
1

Lossy Quantum Source Coding with a Global Error

Criterion based on a Posterior Reference Map

Touheed Anwar Atif, Mohammad Aamir Sohail, and S. Sandeep Pradhan

Department of Electrical Engineering and Computer Science,

University of Michigan, Ann Arbor, MI 48109, USA.

Email: touheed@umich.edu, mdaamir@umich.edu, pradhanv@umich.edu

Abstract

We consider the lossy quantum source coding problem where the task is to compress a given quantum

source below its von Neumann entropy. Inspired by the duality connections between the rate-distortion

and channel coding problems in the classical setting, we propose a new formulation for the lossy quantum

source coding problem. This formulation differs from the existing quantum rate-distortion theory in two

aspects. Firstly, we require that the reconstruction of the compressed quantum source fulfill a global error

constraint as opposed to the sample-wise local error criterion used in the standard rate-distortion setting.

Secondly, instead of a distortion observable, we employ the notion of a backward quantum channel,

which we refer to as a “posterior reference map”, to measure the reconstruction error. Using these, we

characterize the asymptotic performance limit of the lossy quantum source coding problem in terms

of single-letter coherent information of the given posterior reference map. We demonstrate a protocol

to encode (at the specified rate) and decode, with the reconstruction satisfying the provided global

error criterion, and therefore achieving the asymptotic performance limit. The protocol is constructed by

decomposing coherent information as a difference of two Holevo information quantities, inspired from

prior works in quantum communication problems. To further support the findings, we develop analogous

formulations for the quantum-classical and classical variants and express the asymptotic performance

limit in terms of single-letter mutual information quantities with respect to appropriately defined channels

analogous to posterior reference maps. We also provide various examples for the three formulations, and

shed light on their connection to the standard rate-distortion formulation wherever possible.

I. INTRODUCTION

A fundamental problem from an information theoretic perspective is the asymptotic characterization

of the rate required to compress a source that can be recovered to a certain measurable degree. Such

a problem in quantum information theory is referred to as quantum source coding or a quantum data

compression problem. In the lossless regime, Schumacher [1], [2] proved that a quantum source could
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be compressed at a rate given by von Neumann entropy while incurring a very small error between the

reconstruction and the source state. The error in this model is defined for the entire block, also called as

block error or global error. Considering the block error, a strong converse was also proved in the lossless

regime [3], [4], which states that it is impossible to achieve any rate below von Neumann entropy even

when the asymptotic probability of block error is relaxed from being (almost) zero.

As for the lossy regime, where the objective is to further reduce the rate at the expense of increased but

bounded error, Barnum [5] conjectured minimal coherent information as a candidate in characterizing the

asymptotic performance limit. Generalizing the formulation from the classical rate-distortion theory [6],

Barnum in [5] introduced a local distortion criterion as averaged symbol-wise entanglement fidelity based

on marginal operations (partial trace) between the reconstruction and the reference of the original source.

In [7], Datta et. al obtained a regularized expression for the quantum rate-distortion distortion function

in terms of the entanglement of purification. Further, the authors also formulated the entanglement-

assisted quantum rate-distortion problem and characterized its asymptotic performance limit using a

single-letter expression. Wilde et. al further refined the characterization of the quantum rate-distortion

function in terms of regularized entanglement of formation, and also generalized the problem setup

to various scenarios, including side information in [8]. Works toward the asymptotic simulation of a

memoryless quantum channel in [9], [10] have shown to be useful in achieving the above results, in

particular, the entanglement-assisted formulations. Authors in [11] formulated a quantum-to-classical

rate-distortion problem and provided a single-letter formula. A rate-distortion version of the quantum

state redistribution task [12], [13] was considered in [14]. Investigations on a rate-distortion framework

of generic mixed quantum sources have been the focus of [15], [16]. Other works that addressed related

problems include [17]–[23].

In this work, we consider a new formulation of the problem of lossy quantum source coding, and

characterize a rate function, no larger than von Neumann entropy, while allowing for bounded error in

the reconstruction. We use a global error criterion as opposed to the approach of local symbol-wise error

studied in the literature. The problem we consider is without any shared entanglement resources between

the encoder and the decoder. We motivate this formulation with the following observations.

The local error criterion in the quantum rate-distortion framework is inspired by the corresponding

additive local single-letter distortion criterion in the classical source coding formulation of Shannon [6],

where a single-letter characterization is available. The motivation for considering a local criterion is the

strong converse of the lossless source coding theorem which states that the entropy bound cannot be

breached even when the asymptotic probability of block error is relaxed to any number in (0, 1) [24,

Theorem 1.1].
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In [6], [24], a duality connection between the source coding problem and the channel coding problem

was observed. These problems were interpreted in terms of a covering versus packing perspective. In

both problems, the same information measure, namely the mutual information, captures the asymptotic

performance limits. A similar duality connection exists between the classical-quantum communication

problem [25], [26] and the quantum-classical source coding problem [11], [27], with the performance

limits of both problems characterized in terms of single-letter Holevo information quantities [28]. This

has been further explored in [29]. In the fully quantum setting, from this standpoint, its well known that

the quantum channel coding problem has an asymptotic performance limit characterized using regularized

coherent information [30]–[33]. Among others, Devetak developed a proof of this result by employing a

coherent approach to covering and packing, and combined them cohesively, inspired by his work on the

private channel capacity problem [32]. Coherent information can be interpreted in terms of packing of

subspaces as elucidated in [30]. Quantum error-correcting codes have been extensively studied along these

lines in the coding theory literature, e.g., quantum Hamming bound [34]. This leads us to the question:

why is such a limit based on coherent information absent for the lossy quantum source compression

problem?

Toward answering this question, we take a closer look at the classical discrete memoryless setting.

We find that in addition to Shannon’s pioneering work of characterizing the rate-distortion problem [6],

[35], there have been several works discussing the lossy source compression problem. A concept that has

received particular attention is the notion of a backward channel [24, Problem 8.3], which characterizes

the posterior distribution of the source given the reconstruction. The structure of this channel has been

studied in [36]–[38]. Although the forward channel, relating the reconstruction to the source, achieving the

rate-distortion function need not be unique, the resulting backward channel is indeed unique. Moreover,

the rate-distortion achievability result in [24, Theorem 2.3] is shown by constructing a channel code

for a backward channel with a large probability of error and by using the encoder of the latter as a

decoder of the former and vice versa. Highlighting this duality further, inspired by results on the output

statistics of good channel codes [39], the following was shown in [40]. The n-letter actual posterior

conditional distribution of the source vector given the reconstruction vector of any rate-distortion achieving

code converges in normalized divergence to the n-product of the unique minimum-mutual-information

backward channel conditional distribution. In other words, although the encoder and decoder are block

operations, the induced posterior n-letter channel becomes discrete memoryless in the asymptotic limit

for a rate-distortion achieving code. For further developments on this concept see [41]–[44]. This channel

also plays a fundamental role in Bayesian estimation and detection theory [45], e.g., maximum a posteriori

(MAP) estimation. Therefore, we ask the question, can we use such a channel to formulate a lossy source
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coding problem?

Contributions of this work: In light of this, in this work, we explore a new formulation of the source

compression problem in the memoryless setting. This formulation is based on the notion of a posterior

channel that produces the reference of the source from that of the reconstruction. Instead of a single-letter

distortion function, now, we are given a single-letter posterior channel that characterizes the nature of the

loss incurred in the encoding and decoding operations. More precisely, we want to construct an encoder

and a decoder such that the joint effect of encoding and decoding – to produce a reconstruction sequence

from the source sequence – is close to the effect of the n-product posterior channel acting on the non-

product reconstruction sequence.The closeness is measured using the trace distance in the quantum case

and the total variation in the classical case, manifesting as a global error constraint. A related concept is

the Petz recovery map which has found significant relevance in information-theoretic problems [46]–[48].

However, we take a different approach and consider a quantum channel, i.e., a CPTP map, acting on

the reference of the reconstruction to produce the reference of the source, whose existence is guaranteed

using Uhlmann’s theorem. We refer to this as a posterior reference map.

As one of the main contributions of our work, we provide a single-letter characterization of the

asymptotic performance limit of this source coding problem using the minimal coherent information

of the posterior reference map, where the minimization is over all reconstructions (see Theorem 1).

Furthermore, our work establishes a duality connection between quantum lossy compression and the

quantum channel coding problem. Our proof is based on the coherent application of two fundamental

tools of quantum information theory, namely, packing and covering, implying a duality relationship with

Devetak’s proof for the channel coding problem [32] (also see [31], [33]).

We also provide a correspondingly new formulation for the quantum-classical (QC) and classical lossy

source coding problems. In the quantum-classical setup, we provide a single-letter characterization of

the asymptotic performance limit using the minimal Holevo information (or the corresponding quantum

mutual information) of the posterior classical-quantum (CQ) channel, where the minimization is over all

reconstruction distributions (see Theorem 2). In the classical setup, the minimal mutual information of

the posterior channel determines the single letter characterization of the asymptotic performance limit of

classical source coding problem (see Theorem 3). The posterior CQ channel and the posterior channel

are defined analogous to the posterior reference map for the QC and classical settings, respectively.

At one end of the spectrum, when the posterior reference map is specified as the identity transformation,

our rate expression in the quantum case reduces to the von Neumann entropy of the given quantum

source, demonstrating the connection with the Schumacher’s lossless compression [1]. In fact, the two

formulations can be shown to be equivalent to one another. The same follows in the classical and



5

quantum-classical formulations where the rate equals Shannon’s entropy and von Neumann’s entropy

of the sources, respectively. On the other end, when the specified posterior reference map is such that

coherent information is negative for some reference of the reconstruction, we characterize the asymptotic

performance limit of the lossy quantum source coding problem to be zero.

The techniques employed to prove our results can be summarized as follows. For the achievability of

the Theorem 1, we first construct a posterior reference isometry V (as in Definition 1) and decompose

it as a coherent measurement. We then make use of Winter’s measurement compression protocol [27],

and apply it in a coherent fashion to compress the output of the above isometry. This involves using the

Uhlmann’s Theorem [49] (or [50, Theorem 9.2.1]) followed by incorporating additional phases to achieve

a coherent faithful simulation of the posterior reference map. To further decrease the compression rate,

we exploit the fact that a noiseless quantum channel can preserve arbitrary superpositions. Therefore,

we perform additional encoding to embed the information at the output of V as superpositions within

itself. This requires availing the HSW classical communication result [25], [26] to construct information

decoding POVMs, and Naimark’s extension theorem to construct a unitary from POVM elements. The

method used for expurgation is another interesting feature of the proof. The protocol as it stands only

permits operations that are unitary or isometric, followed by partial tracing. It can be challenging to

guarantee this when there are repeated codewords in a code. A similar phenomenon was observed in the

Devetak’s proof [32].

As for the achievability of Theorem 2, we make use of Winter’s measurement compression protocol

[27] to construct the encoding POVM. For Theorem 3, we use the likelihood encoder as discussed in

[51], [52] to prove the achievability of lossy classical source coding.

For the converse of Theorem 1, we use the quantum data processing inequality for coherent information,

the Fannes-Audenart inequality, and monotonicity results. In the case of the quantum-classical setup,

proof of the converse of Theorem 2 uses inequalities such as the quantum data processing inequality,

the concavity of conditional quantum entropy, and the continuity of quantum mutual information (AFW

inequality). In the classical setup, similar tools are used to prove a converse to Theorem 3.

The paper is organized as follows. We provide some necessary definitions and useful lemmas in Section

II. In Section III, we formulate the problems and provide the main results pertaining to quantum lossy

compression (Theorem 1), QC lossy compression (Theorem 2), and classical lossy compression (Theorem

3). We provide examples corresponding to these three results in section IV. In Sections V, VI, and VII,

we provide proofs of the main results. Within each of these sections, we provide the achievability proof

followed by proof of the converse. Finally, Section VIII concludes the paper.
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Figure 1. Figure demonstrating the construction of the posterior reference map W from the isometry V (the Stinespring’s

dilation of NV ) and the source state ρB .

II. PRELIMINARIES AND NOTATIONS

We supplement the notations in [50] with the following. Let IA denote the identity operator acting on

a Hilbert space HA. The set of density operators on HA are denoted by D(HA), and linear operators

by L(HA). We denote HAR as the Hilbert space associated with the reference space of HA, with

dimHAR = dimHA. In this work, we focus exclusively on references obtained from canonical purifi-

cations of quantum states [27, Lemma 14 (Pretty Good Purifications)], and define canonical purification

|ψρ〉ARA of ρA as |ψρ〉ARA =∆ (IAR⊗
√
ρA)ΓARA, where ΓARA is defined as the unnormalized maximally

entangled state. We use ΨARA
ρ to denote the density operator corresponding to |ψρ〉ARA. As is the

convention, for two states acting on the same Hilbert space, we use the same Γ when defining their

canonical purifications. We denote the finite alphabet of a source as X, and the set of probability

distributions on the finite alphabet X as P(X). Let [Θ] =∆ {1, 2, · · · ,Θ}. For a CPTP map N : HA → HB ,

and an input density operator ρA ∈ D(HA), we use Ic(N , ρA) to denote the coherent information of N

with respect to ρA.

Definition 1 (Posterior Reference Map). Given a source ρB ∈ D(HB) and a channel NV : HB → HA,

let ρA =∆ NV (ρB). Let V : HB → HA ⊗ HE be a Stinespring’s isometry corresponding to the CPTP

map NV with dim(HE) ≥ dim(HA), such that NV (·) = TrE{V (·)V †}. As shown in Figure 1, define the

“posterior reference map” of V with respect to ρA as the CPTP map NW : HAR → HBR corresponding

to the isometry W : HAR → HBR ⊗ HE satisfying (W ⊗ IA) |ψρ〉ARA = (IBR ⊗ V ) |ψρ〉BRB where

|ψρ〉ARA and |ψρ〉BRB are the canonical purifications of ρA and ρB , respectively.

Remark 1 (Existence of a Posterior Reference Map). Using the equivalence of purifications, one can

guarantee the existence of such a posterior reference isometry W : HAR → HBR ⊗ HE . Since V

is an isometry with dim(HE) ≥ dim(HA), and since |ψρ〉ARA and |ψρ〉BRAE =∆ (IBR ⊗ V ) |ψρ〉BRB

are purifications of ρA (as TrE(V ρBV †) = ρA), from [50, Theorem 5.1.1], there exists an isometry

W : HAR → HBR ⊗HE such that (W ⊗ IA) |ψρ〉ARA = |ψρ〉BRAE .
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A. Useful Lemmas

Lemma 1 ( [53], Theorem 9.3.1 [50]). Given two states ρ, σ ∈ D(H), we have

1−
√
F (ρ, σ) ≤ 1

2
‖ρ− σ‖1 ≤

√
1− F (ρ, σ).

Lemma 2. For ρB, σB ∈ D(HB), the following inequality holds:

F (|ψρ〉 , |ψσ〉) ≥
(

1− 1

2

∥∥ρB − σB∥∥
1

)2

, (1)

where |ψρ〉 and |ψσ〉 are the canonical purifications of ρB and σB , respectively.

Proof. We provide a proof in Appendix A.

The above lemma is a slight tightening of the Lemma 14 (“Pretty good purifications”) of [27].

Lemma 3 (Naimark’s extension theorem [54], [55, Theorem 2.1]). Given a POVM {Γx}x∈X acting on

the system HA, there exists a unitary UAA′ acting on the system HA and auxiliary system HA′ and an

orthonormal basis {|x〉A
′
}x∈X such that

Tr
{

Γx(ρA ⊗ |0〉〈0|A′)
}

= Tr
(
Γxρ

A
)
,

where {Γx =∆ U †AA′(1A ⊗ |x〉〈x|
A′)UAA′} are orthogonal projectors acting on system HA ⊗ HA′ . Also,

|0〉A
′

is some fixed state in HA′ , and independent of Γx and ρA.

III. MAIN RESULTS

A. Lossy Quantum Source Coding

We first formulate a quantum source coding problem as follows. For any memoryless quantum in-

formation source, characterized by ρB ∈ D(HB), denote its canonical purification by |ψρ〉BBR . Let

ρBR =∆ TrB[ΨBRB
ρ ].

Definition 2 (Quantum Source Coding Setup). A quantum source coding setup is characterized by a

triple (ρB,HA,NW ), where ρB ∈ D(HB) is a density operator, HA is a reconstruction Hilbert space,

and NW is a single-letter CPTP map from HAR to HBR , where HAR and HBR are reference spaces

corresponding to HA and HB , respectively.

Definition 3 (Lossy Quantum Compression Protocol). For a given input and reconstruction Hilbert

spaces (HB,HA), an (n,Θ) lossy quantum compression protocol consists of a encoding CPTP map

N (n)
E : HBn → HM and a decoding CPTP map N (n)

D : HM → HAn , such that dim(HM ) = Θ, as

shown in Figure 2.
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Figure 2. Illustration of Lossy Quantum Compression protocol

Definition 4 (Achievability). For a quantum source coding setup (ρB,HA,NW ), a rate R is said to be

achievable, if for all ε > 0 and all sufficiently large n, there exists an (n,Θ) lossy quantum compression

protocol satisfying ∥∥ωBnRAn − (N⊗nW ⊗ IAn)ΨAnRA
n

ω

∥∥
1
≤ ε, (2)

and 1
n log Θ ≤ R+ ε, where ωB

n
RA

n

=∆ (I ⊗N (n)
D )(I ⊗N (n)

E )(Ψ
BnRB

n

ρ ), and Ψ
BnRB

n

ρ and Ψ
AnRA

n

ω are the

canonical purifications of ρB⊗n and ωA
n

, respectively.

In other words, the protocol ensures that the joint state of the reconstruction on H⊗nA and the original

reference H⊗nBR is close to the effect of the n-product posterior channel acting on the reference of the

non-product reconstruction sequence. Our objective is to characterize the set of all achievable rates using

single-letter quantum information quantities.

Theorem 1 (Lossy Quantum Compression Theorem). For a (ρB,HA,NW ) quantum source coding setup,

a rate R is achievable if and only if S(ρB,NW ) is non empty, and

R ≥ min
ρAR∈S(ρB ,NW )

I+
c (NW , ρAR),

where for any real x, x+ =∆ max(x, 0) and

S(ρB,NW ) =∆ {ρAR ∈ D(HAR) : NW (ρAR) = ρBR}.

Proof. A proof of the achievability is provided in Sections V-A and V-B, and a proof of converse is

provided in Section V-C.

Remark 2 (Covering of Subspaces). The asymptotic rate obtained in the statement of Theorem 1 can be

interpreted using a subspace covering argument. Let us assume we are given a source ρB and a CPTP

map NW whose coherent information is positive for all ρAR ∈ S(ρB,NW ). Let W : HAR → HBR ⊗HE
be a Stinespring’s dilation of NW . This implies Ic(NW , ρAR) = S(BR)σ − S(E)σ, where σBRE =∆



9

WρARW †, for ρAR ∈ S(ρB,NW ). We know that the n-product source state ρB⊗n can be compressed

using Schumacher compression to a subspace of normalized logarithmic dimension S(BR)σ with high

probability. In order to further reduce the rate, we use the posterior reference map of W with respect

to ρBR such that its action on the source produces the state ρA. Each basis vector in the reconstruction

space can be thought of as covering a subspace of normalized logarithmic dimension of S(E)σ in the

reference space. Therefore, one needs a rate of coherent information (which is the difference of the two

entropies) to cover the entire source space with high probability. A similar observation was made for the

quantum channel coding problem in [30].

Remark 3 (Comparison with Schumacher’s lossless compression). Schumuacher’s compression [1] re-

quires limn→∞ ‖ωB
n
RA

n−Ψ
BnRB

n

ρ ‖ = 0. In the current formulation, if one chooses the identity map as the

posterior reference map, i.e., NW = IAR→BR , we require the condition limn→∞ ‖ωB
n
RA

n−Ψ
AnRA

n

ω ‖ = 0.

Using Lemma 2, monotonicity of the trace norm, and the triangle inequality, one can show that the

two conditions are equivalent. Subsequently, both formulations yield the same asymptotic performance

limit of von Neumann entropy. Observe that the standard source coding formulation using the average

single-letter distortion criterion at zero distortion level is not equivalent to Schumacher’s compression.

Remark 4 (Comparison with average single-letter rate distortion). Given any sequence of (n,Θ) lossy

quantum compression protocol for a quantum source coding setup (ρB,HA,NW ) that achieves the

optimality in Theorem 1, we observe that the following is true. Let ωB
n
RA

n

=∆ (I⊗N (n)
D )(I⊗N (n)

E )(Ψ
BnRB

n

ρ )

be the induced state of the n-letter reference and the reconstruction by the protocol. Since the protocol

satisfies (2), by monotonicity of trace distance, we obtain

lim
n→∞

‖ωBRiAi − (NW ⊗ IA)(ΨARiAi
ω )‖1 = 0, ∀ 1 ≤ i ≤ n,

where ΨARiAi
ω =∆ TrAn\iAn\iR

[Ψ
AnRA

n

ω ]. It is worth noting that ΨARiAi
ω is not necessarily a pure state.

Moreover, this does not necessarily provide any guarantee on the average single-letter distortion between

the reference and the reconstruction as considered in the standard formulation of the problem [7, Lemma

1], where a single-letter purification of the source is taken into account. From this perspective, the current

formulation is more “optimistic” in terms of measuring the quality of the reconstruction.

Remark 5 (Comparison with Entanglement Assistance). We note that

Ic(NW , ρAR) =
1

2
[I(BR;A)σ − I(A;E)σ] ≤ 1

2
I(BR;A)σ,

where σBRAE =∆ (I ⊗ V )ΨBRB
ρ (I ⊗ V )†, and V : HB → HA ⊗ HE is a posterior reference map of

W with respect of ρBR . It was shown in [7] that 1
2I(BR;A)σ characterizes the asymptotic performance
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limit for the rate-distortion problem (with a local single-letter distortion function) with unlimited entan-

glement assistance. Hence, this also provides a lower bound on the asymptotic performance limit for the

corresponding problem in the unassisted case. Fortunately, this does not lead to any contradiction, as

the current formulation differs from the former by being more optimistic.

B. Lossy Quantum-Classical Source Coding

This section provides the main results regarding the quantum-to-classical (QC) setup. A memoryless

quantum information source is characterized by ρB ∈ D(HB).

Definition 5 (QC Source Coding Setup). A QC source coding setup is characterized by a triple (ρB,X,W)

where ρB is the source density operator acting on HB , X is the reconstruction alphabet, and W : X→

D(HB) is a single-letter posterior classical-quantum (CQ) channel.

Definition 6 (Lossy QC Compression Protocol). For a given source density operator ρB and the re-

construction alphabet X, an (n,Θ) lossy QC compression protocol is characterized by (i) a POVM

Γ(n) =∆ {Am}Θm=1 and (ii) a decoding map f : {1, 2, · · · ,Θ} → Xn, as shown in Figure 3.

Figure 3. Illustration of Quantum-Classical Lossy Source Compression Protocol.

Definition 7 (Achievability). For a given QC source coding setup (ρB,X,W), a rate R is said to be

achievable if for all ε > 0 and all sufficiently large n, there exists an (n,Θ) QC lossy compression

protocol such that 1
n log Θ ≤ R+ ε, and Ξ(Γ(n), f) ≤ ε, where

Ξ(Γ(n), f) =∆
∑
xn

∥∥∥∥∥
√
ρB⊗nAf−1(xn)

√
ρB⊗n − Tr

(
Af−1(xn)ρ

B⊗n
) n⊗
i=1

Wxi

∥∥∥∥∥
1

. (3)

In other words, the post-measurement reference state should look like n-tensored posterior CQ chan-

nel W⊗n. Our objective is to characterize the set of all achievable rates using single-letter quantum

information quantities.
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Theorem 2 (Lossy QC Source Compression Theorem). For a (ρB,X,W) QC source coding setup, a

rate R is achievable if and only if A(ρB,W) is non-empty, and

R ≥ min
PX∈A(ρB ,W)

I(X;BR)σ,

where the quantum mutual information is computed with respect to the classical-quantum state,

σXBR =∆
∑
x

PX(x) |x〉〈x|X ⊗Wx,

A is the set of reconstruction distributions defined as

A(ρB,W) =∆ {PX ∈ P(X) :
∑
x

PX(x)Wx = ρB},

and {|x〉}{x∈X} is an orthonormal basis for the Hilbert space HX with dim (HX) = |X|.

Proof. A proof of the achievability is provided in Section VI-A, and a converse proof is provided in

Section VI-B.

C. Lossy Classical Source Coding

Consider a stationary discrete memoryless source (DMS) X characterized by a source distribution PX

over a finite alphabet X.

Definition 8 (Source Coding Setup). A source coding setup is characterized by a triple (PX , X̂,WX|X̂)

where PX is the source distribution over a finite alphabet X, X̂ is the reconstruction alphabet, and

WX|X̂ : X̂ → X is the posterior (backward) channel, i.e., the single-letter conditional distribution of

source given the reconstruction.

We use PnX and Wn
X|X̂ to denote IID distributions, i.e.,

PnX(xn) =

n∏
i=1

PX(xi) and Wn
X|X̂(xn|x̂n) =

n∏
i=1

WX|X̂(xi|x̂i).

Definition 9 (Lossy Source Compression Protocol). For a given source distribution PX and reconstruction

alphabet X̂, an (n,Θ) lossy source compression protocol consists of (i) a randomized encoding map

E(n) : Xn −→ [Θ] and (ii) a randomized decoding map D(n) : [Θ] −→ X̂n, as shown in Figure 4.

Figure 4. Illustration of Lossy Classical Source Compression Protocol.
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Definition 10 (Achievability). Given a source coding setup (PX , X̂,WX|X̂), a rate R is said to be

achievable if for all ε > 0 and all sufficiently large n, there exists an (n,Θ) lossy source compression

protocol such that 1
n log Θ ≤ R+ ε, and Ξ(E(n),D(n)) ≤ ε, where

Ξ(E(n),D(n)) =∆
1

2

∑
xnx̂n

∣∣∣∣∣PXnX̂n(xn, x̂n)− PX̂n(x̂n)

n∏
i=1

WX|X̂(xi|x̂i)

∣∣∣∣∣ , (4)

and

PXnX̂n(xn, x̂n) = PnX(xn)
∑
m∈[Θ]

E(n)(m|xn)D(n)(x̂n|m), for all (xn, x̂n) ∈ Xn × X̂n,

is the system-induced distribution, and PX̂nW
n
X|X̂ is the approximating distribution.

In other words, the posterior distribution of the source given the reconstruction should look like n-

product posterior channel Wn
X|X̂ . Our objective is to characterize the set of all achievable rates using

single-letter information quantities.

Theorem 3 (Lossy Source Compression Theorem). For a (PX , X̂,WX|X̂) source coding setup, a rate R

is said to be achievable if and only if A(PX ,WX|X̂) is non-empty, and

R ≥ min
PX̂∈A(PX ,WX|X̂)

I(X; X̂), (5)

where A is the set of reconstruction distributions defined as

A(PX ,WX|X̂) =∆ {PX̂ ∈ P(X̂) :
∑
x̂

PX̂(x̂)WX|X̂(x|x̂) = PX(x), for all x ∈ X}.

Proof. A proof of the achievability is provided in Section VII-A, and a converse proof is provided in

VII-B.

Remark 6 (Comparison with Shannon’s noiseless source compression). Noiseless source compression

requires limn→∞ P (Xn 6= X̂n) = 0. In the current formulation, if one chooses the identity posterior chan-

nel, i.e., WX|X̂(x|x̂) = 1{x=x̂}, for all x ∈ X, x̂ ∈ X̂, we require limn→∞

∥∥∥PXnX̂n − PX̂nW
n
X|X̂

∥∥∥
TV

= 0.

One can easily see that the two conditions are equivalent, and both formulations yield the same asymptotic

performance limit of Shannon’s entropy. However, the standard source coding formulation using the

average single-letter distortion criterion at zero distortion level is not equivalent to noiseless source

compression.

IV. ILLUSTRATIVE EXAMPLES

Example 1 (Quantum Source Coding using Bit-Flip Channel). In this example, we analyze the per-

formance of a lossy quantum compression protocol corresponding to a quantum source coding setup
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(ρB,HA,NW ), where ρB is chosen as the maximally mixed state (ρB = IB/2), and NW : HAR → HBR
is specified as a bit-flip channel. An isometry W : HAR → HBR ⊗HE for NW can be specified as

W =
√

1− pI ⊗ |0〉E +
√
pX ⊗ |1〉E ,

where NW (ρAR) = TrE(WρARW †) for all p ∈ (0, 1/2). Note that the canonical purification |ψρ〉BRB

of ρB is given by

|ψρ〉BRB =
1√
2

(
|0〉BR |0〉B + |1〉BR |1〉B

)
, (6)

where |0〉BR =∆ (I ⊗ 〈0|B) |Γ〉BRB . This implies, ρBR = IBR/2. To compute the asymptotic performance

of the protocol for this source coding setup, as characterized by Theorem 1, we first need to identify a

ρAR such that NW (ρAR) = ρBR . A simple computation reveals S(ρB,NW ) = {IAR/2}. This gives

min
ρAR∈S(ρB ,NW )

I+
c (NW , ρAR) = Ic(NW , IAR/2) = S(BR)σ − S(E)σ,

where σBRE = WρARW †. Note that σBR = IBR/2 and σE = (1 − p) |0〉〈0|E + p |1〉〈1|E , which gives

Ic(NW , IAR/2) = 1 − hb(p), where hb(p) =∆ −p log(p) − (1 − p) log(1− p). Therefore, a maximally

mixed source can be compressed at a rate 1−hb(p) while satisfying the error criterion as defined in (2).

Example 2 (Quantum Source Coding using Depolarizing Channel). In this example, we study the

performance of another candidate channel, namely a depolarising channel. We again proceed with the

objective of compressing a maximally mixed state ρBR =
IBR

2 , with NW defined as

NW (ρAR) =

(
1− 3p

4

)
ρAR +

p

4
(XρARX† + Y ρARY † + ZρARZ†).

for some p ∈ [0, 1]. A simple calculation to satisfy NW (ρAR) = ρBR =
IBR

2 reveals S(ρB,NW ) =

{IAR/2}, for all p ∈ (0, 1). Analogous to the above example, finding an isometric extension of NW gives

min
ρAR∈S(ρB ,NW )

I+
c (NW , ρAR) = I+

c (NW , IAR/2) = max
{

0, 1− hb(3p/4)− 3p

4
log(3)

}
.

Example 3 (Hamming codes for quantum source compression). In this example, we look at how Hamming

codes perform when evaluated using the standard single-letter (local) entanglement fidelity criterion.

Hamming codes are perfect codes, and achieve the Delsarte upper bound on the covering radius [56].

Again, let ρB = IB
2 . Let a maximally entangled bipartite state |ψm〉BRB , defined as

|ψm〉BRB =
1√
2

(
|00〉BRB + |11〉BRB

)
, (7)

be the purification of ρB . Let F2 denote a binary finite field, and let G ∈ Fk×n2 be the generator matrix of

a Hamming code. To encode ρB , we appeal to the duality perspective, and use the decoder of a Hamming

code. Then the encoding is defined as E(xn) =∆ argminuk{wH(uk G⊕ xn)}, for all xn ∈ Fn2 , where wH
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denotes the Hamming weight. Similarly, the decoder can be described as mapping D◦E((xn)) = E(xn)G.

We describe this encoding as an isometric action VH : H⊗nB → H⊗nA ⊗H
⊗n
E taking the basis |xn〉B

n

to a

vector |E(xn)〉A
n

⊗ |xn ⊕ E(xn)〉E
n

∈ H⊗nA ⊗H
⊗n
E , where the subsystem H⊗nA stores the reconstruction

and H⊗nE is eventually traced out, and HA is assumed to be an isomorphic copy of HB . This implies

that the encoded state can be characterized as

ρB
n
RA

n

= TrEn
{
VH
∣∣ψ⊗nm 〉〈

ψ⊗nm
∣∣BnRBn V †H} .

Using

VH
∣∣ψ⊗nm 〉BnRBn =

1√
2n

∑
xn

|xn〉BnR |E(xn)〉An |x
n ⊕ E(xn)〉En

=
1√
2n

∑
cn∈C

∑
en∈Fn2 :wH(en)≤1

|cn ⊕ en〉BnR |c
n〉An |e

n〉En ,

we can simplify ρB
n
RA

n

as

ρB
n
RA

n

=
1

2n

∑
cn,c′n,en

|cn ⊕ en〉 〈c′n ⊕ en| ⊗ |cn〉 〈c′n|, (8)

where C denotes the set of codewords of the Hamming code. To compute the single-letter entanglement

fidelity, we compute

ρBRiAi = TrBn\iR An\i

{
ρB

n
RA

n}
=

1

2n

∑
cn,en

|ci ⊕ ei〉 〈ci ⊕ ei| ⊗ |ci〉 〈ci| , (9)

where tracing is performed on all the subsystems except corresponding to B
n\i
R An\i, and the second

equality follows from using the fact that minimum Hamming distance of any Hamming code is three.

This gives,

〈ψBRBm |ρBRiAi |ψBRBm 〉 =
1

2

1

2n

∑
cnen

[
1{ci⊕ei=0,ci=0} + 1{ci⊕ei=1,ci=1}

]
=

1

2n+1

∑
cnen

1{ei=0}. (10)

Therefore,

1

n

n∑
i=1

〈ψmBRB|ρBRiAi |ψmBRB〉 =
1

2n+1n

∑
cnen

n∑
i=1

1{ei=0} =
|C|n2

2n+1n
=

n

2 · 2n−k
. (11)

We know that for Hamming codes k = 2r − r − 1 and n = 2r − 1, which simplifies as

1

n

n∑
i=1

〈ψmBRB|ρBRiAi |ψmBRB〉 =
2r − 1

2 · 2r
, (12)

and goes to half as r goes to infinity. Note that r → ∞ serves as both a demonstration of the code’s

asymptotic performance and the condition for the rate k/n to reach unity. This results in a discontinuous

asymptotic performance, since at rate exactly one, trivial identity encoding can be used to achieve the

average single-letter fidelity of unity. Further, note that S(En) = log(n+ 1) = r. Hence the normalized
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amount of qubits that is dissipated, given by S(En)
n , approaches zero as r →∞, indicating that there is

significant entanglement between the reconstruction and the reference.

As was demonstrated in Example 1, it is possible to compress a maximally mixed source in a continuous

fashion, when the error is measured in accordance with the suggested definition in (2),

Example 4. (Lossy QC Source Coding for Binary Quantum Source with Binary Symmetric Posterior CQ

Channel) We develop an example similar to that studied in [11]. Here we analyze the performance of

the lossy QC source compression protocol corresponding to a lossy source coding setup (ρB,X,W). The

quantum source ρB generates the state |+〉 and |0〉 with probability p and (1 − p), respectively, where

p ∈ [0, 1/2], so the source density operator can be written as

ρB = p |+〉〈+|+ (1− p) |0〉〈0| ,

the reconstruction set X = {0, 1}, and the posterior CQ channel Wx = (1− q) ωx + q ωx̄, where

ω0 =
1

4
|+〉〈+|+ 3

4
|0〉〈0| , ω1 =

3

4
|+〉〈+|+ 1

4
|0〉〈0| ,

q ∈ [0, 1/2], and x̄ =∆ x ⊕ 1. Toward identifying the set A, we assume PX(0) = r, which characterizes

the set A, and solve the following

ρB = rW0 + (1− r)W1, 0 ≤ r ≤ 1. (13)

This gives,

A(ρB,W) =



{
1
2 + 1−2p

1−2q

}
if 0 ≤ q ≤ 2 min

{(
3
4 − p

)
,
(
p− 1

4

)}
, q < 1

2

[0, 1] if q = p = 0.5

φ otherwise,

where φ denotes the empty set. We now compute the asymptotic performance described in Theorem 2.

For the above source coding setup, we have

I(X;BR)σ = S(ρB)− rS(W0)− (1− r)S(W1). (14)

where

σXBR =∆ r |0〉〈0| ⊗W0 + (1− r) |1〉〈1| ⊗W1.

Figure 5 shows the QC lossy source compression rate curve for the range of values of the parameter q

and source ρB with p = 0.4 and 0.5. Note that the curve decreases monotonically with q, as expected.

Example 5. (Lossy Classical Source Coding for Binary Source with Binary Symmetric Channel (BSC) as

Posterior Channel) In this example, we analyze the performance of the lossy source compression protocol
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Figure 5. Example for Lossy QC Source Coding for Binary Quantum Source with Binary Symmetric Posterior CQ Channel.

corresponding to a lossy source coding setup (PX , X̂,WX|X̂), where PX ∼ Bernoulli(p), X̂ = {0, 1},

WX|X̂ ∼ BSC(q), and p, q ∈ [0, 1/2]. Toward identifying the set A, we assume PX̂(0) = r, which

characterizes the set A, and solve the following system of linear equations:

p = r(1− q) + (1− r)q and (1− p) = rq + (1− r)(1− q). (15)

This gives,

A(PX ,WX|X̂) =



{
p−q
1−2q

}
if 0 ≤ q ≤ min{p, (1− p)}, q < 1

2

[0, 1] if q = p = 0.5

φ otherwise,

where φ denotes the empty set. We now compute the asymptotic performance described in Theorem 3.

For the above source coding setup, we have

I(X; X̂) = H(X)−H(X|X̂) = hb(p)− hb(q). (16)

Moreover, observe that the rate in (16) is identical to the rate-distortion function for a Bernoulli(p) source

with Hamming distortion criterion for D < p [57, Theorem 10.3.1].

V. PROOF OF THEOREM 1

A. Achievability Proof Overview

We provide a brief overview of the achievability proof before formally presenting one. The proof we

present here is inspired by Devetak’s work in [32] for the quantum channel communication problem

(also detailed in [50, Chapter 24]). An integral component of that work is the decomposition of coherent

information as the difference of two Holevo information quantities. We intend to perform a similar
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decomposition, but from the perspective of the given map NW . Toward this, for the given source ρB ,

we first search for a ρAR ∈ D(HAR), satisfying NW (ρAR) = ρBR . Once found, using the spectral

decomposition, we expand ρAR as ρAR =
∑

a∈A λ
A
a |a〉〈a|

AR , for some finite set A. Observe that since

|a〉〈a|AR is pure, S(NW (|a〉〈a|AR)) = S(N c
W (|a〉〈a|AR)), where N c

W : HAR → HE is a complementary

CPTP map of NW , defined using the Stinespring’s dilation W : HAR → HBR ⊗ HE corresponding to

NW . This also means that∑
a∈A

λAa S(NW (|a〉〈a|AR)) =
∑
a∈A

λAa S(N c
W (|a〉〈a|AR)).

Furthermore, from the linearity of CPTP maps, we see∑
a∈A

λAaNW (|a〉〈a|AR) = NW (ρAR) and
∑
a∈A

λAaN c
W (|a〉〈a|AR) = N c

W (ρAR).

This implies, we can rewrite Ic(NW , ρAR) as

Ic(N , ρAR) = S(NW (ρAR))− S(N c
W (ρAR))

=

[
S(NW (ρAR))−

∑
a∈A

S(λAaNW (|a〉〈a|AR))

]
−

[
S(N c

W (ρAR))−
∑
a∈A

λAa S(N c
W (|a〉〈a|AR))

]

= χ
({
λAa ,NW (|a〉〈a|AR)

})
− χ

({
λAa ,N c

W (|a〉〈a|AR)
})

. (17)

Now our aim is to show the achievability of a rate equal to the above difference. After obtaining a

similar decomposition, Devetak achieved the performance limit by applying a coherent version of the

CQ packing lemma [50, Chapter 16] followed by an application of the QC covering lemma [50, Chapter

17]. Inspired by this, and the duality connections between the two problems, we achieve the difference

obtained in (17). In particular, we start with the objective of applying a coherent version of the QC

covering lemma (or the measurement compression result [27]). Toward this, as shown in Figure 1, we

first obtain a posterior reference map V corresponding to the isometry W . Then we identify the action of

V on the state ρB as a coherent quantum measurement. Now, using the approximating POVMs constructed

in [27], we perform a coherent covering that allows us to compress the obtained measurement, and in

turn the output of V , at rate given by the first Holevo information. The compression is performed while

faithfully simulating the action of V , giving a reconstruction satisfying the error criterion (as in (2)).

This procedure is delineated in Step 1.1 where an encoder is constructed to perform coherent covering

and in Step 2.1 where the effect of covering is analyzed, and a rate corresponding to the first Holevo

information is achieved.

To get the needed coherent information, the rate corresponding to the second Holevo information must

be further decreased. This entails diffusing more data or qubits into the environment (partial tracing).
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However, as will be demonstrated in the proof below, such an action would destroy quantum correlations

present in the source, possibly turning it into a classical mixture. Therefore, before such partial tracing

operation, in Step 1.2 (Section V-B) we construct a unitary operation that can condense the information

into fewer qubits in the form of entanglement, and thus allowing for further decrease in the rate. This

includes using the coherent post-measurement state of the subsystem E as side information available at

the encoder. The Step 2.2 of Section V-B details this procedure and achieves the desired rate. Finally, an

additional step (Step 2.3) is required to show the intended closeness as required in (2).

Another intriguing aspect of the proof is the technique used for expurgation. As clear from the definition

of the protocol, it only allows unitary or isometric operations, followed by partial tracing. When a code

contains repeated codewords, it can be difficult to guarantee this. An approach to removing all repetitions

is to perform expurgations. This is achieved by finding a good code (satisfying all its constraints) while

allowing a small fraction of repeats and then expurgating just this fraction of the code. However, if there

are exponentially many constraints, it becomes challenging to finding a good code. The exponentially

many covering constraints in Devetak’s problem have a doubly exponential decreasing probability of error,

which Devetak was able to take advantage of. In the current problem we instead have exponentially many

packing constraints which only have an exponential decay. In order to combat this, we construct our proof

to just require one packing constraint: the average of all exponentially many packing constraints. This

enables us to find a good code and successfully expurgate it. We now formally construct the arguments

toward proving the statement of the theorem.

B. Proof of Achievability

The proof is mainly composed of four parts. In the first part, we develop the necessary single-letter

ensembles required in the proof. In the next part, we provide the random coding setup and the distributions

on the ensembles with which the codewords are generated. We also state here the constraints that a good

code must satisfy and argue the existence of one code with non-zero probability. We further use an

expurgation strategy to make all the codewords distinct. In the third part, we construct a protocol by

developing all the actions of the encoder and the decoder and describing them as unitary (or isometry)

evolutions. Note that the only actions allowed by the protocol (Definition 3) are quantum channels which

can be described as unitary or isometric evolutions followed by partial trace operations. In parallel,

we also provide the necessary lemmas needed for the next part. The last part deals with analyzing the

action of encoding and decoding operations on the source ρB , and then bounding the trace distance as

in Definition 3.
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Toward this, fix two positive integers M and K, and ε ∈ (0, 1). Let M and K denote the sets

[0,M−1] and [0,K−1], respectively. Given a quantum source coding setup (ρB,HA,NW ), let |ψρ〉BRB

be the canonical purification of ρB and ρBR =∆ TrB{Ψρ
BRB}. Moreover, let HAR be the reference

space associated with HA. Now choose ρAR ∈ S(ρB,NW ). Let HE denote the Hilbert space such that

W : HAR → HBR ⊗ HE forms an isometric extension (or Stinespring’s dilation) of NW according to

[50, Definition 5.2.1] with dim(HE) ≥ dim(HBR). As shown in Figure 1, define a posterior reference

isometry of W with respect to ρBR (according to Definition 1) as the isometry V : HB → HA ⊗ HE
satisfying (W ⊗ IA) |ψρ〉ARA = (IBR ⊗ V ) |ψρ〉BRB where |ψ〉ARA is the canonical purification of ρAR .

Let ρA =∆ TrBRE{(I ⊗ V )Ψρ
BRB(I ⊗ V )†}.

1) Defining the ensembles: In this section, we construct the single-letter ensembles corresponding

to two Holevo information quantities used in the decomposition of coherent information discussed in

Section V-A. We begin by using the definition of W to obtain,

(IBR ⊗ V ) |ψρ〉BRB = (W ⊗ IA) |ψ〉ARA =
∑
a∈A

√
λAaW |a〉

AR ⊗ |a〉A , (18)

where we use ρA =
∑

a∈A λ
A
a |a〉〈a|

A as its spectral decomposition, and define |a〉AR =∆ (IAR ⊗

〈a|A) |Γ〉ARA for a ∈ A, for some finite set A. This also gives,

W |a〉AR =
(〈a|A ⊗ IBRE)(IBR ⊗ V ) |ψρ〉BRB√

λAa
. (19)

Using the spectral decomposition of ρB as ρB =
∑

b∈B λ
B
b |b〉〈b|

B , for b ∈ B for some finite set B, we

can rewrite the action of V on ρB as

(IBR ⊗ V ) |ψρ〉BRB =
∑
b∈B

√
λBb |b〉

BR ⊗ V |b〉B

=

(
IBR ⊗ IE ⊗

∑
a∈A
|a〉〈a|A

)∑
b∈B

√
λBb |b〉

BR ⊗ V |b〉B

=
∑
a∈A

∑
b∈B

√
λBb |b〉

BRMa |b〉B ⊗ |a〉A , (20)

where we define |b〉BR =∆ (IBR ⊗ 〈b|
B) |Γ〉BRB , and Ma : HB → HE as

Ma =∆
(
IE ⊗ 〈a|A

)
V. (21)

By defining a POVM Λ =∆ {M †aMa}a∈A, we can identify a coherent measurement (isometry) UΛ

corresponding to Λ with UΛ =∆
∑

a∈AMa ⊗ |a〉A, and therefore express the action of V as

(IBR ⊗ V ) |ψρ〉BRB = (IBR ⊗ UΛ) |ψρ〉BRB . (22)
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Now our objective is to faithfully simulate the action of the isometry (or the coherent measurement) UΛ

while using an exponentially smaller subspace in HAn . Equivalently, we intend to minimize the amount

of qubits needed to represent the quantum state in the Hilbert space HAn . Employing Schumacher’s

compression [1], one can only achieve a rate of Von-Neumann entropy while faithfully simulating UΛ.

However, since UΛ is a coherent measurement, we employ a coherent version of the measurement

compression protocol [27] and demonstrate a faithful simulation of the isometry while further decreasing

the resource requirement. In particular, an approximating coherent measurement (henceforth referred to

as the covering isometry) UM is constructed to faithfully simulate the action of UΛ while requiring the

rate equal to Holevo quantity corresponding to the canonical ensemble {λAa , ρ̂BRa }, where

ρ̂BRa =∆
√
ρBR(M †aMa)

T
√
ρBR

λAa
and (M †aMa)

T =∆
∑
b,b′

|b〉 〈b′|BR〈b′|(M †aMa) |b〉B . (23)

Observe that using the definition of Ma from (21), it follows

Tr
{
M †a′Maρ

B
}

= Tr
{

(IBRE ⊗ 〈a|)V |ψρ〉〈ψρ|
BRB V †(|a′〉 ⊗ IBRE)

}
=
∑
b

√
λAa λ

A
a′ Tr

{
〈b|W |a′〉 〈a|W † |b〉

}
=
∑
b

√
λAa λ

A
a′ 〈a|W

† |b〉〈b|W |a′〉 = λAa · 1{a=a′}, (24)

for all a, a′ ∈ A, where the first equality uses the definition of Ma, and the second follows from using

the relation (18). Using the simplification from (19), it is useful to note

W |a〉AR =
(IBR ⊗Ma) |ψρ〉BRB√

λAa
. (25)

For the second Holevo information, we define the packing ensemble {λEa , τEa } as

τEa =∆
TrBR (IBR ⊗Ma)Ψ

BRB
ρ (IBR ⊗Ma)

†

λEa
=
Maρ

BM †a
λEa

, and λEa =∆ λAa . (26)

The discussion on how this ensemble is employed to reduce the rate follows in the sequel.

2) Random Coding and Expurgation: In this section, we construct the random coding argument,

and simultaneously, define all the conditions that pertain to the construction of a good random code.

Subsequently, we randomly generate one code that satisfies these constraints. We then expurgate this

code to ensure no repetitions are present. Toward constructing an approximating coherent measurement

UM, randomly and independently select |M|×|K| sequences An(m, k) according to the following pruned

distribution

P (An(m, k) = an) =


λAan

(1− ε)
for an ∈ T (n)

δ (A)

0 otherwise,
(27)
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where ε =
∑

an /∈T (n)
δ (A) λ

A
an , T (n)

δ (A) is the δ-typical set corresponding to the distribution λAa on the set

A, and λAan =∆ Πn
i=1λ

A
ai . Let C(m) denote the codebook {An(m, k)}k∈K for a given m, and C denote the

collection of all codebooks {C(m)}m∈M. Further, for each an ∈ T (n)
δ (A) define

ρ̃BRan =∆ π̂πρBRπan ρ̂
BR
a πanπρBR π̂, (28)

and ρ̃BRan = 0, for an /∈ T (n)
δ (A), where ρ̂BRa =∆

⊗
i ρ̂
BR
ai , πρBR and πan are the δ−typical and condi-

tionally typical projectors defined as in [50, Def. 15.1.3] and [50, Def. 15.2.4], with respect to ρBR =∑
a∈A λ

A
a ρ̂

BR
a and ρ̂BRa , respectively, and π̂ is the cut-off projector as defined in [27]. Using the Average

Gentle Measurement Lemma [50, Lemma 9.4.3], for any given ε ∈ (0, 1), and all sufficiently large n

and all sufficiently small δ, we have ∑
an∈An

λAan‖ρ̂BRan − ρ̃BRan ‖1 ≤ ε. (29)

A detailed proof of the above statement can be found in [58, Eq. 35]. Using these definitions, construct

operators

A
BnR
an =∆ γan

(√
ρBR⊗n

−1

ρ̃BRa

√
ρBR⊗n

−1)
, γan =∆

1− ε
1 + η

1

|M||K|
|{(m, k) : An(m, k) = an}|, (30)

and η ∈ (0, 1) is a parameter that determines the probability of not obtaining a sub-POVM. Note that

in the definition of AB
n
R

an the right hand side operates on HBnR , however, we define Aan belonging to

L(HAn). To obtain this, we transform A
BnR
an as

Aan =
∑
bn,b̄n

〈bn|AB
n
R

an |b̄n〉BR |bn〉 〈b̄n|B.

Then construct a sub-POVM Γ(n) as

Γ(n) =∆ {Aan : an ∈ T (n)
δ (A)}. (31)

Let 1{sP} denote the indicator random variable corresponding to the event that Γ(n) forms a sub-POVM.

We have the following result.

Proposition 1. For any ε ∈ (0, 1), any η ∈ (0, 1), any δ ∈ (0, 1) sufficiently small, and any n sufficiently

large, we have E
[
1{sP}

]
> 1− ε, if 1

n (logM + logK) > χ(λBRa , ρ̂BRa ).

Proof. The result follows from [27].

Define the code dependent random variables E1 and E2 as

E1 =∆
∑
m∈M

∑
k∈K

(|M||K|)−1 Tr
{
ρ̃BRm,k

}
, and E2 =∆

∑
m∈M

∑
k∈K

(|M||K|)−1
∥∥∥ρ̃BRm,k − ρ̂BRm,k∥∥∥

1
,
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where ρ̂BRm,k, and ρ̃BRm,k are used as shorthand notations to denote ρ̃BRan(m,k) and ρ̃BRan(m,k), respectively.

Further, using the results [58, Eq. (28) and Eq. (35)], for all ε ∈ (0, 1), we have E[E1] ≥ 1 − ε, and

E[E2] ≤ ε, for all sufficiently large n and all sufficiently small δ > 0.

Now, considering the ensemble {λEa , τEa }, we construct the operators {τEan(m,k)} using the codebook

C and the distribution defined in (27), where τEan =∆
⊗

i τ
E
ai . For this ensemble, we construct a collection

of n-letter POVMs, one for each m ∈ M, capable of decoding the message k ∈ K. In particular, we

employ the Holevo POVMs [28] defined as

ξ
(m)
k =∆ πτπ

(m)
k πτ and Ξ

(m)
k =∆

(∑
k′∈K

ξ
(m)
k′

)−1/2

ξ
(m)
k

(∑
k′∈K

ξ
(m)
k′

)−1/2

, (32)

where πτ is the δ−typical projector (as in [50, Def. 15.1.3]) defined for the density operator τ =∆∑
a∈A λ

E
a τ

E
a , and π(m)

k denotes the strong conditional typical projectors (as in [50, Def. 15.2.4]) for the

operators τan(m,k). For these POVMs, we know the average probability of error can be made arbitrarily

small. More formally, we have the following.

Proposition 2. Given the ensemble {λEa , τEa } and the collection of POVMs {Ξ(m)
k }k, for any ε ∈ (0, 1),

E

[
1

|K|
∑
k∈K

Tr
{

Ξ
(m)
k τ

(m)
k

}]
≥ 1− ε, (33)

for sufficiently small δ > 0 and for all sufficiently large n, and for all m ∈M, if 1
n logK < χ({λEa , τEa }),

where τ (m)
k is used as a shorthand for τan(m,k).

Proof. The proof follows from the result of classical communication over quantum channels [28] or

the packing lemma of [50, Lemma 16.3.1] while making the following identification. For each m ∈

M, identify M with K, X with T (n)
δ (A), {σCm}m with {τ (m)

k }k, Π with πτ , Πx with π
(m)
k , d with

2n(S(E|A)τ̄+δ̄), D with 2n(S(E)τ̄−δ̄), and Λm with Ξ
(m)
k , where τ̄AE =∆

∑
a λ

E
a |a〉〈a|A⊗ τEa and δ̄(δ)↘ 0

as δ ↘ 0.

The above result also implies a weaker average result which suffices here. This can be stated as E[E3] ≥

1− ε, for sufficiently small δ > 0 and for all sufficiently large n, if 1
n logK < χ({λEa , τEa }), where

E3 =∆
1

MK

∑
m∈M

∑
k∈K

Tr
{

Ξ
(m)
k τ

(m)
k

}
. (34)

Finally, toward finding a good code, we need one last property which is that all its codewords

are distinct. In the dual, the quantum channel communication problem [32], Devetak used the double

exponential decay of the covering error to argue the existence of an expurgated code for exponentially

many covering constraints. However, in the current problem, we have exponentially many packing
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constraints, with each having only an exponential decay in the error. To resolve this issue, we develop

a proof that only requires the average of the packing constraints. However, in such a case, it becomes

unclear as to what should be the expurgation strategy. For this, we introduce another event that captures

the non-distinctness of the codebook, and expurgate with respect to this event. Precisely, we define a

codeword An(m, k) is bad if there exists (m′, k′) 6= (m, k) such that An(m, k) = An(m′, k′). Let

E4 =∆
1

MK

∑
m∈M

∑
k∈K

1{An(m,k) is bad}.

Computing its expectation, we get

E[E4] = E

[
1

MK

∑
m∈M

∑
k∈K

1{∃(m′,k′)6=(m,k) such that An(m,k)=An(m′,k′)}

]
a
≤ 1

MK

∑
m,m′∈M
k,k′∈K

(m,k) 6=(m′,k′)

∑
an∈T (n)

δ (A)

E
[
1{An(m,k)=an}

]
E
[
1{An(m′,k′)=an}

] b
≤MK2−n(S(λAa )−δ1) ≤ ε, (35)

for all sufficiently large n and sufficiently small δ > 0 if 1
n (logM + logK) < S(λAa ), where (a) uses

the mutual independence of the codewords, and (b) define δ1 as δ1(δ, ε) ↘ 0 as δ, ε ↘ 0. Using the

Markov inequality and the union bound, we have

P
(
{1{sP} = 1} ∩

{
E1 ≥ 1−

√
ε
}
∩
{
E2 ≤

√
ε
}
∩
{
E3 ≥ 1−

√
ε
}
∩
{
E4 ≤

√
ε
})
≥ 1− 5

√
ε.

Therefore, for all ε ∈ (0, 1/25), and for all sufficiently small δ > 0, for all sufficiently large n there

exists a code C that satisfies the conditions {1{sP} = 1}, {E1 ≥ 1−
√
ε}, {E2 ≤

√
ε}, {E3 ≥ 1−

√
ε},

and {E4 ≤ ε}, simultaneously if

1

n
(logM + logK) > χ(λBRa , ρ̂BRa ),

1

n
logK < χ({λEa , τEa }),

1

n
(logM + logK) < S(λAa ). (S-0)

At this point, we choose one such code C satisfying all the above conditions, and fix it for the rest of

the analysis.

Toward showing that this chosen code achieves the asymptotic performance stated in the theorem

statement, we expurgate the code C with respect to the random variable E4, ensuring that the code has all

distinct codewords. The assumption of codebook being distinct becomes crucial at multiple places in the

proof and will be highlighted as necessary. Since {E4 ≤
√
ε} ensures at most

√
εMK codewords in C are

not distinct, we remove
√
εMK codewords from C. This is performed by first removing all the non-distinct

codewords, and then further removing some more from the distinct ones arbitrarily (if needed) until we

remain with a total of (1−
√
ε)MK codewords. Let the expurgated set (the remainder of the codewords)

be denoted by CE , and define the sets C(m)
E as C(m)

E =∆ CE ∩ C(m). Observe that, all the codewords in CE
are distinct. However, as opposed to C which was consistent with regards to the size of C(m) (equal to



24

K for all m ∈ M), CE has varying sizes. Therefore, we define K ′m to denote the size of C(m)
E and M ′

to denote number of non-empty sets in the collection {C(m)
E }m∈M. Note that for some m ∈ M, K ′m

may be zero. Let M′ denote the subset of M for which K ′m > 0, and let H′M denote the corresponding

Hilbert space with dim(H′M ) = M ′+ 1. As is evident,
∑

m∈M′ K
′
m = (1−

√
ε)MK. In addition, define

the set of indices corresponding to the expurgated codebook as I(m)
E =∆ {k : an(m, k) ∈ C(m)

E } and

IE =∆ {(m, k) : an(m, k) ∈ CE}. Further, for the expurgated code, we have

E′1 =∆
1

(1−
√
ε)|M||K|

∑
m∈M′

∑
k∈I(m)

E

Tr
{
ρ̃BRm,k

}
≥ 1− 2

√
ε, (36)

E′2 =∆
1

(1−
√
ε)|M||K|

∑
m∈M′

∑
k∈I(m)

E

∥∥∥ρ̃BRm,k − ρ̂BRm,k∥∥∥
1
≤

√
ε

1−
√
ε
≤ 2
√
ε, (37)

E′3 =∆
1

(1−
√
ε)|M||K|

∑
m∈M′

∑
k∈I(m)

E

Tr
{

Ξ
(m)
k τ

(m)
k

}
≥ 1− 2

√
ε, (38)

where the inequalities above follow from the fact that codebook C satisfies {E1 ≥ 1−
√
ε} , {E2 ≤

√
ε}

and {E3 ≥ 1−
√
ε} and that only

√
ε fraction of the code is expurgated. Observe that the event {1{sP} = 1}

remains true for the expurgated CE . Define the collection

Γ
(n)
E =∆ {Aan(m,k)}m∈M′,k∈I(m)

E
.

The collection Γ
(n)
E is completed using the operator I −

∑
m∈M′

∑
k∈I(m)

E
Aan(m,k), and the operator is

associated with sequence an0 chosen arbitrarily from An\T (n)
δ (A), i.e.,

Aan0 =∆ I −
∑
m∈M′

∑
k∈I(m)

E

Aan(m,k).

Corresponding to this expurgated code, we now construct our encoding and decoding operations.

3) Encoding and Decoding Isometries: The encoding isometry UE is constructed by concatenating

three isometries: (i) the covering isometry UM : HBn → HBn ⊗ H′M ⊗ HK , (ii) the rotation isometry

UR : HBn ⊗H′M ⊗HK → HEn ⊗H′M ⊗HK , and (iii) the packing isometry UP : HEn ⊗HĒ ⊗H′M ⊗

HK → HEn ⊗HĒ ⊗H′M ⊗HK , where H′M ,HK and HĒ are auxiliary Hilbert spaces with dimensions

M ′ + 1,K + 1, and K + 1, respectively.

Step 1.1: Covering Isometry

To define the covering isometry UM, we use the completion [Γ
(n)
E ] as

UM =∆
∑
m∈M′

∑
k∈I(m)

E

√
Aan(m,k) ⊗ |m〉 ⊗ |k〉+

√
Aan0 ⊗

∣∣M ′〉
M
⊗ |K〉K . (39)

Note that, for the chosen code, the event {1{sP} = 1} makes UM a valid isometry. From now on, for the

ease of notation, we use Mm,k, λ
BR
m,k, and Am,k to denote the corresponding n−letter objects constructed

for the codewords An(m, k).
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Step 1.2: Rotation Isometry

Although the above covering unitary aims to cover the source, it only does so for the reference system.

To be able to apply the next step of packing, we wish to use the post-measured state as side information.

This could be possible if the post-measured state also looks close to being product. For this, we employ

a rotation unitary. A similar operation is discussed in [59, Fact 6] with regards to classical-quantum

states obtained post measurement. The construction below generalizes this to a coherent application of a

measurement. More formally, for the expurgated code CE , we construct the states

|σ̂〉B
n
RE

nMK =∆
∑
m∈M′

∑
k∈I(m)

E

1√
(1−

√
ε)|M||K|

(I ⊗Mm,k)√
λm,k

∣∣ψ⊗nρ 〉BnRBn ⊗ |m, k〉 and

|σ̃〉B
n
RB

nMK =∆
∑
m∈M′

∑
k∈I(m)

E

1√
(1−

√
ε)|M||K|

(I ⊗
√
Am,k)√

δm,k

∣∣ψ⊗nρ 〉BnRBn ⊗ |m, k〉 , (40)

where δm,k =∆ Tr
{
Am,kρ

B⊗n
}

= γ Tr
{
ρ̃BRm,k

}
, and γ =∆ 1−ε

1+η
1

|M||K| . For brevity in notation, we skip the

sets in the summations over m or k when summations are performed over the codewords belonging to

the set IE corresponding to the expurgated codebook CE . Clearly, |σ̂〉B
n
RE

nMK and |σ̃〉B
n
RB

nMK are valid

states. Now to construct UR, consider the following lemma which upper bounds the fidelity.

Lemma 4. For any ε, η ∈ (0, 1), there exists a collection of isometries {Ur(m, k) : HBn → HEn}

and a collection of phases θm,k such that F (|σ̂〉B
n
RE

nMK , (IBR ⊗ UR) |σ̃〉B
n
RB

nMK) ≥ 1− 4
√
ε, for all

sufficiently large n and all sufficiently small δ > 0, where

UR =∆
∑

m∈M′∪{M ′}

∑
k∈K∪{K}

e−iθm,kUr(m, k)⊗ |m〉〈m|M ⊗ |k〉〈k|K . (41)

and Ur(m, k) = I and θm,k = 0 for all (m, k) ∈ (M×K) such that an(m, k) /∈ CE .

Proof. The proof of the lemma follows using (36), (37) and from the Lemma 7. For completeness, we

detail the proof in Appendix B.

Step 1.3: Packing Isometry

Observe that by coherently performing the covering and rotation operations, one can show that the source

ρB can be successfully recovered by the quantum registers {|m, k〉}. This implies that the quantum states

{|m, k〉} can be used by the decoder to faithfully reconstruct the source as per Definition 3. As a result,

we would require a rate of 1
n logM + 1

n logK which has to be greater than the Holevo information

χ(λBRa , ρ̂BRa ), as constrained by Proposition 1. However, we intend to further reduce the rate from this

Holevo information to the coherent information provided in the statement of the theorem.
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One can perhaps argue why we cannot simply release the information in the HK system into the

environment (partial tracing)? But as expected for a purely quantum setup, this would lead to the

protocol becoming incoherent. More precisely, the subsystem HEn that the encoder has in its possession

is entangled with the subsystem HK , and tracing out the latter without decoupling the two systems would

render the former in a mixed state. Once this entanglement is lost, the decoder would not be able to

faithfully reconstruct the source by using such a (mixed) state.

Therefore, a major task here is to successfully decouple the system HK before releasing it to the

environment. To achieve this, we introduce the notion of coherent packing or coherent binning. This

notion is built on the idea that the post-measured system present in HEn contains information about the

quantum state |k〉K , and hence, conditioned on the state |m〉, a copy of the state |k〉 can be recovered

from the state present in subsystem HEn , albeit with a small probability of error. Using this copy, we

intend to decouple the existing copy of |k〉 from the latter. However, this new copy can erase (decouple)

the original, but will itself still remain. Therefore, as will become evident in the sequel, we perform the

process of erasing the information in HK intrinsically without producing any additional copies.

Toward this, we employ the packing code consisting of the sub-POVMs {Ξ(m)
k }k∈I(m)

E
, generated for

the ensemble {λEa , τEa }. We complete this sub-POVM for each m ∈M′ as

Ξ
(m)
K =∆ I −

∑
k∈I(m)

E

Ξ
(m)
k .

In addition, we also make use of Naimark’s extension theorem (also provided in Lemma 3). This lemma

gives us a collection of orthogonal projectors {Π(m)
k } each acting on HEn ⊗HĒ , corresponding to the

collection {Ξ(m)
k }k, such that

Tr
{

Π
(m)
k (τ

(m)
k ⊗ |0〉〈0|Ē)

}
= Tr

{
Ξ

(m)
k τ

(m)
k

}
, (42)

for all m ∈M′ and k ∈ I(m)
E ∪ {K}, and dimHĒ = K + 1. Finally, we define the packing unitary UP

as

UP =∆
∑
m∈M′

 ∑
k∈I(m)

E ∪{K}

Π
(m)
k ⊗

( ∑
k′∈K∪{K}

eiα
(m)

k′
∣∣(k − k′) mod (K + 1)

〉 〈
k′
∣∣ )⊗|m〉〈m|

+ IEnĒK ⊗
∣∣M ′〉〈M ′∣∣ , (43)

where the phases {α(m)
k } are introduced for later convenience, and will be specified in the sequel1. Note

that by using Π
(m)
k in the above definition, instead of Ξ

(m)
k ensures that UPU

†
P = I , implying UP is a

valid unitary.

1Moving forward, we implicitly assume the modulus operation rather than explicitly mentioning it for the purpose of brevity.
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As a result, we can express the encoding CPTP map N (n)
E as(

IBnR ⊗N
(n)
E

)(∣∣ψ⊗nρ 〉〈
ψ⊗nρ

∣∣BnRBn)
=∆ TrĒEnK

(
(I ⊗ UPURUM)

∣∣ψ⊗nρ 〉〈
ψ⊗nρ

∣∣BnRBn ⊗ |0〉〈0|Ē (I ⊗ UPURUM)†
)
. (44)

The quantum state in H′M is now sent to the decoder.

Step 1.4: Decoding Isometry:

The following decoding isometry is applied on the state in H′M :

UD =∆
∑
m∈M′

(
1√
K ′m

∑
k∈I(m)

E

e−iβ
(m)
k |an(m, k)〉

)
〈m|+ |an0 〉 〈M ′|, (45)

where the phases {β(m)
k } will be identified in the continuation. Observe that, to argue UD is a valid

isometric operation, we need the vectors {|an(m, k)〉} to be distinct. By expurgating the codebook to

generate CE , and only using the codewords from CE ensures this distinctness. With the definitions of

encoder and decoder, we move on to bounding the error incurred by the protocol (as defined in Definition

2).

4) Trace Distance: We begin by defining the following terms

|ω〉B
n
RE

nĒAnK =∆ (I ⊗ UD)(I ⊗ UP)(I ⊗ URUM)
∣∣ψ⊗nρ 〉BnRBn |0〉Ē ,

|ζ〉B
n
RE

nAn =∆ (W⊗n ⊗ I) |ψω〉A
n
RA

n

, (46)

where2 |ψω〉A
n
RA

n

is the canonical purification of ωA
n

. Let

G =∆ ‖ωBnRAn − ζBnRAn‖1.

Following Definition 2, our objective now is to show G can be made arbitrarily small for all sufficiently

large n for the code CE .

Step 2.1: Closeness of |ω〉 and (I ⊗ UD)(I ⊗ UP) |σ̂〉 :

Recall the definitions of |σ̂〉 and |σ̃〉 from (40), and let |ω1〉 =∆ (I ⊗ URUM) |ψρ〉B
n
RB

n

and ε1 =∆

(1− ε)/(1 + η). Consider√
F
(
|ω1〉B

n
RE

nMK , (I ⊗ UR) |σ̃〉B
n
RE

nMK
)

=
∑
m,k

1√
(1−

√
ε)|M||K|

〈ψρ| (I ⊗ Ur(m, k)
√
Am,k)

†((I ⊗ Ur(m, k)
√
Am,k) |ψρ〉√

δm,k

=
1√

1−
√
ε

∑
m,k

√
ε1

|M||K|

√
Tr{ρ̃m,k} ≥

1√
1−
√
ε

∑
m,k

√
ε1

|M||K|
Tr{ρ̃m,k} ≥

√
ε1

√
1−
√
ε(1− 2

√
ε),

(47)

2For conciseness, we drop the ⊗n from
∣∣ψ⊗nρ 〉BnRBn when understood from context.
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where we note that there is no overlap between the term corresponding to
√
Aan0 ⊗ |M ′〉M ⊗ |K〉K of

|ω1〉B
n
RE

nMK and the state (UR ⊗ I) |σ̃〉B
n
RE

nMK , and the last inequality follows from (36).

Using Lemma 1, and the inequality (47) , we get 3∥∥∥ω1
BnRE

nMK − (I ⊗ UR)σ̃B
n
RE

nMK(I ⊗ UR)†
∥∥∥

1

≤ 2

√
1− (1−

√
ε)(1− 2

√
ε)2

(
1− η + ε

1 + η

)
≤ 2

√
η + ε

1 + η
+ 5
√
ε ≤ 6 4

√
ε, (48)

for all sufficiently large n and sufficiently small η, δ > 0. Further, using the unitary invariance of trace

distance, we get the closeness of the states:∥∥∥(I ⊗ UDUP)ω1
BnRE

nMK ⊗ |0〉〈0|Ē (I ⊗ UDUP)†

−(I ⊗ UDUPUR)σ̃B
n
RE

nMK ⊗ |0〉〈0|Ē (I ⊗ UDUPUR)†
∥∥∥

1
≤ 6 4
√
ε. (49)

Using Lemma 4 and the fact that trace norm is invariant under isometric transformations, we have∥∥∥(I ⊗ UDUP)σ̂B
n
RE

nMK ⊗ |0〉〈0|Ē (I ⊗ UDUP)†

−(I ⊗ UDUPUR)σ̃B
n
RE

nMK ⊗ |0〉〈0|Ē (I ⊗ UDUPUR)†
∥∥∥

1

=
∥∥∥σ̂ − (I ⊗ UR)σ̃(I ⊗ UR)†

∥∥∥
1
≤ 2
√

1− F (|σ̂〉 , (I ⊗ UR) |σ̃〉) ≤ 4 4
√
ε. (50)

Using triangle inequality and inequalities (49) and (50), we obtain∥∥∥ωBnREnĒAnK − (I ⊗ UDUP)(σ̂B
n
RE

nMK ⊗ |0〉〈0|Ē)(I ⊗ UDUP)†
∥∥∥

1
≤ 10 4

√
ε, (S-1)

for all sufficiently large n and sufficiently small η, δ > 0, which concludes Step 2.1.

For the next step, define |ζ̂〉BnREnĒMK as

|ζ̂〉BnREnĒMK =∆
∑
m∈M′

∑
k∈I(m)

E

1√
(1−

√
ε)|M||K|

eiβ
(m)
k

(I ⊗Mm,k) |ψρ〉√
λm,k

⊗ |m〉M ⊗ |0〉K ⊗ |0〉Ē , (51)

where the phases β(m)
k will be specified shortly. Observe that |ζ̂〉BnREnĒMK is a valid pure state due to (i)

the distinctness of codewords in CE and (ii) the identity (24). Furthermore, in its definition, the information

in the subsystem HK is decoupled from the remaining subsystems. Since UP acts on HEn ⊗ HĒ , an

additional pure ancilla is attached for appropriate comparisons. We aim to show that this state is close

to the action of (I ⊗ UP) on the state |σ̂〉 |0〉Ē .

3At times, the subspace notation is omitted when it is clear from the context.
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Step 2.2: Closeness of (I ⊗ UP) |σ̂〉 |0〉Ē and |ζ̂〉 :

We begin by simplifying (I ⊗ UP) |σ̂〉 |0〉Ē as

(I ⊗ UP) |σ̂〉 |0〉Ē =
∑
m∈M′

∑
k∈I(m)

E

1√
(1−

√
ε)|M||K|

eiα
(m)
k |φ(m)

k 〉 ⊗ |m〉M ,

where

|φ(m)
k 〉 =∆

∑
k′∈I(m)

E ∪{K}

(I ⊗Π
(m)
k′ Mm,k) |ψρ〉 |0〉Ē√

λm,k
⊗
∣∣k′ − k〉

K
, for all k ∈ I(m)

E and m ∈M′. (52)

Similarly, let

|ζ̂〉 =
∑
m,k

1√
(1−

√
ε)|M||K|

eiβ
(m)
k |χ(m)

k 〉 ⊗ |m〉M , |χ(m)
k 〉 =∆

(I ⊗Mm,k) |ψρ〉 |0〉Ē√
λm,k

⊗ |0〉K , (53)

for all m ∈M′ and k ∈ I(m)
E , and the phases {β(m)

k } are the same phases incorporated in the construction

of the decoding isometry UD. Further, from (42), we know for all m ∈M′,

1

K ′m

∑
k∈I(m)

E

〈φ(m)
k |χ

(m)
k 〉 =

1

K ′m

∑
k∈I(m)

E

Tr
{

Ξ
(m)
k τ

(m)
k

}
. (54)

Now the fidelity between |ζ̂〉 and (I ⊗ UP) |σ̂〉 |0〉Ē can be written as√
F
(

(I ⊗ UP) |σ̂〉 |0〉Ē , |ζ̂〉
)

=
1

M ′

∣∣∣∣∣ ∑
m∈M′

〈φm|χm〉

∣∣∣∣∣ , (55)

where, for all m ∈M′,

|φm〉 =∆ c
∑

k∈I(m)
E

eiα
(m)
k |φ(m)

k 〉 and |χm〉 =∆ c
∑

k∈I(m)
E

eiβ
(m)
k |χ(m)

k 〉,

and c =∆
√

M ′

(1−
√
ε)|M||K| . Toward a lower bound on the fidelity, we provide the following proposition.

Proposition 3. For any ε ∈ (0, 1), there exists phases {α(m)
k }, and {β(m)

k } such that∣∣∣∣∣ 1

M ′

∑
m∈M′

〈φm|χm〉

∣∣∣∣∣ ≥ 1− 2
√
ε, (56)

for all sufficiently small δ > 0 and all sufficiently large n.

Proof. The proof is provided in Appendix D.

Observe that, using the relation in Lemma 1, and the result of Proposition 3 and (55), we get∥∥∥(I ⊗ UP)σ̂ ⊗ |0〉〈0|Ē (I ⊗ UP)† − ζ̂
∥∥∥

1
≤ 2

√
1− F

(
(UP ⊗ I) |σ̂〉 |0〉Ē , |ζ̂〉

)
≤ 4 4
√
ε, (S-2)

for all sufficiently large n, and sufficiently small η, δ > 0. Observe that |ζ̂〉BnREnMK = |ζ̂〉BnREnM⊗|0〉KĒ ,

and hence |ζ̂〉BnREnM remains pure after partial tracing over the subsystem HK ⊗ HĒ . Finally, we are

left with showing the closeness of the state (I ⊗ UD)|ζ̂〉BnREnM with the state |ζ〉B
n
RE

nAn .
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Step 2.3: Closeness of (I ⊗ UD)|ζ̂〉BnREnM and |ζ〉B
n
RE

nAn :

We begin by defining σA
n

as

σA
n

=∆ TrBnREn{(I ⊗ UD)ζ̂B
n
RE

nM (I ⊗ UD)†},

and perform the simplification

σA
n

= UD

( ∑
m,m′

∑
k,k′

1

(1−
√
ε)|M||K|

e−i(β
(m)
k −β(m′)

k′ ) Tr
(
Mmkρ

BM †m′k′
)

√
λmkλm′k′

|m〉〈m′|
)
U †D

= UD

(∑
m

K ′m
(1−

√
ε)|M||K|

|m〉〈m|

)
U †D =

∑
m

K ′m
(1−

√
ε)|M||K|

|bn(m)〉〈bn(m)|A
n

, (57)

where the second equality uses (24) and the crucial condition that the codebook CE obtained after

expurgation is distinct, and last equality defines |bn(m)〉A
n

as

|bn(m)〉A
n

=∆
1√
K ′m

∑
k∈I(m)

E

e−iβ
(m)
k |an(m, k)〉A

n

, (58)

for all m ∈M′. This implies, we can write the canonical purification of σA
n

as

|ψσ〉A
n
RA

n

=∆ (IAnR ⊗
√
σAn)

∣∣Γ⊗n〉AnRAn =
∑
m

√
K ′m

(1−
√
ε)|M||K|

|bn(m)〉A
n
R ⊗ |bn(m)〉A

n

= (I ⊗ UAnD )
∑
m

√
K ′m

(1−
√
ε)|M||K|

|bn(m)〉A
n
R ⊗ |m〉M , (59)

where the first equality follows by defining |bn(m)〉A
n
R =∆ (IAnR ⊗ 〈b

n(m)|A
n

) |Γ⊗n〉A
n
RA

n

. Using the

relation from (25) and definition (58), we can write

W⊗n |bn(m)〉A
n
R =

1√
K ′m

∑
k∈I(m)

E

eiβ
(m)
k W⊗n |an(m, k)〉A

n
R =

1√
K ′m

∑
k∈I(m)

E

eiβ
(m)
k

(IBR⊗Mm,k)
∣∣ψ⊗nρ 〉BnRBn√

λAm,k

,

for all m ∈M′, which gives

(W⊗n ⊗ IAn) |ψσ〉A
n
RA

n

= (I ⊗ UAnD )
∑
m

√
K ′m

(1−
√
ε)|M||K|

W⊗n |bn(m)〉A
n
R ⊗ |m〉M

= (I ⊗ UAnD )
∑
m,k

1√
(1−

√
ε)|M||K|

eiβ
(m)
k

(IBR ⊗Mm,k)
∣∣ψ⊗nρ 〉BnRBn√

λAm,k

⊗ |m〉M

= (I ⊗ UAnD )|ζ̂〉BnREnM , (60)

where the last equality follows from the definition of |ζ̂〉BnREnM in (51). Observing that

|ζ〉B
n
RE

nAn = (W⊗n ⊗ IAn) |ψω〉A
n
RA

n

,
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we are left with showing the closeness of |ψσ〉A
n
RA

n

and |ψω〉A
n
RA

n

. Using (S-1) and (S-2), the triangle

inequality, the monotonicity of trace distance, and identification of appropriate purifications, we obtain

for all sufficiently large n and sufficiently small η, δ > 0,

‖ωAn − σAn‖1 ≤ ‖ωB
n
RE

nAn − (I ⊗ UD)ζ̂B
n
RE

nM (I ⊗ UD)†‖1 ≤ 14 4
√
ε.

This implies,∥∥∥(I ⊗ UAnD )ζ̂B
n
RE

nM (I ⊗ UAnD )† − ζBnREnAn
∥∥∥

1

a
=
∥∥ψσAnAnR − ψωAnAnR∥∥1

b
≤ 2
√

1− F (|ψσ〉AnA
n
R , |ψω〉AnA

n
R)

c
≤ 2
√
‖ωAn − σAn‖1 ≤ 2

√
14 4
√
ε ≤ 8 8

√
ε, (S-3)

for all sufficiently large n and sufficiently small η, δ > 0, where (a) follows from the isometric invariance

of trace distance, (b) uses Lemma 1, and (c) uses Lemma 2, which concludes this step.

In summary, combining results of (S-0), (S-1), (S-2) and (S-3), we have showed that there exist a code

C satisfying G ≤ 14 4
√
ε+ 8 8

√
ε with the following rate constraints:

S(λAa ) >
1

n
(logM + logK) > χ(λBRa , ρ̂BRa ),

1

n
logK < χ({λEa , τEa }),

1

n
logM ≥ 0,

1

n
logK ≥ 0,

for all sufficiently large n and sufficiently small η, δ > 0, where we have also included the necessary

non-negativity constraints. Eliminating 1
n logK using Fourier-Motzkin elimination [60] gives

1

n
logM > χ(λBRa , ρ̂BRa )− χ({λEa , τEa }), and

1

n
logM ≥ 0,

where we remove the redundant constraints. This completes the proof.

Remark 7 (Zero performance rate). The coherent information Ic(NW , ρAR) is negative when the Holevo

information quantities are such that χ(λBRa , ρ̂BRa ) < χ({λEa , τEa }). The asymptotic performance limit for

these situations is zero, according to the statement of the theorem. We must therefore demonstrate that a

rate of zero is feasible. To put it another way, we must construct a protocol (see Definition (3)) that satisfies

(2) with a rate that can be made arbitrarily close to zero. The constraints imposed by the preceding proof

are still met if we select M = 1 and 1
n logK = χ(λBRa , ρ̂BRa ) + δ0 < χ({λEa , τEa }), while achieving a

rate of log(2)/n, for a sufficiently small δ0. This rate (1/n) can be made arbitrarily close to zero (i.e.,

smaller than the provided ε) for any given ε, for all sufficiently large n and sufficiently small η, δ > 0.

Similarly, when the coherent information Ic(NW , ρAR) is exactly zero, i.e., χ(λBRa , ρ̂BRa ) = χ({λEa , τEa }),

we choose M and K such that 1
n logM = 2δ0, and 1

n logK = χ({λEa , τEa }) − δ0. This gives a rate of

2δ0 which can be again made arbitrarily close to zero. Therefore, even though the coherent information

is not necessarily positive, the rate in the theorem can still be achieved.
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C. Proof of Converse

Let R be an achievable rate. Then from Definition 4, given a triple (ρB , HA, NW ), for all ε > 0, and

all sufficiently large n, there exists (n,Θ) lossy compression protocol with an encoding CPTP map N (n)
E

and a decoding CPTP map N (n)
D that satisfies the following constraints:

c0 :
1

n
log Θ ≤ R+ ε, and c1 : ‖ωBnRAn − υBnRAn‖1 ≤ ε, (61)

where ωB
n
RA

n

=∆ (I ⊗N (n)
D )(I ⊗N (n)

E )(|ψρ〉B
n
RB

n

),

υB
n
RA

n

= TrEn
{
υB

n
RA

nEn
}

=∆ TrEn
{

(W⊗n ⊗ I)ΨAnRA
n

ω (W⊗n ⊗ I)†
}
,

and |ψω〉A
nARn is the canonical purification of ωA

n

, and W is the Stinespring’s dilation of the CPTP

map NW . Let ωA
n
R =∆ TrAn(Ψ

AnAnR
ω ).

Step 1: Quantum Data Processing Inequality: Let M denote the quantum state at the output of

the encoder. Let V (n)
E : HBn → HM ⊗ HẼ1

and V
(n)
D : HM → HAn ⊗ HẼ2

be Stinesping dilations

of encoding and decoding maps N (n)
E and N (n)

D , respectively, such that dim(HẼ1
) ≥ dim(HM ) and

dim(HẼ2
) ≥ dim(HAn), as shown in Figure 6(a). Let

ω1
BnRMẼ1 =∆ (IBnR ⊗ V

(n)
E )(ΨBnRB

n

ρ )(IBnR ⊗ V
(n)
E )†

ωB
n
RẼ1Ẽ2An =∆ (IBnRẼ1

⊗ V (n)
D )(ω1

BnRẼ1M )(IBnRẼ1
⊗ V (n)

D )†. (62)

Let |ψω1
〉MRM denote the canonical purification of the quantum state ωM1 . Let W (n)

E : HMR
→ HBnR⊗HẼ1

denote the posterior reference isometry (see Definition 1) of V (n)
E with respect to ωM1 , as shown in

Figure 6(b). Moreover, let W (n)
D : HAnR → HMR

⊗HẼ2
denote the posterior reference isometry of V (n)

D

with respect to wA
n

, as shown in Figure 6(c). Let NWE (·) = TrẼ1
(W

(n)
E · (W (n)

E )†) and NWD(·) =

TrẼ2
(W

(n)
D · (W (n)

D )†) be the induced CPTP maps. Let

ω̃MRẼ2An

1 =∆ (W
(n)
D ⊗ IAn)(ΨAnRA

n

ω )(W
(n)
D ⊗ IAn)†.

Using the quantum data processing inequality for coherent information [50, Theorem 11.3.2], we obtain

Ic(NWD , ωA
n
R) ≥ Ic(NWE ◦ NWD , ωA

n
R).

Expanding the coherent information in terms of Von Neuman entropy, we get

S(MR)ω̃1
− S(Ẽ2)ω̃1

≥ S(Bn
R)ω − S(Ẽ1Ẽ2)ω,

which implies that

S(M)ω1
≥ S(Bn

R)ω − S(Bn
RA

n)ω. (63)

Step 2: Implication of the constraints c0 and c1: Consider the following sequence of inequalities:
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Figure 6. Lossy quantum source coding protocol and the associated CPTP maps and their Stinespring dilations.

nR ≥ log Θ− nε ≥ S(M)ω1
− nε (64)

a
≥ S(Bn

R)ω − S(Bn
R, A

n)ω − nε (65)

b
≥ S(Bn

R)ω − S(Bn
R, A

n)υ − nε− nε̃1 (66)

= S(Bn
R)ω − S(En)υ − nε− nε̃1 (67)

c
≥ S(Bn

R)ω −
n∑
i=1

S(Ei)υ − nε− nε̃1 (68)

d
=

n∑
i=1

S(BRi)ω −
n∑
i=1

S(Ei)υ − nε− nε̃1 (69)

e
≥

n∑
i=1

S(BRi)υ −
n∑
i=1

S(Ei)υ − nε− nε̃1 − nε̃2 (70)

f
=

n∑
i=1

Ic(NW , ωARi)− nε− nε̃1 − nε̃2 (71)

g
≥ n min

ρAR∈D(HAR ):‖ρBR−NW (ρAR )‖1≤ε
Ic(NW , ρAR)− nε− nε̃1 − nε̃2, (72)

where the inequalities are argued as follows. (a) follows from (63). (b) follows from the condition c1

and the Fannes-Audenaert inequality [50, Theorem 11.10.1] by defining ε̃1 =∆ ε log |HA||HB|+hb(ε). (c)

follows from the subadditivity of entropy. (d) follows from the memoylessness of the quantum source. (e)

follows from condition c2 and the Fannes-Audenaert inequality [50, Theorem 11.10.1], where condition

c2 : ‖ωBRi − υBRi‖1 ≤ ε, ∀ 1 ≤ i ≤ n,
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is implied by c1 using the monotonicity of trace distance with respect to partial trace. ε̃2 is defined as

ε̃2 =∆ ε log |HB|+ hb(ε). (f) follows from the fact that υBRiEi = WωARiW †. (g) follows from condition

c2 which can also be stated as

c2 : ‖ρBR −NW (ωARi)‖1 ≤ ε, ∀ 1 ≤ i ≤ n,

and the fact that coherent information is continuous, and the constraint set is closed and bounded.

The continuity follows from the following arguments: for the fixed CPTP map NW , let a function

f : D(HAR) → R be defined as f(ρAR) = Ic(NW , ρAR). One can establish the continuity of f for a

fixed NW by writing Ic(NW , ρAR) = S(BR)WρARW † − S(E)WρARW † , and using the Fannes–Audenaert

Inequality [50, Theorem 11.10.2], where W is the Stinespring’s extension of the given CPTP map NW .

Step 3: Continuity Argument: We have shown that

R ∈
⋂
ε>0

Iε,

where we have defined for all ε ≥ 0,

Iε =∆
{
R : ∃ ρAR ∈ Sε(ρB,NW ) such that R ≥ Ic(NW , ρAR)− g(ε)

}
, (73)

and

Sε(ρB,NW ) =∆
{
ρAR ∈ D(HAR) : ‖NW (ρAR)− ρBR‖1 ≤ ε

}
, (74)

g(ε) =∆ ε + ε̃1 + ε̃2. Condition c2 ensures that the set Sε is non-empty for all ε > 0. Now, by arguing

continuity of Iε at ε = 0, we obtain the desired result.

Lemma 5. For the above definitions of Sε and Iε, we have S0(ρB,NW ) non-empty, and

I0 =
⋂
ε>0

Iε.

Proof. This is a standard argument used in the literature [51], [61], [62]. A proof is provided in Appendix

E for completeness.

This completes the proof.

VI. PROOF OF THEOREM 2

A. Proof of Achievability

For a given (ρB,X,W) QC source coding setup, we choose a reconstruction distribution PX ∈

A(ρB,W). Toward specifying the POVM Γ(n) and a decoding map f : {1, 2, · · · ,Θ} → Xn, we construct

a codebook C. From now on, we let Θ = 2nR.
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1) Codebook Design: We generate a codebook C consisting of n-length codewords by randomly and

independently selecting 2nR sequences {Xn(m)}m∈[2nR] according to the following pruned distribution:

P(Xn(m) = xn) =


PnX(xn)

(1− ε)
for xn ∈ T (n)

δ (X)

0 otherwise
, (75)

where PnX(xn) =
∏n
i=1 PX(xi), T (n)

δ (X) is the δ-typical set corresponding to the distribution PX on

the set X, and ε(δ, n) ,
∑

xn 6∈T (n)
δ (X) P

n
X(xn). Note that ε(δ, n)↘ 0 as n→∞ and for all sufficiently

small δ > 0. The generated codebook C is revealed to both the encoder and decoder before the QC lossy

source compression protocol begins.

2) Construction of POVM: We use Winter’s POVM construction [27]. Let πρB and πxn denote the

δ-typical and conditional δ-typical projectors defined as in [50, Def. 15.1.3] and [50, Def. 15.2.4], with

respect to ρB and W , respectively. Consider the following positive operators with a trace of less than

one, and we exploit the random selection of these operators to construct the sub-POVM {Axn}. For all

xn ∈ T (n)
δ (X), define:

ξxn =∆ πρBπxnWxnπxnπρB , (76)

and ξxn = 0 for xn 6∈ T (n)
δ (X), where Wxn =∆

⊗
iWxi . We now define ξ as the expectation of ξxn with

respect to the pruned distribution P as defined in (75):

ξ =∆ EP [ξxn ] =
∑

xn∈T (n)
δ (X)

PnX(xn)

1− ε
ξxn .

Let π̂ be the cut-off projector onto the subspaces spanned by the eigenstates of ξ with eigenvalues greater

than εd, where d =∆ 2−n(H(ρB)+δ1) and δ1 will be specified later. With the above notation, we define

ρ̃xn =∆ π̂ξxn π̂ and ρ̃ =∆ EP [ρ̃xn ] = π̂ξπ̂. (77)

Using the Average Gentle Measurement Lemma [50, Lemma 9.4.3], for any given ε ∈ (0, 1), and all

sufficiently large n and all sufficiently small δ, we have∑
xn∈Xn

PnX(xn)

1− ε
‖ρ̃xn −Wxn‖1 ≤ ε. (78)

Detailed proof of the above statement can be found in [58, Eq. 35]. Using the above definitions, for all

xn ∈ Xn, we construct the operators,

Axn =∆ γxn

√
ρB⊗n

−1

ρ̃xn

√
ρB⊗n

−1

, where γxn =∆
1

2nR
(1− ε)
(1 + η)

2nR∑
m=1

1{Xn(m)=xn},
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and η ∈ (0, 1) is a parameter that determines the probability of not obtaining a sub-POVM. Let 1{sP}
denote the indicator random variable corresponding to the event that {Axn : xn ∈ T (n)

δ (X)} forms a

sub-POVM. If 1{sP} = 1, then construct sub-POVM Γ(n) as follows:

Γ(n) =∆ {Axn : xn ∈ T (n)
δ (X)}. (79)

Since Γ(n) is a sub-POVM, we add an extra operator Axn0 =∆
(
I −

∑
xn∈T (n)

δ (X)Axn
)

, associated with

an arbitrary sequence xn0 ∈ Xn\T (n)
δ (X), to form a valid POVM

[
Γ(n)

]
with at most (2nR+1) elements.

If 1{sP} = 0, then we define Γ(n) = {I} and associate it with xn0 . This defines the POVM and the

associated decoder. We now provide a proposition from [27], which will be helpful later in the analysis.

Proposition 4. For any ε, η ∈ (0, 1), for any sufficiently small δ > 0, and sufficiently large n, we have

E
[
1{sP}

]
≥ 1− ε, if R > I(X;BR)σ, where the quantum mutual information is computed with respect

to the CQ state,

σXBR =∆
∑
x

PX(x) |x〉〈x|X ⊗Wx,

and {|x〉}{x∈X} is an orthonormal basis for the Hilbert space HX with dim (HX) = |X|.

3) Error Analysis: We show that for the above-mentioned POVM and decoder, the sum of unnor-

malized post-measurement reference state
√
ρB⊗nAxn

√
ρB⊗n is close to the unnormalized n-product

posterior reference state Tr
(
Axnρ

B⊗n
)⊗n

i=1Wxi in the trace distance, averaged over the random

codebook. In other words, we would like to bound the following error term:

E[Ξ(Γ(n))] = E

[∑
xn

∥∥∥∥∥
√
ρB⊗nAxn

√
ρB⊗n − Tr

(
Axnρ

B⊗n
) n⊗
i=1

Wxi

∥∥∥∥∥
1

]
.

We begin by splitting the error Ξ(Γ(n)) into two terms using the indicator function 1{sP} as

Ξ(Γ(n)) = 1{sP}Ξ(Γ(n)) +
(

1− 1{sP}
)

Ξ(Γ(n)),

≤ 1{sP}Ξ(Γ(n)) + 2
(

1− 1{sP}
)
, (80)

where (80) follows from upper bounding the trace distance between two density operators by two, i.e.,

its maximum value.

Step 1: Isolating the error term induced by not covering

Using the triangle inequality, we now expand the Ξ(Γ(n)) under the condition 1{sP} = 1.
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Ξ(Γ(n)) ≤
∑

xn∈T (n)
δ (X)

∥∥∥∥√ρB⊗nAxn√ρB⊗n − Tr
(
Axnρ

B⊗n
)
Wxn

∥∥∥∥
1

+

∥∥∥∥√ρB⊗nAxn0√ρB⊗n∥∥∥∥
1

+ Tr
(
Axn0 ρ

B⊗n
)∥∥Wxn0

∥∥
1
,

=
∑

xn∈T (n)
δ (X)

∥∥∥∥√ρB⊗nAxn√ρB⊗n − Tr
(
Axnρ

B⊗n
)
Wxn

∥∥∥∥
1

+ 2 Tr
(
Axn0 ρ

B⊗n
)

= ζ + 2ζ̃, (81)

where we have defined:

ζ =∆
∑

xn∈T (n)
δ (X)

∥∥∥∥∥
√
ρB⊗nAxn

√
ρB⊗n − Tr

(
Axnρ

B⊗n
) n⊗
i=1

Wxi

∥∥∥∥∥
1

,

and ζ̃ =∆ Tr
(
Axn0 ρ

B⊗n
)

= Tr


(
I −

∑
x∈T (n)

δ (X)

Axn

)
ρB
⊗n

.
The error term ζ̃ captures the error induced by not covering the n-tensored posterior reference state. We

provide the following proposition that bounds this term.

Proposition 5. For all ε ∈ (0, 1), and for all sufficiently small η, δ > 0, and sufficiently large n, we have

E
[
1{sP}ζ̃

]
≤ ε.

Proof. The proof is provided in Appendix F.

Step 2: Bounding the error induced by covering

We now bound the term ζ, which captures the error induced by covering. Under the condition 1{sP} = 1,

we rewrite ζ as

ζ =
∑

xn∈T (n)
δ (X)

γxn Tr{ρ̃xn}
∥∥∥∥ ρ̃xn

Tr{ρ̃xn}
−Wxn

∥∥∥∥
1

. (82)

We now provide the following proposition that bounds the error term ζ.

Proposition 6. For all ε, η ∈ (0, 1), for all sufficiently small δ > 0, and sufficiently large n, we have

E
[
1{sP}ζ

]
≤ ε.

Proof. The proof is provided in Appendix G.

Finally, using Propositions 4, 5, and 6, we bound E
[
Ξ(Γ(n)

]
, for all ε ∈ (0, 1),

EC
[
Ξ(Γ(n))

]
≤ EC

[
1{sP}Ξ(Γ(n)) + 2

(
1− 1{sP}

)]
≤ EC

[
1{sP}Ξ(Γ(n))

]
+ 2ε ≤ 6ε.

Since EC
[
Ξ(Γ(n))

]
≤ 6ε, there exists a codebook C and the associated POVM Γ(n) such that Ξ(Γ(n)) ≤

6ε. This completes the achievability proof.
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B. Proof of Converse

Let R be an achievable rate. Then from Definition 7, given a triple (ρB,X,W), for all ε > 0, and all

sufficiently large n, there exists (n,Θ) QC lossy compression protocol with a POVM Γ(n) = {Am}m∈[Θ]

and a decoding map f that satisfies the following constraint:∑
xn

∥∥∥∥∥
√
ρB⊗nAf−1(xn)

√
ρB⊗n − Tr

(
Af−1(xn)ρ

B⊗n
) n⊗
i=1

Wxi

∥∥∥∥∥
1

≤ ε, and
1

n
log Θ ≤ R+ ε.

Let M denote the transmitted message, and define the following classical-quantum state:

ωX
nBnR =∆

∑
xn

|xn〉〈xn| ⊗
√
ρB⊗nAf−1(xn)

√
ρB⊗n and

τX
nBnR =∆

∑
xn

Tr
(
Af−1(xn)ρ

B⊗n
)
|xn〉〈xn| ⊗Wxn , (83)

where ωX
nBnR and τX

nBnR are the resulting CQ-states of the QC lossy compression protocol and the

ideal QC lossy compression protocol according to Definition 7, respectively. By triangle equality, we

have
∥∥ωXnBnR − τXnBnR

∥∥
1
≤ ε. We now provide a lower bound on the rate R. We have the following

inequalities:

nR = log Θ− nε ≥ H(M)− nε ≥ I(M ;Bn
R)ω − nε

a
≥ I(Xn;Bn

R)ω − nε,

b
≥ nS(BR)ω −

n∑
i=1

S((BR)i|Xi)ω − nε

c
≥ nS(BR)ωQ − nS(BR|X)ωQ − nε = nI(X;BR)ωQ − nε,
d
≥ nI(X;BR)τQ − nε̃(ε)− nε, (84)

where inequalities are argued as follows: (a) follows from the quantum data processing inequality [50,

Section 11.9.2], (b) follows from the fact that conditioning does not increase quantum entropy, (c) follows

from the concavity of conditional quantum entropy [50, Ex. 11.7.5] and by defining

ωXQ(BR)Q =∆
1

n

n∑
i=1

TrXn\i(BR)n\i
{
ωX

nBnR
}

and noting that ω(BR)Q = ρB,

and (d) follows from the continuity of quantum mutual information (AFW inequality) [50, Ex. 11.10.2],

by defining

τXQ(BR)Q =∆
1

n

n∑
i=1

TrXn\i(BR)n\i
{
τX

nBnR
}

=
∑
x

(
1

n

n∑
i=1

∑
xn\i

Tr
{
Af−1(xn)ρ

B⊗n
})
|x〉〈x| ⊗Wx,

and ε̃ =∆ 3
2ε log(dimHB) + (2 + ε)hb

(
ε

2+ε

)
, and noting∥∥∥ρB − TrXQ{τXQ(BR)Q}

∥∥∥
1
≤
∥∥∥ωXQ(BR)Q − τXQ(BR)Q

∥∥∥
1
≤
∥∥ωXnBnR − τXnBnR

∥∥
1
≤ ε, (85)
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where TrXQ{τXQ(BR)Q} =
∑

x PXQ(x)Wx, and

PXQ(x) =∆

(
1

n

n∑
i=1

∑
xn\i

Tr
{
Af−1(xn)ρ

B⊗n
})

.

We note that
∑

x PXQ(x) = 1. So far, we have shown that

R ∈
⋂
ε>0

Iε,

where we have defined for all ε ≥ 0,

Iε(ρB,W) =∆ {R : ∃ PX ∈ Aε such that R ≥ I(X,BR)σ − g(ε)},

Aε(ρB,W) =∆ {PX ∈ P(X) : ‖
∑
x

PX(x)Wx − ρB‖1 ≤ ε}, and σXBR =∆
∑
x

PX(x) |x〉〈x|X ⊗Wx,

g(ε) =∆ ε̃+ ε. Equation (85) ensures that the set Aε is non-empty for ε > 0. Using the continuity of rate

regions similar to Lemma 5, we obtain
⋂
ε>0 Iε = I0, and A0 is non-empty, and hence R ∈ I0. This

concludes the converse proof.

VII. PROOF OF THEOREM 3

We begin the section with the achievability part, i.e., any rate R that satisfies (5) is achievable. We

then prove the converse, i.e., any achievable lossy source compression protocol must satisfy (5).

A. Proof of Achievability

For a given source distribution PX , reconstruction alphabet X̂, and a posterior channel WX|X̂ , we choose

a reconstruction distribution PX̂ ∈ A(PX ,WX|X̂). Toward specifying the encoder E(n) : Xn −→ [Θ] and

the decoder D(n) : [Θ] −→ X̂n, we construct a codebook C. From now on, we let Θ = 2nR + 1.

1) Codebook Construction: We construct a codebook C =∆ {X̂n(1), X̂n(2), · · · , X̂n(2nR)}, by choos-

ing each codewords randomly and independently according to the following “pruned” distribution:

P(X̂n(m) = x̂n) =


Pn
X̂

(x̂n)

1− ε
if x̂n ∈ T (n)

δ (X̂),

0 otherwise.

where Pn
X̂

(x̂n) = Πn
i=1PX̂(x̂i), T (n)

δ (X̂) is the δ-typical set corresponding to the distribution PX̂ on

the set X̂, and ε(δ, n) =∆
∑

x̂n 6∈T (n)
δ (X̂) P

n
X̂

(x̂n). The codebook C is revealed to both the encoder and the

decoder before the lossy source compression protocol begins.
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2) Encoder Description: For an observed source sequence xn, construct a randomized encoder that

chooses an index m ∈ [2nR] according to a sub-PMF EM |Xn(m|xn)4, which is analogous to the likelihood

encoders used in [51], [52]. We now specify EM |Xn(m|xn) for xn ∈ T (n)

δ̂
(X) and m ∈ [2nR], where

δ̂ = δ(|X|+ |X̂|). For a η ∈ (0, 1) (to be specified later), and δ > 0, define

EM |Xn(m|xn) =∆
∑
x̂n

1

2nR
(1− ε)
(1 + η)

Wn
X|X̂(xn|x̂n)

PnX(xn)
1{x̂n∈T (n)

δ (X̂)}1{xn∈T (n)
δ (X|x̂n)}1{X̂n(m)=x̂n}. (86)

Similar to the encoder specification in [52], we also have relaxed the constraint that EM |Xn(·|xn) is strictly

a PMF, i.e,
∑2nR

m=1EM |Xn(m|xn) = 1. Let 1{sPMF} denotes the indicator random variable corresponding

to the event that {EM |Xn(m|xn)}m∈[Θ] forms a sub-PMF for all xn ∈ T (n)

δ̂
(X). If 1{sPMF} = 1, then

construct the sub-PMF as follows:

PM |Xn(m|xn) =∆ EM |Xn(m|xn), for all xn ∈ T (n)

δ̂
(X) and m ∈ [Θ].

We then add an additional PMF element PM |Xn(0|xn) = EM |Xn(0|xn) =∆
(

1−
∑2nR

m=1EM |Xn(m|xn)
)

for all xn ∈ T (n)

δ̂
(X), associated with m = 0, to form a valid PMF PM |Xn(m|xn) for all xn ∈ T (n)

δ̂
(X)

and m ∈ {0} ∪ [2nR]. If xn 6∈ T (n)

δ̂
(X), then we define PM |Xn(m|xn) = 1{m=0}. We provide a

proposition that will be helpful later in the analysis.

Proposition 7. For all ε, η ∈ (0, 1), for all sufficiently small δ > 0, and sufficiently large n, we have

E
[
1{sPMF}

]
≥ 1− ε, i.e.,

Pr

 ⋂
xn∈T (n)

δ̂
(X)

 2nR∑
m=1

EM |Xn(m|xn) ≤ 1


 ≥ 1− ε,

if R > I(X; X̂).

Proof. A proof is provided in Appendix H.

We now summarize PM |Xn for m ∈ {0} ∪ [2nR] and under the condition that 1{sPMF} = 1,

PM |Xn(m|xn) =∆

1{m=0} if xn 6∈ T (n)

δ̂
(X),

EM |Xn(m|xn) if xn ∈ T (n)

δ̂
(X).

(87)

If 1{sPMF} = 0, then PM |Xn(m|xn) = 1{m=0}, for all xn ∈ Xn. This concludes the encoder descrip-

tion.

4A non-negative function qX(x) over a finite alphabet X is said to be a sub-PMF if
∑
x∈X qX(x) ≤ 1.
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3) Decoder Description: We now describe the decoder. For an observed index m ∈ {0} ∪ [2nR]

communicated by the encoder, the decoder outputs X̂n(m) if m 6= 0. Otherwise, decoder outputs a fixed

x̂n0 ∈ X̂n\T (n)
δ (X̂), i.e.,

D(n)(m) =∆

X̂
n(m) if m 6= 0,

x̂n0 otherwise.
(88)

4) Error Analysis: We show that for the above-mentioned encoder and decoder, PXnX̂n is close to

the approximating distribution PX̂nW
n
X|X̂ in the total variation, averaged over the random codebook. We

begin by splitting the error Ξ(E(n),D(n)) into two terms using the indicator function 1{sPMF} as

Ξ(E(n),D(n)) = 1{sPMF}Ξ(E(n),D(n)) +
(

1− 1{sPMF}
)

Ξ(E(n),D(n)),

≤ 1{sPMF}Ξ(E(n),D(n)) +
(

1− 1{sPMF}
)
. (89)

Step 1: Isolating the error term induced by not covering

Using the triangle inequality, we now expand the Ξ(E(n),D(n)) under the condition 1{sPMF} = 1.

2 Ξ(E(n),D(n))

=
∑
xnx̂n

∣∣∣∣∣PnX(xn)
∑

m∈{0}∪[2nR]

PM |Xn(m|xn)1{X̂n(m)=x̂n} −
∑

m∈{0}∪[2nR]

PM (m)1{X̂n(m)=x̂n}W
n
X|X̂(xn|x̂n)

∣∣∣∣∣
a
≤

∑
xn∈T (n)

δ̂
(X)

x̂n

∣∣∣∣∣PnX(xn)
∑

m∈[2nR]

EM |Xn(m|xn)1{X̂n(m)=x̂n} −
∑

m∈[2nR]

PM (m)1{X̂n(m)=x̂n}W
n
X|X̂(xn|x̂n)

∣∣∣∣∣
+

∑
xn∈T (n)

δ̂
(X)

∣∣∣∣∣PnX(xn)EM |Xn(0|xn)− PM (0)Wn
X|X̂(xn|x̂n0 )

∣∣∣∣∣
+

∑
xn 6∈T (n)

δ̂
(X)

x̂n

∣∣∣∣∣PnX(xn)1{x̂n=x̂n0 } −
∑

m∈{0}∪[2nR]

PM (m)Wn
X|X̂(xn|x̂n)1{X̂n(m)=x̂n}

∣∣∣∣∣
b
≤ ζ + ζ̃ +

∑
xn∈T (n)

δ̂
(X)

PM (0)Wn
X|X̂(xn|x̂n0 ) +

∑
xn 6∈T (n)

δ̂
(X)

PM (0)Wn
X|X̂(xn|x̂n0 ) +

∑
xn 6∈T (n)

δ̂
(X)

PnX(xn)

+
∑

m∈[2nR]

∑
x̂n∈T (n)

δ (X̂)

xn 6∈T (n)

δ̂
(X)

PM (m)Wn
X|X̂(xn|x̂n)1{X̂n(m)=x̂n}

c
≤ ζ + ζ̃ +

∑
xn 6∈T (n)

δ̂
(X)

PnX(xn) + PM (0) + ε

= ζ + 2ζ̃ + 2
∑

xn 6∈T (n)

δ̂
(X)

PnX(xn) + ε
d
≤ ζ + 2ζ̃ + 3ε, (90)
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for all sufficiently large n and all δ > 0, where (a) and (b) follow from the triangle inequality, and by

defining

ζ =∆
∑

xn∈T (n)

δ̂
(X)

x̂n

∣∣∣∣∣PnX(xn)
∑

m∈[2nR]

EM |Xn(m|xn)1{X̂n(m)=x̂n} −
∑

m∈[2nR]

PM (m)1{X̂n(m)=x̂n}W
n
X|X̂(xn|x̂n)

∣∣∣∣∣,

and ζ̃ =∆
∑

xn∈T (n)

δ̂
(X)

PnX(xn)EM |Xn(0|xn) =
∑

xn∈T (n)

δ̂
(X)

PnX(xn)

(
1−

2nR∑
m=1

EM |Xn(m|xn)

)
, (91)

(c) follows from the conditional typicality argument for all sufficiently large n, and finally, (d) follows

from the standard typicality argument for all sufficiently large n. The error term ζ̃ captures the error

induced by not covering the n-product posterior test channel. We provide the following proposition that

bounds this term.

Proposition 8. For all ε ∈ (0, 1), and for all sufficiently small η, δ > 0, and sufficiently large n, we have

E
[
1{sPMF}ζ̃

]
≤ ε if R > I(X; X̂).

Proof. The proof is provided in Appendix I.

Step 2: Bounding the error induced by covering

We now bound the term ζ, which captures the error induced by covering. Using the triangle inequality,

we get

ζ =
∑

xn∈T (n)

δ̂
(X)

x̂n

∣∣∣∣∣ ∑
m∈[2nR]

(
PnX(xn)EM |Xn(m|xn)− PM (m)Wn

X|X̂(xn|x̂n)
)
1{X̂n(m)=x̂n}

∣∣∣∣∣,
≤
∑

m∈[2nR]

∑
xn∈T (n)

δ̂
(X)

x̂n

∣∣∣PnX(xn)EM |Xn(m|xn)− PM (m)Wn
X|X̂(xn|x̂n)

∣∣∣1{X̂n(m)=x̂n}.

We now provide the following proposition that bounds the error term ζ.

Proposition 9. For all ε, η ∈ (0, 1), for all sufficiently small δ > 0, and sufficiently large n, we have

E
[
1{sPMF}ζ

]
≤ ε.

Proof. A proof is provided in Appendix J.

Finally, using Propositions 7, 8, and 9, we bound E
[
Ξ(E(n),D(n))

]
, for all ε ∈ (0, 1),

EC
[
Ξ(E(n),D(n))

]
≤ EC

[
1{sPMF}Ξ(E(n),D(n)) +

(
1− 1{sPMF}

)]
≤ 9ε/2.

Since EC
[
Ξ(E(n),D(n))

]
≤ 9ε/2, there exists a code C such that the associated Ξ(E(n),D(n)) ≤ 9ε/2.

This completes the achievability proof.
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B. Proof of Converse

Let R be an achievable rate. Then from Definition 4, given a triple (PX , X̂,WX|X̂), for all ε > 0, and

for all sufficiently large n, there exists (n,Θ) lossy compression protocol with an encoding map E(n)

and a decoding map D(n) that satisfy the following constraints:

Ξ(E(n),D(n)) =
∥∥∥PXnX̂n − PX̂nW

n
X|X̂

∥∥∥
TV
≤ ε, and

1

n
log Θ ≤ R+ ε.

Let M denote the transmitted message. We now provide a lower bound on the rate R. We have the

following inequalities:

nR = log Θ− nε ≥ H(M)− nε ≥ I(Xn,M)− nε
a
≥ I(Xn, X̂n)− nε

≥
∑
i

H(Xi)−
∑
i

H(Xi|X̂i)− nε

=
∑
i

I(Xi; X̂i)− nε

b
≥ nI(XQ; X̂Q)− nε

c
= nI(PX̂Q , PXQ|X̂Q)− nε
d
≥ nI(PX̂Q ,WX|X̂)− nε̃(ε)− nε,

where the inequalities are argued as follows: (a) follows from the data processing inequality, (b) follows

from the convexity of mutual information as the function of varying channel for a fixed source, and by

defining

PXQX̂Q =
∑
i

1

n
PXiX̂i and noting that PXQ = PX ,

(c) follows from the change of notation of mutual information [24], and (d) follows from the con-

tinuity of mutual information [57, Theorem 17.3.3] and from Lemma 6 (see below) and by defining

ε̃ =∆ −2ε log 4ε2

|X|2|X̂|
.

Lemma 6. The distributions PXnX̂n and PX̂nW
n
X|X̂ satisfy

‖PX −
∑
x̂

PX̂Q(x̂)WX|X̂(·|x̂)‖TV ≤ ‖PXQX̂Q − PX̂QWX|X̂‖TV ≤ ‖PXnX̂n − PX̂nW
n
X|X̂‖TV.

Proof. The proof is provided in Appendix K.

So far, we have shown that

R ∈
⋂
ε>0

Iε,
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where we have defined for all ε ≥ 0,

Iε(PX ,WX|X̂) =∆ {R : ∃PX̂ ∈ Aε(PX ,WX|X̂) such that R ≥ I(PX̂ ,WX|X̂)− g(ε)},

Aε(PX ,WX|X̂) =∆ {PX̂ ∈ P(X̂) : ‖
∑
x̂

PX̂(x̂)WX|X̂(·|x̂)− PX‖TV ≤ ε},

g(ε) =∆ ε̃ + ε. Lemma 6 ensures that the set Aε is non-empty for ε > 0. Using the continuity of rate

regions similar to Lemma 5, we obtain
⋂
ε>0 Iε = I0 and A0 is non-empty, and hence R ∈ I0. This

concludes the converse proof.

VIII. CONCLUSION

In this work, we explored a new formulation of the lossy quantum source coding problem. The two

ingredients that make our formulation different from the standard rate-distortion problem are (i) the usage

of a global error criterion to measure the quality of reconstruction, and (ii) the notion of a posterior

reference channel defined as a CPTP map acting on the reference of the reconstruction to produce the

reference of the source. Instead of a single-letter distortion function, a global error criterion measures

the error incurred by using the given single-letter posterior channel. The given channel characterizes the

nature of the loss incurred in the encoding and decoding operations.

As a first main result, we provide a single-letter characterization of the asymptotic performance limit

of this source coding problem using the minimal coherent information of the posterior reference map,

where the minimization is over all reconstructions. Even though the formulation uses a global error

criterion, it sheds light on an “optimistic” perspective of the lossy source coding theory. In this regard,

our results provide the missing duality pair of the quantum channel coding problem, and also broadens

the framework of performing lossy quantum source compression. Investigation of this formulation to

other variants of lossy source coding problem can be an interesting research avenue to pursue. Similarly,

it would be interesting to explore other techniques of establishing the achievability and converse of this

limit.

Subsequently, we considered the quantum-classical (QC) setting and formulated a corresponding lossy

QC source coding problem. We provided a single-letter characterization of the asymptotic performance

limit of this problem using the minimal Holevo information (or the corresponding quantum mutual

information) of the posterior classical-quantum (CQ) channel, where the minimization is over all re-

construction distributions (see Theorem 2). Finally, we performed a correspondingly new formulation

for the classical setup, and established the minimal mutual information of the posterior channel as the

single-letter characterization of the asymptotic performance limit of the classical source coding problem.
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APPENDIX

A. Proof of Lemma 2

Note that

|ψρ〉 =∆ (IR ⊗
√
ρB) |Γ〉RB , |ψσ〉 =∆ (IR ⊗

√
σB) |Γ〉RB ,

where |Γ〉RB is the unnormalized maximally entangled pure state: |Γ〉RB =
∑

i |i〉R |i〉B . Consider the

fidelity between the canonical purification states |ψρ〉 and |ψσ〉:

F (|ψρ〉 , |ψσ〉)
a
= | 〈ψρ|ψσ〉 |2 = | 〈Γ|RB (IR ⊗

√
ρB
√
σB) |Γ〉RB |2,

b
= |Tr

(√
ρB
√
σB
)
|2

c
≥
(

1− 1

2

∥∥ρB − σB∥∥
1

)2

≥ 1−
∥∥ρB − σB∥∥

1
,

where (a) follows from the definition of fidelity for a pure state, (b) follows from the definition of

trace, (c) follows from the Power-Størmer inequality [63, Lemma 4.1], i.e., for any positive semi-definite

matrices A and B, we have

Tr(A) + Tr(B)− ‖A−B‖1 ≤ 2 Tr
(√

A
√
B
)
.

B. Proof of Lemma 4

We first provide the following lemma.

Lemma 7 (Covering superposition states). Consider a finite set U , and a pair of collections {ρu}u∈U and

{σu}u∈U where ρu, σu ∈ D(HA) for all u ∈ U . Let {Ψρ
u}u∈U and {Ψσ

u}u∈U acting on D(HR1
⊗HA) and

D(HR2
⊗HA) be some purifications of {ρu}u∈U and {σu}u∈U , respectively, with dim(HR1

) ≤ dim(HR2
).

Then there exists a collection of isometric operators {Ur(u)}u∈U acting on HR1
→ HR2

and phases

{δu} such that

F ((UR ⊗ IA) |τρ〉 , |τσ〉) = F (|τρ〉 , (UR ⊗ IA)† |τσ〉) ≥ 1−
∑
u∈U

1

|U|
‖ρu − σu‖1, (92)

where

UR =∆
∑
u∈U

e−iδuUr(u)⊗ |u〉〈u| , |τρ〉 =∆
∑
u∈U

1√
|U|
|ψρu〉 ⊗ |u〉 , |τσ〉 =∆

∑
u∈U

1√
|U|
|ψσu〉 ⊗ |u〉 .

Proof. We provide a proof in Appendix C.

Now, with the intention of employing the above lemma we perform the following identification.

Identify U with M× K, ρu with ρ̂BRm,k, σu with ρ̃BRm,k, |ψρu〉 with (I⊗Mm,k)√
λm,k

|ψ⊗nρ 〉B
n
RB

n

, and |ψσu〉 with
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(I⊗
√
Am,k)√
δm,k

|ψ⊗nρ 〉B
n
RB

n

. Note that the last two identifications are, in fact, the purifications of ρ̂BRm,k and

ρ̃BRm,k/Tr
(
ρ̃BRm,k

)
, respectively as

TrE

(
(I ⊗Mm,k)√

λm,k
Ψ⊗nρB

(I ⊗M †m,k)√
λm,k

)
= ρ̂BRm,k, TrB

(
(I ⊗

√
Am,k)√

δm,k
Ψ⊗nρB

(I ⊗
√
Am,k)√

δm,k

)
=

ρ̃BRm,k

Tr
(
ρ̃BRm,k

) .
Using Lemma 7, we obtain

F (|σ̂〉BREMK , (IBR ⊗ UR)|σ̃〉BRBMK)

≥ 1− 1

(1−
√
ε)|M||K|

∑
m,k

∥∥∥∥ρ̂BRm,k − ρ̃BRm,k

Tr
(
ρ̃BRm,k

)∥∥∥∥
1

≥ 1

(1−
√
ε)|M||K|

∑
m,k

Tr
{
ρ̃BRm,k

}
− 1

(1−
√
ε)|M||K|

∑
m,k

∥∥∥∥ρ̂BRm,k − ρ̃BRm,k∥∥∥∥
1

≥ 1− 4
√
ε, (93)

where the last inequality follows from using the bounds in (36) and (37).

C. Proof of Lemma 7

Consider the following:

F (|τρ〉 , (UR ⊗ I)† |τσ〉)=

∣∣∣∣∣∑
u∈U

1

|U|
e−iδu 〈ψρu|U †r (u) |ψσu〉

∣∣∣∣∣
2

a
=

(∑
u∈U

1

|U|

∣∣∣〈ψρu|U †r (u) |ψσu〉
∣∣∣)2

b
=

(∑
u∈U

1

|U|
√
F (ρu, σu)

)2

c
≥

(
1− 1

2

∑
u∈U

1

|U|
‖ρu − σu‖1

)2

≥ 1−
∑
u∈U

1

|U|
‖ρu − σu‖1,

where (a) follows by choosing δu such that e−iδu 〈ψρu|U †r (u) |ψσu〉 = | 〈ψρu|U †r (u) |ψσu〉 |, (b) follows from

Uhlmann’s theorem [50, Theorem 9.2.1], i.e., there exists some isometry Ur(u) such that F (ρu, σu) =

F (Ur(u) |ψρ〉 , |ψσ〉), and (c) follows from Lemma 1.

D. Proof of Proposition 3

We begin by defining indexing functions f (m) : [0,K ′m − 1]→ I(m)
E , for each m ∈M′, that uniquely

map each element of the [0,K ′m−1] to the set I(m)
E in a monotonic fashion. Let g(m) : I(m)

E → [0,K ′m−1]

be the inverse of f (m), for each m ∈M′. Define the transformed vectors corresponding to the collections

{χ(m)
k } and {φ(m)

k } as

|χ̂(m)
s 〉 =∆ c

K′m−1∑
j=0

e
2πijs

K′m |χ(m)
f (m)(j)

〉 and |φ̂(m)
s 〉 =∆ c

K′m−1∑
j=0

e
2πijs

K′m |φ(m)
f (m)(j)

〉,
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for s ∈ [0,K ′m − 1]. It follows from basic algebra that, for all m ∈M′,

1

K ′m

K′m−1∑
s=0

〈φ̂(m)
s |χ̂(m)

s 〉 = c2

K′m−1∑
j=0

〈φ(m)
f (m)(j)

|χ(m)
f (m)(j)

〉 = c2
∑

k∈I(m)
E

〈φ(m)
k |χ

(m)
k 〉. (94)

This implies, for all m ∈ M′, there exists at least one value of sm ∈ [0,K ′m − 1] that follows the

inequality:

eiθ̂m〈φ̂(m)
sm |χ̂

(m)
sm 〉 ≥ c

2
∑

k∈I(m)
E

〈φ(m)
k |χ

(m)
k 〉, for some phase θ̂m.

Observe that,

〈φ̂(m)
sm |χ̂

(m)
sm 〉 = c2

∑
k∈I(m)

E

∑
k′∈I(m)

E

e
2πi(g(m)(k)−g(m)(k′))sm

K′m 〈φ(m)
k′ |χ

(m)
k 〉,

for all m ∈M′. Choosing α(m)
k = 2πg(m)(k)sm

K′m
and β(m)

k = 2πg(m)(k)sm
K′m

+ θ̂m, we obtain

1

M ′

∑
m∈M′

〈φm|χm〉 ≥
c2

M ′

∑
m∈M′

∑
k∈I(m)

E

〈φ(m)
k |χ

(m)
k 〉 =

c2

M ′

∑
m∈M′

∑
k∈I(m)

E

Tr
{

Ξ
(m)
k τ

(m)
k

}
≥ 1− 2

√
ε,

where the equality uses (54), and the last inequality uses (38) and substitutes the value of c. This means

1

M ′
Re

( ∑
m∈M′

〈φm|χm〉

)
≥ 1− 2

√
ε,

and consequently, ∣∣∣∣ 1

M ′

∑
m∈M′

〈φm|χm〉
∣∣∣∣ ≥ [ 1

M ′
Re

( ∑
m∈M′

〈φm|χm〉

)]
≥ 1− 2

√
ε. (95)

This completes the proof.

E. Proof of Lemma 5

Here we follow arguments similar to the proof of [51, Lemma VI.5]. We begin by defining I ′ε (removing

the relaxation in the rate) as, for all ε ≥ 0,

I ′ε =∆
{
R : ∃ ρAR ∈ Sε(ρB,NW ) such that R ≥ Ic(NW , ρAR)

}
, (96)

and note from [51] that ⋂
ε>0

Iε ⊆ Closure

(⋂
ε>0

I ′ε

)
.

Now we prove the following:

S0(ρB,NW ) =
⋂
ε>0

Sε(ρB,NW ). (97)
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S0(ρB,NW ) ⊆
⋂
ε>0 Sε(ρB,NW ) is straightforward. To show the other direction, consider any ρAR1 ∈⋂

ε>0 Sε(ρB,NW ). This means, for all ε > 0,

‖NW (ρAR1 )− ρBR‖1 ≤ ε =⇒ ‖NW (ρAR1 )− ρBR‖1 = 0 =⇒ NW (ρAR1 ) = ρBR , (98)

where the second implication follows from the definition of a metric, and hence ρAR1 ∈ S0(ρB,NW ) and

(97) is true. Observe that, since the intersection of decreasing sequence of non-empty closed and bounded

sets of a compact (finite-dimensional) metric space is non-empty, S0(ρB,NW ) is non-empty. Therefore,

using the continuity of f(ρAR) = Ic(NW , ρAR), and the fact that Sε are decreasing non-empty closed

and bounded subsets of a compact (finite-dimensional) metric space gives

f(S0(ρB,NW )) =
⋂
ε>0

f(Sε(ρB,NW )).

Noting that the images f(Sε(ρB,NW )) and f(S0(ρB,NW )) characterize the rate regions I ′ε and I0,

respectively, and the fact that I0 is closed completes the proof.

F. Proof of Proposition 5

Consider the following inequalities:

E
[
1{sP}ζ̃

]
≤ E

Tr


I − ∑

xn∈T (n)
δ (X)

Axn

 ρB
⊗n


 = 1− E

 ∑
xn∈T (n)

δ (X)

Tr
{
Axnρ

B⊗n
} ,

= 1− (1− ε)
(1 + η)

∑
xn∈T (n)

δ (X)

PnX(xn)

(1− ε)
Tr{ρ̃xn},

a
= 1− (1− ε)

(1 + η)
Tr{ρ̃}

b
≤ 1− (1− ε)

(1 + η)
(1− 2ε− 2

√
ε) < ε,

for all sufficiently large n and all sufficiently small η, δ > 0, where (a) follows from (77) and (b) follows

from [58, Eq. 28]. This completes the proof of Proposition 5.

G. Proof of Proposition 6

We begin the proof by splitting the term ζ under the condition 1{sP} = 1; using triangle inequality,

we get ζ ≤ ζ1 + ζ2, where

ζ1 =∆
∑

xn∈T (n)
δ (X)

γxn Tr{ρ̃xn}
∥∥∥∥ ρ̃xn

Tr{ρ̃xn}
− ρ̃xn

∥∥∥∥
1

, ζ2 =∆
∑

xn∈T (n)
δ (X)

γxn Tr{ρ̃xn}‖ρ̃xn −Wxn‖1. (99)
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Consider the following inequalities:

E
[
1{sP}ζ1

]
≤

2nR∑
m=1

∑
xn∈T (n)

δ (X)

1

2nR
(1− ε)
(1 + η)

E
[
1{Xn(m)=xn}

]
Tr{ρ̃xn}

∥∥∥∥ ρ̃xn

Tr{ρ̃xn}
− ρ̃xn

∥∥∥∥
1

≤
2nR∑
m=1

∑
xn∈T (n)

δ (X)

1

2nR
(1− ε)
(1 + η)

PnX(xn)

(1− ε)
(1− Tr{ρ̃xn})

=
(1− ε)
(1 + η)

1−
∑

xn∈T (n)
δ (X)

PnX(xn)

(1− ε)
Tr{ρ̃xn}


a
=

(1− ε)
(1 + η)

[1− Tr{ρ̃}]
b
≤ (1− ε)

(1 + η)
(2ε+ 2

√
ε) ≤ ε,

for all sufficiently large n and all sufficiently small η, δ > 0, where (a) follows from definition (77), and

(b) follows from [58, Eq. 28]. Similarly, we now compute

E
[
1{sP}ζ2

]
≤

2nR∑
m=1

∑
xn∈T (n)

δ (X)

(1− ε)
(1 + η)

1

2nR
PnX(xn)

(1− ε)
∥∥ρ̃xn −W⊗nxn ∥∥1

=
(1− ε)
(1 + η)

∑
xn∈T (n)

δ (X)

PnX(xn)

(1− ε)
∥∥ρ̃xn −W⊗nxn ∥∥1

≤ ε.

for all sufficiently large n and all sufficiently small η, δ > 0, where the last inequality follows from (78).

This completes the proof of Proposition 6.

H. Proof of Proposition 7

Recall, the definition of EM |Xn(m|xn), for xn ∈ T (n)

δ̂
(X):

EM |Xn(m|xn) =
∑

x̂n∈T (n)
δ (X̂)

1

2nR
(1− ε)
(1 + η)

Wn
X|X̂(xn|x̂n)

PnX(xn)
1{xn∈T (n)

δ (X|x̂n)}1{X̂n(m)=x̂n}.

Let D = 2n(H(X|X̂)−δ1), where δ1(δ) ↘ 0 as δ ↘ 0, and will be specified in the sequel. Define a

sequence of 2nR IID random variables {Zm(xn)}2
nR

m=1, for all xn ∈ T (n)

δ̂
(X),

Zm(xn) =∆
∑

x̂n∈T (n)
δ (X̂)

(1− ε)Wn
X|X̂(xn|x̂n)1{xn∈T (n)

δ (X|x̂n)}1{X̂n(m)=x̂n}. (100)
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We get the following bound on the expectation of the empirical average of {Zm(xn)}∈[2nR], for all

sufficiently large n:

E
[

1

2nR

2nR∑
m=1

DZm(xn)

]
=

D

2nR

2nR∑
m=1

∑
x̂n∈T (n)

δ (X̂)

(1− ε)Wn
X|X̂(xn|x̂n)1{xn∈T (n)

δ (X|x̂n)}E[1{X̂n(m)=x̂n}],

=
D

2nR

2nR∑
m=1

∑
x̂n∈T (n)

δ (X̂)

Pn
X̂

(x̂n)Wn
X|X̂(xn|x̂n)1{xn∈T (n)

δ (X|x̂n)},

a
= D

∑
x̂n∈T (n)

δ (X̂)

Pn
X̂

(x̂n)Wn
X|X̂(xn|x̂n)1{(xn,x̂n)∈T (n)

δ̂
(X,X̂)}1{xn∈T (n)

δ (X|x̂n)},

b
≥ 2n(H(X|X̂)−δ1)2−n(H(X,X̂)+2δ1)2n(H(X̂|X)−δ1) = 2−n(I(X;X̂)+4δ1), (101)

where in (a) follows from the fact that if xn ∈ T (n)
δ (X|x̂n) and x̂n ∈ T (n)

δ (X̂), then (xn, x̂n) ∈

T (n)

δ̂
(X, X̂), where δ̂ = δ(|X|+ |X̂|), and (b) follows from the properties of joint typical and conditional

typical sequences and δ1(δ) is a function that follows from the characterization of the size of the typical

set [57].

Furthermore, observe that, for all sufficiently large n, we have

DZm(xn) ≤ 2n(H(X|X̂)−δ1)2−n(H(X|X̂)−δ1)(1− ε)

( ∑
x̂n∈T (n)

δ (X̂)

1{X̂n(m)=x̂n}

)
≤ 1, (102)

where the first inequality follows from the properties of joint typical sequences, i.e., if (xn, x̂n) ∈

T (n)

δ̂
(X, X̂), then WX|X̂(xn|x̂n) ≤ 2−n(H(X|X̂)−δ1). From (101) and (102), observe that {DZm(xn)}m

satisfies the constraints of Lemma 8 (stated below). Thus, after applying Lemma (8) to {DZm(xn)}m
for all η ∈ (0, 1) and xn ∈ T (n)

δ̂
(X), we get

Pr
(
Z(xn) ∈

[
(1− η)E[Z(xn)], (1 + η)E[Z(xn)]

])
≥ 1−2 exp

{
−η

22n(R−I(X;X̂)−4δ1)

4

}
, (103)

where Z(xn) =∆ 1
2nR
∑2nR

m=1 Zm(xn). Moreover, using the definition of Zm(xn) and EM |Xn(m|xn), we

can simplify the above inequality as follows:

Pr

(1 + η)PnX(xn)

2nR∑
m=1

EM |Xn(m|xn)≤(1 + η)E[Z(xn)]

≥ 1−2 exp

{
−η

22n(R−I(X;X̂)−4δ1)

4

}
. (104)

Now, observe the following bound on E[Z(xn)]

1

PnX(xn)
E[Z(xn)] ≤ 1

PnX(xn)

∑
x̂n

Pn
X̂

(x̂n)Wn
X|X̂(xn|x̂n) = 1.

This simplifies the inequality (104) as, for all xn ∈ T (n)

δ̂
(X),

P

 2nR∑
m=1

EM |Xn(m|xn) ≤ 1

 ≥ 1− 2 exp

{(
− η22n(R−I(X,X̂)−4δ1)

4

)}
.
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Eventually, using the union bound, we get

Pr

 ⋂
xn∈T (n)

δ̂
(X)

 2nR∑
m=1

EM |Xn(m|xn) ≤ 1


 ≥ 1−

∑
xn∈T (n)

δ̂
(X)

Pr

 2nR∑
m=1

EM |Xn(m|xn) > 1

 ,

≥ 1− 2|T (n)

δ̂
(X)| exp

{
−η

22n(R−I(X;X̂)−4δ1)

4

}
. (105)

Thus, if R > I(X; X̂) + 4δ1, the second term in the right hand side of (105) decays exponentially to

zero, and as a result, the probability of the above intersections goes to 1. This completes the proof of

Proposition 7.

Lemma 8. Let {Zn}Nn=1 be a sequence of N IID random variables bounded between zero and one, i.e.,

Zn ∈ [0, 1] ∀n ∈ [N ], and suppose E
[

1
N

∑N
n=1 Zn

]
= µ be bounded below by a positive constant θ

as µ ≥ θ where θ ∈ (0, 1), then for every η ∈ (0, 1/2) and (1 + η)θ < 1, we can bound the probability

that the ensemble average of the sequence {Zn}Nn=1 lies in (1± η)µ as

P
(

1

N

N∑
n=1

Zn ∈[(1− η)µ, (1 + η)µ]

)
≥ 1− 2 exp

{(
− Nη2θ

4

)}
. (106)

Proof. Follows from the Operator Chernoff Bound [64].

I. Proof of Proposition 8

Fix an ε > 0. Recall, the definition of Zm(xn) for xn ∈ T (n)

δ̂
(X) from Appendix H,

Zm(xn) =
∑

x̂n∈T (n)
δ (X̂)

(1− ε)Wn
X|X̂(xn|x̂n)1{xn∈T (n)

δ (X|x̂n)}1{X̂n(m)=x̂n}.

We begin by using the lower bound from (103) given in Appendix H. We have for all sufficiently large

n:
2nR∑
m=1

EM |Xn(m|xn) =

(
1

1 + η

)
1

PnX(xn)

1

2nR

2nR∑
m=1

Zm(xn)

w.h.p
≥
(

1− η
1 + η

)
1

PnX(xn)
E[Z(xn)] ≥

(
1− η
1 + η

)
(1− ε), (107)

where the first inequality uses the lower bound from (103), which holds true with probability greater

than 1 − τ , where τ =∆ 2 exp

{(
− η22n(R−I(X,W )−4δ1)

4

)}
, and the second inequality uses the following

bound on E[Z(xn)], for all sufficiently large n:

1

PnX(xn)
E[Z(xn)] =

1

PnX(xn)

∑
x̂n∈T (n)

δ (X̂)

Pn
X̂

(x̂n)Wn
X|X̂(xn|x̂n)1{xn∈T (n)

δ (X|x̂n)} ≥ (1− ε). (108)
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Using (108), we get, with probability greater than (1− |T (n)

δ̂
(X)|τ) and for all sufficiently large n,

ζ̃ ≤
∑

xn∈T (n)

δ̂
(X)

PnX(xn)

(
1−

(
1− η
1 + η

)
(1− ε)

)
≤ 2η + ε(1− η)

1 + η
.

Noting that ζ̃ · 1{sPMF} ≤ 1, and using the above result, we have, for all sufficiently large n,

E
[
ζ̃ · 1{sPMF}

]
≤ 2η + ε(1− η)

1 + η
+ τ. (109)

Therefore, if R > I(X; X̂) + 4δ1, then τ → 0 for all sufficiently large n. Hence, E
[
ζ̃ · 1{sPMF}

]
can

be made smaller than ε for all sufficiently large n and sufficiently small η. This completes the proof of

Proposition 8.

J. Proof of Proposition 9

We begin by writing the PMF PM (m) for m ∈ [2nR] and under the condition that 1{sPMF} = 1.

PM (m) =
∑

xn∈T (n)

δ̂
(X)

PnX(xn)EM |Xn(m|xn),

=
∑

xn∈T (n)

δ̂
(X)

∑
x̂n∈T (n)

δ (X̂)

1

2nR
(1− ε)
(1 + η)

Wn
X|X̂(xn|x̂n)1{xn∈T (n)

δ (X|x̂n)}1{X̂n(m)=x̂n}. (110)

We now argue that the error term ζ, averaged over the random codebook, can be made arbitrarily small

by the following inequalities:

EC
[
1{sPMF}ζ

]

≤ E

1{sPMF}
∑

m∈[2nR]

∑
x̂n

xn∈T (n)

δ̂
(X)

∣∣∣PnX(xn)EM |Xn(m|xn)− PM (m)Wn
X|X̂(xn|x̂n)

∣∣∣1{X̂n(m)=x̂n}


≤

∑
m∈[2nR]

∑
xn∈T (n)

δ̂
(X)

x̂n

P(X̂n(m) = x̂n)

∣∣∣∣∣ 1

2nR
(1− ε)
(1 + η)

Wn
X|X̂(xn|x̂n)1{x̂n∈T (n)

δ (X̂)}1{xn∈T (n)
δ (X|x̂n)}

−

 ∑
xn∈T (n)

δ̂
(X)

1

2nR
(1− ε)
(1 + η)

Wn
X|X̂(xn|x̂n)1{x̂n∈T (n)

δ (X̂)}1{xn∈T (n)
δ (X|x̂n)}

Wn
X|X̂(xn|x̂n)

∣∣∣∣∣
=
∑

m∈[2nR]

∑
xn∈T (n)

δ̂
(X)

x̂n∈T (n)
δ (X̂)

1

2nR
1

(1 + η)
Pn
X̂

(x̂n)Wn
X|X̂(xn|x̂n)

∣∣∣∣∣1{xn∈T (n)
δ (X|x̂n)} −

∑
xn∈T (n)

δ (X|x̂n)

Wn
X|X̂(xn|x̂n)

∣∣∣∣∣
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a
≤

∑
m∈[2nR]

∑
x̂n∈T (n)

δ (X̂)

1

2nR
1

(1 + η)
Pn
X̂

(x̂n) 2
∑

xn∈T (n)
δ (X|x̂n)

xn 6∈T (n)
δ (X|x̂n)

Wn
X|X̂(xn|x̂n)Wn

X|X̂(xn|x̂n)

≤
∑

m∈[2nR]

x̂n∈T (n)
δ (X̂)

1

2nR
1

(1 + η)
Pn
X̂

(x̂n) 2
∑

xn 6∈T (n)
δ (X|x̂n)

Wn
X|X̂(xn|x̂n)

b
≤

∑
m∈[2nR]

1

2nR
(1− ε)
(1 + η)

 ∑
x̂n∈T (n)

δ (X̂)

1

(1− ε)
Pn
X̂

(x̂n)

 2ε ≤ 2ε,

for all sufficiently large n and all η, δ > 0, where (a) follows by splitting the summation over xn ∈

T (n)

δ̂
(X) as summation over {xn ∈ T (n)

δ (X|x̂n)} ∩ {xn ∈ T (n)

δ̂
(X)} and {xn 6∈ T (n)

δ (X|x̂n)} ∩ {xn ∈

T (n)

δ̂
(X)} and (b) follows from the standard conditional typicality argument. This completes the proof

of Proposition 9.

K. Proof of Lemma 6

Consider the following inequalities:

‖PXnX̂n(xn, x̂n)− PX̂n(x̂n)Wn
X|X̂(xn|x̂n)‖TV

=
1

2

∑
xn,x̂n

(∑
i

1

n

)∣∣∣PXnX̂n(xn, x̂n)− PX̂n(x̂n)Wn
X|X̂(xn|x̂n)

∣∣∣
=

1

2

∑
i,xn,x̂n

1

n

∣∣∣PXiX̂i(xi, x̂i)PXn\iX̂n\i|XiX̂i(x
n\i, x̂n\i|xi, x̂i)

− PX̂i(x̂i)WX|X̂(xi|x̂i)PX̂n\i|X̂i(x̂
n\i|x̂i)Πj 6=iWX|X̂(xj |x̂j)

∣∣∣
≥ 1

2

∑
i,xi,x̂i

1

n

∣∣∣PXiX̂i(xi, x̂i)− PX̂i(x̂i)WX|X̂(xi|x̂i)
∣∣∣

≥ 1

2

∑
x,x̂

∣∣∣∑
i

1

n
PXiX̂i(x, x̂)−

∑
i

1

n
PX̂i(x̂)WX|X̂(x|x̂)

∣∣∣
= ‖PXQX̂Q − PX̂QWX|X̂‖TV ≥ ‖PX −

∑
x̂

PX̂Q(x̂)WX|X̂(·|x̂)‖TV,

where the above inequalities are the consequence of triangle inequality and the fact that PXQ = PX .
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[39] S. Shamai and S. Verdú, “The empirical distribution of good codes,” IEEE Transactions on Information Theory, vol. 43,

no. 3, pp. 836–846, 1997.

[40] S. S. Pradhan, “Approximation of test channels in source coding,” in Proc. Conf. Inform. Syst. Sci.(CISS), 2004.

[41] T. Weissman and E. Ordentlich, “The empirical distribution of rate-constrained source codes,” IEEE transactions on

information theory, vol. 51, no. 11, pp. 3718–3733, 2005.

[42] P. W. Cuff, H. H. Permuter, and T. M. Cover, “Coordination capacity,” IEEE Transactions on Information Theory, vol. 56,

no. 9, pp. 4181–4206, 2010.

[43] C. Schieler and P. Cuff, “A connection between good rate-distortion codes and backward dmcs,” in 2013 IEEE Information

Theory Workshop (ITW). IEEE, 2013, pp. 1–5.
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