over k simplifies to 1

α! ·
[
αx̂′ − |α+| · q(x̂′|x)

]
. Plugging this

back into (5.15) yields formula (5.5), as expected. The other special case when differentiating with
respect to β alone cannot be verified in a similar manner, since Proposition 15 requires α+ ̸= 0.

5.5 A note on how to compute high-order derivatives of Id−BAβ efficiently

Some quantities in the formulas for the derivative tensors Dl
βb,xl−b(Id − BAβ)[r] (Theorem 4 in

Section I.2.3) are shared, especially when partial derivatives with respect to β are present. While
this was purposefully implied by our presentation, we now discuss how these derivative tensors can
computed in an algorithmically efficient manner. cf., Section III.E.2 on the complexities of the
derivative tensors.

The form of G (2.32) suggests a multi-step approach to computing the derivatives tensors at
Theorem 4. First, compute the M -by-N matrices Pk(x̂, x) (2.29). While the matrices Pk(x̂, x)
depend both on q and d(x, x̂), their polynomial form Pk depends on k alone, as it is defined
algebraically by (2.23)-(2.24). Thus, the Pk polynomials can be computed once an for all, while
the Pk(x̂, x) matrices need to be computed anew for every encoder q. Yet, the expectations
Eq(x̂′|x)

[
d(x, x̂′)k

]
(2.28) are shared among Pk(x̂, x)’s for distinct k values. With these computed,

the derivative tensors (2.30) with respect to β alone can be computed readily.
Second, compute the M -by-N matrices G

(
k, a
)

according to (2.32), when the Pk(x̂, x) matrices
are given. When the range of admissible k and a values is known in advance, then it is possible to
iterate over the partition vectors t at (2.32) only once. For, the summand computed there for a
particular partition t can be added to the matrices G(k, a) at k =

∑
j j · tj and at all the a values

with a ≥ |t|.
Third, once the G

(
k, a
)

matrices are computed, then one can compute the mixed derivatives
of (Id − BAβ)[r] by (2.31). Each α-indexed partial derivative there may correspond to multiple
tensor entries. cf., the comments on indexation, after definition (2.6) in Section I.2.1. Thus, partial
derivatives can be computed only once per α and then distributed to the various tensor entries.
Alternatively, each α-indexed derivative can be re-used at tensor evaluation. See also Section
III.E.2.3 on the tensors’ complexities.

If one wishes to compute implicit derivatives dlr
dβl (1.4) of all orders l up to L > 0, then inspecting

(2.31) shows that it is enough to compute the Pk(x̂, x) matrices for all k ≤ L, and G
(
k, a
)

on the
integral grid 0 ≤ k ≤ L, 0 ≤ a ≤ 1 + L. Once these are computed, then any α-indexed partial
derivative with |α| ≤ L can be computed.

6 On RD bifurcations and root tracking for RD

As described in Section 1, the goal of this work is to track the path of an optimal solution. In RD
context, this means tracking an achieving distribution, rather than any fixed point of the Blahut-
Arimoto algorithm. As shown below, there are typically many fixed points of BAβ (2.20) which do
not achieve the rate-distortion curve, and so are sub-optimal. Ensuring that the root being tracked
is indeed an optimal one requires an understanding of the solutions’ structure or equivalently of
RD bifurcations.

We start by showing in Section 6.1 that an RD problem typically has a plethora of suboptimal
solutions, stemming from the various restrictions of a given problem (defined in Section I.3.1).
Our main case of interest is that of a cluster vanishing. Namely, when the marginal probability of
a cluster x̂ vanishes gradually as β varies, resulting in an optimal solution on a smaller support.
In Section 6.2 we show that two solution branches must then collide and merge into one, so these
are indeed bifurcations. This type of bifurcations is handled by Algorithms 2 and 3 in Section
I.3. Besides bifurcations in which the support shrinks, we are also aware of bifurcations where
the optimal solution switches support. An explanation of these is deferred to Section 6.5. Both
of the latter are local bifurcations, as they can be detected by the relevant Jacobian. “There
are also bifurcations that cannot be detected by looking at small neighborhoods of fixed points”,
[Kuznetsov, 2004], known as global bifurcations. Such bifurcations could break the continuity of
x(β), violating Assumption 2. It turns out that there are no global bifurcations in rate-distortion
(Section 6.3). However, considering only the cluster-marginal of a root might cause a support-
switching bifurcation to appear as if it is a global bifurcation. With that, while we do not argue
to classify all RD bifurcations, we do believe that the tools brought here are a significant step in
that direction.

To track an operator’s root x it is necessary that it can be written as a function x(β) of β
(Assumption 1 in I.2.1) which is smooth (Assumption 2), except at bifurcations. In Section 6.3
we consider the obstructions to these assumptions in RD, building on the classic results of Berger
[1971]. Our main result is Theorem 20, which allows easy detection of non-uniqueness of the
achieving distribution, in terms of Blahut-Arimoto’s Jacobian with respect to the encoder q. The
subtle differences between the Jacobian in encoder q and in marginal coordinates r allows to detect
the bifurcation’s type in some cases (Equation (6.6)), and extends the argument of Agmon et al.
on critical slowing down. This not only allows us to argue in Section 6.4 that root tracking for RD
does indeed track the optimal solution, subject to Assumption 3, but also gives us a straightforward
tool to detect failures, and so to consider how they might be corrected.

We note that Rose [1994] considers RD bifurcations of continuous source alphabets, usually
assuming a squared-error distortion measure. However, it is assumed there [Rose, 1994, IV.C] that
the distortion varies continuously with β and that the solution’s support grows monotonically with
β. As a result, bifurcations of continuous sources are classified there as either “split” or “mass
growing” bifurcations. However, both of these assumptions need not hold for finite RD problems,
as seen by the rightmost bifurcation of Figure 6.2. cf., Sections 6.3 and 6.5. In related contexts,
Parker et al. [2010] consider bifurcations using the Lyapunov-Schmidt reduction, a general-purpose
tool for handling singularities. In contrast, we exploit the structure of RD problems by using the
reductions defined in Section I.3.1. This simplifies the work with RD roots, facilitating the results
below.

6.1 Suboptimal RD curves

We proceed with the discussion in Section I.2.3 around the definition (2.20) of BAβ . The Blahut-
Arimoto algorithm converges to a curve-achieving distribution, [Csiszár, 1974, Theorem 1], yet in
a manner which depends on the choice of initial condition r0, as hinted by Csiszár. When r0 is of
full support, we have the following.

Theorem 17 (Csiszár [1974]). Let pX and d(x, x̂) define an RD problem on a finite reproduction
alphabet X̂ , and let β > 0. Let r0 ∈ ∆[X̂] be an initial condition of full support, r0(x̂) > 0 for all
x̂ ∈ X̂ . Then, there exists a curve-achieving distribution r∗ such that BAn

β [r0]
n→∞−→ r∗.

Let r0 be an initial condition of full support, and denote by r∗ its limit under BAβ , an achieving
distribution. If supp r∗ := {x̂ ∈ X̂ : r∗(x̂) > 0} is of size 2 at least, then we can choose a non-empty
proper subset X̂ ′ of supp r∗. Next, invoke Theorem 17 on the RD problem restricted to X̂ ′, starting
at some initial condition r′0 of full-support on X̂ ′, r′0 ∈ ∆[X̂ ′]. This yields an achieving distribution
r∗′ which obviously differs from r∗, as their supports differ. While r∗ achieves the rate-distortion
curve of the problem we have started with, r∗′ achieves that of the restricted problem. These two
RD curves may differ, as demonstrated by Figure 6.1. cf., Lemma 1 at [Berger, 1971, Section 2.5].

In light of the above, we have the following refinement of Csiszár’s Theorem 17,

Theorem 18. Under the conditions of Theorem 17, let r0 ∈ ∆[X̂] be an initial condition, not
necessarily of full support. Then, there exists a distribution r∗ which achieves the rate-distortion
curve of reduced RD problem to supp r0, such that BAn

β [r0]
n→∞−→ r∗.

This shows that RD problems have sub-optimal solution branches. Namely, distributions that
obtain the RD curve of a restricted problem, but not that of the unrestricted problem. Proceeding
with the argument above Theorem 18, one might expect that many sub-optimal branches typically
exist at a given β value. Indeed, this is often the case, as demonstrated by Figure 6.1.

0.0 0.3 0.6 0.9 1.2 1.5 1.8

0.00

0.25

0.50

0.75

1.00

p(
x̂

)

0.08 0.12 0.16 0.20 0.24

Distortion

0.0

0.3

0.6

0.9

1.2

1.5

1.8

R
at

e
(b

it
s)

Optimal curve

Suboptimal branch

0.0 0.3 0.6 0.9 1.2 1.5 1.8

Rate (bits per sample)

0.00

0.25

0.50

0.75

1.00

p(
x̂

)

Figure 6.1: An optimal and a sub-optimal branch merge at a cluster-vanishing bifur-
cation. Top left: The optimal solution by rate for the problem in Figure 3.1; BA with uniform
initial conditions. Bottom left: The solution of the restricted problem, with the blue cluster
deleted (equivalently, initialized to zero). Left: The solutions of the restricted and unrestricted
problems differ above the bifurcation at Rc ≈ 0.273 (rightmost dashed red vertical), merging into
one at the bifurcation point and to its left. Right: The rate-distortion curves of both branches
intersect at this point, marked by a red circle.

6.2 Cluster-vanishing bifurcations (support shrinking)

The support of an optimal RD solution typically changes with β. A priori, it may not be clear that
if the support of an optimal solution changes then there must be a bifurcation. Namely, that the
number of fixed points of BAβ must change. We prove that if the support of an optimal solution
shrinks, then two roots must intersect and merge into one. The argument for support-switching
bifurcations is subtler and deferred to Section 6.5.

When the smallest distortion possible is desired, then the channel x 7→ argminx̂ d(x, x̂) is
clearly optimal; it is often of full support. While for zero rate, the constant encoding to a letter
in argminx̂ E[d(X, x̂)] is optimal. In between, the support of achieving distributions r∗β usually
shrinks gradually as a larger distortion D is allowed (β decreased). Suppose that the support of r∗β
shrinks at βc, supp r∗β− ⫋ supp r∗β+ . At βc itself, r∗βc

may be considered as a solution of the reduced
problem on supp r∗β− by deleting letters x̂ outside its support, [Berger, 1971, Lemma 1 in Section
2.5]. By Theorem 11 in Section 5.2, the Jacobian Dr (Id−BAβ)|r∗

βc
at the reduced solution is

non-singular. Thus, by the Implicit Function Theorem, Id − BAβ on the reduced problem has a
unique root r′β through (r∗βc

, βc). While below βc it coincides with r∗β− , above βc it must differ
from r∗β+ as their supports differ, although both are fixed points of BAβ (2.20). This shows that
two roots of Id−BAβ must intersect at βc, as demonstrated to the left of Figure 6.1.

As a side note, we comment that if an achieving distribution r∗β is known to be unique, then
r′β is unstable above βc. For, adding a small non-zero perturbation to the coordinates of r′β will
then result in an initial condition which converges to r∗β under BAβ , by Csiszár’s Theorem 17.

6.3 Obstructions to the root-tracking assumptions for RD

We discuss the obstructions to Assumptions 1 and 2 (from Section I.2.1) in RD context. Namely,
that the achieving distributions r can be written as a smooth function rβ of β. We also discuss a
simple method to detect such obstructions.

To that end, we dive into the subtle differences between three possible choices: of fixing a
multiplier value β > 0, a point (D,R) on the rate-distortion curve, or a distribution q(x̂|x) which
achieves the RD curve. By [Berger, 1971, Theorem 2.5.2], for every point (D,R) on the RD curve
there is some β value such that (D,R) can be generated parametrically13 from β. This justifies
talking about “the curve points (D,R) of β”, or “the achieving distributions q of β”. However, to a
value of β there may correspond more than a single point on the rate-distortion curve; and a point
on the rate-distortion curve may be achieved by more than a single distribution. We described
these two kinds of non-uniquenesses schematically by,

β // curve points (D,R) // achieving distributions q(x̂|x) (6.1)

For non-uniqueness to the left of (6.1), the multiplier −β is the slope of the RD curve (Theorem
2.5.1 in Berger [1971]), and is a continuous function β(D) of the distortion D, on the open interval
(Dmin, Dmax) (Theorem 2.5.5). As R(D) is convex, its slope −β is monotonically non-decreasing
in D. Thus, D ∈ (Dmin, Dmax) can be written as a function of β if and only if −β(D) is strictly
increasing, in which case D(β) is continuous. When β(D) is constant in D, the RD curve has an
entire linear segment which corresponds to a single β value. In particular, the achieving distribu-
tions cannot be written then as a function of β, breaking Assumption 1. e.g., the right bifurcation
in Figure 6.2. See [Berger, 1971, Section 2.7] for further examples.

However, even if the RD curve has no linear segments, a distribution q to the right of (6.1)
which achieves a particular curve point (D,R) need not be unique. For example, suppose that

13By Equations (2.5.15) and (2.5.16) there; see also the discussion following Equation (2.5.19) there.

a column in the distortion matrix is duplicate (d is degenerate): there are x̂1 ̸= x̂2 such that
d(·, x̂1) = d(·, x̂2). The clusters x̂1 and x̂2 are then indistinguishable for any practical purpose.
e.g., if r is an achieving distribution with r12 := r(x̂1) + r(x̂2) > 0, then it is not difficult to see
that dividing r12 arbitrarily between r(x̂1) and r(x̂2) also yields an achieving distribution r′: for
λ ∈ [0, 1], set r′(x̂1) := λ · r12, r′(x̂2) := (1 − λ) · r12 and r′(x̂) := r(x̂) otherwise. Indeed, Berger
notes that “if the distortion matrix exhibits certain form of symmetry and degeneracy, there can
be many choices of [a minimizer]”. While this breaks neither of our assumptions, the solution may
then have multiple parameterizations in terms of β.

Non-uniqueness to the right of (6.1) (multiple distributions achieving a single curve point)
implies that the simplex contains an entire line of achieving distributions,

Theorem 19 (Theorem 2.4.2 at Berger [1971]). If the conditional probability distributions q′ and
q′′ both achieve a point (D,R(D)) on the rate-distortion curve, then so do their convex combina-
tions λq′ + (1− λ)q′′, for any λ ∈ [0, 1].

We generalize this as follows, to account for any non-uniqueness at (6.1).

Theorem 20. For any β > 0 value, the set of achieving distributions which corresponds to β is
convex.

Proof of Theorem 20. For a conditional probability distribution q and β > 0, denote by Lβ [q] the
value of the RD Lagrangian there, I(q; pX) + β Eq(x̂|x)pX(x) [d(x, x̂)].

Suppose that q′ ̸= q′′ both achieve the RD curve (1.1) at the same β value. Therefore, Lβ [q
′]

and Lβ [q
′′] must both equal the minimal Lagrangian value L∗

β . Let qλ := λq′ + (1 − λ)q′′ for
λ ∈ [0, 1]. We need to prove that qλ also achieves a point on the RD curve. Since mutual
information is convex in q and the expectation term in L linear, we have that

Lβ [qλ] ≤ λLβ [q
′] + (1− λ)Lβ [q

′′] = L∗
β . (6.2)

But L∗
β is the minimal value of the Lagrangian, and so equality follows.

Finally, the RD curve is the envelope of lines of slope −β and intercept L∗
β along the R-axis,

Berger [1971]. Thus, qλ indeed achieves the curve (1.1).

Theorem 20 yields two important corollaries. Recall the definition (2.20) of BAβ [r] (Section
I.2.3), where it is considered as an operator in the marginals r. By abuse of notation, write BAβ [q]
for the evaluation of BAβ at q, now considered as an operator in the encoders q (see comments
there). If for a particular β value there is more than one achieving distribution q′ ̸= q′′, then by
Theorem 20, the entire line section connecting q′ to q′′ is comprised of fixed points of BAβ , or
equivalently roots of Id − BAβ . Therefore, its Jacobian with respect to these coordinates must
vanish along the vector pointing from q′ to q′′.

Corollary 21 (Non-uniqueness of RD solutions is detectable by q-Jacobian). If at β > 0 there is
more than one achieving distribution q, then kerDq(Id−BAβ)[q] ̸= {0}.

The Jacobian in these coordinates is given explicitly by Proposition 23 below. An important
practical aspect of this Corollary is that the kernel may be calculated at any of the problem’s
achieving distributions q which correspond to β; it does not matter when testing for uniqueness. If
r∗ is a fixed point of BA when initialized at an arbitrary marginal r0 (not necessarily of full support)
then, by Theorem 18, it achieves the curve of the reduced problem to r0. Thus, kerDq(Id −
BAβ)[q

∗] gives a simple tool to test whether there might be additional distributions achieving a
reduced problem at the corresponding encoder q∗.

We note that Corollary 21 is not merely a logical negation of the Implicit Function Theorem,
as the latter is local in nature. Compare for example to the lines intersecting parabola Example

in Section I.2.1.1. So long that the base β0 of the expansion there is above the critical point, the
problem has two distinct solutions, yet the Jacobian there is non-singular at each. Unlike Corollary
21 for RD, knowledge of one solution in that example does not allow us to detect that the other
exits. Instead, this discussion boils down to the following. cf., [Kuznetsov, 2004, Section 2.3].

Corollary 22. There are no global bifurcations in rate-distortion problems.

We note, however, that bifurcations may not be detectable unless encoder coordinates q are
used, as explained below. The Jacobian’s explicit form in these coordinates is given below (proof
in Section III.C.5). cf., the Jacobian Dr (Id−BAβ) [r] in marginal coordinates (Corollary 10 in
Section 5.2).

Proposition 23. Let q be a conditional distribution, s the marginal defined by it via the marginal
Equation (2.19). Then, the Jacobian of BAβ in encoder coordinates is given by the matrix

(DqBAβ [q])(x̂,x),(x̂′,x′) =
e−βd(x,x̂′)∑

x̂′′ s(x̂′′)e−βd(x,x̂′′)
[δx̂,x̂′ −BAβ [q](x̂|x)] pX(x′) (6.3)

whose rows and columns are indexed by (x̂, x) and (x̂′, x′) ∈ X̂×X , respectively. When ∀x̂ s(x̂) ̸= 0,
this simplifies to

BAβ [q](x̂
′|x)

s(x̂′)
[δx̂,x̂′ −BAβ [q](x̂|x)] pX(x′) . (6.4)

There is a subtle difference between the Jacobians of Id − BAβ with respect to the cluster
marginal r and encoder q coordinates. For, the r-Jacobian can only detect cluster-vanishing
bifurcations, as explained below, while the q-Jacobian can be used to detect any RD bifurcation,
by Corollary 21. As a result, it is easy to mis-detect bifurcations other than cluster-vanishing
when using marginal coordinates r. e.g., the support-switching bifurcation to the right of Figure
6.2 appears as a discontinuity in marginal coordinates r (panel A), with no Jacobian eigenvalue
vanishing to indicate its appearance (panel C). Nevertheless, its encoder coordinates q-Jacobian has
an eigenvalue vanishing precisely there (panel D); cf., Section 6.5 on support-switching bifurcations.

By the Implicit Function Theorem, if Dq(Id − BAβ)|q has no kernel at its root q then there
is a unique function qβ through it. As discussed in Section I.2.1, this implies that Assumptions 1
and 2 hold. In particular, if q is an achieving distribution, then by Corollary 21 there is no other
curve-achieving distribution at the same β value. For, that would be detectable by a non-trivial
kernel. cf., the discussion around Equation (6.1).

Corollary 24. Let β > 0, and let q be a fixed point of BAβ such that

kerDq(Id−BAβ)|q = {0} . (6.5)

Then, Assumptions 1 and 2 hold there for RD.
Further, if q is also an achieving distribution, then (6.5) implies that there is no other curve-

achieving distribution at that β value.

In contrast, the Jacobian Dr(Id−BAβ)|r in marginal coordinates can only detect bifurcations
where the support shrinks to a proper subset, at least in non-degenerate problems. For, by [Agmon
et al., 2021, Lemma 2 ff.], its kernel is determined only by supp r (corresponding precisely to
clusters outside the support), regardless of how many other achieving distributions there may
be. By reducing the problem to supp r (as in Section 6.2), its eigenvalues can be seen to be
continuous in β, vanishing if and only if a cluster vanishes. Therefore, the r-Jacobian cannot
detect a bifurcation that switches between two distinct supports, even if they are of the same size.
e.g., the right bifurcation of Figure 6.2.

The above gives a way to distinguish numerically between bifurcations of different types when
tracking RD roots, summarized at (6.6) below. Since eigenvalues are continuous in the choice of
matrix, and we assume that Dq(Id−BAβ)|q is usually of full rank (Assumption 3), then one can
put a small threshold on eigenvalues, below which the Jacobian is considered singular. This is a
necessary condition for bifurcation, of any kind. For simplicity, suppose that the total algebraic
multiplicity of the vanishing eigenvalues is 1. If any cluster vanishes simultaneously, then the fixed
point is approaching a cluster-vanishing bifurcation. Otherwise, the fixed point may be approaching
a bifurcation of some other kind, or the distortion matrix may misbehave, as noted after (6.1).
While several approaches may come to mind on how bifurcations other than cluster-vanishing can
be handled, that is beyond the scope of this work.

|λ| approaches 0, for any λ ∈ eigDq(Id−BAβ)|q? No //

Yes
��

No bifurcation

r(x̂) approaches 0, for any x̂?

Yes
��

No

,,

Cluster-vanishing bifurcation Possibly a support-switching bifurcation
(6.6)

The fact that there are RD bifurcations that are captured by the kernel of the q-Jacobian but
not by that of the r-Jacobian can be understood intuitively by the relation

(DrBAβ [r])x̂,x̂′ =
∑
x=x′

(DqBAβ [q])(x̂,x),(x̂′,x′) (6.7)

at a fixed point of full-support, which can be verified directly. That is, DrBAβ [r] is the blockwise
trace of DqBAβ [q], and so it contains only a “summary” of the information in the latter. In
particular, it may be that DqBAβ [q] has an eigenvector of eigenvalue 1 while DrBAβ [r] does not.

As a side note, the argument of Agmon et al. for critical slowing down of Blahut-Arimoto was
based on the Jacobian Dr(Id − BAβ)|r with respect to cluster-marginal coordinates. However,
their Theorem 5 makes no use of the choice of coordinates system, and so implies critical slowing
down also when an eigenvalue of the q-Jacobian vanishes gradually, even if no eigenvalue of the
r-Jacobian is vanishing. This is demonstrated by Figure 6.2 (panels B and D, right bifurcation).

0.0

0.2

0.4

0.6

0.8

1.0

p(
x̂

)

β1 β2

A

x̂1

x̂2

x̂3

0.0

0.2

0.4

0.6

0.8

1.0

ei
g
∇
p
(x̂

)
(I
d
−
B
A
β
)

β1 β2

C

−1 0 1 2 3 4 5

log2 β

101

102

103

104

105

B
A

it
er

at
io

n
s

B

−1 0 1 2 3 4 5

log2 β

0.00

0.05

0.10

0.15

ei
g
∇
p
(x̂
|x

)
(I
d
−
B
A
β
)

D

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Distortion

0.0

0.2

0.4

0.6

0.8

1.0

R
at

e
(b

it
s)

E

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Distortion

0.0

0.2

0.4

0.6

0.8

1.0
R

at
e

(b
it

s)
Fsupp ⊆ {x̂2, x̂3}

supp ⊆ {x̂1, x̂2}

Figure 6.2: A support-switching and a cluster-vanishing bifurcation. Reproducing [Berger,

1971, Figure 2.7.6], defined by d(x, x̂) =

(
1 0 0.3
0 1 0.3

)
and pX = (0.4, 0.6). This problem exhibits

two bifurcations, at β1 and β2 (dashed red verticals). A. Cluster marginal pβ(x̂) as a function
of β. While at β1 a cluster vanishes, at β2 the support switches between two distinct subsets
of size 2. At β2, an entire line section of distributions is optimal. This results in an apparent
discontinuity at panels A through D, as they are plotted by β value. B. Blahut-Arimoto iterations
until convergence (stopping condition is 10−7), initialized with uniform initial conditions at each
β value. Critical slowing down is clearly noticed at both sides of the two bifurcations, even though
panel C has a vanishing eigenvalue only to the right of β1. This is explained by the vanishing
eigenvalues of the q-Jacobian with respect to encoder coordinates, at panel D. See Section 6.3. C.
Eigenvalues of the r-Jacobian with respect to cluster-marginal coordinates r(x̂). An eigenvalue
approaches zero at the cluster-vanishing bifurcation to the left. In contrast, the solution’s support
size does not change in the vicinity of β2. Therefore, the Jacobian’s rank there remains unchanged
[Agmon et al., 2021, Theorem 1]. D. Eigenvalues of the q-Jacobian with respect to the encoder’s
coordinates q(x̂|x). Multiple achieving distributions at a single value β2 are detectable by a non-
trivial kernel direction, in accordance with Corollary 21. E. The rate-distortion curve has a linear
segment (dotted), corresponding to β = β2. F. The linear curve segment can be explained in terms
of a support-switching bifurcation between two suboptimal RD curves, of the problems restricted
to {x̂1, x̂2} and {x̂2, x̂3}. The optimal RD curve in black (dashed) alternately coincides with the
two suboptimal curves (blue and green), as explained in Section 6.5. Both our Algorithm 3 and
BA with reverse annealing miss the right bifurcation, and so follow the sub-optimal root in green;
see Section 6.4.

6.4 Why does root-tracking for RD follow the optimal solution path?

As seen in previous subsections, RD problems typically have a plethora of sub-optimal solutions,
which do not achieve the problem’s rate-distortion curve. Under Assumption 3 (of Section I.3.1),
the convexity of achieving distributions (Theorem 20) implies that an optimal root tracked by our
algorithms does indeed remain optimal (namely, achieving). We elaborate on this below.

First, consider Algorithm 2 for tracking a root between cluster-vanishing bifurcations. An
achieving distribution tracked by it remains achieving so long that the q-Jacobian is non-singular.
Indeed, by Corollary 24 in Section 6.3, Assumptions 1 and 2 which are necessary for root-tracking
I.2.2 hold. Further, as the root being tracked is an achieving distribution, then that Corollary
also implies that there is no other achieving distribution. We note that two distinct roots cannot
exchange the property of being curve achieving without both being achieving simultaneously, be-
cause the rate and distortion functionals are continuous in the encoder q, 14. The above arguments
hold so long that Dq(Id − BAβ)[qβ] remains non-singular, which by Assumption 3 is true until
the next cluster-vanishing bifurcation is reached.

Second, when an achieving distribution qβ approaches a cluster-vanishing bifurcation, then by
continuity of the RD curve, [Berger, 1971, Theorems 2.4.1, 2.5.4], it achieves the curve also at the
point of bifurcation. As shown in Section 6.2, a sub-optimal root must exist to the right of the
bifurcation, merging with the optimal one at the point of bifurcation. Thus, while the heuristic
used by Algorithm 3 to handle the bifurcation may temporarily follow a sub-optimal branch, it
achieves the curve once the point of bifurcation is reached, re-gaining optimality.

Third, we need to guarantee that Algorithm 2 is indeed initialized at an achieving distribution.
When starting at β0 ≫ 0 with an initial condition of full support, iterate with Blahut-Arimoto
until convergence. By Csiszár’s Theorem 17, the distribution qβ0

obtained this way is an achieving
distribution. As shown above, the heuristic used by Algorithm 3 always ends at an achieving
distribution. Thus, Algorithm 3 will initialize Algorithm 2 at achieving distribution the next time
it is invoked.

The assumption that the q-Jacobian is non-singular outside cluster-vanishing bifurcations is
necessary for Algorithm 2 to keep track of the optimal root. For, this algorithm tracks the root of
the reduced problem, essentially using only the r-Jacobian as its stopping condition. Therefore, it
would only detect cluster-vanishing bifurcations, as explained in Section 6.3. e.g., at the support-
switching bifurcation to the right of Figure 6.2, Algorithm 2 would continue to track the root
past the bifurcation, even after it had lost optimality. So will BA with reverse annealing, as the
root continues to exist beyond the bifurcation. However, while missing bifurcations other than
cluster vanishing, Algorithm 2 would suffer no computational penalty or accuracy loss near them
as Blahut-Arimoto does, since no eigenvalue of the r-Jacobian vanishes there (cf., panels B and C
of Figure 6.2).

Nevertheless, the discussion around (6.6) provides a simple method to detect bifurcations other
than cluster-vanishing ones, up to pathologies of the distortion matrix. Once detected, we expect
that they could be handled using tools similar to those developed here. As an alternative approach,
RD derivatives in Algorithm 1 can be calculated with respect to q rather than r coordinates,
changing the stopping condition of Algorithm 2 accordingly. We have not chosen this approach
due the computational costs of having a higher-dimensional variable.

14Denote I(q) := I(q; pX), D(q) := Eq pX [d(x, x̂)], Fβ(q) := I(q) + βD(q), and write Fβ := minq Fβ(q) for its
minimal value. Suppose that q′

β and q′′
β are (continuous) paths such that Fβ1

(q′
β1

) < Fβ1
(q′′

β1
) but Fβ2

(q′
β2

) >

Fβ2
(q′′

β2
), for some β1 < β2. Then by continuity, there must exist β3 ∈ (β1, β2) where Fβ(·) obtains the same value

on both paths, Fβ3
(q′

β3
) = Fβ3

(q′′
β3

). The argument follows by setting Fβ1
= Fβ1

(q′
β1

) and Fβ2
= Fβ2

(q′′
β2

).

6.5 Linear curve segments as support-switching bifurcations

As a side note to this Section’s main line of discussion, we offer an explanation of linear curve
segments in terms of support-switching bifurcations between sub-optimal RD curves. This explains
the right bifurcation in Figure 6.2.

Suppose that at D1 the curve is achieved by a solution of support A ⊆ X̂ , and at D2 > D1 by a
solution of support B ⊆ X̂ , where neither of these subsets contains the other, A ⊈ B and B ⊈ A.
The case of a shrinking support at bifurcation was already handled in Section 6.2. Without loss of
generality, suppose that X̂ = A∪B. For simplicity, suppose that outside bifurcations, the curve is
achieved by a unique distribution. Denote by RA(D) and RB(D) the RD curves of the restricted
problems to A and B, respectively, and suppose that their respective ranges (DA

min, D
A
max) and

(DB
min, D

B
max) of distortion values has a large enough intersection for the below to be meaningful.

Since both RA(D) and RB(D) are continuous, and only RA is optimal at D1 (only RB at D2),
then the two curves must intersect somewhere in (D1, D2). Recall that a differentiable function is
convex if and only if all its tangents lie below its graph. Thus, the tangent to RA at a point D is
below the curve of RA. Pick the smallest D′

1 such that the tangent to RA at D′
1 also intersects

the curve RB , say at D′
2. There must be such a point D′

1, as the two curves RA and RB intersect
and are continuous. D′

1 > D1 because RA is below RB at D1, by assumption. By convexity,
D1 < D′

1 < D′
2 < D2. If RA still coincides with the problem’s RD curve at D′

1 and RB with that
at D′

2, then by Theorem 20, the entire line section connecting (D′
1, R

A(D′
1)) to (D′

2, R
A(D′

2)) is
achievable, at the β value corresponding to its slope. Other than its vertices at D′

1 and D′
2, which

are obtained by distributions supported on A or B alone, any other point along this section is
obtained by distributions supported on the entire X̂ . Points in the section’s interior lie on the RD
curve of the original problem, but on neither of the suboptimal curves RA or RB . See panel F in
Figure 6.2 for example.

7 Error analysis for root-tracking for RD

We analyze the error of Algorithm 2, our specialization of Taylor’s method to RD. While the
highlight of this section is its convergence guarantees (Theorem 5 in Section I.3.1; see Section
III.D.2 for proof), the results comprising it are of interest on their own right. In Section 7.1 we
briefly recap standard error analysis, highlighting relevant subtleties. In Section 7.2 we show that
tracking an operator’s root in the presence of bifurcations generally belongs to a family of “stiff”
problems, which are harder to solve with standard numerical methods such as Taylor’s. Stopping
towards a bifurcation effectively restricts the problem’s difficulty, allowing RD derivative tensors
to be bounded uniformly. To mitigate this difficulty, we suggest in Section 7.3 a tool for local error
estimation, which could be used to improve the cost-to-error tradeoff of Algorithm 2.

7.1 Preliminaries: error analysis of Taylor methods

We succinctly recap the error analysis of the Euler and Taylor methods for solving ordinary differ-
ential equations. While these are necessary for the sequel, the reader well versed in this material
is advised to skip to the next subsection.

We follow standard definitions of numerical approximations, as in Atkinson et al. [2011] or
Butcher [2016]. A first-order initial value problem is defined by

dx

dβ
= f (x, β) , x(β0) = x0 . (7.1)

By the implicit ODE (2.4), tracking an operator root (x0, β0) is of this form. Where, RD roots
satisfy the ODE of Theorem 14 in Section 5.3.

Write xn for a numerical approximation of the true solution x(βn) at β := βn, and en :=
x(βn) − xn for the approximation’s error, known as the global truncation error in the context of
numerical approximation. A numerical approximation can be obtained by setting

xn+1 := xn +∆β · f (xn, βn) (7.2)

where ∆β is the step size, often fixed, and βn+1 := βn +∆β. This approximation method (7.2) is
known as the Euler method. When its right-hand side is replaced by a Taylor polynomial of degree
l > 0, this is known as the Taylor method,

xn+1 := xn +∆β · Tl

(
xn, βn,∆β

)
. (7.3)

Euler’s method is a first-order Taylor method. In root-tracking context, we write

Tl

(
xn, βn,∆β

)
:=

1

1!
· dx
dβ

∣∣∣
(xn,βn)

+
∆β

2!
· d

2x

dβ2

∣∣∣
(xn,βn)

+ · · ·+ ∆βl−1

l!
· d

lx

dβl

∣∣∣
(xn,βn)

(7.4)

Where, dkx
dβk are the implicit derivatives computed by Algorithm 1 (Theorem 3). This gives a

numerical algorithm for tracking operator roots (1.3), under Assumptions 1 and 2 (in Section
I.2.1). Where, in RD context the step ∆β is negative (see Section I.3.1).

Error analysis of Euler’s method (7.2) is a standard result in numerical solution of ODEs.
e.g., [Atkinson et al., 2011, Theorem 2.4] or [Butcher, 2016, Theorem 212A]. Its generalization to
an l-th order Taylor method is straightforward, though usually not given explicitly in textbooks.
Following the notes of Gottlieb [2006], its crux is subtracting the numerical approximation xn+1

(7.3) from the true solution

x(βn+1) = x(βn) + ∆β · Tl

(
x(βn), βn,∆β

)
+∆β · ∆βl

(l + 1)!

dl+1x

dβl+1︸ ︷︷ ︸
LTE

, (7.5)

where the last term is the local truncation error, which is simply the Taylor remainder at (x(β′), β′),
for some intermediate β′ ∈ [βn, βn+1]. This yields

∥en+1∥∞ ≤ ∥en∥∞ + |∆β| · ∥Tl

(
x(βn), βn,∆β

)
− Tl

(
xn, βn,∆β

)
∥∞ + |∆β| · ∥LTE∥∞ , (7.6)

where ∥ · ∥∞ denotes the supremum norm. If Tl satisfies the Lipschitz condition with a constant Ll

with respect to x, ∥Tl(x, β)− Tl(x
′, β)∥∞ ≤ Ll ∥x− x′∥∞ for every x,x′ and β ∈ [β0, βf], then

∥en+1∥∞ ≤ (1 + |∆β|Ll) · ∥en∥∞ + |∆β| · ∥LTE∥∞ , (7.7)

and so the bound grows exponentially. This allows one to show [Atkinson et al., 2011, Equation
(5.11)] that the global truncation error of an l-th order Taylor method is of order O(|∆β|l):
Theorem 25 (Error analysis of Taylor method). For an initial-value problem (7.1) on [β0, βf],
the global truncation error obtained by a Taylor method of order l with a step size of |∆β| at most
satisfies

max
β0≤βn≤βf

∥x(βn)− xn∥∞ ≤ e(βf−β0)Ll∥e0∥∞ +
e(βf−β0)Ll − 1

Ll
· 1
(l+1)! |∆β|l max

β0≤β≤βf

∥∥∥dl+1x(β)
dβl+1

∥∥∥
∞

(7.8)
where Ll is the Lipschitz constant of Tl (7.4), and e0 := x(β0)− x0 is the initial error.

We note that the Lipschitz constant Ll may be taken [Atkinson et al., 2011, Equation (3.9)] as
the supremum of the problem’s linearization, sup ∥DxTl∥∞, over the relevant domain in x and β.
The matrix norm ∥DxTl∥∞ at a point can be used to estimate the local Lipschitz constant of Tl;
namely, its Lipschitz constant over an arbitrarily small neighborhood.

7.2 The computational difficulty in root tracking for RD

There is a computational difficulty in tracking operator roots with Taylor’s method, a difficulty
that stems from the presence of bifurcations. For Taylor’s method error analysis (Theorem 25),
this is manifested in general via local Lipschitz constants. For, its error bounds explode when
approaching a bifurcation. The below Lemma 26 bounds RD derivative tensors, and Proposition
27 (in Section 7.3) can be used to bound local Lipschitz constants. Using both, one can show that
setting a cluster-vanishing threshold (as in Algorithm 2) restricts the computational difficulty.

In its implicit ODE form, tracking an operator’s root is defined by the initial value problem
consisting of

dx
dβ = − (DxF)

−1
DβF , (2.4)

at a given root (x0, β0) of F = 0 (1.3), so long that DxF is non-singular. Suppose that an eigenvalue
of DxF vanishes gradually as β → βc. e.g., when approaching a bifurcation. The Jacobian DxF
then usually becomes ill-conditioned as a result15. The linearization of this differential equation
would then in general be ill-conditioned16, implying that it is stiff [Atkinson et al., 2011, Chapter
8]. While there is no widely accepted definition of stiff equations, their “most important common
feature [...] is that when such equations are being solved with standard numerical methods, the step-
size |∆β| must be extremely small in order to maintain stability — far smaller than would appear
to be necessary from a consideration of the truncation error”, [Atkinson et al., 2011, Chapter 8].
See also [Butcher, 2000, Section 6].

Indeed, while a finite Lipschitz constant is required for Taylor method’s error analysis (Theorem
25 above), it need not be bounded near a bifurcation17. cf., its error bound (7.7). The existence
of a bifurcation is not just a technical hurdle in proving that the Theorem’s conditions hold, but
an essential one, impeding algorithms’ performance there. For Blahut-Arimoto’s algorithm, this
is manifested by critical slowing down near bifurcations, Agmon et al. [2021], while for tracking
an operator’s root it is manifested in the stiffness of the implicit ODE (2.4). Both BA and our
Algorithm 1 for RD suffer from reduced accuracy when approaching a bifurcation, as depicted by
Figure 2.3.

While there is much literature on stiff differential equations, stopping at a cluster mass threshold
δ > 0 as in Algorithm 2 is a straightforward solution for guaranteeing convergence of Taylor’s
method. The proof of Theorem 5 bounds the local Lipschitz constants so long that the bifurcation
is at least δ-far. To show this, Lemma 26 below guarantees that RD derivative tensors are then
bounded uniformly. While Proposition 27 in Section 7.3 allows to bound not only the implicit
derivatives, but also the local Lipschitz constants. Writing r for a distribution in ∆[X̂], we have
the following.

Lemma 26 (RD derivative tensors are bounded uniformly on compact subsets in simplex interior).
For any δ > 0 small enough, the derivative tensors of Id−BAβ (1.2) ((2.30) and (2.31) in Theorem
4) are bounded uniformly on the closed δ-interior of the simplex, under the supremum norm.

Explicitly, let an RD problem be defined by pX and d(x, x̂) (d for short), and let r be a dis-
tribution in the closed δ-interior of ∆[X̂]. Then, for any orders b,m ≥ 0 of differentiation (other

15Unless all its eigenvalues vanish at the same rate when β → βc.
16Write DxF−1 for the inverse of the Jacobian matrix, and differentiate DxF DxF−1 = I with respect to

x, to obtain DxF Dx(DxF−1) = −D2
x,xF DxF−1, or equivalently Dx(DxF−1) = −DxF−1 D2

x,xF DxF−1.
This shows that the linearization −Dx

(
DxF−1DβF

)
of (2.4) can be written as −DxF−1M for M := D2

β,xF −
D2

x,xF DxF−1DβF a matrix. So, it would be ill-conditioned if an eigenvalue λβ of DxF vanishes as β → βc, unless
no column of M has a component in the λβ-eigenspace of DxF .

17By the argument above, the linearization of (2.4) need not have a finite matrix norm when an eigenvalue of
DxF vanishes gradually.

than b = m = 0),∣∣∣∣(Db+m
βb,rm (Id−BAβ) [r] (x̂)

)
(i1,i2,...,im)

∣∣∣∣ ≤ 1 +
1

δm
· C(b,m; d, |X̂ |) (7.9)

where

C(b,m; d,M) := 2b · (m+ 1)!

(
b+M − 1

b

)[
m! p(b) ·

(
2bb! · db2max

)1+m
]M

, (7.10)

with dmax := max {1,maxx,x̂ d(x, x̂)}, and p(m) is the partition function (see Section I.2.2).

While the bound at (7.9) can be improved, its purpose is to bound the derivative tensors of
Id−BAβ (1.2) uniformly, with constants involving only the orders b and m of differentiation, and
the problem’s definition. See Section III.D.1 for its proof. Note that the bound does not depend
on the variable β, even though BAβ and its fixed points do depend on β. For a derivative with
respect to β alone, m = 0, the bound is uniform on the entire simplex.

7.3 Local Lipschitz constants of high-order implicit derivatives

The previous Subsection 7.2 shows that it need not be possible to bound Taylor method’s local
Lipschitz constants uniformly. In the same token, using a fixed order and step size in Algorithm
2 is computationally inefficient. cf., Figure 3.2, and Section I.3.4 for improvements. For both
purposes, it is useful to have an estimate of local Lipschitz constants, which we provide below.

The computational inefficiency due to fixed order and step size (Section I.3.4) can be traced
back to the variations in local Lipschitz constants, which explode at cluster-vanishing bifurcations.
Fitting a single value to all β and x values is too conservative. Instead, one could use ∥DxTl∥∞ ·
∥x− x′∥∞ to estimate an upper bound to ∥Tl(x, β)− Tl(x

′, β)∥∞, if x and x′ close enough. This
leads to a local estimate of the error’s growth rate as in (7.7), up to replacing Ll there with the
matrix norm ∥DxTl|(xn,βn)∥∞. From the definition (7.4) of Tl, it is a sum of implicit derivative
vectors dmx

dβm for m = 1, . . . , l. And so, to calculate the latter matrix norm it suffices to calculate
the Jacobian matrices Dx

dmx
dβm . A direct calculation in Section III.B.2 yields the formula below.

While it involves many more summands than formula (2.17) for implicit derivatives (Theorem 3),
all the ingredients needed for Dx

dlx
dβl were already computed when calculating dlx

dβl (if l ≥ 2).

Proposition 27. Under the conditions of Theorem 3 (Section I.2.2), suppose further that the
Jacobian matrix DxF is invertible. Then, the Jacobian of the l-th order derivative is given by,

Dx
dlx
dβl = − (DxF)

−1 (
D2

x,xF
)

dlx
dβl

− (DxF)
−1

∑
non-trivial
partitions

m1·δ(p1=1)∑
b=0

l!

b!(m1 − b)!m2! · · ·ms! · (p1!)m1 · · · (ps!)ms

·
{
Dm

βb,xm−b+1F
[(

dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

]
+ (m1 − b) ·Dm

βb,xm−bF
[
Dx

dp1x
dβp1

,
(

dp1x
dβp1

)
×(m1−b−1)

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

]
+m2 ·Dm

βb,xm−bF
[(

dp1x
dβp1

)
×(m1−b)

, Dx
dp2x
dβp2

,
(

dp2x
dβp2

)
×(m2−1)

, . . . ,
(

dpsx
dβps

)
×ms

]
+ . . .

+ms ·Dm
βb,xm−bF

[(
dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . , Dx
dpsx
dβps ,

(
dpsx
dβps

)
×(ms−1)

]}

(7.11)

where the summation is over non-trivial integer partitions (m1) · p1 + · · · + (ms) · ps of l, and
m := m1 + · · ·+ms.

This proposition is the last building block needed for the proof of Theorem 5, whose proof is
brought at Section III.D.2. As with the implicit derivatives dlx

dβl , the Jacobians Dx
dlx
dβl essentially

contain (DxF)
−1 to the (l+1)-st power, due to the first term at (7.11), and so lose their accuracy

when approaching a bifurcation. cf., the notes after Theorem 3 (in Section I.2.2).

8 Complexity of root-tracking and root-tracking for RD

In this section, we present the main complexity results: of root-tracking and root-tracking for RD.
We provide bounds for root-tracking both with and without tensor memorization. For RD, F =
Id−BAβ (1.2), the complexities of the derivatives tensors are broken down to their components,
in Table 2 below. Adding these to the complexities of root-tracking yields the complexity bounds
of RD root tracking (Theorem 6 in Section I.3.3). See Section III.E for proofs of the below.

Recall, p(n) is the number of partitions of an integer n, with no restriction. One may restrict
the number of parts of which a partition is comprised (its total multiplicity). We write p≤k(n)
for the number of partitions when no more than k parts are allowed. e.g., p≤n(n) = p(n) follows
directly from the definition. See Equation (E.4) ff. in Section E.1 for details. Write C(b,m) for
the computational complexity of a derivatives tensor Dm

βb,xm−bF . Where, F (·, β) is an unspecified
operator on RT , as in Section I.2.1. With this, the complexity of Algorithm 1 for computing
implicit derivatives at an operator’s root (Section I.2.2) is as follows (proofs in Section E.1).

Proposition 28 (Complexity of l-th order implicit derivative). Assume that the derivatives dkx
dβk

are known for all 0 < k < l, and let C(b,m) the complexity of a derivatives tensor Dm
βb,xm−bF .

Then, the computational complexity of the l-th order implicit derivative formula (2.17) for dlx
dβl is

O(T 3) +O(T ·
l∑

j=1

p(j)) +

l∑
m=0

m∑
b=0

p≤m−b(l −m)
[
O((m− b+ 1)Tm−b+1) + C(b,m)

]
(8.1)

The last summand in (8.1) with C(b,m) stands for the cost of computing the derivative ten-
sors, the third for evaluating the multilinear forms they define, the second for summing over the
evaluated forms, and the first for finding a linear pre-image under DxF .

As seen already by the first few expansion orders (2.8)-(2.10) of dkF
dβk = 0 (in Section I.2.1),

derivative tensors are often re-used after their first appearance. Hence, it makes sense to memorize
computed tensors so that they are computed only once. This is especially true when the computa-
tional costs C(b,m) of derivative tensors Dm

βb,xm−bF are high, as in rate distortion problems. cf.,
the example in Section I.2.1.1 in contrast.

Proposition 29 (Complexity of l-th order implicit derivative, with tensor memorization). Assume
that the derivatives dkx

dβk are known for all 0 < k < l, and let C(b,m) the complexity of calculating a
derivative tensor Dm

βb,xm−bF . Assume further that all the derivative tensors Dm
βb,xm−bF with m < l

have already been computed. Then, the computational complexity of formula (2.17) for dlx
dβl is

O(T 3) +O(T ·
l∑

j=1

p(j)) +

l∑
m=0

m∑
b=0

p≤m−b(l −m)O((m− b+ 1)Tm−b+1) +

l∑
b=0

C(b, l) (8.2)

The memory complexity of storing all the derivative tensors Dm
βb,xm−bF with 0 ≤ b ≤ m < l is

O
(
l · T l

)
(8.3)

Comparing the computational complexity (8.2) to its counterpart (8.1) without tensor mem-
orization (Proposition 28), the number of tensors computed for the l-th order derivative is sliced
from

∑l
j=1 p(j) to just the l + 1 newly needed tensors. cf., Corollary 37 in Section III.E.1.

Finally, the computational complexity of all the implicit derivatives up to order L (including)
can be bounded as following:

Proposition 30 (Cumulative complexity of implicit derivatives, with tensor memorization). Un-
der the conditions of Proposition 29, the computational complexity of all the implicit derivatives
dkx
dβk for 0 < k ≤ L is

O
(
e
9/4·lnL+(L+1) lnT+π

√
2L/3
)
+

L∑
l=1

l∑
b=0

C(b, l) , (8.4)

when L ≥ 2. When L = 1, it is

O
(
T 3
)
+ C(0, 1) + C(1, 1) . (8.5)

The memory complexity is as at (8.3).

For RD, our operator is the M -dimensional Id−BAβ (1.2) (namely, T = M), defined via BAβ

(2.20) in marginal coordinates (Section I.2.3). Where, N := |X | and M := |X̂ | are the source and
reproduction alphabet sizes of the given RD problem. Now that we have complexity results for
root tracking, Table 2 summarizes the complexity of computing RD derivative tensors (see Section
III.E.2). Combining the complexities of both (in Section III.E.3) yields the complexity bounds for
RD root tracking at Theorem 6 (Section I.3.3). We comment that the hyper-exponential terms 2kk!
in Table 2 are only exponential in practice. These result from the loose bounds we have provided
for the algebraic properties of the Pk polynomials (2.23)-(2.24). In particular, the bounds provided
here depend the dimensions of the RD problem at hand, but not on its details.

Quantity Computations Memory

Pk (2.23)-(2.24) Irrelevant O
(
2kk!(k + 1) log2(k + 1)

)
Eq(x̂′|x)

[
d(x, x̂′)k

]
(2.28) O(MN) O(N)

Pk[q; d] (2.29) O(MNk 2kk!) O(MN)

G
(
k, a
)

(2.32) O(MNL
∑L

k=0 p(k)) O(MN(L+ 1)(L+ 2))

Db
βb(Id−BAβ)[r] (2.30) O(MN) O(M)

Db+m
βb,rm(Id−BAβ)[r] (2.31)

O(
(
m+M−1

m

)(
b+M−1

b

)
·M2N)

+O(
(
m+M−1

m

)
m!M)

O(Mm+1)

Table 2: Breakdown of the complexity of RD derivative tensors. For implicit derivatives up
to order L (including), one needs to compute Pk, Eq(x̂′|x)

[
d(x, x̂′)k

]
and Pk[q; d] for k ≤ L; and the

matrices G(k, a). The derivative tensors for b ≤ L and for b+m ≤ L can then be computed. The
hyper-exponential terms 2kk! at Pk and at Pk[q; d] are very loose, and are roughly exponential in
practice. For k ≤ 25, the memory needed to store Pk is roughly O(1.73k), while the computational
complexity of Pk[q; d] is roughly O(MNk 1.56k); see E.2.1 and E.2.2 for details.

Part III

Proofs and technical details

A Calculations for the line-intersecting-parabola example

We elaborate on the calculations for the example in 2.1.1, in Part I.

Write p := (x, y)
t for the coordinates, dp

dβ for the vector of derivatives (dxdβ ,
dy
dβ)

t. For i = 1, 2

and vectors u = (ux, uy),v = (vx, vy),

Dp,pFi[u,v] =
∂2Fi

∂x∂y
· (uxvy + uyvx) +

∂2Fi

∂x2
· uxvx +

∂2Fi

∂y2
· uyvy (A.1)

From the definition (2.11), ∂2F1

∂x2 = 2b is the only derivative of F at (A.1) which does not vanish,
and so

Dp,pF [dpdβ ,
dp
dβ] =

(
dx

dβ

)2

·
(
2b
0

)
, (A.2)

where dx
dβ is the first coordinate of dp

dβ . Similarly, Dp,pF [d
2p

dβ2 ,
dp
dβ] =

dx
dβ

d2x
dβ2 · (2b, 0)t. Thus, the first

few expansion orders (2.8)-(2.10) around (x0, y0;β0) are,

0 =

(
2bx0 + c −1

a −1

)
dp

dβ
+

(
0
1

)
(A.3)

0 =

(
2bx0 + c −1

a −1

)
d2p

dβ2
+

(
dx

dβ

)2

·
(
2b
0

)
(A.4)

0 =

(
2bx0 + c −1

a −1

)
︸ ︷︷ ︸

DpF

d3p

dβ3
+ 3

dx

dβ

d2x

dβ2
·
(
2b
0

)
(A.5)

while the other derivative tensors at (2.8)-(2.10) vanish.
The Jacobian DpF is invertible whenever its determinant does not vanish, which is to say that

the slope 2bx0 + c of the parabola at the intersection point differs from the slope a of the line.

Its inverse is then (DpF)−1 = 1
∆

(
1 −1
a −2bx0 − c

)
, where ∆ := 2bx0 + c − a. A straightforward

calculation yields,

dp

dβ
=

1

∆

(
1

a+∆

)
, (A.6)

d2p

dβ2
= − 2b

∆3

(
1
a

)
, (A.7)

d3p

dβ3
=

12b2

∆5

(
1
a

)
, and (A.8)

d4p

dβ4
= −120b3

∆7

(
1
a

)
, (A.9)

where the fourth-order derivative (A.9) follows by a similar calculation. Combining these yields
the fourth-order Taylor expansion (2.12), in Section 2.1.1.

By requiring x(β0) = x0, one can see that ∆2 is the discriminant of the polynomial which
defines the exact solution (2.13). Therefore, ∆ vanishes if and only if (2.13) has exactly one

solution, which is to say that F = 0 (2.11) undergoes a bifurcation. For this example, this is also
equivalent the Jacobian of F being singular.

B Proofs for high-order implicit derivatives of an operator’s root

B.1 Proof of the formula for an operator’s high-order β-expansion, Theorem 1

We prove formula (2.15) (of Theorem 1) for a the expansion of dl

dβlF (x(β), β). The preliminaries
for this subsection are provided in Section II.4.

To get a grip on the proof, we calculate dlFi

dβl for l = 1 and 2 directly from Faà di Bruno’s
formula Ma [2009], recovering the first two expansion orders (2.8)-(2.9) in Section I.2.1. Using the
notation of Section II.4, write D for (T + 1)-decompositions of an integer l > 0. Recall, a (T + 1)-
decomposition (s,p,m) of l to s parts, 1 ≤ s ≤ l, is comprised of parts 0 < p1 < · · · < ps ∈ N and
multiplicities m1, . . . ,ms ∈ NT+1

0 , satisfying the decomposition equation (4.4),

l = |m1|p1 + |m2|p2 + · · ·+ |ms|ps . (B.1)

We denote the j-th coordinate of the vector mk by mk,j , where k = 1, . . . , s and j = 0, . . . , T .
Write m := m1 + · · · +ms ∈ NT+1

0 for the total multiplicity (4.5). Considering Fi as a function
of
(
β,x

)
∈ RT+1, we index its β-coordinate by zero, and those of x by 1, . . . , T . For a multi-index

m ∈ NT+1
0 , write m0 for its zeroth coordinate and m+ for its other T entries, as above. With this,

the proof below of Theorem 1 starts with

dl

dβl
Fi(x(β), β) = l!

∑
(s,p,m)∈D

∂|m|Fi

∂βm0∂xm+

s∏
k=1

1

mk!

[
1

pk!

dpkβ

dβpk

]mk,0
[

1

pk!

dpkx

dβpk

]mk+

(B.10)

Set l = 1. By the decomposition equation (B.1), there is only one part of size p1 = 1, and
multiplicity |m1| = 1. In particular, we must have m1 = ej , for ej a standard basis vector.
Where, either m1 = e0 points to the β-coordinates, or m1 = ej points to one of the x-coordinates,
j = 1, . . . , T . Since these are all the (T + 1)-decompositions for l = 1,

dFi

dβ

(B.10)
=

∑
m=ej :

j=0,1,...,T

∂Fi

∂βm0∂xm+

[
dβ

dβ

]m0
[
dx

dβ

]m+

=
∂Fi

∂β
+

T∑
j=1

∂Fi

∂xj

dxj

dβ
. (B.2)

This recovers the implicit first-order expansion d1F
dβ1 = DxF [dxdβ] +DβF (2.8).

For l = 2, setting p1 = 2 again necessitates m1 = ej (one part of size 2). Since p1 > 1, the

term
[

1
p1!

dp1β
dβp1

]m1,0

at (B.10) vanishes unless m1,0 = 0, and so only decompositions with m1 = ej

for j > 0 contribute. This yields the term DxFi[
d2x
dβ2] in the implicit second-order expansion (2.9),

2!

T∑
j=1

∂Fi

∂xj

[
1

2!

d2xj

dβ2

]
. (B.3)

When p1 = 1, the decomposition equation (B.1) implies that there is only s = 1 part, of multiplicity
|m1| = 2. Since p1 = 1 we do not have the above restriction on the value of m1,0, and so

m1 = ej + ek, for 0 ≤ j ≤ k ≤ T . Further sub-dividing to the cases j = k = 0, j = 0 < k and
0 < j ≤ k, we obtain

2!
∂2Fi

∂β2

1

2!
[1]

2
+ 2!

T∑
k=1

∂2Fi

∂β∂xk

dxk

dβ

+ 2!
∑

0<j<k≤T

∂2Fi

∂xj∂xk

dxj

dβ

dxk

dβ
+ 2!

∑
0<j=k≤T

1

2!

∂2Fi

∂xj∂xk

dxj

dβ

dxk

dβ
(B.4)

The first two terms account respectively for D2
β,βFi and 2D2

β,xFi[
dx
dβ] at (2.9), while the last line

sums up to the remaining term D2
x,xFi[

dx
dβ ,

dx
dβ] =

∑
j,k

∂2Fi

∂xj∂xk

dxj

dβ
dxk

dβ there. This can either be seen
directly, or as a special case of the following lemma, on rearranging summation order.

Lemma 31. Let f be a function on NT
0 , and 0 < M ∈ N. Then,∑

m∈NT
0 : |m|=M

1

m!
f(m) =

1

M !

∑
1≤i1,...,iM≤T

f(ei1 + · · ·+ eiM) (B.5)

Proof of Lemma 31. We would like to rewrite the sum over {m ∈ NT
0 : |m| = M} as a sum over

all M -tuples 1 ≤ i1, . . . , iM ≤ T . Write m ∈ NT
0 with |m| = M as a sum

m = ei1 + · · ·+ eiM (B.6)

of standard basis vectors ei, with each index 1 ≤ ij ≤ T for j = 1, . . . ,M . When the in-
dices i1, . . . , iM are distinct, then permuting them yields a different M -tuple of indices, without
affecting their sum m at (B.6). A single m value then corresponds to M ! distinct permuta-
tion of (i1, . . . , iM). The indices are distinct if and only if no coordinate of m is larger than 1,
mk ≤ 1 ∀k = 1, . . . , T . So,∑

m∈NT
0 : |m|=M,

∀k, mk≤1

M ! f(m) =
∑

1≤i1,...,iM≤T :
i1,...,iM are distinct

f(ei1 + · · ·+ eiM) (B.7)

When exactly two indices ij1 and ij2 for j1 ̸= j2 are the same ij1 = ij2 , with all the others distinct,
then swapping ij1 with ij2 leaves the M -tuple (i1, . . . , iM) unchanged. Hence, there are only M !/2!
distinct M -tuples corresponding to the sum m (B.6). Since ij1 = ij2 are the only identical indices,
then mk = 2 for k := ij1 and otherwise mk ≤ 1. Proceeding in this manner, one has in general∑

m∈NT
0 : |m|=M

M !

m!
f(m) =

∑
1≤i1,...,iM≤T

f(ei1 + · · ·+ eiM) (B.8)

Lemma 31 will allow us to exchange summations over high-dimensional decompositions (s,p,m)
with summations over integer partitions and multi-linear differentials of Fi.

Proof of Theorem 1. The i-th coordinate of F can be written as a composition

β ∈ R //
(
β,x(β)

)
∈ RT+1 // Fi

(
x(β), β

)
∈ R . (B.9)

We shall fully expand the l-th order derivative dlFi

dβl of Fi

(
x(β), β

)
with respect to β, using the

multivariate Faà di Bruno’s formula Ma [2009] (Theorem 7 in Section II.4). By the formula,

dlFi

dβl

(4.6)
= l!

∑
(s,p,m)∈D

∂|m|Fi

∂βm0∂xm+

s∏
k=1

1

mk!

[
1

pk!

dpk(β,x)

dβpk

]mk

(4.3)
= l!

∑
(s,p,m)∈D

∂|m|Fi

∂βm0∂xm+

s∏
k=1

1

mk!

[
1

pk!

dpkβ

dβpk

]mk,0
[

1

pk!

dpkx

dβpk

]mk+

(B.10)

where m := m1 + · · · +ms ∈ NT+1
0 is the total multiplicity (4.5), and the last equality since we

index the β-coordinate of RT+1 by 0, and those of x by 1, . . . , T ; see (B.1) ff.
With the notation preceding Theorem 7, the parts pk of a decomposition are positive integers,

strictly increasing in k = 1, . . . , s. Hence, only the first part can be of size 1, p1 ≥ 1, while the
others are of size 2 at least: pk > 2 for k > 1. Note that the same differential operator dpk

dβpk

appears for all the T + 1 coordinates of
(
β,x(β)

)
at (B.10). At the zeroth entry of the k-th part,

the multiplicand
[

1
pk!

dpkβ
dβpk

]mk,0

vanishes unless either mk,0 = 0 or pk = 1. Since pk can be 1 only
for k = 1, the latter is to say p1 = 1. In particular, for the k-th summand to contribute, mk,0 must
vanish when k > 1.

To simplify notation, write b instead of m1,0. When a summand does not vanish, b is the
number of times Fi is differentiated with respect to β (since mk,0 = 0 except perhaps for k = 1).
With these observations, decompositions that contribute to (B.10) are as follows:

1. Decompositions with p1 > 1 and b = 0.

2. Decompositions with p1 = 1 and any b = 0, . . . , |m1|.
To proceed, write M1 := |m1|, . . . ,Ms := |ms|. The decomposition equation (B.1) can then be

read as a partition of the integer l, to M1 sets of sizes p1 up to Ms sets of size ps (and no sets of
other sizes),

l = M1 · p1 + · · ·+Ms · ps . (B.11)

With this, the summation over (s,p,m) ∈ D in (B.10) can be rewritten as a sum over integer
partitions of l. Given a partition (B.11) to parts p1, . . . , ps of respective multiplicities M1, . . . ,Ms,
we need to sum over all the integral vectors m1, . . . ,ms ∈ NT+1

0 with |m1| = M1, . . . , |ms| = Ms.
This yields,

dlFi

dβl

(B.10)
= l!

∑
(s,p,m)∈D

∂|m|Fi

∂βm0∂xm+

s∏
k=1

1

mk!

[
1

pk!

dpkβ

dβpk

]mk,0
[

1

pk!

dpkx

dβpk

]mk+

= l!
∑

partitions
(B.11) of l

∑
m1:|m1|=M1

· · ·
∑

ms:|ms|=Ms

∂|m|Fi

∂βb ∂xm+

s∏
k=1

1

mk! pk!|mk|

[
dpkβ

dβpk

]mk,0
[
dpkx

dβpk

]mk+

(B.12)

where in the last line we replaced m1,0 by b, using the fact that mk,0 must vanish for k > 1, and
so m0 = m1,0 +m2,0 + · · ·+ms,0 = b.

The summation over m1 can be broken to two, isolating its zeroth component b from the rest,
as |m1| = b + |m1+| by definition. Recall that decompositions with b > 0 contribute only when
p1 = 1, as in 2, so ∑

m1:|m1|=M1

. . . =

M1·δ(p1=1)∑
b=0

∑
m1+:|m1+|=M1−b

. . . (B.13)

Other than m1,0 =: b, mk,0 always vanishes. So, we lose nothing by replacing our (T + 1)-
dimensional multiplicity vectors mk with smaller ones mk+ ∈ NT

0 . So,

dlFi

dβl

(B.12)
=

(B.13)

∑
partitions of l

M1·δ(p1=1)∑
b=0

l!

b! (p1!)m1 · · · (ps!)ms

∑
m1+:|m1+|=M1−b

∑
m2+:|m2+|=M2

· · ·

· · ·
∑

ms+:|ms+|=Ms

∂|m|Fi

∂βb ∂xm+

s∏
k=1

1

mk+!

[
dpkx

dβpk

]mk+

(B.14)

where the 1/b! coefficient in the first line is due to m1! = b! ·m1+!, by definition (4.3).
Next, for s > 1, the derivative term ∂|m|Fi in the last line of (B.14) can be written as

∂|m|Fi

∂βb ∂xm+
=

∂Ms

∂xms+

∂|m|−MsFi

∂βb ∂xm1+ · · · ∂xm(s−1)+
=:

∂Ms

∂xms+
G . (B.15)

While G itself does not depend on the multi-index ms+, we consider ∂Ms

∂xms+ G as a function of
ms+. This allows us to invoke Lemma 31 on the last summation at (B.14), as follows:

∑
ms+:|ms+|=Ms

∂|m|Fi

∂βb ∂xm+

s∏
k=1

1

mk+!

[
dpkx

dβpk

]mk+

(B.15)
=

(
s−1∏
k=1

1

mk+!

[
dpkx

dβpk

]mk+
)
·

∑
ms+:|ms+|=Ms

1

ms+!
· ∂

MsG

∂xms+

[
dpsx

dβps

]ms+

Lemma 31
=

(
s−1∏
k=1

1

mk+!

[
dpkx

dβpk

]mk+
)
· 1

MS !

∑
1≤i1,...,iMs≤T

∂MsG

∂xi1 · · · ∂xiMs

· d
psxi1

dβps
· · · d

psxiMs

dβps

(2.6)
=

1

MS !

(
s−1∏
k=1

1

mk+!

[
dpkx

dβpk

]mk+
)
·DMs

x, . . . ,x︸ ︷︷ ︸
Ms times

G
[
dpsx
dβps , . . . ,

dpsx
dβps︸ ︷︷ ︸

Ms times

]
(B.16)

where the last line is by the definition of a multivariate derivative tensor, (2.6) in Section I.2.1.
The exact same manipulations as in (B.16) can be applied to all the other partition parts

k = 1, . . . , s− 1, with one caveat. For k = 1, |m1+| is M1− b rather than M1, while the remaining
b degrees are consumed by the derivative with respect to β, as can be seen from (B.15). Thus, the
coefficient at the last line of (B.16) ends being ((M1 − b)! ·M2! · · ·Ms!)

−1, and the differentiation
corresponding to k = 1 is b-times with respect to β, and only (M1− b) times with respect to x. In
particular, it is then an (M1 − b)-multilinear form, involving dp1x

dβp1
only (M1 − b) times. Gathering

these back to (B.14) for all parts k = 1, . . . , s completes the proof, yielding (2.15).

B.2 Proof of the formula for the derivative’s Jacobian, Proposition 27

Proof of Proposition 27. To avoid clutter, we write DxF
−1 in this proof for the inverse of the

Jacobian matrix DxF . Rewrite formula (2.17) (Theorem 3) compactly as,

DxF
dlx
dβl = −S (B.17)

where for short,

S :=
∑

non-trivial
partitions

m1·δ(p1=1)∑
b=0

C ·Dm
βb,xm−bF

[(
dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

]
, (B.18)

and C stands for the coefficient l!
b!(m1−b)!m2!···ms!·(p1!)m1 ···(ps!)ms at (2.17). Differentiating both sides

of (B.17) with respect to the coordinates x,

D2
x,xF

dlx
dβl +DxF Dx

dlx
dβl = −DxS (B.19)

That is,
Dx

dlx
dβl = −DxF

−1
(
D2

x,xF
)

dlx
dβl −DxF

−1DxS (B.20)

To complete the proof, it suffices to calculate DxS.
The differentiation of a single addend in S (B.18) is a sum of 2-tensors (matrices). Each addend

in this sum involves extra x-differentiations: once of F itself, and once for each of its m arguments.
Differentiating a single addend,

Dx

(
Dm

βb,xm−bF
[(

dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

])
= Dm

βb,xm−b+1F
[(

dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

]
+Dm

βb,xm−bF
[
Dx

dp1x
dβp1

, dp1x
dβp1

, . . . , dp1x
dβp1︸ ︷︷ ︸

(m1−b−1) times

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

]

+Dm
βb,xm−bF

[
dp1x
dβp1︸︷︷︸
once

, Dx
dp1x
dβp1

, dp1x
dβp1

, . . . , dp1x
dβp1︸ ︷︷ ︸

(m1−b−2) times

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

]
+ . . .

+Dm
βb,xm−bF

[
dp1x
dβp1

, . . . , dp1x
dβp1︸ ︷︷ ︸

(m1−b−1) times

, Dx
dp1x
dβp1

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

]
+ . . .

+Dm
βb,xm−bF

[(
dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . , Dx
dpsx
dβps ,

dpsx
dβps , . . . ,

dpsx
dβps︸ ︷︷ ︸

ms−1 times

]

+Dm
βb,xm−bF

[(
dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . , dpsx
dβps︸︷︷︸
once

, Dx
dpsx
dβps ,

dpsx
dβps , . . . ,

dpsx
dβps︸ ︷︷ ︸

ms−2 times

]
+ . . .

+Dm
βb,xm−bF

[(
dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . , dpsx
dβps , . . . ,

dpsx
dβps︸ ︷︷ ︸

ms−1 times

, Dx
dpsx
dβps

]
(B.21)

Since derivative tensors of high-order are symmetric (e.g., [Aguilar, 2021, Section 10.3]), permuting
its arguments has no effect. So, the above simplifies to

Dx

(
Dm

βb,xm−bF
[(

dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

])
= Dm

βb,xm−b+1F
[(

dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

]
+ (m1 − b) ·Dm

βb,xm−bF
[
Dx

dp1x
dβp1

,
(

dp1x
dβp1

)
×(m1−b−1)

,
(

dp2x
dβp2

)
×m2

, . . . ,
(

dpsx
dβps

)
×ms

]
+m2 ·Dm

βb,xm−bF
[(

dp1x
dβp1

)
×(m1−b)

, Dx
dp2x
dβp2

,
(

dp2x
dβp2

)
×(m2−1)

, . . . ,
(

dpsx
dβps

)
×ms

]
+ . . .

+ms ·Dm
βb,xm−bF

[(
dp1x
dβp1

)
×(m1−b)

,
(

dp2x
dβp2

)
×m2

, . . . , Dx
dpsx
dβps ,

(
dpsx
dβps

)
×(ms−1)

]
(B.22)

Combining the latter (B.22) with the definition (B.18) of S and Equation (B.20) yields the required
result (7.11).

C Derivations of high-order derivatives of the Blahut-Arimoto operator

In this section, we calculated derivatives of the Blahut-Arimoto operators, mainly those presented
in Section 5.

C.1 Proof of Proposition 9, formula for the encoder’s repeated marginal derivatives

To prove Proposition 9, we rewrite it in an equivalent form which is more convenient for proofs by
induction. Rather than writing high-order derivatives in multi-index notation, one could write it
as a sequence of differentiations. Setting M = 2 for example, a third-order derivative represented
by α+ = (2, 1) can be written equivalently as

∂3

∂r(2,1)
q(x̂|x) = ∂3

∂r(x̂1)∂r(x̂1)∂r(x̂2)
q(x̂|x) . (C.1)

While the left-hand side of (C.1) is understood (4.3) as an application of the differential operator(
∂

∂r(x̂1)

)2
·
(

∂
∂r(x̂2)

)
, its right-hand side can be considered as a sequence of differentiations: first

differentiate with respect to r(x̂2), and then twice with respect to r(x̂1).
Write ⟨·, ·⟩ for the usual scalar product on RM , ex̂i for the i-th standard basis vector. Then,

⟨α+, ex̂i⟩ = αi is the number differentiations with respect to the i-th coordinate r(x̂i), and |α+|
the number of differentiations in total. When differentiating with respect to r(x̂i1), r(x̂i2) up to
r(x̂ik), the total number αx̂′ of differentiations with respect to a particular coordinate x̂′ can be
written as

∑k
j=1 δx̂′,x̂ij

= δx̂′,x̂i1
+ · · ·+ δx̂′,x̂ik

. Thus, Proposition 9 is equivalent to the following.

Proposition 32. For k > 0, the repeated encoder (2.18) derivative with respect to r is,

∂k

∂r(x̂i1) · · · ∂r(x̂ik)
q(x̂|x) = (−1)k−1(k − 1)! e−β

∑k
j=1 d(x,x̂ij

)

Zk(x, β)
·

 k∑
j=1

δx̂,x̂ij
− k · q(x̂|x)

 (C.2)

where 1 ≤ i1, . . . , ik ≤M need not be distinct.

Proof of Proposition 32. We prove (C.2) by induction on k > 0. First, note that

∂

∂r(x̂)
Z(x, β) =

∂

∂r(x̂)

∑
x̂′

r(x̂′)e−βd(x,x̂′) = e−βd(x,x̂) (C.3)

So, for k > 0 we have
∂

∂r(x̂)

1

Zk(x, β)

(C.3)
= − ke−βd(x,x̂)

Zk+1(x, β)
(C.4)

Hence,
∂

∂r(x̂′)

(
r(x̂)

Zk(x, β)

)
=

δx̂,x̂′

Zk(x, β)
− ke−βd(x,x̂′)

Zk+1(x, β)
· r(x̂) (C.5)

Thus, for the first derivative of the encoder (2.18) we have

∂

∂r(x̂i1)
q(x̂|x) (2.18)

= e−βd(x,x̂) · ∂

∂r(x̂i1)

(
r(x̂)

Z(x, β)

)
(C.5)
= e−βd(x,x̂) ·

{
δx̂,x̂i1

Z(x, β)
− e−βd(x,x̂i1)

Z2(x, β)
· r(x̂)

}
=

e−βd(x,x̂i1
)

Z(x, β)
·
{
e−βd(x,x̂) ·

δx̂,x̂i1

e−βd(x,x̂i1
)
− e−βd(x,x̂)

Z(x, β)
· r(x̂)

}
(2.18)
=

e−βd(x,x̂i1
)

Z(x, β)
·
{
δx̂,x̂i1

− q(x̂|x)
}

(C.6)

This is the induction basis k = 1 for (C.2).
Next, assume that (C.2) holds for any derivative up to order k. Then, for k + 1 we have,

∂

∂r(x̂ik+1
)

∂k

∂r(x̂i1) · · · ∂r(x̂ik)
q(x̂|x)

(C.2)
=

∂

∂r(x̂ik+1
)

 (−1)k−1(k − 1)! e−β
∑k

j=1 d(x,x̂ij
)

Zk(x, β)
·


k∑

j=1

δx̂,x̂ij
− k · q(x̂|x)




(C.4)
=

(C.6)

(−1)k k! e−β
∑k

j=1 d(x,x̂ij
)

Zk+1(x, β)
· e−βd(x,x̂ik+1

) ·


k∑

j=1

δx̂,x̂ij
− k · q(x̂|x)


+

(−1)k−1(k − 1)! e−β
∑k

j=1 d(x,x̂ij
)

Zk(x, β)
· (−k) · e

−βd(x,x̂ik+1
)

Z(x, β)
·
{
δx̂,x̂ik+1

− q(x̂|x)
}

=
(−1)k k! e−β

∑k+1
j=1 d(x,x̂ij

)

Zk+1(x, β)
·


k+1∑
j=1

δx̂,x̂ij
− (k + 1) · q(x̂|x)

 (C.7)

This completes the proof of the induction step.

C.2 Proof of Proposition 12, formula for the encoder’s repeated β-derivatives

Proof of Proposition 12. Note that,

∂

∂β
e−βd(x,x̂) = −d(x, x̂)e−βd(x,x̂)

=⇒ ∂

∂β
Z(x, β) =

∂

∂β

∑
x̂′

r(x̂′)e−βd(x,x̂′) = −
∑
x̂′

d(x, x̂′)r(x̂′)e−βd(x,x̂′) (C.8)

So,

∂

∂β

1

Z(x, β)

(C.8)
=

1

Z(x, β)
·
∑
x̂′

d(x, x̂′)
r(x̂′)e−βd(x,x̂′)

Z(x, β)

(2.18)
=

1

Z(x, β)
·
∑
x̂′

q(x̂′|x)d(x, x̂′) (C.9)

Thus, for the encoder’s first-order β-derivative,

∂q(x̂|x)
∂β

(2.18)
= r(x̂) · ∂

∂β

e−βd(x,x̂)

Z(x, β)

(C.8)
=

(C.9)
r(x̂) ·

[
e−βd(x,x̂)

Z(x, β)
·
∑
x̂′

q(x̂′|x)d(x, x̂′)− d(x, x̂) · e
−βd(x,x̂)

Z(x, β)

]
(2.18)
= q(x̂|x) ·

∑
x̂′

(
q(x̂′|x)− δx̂,x̂′

)
d(x, x̂′) = q(x̂|x) ·

(
Eq(x̂′|x) [d(x, x̂

′)]− d(x, x̂)
)

(C.10)

where we have denoted Eq(x̂′|x)
[
d(x, x̂′)k

]
:=
∑

x̂′ q(x̂′|x)d(x, x̂′)k, for k > 0. Writing x0 for d(x, x̂)
and xk for Eq(x̂′|x)

[
d(x, x̂′)k

]
when k > 0, this proves the first-order version of formula (5.11), with

P1(x0, x1) := x1 − x0 (2.25).
Unlike the encoder q, the distortion d(x, x̂) does not depend on β. So, for k > 0,

∂

∂β
Eq(x̂′|x)

[
d(x, x̂′)k

]
=
∑
x̂′

d(x, x̂′)k
∂q(x̂′|x)

∂β

(C.10)
=

∑
x̂′

d(x, x̂′)k q(x̂′|x) ·
∑
x̂′′

(
q(x̂′′|x)− δx̂′,x̂′′

)
d(x, x̂′′)

=
∑
x̂′,x̂′′

d(x, x̂′)k d(x, x̂′′)q(x̂′|x)
(
q(x̂′′|x)− δx̂′,x̂′′

)
= Eq(x̂′|x) [d(x, x̂

′)] · Eq(x̂′|x)
[
d(x, x̂′)k

]
− Eq(x̂′|x)

[
d(x, x̂′)k+1

]
(C.11)

That is, when writing xk := Eq(x̂′|x)
[
d(x, x̂′)k

]
for k > 0, the xk’s satisfy the relations d̄xk =

x1 · xk − xk+1 for k > 0 and d̄x0 = 0 (2.22), where d̄ is written in place of ∂/∂β to emphasize the
algebraic properties of this definition.

Next, assuming that the derivative formula (5.11) holds for k, we prove it for k + 1. With x0

and xk for k > 0 as before,

∂k+1q(x̂|x)
∂βk+1

=
∂

∂β

∂kq(x̂|x)
∂βk

(5.11)
=

∂

∂β

[
q(x̂|x) · Pk

(
x0, x1, . . . , xk

)]
=

∂q(x̂|x)
∂β

· Pk

(
x0, x1, . . . , xk

)
+ q(x̂|x) · ∂

∂βPk

(
x0, x1, . . . , xk

)
(C.10)
= q(x̂|x) · (x1 − x0) · Pk

(
x0, x1, . . . , xk

)
+ q(x̂|x) · d̄Pk

(
x0, x1, . . . , xk

)
= q(x̂|x) ·

(
(x1 − x0) · Pk + d̄Pk

)
(C.12)

Where we have replaced ∂/∂β by d̄, as before. So, setting Pk+1 := (x1 − x0) · Pk + d̄Pk (2.24)
completes the proof.

C.3 Proof of Corollary 13, for the partial β-derivative of BAβ

Proof of Corollary 13. The encoder’s first partial β-derivative is

∂q(x̂|x)
∂β

(5.11)
=

(2.25)
q(x̂|x) ·

(
Eq(x̂′|x) [d(x, x̂

′)]− d(x, x̂)
)

(C.13)

Plugging this back into formula (5.4) for the derivative of BAβ ,

∂BAβ [r] (x̂)

∂β

(5.4)
=
∑
x

pX(x)
∂q(x̂|x)

∂β

(C.13)
=

∑
x

pX(x)

[∑
x̂′

q(x̂|x)q(x̂′|x)d(x, x̂′)− q(x̂|x)d(x, x̂)
]

= Eq(x̂′|x)pX(x) [q(x̂|x)d(x, x̂′)]− EpX(x) [q(x̂|x)d(x, x̂)] (C.14)

Since the identity operator does not depend on β, this yields the result.

C.4 Proof of Proposition 15, formula for mixed high-order encoder derivatives

Proof of Proposition 15. Let α = (α0,α+) ∈ NM+1
0 with α+ ̸= 0 be given, and an input marginal

r outside the simplex boundary, ∀x̂ r(x̂) > 0. Let q be the encoder defined by r (2.18). For a
fixed x coordinate, consider d(x, x̂) and q(x̂|x) as x̂-indexed vectors. Thus, by the multivariate
vector-power notation in Section II.4,

e−βd(x,x̂′)

Z(x, β)

(2.18)
=

q(x̂′|x)
r(x̂′)

=⇒
(
e−βd(x,x̂)

Z(x, β)

)α+
(4.3)
=

e−β⟨α+,d(x,x̂)⟩

Z |α+|(x, β)
=

q(x̂|x)α+

rα+
(C.15)

Hence, using Proposition 9,

∂|α|

∂βα0 ∂rα+
q(x̂′|x)

(5.5)
=

∂α0

∂βα0

{
(−1)|α+|−1(|α+| − 1)! e−β⟨α+,d(x,x̂)⟩

Z |α+|(x, β)
·
[
⟨α+, ex̂′⟩ − |α+| · q(x̂′|x)

]}
(C.15)
=

(−1)|α+|−1(|α+| − 1)!

rα+
· ∂α0

∂βα0

{
q(x̂|x)α+

[
αx̂′ − |α+| · q(x̂′|x)

]}
(C.16)

Where, q(x̂|x)α+ in the last line is considered as an x̂-indexed vector for x fixed, α+ ∈ NM
0 .

To proceed, we need a generalization of the Leibniz rule (4.1) to multiple factors f1, . . . , fm. It
is a direct exercise by induction Thaheem and Laradji [2003] to see that

(f1f2 · · · fm)
(n)

=
∑
|k|=n

n!

k!

m∏
i=1

f
(ki)
i (C.17)

where the sum is over all m-tuples k := (k1, . . . , km) of non-negative integers with |k| =∑m
i=1 ki =

n, and n!/k! is the multinomial coefficient,

n!

k!
=

n!

k1! k2! · · · km!
:=

(
n

k1, k2, . . . , km

)
. (C.18)

Next, break the derivative of a product ∂α0

∂βα0
q(x̂|x)α+ (C.16) to a product of derivatives,

∂α0

∂βα0
q(x̂|x)α+

(4.3)
=

∂α0

∂βα0

(M∏
i=1

q(x̂i|x)αi

)
(C.17)
=

∑
k: |k|=α0

α0!

k!

M∏
i=1

∂ki

∂βki

(
q(x̂i|x)αi

)
(C.19)

where we have set n := α0 and m := M at (C.17), so that k ∈ NM
0 . Note that the inner

multiplicand to the right vanishes whenever αi = 0 but ki > 0.
To calculate a multiplicand ∂ki

∂βki
q(x̂i|x)αi at (C.19), we apply the univariate Faà di Bruno’s

formula (4.2) to x 7→ xαi composed after β 7→ q(x̂i|x). When ki > 0, we have for t ∈ Nki
0

d|t|

dx|t|x
αi = δ|t|≤αi

· αi!

(αi − |t|)!
xαi−|t| (C.20)

where δ|t|≤αi
is the Kronecker delta. So, summing over all integer partitions t = (t1, . . . , tki

) of ki
to at most |t| ≤ αi subsets,

∑ki

j=1 j · tj = ki, we obtain

∂ki

∂βki
q(x̂i|x)αi

(4.2)
=

(C.20)

∑ ki!

t! · (1!t1 · · · ki!tki)
· αi!

(αi − |t|)!
q(x̂i|x)αi−|t| ·

ki∏
j=1

(
∂jq(x̂i|x)

∂βj

)tj

(5.11)
=

∑ ki!

t! · (1!t1 · · · ki!tki)
· αi!

(αi − |t|)!
q(x̂i|x)αi−|t| ·

ki∏
j=1

q(x̂i|x)tj · Pj(x̂i, x)
tj

= q(x̂i|x)αi ·
∑ ki!

t!
· αi!

(αi − |t|)!

ki∏
j=1

(
Pj(x̂i, x)

j!

)tj

(C.21)

Where, in the second equality we used formula (5.11) for the encoder’s repeated partial β-derivative
(Proposition 12), and the last simplifies thanks to

∏
j q(x̂i|x)tj = q(x̂i|x)

∑
j tj = q(x̂i|x)|t|. Note

that if ki = 0, then t = 0 is the only integer partition of ki, and so the end result of (C.21)
correctly reduces to q(x̂i|x)αi . Plugging the latter back into (C.19),

∂α0

∂βα0
q(x̂|x)α+

(C.19)
=

∑
k: |k|=α0

α0!

k!

M∏
i=1

∂ki

∂βki

(
q(x̂i|x)αi

)
(C.21)
=

∑
k: |k|=α0

α0!

k!

M∏
i=1

q(x̂i|x)αi

∑
t: |t|≤αi,∑

j j·tj=ki

ki!

t!
· αi!

(αi − |t|)!

ki∏
j=1

(
Pj(x̂i, x)

j!

)tj

= α! q(x̂|x)α+

∑
k: |k|=α0

M∏
i=1

∑
t: |t|≤αi,∑

j j·tj=ki

1

t! (αi − |t|)!

ki∏
j=1

(
Pj(x̂i, x)

j!

)tj

=: α! q(x̂|x)α+

∑
k: |k|=α0

M∏
i=1

G
(
ki, αi; q, d

)
(x̂i,x)

(C.22)

Where, the second equality follows by taking ki, αi and q(x̂i|x)αi out of the product over i, using
the multivariate notation (4.3), and the last equality defines G. To summarize,

∂α0

∂βα0
q(x̂|x)α+ = α! q(x̂|x)α+

∑
k: |k|=α0

M∏
i=1

G
(
ki, αi; q, d

)
(x̂i,x)

(C.23)

where G
(
k, a; q, d

)
is a function on integers 0 ≤ k, a, whose values are M × N matrices. We set

G(k, a; q, d) = 0 if a = 0 < k due to the comment after (C.19), and otherwise

G
(
k, a; q, d

)
(x̂,x)

:=
∑

t: |t|≤a,∑
j j·tj=k

1

t! (a− |t|)!
k∏

j=1

(
Pj(x̂, x)

j!

)tj

(C.24)

where t ∈ Nk
0 . We write below G(k, a) for short. It depends on q and the distortion d since so

does Pj(x̂, x) (2.29). It might sometimes be more convenient computationally to have t ∈ Nl
0 for

some pre-fixed value l. As t represents a partition of k, any integer l ≥ k would do.
To complete the calculation at (C.16), denote α′

+ := α+ + ex̂′ for α with 1 added to its x̂′-
coordinate, where ex̂′ ∈ RM is the standard basis vector at x̂′. In coordinates, α′

i = αi+δi,x̂′ . This

does not affect the β coordinate α0 = α′
0. Also, note that q(x̂′|x) · q(x̂|x)α+ = q(x̂|x)α+ + ex̂′ =

q(x̂|x)α′
+ , where q(x̂|x)α+ is considered as an x̂-indexed vector for x fixed, as before. Thus,

∂|α|

∂βα0 ∂rα+
q(x̂′|x) (C.16)

=
(−1)|α+|−1(|α+| − 1)!

rα+
· ∂α0

∂βα0

{
q(x̂|x)α+

[
αx̂′ − |α+| · q(x̂′|x)

]}
(C.23)
=

(−1)|α+|−1(|α+| − 1)!

rα+
·

αx̂′ ·α! q(x̂|x)α+

∑
k: |k|=α0

M∏
i=1

G
(
ki, αi

)
(x̂i,x)

−|α+| ·α′! q(x̂|x)α′
+

∑
k: |k|=α0

M∏
i=1

G
(
ki, α

′
i

)
(x̂i,x)

 (C.25)

Where we applied formula (C.23) for ∂α0

∂βα0
q(x̂|x)α+ once to q(x̂|x)α+ and once to q(x̂′|x)·q(x̂|x)α+ .

From the definition (4.3), α′! = (1 + αx̂′) ·α!. Proceeding with the calculation,

=
(−1)|α+|−1(|α+| − 1)!

rα+
·α! q(x̂|x)α+ ·

αx̂′ ·
∑

k: |k|=α0

M∏
i=1

G
(
ki, αi

)
(x̂i,x)

−|α+| · (1 + αx̂′) · q(x̂′|x)
∑

k: |k|=α0

M∏
i=1

G
(
ki, αi + δi,x̂′

)
(x̂i,x)


= (−1)|α+|−1(|α+| − 1)! α! ·

(
q(x̂|x)
r(x̂)

)α+

·
∑

k: |k|=α0

∏
i̸=x̂′

G
(
ki, αi

)
(x̂i,x)


·
{
αx̂′ ·G

(
kx̂′ , αx̂′

)
(x̂′,x)

− |α+| · (1 + αx̂′) · q(x̂′|x) ·G
(
kx̂′ , 1 + αx̂′

)
(x̂′,x)

}
(C.26)

Where, the last equality follows since the two products with G are identical at all but the x̂′

multiplicand, so that
∏

i̸=x̂′ G
(
ki, αi

)
(x̂i,x)

can be taken out of the curly brackets. This is formula
(5.15), completing the proof.

C.5 Proof of Proposition 23, Blahut-Arimoto’s Jacobian in encoder coordinates

Unlike the previous subsections in Section C which take the input marginal r as the variable, here
we consider the encoder q as the variable.

Proof of Proposition 23. We re-state the Blahut-Arimoto equations, with the encoder now playing
the role of input and output distributions. Starting at the i-th iteration with pi(x̂|x), set

pi(x̂) :=
∑
x

pX(x)pi(x̂|x) . (C.27)

Then, output

pi+1(x̂|x) :=
pi(x̂)e

−βd(x,x̂)∑
x̂′ pi(x̂′)e−βd(x,x̂′)

. (C.28)

For particular input coordinates x̂′, x′ and output coordinates x̂, x, we would like to calculate

∂pi+1(x̂|x)
∂pi(x̂′|x′)

=
∑
x̂′′

∂pi+1(x̂|x)
∂pi(x̂′′)

∂pi(x̂
′′)

∂pi(x̂′|x′)
, (C.29)

where the equality is due to the multivariate chain rule.
For the first integrand at (C.29),

∂pi+1(x̂|x)
∂pi(x̂′′)

(C.28)
=

∂

∂pi(x̂′′)

pi(x̂)e
−βd(x,x̂)∑

x̂′ pi(x̂′)e−βd(x,x̂′)
=

=
δx̂,x̂′′ e−βd(x,x̂)∑
x̂′ pi(x̂′)e−βd(x,x̂′)

− pi(x̂)e
−βd(x,x̂)

(
∑

x̂′ pi(x̂′)e−βd(x,x̂′))2
·

e−βd(x,x̂′′)︷ ︸︸ ︷
∂

∂pi(x̂′′)

∑
x̂′

pi(x̂
′)e−βd(x,x̂′) =

=
e−βd(x,x̂′′)∑

x̂′ pi(x̂′)e−βd(x,x̂′)

[
δx̂,x̂′′ − pi(x̂)e

−βd(x,x̂)∑
x̂′ pi(x̂′)e−βd(x,x̂′)

]
(C.28)
=

=
e−βd(x,x̂′′)∑

x̂′ pi(x̂′)e−βd(x,x̂′)
[δx̂,x̂′′ − pi+1(x̂|x)] (C.30)

For the second,

∂pi(x̂
′′)

∂pi(x̂′|x′)

(C.27)
=

∂

∂pi(x̂′|x′)

∑
x

pX(x)pi(x̂
′′|x) = δx̂′,x̂′′ pX(x′) (C.31)

Combining the results,

∂pi+1(x̂|x)
∂pi(x̂′|x′)

(C.29)
=

∑
x̂′′

∂pi+1(x̂|x)
∂pi(x̂′′)

∂pi(x̂
′′)

∂pi(x̂′|x′)

(C.30)
=

(C.31)

=
∑
x̂′′

e−βd(x,x̂′′)∑
x̂′′′ pi(x̂′′′)e−βd(x,x̂′′′)

[δx̂,x̂′′ − pi+1(x̂|x)] · δx̂′,x̂′′ pX(x′) =

=
e−βd(x,x̂′)∑

x̂′′ pi(x̂′′)e−βd(x,x̂′′)
[δx̂,x̂′ − pi+1(x̂|x)] pX(x′) (C.32)

As pi+1(x̂
′|x)

pi(x̂′) = e−βd(x,x̂′)∑
x̂′′ pi(x̂′′)e−βd(x,x̂′′) by (C.28) whenever pi(x̂

′) ̸= 0 this yields the result.

D Proofs for error analysis

The following lemma is used for error analysis and for assessing computational costs of RD deriva-
tive tensors. While, the rest of this section contains results used only for error analysis.

Lemma 33 (Bounds on the complexity of Pk). Each polynomial Pk (2.23)-(2.24) is of degree k
at most, and can be written as a sum of at most 2kk! monomials in the coefficients 1 and −1. In
particular, Pk has no more than 2kk! monomials.

Proof of Lemma 33. First, for the degree, note that the first addend (x1−x0) ·Pk in the inductive
definition (2.24) of Pk+1 increases the degree by 1, while by the definition (2.22) of d̄, deriving Pk

increases its degree by 1 at most, deg d̄Pk ≤ 1 + degPk.
Second, the derivative of a monomial xi1 · xi2 · · · · · xik of degree k is a sum of at most k

differentiations, each of which is a sum of two monomials. Explicitly, if neither variable xij is x0,
then

d̄
(k∏

j=1

xij

)
=

k∑
l=1

(k∏
j ̸=l

xij

)
d̄xil

(2.22)
=

k∑
l=1

(k∏
j ̸=l

xij

)
(x1 · xil − xil+1) (D.1)

which is a sum of at most 2k monomials. The sum is shorter if any ij is 0, or if the monomial
we’ve started with is of degree a smaller than k. Denote by lk the minimal number of monomials
in Pk, when represented as a sum with coefficients ±1. By the inductive definition (2.24) of Pk,

lk+1 ≤ 2 · lk + 2k · lk = 2(k + 1) · lk . (D.2)

Where, the first term 2 · lk bounds the number of monomials in (x1 − x0) · Pk, and by (D.1),
2k · lk bounds that in d̄Pk. Applying (D.2) inductively starting at l0 = 1 (2.23), we obtain
lk ≤ (2 · 1) · (2 · 2) · · · (2 · k) = 2kk!.

When the coefficients are not restricted to ±1, then identical monomials can be grouped to-
gether, showing that the minimal number of monomials in Pk is smaller.

D.1 Proof that RD derivative tensors are bounded uniformly, Lemma 26

Proof of Lemma 26. We show that each of the quantities in Section 2.3 is bounded uniformly
on the closed δ-interior of the simplex ∆[X̂], by a bound which depends only on the orders of
differentiation b and m, and on the problem’s properties, via d and pX .

To synchronize the Lemma’s notation at (7.9) with the explicit forms (2.30) and (2.31) of the
derivative tensors of Id − BAβ (1.2) (Theorem 4), define α := (α0,α+) ∈ NM+1

0 as following.
Set α0 := b, the number of differentiations with respect to β. Next, using the tensor indices
(i1, i2, . . . , im) at (7.9), define α+ ∈ NM

0 by α+ := ei1 + ei2 + · · ·+ eim , where ej is the standard

j-th basis vector. Carefully note that |α+|
(4.3)
= m by definition, and so |α| = m + b. cf., the

comments after Equation (2.6), for the two different notations of high-order derivatives.
Next, from definition (2.28),

Eq(x̂′|x)
[
d(x, x̂′)k

]
=
∑
x̂′

q(x̂′|x)d(x, x̂′)k ≤
∑
x̂′

q(x̂′|x)dkmax = dkmax (D.3)

for any conditional distribution q(x̂|x). Therefore, by the definition (2.29) of the matrices Pk[q; d],
each of its entries (x̂, x) is bounded,

|Pk[q; d](x̂, x)| ≤ 2kk! · (dkmax)
k . (D.4)

For, by Lemma 33, each Pk can be written as a sum of no more than 2kk! monomials, each of
degree k at most, with the value of each variable bounded by (D.3). This immediately shows that
repeated partial β-derivatives are uniformly bounded on the entire simplex,∣∣∣∣ ∂α0

∂βα0

(
Id−BAβ

)
[r](x̂)

∣∣∣∣ (2.30)
≤

∑
x

pX(x)q(x̂|x) · |Pα0
(x̂, x)|

(D.4)
≤ 2α0α0! · dα

2
0

max (D.5)

For mixed derivatives, first note that for each k, a,

∣∣∣G(k, a)
(x̂,x)

∣∣∣ (2.32)
≤

∑
t: |t|≤a,∑
j j·tj=k

1 ·
k∏

j=1

(|Pj(x̂, x)|
j!

)tj (D.4)
≤ p(k) ·

(
2kk! · dk2

max

)a
(D.6)

Where, p(k) stands for the partition function (the number of integer partitions of k), and we have
discarded the factorials at each denominator. For the last inequality, note that

∑
j tj ≤ a.

Next, by our assumption that r(x̂′) ≥ δ for all x̂′ and the definition (4.3) of vector power,
it follows that (1/r(x̂′))

α+ ≤ 1

δ|α+| . Each coordinate αx̂ of α+ is bounded by |α+|, and so α! is

bounded by α0 · |α+|!M . This allows to bound
∣∣∣(−1)|α+|−1(|α+| − 1)! α!

∑
x pX(x)

(
q(x̂′|x)
r(x̂′)

)α+
∣∣∣

in (2.31) from above by (|α+|−1)! α0 |α+|!M

δ|α+| . Similarly, each coordinate kx̂ of k ∈ NM
0 with |k| = α0

is bounded by α0, and so |G(k, 1 + a)| can be bounded by evaluating the upper bound (D.6) at
(α0, 1 + |α+|). From the combinatorial definition of the binomial coefficient, there are

(
α0+M−1

α0

)
integral vectors k ∈ NM

0 with |k| = α0. Using these, the formula (2.31) for the mixed derivatives
can be bounded by,∣∣∣∣ ∂|α|

∂βα0∂rα+
(Id−BAβ) [r] (x̂)

∣∣∣∣
(2.31)
≤ 1 +

2(|α+|+ 1)! α0

δ|α+|

(
α0 +M − 1

α0

)[
|α+|! p(α0) ·

(
2α0α0! · dα

2
0

max

)1+|α+|
]M

(D.7)

Since (D.7) bounds the right-hand side of (D.5) from above, this completes the proof.

D.2 Proof that Taylor method converges between RD bifurcations, Theorem 5

Proof of Theorem 5. In this proof, denote ∂δ∆[X̂] := {p ∈ ∆[X̂] : ∃x̂ p(x̂) ≤ δ} for the closed
δ-boundary of the simplex, and ∆[X̂] \ ∂δ∆[X̂] for the closed δ-interior.

For the first claim of this Theorem, set βf (δ) to be the β value of the first time that rβ reaches
the δ-boundary. That is, the largest β such that β < β0 and rβ ∈ ∂δ∆[X̂]. This is well defined,
since ∂δ∆[X̂] is compact and rβ is a continuous function of β, by Assumption 2 in Section I.2.1.
If rβ never reaches the δ-boundary of ∆[X̂] for β ∈ [0, β0] then set βf (δ) = 0.

For the second claim, we set to prove that the conditions of Theorem 25 in Section II.7.1 are
met; namely, of error analysis for an l-th order Taylor method. To invoke that Theorem, it suffices
to show (i) that the derivative’s norm

∥∥∥dl+1rβ

dβl+1

∥∥∥
∞

at the true solution rβ is bounded uniformly on
[βf (δ), β0], and (ii) that the Taylor polynomial Tl (7.4) has a finite Lipschitz constant Ll. The
assumptions of that Theorem require that the Lipschitz condition holds for any β ∈ [βf (δ), β0] and
r̃ ∈ RM . However, the condition r̃ ∈ RM may be relaxed to only requiring that r̃ is not too far
away from a true solution rβ , so long that the step-size will eventually be taken to be small enough,
[Butcher, 2016, Working assumption 210A]. We may choose δ′ with 0 < δ′ < δ, and prove that the
Lipschitz condition (ii) holds for (r̃, β) with β ∈ [βf (δ), β0] and ∥r̃− rβ∥∞ ≤ η := δ− δ′. Namely,
we may consider only points in a “tube” Tη := {(r̃, β) : β ∈ [βf (δ), β0] and ∥r̃ − rβ∥∞ ≤ η} around
the true solution rβ . For η = 0, T0 is simply the graph of rβ . Note that by the first claim, if
0 < η < δ, then the r̃ coordinate of Tη is contained in the closed δ′-interior, and thus in the interior
of the simplex. Tη is then essentially the product of two compact spaces, the closed η-ball (around
rβ ∈ ∆[X̂]) and the interval [βf (δ), β0].

Write J(r̃, β) := Dr(Id−BAβ)|(r̃,β) for the Jacobian matrix. Its general form (not necessarily
at a fixed point) at a distribution r̃ of full support is given by Corollary 10 in Section II.5.2 (formula
(5.7) there). If rβ is in addition a fixed point of BAβ , then the basic properties of J(rβ , β) are
given by Theorem 11 there. In particular, it is non-singular so long that rβ is in the simplex
interior, which by the first claim holds for β ∈ [βf (δ), β0].

Before proving (i) and (ii), we shall show that η > 0 can be chosen small enough, such that
J(r̃, β) is non-singular for every (r̃, β) ∈ Tη. From this, it shall follow that the matrix norm
∥J(r̃, β)−1∥∞ of its inverse is well-defined on Tη, and thus bounded uniformly. For, it is a continu-
ous real-valued function on the compact set Tη, and so obtains a maximal value. e.g., [Ortega, 1990,
1.3] for matrix norms. When r̃ is set to the true solution rβ , this is rather straightforward from

Theorem 11. While for r̃ slightly off a true solution, this follows from continuity and compactness,
as we show next. e.g., [Munkres, 2000, Chapter 3] on compactness.

First, we prove that J is non-singular when evaluated at the true solution rβ . This follows
since the composition

β 7→ rβ 7→ J(rβ , β) 7→ |det J(rβ , β)| (D.8)

is continuous on [βf (δ), β0] (shown below), and so obtains a minimal value d′ ≥ 0 at some point β′

there. J(rβ′ , β′) is non-singular by the Jacobian’s properties mentioned above, and so d′ is strictly
positive. In particular, d′ does not depend on the value of η ≥ 0. This shows that J(rβ , β) is
non-singular on [βf (δ), β0]. Each function in the composition (D.8) is indeed continuous. For the
first β 7→ rβ this is by Assumption 2. For the second rβ 7→ J(rβ , β), by formula (5.7) of Corollary
10, the entries of J(r̃, β) are continuous in both β and r̃, so long that r̃ is in the interior of ∆[X̂],
which holds at rβ by the first claim. Finally, the determinant of a matrix is continuous, as it is a
sum of products of matrix entries.

Second, we show that η > 0 can be chosen small enough that J is non-singular also at points
in Tη other than the true solution. Fix some η with 0 < η < δ, and define a function f on Tη by

f(r̃, β) := |det J(r̃, β)| (D.9)

By the note after Tη’s definition, its projection onto ∆[X̂] is in the interior of the simplex. Hence,
f is well-defined and continuous in (r̃, β), by formula (5.7). It satisfies f(rβ , β) ≥ d′ > 0 by
the argument above. By the definition of continuity, [Munkres, 2000, §18], the inverse image
f−1((d

′
/2,∞]) is open in Tη; it contains T0 (the graph of rβ). As Tη is a product of compact

spaces, then by the tube lemma [Munkres, 2000, Lemma 26.8] there is 0 < η′ ≤ η such that
T0 ⊂ Tη′ ⊆ f−1((d

′
/2,∞]). To see this, note that any open neighborhood of 0 in the η-ball contains

an open η′-ball around 0, from the definition of a basis for a topology. Therefore, |det J | is at least
d′
/2 > 0 on Tη′ , as argued.

Summarizing the above, we have shown that 0 < η′ < δ can be chosen such that J(r̃, β) is
non-singular on Tη′ . Therefore, matrix inversion is well-defined on it. As matrix inversion and
norm are continuous, then ∥J(r̃, β)−1∥∞ is continuous on the compact set Tη′ , and so obtains a
maximum value on it. That is, the Jacobian’s inverse is of uniformly bounded matrix norm, for
distributions r̃ at most η′-far from rβ .

Aided by the above, we turn to prove (i) and (ii). For (i), let dlr̃
dβl denote the numerical

derivative calculated from formula (2.17) (Theorem 3 in Section I.2.2) at an approximation r̃ of
the true solution rβ , such that r̃ is at most η′-far from rβ . We prove by induction on l > 0 that its
norm

∥∥∥ dlr̃
dβl

∥∥∥
∞

is bounded uniformly on Tη′ . Since Tη′ contains the graph of rβ , this shall suffice to

prove (i). Assume that it holds for any 0 < k < l, for the norms
∥∥∥ dkr̃
dβk

∥∥∥
∞

. We would like to prove

that so is the l-th derivative
∥∥∥ dlr̃
dβl

∥∥∥
∞

. The assumption is of course vacuous when l = 1. Indeed,

the first-order implicit derivative dr̃
dβ is the only one that does not involve implicit derivatives of

lower order in its calculation.
For the induction step, note that the l-th derivative dlr̃

dβl involves derivative tensors Dm
βb,rm−b(Id−

BAβ)
∣∣
(r̃,β)

, with 0 ≤ b ≤ m ≤ l; see Equation (2.17) (Theorem 3). By Lemma 26 in Section

II.7.2, the entries of these tensors are bounded uniformly on ∆[X̂] \ ∂δ′∆[X̂] (regardless of β), for
δ′ = δ − η′ > 0, which in turn contains r̃ ∈ Tη′ . By the induction’s hypothesis, the lower-order
derivatives are also bounded uniformly on Tη′ . Therefore, the right-hand side of (2.17) is bounded
uniformly, as it involves only a (particular) finite sum of these tensors, which are evaluated at
implicit derivatives of bounded coordinates. That is, it is a sum of products of quantities that
are bounded uniformly on Tη′ . To complete the induction step, both sides of (2.17) need to be

multiplied by the inverse Jacobian. Yet, ∥(Dr(Id−BAβ)|(r̃,β))−1∥∞ is bounded uniformly on Tη′

(as shown before), and thus so is
∥∥∥ dlr̃
dβl

∥∥∥
∞

, as required.
For (ii), Lipschitz continuity can be established by means of a supremum over the derivative’s

matrix norm, e.g., Equation (3.9) at Atkinson et al. [2011],

Ll := sup ∥DrTl∥∞ , (D.10)

where the supremum is over Tη′ . A differentiable functions Tl is Lipschitz continuous if the supre-
mum (D.10) is finite.

From the definition (7.4) of Taylor method,

DrTl(r̃, β,∆β) =
1

1!
·Dr

dr̃

dβ
+

∆β

2!
·Dr

d2r̃

dβ2
+ · · ·+ ∆βl−1

l!
·Dr

dlr̃

dβl
(D.11)

As matrix norms are sub-additive,

∥DrTl(r̃, β,∆β)∥∞ ≤
1

1!
·
∥∥∥∥Dr

dr̃

dβ

∥∥∥∥
∞

+
|∆β|
2!
·
∥∥∥∥Dr

d2r̃

dβ2

∥∥∥∥
∞

+ · · ·+ |∆β|l−1

l!
·
∥∥∥∥Dr

dlr̃

dβl

∥∥∥∥
∞

(D.12)

Thus, to prove that Tl has a finite Lipschitz constant, it suffices to show that the matrix norms
of the matrices Dr

dkr̃
dβk are bounded uniformly on Tη′ . By Proposition 27 in Section II.7.3, the

Jacobian Dr
dlr̃
dβl for l > 0 can be expressed using derivative tensors Dm

βb,rm−b(Id−BAβ)
∣∣
(r̃,β)

with

0 ≤ b ≤ m ≤ l, derivatives dkr̃
dβk of lesser or equal degree 0 < k ≤ l, Jacobians Dr

dkr̃
dβk of strictly

lower degree 0 < k < l, and the inverse-Jacobian
(
Dr(Id−BAβ)|(r̃,β)

)−1. As in the proof of
(i), all these quantities are bounded uniformly on Tη′ , showing that (D.12) is indeed bounded
uniformly, as required.

E Proof for the complexity of root-tracking and of RD root-tracking

We analyze the computational and memory complexities of root tracking in general and of root
tracking for RD problems in particular. As the complexity of Taylor’s method is determined by
its complexity at a point, this boils down to analyzing the complexity of the Algorithm 1 — both
of its general form and of its specialization to RD.

This section is structured as follows. In Section E.1, we analyze the cost of the recursive
formula (2.17) for implicit derivatives (Algorithm 1), assuming that the computational costs of the
derivative tensors Dm

βb,xm−bF are given. When derivative tensors are computationally expensive
(as in RD), it might be preferable to memorize them, so as to avoid computing a tensor more than
once. The complexity is discussed both with and without tensor memorization, at Propositions 28,
29 and 30. In Section E.2, we analyze the complexity of the various quantities needed to compute
RD derivative tensors, those of Id−BAβ (1.2). The results are combined in Section E.3, proving
the upper bounds for the complexity of root tracking for RD, Theorem 6.

The upper bounds we provide are often loose. In practice, some of the memory and com-
putational costs grow at a much lower rate. cf., Figures E.1 and E.2 for example. For actual
computational measures timed with our implementation see Figure 1.2.

E.1 Complexity of root tracking: implicit derivatives of operator roots

We consider the complexity of the recursive formula (2.17) for dlx
dβl (Theorem 3). Note that its

right-hand side is comprised of an outer and of an inner summation. The outer summation is over
the p(l) − 1 non-trivial partitions, while the inner summation is over the number of parts of size
1 in a given partition, M1 · δ(p1 = 1). That is, the inner one is over the multiplicity of 1 in a
partition. For example, 1 is of multiplicity 3 in the partition 1 + 1 + 1 of 3, of multiplicity 1 in
2 + 1, and of multiplicity 0 in the trivial partition 3.

Integer partitions can be grouped by their multiplicity of 1. For, “set aside” a single part of
size 1, and consider partitions of l − 1:

l = 1 + (.)︸ ︷︷ ︸
a partition of l−1

(E.1)

Any partition of l with at least one part of size 1 can be written as “1+ a partition of (l − 1)”, as
in (E.1). Thus, there are exactly p(l − 1) partitions of l in which 1 is of multiplicity ≥ 1. Hence,
there are p(l) − p(l − 1) partitions with no part of size 1. Setting aside two parts of size 1 shows
that there are exactly p(l − 2) partitions of l in which 1 is of multiplicity ≥ 2. Hence, there are
p(l− 1)− p(l− 2) partitions which have exactly one part of size 1. Proceeding in this manner, we
have

Lemma 34. For 0 ≤ j ≤ l, the number of partitions of l with exactly j parts of size 1 is

p(l − j)− p(l − j − 1) , (E.2)

where p(−1) is defined to be 0, and p(0) := 1.

A partition with j parts of size 1 contributes j+1 summands to the inner summation at (2.17).
Grouping partitions by the multiplicity j of 1 in them, the total number of summands at the
right-hand side of (2.17) is

1 ·
(
p(l)− p(l − 1)

)
+ 2 ·

(
p(l − 1)− p(l − 2)

)
+ · · ·+ l ·

(
p(1)− p(0)

)
+ (l + 1) · p(0)− 1

= p(l) + p(l − 1) + · · ·+ p(1) + p(0)− 1 . (E.3)

Lemma 35. The number of summands at the right-hand side of (2.17) is
∑l

j=0 p(j)− 1.

At least for our case of interest F := Id − BAβ (1.2), the complexity of a derivative tensor
Dm

βb,xm−bF is determined by m and b; see Section E.2. Thus, we would like to group partitions not
only by the multiplicity of 1 in them, but also by their total multiplicity m. Denote pk(n) for the
number of partitions of n to exactly k parts. From its definition, p(n) =

∑n
k=0 pk(n). For small

k, n values, it can be calculated using the recurrence relation [Stanley, 2011, Section 1.7]

pk(n) = pk−1(n− 1) + pk(n− k) (E.4)

and p0(0) = 1; see Table 3 for example.
By the same reasoning as at (E.1), there are pk−1(l− 1) partitions of l to k parts in which 1 is

of multiplicity ≥ 1, pk−2(l − 2) partitions of l to k parts in which 1 is of multiplicity ≥ 2, and so
forth. Therefore, we have as before:

Lemma 36. For 0 ≤ j ≤ k ≤ l, the number of partitions of l to k parts of which exactly j are of
size 1 is

pk−j(l − j)− pk−j−1(l − j − 1)
(E.4)
= pk−j(l − k) , (E.5)

where pk(n) := 0 if either k < 0 or n < 0.

k, n 0 1 2 3 4 5 6
0 1 0 0 0 0 0 0
1 1 1 1 1 1 1
2 1 1 2 2 3
3 1 1 2 3
4 1 1 2
5 1 1
6 1

Table 3: pk(n) for several small n, k values.

Write C(b,m) for the complexity of calculating a derivative tensor Dm
βb,xm−bF , and p≤k(n) for

the number of partitions of n to at most k parts. By definition, p≤k(n) =
∑k

i=0 pi(n). Using
Lemma 36, we rearrange the outer summation over partitions at (2.17). First, by the partitions’
total multiplicity m (number of parts), and then by the number m1 of parts of size 1. With this,
the complexity of calculating the derivative tensors is

l∑
m=0

m∑
m1=0

pm−m1(l −m)

m1∑
b=0

C(b,m) =

l∑
m=0

m∑
m1=0

m1∑
b=0

pm−m1(l −m)C(b,m)

=

l∑
m=0

m∑
b=0

m∑
m1=b

pm−m1
(l −m)C(b,m) =

l∑
m=0

m∑
b=0

C(b,m)

m∑
m1=b

pm−m1
(l −m)

=

l∑
m=0

m∑
b=0

C(b,m)

m−b∑
j=0

pj(l −m) =

l∑
m=0

m∑
b=0

p≤m−b(l −m)C(b,m) (E.6)

The second equality above follows since, for a given m, we are summing over all the integers b and
m1 with 0 ≤ b ≤ m1 ≤ m. At the fourth equality we exchange m1 with j := m −m1. The last
equality follows from the definition of p≤k(n).

Since (E.6) adds up the complexity C(b,m) once for each summand at the right-hand side of
(2.17), then setting C(b,m) := 1 gives an alternative formula for the number of summands there.
Combined with Lemma 35, we have

Corollary 37.
l∑

m=0

m∑
b=0

p≤m−b(l −m) =

l∑
j=1

p(j) . (E.7)

Write F = (F1, F2, . . . , FT) for the operator’s coordinates, as at (2.6). On top of the complexity
(E.6) for calculating the derivative tensors, we need to account for the complexity of evaluating
the multilinear forms (2.6) they define, of summing the evaluated forms, and of finding a linear
pre-image under DxF . Indeed, a tensor Dm

βb,xm−bF has Tm−b+1 entries, and so its evaluation is
O((m − b + 1)Tm−b+1) operations; this is multiplied by the number of tensors of each rank, as
in (E.6). An evaluated multilinear form has T entries. Thus, by Lemma 35, the complexity of
their summation at the right of (2.17) is O(T ·∑l

j=1 p(j)). Finding a linear pre-image is no more
than O(T 3) operations, e.g., using Gaussian elimination. This is summarized by Proposition 28 in
Section II.8, on the complexity of l-th order derivative.

The computational cost is reduced drastically (at the expense of memory complexity) if every
derivative tensor is computed only once and then memorized. By taking the all-ones partition

1+1+ · · ·+1 of l, the l-th order formula (2.17) can be seen to contain all the l-th order derivative
tensors: Dl

β0,xlF,D
l
β1,xl−1F, . . . ,D

l
βl,x0F . These appear in the l-th order formula for the first time.

For, the total multiplicity m cannot exceed the partitioned integer l, and so neither of the l-th
order tensors can appear when formula (2.17) is used with orders < l. As Dm

βb,xm−bF has Tm−b+1

coordinates, memorizing all the tensors used up to the l-th order of the recursive formula (2.17)
boils down to memorizing

l−1∑
m=0

m∑
t=0

T t+1 ≤ l · T l (E.8)

coordinates. Where, we’ve written t for m− b. We thus obtain Proposition 29 in Section II.8, on
the complexity of the l-th order derivative with tensor memorization.

The cumulative computational and memory costs with memorization are summarized by Propo-
sition 30 in Section II.8. Its proof is provided below.

Proof of Proposition 30. We sum the computational complexity (8.2) per l value (Proposition 29)
over l = 1, . . . , L.

For the first summand at (8.2),
∑L

l=1 O(T 3) = O(L · T 3). For the second,

L∑
l=1

T ·
l∑

j=1

p(j) = T ·
L∑

l=1

l∑
j=1

p(j) ≤ L2T · p(L) ≤ L
5/4Te

π

√
2
3L (E.9)

Where, the first inequality follows by replacing p(j) with the maximal summand p(L), and the last

follows from the upper bound p(n) < eπ
√

2n/3

n3/4
at de Azevedo Pribitkin [2009].

Next, note that p≤k(n) is non-decreasing in n. For, to a partition λ1 ≤ λ2 ≤ · · · ≤ λj of n to
with j ≤ k parts, one can injectively match the partition of n+ 1 with the same number of parts,
defined by replacing λj with λj + 1. Thus,

p≤m−b(l −m) ≤ p≤m−b(L) ≤ p(L) (E.10)

where the last inequality follow from the definition of p≤k(n). So, for the third summand at (8.2),

L∑
l=1

l∑
m=0

m∑
b=0

p≤m−b(l −m)O((m− b+ 1)Tm−b+1) = L p(L) ·
L∑

m=0

m∑
b=0

O((m− b+ 1)Tm−b+1)

= L p(L) ·
∑

0≤t≤L

(L− t+ 1)O((t+ 1)T t+1) = O(L3TL+1p(L)) = O(L
9/4TL+1e

π

√
2
3L) (E.11)

Where (E.10) was used at the first equality, carrying out the summation over l. Next, m− b was
replaced by t. The last equality again uses the bound at de Azevedo Pribitkin [2009].

For L = 1, the cost of the terms above adds up to

O(L · T 3) +O(L
5/4Te

π

√
2
3L) +O(L

9/4TL+1e
π

√
2
3L) = O(T 3) , (E.12)

proving (8.5). While for L ≥ 2,

O(L · T 3) +O(L
5/4Te

π

√
2
3L) +O(L

9/4TL+1e
π

√
2
3L)

= O(L
9/4TL+1e

π

√
2
3L) = O

(
e
9/4·lnL+(L+1) lnT+π

√
2L/3
)

(E.13)

which proves (8.4).

E.2 Complexity of high-order derivative tensors of Id−BAβ

We analyze the complexity of the formulae for the derivative tensors Db+m
βb,xm (Id−BAβ) [r] (x̂)

(Theorem 4 in Section 2.3.). To that end, we distinguish between three kinds of computations:
initial computations E.2.1 which depend neither on the RD problem at hand nor on the point of
evaluation; initial computations E.2.2 at a particular point; and the cost of a derivative tensor
E.2.3 given the above initial computations. The analysis roughly follows the order of the results’
presentation in Section I.2.3, and the comments in II.5.5 on efficient computation of RD derivative
tensors. The results below are summarized in Table 2, in Section II.8.

E.2.1 Problem-independent initial-computations

0 5 10 15 20 25

Degree k

0

1

2

3

4

5

lo
g

1
0

of
le

n
gt

h
(P
k
)

Figure E.1: Length of the default string representation of Pk used by our implementation. An
approximation −0.002739k2 + 0.2377k + 1.323 of the log-length is in dashed green.

The algebraic form of the polynomials Pk (2.23)-(2.24) needs to be computed only once and
for all, as it depends neither on the problem details nor on the point of evaluation. We therefore
ignore its computational complexity, and consider only its memory complexity.

By Lemma 33 (in Section D), each Pk is of degree k at most, and can be written as a sum of at
most 2kk! monomials, even when only 1 and −1 are allowed as coefficients. Each of these monomials
can be encoded using 1+(k+1) log2(k+1) bits: each of the k+1 variables is of degree 0, . . . , k, and
one bit for the coefficient. Hence, the memory needed to store Pk is O

(
(k + 1) log2(k + 1)2kk!

)
.

In practice, the length of Pk is roughly 1.73k, as demonstrated by Figure E.1. Our implemen-
tation stores the first 20 polynomials in about 110 kilobytes in compressed form (LZMA) and the
first 25 polynomials in 544 KBs.

E.2.2 Initial computations at a point

Recall, we write N := |X | and M := |X̂ | for the source and reproduction alphabet sizes, respec-
tively. Given an encoder q(x̂|x) of an RD problem defined by

(
d(x, x̂), p(x)

)
, we evaluate the cost

of the components needed to compute the M -by-N matrices G
(
k, a; q

)
(2.32). These are indexed

by 0 ≤ k ≤ L and 0 ≤ a ≤ 1+L, where L is the maximal order of derivation. Clearly, its memory
complexity is O(MN(1 + L)(2 + L)).

The Pk[q; d] matrices (2.29) are needed to compute G; these require the expectations Eq(x̂′|x)
[
d(x, x̂′)k

]
(2.28). The powers d(x, x̂)k may be computed only once per RD problem, and so we neglect their
computational cost. Thus, the computation of Eq(x̂′|x)

[
d(x, x̂′)k

]
costs O(MN) operations, as it

involves only multiplication by q(x̂|x) and a summation over x̂. The zeroth variable d(x, x̂) of Pk

has MN coordinates, while the others Eq(x̂′|x)
[
d(x, x̂′)k

]
have N coordinates, for k ≥ 1. As Pk

0 5 10 15 20 25

Degree k

1

2

3

4

lo
g

1
0
(

#
o
f

m
o
n

om
ia

ls
in
P
k
)

Figure E.2: The number of monomials in Pk. An approximation −0.002084k2 + 0.1944k + 0.3911
of log10(# monomials) is in dashed green.

is of degree k at most, Lemma 33 in Section D, evaluating a single monomial at Pk[q; d] (2.29) is
O(MNk) operations. By the Lemma, Pk has no more than 2kk! monomials, so the total cost is
O(MNk 2kk!). In practice, there are roughly 1.56k monomials in Pk, as seen in Figure E.2 for
k ≤ 25, and so the actual cost is much smaller.

For G
(
k, a; q

)
, computing

(
Pj(x̂,x)

j!

)tj
at (2.32) for a given t and j is O(MN) operations.

Accounting for the pointwise product over j = 1, . . . , k, the cost for each t is O(MNk). The
entries of G can be computed by iterating only once over the partitions t of all the integers k with

0 ≤ k ≤ L. For, given t, an M -by-N integrand
∏

j

(
Pj(x̂,x)

j!

)tj
can be added to G(k, a) for all

a ≥ |t|, at O(MNL) operations. That is, the entire cost for a particular t is O(MNk)+O(MNL) =

O(MNL), and so O(MNL
∑L

k=0 p(k)) when iterating over all the integer partitions t.

E.2.3 Complexity of a derivative tensor

We analyze the cost of the various derivative tensors of Id−BAβ (1.2), assuming that the initial
computations in E.2.1 and E.2.2 were already done.

The memory complexity of Db+m
βb,xm(Id − BAβ)[r](x̂) (2.31) is O(Mm+1). The computational

complexity of a derivative tensor Db
βb(Id−BAβ)[r](x̂) (2.30) with respect to β alone is O(MN).

For a mixed derivatives tensor Db+m
βb,xm(Id−BAβ)[r](x̂) with m > 0, fix α = (b,α+) ∈ NM+1

0 with
α+ ̸= 0. For any x̂ and k ∈ NM

0 with |k| = b, the complexity of the integrand under the summation∑
at (2.31) is O(MN) operations. It is an N -vector. Summing over the

(
b+M−1

b

)
choices for k,

the sum has a complexity of O(
(
b+M−1

b

)
·MN) operations. The other operations at (2.31) have a

comparatively negligible cost. The above needs to be performed for each x̂ and α+ with |α+| = m,
which is M ·

(
m+M−1

m

)
times. Thus, the complexity of the mixed partial derivatives formula (2.31)

is O(
(
m+M−1

m

)(
b+M−1

b

)
·M2N) operations.

To a multi-index α+ ∈ NM
0 may correspond multiple coordinates of a derivative tensor. For,

a multi-index α+ counts the number of derivations with respect to each of the M coordinates of
r, while a tensor entry stands for a particular order of the derivatives. e.g., for a reproduction
alphabet of size M = 2, α+ = (2, 1) represents taking two derivatives with respect to r1, and one
with respect to r2. To it, correspond the tensor entries ∂3

∂r2∂r1∂r1
, ∂3

∂r1∂r2∂r1
and ∂3

∂r1∂r1∂r2
at (2.6),

standing respectively for the (2, 1, 1), (1, 2, 1) and (1, 1, 2) entries of a derivative tensor with m = 3.
The number of tensor entries corresponding to a multi-index α+ is m! at most, with O(M) copy
operations for each tensor entry. Doing so for each α+ is O(

(
m+M−1

m

)
m!M) operations. While

copying out partial derivatives to the various tensor entries need not be the most efficient solution,
it is simple and straightforward to implement.

All in all, bounds on the complexities of RD derivative tensors are summarized in Table 2 in
Section II.8.

E.3 Complexity of root tracking for RD

In this subsection we prove Theorem 6 on the complexities of root tracking for RD. We do so
by compiling the results of Sections E.1 on the complexity of root-tracking and of E.2 on the
complexity of RD derivative tensors (Table 2 in Section II.8). The proof boils down to adding the
various costs associated with the derivatives at a point, up to order L.

Proof of Theorem 6. In Section E.2, we divided the cost of RD derivative tensors to initial com-
putations and the calculation of the derivative tensors themselves. Using Table 2 in Section II.8,
initial computations at a point require the algebraic form of Pk, the expectations Eq(x̂′|x)

[
d(x, x̂′)k

]
and the matrices Pk[q; d] for k = 0, . . . , L; and the matrices G(k, a). Summing over the respective
table elements, their memory cost is:

L∑
k=0

[
O
(
2kk!(k + 1) log2(k + 1)

)
+O(N) +O(MN)

]
+O(MN(L+ 1)(L+ 2))

= O
(
2LL!L2 lnL

)
+O(MNL2) < O

(
e(L+5/2) lnL−c1L+ln lnL+c2

)
+O(MNL2)

< O
(
L(L+5/2) lnL

)
+O(MNL2) (E.14)

Where, the first expression at the first line is bounded by its maximal value at k = L, the first
inequality follows from n! ≤ e(n+1/2) lnn−n+c2 Robbins [1955], with c2 := 1

12 +
1
2 ln(2π) ≈ 1, and by

setting c1 := 1− ln 2 ≈ 0.31.
For the initial computations,

L∑
k=0

[
O(MN) +O(MNk 2kk!) +O(MNL p(k))

]
=

L∑
k=0

[
O(MNL 2kk!) +O(MNL p(k))

]
=

L∑
k=0

O(MNL 2kk!)

= O(MN2LL!L2) = O
(
MN · e(L+5/2) lnL−c1L+c2

)
(E.15)

Where, k is bounded by L at the first equality, O(2kk!) + O(p(k)) = O(2kk!) by the bound

p(k) < eπ
√

2k/3

k3/4 de Azevedo Pribitkin [2009] at the second equality, the maximal element is taken
at the third, and the above bound of Robbins for factorial is used at the last. We comment that the
tighter O(MNL21.56L) can be seen to approximate the initial complexity accurately for L ≤ 25.
cf., Table 2 in Section II.8.

The cumulative memory cost of tensor memorization is given by (8.3) (Proposition 29). By (8.4)
at Proposition 30, for the computational complexity it suffices to calculate

∑L
m=1

∑m
b=0 C(b,m),

where C(b,m) is the complexity of Dm
βb,xm−b(Id−BAβ). We write,

L∑
m=1

m−1∑
b=0

C(b,m) =

L∑
m=1

m−1∑
b=0

[
O(
(
m−b+M−1

m−b

)(
b+M−1

b

)
·M2N)+O(

(
m−b+M−1

m−b

)
(m− b)!M)

]
(E.16)

Where, we have ignored the complexity O(MN) of the L derivative tensors with respect to β
alone, those with b = m, as they are negligible compared to the below. We comment that the first

summand in (E.16) pertains to the cost of computing mixed partial derivatives, while the second
summand corresponds to copy operations; see Section III.E.2.3.

For the first summand at (E.16), by the formula
∑r

k=0

(
r−k
m

)(
s+k
n

)
=
(
r+s+1
m+n+1

)
[Knuth, 1997,

Eq. (25) in 1.2.6], we have

L∑
m=1

m−1∑
b=0

(
m+M − 1− b

M − 1

)(
M − 1 + b

M − 1

)
≤

L∑
m=1

(
m+ 2M − 1

2M − 1

)
≤ L ·

(
2M + L− 1

2M − 1

)
= L · 2M

2M + L
·
(
2M + L

2M

)
≤ e(2M+L)He(ρ)+

1
2 ln

ρL
π (E.17)

Where the first inequality follows by setting r := m+M − 1 and s := M − 1 in the above formula,
summing only over b = 0, . . . ,m−1 rather than up to r. The second inequality follows by bounding
with the largest summand m = L. For the last inequality, set ρ := 2M

2M+L . It then follows from
[Cover and Thomas, 2006, Lemma 17.5.1], up to straightforward modifications to measure entropy
He(·) in nats instead of bits.

For the second summand at (E.16),

L∑
m=1

m−1∑
b=0

(
m− b+M − 1

m− b

)
(m− b)! =

1

(M − 1)!

L∑
m=1

m−1∑
b=0

(m− b+M − 1)!

≤ L2 · M

M + L

(M + L)!

M !
≤ML2 · (M + L)L−1 = e(L−1) ln(M+L)+ln(ML2) (E.18)

Where the inequalities follow by bounding m − b by its largest value L, and (M+L)!
M ! = (M + 1) ·

(M + 2) · · · (M + L) by (M + L)L.
Plugging (E.17) and (E.18) into (E.16) and then back into formula (8.4) for the computational

complexity of root-tracking (Proposition 30), and adding the cost (E.15) of initial computational,
we obtain

O

(
e(2M+L)He(ρ)+

1
2 ln

ρL
π +ln(M2N)

)
+O

(
e(L−1) ln(M+L)+2 ln(ML)

)
+O

(
e
9/4·lnL+(L+1) lnM+π

√
2L/3
)
+O

(
e(L+5/2) lnL−c1L+c2+lnMN

)
(E.19)

for the total computational cost when L ≥ 2. These are bounded from above by,

O
(
e(2M+L)He(ρ)+(L+5/2) lnL+(L+1) lnM+(L−1) ln(M+L)+lnN+π

√
2L/3
)

< O
(
e(2M+L)He(ρ)+(3L+5/2) ln(M+L)+lnN+π

√
2L/3
)

= O
(
N · (M + L)(3L+5/2)e(2M+L)He(ρ)+π

√
2L/3
)

(E.20)

which completes the proof of (3.3) in Theorem 6.
When L = 1, one can see directly from (8.5) of Proposition 30 and from Table 2 in Section II.8

that the computational complexity in this case is

O
(
M3
)
+O (MN) +O

(
M3N

)
+O

(
M2
)
= O

(
M3N

)
, (E.21)

proving (3.4) at the Theorem.

For the total memory cost (3.5), we add the memory cost (E.14) of the initial computations to
that needed for storing the derivative tensors, (8.3) in Proposition 29. This yields

O
(
L(L+5/2) lnL

)
+O

(
MNL2

)
+O

(
MLL

)
, (E.22)

completing the proof.

F Binary Source with a Hamming distortion measure: an analytical
solution

In this section, we develop the explicit equations of one of the simplest rate-distortion problems:
a binary source with a Hamming distortion measure. As it admits an analytical solution, this
problem can be used to verify the correctness of the theory and of its implementation. cf., Figure
2.3 for example. This problem was used throughout with parameters p = 0.3 and 2−1 ≤ β ≤ 25,
unless stated otherwise.

The Hamming distortion is defined by

d(x, x̂) :=

{
0 if x = x̂,

1 if x ̸= x̂ .
(F.1)

It is also called a probability of error distortion, as E[d(X, X̂)] = Pr(X ̸= X̂). The proof of [Cover
and Thomas, 2006, Theorem 10.3.1] shows that the achieving distribution of a binary source X ∼
Bernoulli(p), p < 1/2, with a Hamming distortion measure (F.1) is

Pr(X̂ = 1) =
p−D

1− 2D
(F.2)

when D ≤ p, and Pr(X̂ = 1) = 0 otherwise (Eq. (10.21) there). The rate-distortion function for
this problem is

R(D) = H(p)−H(D) for 0 ≤ D ≤ min{p, 1− p} , (F.3)

and zero-rate otherwise.
To exchange variables from D to β, we use the relation R′(D) = −β [Berger, 1971, Theorem

2.5.1], when information is expressed in nats (logarithms taken in the natural basis). Plugging
(F.3) in implies,

−β = ln
D

1−D
⇐⇒ D =

1

1 + eβ
(F.4)

for β > 0. Plugging this back into (F.2) yields an analytical solution in terms of β,

Pr(X̂ = 1) =
1− p · (1 + eβ)

1− eβ
(F.5)

This problem has a unique bifurcation, occurring when Pr(X̂ = 1) first hits 0, at

βc = ln
1− p

p
. (F.6)

So long that β ≥ βc, the exact solution is given by (F.5), and is otherwise constant.
Having an analytical solution (F.5) in terms of β, one can easily evaluate its derivatives with

respect to β of any order, at any point.

References

S. Agmon, E. Benger, O. Ordentlich, and N. Tishby. Critical slowing down near topological
transitions in rate-distortion problems. In 2021 IEEE International Symposium on Information
Theory (ISIT), pages 2625–2630. IEEE, 2021.

C. O. Aguilar. An Introduction to Real Analysis. https://www.geneseo.edu/~aguilar/public/
assets/courses/324/real-analysis-notes.pdf, 2021. [Online; accessed 14-October-2021].

G. E. Andrews. The theory of partitions. Number 2. Cambridge university press, 1998.

S. Arimoto. An algorithm for computing the capacity of arbitrary discrete memoryless channels.
IEEE Transactions on Information Theory, 18(1):14–20, 1972.

K. Atkinson, W. Han, and D. E. Stewart. Numerical solution of ordinary differential equations,
volume 108. John Wiley & Sons, 2011.

G. A. Baker Jr. Essentials of padé approximants. 1975.

T. Berger. Rate Distortion Theory: A Mathematical Basis for Data Compression. Prentice-Hall,
1971.

R. Blahut. Computation of channel capacity and rate-distortion functions. IEEE Transactions on
Information Theory, 18(4):460–473, 1972.

Y. Blau and T. Michaeli. Rethinking lossy compression: The rate-distortion-perception tradeoff.
In International Conference on Machine Learning, pages 675–685. PMLR, 2019.

J. C. Butcher. Numerical methods for ordinary differential equations in the 20th century. Journal
of Computational and Applied Mathematics, 125(1-2):1–29, 2000.

J. C. Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons, 3rd
edition, 2016.

G. Constantine and T. Savits. A multivariate faa di bruno formula with applications. Transactions
of the American Mathematical Society, 348(2):503–520, 1996.

T. M. Cover and J. A. Thomas. Elements of Information Theory, 2nd Edition. John Wiley &
Sons, 2006. ISBN 0471241954.

I. Csiszár. On the computation of rate-distortion functions (corresp.). IEEE Transactions on
Information Theory, 20(1):122–124, 1974.

W. de Azevedo Pribitkin. Simple upper bounds for partition functions. The Ramanujan Journal,
18(1):113–119, 2009.

O. de Oliveira. The implicit and the inverse function theorems: easy proofs. Real Analysis Ex-
change, 39(1):207–218, 2014.

J. Dieudonné. Foundations of modern analysis. Academic Press, third printing, 1969.

D. S. Dummit and R. M. Foote. Abstract algebra. John Wiley & Sons, Inc., 3rd edition, 2004.

F. Faà di Bruno. Sullo sviluppo delle funzioni. Annali di scienze matematiche e fisiche, 6:479–480,
1855.

F. Faà di Bruno. Note sur une nouvelle formule de calcul différentiel. Quarterly J. Pure Appl.
Math, 1(359-360):12, 1857.

https://www.geneseo.edu/~aguilar/public/assets/courses/324/real-analysis-notes.pdf
https://www.geneseo.edu/~aguilar/public/assets/courses/324/real-analysis-notes.pdf

R. Gilad-Bachrach, A. Navot, and N. Tishby. An information theoretic tradeoff between complexity
and accuracy. Learning Theory and Kernel, 2003. URL http://link.springer.com/chapter/
10.1007/978-3-540-45167-9_43.

S. Gottlieb. Lecture notes on "Euler’s Method, Taylor Series Method, Runge Kutta Methods,
Multi-Step Methods and Stability". http://www.cfm.brown.edu/people/sg/AM35odes.pdf,
2006.

M. Hardy. Combinatorics of partial derivatives. The Electronic Journal of Combinatorics, 13(R1):
1, 2006.

W. P. Johnson. The curious history of faà di bruno’s formula. The American mathematical monthly,
109(3):217–234, 2002.

H. Kielhöfer. Bifurcation Theory An Introduction with Applications to Partial Differential Equa-
tions. Springer, 2nd edition, 2012. doi: 10.1007/978-1-4614-0502-3.

D. E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algorithms.
Addison Wesley Longman Publishing Co., Inc., USA, 1997. ISBN 0201896834.

Y. A. Kuznetsov. Elements of applied bifurcation theory, volume 112. Springer Science & Business
Media, 3rd edition, 2004.

T.-W. Ma. Higher chain formula proved by combinatorics. the electronic journal of combinatorics,
pages N21–N21, 2009.

G. Matz and P. Duhamel. Information geometric formulation and interpretation of accelerated
blahut-arimoto-type algorithms. In Information theory workshop, pages 66–70. IEEE, 2004.

J. R. Munkres. Topology. Prentice Hall, second edition, 2000.

K. Nakagawa, Y. Takei, S.-i. Hara, and K. Watabe. Analysis of the convergence speed of the
arimoto-blahut algorithm by the second-order recurrence formula. IEEE Transactions on Infor-
mation Theory, 67(10):6810–6831, 2021.

J. M. Ortega. Numerical analysis: a second course. SIAM, 1990.

A. E. Parker, A. G. Dimitrov, and T. Gedeon. Symmetry breaking in soft clustering decoding of
neural codes. IEEE transactions on information theory, 56(2):901–927, 2010.

H. Robbins. A remark on stirling’s formula. The American mathematical monthly, 62(1):26–29,
1955.

S. Roman. The formula of faa di bruno. The American Mathematical Monthly, 87(10):805–809,
1980.

K. Rose. A mapping approach to rate-distortion computation and analysis. IEEE Transactions
on Information Theory, 40(6):1939–1952, 1994.

K. Rose. Deterministic annealing for clustering, compression, classification, regression, and related
optimization problems. Proceedings of the IEEE, 86(11):2210–2239, 1998.

K. Rose, E. Gurewitz, and G. Fox. A deterministic annealing approach to clustering. Pattern
Recognition Letters, 11:589–594, 1990. doi: 10.1016/0167-8655(90)90010-Y.

J. J. Rotman. Advanced Modern Algebra, Part 2, volume 180. American Mathematical Soc., 3rd
edition, 2017.

http://link.springer.com/chapter/10.1007/978-3-540-45167-9_43
http://link.springer.com/chapter/10.1007/978-3-540-45167-9_43
http://www.cfm.brown.edu/people/sg/AM35odes.pdf

J. Sayir. Iterating the arimoto-blahut algorithm for faster convergence. In 2000 IEEE International
Symposium on Information Theory (Cat. No. 00CH37060), page 235. IEEE, 2000.

C. E. Shannon. A mathematical theory of communication. The Bell system technical journal, 27
(3):379–423, 1948.

C. E. Shannon. Coding theorems for a discrete source with a fidelity criterion. IRE Nat. Conv.
Rec, 4(142-163):1, 1959.

C. R. Sims. Rate–distortion theory and human perception. Cognition, 152:181–198, 2016.

R. P. Stanley. Enumerative combinatorics, volume 1 second edition. Cambridge studies in advanced
mathematics, 2011.

T. Sutter, D. Sutter, P. M. Esfahani, and J. Lygeros. Efficient approximation of channel capacities.
IEEE Transactions on Information Theory, 61(4):1649–1666, 2015.

A. Thaheem and A. Laradji. Classroom note: A generalization of leibniz rule for higher derivatives.
International Journal of Mathematical Education in Science and Technology, 34(6):905–907,
2003.

N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. In The 37th annual
Allerton Conference on Communication, Control, and Computing, pages 368–377, 1999.

E. W. Weisstein. Padé Approximant. URL https://mathworld.wolfram.com/PadeApproximant.
html. Visited on April 3rd, 2022.

Y. Yu. Squeezing the Arimoto-Blahut algorithm for faster convergence. IEEE Transactions on
Information Theory, 56(7):3149–3157, 2010.

S. Zemel. The combinatorics of higher derivatives of implicit functions. Monatshefte für Mathe-
matik, 188(4):765–784, 2019.

https://mathworld.wolfram.com/PadeApproximant.html
https://mathworld.wolfram.com/PadeApproximant.html

	1 Introduction
	I How to track operator roots for rate-distortion problems
	2 Implicit derivatives at an operator's root, and for rate-distortion problems
	2.1 How implicit derivatives at an operator's root can be calculated
	2.1.1 Example: implicit derivatives of line intersections with a parabola

	2.2 High-order implicit derivatives at an operator's root
	2.3 High-order derivative tensors of the Blahut-Arimoto operator

	3 Reconstructing an RD solution curve from implicit derivatives
	3.1 A modified Taylor method for RD root-tracking
	3.2 RD root-tracking near bifurcations
	3.3 Computational costs and cost-to-error tradeoff
	3.4 Possible improvements to RD root-tracking

	II The ideas underlying root-tracking for rate-distortion
	4 Preliminaries: the multivariate Faà di Bruno's formula
	5 High order derivatives of the Blahut-Arimoto operator in cluster-marginal coordinates
	5.1 Deriving the marginal equation (2.19)
	5.2 Encoder's (2.18) derivatives with respect to the marginal
	5.3 Encoder's (2.18) partial derivative with respect to β
	5.4 Encoder's (2.18) mixed derivatives
	5.5 A note on how to compute high-order derivatives of Id - BAβ efficiently

	6 On RD bifurcations and root tracking for RD
	6.1 Suboptimal RD curves
	6.2 Cluster-vanishing bifurcations (support shrinking)
	6.3 Obstructions to the root-tracking assumptions for RD
	6.4 Why does root-tracking for RD follow the optimal solution path?
	6.5 Linear curve segments as support-switching bifurcations

	7 Error analysis for root-tracking for RD
	7.1 Preliminaries: error analysis of Taylor methods
	7.2 The computational difficulty in root tracking for RD
	7.3 Local Lipschitz constants of high-order implicit derivatives

	8 Complexity of root-tracking and root-tracking for RD

	III Proofs and technical details
	A Calculations for the line-intersecting-parabola example
	B Proofs for high-order implicit derivatives of an operator's root
	B.1 Proof of the formula for an operator's high-order β-expansion, Theorem 1
	B.2 Proof of the formula for the derivative's Jacobian, Proposition 27

	C Derivations of high-order derivatives of the Blahut-Arimoto operator
	C.1 Proof of Proposition 9, formula for the encoder's repeated marginal derivatives
	C.2 Proof of Proposition 12, formula for the encoder's repeated β-derivatives
	C.3 Proof of Corollary 13, for the partial β-derivative of BAβ
	C.4 Proof of Proposition 15, formula for mixed high-order encoder derivatives
	C.5 Proof of Proposition 23, Blahut-Arimoto's Jacobian in encoder coordinates

	D Proofs for error analysis
	D.1 Proof that RD derivative tensors are bounded uniformly, Lemma 26
	D.2 Proof that Taylor method converges between RD bifurcations, Theorem 5

	E Proof for the complexity of root-tracking and of RD root-tracking
	E.1 Complexity of root tracking: implicit derivatives of operator roots
	E.2 Complexity of high-order derivative tensors of Id - BAβ
	E.2.1 Problem-independent initial-computations
	E.2.2 Initial computations at a point
	E.2.3 Complexity of a derivative tensor

	E.3 Complexity of root tracking for RD

	F Binary Source with a Hamming distortion measure: an analytical solution

