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Abstract

From an information theoretic perspective, joint communication and sensing (JCAS) represents a natural gen-

eralization of communication network functionality. However, it requires the re-evaluation of network performance

from a multi-objective perspective. We develop a novel mathematical framework for characterizing the sensing and

communication coverage probability and ergodic rate in JCAS networks. We employ a formulation of sensing

parameter estimation based on mutual information to extend the notions of coverage probability and ergodic

rate to the radar setting. We define sensing coverage probability as the probability that the rate of information

extracted about the parameters of interest associated with a typical radar target exceeds some threshold, and

sensing ergodic rate as the spatial average of the aforementioned rate of information. Using this framework, we

analyze the downlink sensing and communication coverage and rate of a mmWave JCAS network employing a

shared waveform, directional beamforming, and monostatic sensing. Leveraging tools from stochastic geometry,

we derive upper and lower bounds for these quantities. We also develop several general technical results including:

i) a generic method for obtaining closed form upper and lower bounds on the Laplace Transform of a shot noise

process, ii) a new analog of Hölder’s Inequality to the setting of harmonic means, and iii) a relation between

the Laplace and Mellin Transforms of a non-negative random variable. We use the derived bounds to numerically

investigate the performance of JCAS networks under varying base station and blockage density. Among several

insights, our numerical analysis indicates that network densification improves sensing SINR performance – in

contrast to communications.
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I. INTRODUCTION

There is increasing interest in leveraging communication networks to provide the additional services

of user localization and radar sensing – a concept termed joint communication and sensing or JCAS. The

defining feature of JCAS networks is that the network is co-designed to perform the dual functions of

communication and sensing: network transceivers, spectrum, and even waveforms are used, potentially

simultaneously, to communicate with user equipment (UEs) and to detect, locate, and track objects of

interest (which we refer to as sensed objects or SOs). Armed with these additional services, JCAS networks

could enable precision navigation in urban environments, monitor activity in a given coverage area,

provide collision avoidance services to autonomous vehicles, enhance remote automation, and facilitate

AR/VR applications [1]. Moreover, the environmental information obtained through sensing could improve

communication performance and reliability by facilitating channel estimation, beam alignment, and user

tracking [2]. One may view these important communication network functions as forms of sensing

themselves.

Through the introduction of a parallel sensing objective, JCAS networks require the reconsideration of

nearly every network layer from a multi-objective perspective. Waveforms and antenna array codebooks

must now be designed to efficiently convey data for communication and to provide sufficient detection

and tracking performance for sensing [3]. Scheduling at the MAC layer must now not only consider

tradeoffs with respect to traffic flows among UEs, but also tradeoffs with respect to sensing coverage for

SOs [4]. Likewise, network deployments and protocols must be designed with the performance of both

functions in mind. One of the key challenges inherent in this design problem is jointly accounting for and

mitigating the effects of intercell interference. Developing tractable models which capture the impact of

this phenomena on both functions and allow for insight into tradeoffs with respect to each is an important

step in addressing this issue.

This phenomena has been adeptly addressed in the setting of wireless communication networks by

characterizing notions of network coverage probability and ergodic rate using stochastic geometry. Inspired

by this, to address the intercell interference issue in the JCAS setting, we take a macroscopic view and

seek to quantify JCAS performance through the lens of coverage and rate. That is, we seek to address

the questions “What fraction of UEs and SOs achieve satisfactory performance?” (i.e. the coverage

probability), and “What is the average performance of all UEs and SOs?” (i.e. the ergodic performance).

In particular we focus on downlink communication and parameter estimation via monostatic radar
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sensing, and employ performance characterizations thereof based on information theoretic objects. Our

restriction to parameter estimation, the objective of radar tracking, as opposed to detection is motivated

by its lack of study in related prior work, and that, in our view, it is the more challenging task. For

communication, we quantify performance via the Shannon rate of the links for each UE. Thus, we consider

a UE to be covered if its rate is satisfactorily high, and define the ergodic performance as the spatial

average of these rates. For the parameter estimation objective, we exploit a metric based on the mutual

information between the measured returns of the SOs and their associated parameters of interest. Dividing

this quantity by the time taken to perform the measurement, one obtains an analogous sensing rate: the

rate of information gained about the parameters of interest of an SO via a measurement procedure. This

sensing rate metric allows for the natural generalization of the concepts of the coverage probability and

ergodic rate to the sensing objective. These, in tandem with the communication metrics, lead to a precise

notion of JCAS coverage probability and ergodic rate.

A. Prior Work

Joint communication and sensing, sometimes referred to as joint radar and communication (JRC),

integrated sensing and communication (ISAC), or dual function radar and communication (DFRC), has

emerged as a promising potential function for future cellular networks [1], [5]. In depth surveys of prior

work, implementation approaches, and network integration issues may be found in [2], [6], [7]. While

much of the prior work in this area has focused on signal processing and waveform design issues, for

instance in [8], our focus is on network wide performance analysis. Stochastic geometry has been widely

used for the analysis of wireless networks in a variety of settings. Notably in [9] for the analysis of

coverage and rate in cellular networks. This was extended in [10], for the analysis of mmWave cellular

networks upon which we base some of our system model.

With respect to the analysis of JCAS in wireless networks within a stochastic geometry framework,

there have been relatively few works. In [11], the authors characterize the performance of radar range

detection and communication coverage probability using a time multiplexed system in an ad hoc network.

Certain aspects of their analysis of this setting are extended in [12]. In the setting of an indoor network,

[13] characterizes the detection performance of a radar system amidst clutter, but without considering in-

terference, that is time multiplexed with a communication system. In [14], the radar detection performance

in a vehicular network employing a shared waveform for communication and sensing is characterized. In

[15], a radar network is considered which leverages sensing waveforms for communication. The detection
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probability is characterized when multiple terminals share information in addition to the communication

coverage probability. Focusing on exclusively on radar performance, in [16] the authors characterize the

impact of network interference on radar detection and false alarm rate in an ad hoc network. In a similar

vein, the performance of a sensor network to detect blockages is characterized in [17]. Finally, in [18]

the detection performance of a heterogenous cellular network is considered in which the network access

is split between radar and communications functions. Performance analysis is conducted for a variety of

cooperative methods in which the individual detection hypotheses of multiple receivers are fused according

to some hard decision rules.

While these works offer some insight into JCAS performance, they employ somewhat simplified and/or

limited models of radar detection and do not address the performance of the parameter estimation problem

inherent in radar tracking. Indeed, many of these models fail to account directly for the impact of the

radar waveform on performance and instead simply study a narrowband SINR model at a specific time

slot as a proxy for sensing performance.

B. Contributions and Summary

To the best of our knowledge, our work is the first to present a rigorous analytical framework with which

to characterize the joint performance of communication and parameter estimation in JCAS networks. In

Sec. II, we develop a notion of sensing performance based on the mutual information between the radar

return, Y , and the SO’s parameters of interest, Θ. As summarized earlier, this allows for the natural

generalization of the concepts of coverage probability and ergodic rate to be applied to sensing, while still

maintaining close correspondence with the more traditional estimation theoretic metric of error covariance.

We note further, that the application of mutual information to radar has been widely employed in prior

work. Such an approach was first proposed by [19] and later extended by [20]. Recently, it has been used

to study waveform design and rate bounds for joint radar and communication in [21], [22], [23], [24].

Unlike communications, the sensing mutual information is typically intractable. To address this issue,

we establish that the sensing mutual information is approximately lower bounded in terms of the Fisher

Information Matrix (FIM), J (Θ), as

I(Y ; Θ) ≳
1

2
log
(∣∣∣I+Q

1
2EΘ [J (Θ)]Q

1
2

∣∣∣)− c. (1)

Where Q is the covariance of Θ under the reference prior, and c is a non-negative constant depending only
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on the differential entropy of the prior for Θ scaled to have identity covariance. Focusing on the setting

of a shared multi-carrier waveform, we further establish that the log-determinant term admits upper and

lower bounds of the form

1

2
log (1 +G SINRrad) ≤

1

2
log
(∣∣∣I+Q

1
2EΘ [J (Θ)]Q

1
2

∣∣∣) ≤ log

(
1 +

G

2
SINRrad

)
. (2)

Where G is a constant derived from the FIM, and SINRrad is an average of the SINRs over the resource

elements employed for sensing. We argue that these bounds imply that SINRrad may be used as one

would the communication SINR, SINRcom, to characterize the coverage and rate performance of parameter

estimation. Therefore, we equivalently characterize the JCAS coverage probability as the joint fraction of

UEs and SOs whose corresponding SINR is above some corresponding threshold and the JCAS ergodic

rate as the joint spatial average of the corresponding rate functions.

Leveraging the communication and sensing rate functions, we finally establish that, when the UEs

follow a stationary, ergodic point process, ΦU, with intensity λU, and the SOs follow an independent

stationary, ergodic point process, ΦS, with intensity, λS, the JCAS coverage probability may be expressed

as

Pc, JCAS(τcom, τrad) =
λU

λU + λS
P0
ΦU
(SINRcom ≥ τcom) +

λS

λU + λS
P0
ΦS
(SINRrad ≥ τrad), (3)

where P0
ΦU

and P0
ΦS

denote the Palm measures associated with ΦU and ΦS. Similarly the JCAS ergodic

rate may be expressed as

Ec, JCAS =
λU

λU + λS
E0

ΦU
[log(1 + SINRcom)] +

λS

λU + λS
E0

ΦS

[
k

2
log

(
1 +

G

k
SINRrad

)]
k ∈ {1, 2}. (4)

Hence, even though the SINR models arise from a network in which communication and sensing are

performed simultaneously (and thereby strongly coupled), it suffices to analyze the performance of each

function separately in characterizing network-wide JCAS coverage and rate performance.

Having formally developed our notion of JCAS coverage probability and ergodic rate, in Sec. III we

detail a system model for a mmWave JCAS network performing downlink communication and monostatic

sensing of doppler and delay using a shared multi-carrier waveform. From this model, we induce stochastic

expressions for SINRcom and SINRrad with respect to the typical UE and SO. Using these, in Sec. IV

through Sec. VI we establish a series of novel results that outline an approach to obtain integral closed

form upper and lower bounds and approximations for the JCAS coverage and rate of the network. We
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detail preliminary results pertaining the development of these bounds in Sec. IV. We then detail their

derivations in Sec. V and Sec. VI, respectively. Through the course of our analysis, we develop some

intermediate results that are of independent interest. These include a generic method for obtaining closed

form upper and lower bounds on the Laplace Transform of a shot noise process, a new analog of Hölder’s

Inequality to the setting of harmonic means, and a relation between the Laplace and Mellin Transforms

of a non-negative random variable.

Finally, we present a numerical case study of JCAS networks in Sec. VII. Notably, our analysis indicates

that the sensing SINR strictly improves with base station density – in contrast to the communication SINR.

We additionally demonstrate that interference has a more pronounced impact on the performance of sensing

than communication. We summarize the main conclusions of the paper in Sec. VIII, and end the main

body with a discussion of future work that builds off of our framework in Sec. IX. Our analysis requires

several intermediate results, the proofs and discussions of which we relegate to Appendices A through K

at the end of the paper.

C. Notation

We employ the following notation. The sets, N, R, R+, and C denote the natural numbers, real numbers,

non-negative real numbers, and complex numbers, respectively. Deterministic scalars or vectors are denoted

by lower case letters and random variables or matrices by upper case letters. For a random variable X , we

denote its Laplace Transform as LX(s) = E[e−sX ] and its Mellin Transform as MX(p) = E[Xp−1]. For

random variables X and Y , the relation X ⊥⊥ Y denotes their independence. The symbol ≤s.t. denotes

stochastic dominance: X ≤s.t. Y if P(X ≥ τ) ≤ P(Y ≥ τ) for all τ ∈ R. For a measure ν over G, its

Laplace Transform is denoted as Lν(s) =
∫
G e

−sxν(dx) and its Mellin Transform Mν(p) =
∫
G x

p−1ν(dx).

The inverse Mellin Transform is denoted as M−1{·}. For some function f : G → G′, ν ◦ f denotes

image of ν by f . For x ∈ G, Sx denotes the shift operator on ν. That is, for some measurable set, A,

Sxν(A) = ν(A+ x). For k ∈ N, [k] denotes the interval {1, . . . , k}. 1{·} denotes the indicator function.

It returns one if the specified condition is true, and zero otherwise. Γ(s) denotes the Gamma function.

Finally, the speed of light is denoted as c0.

II. CHARACTERIZATION OF JCAS PERFORMANCE METRICS

Before enumerating the complete attributes of our system model, we first develop the communication and

sensing rate functions in more detail and rigorously characterize our notion of JCAS coverage probability
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and ergodic rate. We restrict our focus to the setting where multi-carrier waveform is simultaneously

used communication and sensing, and hence develop the aforementioned rate functions with this in mind.

Complete details of the multi-carrier signal model, and how it is used for communication and parameter

estimation are discussed in Appendix A.

Generally, as a consequence of scheduling considerations and related tradeoffs in the temporal domain,

over a period of Ns symbols with Nc available sub-carriers a particular UE is allocated some subset

of the multi-carrier resource elements – say Scom ∈ {0, 1}Ns×Nc . Similarly, a particular SO receives

measurement effort on some potentially non-disjoint subset of these resource elements – say Srad. As

scheduling considerations are beyond the scope of our work, we treat these as fixed quantities. The

communication and sensing rate functions are characterized in terms of these matrices, and hence the

coverage and rate results should be interpreted as conditional upon certain prior allocation decisions. As

will be discussed, the resource-element allocation matrices play an important role in the formulation of

sensing rate in particular.

A. Communication Performance Metrics

In the downlink setting, base stations (BSs) in the network transmit data to UEs using the multi-carrier

waveform. Consider a particular UE that is scheduled to receive data on some subset of resource elements,

Scom. Let SINRm,n denote the SINR on resource element (m,n) ∈ Scom and TMC denote the multi-carrier

symbol period. Then, treating the interference as noise, the Shannon capacity of the link in bits per second

for a fixed power allocation is (following [25])

Ccom =
1

TMC|{m : (m, ·) ∈ Scom}|
∑

(m,n)∈Scom

log2(1 + SINRm,n). (5)

Note that TMCCcom is the spectral efficiency of the link, which we refer to as communication efficiency

hereafter.

Scom has the principal effect of modulating the set of available sub-channels for communication. Follow-

ing [26] and [27], we employ a notion of coverage probability defined with respect an arbitrary resource

element, which abstracts the impact of Scom. Such an approach holds under the reasonable condition that

{SINRm,n}(m,n)∈Scom are probabilistically stationary over resource elements – which does not precluded

some underlying adaptivity between communication and sensing. Therefore, we take SINRcom = SINRm,n
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(for some arbitrary (m,n) ∈ Scom) the communication coverage probability reduces to

Pc, com(τ) = P0
ΦU

(SINRcom ≥ τ) .

Similarly, the communication ergodic rate is simply the spatial average of the channel capacity normalized

by the number of resource elements employed

Ec, com =
1

TMC|Scom|
∑

(m,n)∈Scom

E0
ΦU

[log2 (1 + SINRm,n)] =
1

TMC

E0
ΦU

[log2 (1 + SINRcom)] . (6)

Where, equality follows from the stationarity of {SINRm,n}(m,n)∈Scom .

B. Development of Approximate Lower Bound on the Sensing Rate

In a similar vein, one may take an analogous, information theoretic view of radar tracking. At a high

level, mutual information in this context provides a metric with which to characterize the information gain

provided by a measurement for the purposes of parameter estimation. Simultaneous with communication,

over the coherent processing interval TCPI, BSs in the network monitor the return of the transmitted

waveform, Y , to track the parameters of interest, Θ, associated with SOs in their vicinity. For an arbitrary

SO, about which the network’s prior belief regarding its parameters of interest is the distribution PΘ, the

informativeness of this sensing procedure – irrespective of the tracking filter or estimator employed –

may be expressed in terms of the mutual information I(Y ; Θ). Dividing this by TCPI we obtain the rate

of information gain or sensing rate as defined in [22] and [23]

Crad =
I(Y ; Θ)

TCPI

. (7)

Ideally, we would use the mutual information directly to define notions of coverage probability and

ergodic rate for sensing. However, in general, an explicit characterization (7) is intractable. Thus we resort

to bounds and approximations. To that end, we exploit the following lower bound.

Proposition 1: Lower Bound for Mutual Information using Minimum Mean Square Error

(MMSE) Covariance. Let Y and Θ be random elements defined on a common probability space, and

let Θ take values Rn. Let the distribution of Y and Θ, PY,Θ, be such that the conditional distribution of

Θ given Y , PΘ|Y , and the marginal distribution of Θ, PΘ, admit a density with respect to the Lebesgue
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measure over Rn PY,Θ-almost surely. Additionally let the MMSE covariance be denoted as

RMMSE = E
[
(Θ− E[Θ|Y ]) (Θ− E[Θ|Y ])T

]
, (8)

and the marginal covariance of Θ be denoted as

Q = E
[
(Θ− E[Θ]) (Θ− E[Θ])T

]
, (9)

Then the mutual information I(Y ; Θ) is lower bounded as

I(Y ; Θ) ≥ 1

2
log
(∣∣∣Q 1

2R−1
MMSEQ

1
2

∣∣∣)− (n
2
log(2πe)− h

(
Q

−1
2 Θ
))

(10)

Where h
(
Q

−1
2 Θ
)

denotes the differential entropy of PΘ ◦ (Q 1
2u).

Proof: See Appendix C.

To further simplify this expression, we resort to approximating the MMSE covariance in terms of the

Bayesian FIM. Under some mild regularity and support conditions on PY,Θ, R−1
MMSE is upper bounded by

the Bayesian FIM in the positive definite sense. That is, the Bayesian Cramér Rao Lower Bound (BCRB)

holds:

R−1
MMSE ≤ E[J (Θ)] + E

[
∇θ log(p(Θ))∇θ log(p(Θ))T

]
, (11)

where J (θ) is the FIM and p(θ) is the PDF of Θ. For further details, see Appendix B.

Putting these together, we arrive at the following approximate lower bound on the sensing mutual

information.

I(Y ; Θ) +
n

2
log(2πe)− h

(
Q

−1
2 Θ
)
≥ 1

2
log
(∣∣∣Q 1

2R−1
MMSEQ

1
2

∣∣∣)
(a)
≈ 1

2
log
(∣∣∣Q 1

2

(
E
[
∇θ log(p(Θ))∇θ log(p(Θ))T

]
+ E [J (Θ)]

)
Q

1
2

∣∣∣) (12)

(b)

≥ 1

2
log
(∣∣∣I+Q

1
2E [J (Θ)]Q

1
2

∣∣∣) , (13)

where (a) follows from the BCRB, and (b) follows from the fact that Q−1 ≤ E
[
∇θ log(p(Θ))∇θ log(p(Θ))T

]
(which is a corollary of the BCRB as stated in Proposition 4 in Appendix B).

In light of these considerations, we arrive at the our approximate lower bound of the sensing rate by

discarding the
(
n
2
log(2πe)− h

(
Q

−1
2 Θ
))

term. This term is necessarily non-positive due to the maximum

entropy principle, but is invariant to the sensing channel conditions and the choice of waveform. Thus,
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we may disregard it for the purposes of characterizing sensing coverage probability and ergodic rate: the

addition of a constant to the sensing rate would have the effect of shifting the coverage threshold and

adding a constant to the ergodic rate. Our approximate lower bound on the sensing rate is thus

Crad ≳ C̃rad =
1

2TCPI

log2

(∣∣∣I+Q
1
2E [J (Θ)]Q

1
2

∣∣∣) , (14)

where we have changed the logarithm to be base 2.

In keeping with the communication case, we refer to the quantity TCPIC̃rad as the sensing efficiency.

We note that, although we have obtained this expression through the exploitation of information theoretic

objects, it is nonetheless closely related to more conventional sensing performance metrics by inclusion

of the FIM. Indeed, one may equivalently interpret this expression as a measure of the reduction of the

covariance of the parameters of interest following a sensing measurement. The FIM is the key feature of

interest in this expression which depends on waveform parameters (including the pulse repetition interval),

other exogenous features (for instance interference and clutter), and the specific parameters of interest in

question.

C. Characterization of Sensing Performance Metrics

In the particular case of tracking doppler and delay via monostatic sensing using a multi-carrier

waveform, the formulation of the sensing rate in (14) admits upper and lower bounds in terms of an

SINR-type function. We relegate a more in depth discussion of the sensing signal model to Appendix A,

but note that the signal model for the radar return from a single target may be expressed as

(F)m,n = e−j2π∆fτnej2πTMCfDm + Zm,n. Z ∼ CN (0, diag{|Xm,n|−2SINR−1
m,n}(m,n)∈Srad), (15)

where Θ = (τ, fD) is the doppler and delay of an arbitrary SO, ∆f is the sub-carrier spacing, Xm,n is the

data symbol corresponding to the (m,n)th resource element, and CN (µ,R) denotes the complex normal

distribution with mean µ and covariance R. Leveraging the FIM obtained from this signal model, we

bound the sensing rate by way of the following theorem.

Theorem 1: Sensing Rate Bounds in the Multi-carrier Setting Let k1 = 2∆f/c0 and k2 = 2TMCfc/c0,

and define G and ηm,n as

G =
∑

(m,n)∈Srad

8π2

((
k1(Q

1
2 )1,1n− k2(Q

1
2 )1,2m

)2
+
(
k1(Q

1
2 )1,2n− k2(Q

1
2 )2,2m

)2)
, (16)
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ηm,n = G−1

((
k1(Q

1
2 )1,1n− k2(Q

1
2 )1,2m

)2
+
(
k1(Q

1
2 )1,2n− k2(Q

1
2 )2,2m

)2)
. (17)

Further, define SINRrad as

SINRrad =
∑

(m,n)∈Srad

ηm,n|Xm,n|2SINRm,n. (18)

Then the sensing rate expression in (14) may be bounded as

1

2
log2 (1 +G SINRrad) ≤ TCPIC̃rad ≤ log2

(
1 +

1

2
G SINRrad

)
. (19)

Proof: See Appendix C.

Theorem 1 forms the basis for our characterization of sensing coverage probability and ergodic rate. It

implies that we may obtain necessary and sufficient conditions for sensing coverage in terms of different

thresholds on SINRrad, and that we may express bounds on the ergodic sensing rate in terms of said

logarithmic functions of SINRrad.

In contrast to the communication case, the impact of the Srad may not be abstracted – indeed it is a

key component of the FIM. Thus, we define the sensing coverage probability as

Pc, rad(τ) = P0
ΦS
(SINRrad ≥ τ), (20)

and the ergodic sensing rate as

Ec, rad =
k

2TCPI

E0
ΦS

[
log2

(
1 +

G

k
SINRrad

)]
k ∈ {1, 2}. (21)

D. JCAS Coverage and Rate and the Ergodic Theorem

Having characterized the communication and sensing coverage conditions and rate functions, we com-

bine them to obtain a unified definition of JCAS coverage probability and ergodic rate.

Consider first the coverage case. Recall that we qualitatively defined the JCAS coverage probability

as the joint fraction of UEs and SOs whose coverage conditions are satisfied. This may be expressed

formally as follows. As stated in the introduction, let ΦU and ΦS denote independent, ergodic point

processes representing the UEs and SOs served by the network with respective intensities λU and λS.

For Yk ∈ ΦU + ΦS let SINR(Yk) denote its corresponding communication or radar SINR and let τ(Yk) ∈

{τcom, τrad} denote the target threshold for the coverage condition to be satisfied. Then, letting {An}n∈N
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denote a convex averaging sequence, the JCAS coverage probability may be expressed in terms of a spatial

average as

Pc, JCAS(τcom, τrad) = E

 lim
n→∞

1

ΦU(An) + ΦS(An)

∑
Yk∈(ΦU+ΦS)∩An

1{SINR(Yk) ≥ τ(Yk)}


(a)
= P0

ΦU+ΦS
(SINR(0) ≥ τ(0))

(b)
=

λU

λU + λS
P0
ΦU

(SINRcom ≥ τcom) +
λS

λU + λS
P0
ΦS

(SINRrad ≥ τrad)

=
λU

λU + λS
Pc, com(τcom) +

λS

λU + λS
Pc, rad(τrad), (22)

where (a) follows from the Ergodic Theorem of Random Measures [28, Theorem 8.3.4] and (b) follows

from the independence of ΦU and ΦS and the Superposition Theorem for stationary processes [28,

Proposition 6.3.5]. By a similar argument, we may obtained the JCAS ergodic rate as

Ec, JCAS =
λU

λU + λS
Ec, com +

λS

λU + λS
Ec, rad. (23)

Note that both expressions decompose into individual communication and sensing coverage probabilities

and ergodic rates. Therefore, we may characterize the JCAS coverage probability and ergodic rate by

characterizing the communication and sensing coverage probabilities and ergodic capacities separately.

We emphasize, however, that in the above derivations, we have made no assumptions regarding the

generating model for SINR(Yk), and thus (22) and (23) hold even for the case where a common waveform

is used for communication and sensing – which would induce strong spatial correlations between both

functions. Hence, even though our analysis is conducted separately, the results apply to a network in which

communication and sensing are performed jointly. It is therefore worthwhile to analyze the performance

of both functions in a single framework: our results allow one to ascertain the impact of common network

parameters on joint performance. Indeed, in Sec. VII we combine our analytical results for communication

and sensing to investigate such trends.

III. SYSTEM MODEL

Having characterize precisely our notion of JCAS coverage and rate, we now present a detailed system

model upon which SINRrad and SINRcom are constructed. The key assumptions of the model are enumerated

as An), with n being the assumption number. We begin with a development of the spatial attributes of the

model; discuss the path-loss and fading models for communication and sensing; detail the beamforming
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models; define the BS association policy for the typical UE and the BS selection policy for the typical

SO; and then state the stochastic model for the communication SINR, SINRcom. Following this, we make a

few additional assumptions regarding the sensing model and then conclude the section with the statement

of the sensing SINR model, SINRrad.

A. Spatial Attributes

In general, the spatial components of the JCAS network in question are represented by the tuple,

{ΦB,ΦU,ΦS,Ψblock} (24)

Where, ΦB is a point process on R2 modeling the locations of BSs in the JCAS network, ΦU is a point

process on R2 modeling the locations of UEs in the JCAS network, and ΦS is a point process on R2

modeling the locations of SOs in the JCAS network. Ψblock is a set process on R2 representing the locations

and shapes of blockages in the network. The explicit consideration of blockages is necessary as we are

focused on a mmWave JCAS network.

We impose the following constraints.

A1) We take ΦB, ΦU, and ΦS are ergodic, mutually independent point processes with intensities λB, λU,

and λS, respectively. We assume that λU and λS are much greater than λB. Moreover, we take ΦB to

be a Poisson Point Process.

Note that the independence of ΦU and ΦS implies that the SOs and UEs are mutually exclusive. Hence,

without loss of generality, we assume the typical UE and SO to be located at the origin. As the SINR

models in these expressions depend only on the typical SO and UE, the Palm measures in (22) and (23)

may both be taken to be the nominal measure.

A2) With respect to the blockage process, we take Ψblock to be a Boolean line process, and simplify its

impact by approximating the induced LoS regions using the independent, exponential blockage model

[29]. That is, a given link of length r is LoS or NLoS (independent of the others) with probability

pLoS(r) = exp(−βr). (25)

Where β is a parameter related to the density of blockages in Ψblock and their corresponding geometry.

A3) For the scenario in question, we consider communication to occur over either LoS or NLoS links,

but that sensing is LoS only. This is motivated primarily by the fact that NLoS delay and doppler
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estimation is both more challenging and typically less informative than the LoS case, and requires

some underlying knowledge of the geometry of the reflections of the NLoS paths.

We note further that, while multistatic sensing exploiting NLoS paths is certainly viable, and of interest

for JCAS networks, we consider LoS only monostatic sensing as an initial investigation. In addition

to being unexplored using this approach, the problem of characterizing the coverage and rate of JCAS

networks employing monostatic setting is an interesting problem in its own right. For instance, it is one

the application scenarios considered in [1] and [5]. Hence, we leave extensions to multi-static sensing in

JCAS networks to future work.

In light of these assumptions regarding the spatial attributes of the network, we employ the following

notation. Let Xk denote the canonical enumeration of the atoms of ΦB, and let Mk be a mark associated

with Xk denoting whether or not the link from Xk to the origin is LoS. Then {Mk}k∈N are conditionally

independent and Mk ∼ Bern(pLoS (∥Xk∥2)). We take Φ̃B to denote the marked PPP {(Xk,Mk)}k∈N,

accounting for both the locations and LoS/NLoS statuses of BSs. In addition, where useful we take ΦL

to denote the set of points in Φ̃B that are LoS and ΦN denote the set of points in ΦB that are NLoS.

B. Channel and Radar Cross Section Models

As noted in the introduction, we consider a mmWave network. This is primarily motivated by the fact

that mmWave band posses greater bandwidths, and thus facilitate great delay resolution than conventional

frequencies. Consequently, we employ the following path loss models.

A4) The LoS/NLoS one-way path loss functions are modeled as

gL(r) = KLr
−αLe−γLr when LoS gN(r) = KNr

−αNe−γNr when NLoS. (26)

Which are applicable to mmWave and sub-THz channels, [30]. Thus the path loss to the origin of

Xk ∈ Φ̃B is

L(∥Xk∥2) = gL(∥Xk∥2)Mk + gN(∥Xk∥2)(1−Mk). (27)

A5) In a similar manner, the path loss of the LoS radar return is given by the two-way monostatic path

loss model [31]

gL,ret(r) =
KL

4π
r−2αLe−2γLr. (28)
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A6) To avoid aberrant behavior of the path loss function for small r, we further assume that the path

loss functions are zero for distances such that they would exceed 1. Thus the actual LoS path loss

is gL(r)1{gL(r) ≤ 1}, and similar forms hold for the other pathloss models.

Such a transformation follows those detailed in [32], and effectively removes interferers that are unreal-

istically close to the typical UE or serving BS for the typical SO.

As SINRrad is a weighted average over a set of allocated resource elements, Srad, we require the

distribution of the fading terms over each of the (m,n) ∈ Srad resource elements for each BS Xk ∈ ΦB,

{|Hk
m,n|2}. To that end, we stipulate the following.

A7) We assume that the sensing procedure occurs within a coherence interval, and thus that |Hk
m,n|2 do

not vary in time. Hence we drop the m subscript.

A8) Additionally, for interfering links, the fading terms are distributed as follows

|Hk
n|2 ∼ Gamma (NL, NL) when Xk is LoS to the receiver (29)

|Hk
n|2 ∼ Gamma (NN, NN) when Xk is NLoS to the receiver, (30)

where, NL, NN ≥ 1 denotes the order of the fading model. Note that NL, NN = 1 reduces to Rayleigh

fading. We further assume that {|Hk
n|2} are IID. These general Nakagami fading models for LoS and

NLoS links are applicable to mmWave channels [10].

The independence assumption is valid when the subcarriers used for sensing are separated by intervals

greater than a coherence bandwidth. Practically, non-contiguous sub-carrier allocation is useful for ensuring

a greater unambiguous range resolution [33]. We note further that relaxing this assumption would only

affect our results for the Laplace Transforms of the aggregate fading terms detailed in Sec. V-B.

A9) Finally, with respect to fading on the desired signal, we assume that the typical UE experiences

Rayleigh fading. That is |H0|2 ∼ Exp(1). This assumption is less realistic for mmWave channel

models, but facilitates analytical tractability. We note, however, that this assumption has a minor

impact on the overall coverage probability in the event of no fading, or other fading or shadowing

distributions [34].

A10) In the sensing case, we assume no fading on desired signal in light of the LoS assumption, but that

the radar cross section of the typical SO, κCS, is exponentially distributed (denoted as the Swerling III

model in radar settings). That is, κCS ∼ Exp(1). The cross section is further assumed to be constant

over the excitation duration.
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C. Beamforming Models

We consider a JCAS network in which BSs and UEs perform directional beamforming. Such a model

representative of near-term network capability and is commonly employed in prior work, for instance [1]

and [5].

A11) Thus, for a communication link, the BS and UE select the beam directions which maximize the

received power. Since sensing is LoS only, the BS points its transmit and receive beams in the

direction of the desired SO(s).

We note that, as we consider a monostatic scenario for sensing, the serving BS is both the transmitter and

receiver. This requires a full duplex transceiver at the base station in addition to antenna separation [5].

Prior work in the area of full duplex has demonstrated its feasibility, [35], especially true at mmWave.

A12) For all links, we model the antenna patterns of BSs/UEs using the sectored model. The antenna

patterns for BSs and UEs are parameterized by the terms in the following table.

Type Main lobe Gain 3 dB Beam width Front to Back Ratio

BS, Tx GB,Tx θB,Tx ξB,Tx

BS, Rx GB,Rx θB,Tx ξB,Rx

UE, Rx GU,Rx θU,Rx ξU,Rx

Thus, the total antenna gain for the desired signal of the typical UE is GB,TxGU,Rx, and the total

antenna gain for the radar return is GB,TxGB,Rx.

A13) With respect to interfering links, the antenna gains are taken to be independent random variables.

For the kth interferer, the normalized antenna gain over the mth symbol is modeled as

Bk
m ∼


1 with prob. pB = θB,Tx

2π

ξB,Tx with prob. 1− θB,Tx
2π
.

(31)

A14) In a similar manner, since the BS process is isotropic, the receive gain between the typical UE and

kth interferer is modeled as

Zk
U ∼


1 with prob. θU,Rx

2π

ξU,Rx with prob. 1− θU,Rx
2π
.

(32)
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These models are justified under the assumption that the UE and SO densities are much greater than the

BS density. Additionally, note that one may define analogous random variables for the overall antenna gain

between the serving BS for the typical SO and the kth interfering BS, Zk
B. However, as a consequence of

the SO selection policy (which will be discussed in the following subsection), the process of interfering

BSs in non-isotropic. Hence, it does not admit an expression of the same form as Zk
U . We derive the

distribution of Zk
B in the Sec. V-A.

A15) Completing the beamforing models, transmit beam directions are assumed to be fixed within a time

slot, which is composed of multiple symbols, so as to facilitate communication. As a simplifying

assumption, Bk
m ⊥⊥ Bk

s if m and s fall in different time slots; Bk
m = Bk

s otherwise.

Using the notation developed thus far, the total antenna gain over the kth interfering link for the typical

UE is GB,TxGU,RxB
kZk

U , and total antenna gain over the kth interfering link on the mth symbol for the

typical SO is GB,TxGB,RxB
k
mZ

k
B.

D. UE Association and SO Selection Policies

As we are considering a cellular network, the association of UEs to BSs and a the selection of BSs for

SO measurement plays an important role in coverage and rate.

A16) The typical UE is associated with BS that has the lowest path loss. Letting X0 denote the location

of the serving BS associated with the typical UE, we have

X0 = arg sup{L(∥Xk∥2) : Xk ∈ Φ̃B}. (33)

A17) The typical SO is measured by the nearest LoS BS. Letting X0 denote the location of the serving

BS associated with the typical SO. Given ΦL ̸= ∅, we have

X0 = arg inf{∥Xk∥2 : Xk ∈ ΦL} (34)

We note that, in contrast to the UE association policy, the BS selection policy for the SO is not

necessarily explicitly conducted by the network. Rather, such a process represents a simple form of sensor

fusion. In theory, due to the cooperation facilitated by the cellular network, the measurements from all

BSs could be used to revise the beliefs about the typical SO’s parameters of interest. By restricting our

focus to the nearest BS, we are simply quantifying a lower bound on this theoretical information gain

by considering only the measurements obtained by the BS at X0. In making this assumption, however,
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we note that in practice measurements from this BS may not always be available – for instance detection

uncertainty may result in the BS in question failing to make informative measurements of the typical SO.

We leave relaxations of this assumption that account for these non-idealities to future work, but note that

similar assumptions were made in prior work, such as [18].

E. Communication SINR Model

Putting these assumptions together, we obtain the stochastic model for SINRcom. Let the normalized

noise power at the typical UE be defined as

νcom =
σ2

N

GB,TxGU,Rx
. (35)

Then, we define SINRcom as

SINRcom =
|H0|2L(∥X0∥2)∑

Xk∈Φ̃B\{X0}|Hk|2BkZk
UL(∥Xk∥) + νcom

. (36)

In the subsequent section, we shall take FL = |Hk|2BkZk
U for interfering LoS BSs and FN = |Hk|2BkZk

U

for interfering NLoS BS, which succinctly capture the aggregate fading and beam alignment terms.

F. Sensing SINR Model

Before stating SINRrad, we make the following further assumptions.

A18) We assume that the transmitted symbols over the radar excitation signal are constant modulus. That

is |Xm,n| = 1 for all (m,n) ∈ Srad.

This assumption is made to facilitate tractability. Although the variability of transmit symbols is an

important factor in practical JCAS waveform design, their impact on the network-wide sensing coverage

probability defined with respect to SINRrad is limited, as verified by simulation. We note further that the

variability of transmit symbols may be approximated by scaling the noise variance in our measurement

model in (100), [33]. This would result in attenuating the G factor in (16), but change nothing else.

In light of A15 and A18, the terms involved in the expression for SINRrad vary only over time slots

rather than symbols. Hence, we may simplify the expression somewhat by reducing the dimensionality of

Srad to the time slot level. Specifically, let the radar excitation take place over K time slots, and define

Strad = {(m,n) ∈ Srad : m ∈ tth time slot} ∀t ∈ [K]. (37)
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Then, we define the reduced radar resource allocation matrix over time slots and sub-carriers as

S̃rad = {(t, n) ∈ {0, 1}T×Nc : (·, n) ∈ Strad}. (38)

The corresponding weights, {ηm,n}(m,n)∈Srad , which define the average over resource elements in the

definition of SINRrad in (18) may be combined as

θt,n =
∑

(m,n)∈St
rad

ηm,n (t, n) ∈ S̃rad. (39)

Though not necessary for the statement of SINRrad, in the following analysis, we shall further employ

make use of the following derived quantities

wt =
∑

(·,n)∈S̃rad

θt,n, qn =
∑

(t,·)∈S̃rad

θt,n. (40)

We define the supports of these measures as support(w) = T ≤ K and support(q) = N ≤ Nc.

A19) Finally, we assume that the LoS/NLoS status of interfering BSs with respect to the serving BS is

independent of their LoS/NLoS status with respect to the typical SO at the origin. Such a stipulation

is necessary as the serving BS in the sensing scenario is both the transmitter and receiver.

Putting these together, we obtain the stochastic SINR model for sensing, SINRrad. Let the normalized

noise variance at the serving BS for the typical SO be defined as

νrad =
σ2

N

GB,TxGB,Rx
. (41)

Additionally, let the product of the fading term on the nth subcarrier and normalized transmit antenna

gain at the tth time slot for the kth interfering BS be denoted as F k
t,n = |Hk

n|2Bk
t . Then SINRrad is defined

as

SINRrad = 1{ΦL(R2) > 0}
∑

(t,n)∈S̃rad

θt,n
κCSgL,ret(∥X0∥)∑

Xk∈Φ̃B\{X0} F
k
t,nZ

k
BL(∥Xk −X0∥) + νrad

. (42)

Note that the LoS marks implicit in L(∥Xk −X0∥) are the LoS marks of Xk with respect to the serving

BS, rather than with respect to the origin. These follow the same distribution as detailed in A2 in light of

A19. In addition, the indicator term, 1{ΦL(R2) > 0}, denotes that fact that sensing is LoS only. Thus, if

there are no LoS BSs with respect to the typical SO, its SINR (and consequently its sensing rate) is zero.
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IV. PRELIMINARY RESULTS

Armed with the SINR models for communication and sensing, we now proceed with the analysis

of JCAS coverage probability and ergodic rate. Unfortunately, however, we found characterizing the

distribution of SINRrad, as stated in (42), to be analytically prohibitive. Consequently, we establish upper

and lower bounding sensing SINR models as well as an approximate sensing SINR model that are

analytically tractable. These models may be expressed as instantiations of a generic radar SINR model,

SINRgen, which is defined as

SINRgen = 1{ΦL(R2) > 0} κCSgL,ret(∥X0∥)∑
Xk∈Φ̃B\{X0} FkZ

k
BL(∥Xk −X0∥) + νrad

, (43)

where {Fk} are arbitrary non-negative random variables corresponding to different aggregate interference

fading terms.

Given this common form, we present characterizations of the CCDFs of the alternate radar SINR models

in terms of functionals which correspond to upper and lower bounds on the CCDF of SINRgen. These are

summarized in Theorem 3 to follow.

A. Alternate Radar SINR Models and Their Relation to SINRrad

The principal challenge in characterizing the distribution of SINRrad lies in the fact that it is expressed

as a mean of the inverse interference experienced over the allocated resource elements in Srad. One may

recognize the denominator as a harmonic mean. Our alternate SINR models make use of the relationship

between arithmetic, geometric, and harmonic means, which are defined as follows.

Definition: (Arithmetic, Geometric, and Harmonic Means) Let X be a non-negative random variable

over some countable state space X with PMF p. The arithmetic mean of X with respect to p is

AM(X, p) =
∑
x∈X

pX(x) x = E[X]. (44)

The geometric mean of X with respect to p is

GM(X, p) =
∏
x∈X

xpX(x) = exp(E[log(X)]). (45)

The harmonic mean of X with respect to p is

HM(X, p) =

(∑
x∈X

pX(x) x
−1

)−1

= E[X−1]−1. (46)
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Moreover, Jensen’s Inequality yields the (the AM-GM-HM Inequality):

HM(X, p) ≤ GM(X, p) ≤ AM(X, p). (47)

Using this notation and letting θ denote the ensemble of weights over S̃rad, we may express SINRrad as

SINRrad = 1{ΦL(R2) > 0} κCSgL,ret(∥X0∥)

HM
({∑

Xk∈Φ̃B\{X0} F
k
t,nZ

k
BL(∥Xk −X0∥) + νrad

}
(t,n)∈S̃rad

,θ

) . (48)

Rather than dealing with this expression directly, we consider the following three SINR models: SINRAM,

SINRGM, and SINRHM. Letting Fk denote the ensemble of fading terms {F k
t,n}(t,n)∈S̃rad

, these are defined

as

SINRAM = 1{ΦL(R2) > 0} κCSgL,ret(∥X0∥)∑
Xk∈Φ̃B\{X0} AM (Fk,θ)Zk

BL(∥Xk −X0∥) + νrad
, (49)

SINRGM = 1{ΦL(R2) > 0} κCSgL,ret(∥X0∥)∑
Xk∈Φ̃B\{X0} GM (Fk,θ)Zk

BL(∥Xk −X0∥) + νrad
, (50)

SINRHM = 1{ΦL(R2) > 0} κCSgL,ret(∥X0∥)∑
Xk∈Φ̃B\{X0} HM (Fk,θ)Zk

BL(∥Xk −X0∥) + νrad
. (51)

We relate these to the exact model, SINRrad, by the following proposition.

Proposition 2: (Relation Between Proposed SINR Models) The following stochastic orderings hold:

SINRAM ≤s.t. SINRrad ≤s.t. SINRHM, (52)

and

SINRAM ≤s.t. SINRGM ≤s.t. SINRHM, (53)

Proof: See Appendix D.

These orderings arise from the AM-GM-HM Inequality, Hölder’s Inequality, and a generalization of

Hölder’s Inequality to harmonic means (detailed in Appendix K). Overall, these orderings indicate that both

SINRrad and SINRGM are lower bounded by SINRAM and upper bounded by SINRHM. This motivates SINRGM

for use as an approximation of SINRrad, and establishes SINRAM and SINRHM as lower and upper bounding

models, respectively. In the sequel we provide further analytical justification for the use of SINRGM as an

approximate model by obtaining an upper bound on the CCDF of SINRHM and a lower bound on the CCDF

of SINRAM. These in turn imply bounds on the approximation error: |P(SINRrad ≥ τ)− P(SINRGM ≥ τ)|.
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B. Bounds on the CCDF of the Generic Radar SINR Model

Each of the proposed alternate models differ only in the aggregate fading terms – AM (Fk,θ), GM (Fk,θ),

or HM (Fk,θ) – which correspond to the {Fk} terms in the expression for SINRgen in (43). Hence, they

may be considered as instantiations of this general model. In light of this, before delving into the full

technical details regarding the characterization of these alternate radar SINR models, we first summarize

tractable upper and lower bounds on the CCDF of SINRgen.

These bounds are expressed in terms of functionals which depend on the following objects.

1) The PDF of the distance distribution of the serving base station, ||X0||, denoted as fR0 . This is

obtained in (66) in Lemma 1.

2) The Mellin Transforms of the path loss functions with respect to the intensity measure of the Palm

Process of the distances of interfering BSs. Letting, Φ!X0
B , denote the reduced Palm Process of

interferers, the Palm Process of of the distances of interferers is defined as

Π0
B =

{
∥Xk −X0∥2 : Xk ∈ Φ!X0

B

}
. (54)

This process may be further thinned into Points that are LoS or NLoS with respect to the serving

BS at X0 and those which are inside or outside the main lobe of the receive beam at the serving

BS. These processes are denoted as Π0
L,1, Π0

N,1, Π0
L,2, and Π0

N,2.

In Lemma 8 in Appendix G we establish upper bounding intensity measures, ρ0a,k, a ∈ {L,N}, k ∈

{1, 2}, and lower bounding intensity measures, ν0a,k, a ∈ {L,N}, k ∈ {1, 2}. We then obtain upper

and lower bounds on the Mellin Transforms which we define as

Mν0a,k◦g
−1
a
(p;A,R0) =

∫
A

ga(r)p
−1ν0a,k(r;R0)dr a ∈ {L,N}, k ∈ {1, 2}, (55)

and

Mρ0a,k◦g
−1
a
(p;A,R0) =

∫
A

ga(r)p
−1ρ0a,k(r;R0)dr a ∈ {L,N}, k ∈ {1, 2}. (56)

Where A is a measurable set of R+, p is an arbitrary complex number (although we only require the

positive real branch), and R0 is the distance of the serving BS (upon which the intensity measures

depend). These are established in Lemma 9 in Appendix H.

3) The Laplace Transforms of the aggregate fading terms. These are dependent on the LoS/NLoS status
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of the interfering base stations and denoted as LFL
and LFN

, respectively.

4) Special functionals HUB and HLB which correspond to finite order approximations of the interference

process which may be used to obtain closed form upper and lower bounds on the Laplace Transform

of a Shot Noise Process in terms of its Mellin Transform. This is stated formally in Theorem 2 in

Appendix E. Explicit expressions for these functionals are stated in (130) and (123) in Appendix E.

The bounds are expressed as follows.

Theorem 3: (Bounds on the CCDF of SINRgen) Let Nw ∈ N denote an arbitrary number of windows

employed in the bounds for interference Laplace Transform in Theorem 2. Additionally, let {dLi }Nw+1
i=0

denote arbitrary, ordered boundaries for the windows used to partition R+ for the LoS interference terms

and {dNi }Nw+1
i=0 denote arbitrary, ordered boundaries for the windows used to partition R+ for the NLoS

interference terms. Without loss of generality, take dL0 , d
N
0 = 0 and dLNw

, dNNw+1 = ∞. For conciseness, let

WL
i = [dLi−1, d

L
i ] and WN

i = [dNi−1, d
N
i ]. Finally, define ξ1 = 1 and ξ2 = ξB,Rx. The following bounds hold.

i) The CCDF of SINRgen is upper bounded as P(SINRgen ≥ τ) ≤ PUB
c, rad (τ ;LFL

,LFN
), where

PUB
c, rad(τ ;LFL

,LFN
) =

(
1− exp

(
−2πλB

β2

))∫
R+

fR0(u) exp

(
−τνrad

gL,ret(u)

)
2∏

k=1

exp

(
−

Nw+1∑
i=1

HUB

(
τξk

gL,ret(u)
,WL

i ; 1− LFL
,Mν0L,k◦g

−1
L
(·; ·, u)

))
2∏

k=1

exp

(
−

Nw∑
i=1

HUB

(
τξk

gL,ret(u)
,WN

i ; 1− LFN
,Mν0N,k◦g

−1
N
(·; ·, u)

))
du. (57)

ii) The CCDF of SINRgen is lower bounded as P(SINRgen ≥ τ) ≥ P LB
c, rad(τ ;LFL

,LFN
), where

P LB
c, rad(τ ;LFL

,LFN
) =

(
1− exp

(
−2πλB

β2

))∫
R+

fR0(u) exp

(
−τνrad

gL,ret(u)

)
2∏

k=1

exp

(
−

Nw+1∑
i=1

HLB

(
τξk

gL,ret(u)
,WL

i ; 1− LFL
,Mρ0L,k◦g

−1
L
(·; ·, u)

))
2∏

k=1

exp

(
−

Nw∑
i=1

HLB

(
τξk

gL,ret(u)
,WN

i ; 1− LFN
,Mρ0N,k◦g

−1
N
(·; ·, u)

)
+

τξk
gL,ret(u)

E[FN ]Mρ0N,k◦g
−1
N
(2;WN

Nw+1, u)

)
du. (58)

Proof: See Appendix I.

Both bounds require the evaluation of only a single integral. Moreover, while we have established

Theorem 3 in the specific setting of the SINRgen, it may be readily extended to other settings. Generally,
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when the path loss Mellin Transforms of the interference process may be obtained in closed form, Theorem

3 provides a robust framework for obtaining integral closed form upper and lower bounds for SINR models

with Rayleigh fading on the desired signal. Using an approach similar to [10], this framework may be

exploited for Nakagami fading as well.

In the statement of the theorem, we have left the partitions used in the bound for the interference

Laplace Transforms as arbitrary parameters. Choosing these terms correctly is important for obtaining

tight bounds. The problem of finding optimal partitions is generally difficult (it is akin to a generalization

of weighted k-means clustering to a continuum), hence we propose a heuristic method base on uniformly

sampling the reciprocal of the path loss functions.

Definition 3: (Uniform Path Gain Windowing) Let Nw ∈ N and choose a desired end point, dNw ∈ R+.

Further, for a ∈ {L,N} define fa(r) = 1/ga(r) and define dmin = g−1
a (1). Then the partitions in Theorem

3 may be constructed as follows

∆a =
f−1

a (dNw)− f−1
a (dmin)

Nw

(59)

dai =


fa (f

−1
a (dmin) + ∆ai) i ≤ Nw

∞ otherwise
(60)

W a
i = [dai−1, d

a
i ]. (61)

While suboptimal, this method attempts to capture the tradeoff between the relative strength of closer

interferers with the fact that the density of interferers (on R+) increases with distance. Indeed, as we

demonstrate in Section VII, this windowing method leads to sharp bounds on coverage and rate.

C. Bounds on Ergodic Sensing Efficiency Using the Generic Model

Finally, we note that the upper and lower bounds from Theorem 3, in tandem with Theorem 1, imply

the following bounds on the ergodic sensing efficiency.

Corollary 3: (Bounds on the Ergodic Sensing Efficiency) The ergodic sensing efficiency defined with

respect to the generic SINR model, SINRgen, is lower bounded as

TCPIE[CUB
rad ] ≥ E

[
1

2
log2 (1 +G SINRrad)

]
≥ G

2 ln(2)

∫
R+

P LB
c, rad (τ ;LFL

,LFN
) (1 +Gτ)−1 dτ. (62)
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Similarly, it is upper bounded as

TCPIE[CUB
rad ] ≤ E

[
log2

(
1 +

1

2
G SINRrad

)]
≤ G

2 ln(2)

∫
R+

PUB
c, rad (τ ;LFL

,LFN
)

(
1 +

G

2
τ

)−1

dτ. (63)

Proof: The terms inside the expectations follow from Theorem 1. Using that bounds from Theorem 3,

one may show that the expectations are lower bounded by the integral terms in a manner similar to [36,

Theorem 2]. □

V. SENSING COVERAGE PROBABILITY AND ERGODIC EFFICIENCY

In light of these results, to complete our characterization of the sensing coverage probability and ergodic

efficiency we must obtain the distance distribution of the serving BS, the pathloss Mellin Transforms of

the Palm Interference Process, and the Laplace Transforms of the aggregate fading terms: AM (Fk,θ),

GM (Fk,θ), and HM (Fk,θ). Using Theorem 3, the above objects immediately imply upper and lower

bounds on the CCDFs of each of the alternate models, which in turn lead to bounds and approximations on

the sensing coverage probability in light of Proposition 2. These are summarized in Theorem 5, to follow.

In tandem with Corollary 3, we further obtain ergodic sensing efficiency bounds and approximations.

A. Characterization of the Distribution of the Desired Signal and Conditional Interference PPP

We first derive the distribution of the serving BS location, X0 = (R0, ϕ0). Following this we characterize

the reduced Palm distribution of the point process of interferers, Φ!X0
B , which allows us to characterize

the point process of the distances of interfering BSs with respect to the serving BS conditioned on R0:

Π0
B =

{
∥Xk −X0∥2 : Xk ∈ Φ!X0

B

}
. (64)

In so doing, we further characterize the distribution of the receive antenna gain variables, {Zk
B}k∈Π0

B
, as

marks with respect to Π0
B. This characterization, in turn leads to bounds on the path loss Mellin Transforms

required for the application of Theorem 3.

The following lemma establishes the form of the distribution of (R0, ϕ0).

Lemma 1: (Distribution of the Location of the Serving Base Station) R0 and ϕ0 are independent

with ϕ0 ∼ Uniform([0, 2π)) and R0 distributed as

R0 ∼


fR0

(r)

1−exp(
−2πλB

β2
)

w.p. 1− exp(−2πλB
β2 )

∞ w.p. exp(−2πλB
β2 )

(65)
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where

fR0(r) = 2πλB exp

(
−2πλB

β2
(1− e−βr(βr + 1))

)
. (66)

Proof: This may be proved in a manner similar to that of [29, Theorem 10]. □

Note that R0 takes the value of ∞ when ΦL(R2) = 0. Since SINRgen is 0 when ΦL(R2) = 0, we shall

restrict our attention to the case where R0 <∞.

We now characterize Π0
B.

Lemma 2: (Characterization of the Palm Interference Process) Condition on X0 = (r0, ϕ0). Define

the function J(r; r0, z) as

J(r; r0, z) =

∫ 1

z

(1− u2)−1/2 exp

(
−β
√
r2 − 2rr0u+ r20

)
du. (67)

Then, for all ϕ0, Π0
B is a PPP on R+ with intensity function

λ0B(r; r0) = 2λBr

(
π − J

(
r; r0,

r

2r0

)
1{r ≤ 2r0}

)
. (68)

Moreover, the normalized receive antenna gain variables {Zk
B}k∈Π0

B
may be treated as independent marks

of Π0
B. {Zk

B}k∈Π0
B

take values in {ξB,Rx, 1}, and the probability that Zk
B = 1 is given by pB,Rx(Rk) where

pB,Rx(Rk) =

θB,Rx
2

− J
(
Rk; r0,max

{
cos
(
θB,Rx
2

)
, Rk

2r0

})
1{Rk ≤ 2r0)}

π − J
(
r;R0,

Rk

2r0

)
1{Rk ≤ 2r0}

(69)

Proof: See Appendix F.

Note that Π0
B represents the point process of the distances of interfering base stations with respect to

the serving base station located at a distance R0 from the origin. In contrast to typical stochastic geometry

based analyses of cellular networks, there is now a non-zero probability of interfering base stations being

closer to the radar receiver (which is the serving base station in this case) than the typical SO. This

"exclusion region" (that is the circle of radius R0 about the typical SO) is an important aspect of this

process which has a significant impact on the sensing coverage probability of the network.

Note also that we have discarded the marks for the LoS and NLoS base stations with respect to the

origin. This is due to the fact that the serving base station is also the receiver, and hence observes different

LoS/NLoS base stations. As a simplification, we have assumed that the LoS/NLoS status of interfering

base stations with respect to the serving base station are independent of the LoS and NLoS status of the
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base stations observed by the typical SO following A2 and A19.

Thus, under this assumption, we represent the interfering BSs as a marked point process

Π̃0
B = {(Zk

B,Mk, Rk) : Rk ∈ ΠB,Mk ∼ Bern(pLoS(Rk)), Z
k
B ∼ (1− ξB,Rx) Bern(pB,Rx(Rk)) + ξB,Rx IID}.

(70)

Equivalently, by the Independent Thinning Theorem the receive antenna gain and LoS marks partition this

process into four independent classes of points: those that inside/outside of the receive beam and further

those which are LoS/NLoS. These are denoted as Π0
L,1, Π0

N,1, Π0
L,2, and Π0

N,2, respectively.

In light of (68) and (69), the intensity measures for these processes are not available in closed form.

We consequently derived closed form upper and lower bounds for the intensity measures, which are

summarized in Lemma 8 in Appendix G. Armed with these bounds, we then obtain closed form upper

and lower bounds on the pathloss Mellin Transforms. These are stated in Lemma 9 in Appendix H.

B. Characterizing the Laplace Transform of the Interference Fading Terms

To complete our characterization of sensing coverage and rate, we characterize the Laplace Transforms

of the aggregate fading terms: AM(F,θ), GM(F,θ), and HM(F,θ). Due to the structure of the means

involved in their definitions, these are non-trivial. We provide bounds and approximations for these

quantities in the following series of lemmas.

Since the fading terms are dependent on the LoS/NLoS status of the BS in question, wherever necessary

we use a ∈ {L,N} as a proxy for subscripts denoting LoS/NLoS parameters. Specifically, we shall

denote the dependence of the LoS/NLoS fading parameters as LAM(F,θ)(s;Na), LGM(F,θ)(s;Na), and

LHM(F,θ)(s;Na)

We begin with the Laplace Transform of GM(F,θ). Notably, we make use of the follow relation between

Laplace and Mellin Transforms.

Proposition 3: (Relation between Mellin and Laplace Transforms of Nonnegative Random Vari-

ables) Let X be a non-negative random variable. Then

LX(s) = M−1{MX(1− p)Γ(p)}(s). (71)

Proof: See Appendix K.

Lemma 10: (Exact Form and Approximation for the Laplace Transform of GM(F,θ)) The following

hold.
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i) LGM(F,θ)(s;Na) may be expressed as

LGM(F,θ)(s;Na) =
T∑
r=0

pT−rB (1− pB)
r

(Tr)∑
j=1

LGM(H,q)

s∏
i∈T r

j

ξ
wti
B,Tx;Na

 , (72)

where T rj denotes the jth possible permutation of the indices of T time slots such that r of them

have Bt = ξB,Tx, and

LGM(H,q) (s;Na) =
1

Γ(Na)N
H1,Nc

Nc,1

 s

Na

∣∣∣∣∣ (1−Na, q1) . . . (1−Na, qNc)

(0, 1)

 (73)

with Hm,n
p,q (·|·) denoting Fox’s H function.

ii) GM(H,q) is closely approximated by a gamma random variable,

H ′ ∼ Gamma(α0(q, Na), β0(q, Na)), where α0(q, Na) and β0(q, Na) are such that the moments of

H ′ and matched to GM(H,q):

α0(q, Na)

β0(q, Na)
= N−1

a

N∏
n=1

Γ(qn +Na)

Γ(Na)
(74)

α0(q, Na)(α0(q, Na) + 1)

β0(q, Na)2
= N−2

a

N∏
n=1

Γ(2qn +Na)

Γ(Na)
. (75)

Thus,

LGM(F,θ)(s;Na) ≈
T∑
r=0

pT−rB (1− pB)
r

(Tr)∑
j=1

1 +
sξ

∑
i∈Tr

j
wti

B,Tx

β0(q, Na)

−α0(q,Na)

. (76)

Proof: See Appendix J.

Though exact, part i) is difficult to use as Fox’s H function is challenging to implement in a numerically

efficient manner. Hence we employ the gamma approximation in part ii). The gamma approximation

is justified in that, for large N , GM(H,q) is closely approximated by a log-normal random variable

(a consequence of the Central Limit Theorem). A Log-normal random variable is, in turn, is closely

approximated by a gamma random variable.

While (76) may be evaluated efficiently for small T , for large T its evaluation becomes cumbersome.

Hence, we derive upper and lower bounds in the following lemma.

Lemma 11: (Bounds on the Laplace Transform of GM(F,θ)) For s ∈ R+, the approximation of
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LGM(F,θ)(s;Na) in (76) is upper bounded by LUB
GM(F,θ)(s;Na), where

LUB
GM(F,θ)(s;Na) =

T∏
t=1

(
pB + (1− pB)

(
1 +

sξB,Tx

β0(q, Na)

)−α0(q,Na)wt
)
. (77)

It is lower bounded by LUB
GM(F,θ)(s;Na)

LLB
GM(F,θ)(s;Na) =

T∑
r=0

(
T

r

)
pT−rB (1− pB)

r

1 +
s
(
T
r

)−1∑(Tr)
j=1 ξ

∑
i∈Tr

j
wti

B,Tx

β0(q, Na)

−α0(q,Na)

. (78)

Proof: See Appendix J.

Finally, we now consider the Laplace Transforms of AM(F,θ) and HM(F,θ). Since these correspond

to lower and upper bounding models, we derive lower and upper bounds, respectively.

The Laplace Transform of AM(F,θ) may be lower bounded as follows.

Lemma 12: (Lower Bound on the Laplace Transform of AM(F,θ)) For s ∈ R+, the Laplace

Transform of AM(F,θ) is lower bounded by LLB
AM(F,θ)(s;Na), where

LLB
AM(F,θ)(s;Na) =

T∑
r=0

(
T

r

)
pT−rB (1− pB)

r

1 +
s
(
T
r

)−1∑(Tr)
j=1

(
(ξB,Tx − 1)

∑
i∈T r

j
wti + 1

)
NNa


−NNa

. (79)

Proof: See Appendix J.

The Laplace Transform of HM(F,θ) may be upper bounded as follows.

Lemma 13: (Lower Bound on the Laplace Transform of HM(F,θ)) For s ∈ R+, the Laplace

Transform of HM(F,θ) is upper bounded by LUB
HM(F,θ)(s;Na). Depending on Na this may be expressed

as follows.

i) If Na = 1,

LUB
HM(F,θ)(s;Na) = pTB

1 +
s(∑N

n=1 qn

)2


−1

+ (1− pTB )

1 +
ξB,Txs(∑N
n=1 qn

)2


−1

. (80)

ii) Otherwise, for Na > 1, define

m1 =

((
pB + (1− pB)ξ

−1
B,Tx

) Na

Na − 1

)−1

, (81)
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m2 =

 T∑
r=0

pT−rB (1− pB)
r

(Tr)∑
j=1

1−

∑
i∈T r

j

wti

+

∑
i∈T r

j

wti

 ξ−1
B,Tx

−2
N−2

a

N∏
n=1

Γ(2qn +Na)

Γ(Na)

(82)

Then,

LUB
HM(F,θ)(s;Na) =

m2 −m2
1

m2

+
m2

1

m2

exp

(
−sm2

m1

)
. (83)

Proof: See Appendix J.

In closing, recall that the lower bound in Theorem 3 requires the mean of the NLoS fading term. Hence,

we further require E [GM(F,θ)] and E [AM(F,θ)]. For GM(F,θ) this follows from part ii) of Lemma 10.

The mean of AM(F,θ) may be readily obtained as E [AM(F,θ)] = E [|Hn|2Bt] noting linearity of the

arithmetic mean.

C. Statements for Radar Coverage Probability

Having characterized the Laplace Transforms of the interference fading terms of the alternate SINR

models, we arrive at our main result: bounds and approximations for the sensing coverage probability.

Theorem 4: (Characterization of Sensing Coverage Probability) The following bounds and approx-

imations hold on the sensing coverage probability, Pc, rad(τ).

i) The sensing coverage probability is lower bounded using (58) and (79) as

Pc, rad(τ) ≥ P LB
c, rad

(
τ ;LLB

AM(F,θ)(s;NL),LLB
AM(F,θ)(s;NN)

)
. (84)

ii) The sensing coverage probability is upper bounded using (57) and (83)

Pc, rad(τ) ≤ PUB
c, rad

(
τ ;LUB

HM(F,θ)(s;NL),LUB
HM(F,θ)(s;NN)

)
. (85)

iii) The sensing coverage probability is approximately lower bounded using (58) and (72) as

Pc, rad(τ) ≈ P(SINRGM ≥ τ) ≥ P LB
c, rad

(
τ ;LGM(F,θ)(s;NL),LGM(F,θ)(s;NN)

)
. (86)

iv) The sensing coverage probability is approximately upper bounded using (57) and (72) as

Pc, rad(τ) ≈ P(SINRGM ≥ τ) ≤ PUB
c, rad

(
τ ;LGM(F,θ)(s;NL),LGM(F,θ)(s;NN)

)
. (87)
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Proof: This follows from the generic coverage probability expressions in Theorem 3 and the stochastic

orderings of the SINR models in Proposition 2. The fact that the bounds for the interference Laplace

Transform in Theorem 2 are increasing in the Laplace Transform of the fading terms concludes the proof,

leveraging Lemmas 10 through 13. □

With respect to iii) and iv), looser, but simpler, bounds may be obtained using LLB
GM(F,θ)(s;Na) and

LLB
GM(F,θ)(s;Na), in (77) and (78) respectively. Further, Theorem 4 may be used in tandem with Corollary

3 to obtain both approximate and exact upper and lower bounds on the ergodic sensing efficiency. Overall,

these results offer a highly expressive yet tractable means to analytically characterize the performance of

parameter estimation in JCAS networks. In addition to capturing the effects of non-isotropic interference,

blockages, and varying antenna gains, our model further accounts for the structure of the excitation

waveform over time and frequency.

Finally, we note that, although we have focused on bounds and approximations, the fact we obtain true

upper and lower bounds on Pc, rad(τ) allows us to immediately obtain analytical characterizations of the

tightness of the bounds and approximations. For instance the approximation error with respect to SINRrad

and SINRGM may be upper bounded as

|P(SINRrad ≥ τ)− P(SINRGM ≥ τ)| ≤

PUB
c, rad

(
τ ;LUB

HM(F,θ)(s;NL),LUB
HM(F,θ)(s;NN)

)
− P LB

c, rad

(
τ ;LLB

AM(F,θ)(s;NL),LLB
AM(F,θ)(s;NN)

)
.

(88)

VI. COMMUNICATION COVERAGE PROBABILITY AND ERGODIC EFFICIENCY

We now conclude the presentation of our analytical results by characterizing the communication cover-

age probability and ergodic communication efficiency. As there is little novel in these (aside from a usage

of Theorem 2 in Appendix E), we present the main results without proof.

Theorem 5: (Characterization of Communication Coverage Probability) The path loss Mellin

Transform of the LoS interference process may be expressed with respect to the GL function defined

in (203) in Appendix H,

Mλ0L◦g
−1
L
(p;A,R0) = 2πλBK

p−1
L GL (p− 1, A; [R0,∞), αL, γL, 1, β) , (89)

where λ0L(r;R0) = 2πλBre
−βr1{r ≥ R0}.
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Similarly, for the NLoS interference process, using the GN function defined in in (205) in Appendix H,

we have

Mλ0N◦g
−1
N
(p;A,R0) = 2πλBK

p−1
N GN (p− 1, A; [R0,∞), αN, γN, 1, 0, β) , (90)

where λ0N(r;R0) = 2πλBr(1− e−βr)1{r ≥ R0}.

The LoS equivalent distribution of the serving base station (see [36, Lemma 5]) may be expressed as

fR0(r) = 2πλBλ
∗
EQ(r)e

−2πλBΛ∗
EQ([0,r]), (91)

where

λ∗EQ(r) = re−βr +
ψ−1(r)(αr−1 + γL)

γNψ−1(r) + α
ψ−1(r)

(
1− e−βψ

−1(r)
)
, (92)

and

Λ∗
EQ([0, r]) = β−2

(
β2

2
[ψ−1(r)]2 + e−βψ

−1(r)
(
βψ−1(r) + 1

)
− e−βr(βr + 1)

)
. (93)

Finally, the Laplace Transform for the LoS/NLoS interference fading terms may be expressed as

LFa(s) = EB,ZU

[(
1 +

sBZU
Na

)−Na
]
. (94)

Then, letting Nw ∈ N and defining {WL
i }i∈[Nw+1] and {WN

i }i∈[Nw+1] as in Definition 3, the following

hold

i) The communication coverage probability is lower bounded as P(SINRcom ≥ τ) ≥ P LB
c, com (τ ;LFL

,LFN
)

where

P LB
c, com(τ ;LFL

,LFN
) =

∫
R+

fR0(u) exp

(
−τνrad

gL(u)

)
exp

(
−

Nw+1∑
i=1

HLB

(
τ

gL(u)
,WL

i ; 1− LFL
,Mλ0L◦g

−1
L
(·; ·, u)

))

exp

(
−

Nw∑
i=1

HLB

(
τ

gL(u)
,WN

i ; 1− LFN
,Mλ0N◦g

−1
N
(·; ·, u)

)
+

τ

gL(u)
E[FN ]Mλ0N◦g

−1
N
(2;WN

Nw+1, u)

)
du.

(95)

ii) The communication coverage probability is upper bounded as P(SINRcom ≥ τ) ≤ PUB
c, com (τ ;LFL

,LFN
)
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where

PUB
c, com(τ ;LFL

,LFN
) =

∫
R+

fR0(u) exp

(
−τνrad

gL(u)

)
exp

(
−

Nw+1∑
i=1

HUB

(
τ

gL(u)
,WL

i ; 1− LFL
,Mλ0L◦g

−1
L
(·; ·, u)

))

exp

(
−

Nw∑
i=1

HUB

(
τ

gL(u)
,WN

i ; 1− LFN
,Mλ0N◦g

−1
N
(·; ·, u)

))
du. (96)

In a similar manner to Corollary 3 we bound the ergodic communication efficiency as follows

Corollary 5: (Bounds on the Ergodic Communication Efficiency) The ergodic communication

efficiency may be bounded as follow.

TsE
[
C(m,n)

com

]
= E [log2(1 + SINRcom)] ≥

1

ln(2)

∫
R+

P LB
c, rad (x;LFL

,LFN
) (1 + τ)−1 dτ, (97)

and

TsE
[
C(m,n)

com

]
= E [log2(1 + SINRcom)] ≤

1

ln(2)

∫
R+

PUB
c, rad (x;LFL

,LFN
) (1 + τ)−1 dτ. (98)

VII. NUMERICAL ANALYSIS

Leveraging these analytical results, we now present numerical analysis of the JCAS network and discuss

the insights they provide from a system design perspective. Following, [5] we consider a sensing scenario

in which BSs in the network are primarily used for sensing vehicles in an urban environment.

Unless otherwise stated, the network parameters are set as follows. We consider the center frequency

to be fc = 75 GHz. Using the Friis transmission model the pathloss intercept for the LoS case is set

to KL =
(

c0
4πfc

)2
, and the NLoS intercept is set to be 15 dB lower. Based on [37], we set the LoS

path loss exponent to αL = 2 and the NLoS path loss exponent to αN = 3.2. Similarly, from [38] the

LoS absorption coefficient is set to γL = 5e−6 and the NLoS absorption coefficient to γN = 5e−3. The

beam widths are set to θB,Tx = 5 degrees at the BS transmitter, θB,Rx = 5 degrees at the BS receiver,

and θU,Rx = 30 degrees at the UE. The front to back ratios are ξB,Tx = −35 dB at the BS transmitter,

ξB,Rx = −20 dB at the BS receiver, and ξU,Rx = −15 dB at the UE. We set main lobe gain to a physically

realizable value given the beam width and front to back ratios following [39]. This results in antenna

gains of GB,Tx = 31 dB, GB,Rx = 19.8 dB, and GU,Rx = 13.2 dB. Thus, assuming a transmit power of

Pt = 15 dBm and noise power of Pn = −123.2 dBm, the normalized SNR for communication case is
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ν−1
com = 182.4 dB and ν−1

rad = 189.02 dB. Finally, we assume that the LoS interference fading terms are of

the order NL = 3, and the NLoS terms are NN = 2.

Regarding the parametrization of the waveform and the composition of Srad, we follow [5] and [40].

Using numerology 3 in the 5G NR specification, we set the subcarrier spacing to ∆f = 120 kHz and

the guard interval to Tg = 570 ns. Thus, the constants k1 and k2 from Theorem 1 are k1 = 8e−4 and

k2 = 8.903e−3. Moreover, Srad is composed in a manner following [5]. Under the objectives that our range

resolution is ∆r = 1 m, our velocity resolution is ∆v = 1.33 m/s, our maximum unambiguous range is

rmax = 300 m, and our max velocity is vmax = 200 km/h we use one in every ∆Ns = 3 symbols and one

in every ∆Nc = 14 subcarriers. In total, the excitation signal covers Ns = 264 symbols and uses the total

bandwidth, corresponding to Nc = 3168 subcarriers. We set the prior covariance for the range/velocity

estimates to the identity matrix.

Finally, we set the blockage density to β−1 = 140 (which corresponds to an urban environment) and

effective cell radius rc =
√
1/(πλB) = 100 m. The key network parameters are summarized in the

following table.

Parameter Value Parameter Value Parameter Value

fc 75 GHz GB,Rx 19.8 dB ∆r 1 m

KL −75.96 dB ξB,Rx −20 dB ∆v 1.33 m/s

KN −90.96 dB θB,Rx 5 deg. rmax 300 m

αL 2 GU,Rx 13.2 dB vmax 200 km/h

αN 3.2 ξU,Rx −15 dB Ns 264

γL 5e−6 θU,Rx 30 deg. Nc 3168

γN 5e−3 NL 3 ∆Ns 3

Pt 15 dBm NN 2 ∆Nc 14

Pn 123.2 dBm ∆f 120 kHz Q I

GB,Tx 31 dB Tg 570 ns β−1 140

ξB,Tx −35 dB k1 8e−4 rc 100 m

θB,Tx 5 deg. k2 8.903e−3 · ·
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Fig. 1. This figure depicts analytical upper and lower bounds and simulated CCDFs for various radar SINR models. These indicate that a)
the analytical bounds are tight in most cases, and b) the approximate radar SINR model, SINRGM, is a close fit to the true model, SINRrad.

A. Sensing and Communication Coverage Probability

Figs. 1 and 2 depict the sensing and communication coverage probabilities for the JCAS network detailed

above. For the sensing case both analytical bounds and simulated CCDFs are depicted for SINRAM,

SINRGM, SINRHM, and the radar SNR. For the sake of comparison, simulated curves are depicted for

SINRrad. For the communication case, analytical bounds and simulated curves are depicted for SINRcom.

The analytical bounds were obtained using Theorems 4 and 5, and the simulated curves were obtained

using Monte Carlo simulations of the JCAS network. An immediate takeaway is that the analytical upper

and lower bounds are generally tight in all cases.

Figs. 1 indicates that SINRGM is a good approximation of SINRrad. For the aforementioned parametriza-

tion of the network, their respective CCDFs are empirically quite close. The usage of SINRGM is further

motivated by the upper and lower bounding models SINRHM and SINRAM from Proposition 2. The upper

bounding model, SINRHM, lies above the CCDFs for SINRGM and SINRrad by a few dB. The closeness of



36

Fig. 2. This figure depicts analytical upper and lower bounds and simulated CCDFs for the communication SINR models. Like the radar
case, these indicate that the analytical bounds are tight.

SINRGM as an approximation for SINRrad is further underscored by the analytical upper bound. The lower

bounding model differs by 5 to 10 dB for low SINR thresholds, τ . It is expected to be somewhat looser,

as its derivation involve two applications of Jensen’s Inequality with respect to SINRrad in comparison to

only one for SINRHM.

These figures also demonstrate the utility of Theorem 2 in obtaining tractable bounds on the

distributions of SINR models, when their distributions may be expressed in terms of the Laplace

Transform of their interference process. In both figures, matching upper and lower bounds are shown

for SINRGM and SINRcom. These bounds are close – especially for the case of SINRcom – and differ by

only a few dB in the sensing case and less than a dB in the communication case.

From a system design perspective, these figures demonstrate that interference and blockages play a

greater role in the link quality of a typical sensing target than that of a typical communication

user. While the overall average SINR is lower in the sensing case due to the decreased path loss, this is

made up for in part by the distribution of the excitation signal over time and frequency (which increases
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Fig. 3. This figure depicts lower (a) and upper (b) bounds for the ergodic estimation efficiency of the JCAS network with respect to various
SINR models as well as bounds on the ergodic communication efficiency (c) in the high blockage regime with β−1 = 360.67.

the processing gain analog, G). Looking at relative features, then, we see a prominent downward shift in

the sensing SINR curves due to the probability that a typical SO may have no LoS BSs. Moreover, in

comparison to the communication case, we see that the gap between the SNR and SINR is slightly wider.

This is partially explained by the fact that the BS serving the typical SO is also the radar receiver due

to the considered mono-static configuration, which leaves open the possibility of interferers being closer

than the sensing target.

B. Ergodic Estimation and Communication Efficiency with Varying Network Density

In Figs. 3 and 4 we consider the impact of base station and blockage density on the ergodic sensing

and communication efficiency of the JCAS network. To this end, we sweep the average cell radius at

different levels of blockage density – as captured by β. We consider a low blockage regime β−1 = 360.67
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Fig. 4. This figure depicts lower (a) and upper (b) bounds for the ergodic estimation efficiency of the JCAS network with respect to various
SINR models as well as bounds on the ergodic communication efficiency (c) in the low blockage regime with β−1 = 72.13.

and a high blockage regime, β−1 = 72.13. These are set such that the median LoS probability occurs at

r = 50 and r = 250 meters, respectively. Note that we also adjust the maximum unambiguous range for

sensing to be 3rc to track with varying network density. This changes the structure of Srad.

The curves depicted in the figures were obtained using Corollaries 3 and 5. For the sake of discussion,

we have included new radar SINR model for the sensing case, SINRtyp. This model is simply the SINR of

the radar return at an arbitrary resource element, and is meant to highlight the impact of the distribution

of the excitation signal over time and frequency. Formally, it is defined as

SINRtyp = 1{ΦL(R2) > 0} κCSgL,ret(∥X0∥)∑
Xk∈Φ̃B\{X0}|Hk|2BZk

BL(∥Xk −X0∥) + νrad
. (99)

Note that bounds on its CCDF may be obtained using the bounds on SINRGM from Theorem 4 with Srad

having support over a single resource element.
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Fig. 5. This figure depicts how the sensing and communication ergodic efficiencies vary jointly with the network density and the LoS
pathloss exponent, αL, in the high blockage regime. Lower bounds for the ergodic efficiencies are depicted for sensing with respect to the
lower bounding model, SINRAM, (a) and communications (b). Similarly, upper bounds for the ergodic efficiencies are depicted for sensing
with respect to the upper bounding model, SINRHM, (c) and communications (d). A few representative level sets for these surfaces are shown
as block lines to improve clarity.

In each of the figures, the bounds for the radar case depict the ergodic efficiency with respect to the

approximate model, SINRGM, the typical resource element, SINRtyp, the SIR with respect to the approximate

model, SIRGM, and the SNR, SNRrad. The lower bounds additionally include the sensing efficiency with

respect to the lower bounding SINR model, SINRAM, and the upper bounds include the estimation efficiency

with respect to the upper bounding SINR model, SINRHM. The communication ergodic efficiency is

depicted with respect to the SINR SINRcom, SIR, SIRcom, and SNR, SNRcom. Upper and lower bounds are

obtained using the corresponding bounds in Theorems 4 and 5 along with Corollaries 3 and 5. While

the upper and lower bounds on ergodic sensing efficiency differ by around a factor of 2, they exhibit the

same trends in all cases.
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These figures reveal several insights into the performance trends of communication and sensing in

JCAS networks. Blockage density plays a significant role in the performance of both functions, though its

impact on sensing is more pronounced. Generally, increasing blockage density improves JCAS network

performance at high to moderate base station densities, and degrades performance at lower base station

densities. The improvement is due to the reduction in overall interference power, while the reduction is

due to the degradation of the desired signal power resulting from the scarcity of LoS base stations. This

effect is compounded on sensing, as it requires a LoS base station, while communication can leverage

strong NLoS base stations. Hence, the faster decreasing of ergodic sensing efficiency with increasing cell

radius at moderate and high blockage densities is due to increasing probability that the target is invisible

to the network (i.e. the probability that R0 = ∞).

More interesting trends are observed with respect to the variation of the performance of communication

and sensing with respect to base station density. These trends are similar at different blockage densities,

so we focus primarily on Fig. 4. At moderate to high base station densities, in the range of rc ≤ 75 m,

the sensing efficiency is relatively insensitive or increases to changes in base station density. While the

strength of the desired signal improves, as indicated by the sensing efficiency with respect to SNRrad,

these improvements are mostly offset by the increased interference power. Interestingly, this is not the

case for communication efficiency, which decreases with increasing base station density in this range – a

well known phenomena in the cellular networks [41].

To provide further insight into these trends, we investigate the variation of communication and sensing

ergodic efficiency with respect to both the LoS pathloss exponent, αL, and network density in Fig. 5.

Note that the upper and lower bounds for the sensing case are computed with respect to SINRHM and

SINRAM, respectively, as these models provide true upper and lower bounds. This figure confirms the trends

observed in Figs. 3 and 4: over the range of pathloss exponents considered, sensing ergodic efficiency

is non-decreasing with increasing network density, while communication efficiency is maximized

for some value of rc and then decreases thereafter. We hypothesize that the differences between the

densification trends for communication and sensing are principally driven by the additional factor of two

in the pathloss exponent and absorption factor for the two way radar path loss model. While the additional

distance induced by the reflection reduces overall radar pathloss, the derivative of the radar path loss is

steeper due to the additional factor of two in the path loss exponent and absorption factor. Viewing the

increase in base station density as decreasing the distances of all links, the marginal improvement on
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the desired signal, which is based on the radar path loss model, outstrips the marginal increase

in interference power, which is based on either the LoS or NLoS path loss models. Hence, we

observe the aforementioned insensitivity of ergodic sensing efficiency at moderate base station densities,

and the increase at high densities. Overall, these results highlight a tension between optimal regimes

of base station density for communication and sensing: the sensing function performs best at high

base station densities, while the communication performance is optimized at moderate base station

densities.

Finally, we comment on a few remaining features of interest. First, note that the sensing efficiency

with respect to SINRGM and SINRHM dominates the sensing efficiency with respect to SINRtyp. While the

this is not the case for the efficiency with respect to SINRAM, this is likely due to the model being more

pessimistic, as mentioned previously. This indicates that the distribution of the excitation signal over

time likely reduces the impact of worst case interference scenarios in which a BS in the main lobe of

the receive beam is also pointing its transmit beam in the direction of the serving BS. Additionally,

at low base station densities, the ergodic efficiency with respect to the SIRGM tracks more closely with

SNRrad than does the ergodic efficiency of SIRcom with respect to SNRcom. This indicates that, even at

low base station densities, interference remains a more prominent feature on the performance of the

sensing function than for communications.

VIII. CONCLUSION

We have presented a novel analytical framework for characterizing the coverage probability and ergodic

rate of JCAS in cellular networks. Using a characterization of parameter estimation based on mutual

information, we extended the notion of coverage probability to the radar setting, defining it as the

probability that the rate of information extracted about the parameters of interest associated with a typical

sensing target being tracked by the network exceeds some threshold. Similarly, we define ergodic sensing

rate as the expected value of this quantity. Focusing on the setting of doppler and delay estimation, we

established upper and lower bounds on the sensing rate in terms of an aggregate SINR induced by taking

a weighted average of per-resource element SINRs experienced by the radar receiver over the excitation

signal. Using this model, we developed a stochastic geometry framework with which to characterize the

sensing and communication coverage probabilities and ergodic capacities in a mmWave JCAS network

employing a shared multi-carrier waveform and directional beamforming. As a first step in our analysis, we

derived a generic method for obtaining closed form upper and lower bounds on the Laplace Transform of a
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shot noise process. We leveraged this result to establish bounds on the CCDFs of a series of bounding and

approximate sensing SINR models and the communication SINR model. We further established expressions

for the ergodic sensing and communication efficiencies as corollaries with respect to these bounds. Over

the course of our analysis, we developed some noteworthy, independent results: an analog to Hölder’s

inequality in the setting of harmonic, rather than geometric, means of functions in a measure space, and

a result linking the Laplace Transform of a non-negative random variable to its Mellin Transform via an

inverse Mellin Transform. Using our bounds for JCAS coverage and rate, we investigated performance

trends in a numerical case study. Among several insights, our numerical analysis indicates the possibility

that network densification improves sensing performance – in contrast to the communication function.

IX. FUTURE WORK

Our work is an initial foray into the analysis of JCAS networks, and could provide a foundation for an

array of interesting potential extensions. One such extension would be to generalize our notion of sensing

performance to account for both parameter estimation and detection. This would necessarily require a

richer metric as now one would want to quantify the utility of sensing measurements in enabling the

BSs to revise their beliefs about both the number of SOs and their associated parameters of interest.

An additional challenge also arises from need to address the impact of false detections. One approach

to tackle these issues would be to leverage formulations of multi-target tracking and detection based on

point processes – also called random finite sets in the related literature [42]. This allows for interesting

connections to be drawn with multi-user communication and thus for corresponding information theoretic

performance measures to be obtained [43]. Such an approach would fit nicely within our framework.

Another avenue of interest would be to consider the performance impacts inherent in moving from

monostatic to multistatic sensing. This would enable insights to be drawn regarding the important tradeoff

between “competition” – BSs acting as independent sensors – and “cooperation” – BSs acting in tandem

in some manner [7]. The consideration of multistatic sensing would further facilitate the analysis of more

advanced data fusion policies, where tracks are formed using measurements from multiple BSs. There

are variety of ways in which multistatic sensing may be implemented in a JCAS network, each with their

own impacts on our modeling framework. At a minimum, the incorporation of multistatic sensing would

require a more nuanced sensing channel model accounting for the difference among LoS and NLoS paths

in a spatially consistent manner and of course the geometry of cooperating BSs. With this model in hand,

one could then obtain the associated BCRB [44] and exploit our notion of sensing coverage and rate.
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Multistatic sensing may further be implemented either with or without full duplex transceivers. When full

duplex transceivers are not used, one must consider which BSs are to serve as receivers and which are

to serve as transmitters. This opens the door to complex tradeoffs between sensing and communication

coverage.

While we have focused on notions of JCAS performance amenable to a snapshot model of the network,

tradeoffs in the temporal domain are certainly an important area of interest. A complete treatment of these

issues is perhaps better served by framework based on queueing theory, [4]. However, due to the non-

orthogonal implementation of communication and sensing in JCAS networks, geometry plays an important

role in these issues, and thus stochastic geometry may be able to provide some insights. One such way

to go about this would be to augment the ergodic rate expression by a potentially random scheduling

gain factor – similar to [45] – to obtain a metric corresponding to average throughput. A key challenge

in this area would be to address the different time scales inherent in communication and sensing in a

rigorous manner. As we have shown, the performance of sensing corresponds to properties of the received

waveform over multiple communication time slots.

Finally, we conclude noting that the above list of extensions is by no means exhaustive: one could

further build upon our model by incorporating various interference mitigation techniques; by considering

different parameters of interest – such as angular resolution; by performing meta-distribution analysis for

communication and sensing; or by applying MMSE bounds other than the BCRB in our formulation of

sensing coverage and rate.
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APPENDIX A

SENSING SIGNAL MODEL AND BAYESIAN FISHER INFORMATION

A. Sensing Signal Model

The usage of multi-carrrier waveforms for radar (most commonly OFDM) has gained interest over

the past decade [5], [33], [46]. Such waveforms are an attractive option for JCAS networks in that they

provide excellent communication capability while providing sufficient flexibility for sensing purposes [47].

Moreover, the usage of a waveform allows for parameter estimation to be performed at the symbol level

in the frequency domain, rather than directly through the baseband waveform [46]. This allows for some

of the benefits of multi-carrier methods for communication, such as reduction of ISI, to carry over for

sensing. Motivated by [46], we consider sensing to take place in the frequency domain (that is, estimation

is performed using the output of an receiver) as this has the added benefit of facilitating the joint analysis

of sensing and communication.

A JCAS BS performing monostatic sensing of SOs and downlink communication to UEs may thus use

the avaialable resource elements of the waveform to conduct both functions. Often, this may be done in

tandem – for instance in the beamforming based framework we consider an SO and UE in the same beam

may be "served" simultaneously. However, depending on the spatial distribution of the UEs and SOs, the

queue states of the UEs, and level of certainty the network has about the parameters of interest of the

SOs, simultaneous operation may not always be possible. Hence, over some number of symbols, say Ns,

a subset of resource elements will be dedicated to a particular UE or SO. In light of these considerations,

for a mulitcarrier waveform with Nc sub-carriers we denote the resource elements used for sensing and

communications as Srad ∈ {0, 1}Ns×Nc and Scom ∈ {0, 1}Ns×Nc , respectively. In general, these objects

would arise from some underlying resource allocation processes – which is not the focus of our present

work. Rather, for the purposes of our analysis we treat these allocation matrices as fixed and focus instead

on the quantifying the utility of the resulting allocations for communication and sensing in terms of the

coverage and rate.

In particular, our sensing rate metric is expressed in terms of the Fisher Information Matrix (FIM) of the

underlying parameter estimation problem. We characterize this now in the setting wherein the waveform

is used to sense a single SO treating interference from the JCAS network as noise. Although interference

from the network would in theory be informative with respect to the SO’s parameters of interest due

to secondary reflections, the exploitation of these features would require knowledge of the environment
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geometry and relative orientation of the interfering BSs. Moreover, the additional information provided

by the exploitation of this phenomena is limited unless the signal structure is also known by the receiver

– and thus some degree of cooperation is required. This would further increase the complexity of the

theoretically optimal estimator. In light of these considerations, and noting similar observations by others,

we the focus on the more practical setting in which JCAS radar receivers do not exploit interference and

hence treat it as noise [48]. We note further, that this modeling assumption would only serve to reduce

the sensing mutual information.

The setting we consider is as follows.

1) The parameters of interest for the SOs are taken to be the doppler and delay, and hence Θ = (τ, fD).

The target is modeled as a point source and characterized by its relative range, r, and relative velocity

vrel. Letting c0 denotes the speed of light and fc denote the center frequency, these translate to inducing

a delay, ν = 2r/c0, and Doppler shift, fD = 2vrelfc/c0 to the transmitted waveform. We assume that

fc ≫ B, which implies that fD is constant over the sub-carriers.

2) The waveform consists of Nc subcarriers, and the maximum burst duration of the radar excitation

signal is Ns symbols. A subset, Srad ∈ {0, 1}Ns×Nc , of these resource elements are used for sensing.

3) The total length of each symbol is TMC = Ts + Tg where Ts denotes the symbol duration and Tg the

guard interval, yielding a sub-carrier spacing of ∆f = 1/Ts. It is assumed ν < Tg and fD ≪ ∆f ,

which simplifies the signal model and very commonly holds in practice [5], [33].

4) The waveform may be shared by the communication function. Hence, arbitrary message bearing

symbols are transmitted on the scheduled resource elements. Let the frequency domain symbols be

denoted as Xm,n for (m,n) ∈ Srad.

Under these assumptions, the frequency domain representation of the radar return for a single target

without clutter is given by the matrix F ∈ CNs×Nc with support over Srad (following [33] [46])

(F)m,n = e−j2π∆fτnej2πTMCfDm + Zm,n. Z ∼ CN (0, diag{|Xm,n|−2SINR−1
m,n}(m,n)∈Srad). (100)

The Fisher Information Matrix corresponding to this signal model may be expressed as [49]

J =
∑

(m,n)∈Srad

8π2|Xm,n|2SINRm,n

 ∆f 2
(

2
C0

)2
n2 −TMC

2fc
c0
∆f 2

C0
mn

−TMC
2fc
c0
∆f 2

C0
mn T 2

MC

(
2fc
c0

)2
m2

 , (101)

which does not depend one true the value of Θ, and hence we take J = J (Θ) from our earlier notation.
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The reader may note that our signal model does not explicitly account for either the presence of other

targets or exogenous reflections – which would jointly contribute to an additional clutter term in the signal

model. We note however, that these may be accounted for by scaling the so called "clean" FIM given

above by a scale factor between 0 and 1, [50]. Thus, although an important phenomena in practical sensing

problems, this would have no impact on our analytical results other than to attenuate the G factor stated

in (16) in Theorem 1.

APPENDIX B

COMMENTS ON THE BAYESIAN CRAMÉR RAO LOWER BOUND

Our formulation of the approximate lower bound for the sensing MI which we use to define our notion

of sensing rate in (14) relies on exchanging the MMSE covariance with the Bayesian FIM. Such an

exchange is only meaningful when the Bayesian Cramér Rao Lower Bound (BCRB) holds

R−1
MMSE ≤ E[J (Θ)] + E

[
∇θ log(p(Θ))∇θ log(p(Θ))T

]
.

Here we summarize the conditions necessary to establish this inequality and provide a proof of the

Bayesian Cramér Rao Bound based (BCRB) on the Hammersley-Chapman-Robbins (HCR) bound. The

conditions under which the bound holds are provide a different perspective on Van Tree’s original

formulation [51].

Proposition 4: Bayesian Cramér Rao Lower Bound. Let Θ and Y be random variables defined on

a common probability space with Θ taking values in Rn and Y taking values in an arbitrary space Y .

Denote their joint distribution as PY,Θ. Let the following sufficient conditions hold.

i) For some common denominating measure µ define

∂PY |Θ

∂µ
= f(y, θ). (102)

Let ∇θf(y, θ) exist PY,Θ-almost surely.

ii) Let PΘ admit a density with respect the Lebesgue measure over Rn, ℓn,

∂PΘ

∂ℓn
= p(θ). (103)

Moreover, let ∇θp(θ) exist PΘ-almost surely.
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iii) Let the support of PY,Θ be such that

dim(span({vvT : ∃δ > 0 s.t. S(0,δv)PY,Θ ≪ PY,Θ})) =
n(n+ 1)

2
. (104)

Where 0 is the zero element in Y .

iv) Finally assume that the following limit and expectation may be interchanged

lim
δ→0

EY,Θ

[(
f(Y,Θ+ δv)p(Θ + δv) + f(Y,Θ)p(Θ)

δf(Y,Θ)p(Θ)

)2
]
=

EY,Θ

[
lim
δ→0

(
f(Y,Θ+ δv)p(Θ + δv) + f(Y,Θ)p(Θ)

δf(Y,Θ)p(Θ)

)2
]
. (105)

As a consequence of the Dominated Convergence Theorem, a sufficient condition for this is if the

gradients are bounded by another random variable with finite L1-norm.

Now, let θ̂ : Y → Rn denote an arbitrary estimator that is unbiased in expectation. That is

EY,Θ[Θ− θ̂(Y )] = 0. (106)

Let the error covariance of θ̂ be denoted as R = E[(Θ − θ̂(Y ))(Θ − θ̂(Y ))T]. Then, the following

inequality holds

R−1 ≤ E[J (Θ)] + E
[
∇θ log(p(Θ))∇θ log(p(Θ))T

]
, (107)

where J (Θ) is the FIM

J (Θ) = EY
[
∇θ log(f(Y,Θ))∇θ log(f(Y,Θ))T

∣∣Θ] . (108)

Proof: The proof relies on the Hammersley-Chapman-Robbins (HCR) bound, which states that for any

measures P and Q on some measures space (Ω,F) and measurable function g : Ω → R

χ2(P ||Q) ≥ (EP [g]− EQ[g])2

EQ[(g − EQ[g])2]
,

where χ2(P ||Q) denotes the χ2-divergence.

Let v ∈ Rn such that ∃ δ > 0 such that SδvPY,Θ ≪ PY,Θ. Note that, for any measurable set, A, we

have

S(0,δv)PY,Θ(A) =
∫
Y×Rn

1{(y, θ) ∈ A+ δv}f(y, θ)p(θ)µ(dy)ℓn(dθ)
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=

∫
Y×Rn

1{(y, θ̃) ∈ A}f(y, θ̃ + δv)p(θ̃ + δv)µ(dy)ℓn(dθ̃).

Where the last equality follows from the change of variables θ̃ = θ− δv and stationarity of ℓn. Thus, we

have

∂S(0,δv)PY,Θ
∂PY,Θ

= f(y, θ̃ + δv)p(θ̃ + δv).

Thus, consider

χ2
(
S(0,δv)PY,Θ||PY,Θ

)
= EY,Θ

[(
f(Y,Θ+ δv)p(Θ + δv)

f(Y,Θ)p(Θ)
− 1

)2
]

= EY,Θ

[(
f(Y,Θ+ δv)p(Θ + δv)− f(Y,Θ)p(Θ)

f(Y,Θ)p(Θ)

)2
]
.

Thus

lim
δ→0

χ2
(
S(0,δv)PY,Θ||PY,Θ

)
δ2

= lim
δ→0

EY,Θ

[(
f(Y,Θ+ δv)p(Θ + δv)− f(Y,Θ)p(Θ)

δ · f(Y,Θ)p(Θ)

)2
]

= EY,Θ

[
lim
δ→0

(
f(Y,Θ+ δv)p(Θ + δv)− f(Y,Θ)p(Θ)

δ · f(Y,Θ)p(Θ)

)2
]

= EY,Θ
[
vT
(
∇θ log(f(Y,Θ)p(Θ)∇θ log(f(Y,Θ)p(Θ))T

)
v
]

= vT
(
EΘ[J (Θ)] + EΘ

[
∇θ log(p(Θ)∇θ log(p(Θ)T

])
v.

Now, let g(y, θ) = wT(θ − θ̂(y)) for some w ∈ Rn. The following relations hold.

E(Y,Θ)∼S(0,δv)PY,Θ
[g(Y,Θ)] = wT

(∫
Y×Rn

(θ − θ̂(y))f(y, θ + δv)p(θ + δv)µ(dy)ℓn(dθ)

)
= δwTv.

Similarly,

E(Y,Θ)∼PY,Θ
[g(Y,Θ)] = 0,

and

E(Y,Θ)∼PY,Θ
[g(Y,Θ)2] = wTRw.
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Therefore, applying the HCR bound we have

χ2
(
S(0,δv)PY,Θ||PY,Θ

)
≥ δ2 sup

w ̸=0

wT
(
vvT

)
w

wTRw

= δ2vTR−1v.

Thus

lim
δ→0

χ2
(
S(0,δv)PY,Θ||PY,Θ

)
δ2

≥ vTR−1v.

This implies that

vTR−1v ≤ vT
(
EΘ[J (Θ)] + EΘ

[
∇θ log(p(Θ)∇θ log(p(Θ)T

])
v.

Therefore, by assumption (iii), the proposition follows. □

The conditions for which the BCRB holds are simply generalizations of the conditions for which the

CRB holds to the Bayesian setting. For the signal model considered in the previous section, this is indeed

the case under reasonable assumptions on the heretofore unspecified prior.

First, note that as we apply the BCRB to the MMSE estimator unbiasedness trivially holds. Moreover,

since our received signal is conditionally Gaussian the differentiability and support conditions on f(y, θ)

are satisfied. Thus, to apply the BCRB to our reference prior must satisfy the differentiability condition

and the support condition:

dim(span({vvT : ∃δ > 0 s.t. S(δv)PΘ ≪ PΘ})) =
n(n+ 1)

2
. (109)

In the setting of doppler and delay estimation, which we consider, Θ may only take values in R+ × R.

Nonetheless, if p(θ) is such that it is non-zero over R+ × R, and differentiable with bounded gradients,

the above support, differentiability, and regularity conditions are satisfied. Hence, the BCRB is applicable.

APPENDIX C

PROOFS OF PROPOSITION 1 AND THEOREM 1

A. Proof of Proposition 1

Under the conditions listed in the statement of the proposition, I(Y ; Θ) may be expressed as

I(Y ; Θ) = h(Θ)− h(Θ|Y ).
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Using that fact that the Gaussian distribution maximizes differential entropy, subject to a covariance

constraint, we have

h(Θ|Y ) ≤ n

2
log(2πe) +

1

2
EY [log(|Cov(Θ|Y = y)|)]

≤ n

2
log(2πe) +

1

2
log(|EY [Cov(Θ|Y = y)]|)

=
n

2
log(2πe) +

1

2
log(|RMMSE|).

Where the second inequality follows from Jensen’s Inequality.

Moreover, note that by a simple change of variables we have

h(Θ) =
1

2
log(|Q|) + h(Q

−1
2 Θ).

Therefore, we have

I(Y ; Θ) ≥ 1

2
log
(∣∣∣Q 1

2R−1
MMSEQ

1
2

∣∣∣)− n

2
log(2πe) + h(Q

−1
2 Θ). □

B. Proof of Theorem 1

The following inequalities hold.

1 + Tr
(
Q

1
2JQ

1
2

)
≤
∣∣∣I+Q

1
2JQ

1
2

∣∣∣ ≤ 1

4
Tr
(
I+Q

1
2JQ

1
2

)2
.

The lower bound follows from the positive semi-definiteness of Q
1
2JQ

1
2 , and the upper bound follows

from the AM-GM inequality.

Recall that the FIM, J , for the measurement model stated in (100) is given as (101). The proof follows

noting that G · SINRrad = Tr
(
Q

1
2JQ

1
2

)
. □

APPENDIX D

PROOF OF PROPOSITION 2

This proposition inherently relies on the fact that SINRrad is a function of a certain type of empirical

mean of the interference over S̃rad (the harmonic mean specifically). One can then obtain upper and lower

bounds using inequalities for different types of means, and a Hölder-like in Inequality for obtaining lower

bounds on a mean of measures using the measure of the means.

Hence, before proving this proposition, we first summarize some key inequalities. Of note, we prove a

new Hölder-like inequality for measures of harmonic means.
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A. Summary of Intermediate Lemmas

To prove Proposition 2, we shall exploit the following extension of Hölder’s Inequality, which allows

one to bound the geometric mean of ensembles of measures of functions.

Lemma A: (Hölder’s Inequality for Geometric Means of Sets of Functions) Let p be a PMF on [n]

for some n ∈ N, and let (G,G, µ) be a measure space. Let {fk}k∈[n] be a sequence measurable functions

from G to C. Then ∥∥∥∥∥
n∏
k=1

fpkk

∥∥∥∥∥
1

≤
n∏
k=1

∥fk∥pk1 . (110)

Or, alternatively

∥∥GM({fk}k∈[n], p)
∥∥
1
≤ GM({∥fk∥1}k∈[n], p). (111)

Note that the above norms are taken with respect to µ.

We now generalize Hölder’s Inequality to the setting of Harmonic means.

Lemma B: (A Hölder-Like Inequality for Harmonic Means of Sets of Functions) Let p be a PMF

on [n] for some n ∈ N, and let (G,G, µ) be a measure space. Let {fk}k∈[n] be a sequence measurable

functions from G to R+. Then∥∥∥∥∥∥
(

n∑
k=1

pkf
−1
k

)−1
∥∥∥∥∥∥
1

≤

(
n∑
k=1

pk ∥fk∥−1
1

)−1

. (112)

Or, alternatively

∥∥HM({fk}k∈[n], p)
∥∥
1
≤ HM({∥fk∥1}k∈[n], p). (113)

Note that the above norms are taken with respect to µ.

Moreover, equality is obtained iff {fk}k∈[n] are linearly dependent.

Proof: See Appendix K.
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B. Proof of Proposition 2

Note that the SINR models differ only in the interference terms. Thus, it suffices to establish bounds

on the these terms only. For conciseness, let

It,n =
∑
Rk∈Π̃0

B

L(Rk)Z
k
BF

k
t,n + νrad,

and defeine I = {It,n}(t,n)∈S̃rad
. By the AM-GM-HM Inequality, we have that

HM(I+ νrad,θ) ≤ GM(I+ νrad,θ) ≤ AM(I+ νrad,θ). (114)

We now show that we may lower bound HM(I + νrad,θ) and GM(I + νrad,θ) using the Hölder-like

Inequalities in Lemmas A and B. GM(I+ νrad,θ) may be expressed as

GM(I+ νrad,θ) =
∏

(t,n)∈S̃rad

 ∑
Rk∈Π̃0

B

L(Rk)Z
k
BF

k
t,n + νrad

θt,n

. (115)

Note that the fading and beam alignment terms inside the sum may be interpreted as marks associated

with Rk ∈ Π̃0
B, which is itself a marked process. More precisely, we shall let

Π̃′
B = {(Rk,Fk, Z

k
B,Mk) : Rk ∈ Π0

B} (116)

denote the corresponding marked process. Since Π̃′
B is defined with respect to a Palm process which is

itself defined with respect to the stationary process ΦB, by [28, Prop-7.1.8] we may conclude the existence

of the random fields F(r), ZB(r), and M(r) over the index set R+ such that F(Rk) = Fk, Zb(Rk) = Zk
B,

and M(Rk) =Mk almost surely. Then, we may express (115) as

GM(I+ νrad,θ) =
∏

(t,n)∈S̃rad

(∫
R+

L(r,M(r))Ft,n(r)ZB(r)Π
0
B(dr) + νrad

)θt,n
. (117)

We argue Lemma A (Hölder’s Inequality) may be applied to (117). This requires us to absorb the νrad

term into the above measure, which we shall do as follows. First, pick some a ∈ R+. Since Π0
B is a simple

point process, we have that ΠB({a}) = 0 almost surely. Now, we may construct new random fields from

F(r) and ZB(r), F̃(r) and Z̃B(r) respectively. Let F̃(r) = F(r), and Z̃B(r) = ZB(r) for all r ∈ R+ \{a},

and F̃(a) = 0 and Z̃B(a) = 0. Then we may conclude that

GM(I+ νrad,θ)
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=
∏

(t,n)∈S̃rad

(∫
R+

L(r,M(r))Ft,n(r)ZB(r)Π
0
B(dr) + νrad

)θt,n
=

∏
(t,n)∈S̃rad

(∫
R+

(L(r,M(r))Ft,n(r)ZB(r) + 1{r = a}νrad) (Π
0
B + δa)(dr)

)θt,n
almost surely. Hence applying Lemma A (Hölder’s Inequality), we have that

GM(I+ νrad,θ)

≥
∫
R+

∏
(t,n)∈S̃rad

((L(r,M(r))Ft,n(r)ZB(r) + 1{r = a}νrad))
θt,n (Π0

B + δa)(dr)

=

∫
R+

∏
(t,n)∈S̃rad

(L(r,M(r))Ft,n(r)ZB(r))
θt,n Π0

B(dr) + νrad

=
∑
Rk∈Π̃0

B

L(Rk)GM(F,θ) + νrad.

Using a similar argument and applying Lemma B, we have that

HM(I+ νrad,θ) ≥
∑
Rk∈Π̃0

B

L(Rk)HM(F,θ) + νrad

Moreover, by linearity of the AM(·, ·) operator we have that

AM(I+ νrad,θ) =
∑
Rk∈Π̃0

B

L(Rk)AM(F,θ) + νrad

Therefore, we may conclude the following inequalities almost surely

∑
Rk∈Π̃0

B

L(Rk)HM(F,θ) + νrad ≤ HM(I+ νrad,θ) ≤
∑
Rk∈Π̃0

B

L(Rk)AM(F,θ) + νrad. (118)

Additionally, by the AM-GM-HM Inequality, we have almost surely

∑
Rk∈Π̃0

B

L(Rk)HM(F,θ) + νrad ≤
∑
Rk∈Π̃0

B

L(Rk)GM(F,θ) + νrad ≤
∑
Rk∈Π̃0

B

L(Rk)AM(F,θ) + νrad. (119)

These imply that

SINRAM ≤ SINRrad ≤ SINRHM P− a.s.
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and

SINRAM ≤ SINRGM ≤ SINRHM P− a.s.

which imply the proposition. □

APPENDIX E

PROOF OF THEOREM 2

A. Statement of Theorem 2 and Discussion

SINRgen and SINRcom belong to a common class of SINR models in that

i) the fading term on the desired signal is exponentially distributed,

ii) conditioned on the location of the serving base station, the interference is independent of the desired

signal and follows a Poisson shot noise process,

iii) and the interference fading terms are IID (per each class of LoS/NLoS points).

As a consequence of i) the distribution of an SINR model from this class may be characterized in terms

of the Laplace Transform of its interference process. By ii) and iii), the conditional interference Laplace

Transform admits an integral closed form expression in terms of Campbell’s Formula.

While a powerful framework, the usage of Campbell’s Formula often leads to results expressed in terms

of an incomputable integral. This is especially true in the case of SINRgen. In light of this, we develop a

general method for obtaining upper and lower bounds on the positive real branch of the Laplace Transform

of a shot noise process (i.e. Poisson interference process). We consider the following generic interference

process

I =
∑
Rk∈Φ

Fkg(Rk). (120)

Where Φ is an arbitrary PPP with intensity measure Λ, {Fk} are arbitrary fading terms, and g is an

arbitrary path loss function. Of particular interest is the Laplace Transform of I , which by Campbell’s

Formula may be expressed as

LI(s) = exp

(
−
∫
R+

(1− LF (s · g(r))) Λ(dr)
)
. (121)

We obtain upper and lower bounds on LI(s), for s ∈ R+, using the theorem to follow. The theorem

requires some notation, which we define first before its statement.
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Our general approach to obtaining upper and lower bounds on LI(s) for s ∈ R+ is to obtain lower and

upper bounds on the integral term in (121). We obtain these bounds by approximating the intensity measure

using lower and upper bounding atomic measures with a finite number of atoms. These approximate

measures are such that the moments of the path loss with respect to Λ are matched over arbitrary intervals.

To that end, we make use of the Mellin Transform of the path loss with respect to Λ, restricted to a set,

A ⊆ R+, which we denote as 1

M(Λ◦g−1)(p;A) =

∫
A

g(r)p−1Λ(dr). (122)

Our bounds utilize the following two functionals, which have the interpretation as finite support approx-

imations of Λ. The first, HLB(s, A; 1− LF ,M(Λ◦g−1)), we define as

HLB(s, A; 1− LF ,M(Λ◦g−1)) = M(Λ◦g−1)(1;A) (p (1− LF (sx1)) + (1− p) (1− LF (sx2))) , (123)

α =
M(Λ◦g−1)(1;A)M(Λ◦g−1)(4;A)−M(Λ◦g−1)(2;A)M(Λ◦g−1)(3;A)

M(Λ◦g−1)(1;A)M(Λ◦g−1)(3;A)−M(Λ◦g−1)(2;A)2
(124)

β =
M(Λ◦g−1)(3;A)

2 −M(Λ◦g−1)(2;A)M(Λ◦g−1)(4;A)

M(Λ◦g−1)(1;A)M(Λ◦g−1)(3;A)−M(Λ◦g−1)(2;A)2
(125)

γ =
√
α2 + 4β (126)

x1 =
α− γ

2
(127)

x2 =
α + γ

2
(128)

p =
M(Λ◦g−1)(1;A)(α + γ)− 2M(Λ◦g−1)(2;A)

2γM(Λ◦g−1)(1;A)
. (129)

Next, we define HUB(s, A; 1− LF ,M(Λ◦g−1)) as

HUB(s, A; 1− LF ,M(Λ◦g−1)) =

M(Λ◦g−1)(1;A) ((1− p′ − q′) (1− LF (sz1)) + p′ (1− LF (sz2)) + q′ (1− LF (sz3))) ,
(130)

z1 = inf
r∈A

g(r) (131)

z3 = sup
r∈A

g(r) (132)

1In many practical scenarios – such as our case – these may be obtained closed form.
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α =
M(Λ◦g−1)(2;A)

M(Λ◦g−1)(1;A)
− z1 (133)

β =
M(Λ◦g−1)(3;A)− 2z1M(Λ◦g−1)(2;A)

M(Λ◦g−1)(1;A)
− z21 (134)

γ =
M(Λ◦g−1)(4;A)− 3z1M(Λ◦g−1)(3;A)− 3z21M(Λ◦g−1)(2;A)

M(Λ◦g−1)(1;A)
− z31 (135)

q′ =
αγ − β2

α(z3 − z1)3 − 2β(z3 − z1)2 + γ(z3 − z1)
(136)

p′ =
(α− q′z3)

2

β − q′z23
(137)

z2 =
β − q′z23
α− q′z3

. (138)

Using these functionals, we now state the theorem.

Theorem 2: (Bounds on the Laplace Transform of a Poisson shot noise process) Let Φ be a PPP

on R+ with intensity measure Λ, {Fk}k∈Φ be a series of IID marks in R+ associated with Φ such that

their first moment is finite, and g : R+ → R+ be an arbitrary path loss function such that Λ(g) is finite.

Let I denote the shot noise process as given in (120), and LI(s) denote its Laplace Transform.

Moreover, let Nw ∈ N and {di}i∈[Nw] be a partitioning of R+. Without loss of generality assume

di ≤ di+1 and d0 = 0. Then, for s ∈ R+ the following hold

i) If Λ(R+) = ∞

LI(s) ≥ exp

(
−

Nw∑
i=1

HLB
(
s, [di−1, di]; 1− LF ,M(Λ◦g−1)

)
+ sE[F ]M(Λ◦g−1) (s; [dNw ,∞))

)
, (139)

and

LI(s) ≤ exp

(
−

Nw∑
i=1

HUB
(
s, [di−1, di]; 1− LF ,M(Λ◦g−1)

))
. (140)

ii) Otherwise, if Λ(R+) <∞,

LI(s) ≥ exp

(
−

Nw∑
i=1

HLB
(
s, [di−1, di]; 1− LF ,M(Λ◦g−1)

)
+HLB

(
s, [dNw ,∞); 1− LF ,M(Λ◦g−1)

))
,

(141)

and

LI(s) ≤ exp

(
−

Nw∑
i=1

HUB
(
s, [di−1, di]; 1− LF ,M(Λ◦g−1)

)
+HUB

(
s, [dNw ,∞); 1− LF ,M(Λ◦g−1)

))
.

(142)
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Proof: See Appendix E-C.

In these expressions, HLB
(
·, [d1, d2]; (·),M(Λ◦g−1)

)
and HUB

(
·, [d1, d2]; (·),M(Λ◦g−1)

)
may be inter-

preted as finite support approximations of Λ over the interval [d1, d2]. Hence the summation of these

functionals over the partitions represents a finite order approximation of Λ over R+. These functionals

arise as generalizations of results in [52], which enable us to conclude that they result in upper and lower

bounds for the complementary Laplace Transform, 1−LF , in the argument of of exponential function in

(121).

B. Intermediate Lemmas

The proof of Theorem 2 follows from the following lemmas, the first of which is from [52].

Lemma C: (Bounds on the Laplace Transform of a Finite Measure) Let ν be a measure over R+

such that ν(R+) <∞. Then for s ∈ R+, the following bounds hold∫
R+

e−sxν(dx) ≥ HLB
(
s,R+; e

−s,Mν

)
, (143)

and ∫
R+

e−sxν(dx) ≤ HUB
(
s,R+; e

−s,Mν

)
. (144)

Proof: See [52, Sec. 2.2.2].

In the case where ν(R+) = ∞ we require the following lemma

Lemma D: (Bounds for the Complementary Laplace Transform of a Locally Finite, Globally

Infinite Measure) Let ν be a locally finite measure over R+ such that ν(R+) = ∞ and Mν(2) < ∞.

Then, its Laplace Transform for s ∈ R+ may be bounded as∫
R+

(1− e−sx)ν(dx) ≤ sMν(2). (145)

Proof: Let d ∈ R+ and define ν(n) as the measure induced by the restriction of ν to the interval [0, nd]

for n ∈ N. Note that {ν(n)}n∈N converges monotonically to ν, and by the assumption that ν is locally

finite, we have ν(n)(R+) <∞. Now, by Jensen’s Inequality, we have∫
R+

(1− e−sx)ν(n)(dx) ≤ Mν(n)(1)

(
1− exp

(
−sMν(n)(2)

Mν(n)(1)

))
(a)
= Mν(n)(1)

(
∞∑
k=1

(−1)k+1(s)kMν(n)(2)k

Mν(n)(1)kk!

)
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=
∞∑
k=1

(−1)k+1(s)kMν(n)(2)k

Mν(n)(1)k−1k!
.

Where (a) follows from the Taylor Series of 1− e−x. Therefore, by the Monotone Convergence Theorem

we have ∫
R+

1− e−sxν(dx) ≤ lim
n→∞

∞∑
k=1

(−1)k+1(s)kMν(n)(2)k

Mν(n)(1)k−1k!

= sMν(2).

Where the expression for the limit follows from the assumption that Mν(2) < ∞ and Mν(1) = ν(R+).

□

C. Proof of Theorem 2

We first prove Part i). Consider∫
R+

(1− LF (s · g(r))) Λ(dr) =
Nw∑
i=1

∫ di

di−1

(1− LF (s · g(r))) Λ(dr) +
∫ ∞

dNw

(1− LF (s · g(r))) Λ(dr)

(a)
=

Nw∑
i=1

EF

[∫ di

di−1

(
1− e−sF ·g(r))Λ(dr) + ∫ ∞

dNw

(
1− e−sF ·g(r))Λ(dr)] .

(b)
=

Nw∑
i=1

EF

[∫
g([di−1,di])

(
1− e−sF ·x) (Λ ◦ g−1)(dx) +

∫
g([dNw ,∞))

(
1− e−sF ·x) (Λ ◦ g−1)(dx)

]
.

Where the (a) follows from Fubini’s Theorem, and (b) follows from a change of measure. Using that fact

that Λ is locally finite, we may apply Lemma C to obtain∫
g([di−1,di])

(
1− e−sF ·x) (Λ ◦ g−1)(dx) ≤ HLB

(
s, [di−1, di]; 1− e−sF ,MΛ◦g−1

)
,

and ∫
g([di−1,di])

(
1− e−sF ·x) (Λ ◦ g−1)(dx) ≥ HUB

(
s, [di−1, di]; 1− e−sF ,MΛ◦g−1

)
.

Moreover, by Lemma D and non-negativity of 1− e−sg(r) we have

0 ≤
∫
g([dNw ,∞))

(
1− e−sF ·x) (Λ ◦ g−1)(dx) ≤ sFMΛ◦g−1(2, [dNw ,∞)).
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Hence, using the fact the HLB and HUB are linear in LF we may conclude that∫
R+

(1− LF (s · g(r))) Λ(dr) ≤
Nw∑
i=1

HLB (s, [di−1, di]; 1− LF (s),MΛ◦g−1) + sE[F ]MΛ◦g−1(2, [dNw ,∞)),

and ∫
R+

(1− LF (s · g(r))) Λ(dr) ≥
Nw∑
i=1

HUB (s, [di−1, di]; 1− LF (s),MΛ◦g−1) .

Therefore, part i) follows by using these bounds in the expression for LI(s) in (121).

Part ii) may be proved in a similar manner. However, in this case we may use Lemma A to obtain

upper and lower bounds for the [dNw ,∞) section by the assumption that Λ(R+) <∞. □

APPENDIX F

PROOF OF THE EXACT EXPRESSION FOR THE PALM INTERFERENCE PROCESS

A. Proof of Lemma 2

First recall that ΦB may be expressed as the superposition of the two independent processes ΦL and

ΦN. Since X0 ∈ ΦL, by assumption, we shall restrict our focus to this process for now. By Slivnyak’s

Theorem, for any x ∈ R2, we have that Φ!x
L

d
= ΦL. Moreover, by definition of X0, we have that

P(Φ!X0
L ∈ ·) = P(Φ!x

L ∈ ·|X0 = x,Φ!x
L (B(0, ∥x∥2)) = 0). (146)

Hence, we have that Φ!X0
L is a PPP with intensity function

λL(x) = λBe
−β∥x∥21{x ̸∈ B(0, R0)}. (147)

Therefore, by the superposition theorem and independence of ΦL and ΦN, Φ!X0
B is a PPP with intensity

function

λB(x;X0) = λB
(
1− e−β∥x∥21{x ∈ B(0, R0)}

)
. (148)

Where B(x, r) denotes set of points in R2 within the circle of radius r centered at x.

Now, consider

Ψ0
B =

{
∥Xk −X0∥2 ,∠{Xk −X0} : Xk ∈ Φ!X0

B

}
=
{
∥Yk∥2 ,∠{Yk} : Yk ∈ SX0Φ

!X0
B

}
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Where Sx is the shift by x operator. By the Mapping Theorem, Ψ0
B is a PPP with intensity measure (for

some A ∈ B(R+ × [0, 2π)), with B denoting Borel σ-algebra.)

E[Ψ0
B(A)] =

∫
R2

1{(∥x∥2 ,∠x ∈ A}λB(x+X0;R0)dx

= λB

∫
R2

1{∥x∥2 ,∠x ∈ A}dx− λB

∫
R2

1{∥x∥2 ,∠x ∈ A}1{x ∈ B(−X0, R0)}e−β∥x+X0∥2dx.

Now, we have that

λB

∫
R2

1{∥x∥2∠x ∈ A}dx =

∫
A
λBrdrdθ,

and

λB

∫
R2

1{∥x∥2 ,∠x ∈ A}1{x ∈ B(−X0, R0)}e−β∥x+X0∥2dx.

(a)
= λB

∫
A
1{(r, θ) ∈ B((R0, θ0 + π), R0)}e−β

√
r2−2rR0cos(θ−θ0−π)+R2

0rdrdθ

(b)
= λB

∫
S(0,−θ0−π)A

1{(r, θ′) ∈ B((R0, 0), R0)}e−β
√
r2−2rR0cos(θ′)+R2

0rdrdθ′

(c)
= λB

∫
S(0,−θ0−π)A

1{r ≤ 2R0}1
{
θ′ ∈

[
± arccos

(
r

2R0

)]}
e−β

√
r2−2rR0cos(θ′)+R2

0rdθ′dr

Where (a) follows from changing from cartesian to polar coordinates, (b) follows from the change of

variables θ′ = θ − θ0 − π, and (c) follows from the fact that

1{(r, θ′) ∈ B((R0, 0), R0)} ⇐⇒ 1{r ≤ 2R0}1
{
θ′ ∈

[
± arccos

(
r

2R0

)]}
. (149)

Putting these together, we have that Ψ0
B admits the intensity function

λ̃B
0
(r, θ + θ0 + π;R0) =

λBr

(
1− 1{r ≤ 2R0}1

{
θ ∈

[
± arccos

(
r

2R0

)]}
e−β

√
r2−2rR0cos(θ)+R2

0

)
.

(150)

Moreover, by applying the Mapping Theorem again to Π0
B = {RK : (Rk, θk) ∈ Ψ0

B}, we have that Π0
B is

a PPP with the intensity function specified int the theorm

Now, we may use Ψ0
B to characterize Zk

B. For (Rk, θk) ∈ Ψ0
B, we shall assume that

Zk
B = 1 ⇐⇒ θk ∈ [θ0 + π ± θB,Rx

2
]. (151)

Note that this does not account for NLoS reflections being in the receive beam. Such a characterization



61

requires one to account for the geometry induced by the set process of blockages Ψblock, and is highly

nontrivial (characterizing this is akin to modeling ray tracing). Hence, we maintain this simplifying as-

sumption in keeping with assumptions used (usually implicitly) in prior mmWave/THz stochastic geometry

work.

Consider the thinned version of Π0
B, Π0

B,1 = {RK : (Rk, θk) ∈ Ψ0
B, θk ∈ [θ0 + π ± θB,Rx

2
]}. Applying the

Mapping Theorem again with the further restriction on θk yields that Π0
B,1 is a PPP with intensity function

λ0B,1(r;R0) = 2πλBr

(
θB,Rx

2π
− 1

π
J

(
Rk;R0,max

{
cos

(
θB,Rx

2

)
,
Rk

2R0

})
1{Rk ≤ 2R0)}

)
.

Then using method similar to that of [53, Corollary 2], one may interpret {Zk
B}k∈Π0

B
as independent marks

of Π0
B such that pB,Rx(Rk) = λB,1(Rk;R0)/λB(Rk;R0). □

APPENDIX G

CHARACTERIZATION OF BOUNDS FOR THE INTENSITY MEASURE OF THE PALM INTERFERENCE

PROCESS

Intermediate Result: (Characterization of Π0
B Intensity measures) Using Lemma 2, λB,1(r;R0) and

λB,2(r;R0) may be expressed as

λ0B,1(r;R0) =


2πλBr

(
θB,Rx
2π

− 1
π
J
(
r;R0, cos

(
θB,Rx
2

)))
r ∈

[
0, 2R0 cos

(
θB,Rx
2

))
2πλBr

(
θB,Rx
2π

− 1
π
J
(
r;R0,

r
2R0

))
r ∈

[
2R0 cos

(
θB,Rx
2

)
, 2R0

)
2πλBr

θB,Rx
2π

r ∈ [2R0,∞)

(152)

λ0B,2(r;R0) =


2πλBr

(
1− θB,Rx

2π
− 1

π
J
(
r;R0,

r
2R0

, cos
(
θB,Rx
2

)))
r ∈

[
0, 2R0 cos

(
θB,Rx
2

))
2πλBr

(
1− θB,Rx

2π

)
r ∈ [2R0 cos

(
θB,Rx
2

)
,∞).

(153)

Where we have used the notation J(r;R0, z1, z2) = J(r;R0, z1)− J(r;R0, z2).

Hence, to characterize bounds for these expressions, we require upper and lower bounds on J(r;R0, z).

A. Summary of Intermediate Lemmas

We first establish the following lemmas, which we shall use to obtain the desired upper bounds on the

above intensity functions.
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Lemma 3: (Bounds on J(r;R0, z)) J(r;R0, z) admits the following lower bounds:

arccos (z) e−βR0 ≤ arccos (z) exp

(
−β
√
r2 +R2

0 − 2rR0sinc(arccos(z)/π)
)

≤ J(r;R0, z). (154)

Additionally it may be upper bounded as

J(r;R0, z) ≤ arccos (z) e−β|r−R0|. (155)

Proof: For conciseness, let θmax = arccos (z). Then

J(r;R0, z) =

∫ 1

z

(1− u2)−1/2 exp

(
−β
√
r2 − 2rR0u+R2

0

)
du

= θmax

∫ 1

z

θ−1
max(1− u2)−1/2 exp

(
−β
√
r2 − 2rR0u+R2

0

)
du.

Let f(u) = θ−1
max(1−u2)−1. Note the f(u) integrates to 1 over the specified bounds of integration. Hence,

we may interpret it as a probability measure. Then, letting U ∼ f(u) we have

J(r;R0, z) = θmaxEU
[
exp

(
−β
√
r2 − 2rR0u+R2

0

)]
(a)
≥ θmax exp

(
−β
√

EU [r2 − 2rR0u+R2
0]

)
= arccos (z) exp

(
−β

√
r2 +R2

0 −
2rR0 sin(arccos(z))

arccos (z)

)
(b)
≥ arccos (z) e−βR0 .

Where (a) follows from Jensen’s Inequality and the fact that e−
√
x is convex, and (b) follows from

maximizing the expression within the square root over r.

Finally, the upper bounds may be obtained as follows:

J(r;R0, z) =

∫ 1

z

(1− u2)−1/2 exp

(
−β
√
r2 − 2rR0u+R2

0

)
du

≤
∫ 1

z

(1− u2)−1/2 exp

(
−β
√
r2 − 2rR0 +R2

0

)
du.

= arccos (z) e−β|r−R0|.

□
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Lemma 4: (Finite Order Polynomial Bounds for arccos(z)): Let Ma ∈ N and define

p(z,Ma) =
Ma∑
k=0

z2k+1Γ(k + 1/2)

Γ(1/2)k!(1 + 2k)
+ z2Ma+3

√
2

Γ(1/2)

(π
2
− arctan(

√
2Ma + 3)

)
. (156)

Then for z ∈ [0, 1],

π

2
− p(z;Ma) ≤ arccos(z) ≤ π

2
− p(z;Ma) + z2Ma+3

√
2

Γ(1/2)

(π
2
− arctan(

√
2Ma + 3)

)
. (157)

Proof: Note that arccos(z) = π/2 − arcsin(z). Hence, we shall proceed by bounding arcsin(z). The

taylor expansion of arcsin(z) is

arcsin(z) =
∞∑
k=0

z2k+1Γ(k + 1/2)

Γ(1/2)k!(1 + 2k)

=
Ma∑
k=0

z2k+1Γ(k + 1/2)

Γ(1/2)k!(1 + 2k)
+

∞∑
k=Ma+1

z2k+1Γ(k + 1/2)

Γ(1/2)k!(1 + 2k)

(a)
≤

Ma∑
k=0

z2k+1Γ(k + 1/2)

Γ(1/2)k!(1 + 2k)
+

∞∑
k=Ma+1

z2k+1k−1/2

Γ(1/2)(1 + 2k)

(b)
≤

Ma∑
k=0

z2k+1Γ(k + 1/2)

Γ(1/2)k!(1 + 2k)
+
z2Ma+3

Γ(1/2)

∞∑
k=Ma+1

k−1/2

1 + 2k

≤
Ma∑
k=0

z2k+1Γ(k + 1/2)

Γ(1/2)k!(1 + 2k)
+
z2Ma+3

Γ(1/2)

∫ ∞

Ma+1

(x− 1)−1/2

1 + 2(x− 1)
dx

=
Ma∑
k=0

z2k+1Γ(k + 1/2)

Γ(1/2)k!(1 + 2k)
+
z2Ma+3

√
2

Γ(1/2)

(π
2
− arctan(

√
2Ma + 3)

)
.

Where (a) follows from the inequality Γ(k + 1/2)/k! ≤ k−1/2, (b) follows from the fact that z ∈

dom(arcsin) = [0, 1]. By a similar argument, we have

arcsin(z) =
∞∑
k=0

z2k+1Γ(k + 1/2)

Γ(1/2)k!(1 + 2k)

≥
Ma∑
k=0

z2k+1Γ(k + 1/2)

Γ(1/2)k!(1 + 2k)
.

□

Lemma 5: (Concavity of sinc(arccos(z)/π)): The function sinc(arccos(z)/π) is concave for z ∈ [0, 1]

Proof: Follows from second order concavity conditions. □
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B. Bounds on J(r;R0, z)

To obtain bounds on the aforementioned intensity measures, we require

a) A lower bound for J
(
r;R0,

r
2R0

)
for r ∈ [0, 2R0 cos(θB,Rx/2)]

b) A lower bound for J
(
r;R0,

r
2R0

)
for r ∈ (2R0 cos(θB,Rx/2), 2R0]

c) A lower bound for J
(
r;R0, cos

(
θB,Rx
2

))
for r ∈ [0, 2R0 cos(θB,Rx/2)]

d) An upper bound for J
(
r;R0, cos

(
θB,Rx
2

))
for r ∈ [0, 2R0 cos(θB,Rx/2)].

Note that we already have a sufficient bound for case d) from Lemma 3. It remains to characterize the

lower bounds in cases a) through c). Each of these rely on piecewise linear bounds for the argument of

the exponential function in the Jensen bound derived in Lemma 3. For conciseness, we shall exploit the

function h defined as follows:

h
(
x; {mi, ci}ki=1, {ri}k=1

i=1

)
=

k∑
i=1

(ci +mix)1{r ∈ [ri−1, ri)} r0 = −∞, rk = ∞. (158)

We begin with the bounds for J
(
r;R0,

r
2R0

)
.

Lemma 6: (Refined Lower bounds for J
(
r;R0,

r
2R0

)
): The following lower bound for J

(
r;R0,

r
2R0

)
holds for r ∈ [0, 2R0 cos(θB,Rx/2)]: (For conciseness, let rM = 2R0 cos(θB,Rx/2))

• Define

cℓs = sinc(1/2) (159)

mℓ
s =

sinc
(
θB,Rx
2π

)
− sinc(1/2)

cos
(
θB,Rx
2

) (160)

rℓ1 =
cℓs

1−mℓ
s

R0 (161)

• Let

f2(r;R0; cs,ms) =
√

(1−ms)r2 +R2
0 − 2R0csr (162)

• If rℓ1 ≤ rM ⇐⇒ cos
(
θB,Rx
2

)
− sinc

(
θB,Rx
2π

)
+ 1

π
≥ 0, let

kℓ(θB,Rx) = 2 (163)

mℓ
1 =

f2(r
ℓ
1;R0; c

ℓ
s,m

ℓ
s)−R0

rℓ1
(164)

cℓ1 = R0 (165)



65

mℓ
2 =

f2(rM ;R0; c
ℓ
s,m

ℓ
s)− f2(r

ℓ
1;R0; c

ℓ
s,m

ℓ
s)

rM − rℓ1
(166)

cℓ2 = f2(r
ℓ
1;R0; c

ℓ
s,m

ℓ
s)−mℓ

2r
ℓ
1 (167)

• Otherwise, let

kl(θB,Rx) = 1 (168)

mℓ
1 =

f2(rM ;R0; c
ℓ
s,m

ℓ
s)−R0

rM
(169)

cℓ1 = R0 (170)

Then for any Na ∈ N,

J

(
r;R0,

r

2R0

)
≥
(
π

2
− p

(
r

2R0

;Na

))
exp

(
−βh

(
r; {mℓ

i , c
ℓ
i}i∈[kl(θB,Rx)], {rℓ1}i∈[kl(θB,Rx)−1]

))
. (171)

Similarly, for r ∈ (rM , 2R0] the following lower bound holds

• Define

mu
s =

1− sinc
(
θB,Rx
2π

)
1− cos

(
θB,Rx
2

) (172)

cus = sinc
(
θB,Rx

2π

)
−mu

s

rM
2R0

(173)

(174)

ru1 =
cus

1−mu
s

R0 (175)

• If ru1 ≤ rM ⇐⇒ θB,Rx
2

≥ π
3
, let

ku(θB,Rx) = 1 (176)

mu
1 =

f2(2R0;R0; c
u
s ,m

u
s )− f2(rM ;R0; c

u
s ,m

u
s )

2R0 − rM
(177)

cu1 = f2(rM ;R0; c
u
s ,m

u
s )−mu

1rM (178)

• Otherwise, let

ku(θB,Rx) = 2 (179)

mu
1 =

f2(r
u
1 ;R0; c

u
s ,m

u
s )− f2(rM ;R0; c

u
s ,m

u
s )

ru1 − rM
(180)
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cu1 = f2(rM ;R0; c
u
s ,m

u
s )−mu

1rM (181)

mu
2 =

f2(2R0;R0; c
u
s ,m

u
s )− f2(r

u
1 ;R0; c

u
s ,m

u
s )

2R0 − ru1
(182)

cu2 = f2(r
u
1 ;R0; c

u
s ,m

u
s )−mu

2r
u
1 (183)

Then for any Ma ∈ N,

J

(
r;R0,

r

2R0

)
≥
(
π

2
− p

(
r

2R0

;Ma

))
exp

(
−βh

(
r; {mu

i , c
u
i }i∈[ku(θB,Rx)], {ru1}i∈[ku(θB,Rx)−1]

))
. (184)

Proof: Using the Jensen Bound from Lemma 3 and concavity of the sinc term (Lemma 5), one may

conclude that f2 is a lower bound for the argument of the exponential term in the Jensen bound from

Lemma 3. Moreover, rℓ1 and ru1 are inflection points of f2. The different cases are simply when rℓ1 and

ru2 are included in the range of interest. Note the f2 is convex and apply Jensen’s Inequality again to get

the linearization parameters. Proposition 3 then follows, using Lemma 4 to handle the arccos term. □

Similar bounds may be obtained for J
(
r;R0, cos

(
θB,Rx
2

))
.

Lemma 7: (Refined Lower bounds for J
(
r;R0, cos

(
θB,Rx
2

))
): The following lower bound for

J
(
r;R0, cos

(
θB,Rx
2

))
holds for r ∈ [0, 2R0 cos(θB,Rx/2)]: (For conciseness, let rM = 2R0 cos(θB,Rx/2))

• Let

f1(r;R0; θB,Rx) =

√
r2 +R2

0 − 2R0sinc
(
θB,Rx

2π

)
r (185)

r1 = R0sinc
(
θB,Rx

2π

)
(186)

• If r1 ≤ rM ⇐⇒ sinc
(
θB,Rx
2π

)
≤ 2 cos

(
θB,Rx
2

)
, let

k(θB,Rx) = 2 (187)

m1 =
f1(r1;R0; θB,Rx)−R0

r1
(188)

c1 = R0 (189)

m2 =
f1(rM ;R0; θB,Rx)− f1(r1;R0; θB,Rx)

rM − r1
(190)

c2 = f1(r1;R0; θB,Rx)−m2r1 (191)
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• Otherwise, let

k(θB,Rx) = 1 (192)

m1 =
f1(rM ;R0; θB,Rx)−R0

rM
(193)

c1 = R0 (194)

Then,

J

(
r;R0, cos

(
θB,Rx

2

))
≥ θB,Rx

2
exp

(
−βh

(
r; {mi, ci}i∈[k(θB,Rx)], {r1}i∈[k(θB,Rx)−1]

))
. (195)

Proof: Note that f1 is the argument of the exponential function in the Jensen bound from Lemma 3. One

may determine that r1 is the inflection point of f1. The different cases are simply when r1 is included in

the range of interest. Noting that f1 is convex, the linearization parameters follow from Jensen’s Inequality.

□

C. Proof of Lemma 8

Lemma 8: (Bounds on the Intensity Measures of the Palm Interference Process) Let k(θB,Rx),

kℓ(θB,Rx), ku(θB,Rx), {(ri, ci,mi)}i∈[k(θB,Rx)], {(rℓi , cℓi ,mℓ
i)}i∈[kℓ(θB,Rx)], {(rui , cui ,mu

i )}i∈[ku(θB,Rx)], and {γk}k∈[Ma+1]

(where Ma ∈ N) be as defined in Appendix G. Then

i) The following upper bounds hold: λ0B,1(r;R0) ≤ ρ0B,1(r;R0) and λ0B,2(r;R0) ≤ ρ0B,2(r;R0), where

ρ0B,1(r;R0) = 2λBr

(
θB,Rx

2
− θB,Rx

2

k(θB,Rx)∑
i=1

1

{
r ∈

[
ri−1,min

{
ri, 2R0 cos

(
θB,Rx

2

)}]}
e−β(ci+mir)

−
ku(θB,Rx)∑
i=1

π

2
1

{
r ∈

[
max

{
rui−1, 2R0 cos

(
θB,Rx

2

)}
,min {rui , 2R0}

]}
e−β(c

u
i +m

u
i r)

+
Ma+1∑
k=0

γk
(2R0)2k+1

1

{
r ∈

[
max

{
rui−1, 2R0 cos

(
θB,Rx

2

)}
,min {rui , 2R0}

]}
r2k+1e−β(c

u
i +m

u
i r)

)
,

(196)

and

ρ0B,2(r;R0) = 2λBr

(
2π − θB,Rx

2
−

kℓ(θB,Rx)∑
i=1

π

2
1

{
r ∈

[
rℓi−1,min

{
rℓi , 2R0 cos

(
θB,Rx

2

)}]}
e−β(c

ℓ
i+m

ℓ
ir)

+
Ma+1∑
k=0

γk
(2R0)2k+1

1

{
r ∈

[
rℓi−1,min

{
rℓi , 2R0 cos

(
θB,Rx

2

)}]}
r2k+1e−β(c

ℓ
i+m

ℓ
ir)
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+ 1

{
r ∈

[
0,min

{
R0, 2R0 cos

(
θB,Rx

2

)}]}
θB,Rx

2
e−β(R0−r)

+1

{
r ∈

[
R0, 2R0 cos

(
θB,Rx

2

)]}
θB,Rx

2
e−β(r−R0)

)
. (197)

ii) The following lower bounds hold: λ0B,1(r;R0) ≥ ν0B,1(r;R0) and λ0B,2(r;R0) ≥ ν0B,2(r;R0), where

ν0B,1(r;R0) = 2λBr

(
θB,Rx

2
− 1

{
r ∈

[
0, 2R0 cos

(
θB,Rx

2

)]}
θB,Rx

2
e−β|R0−r|

− π

2
1

{
r ∈

[
2R0 cos

(
θB,Rx

2

)
, 2R0

]}
e−β|R0−r|

+
Ma∑
k=0

γk
(2R0)2k+1

1

{
r ∈

[
2R0 cos

(
θB,Rx

2

)
, 2R0

]}
r2k+1e−β|R0−r|

)
, (198)

and

ν0B,2(r;R0) = 2λBr

(
2π − θB,Rx

2
− π

2
1

{
r ∈

[
0, 2R0 cos

(
θB,Rx

2

)]}
e−β|R0−r|

+
Ma∑
k=0

γk
(2R0)2k+1

1

{
r ∈

[
0, 2R0 cos

(
θB,Rx

2

)]}
r2k+1e−β|R0−r|

+
θB,Rx

2

k(θB,Rx)∑
i=1

1

{
r ∈

[
ri−1,min

{
ri, 2R0 cos

(
θB,Rx

2

)}]}
e−β(ci+mir)

 . (199)

Proof:Using the intermediate result at the beginning of the appendix, the bounds in Lemma 8 follow

from Lemmas 3, 6, and 7. These follow directly by selecting the appropriate lower bound in Lemma 6 or

7, or the upper bound in Lemma 3, depending on whether or not the J function at hand is being added

or subtracted. □

APPENDIX H

CHARACTERIZATION OF THE RADAR PATH LOSS MELLIN TRANSFORMS

A. Statement of Pathloss Mellin Transforms

The main utility of the bounds for the intensity functions of the Palm interference processes in Lemma

8 is that they enable us to obtain closed form expressions for the sectional path loss Mellin Transforms

in terms of the generalized incomplete gamma function

Γ(p, z1, z2) =

∫ z2

z1

xp−1e−xdx. (200)

Note that this function is defined for complex p, z1, z2 by analytic continuation.
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For conciseness, we state the path loss Mellin Transforms in terms of the following functions

Definition: (GL function) Let A and B be compact intervals on R+, and let α, γ,m, n be arbitrary

parameters and p ∈ C. Moreover, define

dL = inf{d ∈ A ∩B} dU = sup{d ∈ A ∩B}. (201)

Then the function GL is defined as

GL(p,A;B,α, γ, n,m) =

∫
R+

1{x ∈ A ∩B}rn−pαe−(m+pγ)xdx. (202)

which evaluates to

GL(p,A;B,α, γ, n,m) =


0 if A ∩B = ∅

(m+ sγ)pα−n−1Γ(n+ 1− pα, (m+ pγ)dL, (m+ pγ)dU) otherwise.

(203)

Definition: (GN function) Let A and B be compact intervals on R+, and let α, γ,m1,m2, n be arbitrary

parameters and s ∈ C. Then the function GL is defined as

GN(p,A;B,α, γ, n,m1,m2) =

∫
R+

1{x ∈ A ∩B}rn−pαe−pγx
(
e−m1x − e−m2x

)
dx. (204)

which evaluates to

GN(p,A;B,α, γ, n,m1,m2) = GL(p,A;B,α, γ, n,m1)−GL(p,A;B,α, γ, n,m2). (205)

We summarize the path loss Mellin Transforms with respect to the Palm interference process in the

following lemma.

Lemma 9: (Path Loss Mellin Transforms with Respect to the Bounding Radar Interference

Process) Let A ⊆ R+ then,

i) The path loss Mellin Transforms with respect to ρ0L,1 and ρ0L,2

Mρ0L,1◦g
−1
L
(p;A,R0) = 2λBK

p−1
L

(
θB,Rx

2
GL (p− 1, A;R+, αL, γL, 1, β)

− θB,Rx

2

k(θB,Rx)∑
i=1

e−βciGL

(
p− 1, A;

[
ri−1,min

{
ri, 2R0 cos

(
θB,Rx

2

)}]
, αL, γL, 1, β(mi + 1)

)
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−
ku(θB,Rx)∑
i=1

π

2
e−βc

u
i GL

(
p− 1, A;

[
max

{
rui−1, 2R0 cos

(
θB,Rx

2

)}
,min {rui , 2R0}

]
, αL, γL, 1, β(m

u
i + 1)

)

+
Na+1∑
k=0

γk
(2R0)2k+1

e−βc
u
i

GL

(
p− 1, A;

[
max

{
rui−1, 2R0 cos

(
θB,Rx

2

)}
,min {rui , 2R0}

]
, αL, γL, 2k + 2, β(mu

i + 1)

))
,

(206)

and

Mρ0L,2◦g
−1
L
(p;A,R0) = 2λBK

p−1
L

(
2π − θB,Rx

2
GL (p− 1, A;R+, αL, γL, 1, β)

−
kℓ(θB,Rx)∑
i=1

π

2
e
−βcℓi
L

(
p− 1, A;

[
rℓi−1,min

{
rℓi , 2R0 cos

(
θB,Rx

2

)}]
, αL, γL, 1, β(m

ℓ
i + 1)

)

+
Na+1∑
k=0

γk
(2R0)2k+1

e−βc
ℓ
iGL

(
p− 1, A;

[
rℓi−1,min

{
rℓi , 2R0 cos

(
θB,Rx

2

)}]
, αL, γL, 2k + 2, β(mℓ

i + 1)

)
+
θB,Rx

2
e−βR0GL

(
p− 1, A;

[
0,min

{
R0, 2R0 cos

(
θB,Rx

2

)}]
, αL, γL, 1, 0

)
+
θB,Rx

2
eβR0GL

(
p− 1, A;

[
R0, 2R0 cos

(
θB,Rx

2

)]
, αL, γL, 1, 2β

))
. (207)

ii) Similarly, the path loss Mellin Transforms with respect to ν0L,1 and ν0L,2 are:

Mν0L,1◦g
−1
L
(p;A,R0) = 2λBK

p−1
L

(
θB,Rx

2
GL (p− 1, A;R+, αL, γL, 1, β)

− θB,Rx

2
e−βR0GL

(
p− 1, A;

[
0,min

{
R0, 2R0 cos

(
θB,Rx

2

)}]
, αL, γL, 1, 0

)
− θB,Rx

2
eβR0GL

(
p− 1, A;

[
R0, 2R0 cos

(
θB,Rx

2

)]
, αL, γL, 1, 2β

)
− π

2
e−βR0GL

(
p− 1, A;

[
2R0 cos

(
θB,Rx

2

)
, R0

]
, αL, γL, 1, 0

)
− π

2
eβR0GL

(
p− 1, A;

[
max

{
R0, 2R0 cos

(
θB,Rx

2

)}
, 2R0

]
, αL, γL, 1, 2β

)
+

Na∑
k=0

γk
(2R0)2k+1

e−βR0GL

(
p− 1, A;

[
2R0 cos

(
θB,Rx

2

)
, R0

]
, αL, γL, 2k + 2, 0

)

+
Na∑
k=0

γk
(2R0)2k+1

eβR0GL

(
p− 1, A;

[
max

{
R0, 2R0 cos

(
θB,Rx

2

)}
, 2R0

]
, αL, γL, 2k + 2, 2β

))
,

(208)
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Mν0L,2◦g
−1
L
(p;A,R0) = 2λBK

p−1
L

(
2π − θB,Rx

2
GL (p− 1, A;R+, αL, γL, 1, β)

− π

2
e−βR0GL

(
p− 1, A;

[
0,min

{
R0, 2R0 cos

(
θB,Rx

2

)}]
, αL, γL, 1, 0

)
− π

2
eβR0GL

(
p− 1, A;

[
R0, 2R0 cos

(
θB,Rx

2

)]
, αL, γL, 1, 2β

)
+

Na∑
k=0

γk
(2R0)2k+1

e−βR0GL

(
p− 1, A;

[
0,min

{
R0, 2R0 cos

(
θB,Rx

2

)}]
, αL, γL, 2k + 2, 0

)

+
Na∑
k=0

γk
(2R0)2k+1

eβR0GL

(
p− 1, A;

[
R0, 2R0 cos

(
θB,Rx

2

)]
, αL, γL, 2k + 2, 2β

)

+
θB,Rx

2

k(θB,Rx)∑
i=1

e−βciGL

(
p− 1, A;

[
ri−1,min

{
ri, 2R0 cos

(
θB,Rx

2

)}]
, αL, γL, 1, β(mi + 1)

) .

(209)

Similar expressions hold for the path loss Mellin Transforms of ρ0N,1/ρ0N,2 and ν0N,1/ν0N,2 using the GN

function.

Proof: Follows from Lemma 8 and the definitions of GL(·) and GN(·). □

APPENDIX I

PROOF OF THEOREM 3

A. Proof of Theorem 3

Using the notation developed in Sec. V-A we may express the generic radar SINR model, SINRgen as

SINRgen = 1{ΦL(R2) > 0} κCSgL,ret(R0)∑
Xk∈Π̃0

B
FkZk

BL(Rk) + νrad
, (210)

Hence, we have

P(SINRgen ≥ τ) = P

1{R0 <∞}κCSgL,ret(R0) ≥ τ
∑
Rk∈Π̃0

B

FkZ
k
BL(Rk) + τνrad


= P

κCSgL,ret(R0) ≥ τ
∑
Rk∈Π̃0

B

FkZ
k
BL(Rk) + τνrad

∣∣∣∣∣∣R0 <∞

(1− exp

(
−2πλB

β2

))

= ER0

P
κCSgL,ret(R0) ≥ τ

∑
Rk∈Π̃0

B

FkZ
k
BL(Rk) + τνrad

∣∣∣∣∣∣R0

(1− exp

(
−2πλB

β2

))
.
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The term inside the expectation may be expressed as

P

κCSgL,ret(R0) ≥ τ
∑
Rk∈Π̃0

B

FkZ
k
BL(Rk) + τνrad

∣∣∣∣R0

)
(211)

(a)
= EΠ̃0

B

exp
 −τ
gL,ret(R0)

∑
Rk∈Π̃0

B

FkZ
k
BL(Rk)

∣∣∣∣R0

 e −τνrad
gL,ret(R0) . (212)

Where (a) follows from the fact that κCS is exponentially distributed.

Now, using the fact that the LoS/NLoS and receive antenna gain marks in Π̃0
B are independent when

conditioned on R0, we have by the Independent Thinning Theorem that Π0
B may be expressed as the

following superposition of independent PPPs

Π0
B = Π0

L,1 +Π0
N,1 +Π0

L,2 +Π0
N,2. (213)

Where the above processes correspond to LoS/NLoS points inside/outside the receive beam, respectively.

Define

IL,1 =
∑

Rk∈Π0
L,1

FL,kgL(Rk), IL,2 =
∑

Rk∈Π0
L,2

FL,kξB,RxgL(Rk), (214)

IN,1 =
∑

Rk∈Π0
N,1

FN,kgN(Rk), IN,2 =
∑

Rk∈Π0
N,2

FN,kξB,RxgN(Rk). (215)

Then,

EΠ̃0
B

exp
 −τ
gL,ret(R0)

∑
Rk∈Π̃0

B

FkZ
k
BL(Rk)

∣∣∣∣R0

 =

LIL,1

(
τ

gL,ret(R0)

∣∣∣∣R0

)
LIL,2

(
τξB,Rx

gL,ret(R0)

∣∣∣∣R0

)
LIN,1

(
τ

gL,ret(R0)

∣∣∣∣R0

)
LIN,2

(
τξB,Rx

gL,ret(R0)

∣∣∣∣R0

)
.

Where we have used the notation LI(·;R0) to denote conditioning on R0.

Consider LIL,1(s;R0). By Campbells Formula we have

LIL,1(s|R0) = exp

(
−
∫
R+

(1− LFL
(sgL(r)))λ

0
L,1(r, R0)dr

)
.

Then, using the bounds on λ0L,1 from Lemma 8, we have

LIL,1(s|R0) ≤ exp

(
−
∫
R+

(1− LFL
(sgL(r)))ν

0
L,1(r, R0)dr

)
,



73

and

LIL,1(s|R0) ≥ exp

(
−
∫
R+

(1− LFL
(sgL(r)))ρ

0
L,1(r, R0)dr

)
Moreover, using the expressions for the path loss Mellin Transforms in Lemma 9 in addition to Theorem

2 yields further bounds

exp

(
−
∫
R+

(1− LFL
(sgL(r)))ν

0
L,1(r, R0)dr

)
≤ exp

(
−

Nw+1∑
i=1

HUB

(
s,WL

i ; 1− LFL
,Mν0L,1◦g

−1
L
(·; ·, R0)

))
,

and

exp

(
−
∫
R+

(1− LFL
(sgL(r)))ρ

0
L,1(r, R0)dr

)
≥ exp

(
−

Nw+1∑
i=1

HLB

(
s,WL

i ; 1− LFL
,Mρ0L,1◦g

−1
L
(·; ·, R0)

))
.

Bounds on LIL,2(s|R0), LIN,1(s|R0), and LIN,2(s|R0) follow in a similar manner. Therefore, using these

bounds leads to upper and lower bounds on the conditional CCDF of SINRgen given R0 in (212). Taking

expectation with respect to the pdf of R0 in Lemma 1 results in the bounds P LB
c, rad (τ ;LFL

,LFN
) and

PUB
c, rad (τ ;LFL

,LFN
) given in the statement of the theorem. □

APPENDIX J

PROOFS OF RESULTS PERTAINING TO INTERFERENCE FADING TERMS

A. Proof of Lemma 10

Our expression for the Laplace Transform of F requires the following transcendental function.

Definition: (Fox’s H Function): Fox’s H function is defined as

Hm,n
p,q

x∣∣∣∣(a1, α1), . . . , (ap, αp)

(b1, β1), . . . , (bq, βq)

 =

∮
L

∏m
i=1 Γ(bi − βis)

∏n
j=1 Γ(1− aj + αjs)∏p

j=n+1 Γ(aj + αjs)
∏q

i=m+1 Γ(1− bi + βis)
sxds, (216)

where m,n, p, q are non-negative integers such that n ≤ p and m ≤ q, αj, βi ∈ R+ for all i, j, and

{(bi, βi)} and {(ai, αi)} are such that the poles of Γ(bi − βis) do not coincide with the poles of Γ(1 −

aj + αjs). Note that the above contour integral corresponds to the inverse Mellin Transform operator.

Armed with this definition, we now prove Lemma 10.

Proof: Part i). Note that GM(F,θ) may be expressed as

GM(F,θ) =
∏

(t,n)∈S̃rad

(
|Hn|2Bt

)θt,n
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=
N∏
n=1

(
|Hn|2

)qn T∏
t=1

Bwt
t

= GM(H,q)GM(B,w)

Hence, we may express LGM(F,θ)(s) as

LGM(F,θ)(s) = E[exp(−sGM(H,q)GM(B,w)]

= EGM(H,q)[LGM(B,w)(sGM(H,q))].

The Laplace Transform of GM(B,w) may be expressed as

LGM(B,w)(s) = E

[
exp

(
T∏
t=1

Bwt
t

)]

=
T∑
r=0

pT−rB (1− pB)
r

(Tr)∑
j=1

exp

−s
∏
i∈T r

j

ξ
wti
B,Tx

 .

Using this expression, we have that

LGM(F,θ)(s) =
T∑
r=0

pT−rB (1− pB)
r

(Tr)∑
j=1

LGM(H,q)

s∏
i∈T r

j

ξ
wti
B,Tx

 . (217)

Thus, it remains to characterize the Laplace Transform of GM(H,q). To this end we exploit Proposition

3 and obtain the Laplace Transform of GM(H,q) via its Mellin Transform.

The Mellin Transform of GM(H,q) is

MGM(H,q)(p) = E

( N∏
n=1

(|Hn|2)qn
)p−1


(a)
=
∏
n∈S̃rad

E
[
(|Hn|2)qn(p−1)

]
(b)
=
∏
n∈S̃rad

N
−qn(p−1)
a

Γ(Na)
Γ(qn(p− 1) +Na)

=
N−p+1

a

Γ(Na)N

N∏
n=1

Γ(qn(p− 1) +Na).

Where (a) follows from the independence of {Hn}n∈S̃rad
and (b) follows from the Mellin Transform of a
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Gamma random variable. Thus, we have

LGM(H,q)(s) = M−1

 Np
a

Γ(Na)N

∏
n∈S̃rad

Γ(1− (1−Na)− qnp)Γ(p)


1

Γ(Na)N
H1,Nc

Nc,1

 s

Na

∣∣∣∣∣ (1−Na, q1) . . . (1−Na, qN)

(0, 1)

 .

Hence, the the exact expression follows using this expression in (217).

Part ii). We may obtain the first and second moments of GM(H,q) using MGM(H,q)(2) and MGM(H,q)(3).

Whence, part ii) follows by fitting GM(H,q) to a gamma distribution with parameters shape parameter

α0(q, Na) and scale parameter β0(q, Na) and exploiting the Laplace Transform of a gamma random

variable. □

B. Proof of Lemma 11

We now prove the upper and lower bounds for the approximate Laplace Transform of GM(F,θ). To

this end we require the following intermediate Lemma.

Lemma E: (Bound on Gamma Laplace Transform using Gamma Mixture) Let α > 0, γ > 0,

p ∈ (0, 1), and define the functions f1 : [0, 1] → R+ and f2 : [0, 1] → R+ as

f1(x) = (1 + γpx)−α (218)

f2(x) = (1 + γp)−αx. (219)

Then for all x ∈ [0, 1] f1(x) ≤ f2(x).

Proof: Note that f1(0) = (1 + γ)−α < 1 = f2(0), and f1(1) = (1 + γp)−α = f2(1). Hence the Lemma

follows from the fact that

∂f1(x)

∂x
=
αγpx log(p−1)

(1 + γpx)α+1
> 0

∂f2(x)

∂x
=

−α log(1 + γp)

(1 + γp)αx
< 0.

□

We first establish the upper bound. Consider the approximate form for the the Laplace Transform of
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GM(F,θ).

LGM(F,θ)(s) ≈
T∑
r=0

pT−rB (1− pB)
r

(Tr)∑
j=1

(
1 +

s
∏

i∈T r
j
ξ
wti
B,Tx

β0(q, Na)

)−α0(q,Na)

(a)
≤

T∑
r=0

pT−rB (1− pB)
r

(Tr)∑
j=1

(
1 +

sξB,Tx

β0(q, Na)

)−α0(q,Na)
∑

i∈Tr
j
wti

=
T∑
r=0

pT−rB (1− pB)
r

(Tr)∑
j=1

∏
i∈T r

j

(
1 +

sξB,Tx

β0(q, Na)

)−α0(q,Na)wti

=
T∏
t=1

(
pB + (1− pB)

(
1 +

sξB,Tx

β0(q, Na)

)−α0(q,Na)wt
)

= LUB
GM(F,θ)(s).

Where (a) follows from Lemma E.

Regarding the lower bound, we have

LGM(F,θ)(s) ≈
T∑
r=0

pT−rB (1− pB)
r

(Tr)∑
j=1

(
1 +

s
∏

i∈T r
j
ξ
wti
B,Tx

β0(q, Na)

)−α0(q,Na)

(a)
≥

T∑
r=0

(
T

r

)
pT−rB (1− pB)

r

1 +
s
(
T
r

)−1∑(Tr)
j=1 ξ

∑
i∈Tr

j
wti

B,Tx

β0(q, Na)

−α0(q,Na)

.

= LLB
GM(F,θ)(s).

Where (a) follows from Jensen’s Inequality. □

C. Proof of Lemma 12

We now prove the lower bound for the Laplace Transform of AM(F,θ). We first establish the following

intermediate lemma

Lemma F: (Minimization of Product of Weighted Combination of Log Convex Functions) Let

f : G → R+ be a log convex function and let {θn}Nn=1 be a series of convex weights (where N ∈ N).

Then, for any x ∈ G

N∏
n=1

f(θnx) ≥ f
( x
N

)N
(220)
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Proof: Follows from a contradiction argument. Assume the claim doesn’t hold and pick two weights

θi <
1
N

and θj >
1
N

. Construct new weights θ′
i = θ

′
j =

θi+θj
2

. By log convexity, replacing θi and θj with

θ
′
i and θ′

j yields a lower bound. Repeating this process iteratively yields θi = 1
N

∀i ∈ [N ]. □

Using Lemma F, we establish the lower bound in the following manner.

LAM(F,θ)(s) = E

exp
−s

∑
(t,n)∈S̃rad

θt,n|Hn|2Bt

 (221)

= E

E
exp

−s
N∑
n=1

 ∑
(t,n)∈S̃rad

θt,nBt

 |Hn|2
∣∣∣∣{Bt}t∈[T ]

 (222)

= E

 N∏
n=1

L|H|2

s( T∑
t=1

wtBt

) (∑
(t,n)∈S̃rad

θt,nBt

)
∑T

t=1wtBt

 (223)

(a)
≥ E

L|H|2

(
s

∑T
t=1wtBt

N

)N
 (224)

=
T∑
r=0

pT−rB (1− pB)
r

(Tr)∑
j=1

L|H|2

s
(∑

i∈T r
j
wt

)
(ξB,Tx − 1) + 1

N

N

(225)

(b)
≥

T∑
r=0

(
T

r

)
pT−rB (1− pB)

r

1 +
s
(
T
r

)−1∑(Tr)
j=1

(
(ξB,Tx − 1)

∑
i∈T r

j
wti + 1

)
NNa


−NNa

(226)

= LLB
AM(F,θ)(s). (227)

Where (a) follows from Lemma F and (b) follows from Jensen’s Inequality. □

D. Proof of Lemma 13

We begin by establishing part i) where Na = 1 =⇒ |Hn|2 ∼ Exp(1) . Consider HM(F,θ)

HM(F,θ) =

 ∑
(t,n)∈S̃rad

θt,n
(
|Hn|2Bt

)−1

−1

≥

 ∑
(t,n)∈S̃rad

θt,n

(
|Hn|2min

t
{Bt}

)−1

−1

≥ min
t
{Bt}HM(H,q).
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Now, under the assumption that |Hn|2 is an exponential random variable, it may equivalently be expressed

as

|Hn|2 =
1

2
Xn +

1

2
Yn Xn, Yn ∼ Gamma

(
1

2
,
1

2

)
Xn ⊥⊥ Yn.

Moreover, by concavity of HM(H,q) we with respect to H we have

HM(H,q) ≥ 1

2
HM(X,q) +

1

2
HM(Y,q).

Now, by the definition of HM(X,q), we have

HM(X,q) =

(
N∑
n=1

qnX
−1
n

)−1

(228)

Since Xn ∼ Gamma(1
2
, 1
2
), we have that X−1

n ∼ Levy(0, 1). Whence,

N∑
n=1

qnX
−1
n ∼ Levy

0,

(
N∑
n=1

q
1
2
n

)2
 . (229)

Therefore, HM(X,q) ∼ Gamma

(
1
2
, 1
2

(∑N
n=1 q

1
2
n

)2)
.

Putting these observations together, we have

LHM(F,θ)(s) = E [exp (−sHM(F,θ))]

≤ E
[
exp

(
−smin

t
{Bt}

(
1

2
HM(X,q) +

1

2
HM(Y,q)

))]
(a)
= E


1 +

smint{Bt}(∑N
n=1 q

1
2
n

)2


−1
= pTB

1 +
s(∑N

n=1 q
1
2
n

)2


−1

+ (1− pTB)

1 +
sξB,Tx(∑N
n=1 q

1
2
n

)2


−1

= LUB
HM(F,θ)(s).

Where (a) follows from the Laplace Transform of the sum of two gamma random variables.

Part ii) leverages bounds on the first and second moments of HM(F,θ) in the case where Na > 1. We

establish these first before proceeding with the proof.
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First, we establish a lower bound on the first moment.

E [HM(F,θ)] = E

 ∑
(t,n)∈S̃rad

θt,n
(
|Hn|2Bt

)−1

−1
(a)
≥ E

 ∑
(t,n)∈S̃rad

θt,n
(
|Hn|2Bt

)−1

−1

=
(
E
[
|H|−2

]
E
[
B−1

])−1

=

((
pB + (1− pB)ξ

−1
B,Tx

) Na

Na − 1

)−1

= m1.

Where (a) follows from Jensen’s Inequality.

Next, we establish an upper bound on the second moment. First note that

HM(F,θ) =

 ∑
(t,n)∈S̃rad

θt,n
(
|Hn|2Bt

)−1

−1

(a)
≤

((
N∑
n=1

qn|Hn|−2

)(
T∑
t=1

wnB
−1
t

))−1

= HM(H,q)HM(B,w)

(b)
≤ GM(H,q)HM(B,w).

Where (a) follows from the FKG inequality [54, Theorem 6.2.1] and (b) follows from the AM-GM-HM

Inequality. Thus, we may upper bound the second moment as

E
[
HM(F,θ)2

]
≤ E

[
GM(H,q)2

]
E
[
HM(B,w)2

]
=

 T∑
r=0

pT−rB (1− pB)
r

(Tr)∑
j=1

1−

∑
i∈T r

j

wti

+

∑
i∈T r

j

wti

 ξ−1
B,Tx

−2
N−2

a

N∏
n=1

Γ(2qn +Na)

Γ(Na)

= m2.

To prove part ii), we employ the following upper bound on the Laplace Transform for a non-negative

random variable for s ∈ R+. The bound is taken from [52] and follows along the lines of Lemma C. The
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bound is given as

LHM(F,θ)(s;Na) ≤
E [HM(F,θ)2]− E [HM(F,θ)]2

E [HM(F,θ)2]
+

E [HM(F,θ)]2

E [HM(F,θ)2]
exp

(
−sE [HM(F,θ)2]

E [HM(F,θ)]

)
. (230)

One may show that the bound is decreasing in E [HM(F,θ)] and increasing in E [HM(F,θ)2], whence

LHM(F,θ)(s;Na) ≤
m2 −m2

1

m2

+
m2

1

m2

exp

(
−sm2

m1

)
= LUB

HM(F,θ)(s;Na)

□

APPENDIX K

PROOFS OF SOME TECHNICAL RESULTS

A. Proof of Lemma B

Lemma B: (A Hölder-Like Inequality for Harmonic Means of Sets of Functions) Let p be a PMF

on [n] for some n ∈ N, and let (G,G, µ) be a measure space. Let {fk}k∈[n] be a sequence measurable

functions from G to R+. Then∥∥∥∥∥∥
(

n∑
k=1

pkf
−1
k

)−1
∥∥∥∥∥∥
1

≤

(
n∑
k=1

pk ∥fk∥−1
1

)−1

. (231)

Or, alternatively

∥∥HM({fk}k∈[n], p)
∥∥
1
≤ HM({∥fk∥1}k∈[n], p). (232)

Where the above norms are taken with respect to µ.

Moreover, equality is obtained iff {fk}k∈[n] are linearly dependent.

Proof: We shall first consider the case where n = 2 and then prove the general case by induction.

Hence, with some abuse of notation, we shall take our PMF to be (p, 1− p).

Before proceeding, we first deal with the cases where ∥fk∥1 ∈ {0,∞} for some k ∈ {1, 2}. If ∥f1∥1 = 0

then f1(x) = 0 µ-almost surely, and

HM({f1(x), f2(x)}, (p, 1− p)) = 0 µ− a.s.,

HM({∥f1∥1 , ∥f2∥1}, (p, 1− p)) = 0
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A similar argument may be made for the case where ∥f2∥1 = 0.

If both ∥f1∥1 and ∥f2∥1 are infinite, then HM({∥f1∥1 , ∥f2∥1}, (p, 1 − p)) = ∞, in which case the

bound is trivial.

Having established these results, we may assume that at least one of ∥fk∥1 ∈ (0,∞) for k ∈ {1, 2}.

Without loss of generality, we shall assume ∥f1∥1 ∈ (0,∞).

First, consider the function g : R+ → R+ such that

g(x) =
(
p+ (1− p)x−1

)−1
. (233)

One may confirm that for all p ∈ (0, 1) the second derivative of g is strictly negative, and equal to zero

for p ∈ {0, 1}. Thus, by second order concavity conditions, g is strictly concave for p ∈ (0, 1). We then

obtain

∥∥HM({fk}k∈[2], (p, 1− p))
∥∥
1
=

∫
G

(
pf1(x)

−1 + (1− p)f2(x)
−1
)−1

µ(dx)

= ∥f1∥1
∫
G

(
p+ (1− p)

f1(x)

f2(x)

)−1
f1(x)µ(dx)

∥f1∥1

= ∥f1∥1
∫
G
g

(
f1(x)

f2(x)

)
f1(x)µ(dx)

∥f1∥1
(a)
≤ ∥f1∥1 g

(∫
G

f2(x)

f1(x)

f1(x)µ(dx)

∥f1∥1

)
= HM({∥f1∥1 , ∥f2∥1}, (p, 1− p)).

Where (a) follows from Jensen’s Inequality and noting that ν = f1µ/ ∥f1∥1 is a probability measure.

Therefore the inequality holds for the case where n = 2. Moreover, equality is obtained if and only if

f1/f2 is ν-almost-surely a constant. Equivalently, we may say that equality is obtained if and only if f1

and f2 are linearly dependent µ-almost surely.

We now show the general case for n ∈ N by induction. Assume that

∥∥HM({fk}k∈[n], p)
∥∥
1
≤ HM({∥fk∥1}k∈[n], p).

We will then show it holds for n+ 1 functions. Let {fk}k∈[n+1] be an ensemble of measurable functions
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from G to R+ and let p be a PMF on [n+ 1]. Define the PMF q and [n] as follows

qk =


pk k ∈ [n− 1]

pn + pn+1 k = n.

Further, define the function gn = HM({fn, fn+1}, (pn/qn, pn+1/qn)). Then by the induction hypothesis

∥∥HM({fk}k∈[n+1], p)
∥∥
1
= ∥HM({f1, . . . , fn−1, gn}, q)∥1
(a)
≤ HM({∥f1∥1 , . . . , ∥fn−1∥1 , ∥gn∥1}, q)

=

(
n−1∑
k=1

pk ∥fk∥−1
1 + qn ∥gn∥−1

1

)−1

(b)
≤

(
n−1∑
k=1

pk ∥fk∥−1
1 + qn

(
pn
qn

∥fn∥−1
1 +

pn+1

qn
∥fn+1∥−1

1

))−1

= HM({∥fk∥1}k∈[n+1], p).

Where (a) follows from the induction hypothesis, and (b) follows from applying the induction hypothesis

to gn. □

B. Proof of Proposition 3

We prove Proposition 3 in the case where X admits a PDF, which is stated separately in the following

lemma.

Lemma G: (Relation between Mellin and Laplace Transforms) Let f ∈ L2
C(R+). Then

Lf (s) = M−1{Mf (1− p)Γ(p)}(s). (234)

Proof: Using the fact that the family {Eβ(r) = r−2πjβ− 1
2}β∈R form an orthonormal basis on L2

C(R+) [55,

Theorem-11.3.1.1] we may express f as

f(r) =

∫ ∞

−∞
Mf

(
2πjβ +

1

2

)
r−2πjβ− 1

2dβ. (235)

Hence, we may express the Laplace Transform of f as

Lf (s) =
∫ ∞

0

f(r)e−srdr

=

∫ ∞

0

∫ ∞

−∞
Mf

(
2πjβ +

1

2

)
r−2πjβ− 1

2 e−srdβdr
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(a)
=

∫ ∞

−∞
Mf

(
2πjβ +

1

2

)∫ ∞

0

r−2πjβ+ 1
2
−1e−srdrdβ.

Where (a) follows from Fubini’s theorem. Now, note that∫ ∞

0

r−2πjβ+ 1
2
−1e−srdr = s−2πjβ− 1

2Γ

(
1

2
− 2πjβ

)
ℜ{s} ≥ 0. (236)

Therefore, for ℜ{s} ≥ 0 we have that Lf (s) = L̂f (s), where

L̂f (s) =
∫ ∞

−∞
Mf

(
2πjβ +

1

2

)
Γ

(
1

2
− 2πjβ

)
s−2πjβ− 1

2dβ

=

∫ ∞

−∞
Mf

(
1− 2πjβ − 1

2

)
Γ

(
2πjβ +

1

2

)
s−2πjβ− 1

2dβ.

Finally, note that L̂f (s) is analytic, and we may define an analytic continuation for ℜ{s} < 0 using

the inverse Mellin Transform with respect to the Mellin-Barnes Integral:

L̃f (s) =
∮

Mf (1− p) Γ (p) s−pdp

M−1{Mf (1− p)Γ(p)}(s)

On the other hand Lf (s) is also an analytic continuation of L̂f (s), whence, by uniqueness of analytic

continuation Lf (s) = L̃f (s) for all s ∈ C. □

We may extend Lemma G to encompass general probability measures over (R+,B(R+)) using methods

referenced in [55].

Proposition 3: (Relation between Mellin and Laplace Transforms of Nonnegative Random Vari-

ables) Let X be a non-negative random variable. Then

LX(s) = M−1{MX(1− p)Γ(p)}(s). (237)
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