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Abstract

The goal of supervised representation learning is to construct effective data rep-
resentations for prediction. Among all the characteristics of an ideal nonparametric
representation of high-dimensional complex data, sufficiency, low dimensionality and
disentanglement are some of the most essential ones. We propose a deep dimension
reduction approach to learning representations with these characteristics. The pro-
posed approach is a nonparametric generalization of the sufficient dimension reduc-
tion method. We formulate the ideal representation learning task as that of finding
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a nonparametric representation that minimizes an objective function characterizing
conditional independence and promoting disentanglement at the population level. We
then estimate the target representation at the sample level nonparametrically using
deep neural networks. We show that the estimated deep nonparametric representa-
tion is consistent in the sense that its excess risk converges to zero. Our extensive
numerical experiments using simulated and real benchmark data demonstrate that
the proposed methods have better performance than several existing dimension reduc-
tion methods and the standard deep learning models in the context of classification
and regression.

Keywords: Conditional independence; Distance covariance; f -divergence; Nonparametric
estimation; Neural networks
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1 Introduction

Over the past decade, deep learning has achieved impressive successes in modeling high-

dimensional complex data arising from many scientific fields. A key factor for these suc-

cesses is the ability of certain neural network models to learn nonlinear representations

from complex high-dimensional data (Bengio et al., 2013; LeCun et al., 2015). For exam-

ple, convolutional neural networks are able to learn effective representations of image data

(LeCun et al., 1989). However, in general, optimizing the standard cross-entropy loss for

classification and the least squares loss for regression do not guarantee that the learned

representations enjoy any desired properties (Alain and Bengio, 2016). Therefore, it is im-

perative to develop principled approaches for constructing effective data representations.

Representation learning has emerged as an important framework for modeling complex data

(Bengio et al., 2013), with wide applications in classification, regression, imaging analysis,

domain adaptation and transfer learning, among others. The goal of supervised represen-

tation learning is to construct effective representations of high-dimensional input data for

various supervised learning tasks. In this paper, we propose a deep dimension reduction

(DDR) method for sufficient representation learning. DDR aims at estimating a sufficient

representation nonparametrically using deep neural networks based on the conditional in-

dependence principle.

There is a large body of literature on dimension reduction in statistics and machine

learning. A prominent approach for supervised dimension reduction and representation

learning is the sufficient dimension reduction (SDR) introduced in the seminal paper by

Li (1991). A key aspect that distinguishes SDR from many other dimension reduction

methods is that it does not make any model assumptions on the conditional distribution

of the response given the predictors. In the framework of SDR, a semiparametric method,
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called sliced inverse regression (SIR), was first proposed for estimating the linear dimen-

sion reduction direction, or linear sufficient representation (Li, 1991). The SIR and related

methods were further developed by many researchers, see, for example, Cook and Weisberg

(1991), Li (1992), Yin and Cook (2002), Cook (1998), Li et al. (2005) and Zhu et al. (2010)

and the references therein. These methods require the linearity and constant covariance

conditions on the distribution of the predictors. Several approaches have been developed

without assuming these conditions, including methods based on nonparametric regression

(Xia et al., 2002), conditional covariance operators (Fukumizu et al., 2009), mutual infor-

mation (Suzuki and Sugiyama, 2013), distance correlation (Vepakomma et al., 2018), and

semiparametric modeling (Ma and Zhu, 2012, 2013a). These SDR methods focus on linear

dimension reduction, that is, the features learned are linear functions of the original input

variables. However, linear functions may not be adequate for representing high-dimensional

complex data such as images and natural languages, due to the highly nonlinear nature

of such data. Lee et al. (2013) formulated a general sufficient dimension reduction frame-

work in the nonlinear setting and proposed a generalized inverse regression approach using

conditional covariance operators, but this method is computationally prohibitive with high-

dimensional data such as the image datasets considered in Section 6. We refer to the review

papers (Cook, 2007, 2018; Ma and Zhu, 2013b) and the monograph (Li, 2018) for thorough

reviews of SDR methods.

Among all the characteristics of an ideal representation for supervised learning, suffi-

ciency, low dimensionality and disentanglement are some of the most essential ones (Achille

and Soatto, 2018). Sufficiency is a basic property a representation should have. It is closely

related to the concept of sufficient statistics in a parametric model (Fisher, 1922; Cook,

2007). In supervised representation learning, sufficiency is characterized by the conditional

independence principle, which states that the original input data is conditionally indepen-
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dent of the response given the representation. In other words, a sufficient representation

contains all the relevant information in the input data about the response. Low dimension-

ality means that the representation should have as few components as possible to represent

the underlying structure of the data, and the number of components should be fewer than

the ambient dimension. In the context of nonparametric representation learning, disentan-

glement refers to the requirement that the components of the representation should be sta-

tistically independent. This is an extension of and stronger than the orthogonal constraint

in the linear representation setting, where the components of the linear representation are

constrained to have orthonormal directions. The notion of disentanglement is based on the

hypothesis that there are some underlying factors determining the data generation process:

although the observed data are high-dimensional and complex, the underlying factors are

low-dimensional, disentangled, and have a simple statistical structure. The components in

the learned representation can often be interpreted as corresponding to the latent structure

of the observed data, thus disentanglement is an important property for better separating

latent factors from one to another. A representation with these characteristics can make

the model more interpretable and facilitates the downstream supervised learning tasks.

Inspired by the basic idea of SDR, we propose a deep dimension reduction (DDR)

approach for supervised representation learning with the properties of sufficiency, low di-

mensionality and disentanglement. By taking the advantage of the strong capacities of

deep neural networks in approximating high-dimensional functions for nonparametric esti-

mation, we model the DDR representations, which we refer to as DDR map (DDRM) for

convenience, using deep neural networks to capture the nonlinearity in the representation

space. It would be difficult to use the traditional techniques for nonparametric estimation

such as kernel smoothing and splines for multi- or high-dimensional function estimation

in the context of representation learning. To characterize the conditional independence of
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the representation, we use the distance covariance (Székely et al., 2007) as the conditional

independence measure that can be computed efficiently. We also promote the disentangle-

ment for DDRM by regularizing its distribution to have independent components based on

a divergence measure.

Our main contributions are as follows:

• We formulate a new nonparametric approach to dimension reduction by characterizing

the sufficient dimension reduction map as a minimizer of a loss function measuring

conditional independence and disentanglement.

• We estimate the sufficient dimension reduction map at the sample level nonparamet-

rically using deep neural networks based on distance covariance for characterizing

sufficiency and use f -divergence to promote disentanglement of the learned represen-

tation.

• We show that the estimated deep dimension reduction map is consistent in the sense

that it achieves asymptotic sufficiency under mild conditions.

• We validate DDR via comprehensive numerical experiments and real data analysis

in the context of regression and classification. We use the learned features based on

DDR as inputs for linear regression and nearest neighbor classification. The result-

ing prediction accuracies are better than those based on linear dimension reduction

methods for regression and deep learning models for classification. The PyTorch code

for DDR is available at https://github.com/anonymous/DDR.

The rest of the paper is organized as follows. In Section 2 we discuss the theoretical

framework for learning a DDRM. This framework leads to the formulation of an objective

function using distance correlation for characterizing conditional independence in Section 3.

We estimate the target DDRM based on the sample version of the objective function using
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deep neural networks and develop an efficient algorithm for training the DDRM. In Section

4 we provide sufficient conditions under which estimated nonparametric representations

achieves asymptotic sufficiency. This result provides strong theoretical support for the

proposed method. The algorithm for implementing DDR is described in Section 5. In

Section 6 we validate the proposed DDR via extensive numerical experiments and real

data examples.

2 Sufficient representation and distance correlation

Consider a pair of random vectors (X, Y ) ∈ Rp×Rq, where X is a vector of predictors and Y

is a vector of response variables or labels. Our goal is to construct a representation of X that

possesses the three characteristics: sufficiency, low dimensionality and disentanglement.

2.1 Sufficiency

A measurable function s : Rp → Rd with d ≤ p is said to be a sufficient representation of

X if

Y X|s(X), (1)

that is, Y and X are conditionally independent given s(X). This condition holds if and

only if the conditional distribution of Y given X and that of Y given s(X) are equal.

Therefore, the information in X about Y is completely encoded by s(X). Such a function

s always exists, since if we simply take s(x) = x, then (1) holds trivially. This formulation

is a nonparametric generalization of the basic condition in sufficient dimension reduction

(Li, 1991; Cook, 1998), where it is assumed s(x) = BTx with B ∈ Rp×d belonging to the

Stiefel manifold, i.e., BTB = Id.
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Denote the class of sufficient representations satisfying (1) by

F = {s : Rp → Rd, s satisfies Y X|s(X)}.

For an injective measurable transformation T : Rd → Rd and s ∈ F , T ◦ s(X) is also

sufficient by the basic property of conditional probability. Therefore, the class F is invariant

in the sense that

T ◦ F ⊆ F , provided T is injective,

where T ◦ F = {T ◦ s : s ∈ F}. An important class of transformations is the class of affine

transformations, T ◦ s = As+ b, where A is a d× d nonsingular matrix and b ∈ Rd.

2.2 Space of nonparametric sufficient representations

The nonparametric sufficient representations are nonunique and the space of such represen-

tations is large, since if (1) holds for s, it also holds for any one-to-one transformation of s.

We propose to narrow the space of such representations by constraining the distributional

properties of s(x).

Among the sufficient representations, it is preferable to have those with a simple sta-

tistical distribution and whose components are independent, that is, the components are

disentangled. For a sufficient representation s(X), let Σs = Cov(s(X)). Suppose Σs is pos-

itive definite, then Σ
−1/2
s s(X) is also a sufficient representation. Therefore, we can always

rescale s(X) such that it has identity covariance matrix. To further simplify the statistical

structure of a representation s, we also impose the constraint that it is rotation invariant in

distribution, that is, Qs(X) = s(X) in distribution for any orthogonal matrix Q ∈ Rd×d.

By the Maxwell characterization of the Gaussian distributions (Maxwell, 1860; Bryc, 1995),
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a random vector of dimension two or more with independent components is rotation invari-

ant in distribution if and only if it is Gaussian with zero mean and a spherical covariance

matrix. Therefore, after absorbing the scaling factor, for a sufficient representation map to

be have independent components and be rotation invariant, it is necessarily distributed as

Nd(0, Id). Denote

M = {R : Rp → Rd, R(X) ∼ N (0, Id)}. (2)

Now our problem becomes that of finding a representation in F ∩M, the intersection of

the Fisher class and the Maxwell class.

Does such a sufficient representation exist? The following result from the optimal

transport theory gives an affirmative answer and guarantees the existence of such a repre-

sentation under mild conditions (Villani, 2008).

Lemma 2.1. Let µ be a probability measure on Rd. Suppose it has finite second moment and

is absolutely continuous with respect to the standard Gaussian measure, denoted by γd. Then

it admits a unique optimal transportation map T : Rd → Rd such that T#µ = γd ≡ N (0, Id),

where T#µ denotes the pushforward distribution of µ under T . Moreover, T is injective µ-

almost everywhere.

Denote the law of a random vector Z by µZ . Lemma 2.1 implies that, for any s ∈ F

with E‖s(X)‖2 <∞ and µs(X) absolutely continuous with respect to γd, there exists a map

T ∗ transforming the distribution of s(X) to N (0, Id). Therefore, R∗ := T ∗ ◦ s ∈ F ∩M,

that is,

X Y |R∗(X) and R∗(X) ∼ N (0, Id). (3)

The requirement that R∗(X) ∼ N (0, Id) can be considered a regularization on the distri-

bution of R∗(X). This is similar to the ridge regression where the ridge penalty can be

derived from a spherical normal prior on the regression coefficient. We use the standard
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multivariate normal distribution as the reference for regularizing the distribution of the suf-

ficient representation. It is possible to use other distributions such as uniform distribution

on the unit cube [0, 1]d. Below, to be specific, we will focus on using the standard normal

distribution for regularization. Also, we note that it suffices to estimate the function R∗,

not s and T ∗ separately, since R∗ satisfies the conditional independence requirement.

The independence requirement for the components of R∗ is reminiscent of the same re-

quirement in the independent component analysis (ICA, Jutten and Herault (1991); Comon

(1994)). ICA is a method for estimating hidden factors that underlie a random vector X.

It posits that X is a linear transformation of an unknown random vector with independent

components, but the transformation is unknown. The goal of ICA is to estimate this linear

transformation. DDR differs from ICA in three crucial aspects. First, DDR is a supervised

method that seeks to find a data representation such that the response is conditionally

independent given this representation, while ICA is an unsupervised method that attempts

to identify independent latent factors underlying the original data vector. Second, DDR

seeks a nonparametric function R∗ such that R∗(X) has independent components, while

ICA attempts to find a matrix W ∈ Rp×p such that the components of WX are indepen-

dent. Third, the distribution of R∗(X) can be Gaussian; in contrast, a basic restriction

in ICA is that the independent components must be non-Gaussian. There is a large body

of literature on ICA. For some more recent references on ICA, see Samarov and Tsybakov

(2004), Samworth and Yuan (2012) and the review Nordhausen and Oja (2018). Feedfor-

ward neural networks and recurrent neural network structures have also been considered in

solving ICA problems (Mutihac and Hulle, 2003). We refer the reader to the monographs

(Aapo Hyvärinen et al., 2001; Roberts and Everson, 2001) for additional references on ICA.
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3 Nonparametric estimation of representation map

The discussions in Section 2 lay the ground for formulating an objective function that can be

used for constructing a DDRM R∗ satisfying (3), that is, R∗ is sufficient and disentangled.

3.1 Population objective function

Let V be a measure of dependence between random variables X and Y with the follow-

ing properties: (a) V [X, Y ] ≥ 0 with V [X, Y ] = 0 if and only if X Y ; (b) V [X, Y ] ≥

V [R(X), Y ] for all measurable functionR; and (c) V [X, Y ] = V [R∗(X), Y ] if and only if R∗ ∈

F . These properties imply that R∗ ∈ F if and only of R∗ ∈ argminR{−V [R(X), Y ]}.

For the normality regularization in (3), we use a divergence measure D to quantify the

difference between µR(X) and the standard normal distribution γd. This measure should

satisfy the condition D(µR(X)‖γd) ≥ 0 for every measurable function R and D(µR(X)‖γd) =

0 if and only if R ∈ M. The f -divergences, including the KL-divergence, satisfy this

condition. It follows that R∗ ∈ M if and only if R∗ ∈ argminRD(µR(X)‖γd). Then the

problem of finding a sufficient and disentangle map R∗ becomes a constrained minimization

problem:

argminR − V [R(X), Y ] subject to D(µR(X)‖γd) = 0.

The Lagrangian form of this minimization problem is

L(R) = −V [R(X), Y ] + λD(µR(X)‖γd), (4)

where λ ≥ 0 is a tuning parameter. This parameter provides a balance between the suf-

ficiency property and the disentanglement constraint. A small λ leads to a representation

with more emphasis on sufficiency, while a large λ yields a representation with more em-
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phasis on disentanglement. We show in Theorem 3.2 below that any R∗ satisfying (3) is a

minimizer of L(R). Therefore, we can train a DDRM by minimizing an empirical version

of L(R).

There are several options for V with the properties (a)-(c) described above. For example,

we can take V to be the mutual information. However, in addition to estimating the DDRM

R, this choice requires nonparametric estimation of the ratio of the joint density and the

marginal densities of Y and R(X), which is not an easy task. To be specific, in this work

we use the distance covariance (Székely et al., 2007) between Y and R(X), which has an

elegant U -statistic expression. It does not involve additional unknown quantities and is

easy to compute. For the divergnce measure of two distributions, we use the f -divergence

(Ali and Silvey, 1966), which includes the KL-divergence as a special case.

3.2 Empirical objective function

In this subsection, we formulate the objective function for the proposed deep dimension

reduction method. We first describe some essentials about distance covariance and f -

divergence.

3.2.1 Distance covariance

We recall the concept of distance covariance (Székely et al., 2007), which characterizes the

dependence of two random variables. Let i be the imaginary unit (−1)1/2. For any t ∈ Rd

and s ∈ Rm, let ψZ(t) = E[expitTZ ], ψY (s) = E[expisTY ], and ψZ,Y (t, s) = E[expi(tTZ+sTY )]

be the characteristic functions of random vectors Z ∈ Rd, Y ∈ Rm, and the pair (Z, Y ),
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respectively. The squared distance covariance V [Z, Y ] is defined as

V [Z, Y ] =

∫
Rd+m

|ψZ,Y (t, s)− ψZ(t)ψY (s)|2

cdcm‖t‖d+1‖s‖q+1
dtds,

where cd = π(d+1)/2

Γ((d+1)/2)
. Given n i.i.d copies {Zi, Yi}ni=1 of (Z, Y ), an unbiased estimator of V

is the empirical distance covariance V̂n, which can be elegantly expressed as a U -statistic

(Huo and Székely, 2016)

V̂n[Z, Y ] =
1

C4
n

∑
1≤i1<i2<i3<i4≤n

h ((Zi1 , Yi1) , · · · , (Zi4 , Yi4)) ,

where h is the kernel defined by

h ((z1,y1) , . . . , (z4,y4)) =
1

4

∑
1≤i,j≤4
i 6=j

‖zi − zj‖‖yi − yj‖+
1

24

∑
1≤i,j≤4
i 6=j

‖zi − zj‖
∑

1≤i,j≤4
i6=j

‖yi − yj‖

−1

4

4∑
i=1

(
∑

1≤j≤4
j 6=i

‖zi − zj‖
∑

1≤j≤4
i 6=j

‖yi − yj‖).

For a categorial response Y in multi-class classification problems, we can use one-hot vectors

to code the classes, i.e., for the kth class, Y is a unit vector with kth element equaling 1

and the remaining elements being 0 . The L2 distance between two observed responses yi

and yj is

‖yi − yj‖2 =

 0, if yi = yj,
√

2, if yi 6= yj.

Note that the number
√

2 simply scales the whole objective function and does not affect

the solution.
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3.2.2 f-divergence

Let µ and γ be two probability measures on Rd. The f -divergence (Ali and Silvey, 1966)

between µ and γ with µ� γ is defined as

Df (µ‖γ) =

∫
Rd
f(

dµ

dγ
)dγ, (5)

where f : R+ → R is a differentiable convex function satisfying f(1) = 0. Let f ∗ be the

Fenchel conjugate of f (Rockafellar, 1970), defined by

f ∗(t) = sup
x∈R
{tx− f(x)}, t ∈ R. (6)

The f -divergence (5) admits the following variational formulation (Keziou, 2003; Nguyen

et al., 2010; Nowozin et al., 2016).

Lemma 3.1. Suppose that f is s differentiable convex function. Then,

Df (µ‖γ) = max
D:Rd→dom(f∗)

EZ∼µD(Z)− EW∼γf ∗(D(W )), (7)

where f ∗ is defined in (6). In addition, the maximum is attained at D(z) = f ′(dµ
dγ

(z)).

Commonly used divergence measures include the Kullback-Leibler (KL) divergence, the

Jensen-Shanon (JS) divergence and the χ2-divergence. We summarize the details in Table 1.

To be specific, in this paper we use the KL divergence with f(x) = x log x, which has

the familiar form DKL(µ‖γ) =
∫
Rd

(
log dµ

dγ

)
dµ. The dual form of f is f ∗(t) = exp(t − 1).

The variational representation DKL(µ‖γ) = supD{EZ∼µD(Z)−EW∼γ exp(D(W )− 1)}. The

generative adversarial networks (GAN, Goodfellow et al. (2014)) corresponds to the JS-

divergence. Much work has been devoted to developing various extensions and alternative
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Table 1: Three examples of f -divergence

f -Div f(x) f∗(t) Df (µ, γ)

KL x log x et−1 supD{EZ∼µD(Z)− EW∼γe
D(W )−1}

JS −(x+ 1) log x+1
2 + x log x − log(2− exp(t)) supD{EZ∼µD(Z) + EW∼γ log(2− exp(D(W )))}

χ2 (x− 1)2 t+ t2

4 supD{EZ∼µD(Z)− EW∼γ [D(W ) + D2(W )
4 ]}

formulations of the original GAN (Li et al., 2015; Nowozin et al., 2016; Sutherland et al.,

2017; Arjovsky et al., 2017).

3.2.3 Empirical objective function for DDR

We are now ready to formulate an empirical objective function for learning DDRM. Let

R ∈ M, where M is the Maxwell class defined in (2). By the variational formulation (7),

we can write the population version of the objective function (4) as

L(R) = −V [R(X), Y ] + λmax
D
{EX∼µXD(R(X))− EW∼γdf

∗(D(W ))}. (8)

This expression is convenient since we can simply replace the expectations by the corre-

sponding empirical averages.

Theorem 3.2. We have R∗ ∈ arg minR∈M L(R) provided (3) holds.

According to Theorem 3.2, it is natural to estimate R∗ based on the empirical version

of the objective function (8) when a random sample {(Xi, Yi)}ni=1 is available.

We estimate R∗ nonparametrically using feedforward neural networks (FNN) (Schmid-

huber, 2015). Two networks are employed: the representer network Rθ with parameter θ

for estimating R∗ and a second network Dφ with parameter φ for estimating the discrim-
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inator D. For any function f(x) : X → Rd, denote ‖f‖∞ = supx∈X ‖f(x)‖, where ‖ · ‖ is

the Euclidean norm.

• Representer network Rθ: This network is used for training R∗. Let R ≡ RH,W,S be

the set of such ReLU neural networks Rθ : Rp → Rd. with parameter θ, depth H,

width W , size S. Here the depth H refers to the number of hidden layers, so the

network has H + 1 layers in total. A (H + 1)-vector (w0, w1, . . . , wH) specifies the

width of each layer, where w0 = p is the dimension of the input data and wH = d

is the dimension of the output. The width W = max{w1, . . . , wH} is the maximum

width of the hidden layers. The size S =
∑H

i=0[wi × (wi + 1)] is the total number of

parameters in the network.

• Discriminator network Dφ: This network is used as the witness function for checking

whether the distribution of the estimator of R∗ is approximately the same asN (0, Id).

Similarly, denote D ≡ DH̃,W̃,S̃ as the set of ReLU neural networks Dφ : Rd → R with

parameter φ, depth H̃, width W̃ , size S̃.

Let {Wi}ni=1 be n i.i.d random vectors drawn from γd. The estimated DDRM is defined

by

R̂θ ∈ arg min
Rθ∈R

L̂(Rθ) (9)

where L̂(Rθ) = −V̂n[Rθ(X), Y ] + λD̂f (µRθ(X)‖γd). Here V̂n[Rθ(X), Y ] is an unbiased and

consistent estimator of V [Rθ(X), Y ] as defined in (5) based on {(Rθ(Xi), Yi), i = 1, . . . , n}

and

D̂f (µRθ(X)‖γd) = max
Dφ∈D

1

n

n∑
i=1

[Dφ(Rθ(Xi))− f ∗(Dφ(Wi))]. (10)

This objective function consists of two terms: (a) the term λV̂n[Rθ(X), Y ] is an unbiased

and consistent estimator of λV [Rθ(X), Y ], which is a measure that quantifies the conditional
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independence X Y |Rθ(X); (b) the term D̂f (µRθ(X)‖γd) promotes disentanglement among

the components of Rθ(X) by encouraging Rθ(X) to be distributed as N(0, Id). This is the

dual form of the f -GAN loss (Goodfellow et al., 2014; Nowozin et al., 2016). We note that

GANs seek to find a map from a reference distribution such as Gaussian to the data space,

here we do the reverse and try to find a representation of the data to be distributed like a

reference distribution.

4 Consistency

We establish the consistency of the estimated DDRM in the sense that the excess risk

L(R̂θ) − L(R∗) converges to zero, where R̂θ is the deep nonparametric estimator in (9).

It is clear that to achieve consistency, it is necessary to require the network parameters

to increase as the sample size increases. This is similar to requiring the bandwidth of a

nonparametric kernel density estimator to depend on the sample size. There is an extensive

literature on how to select the bandwidth parameter in nonparametric density estimation

problems. How to choose the structure parameters of a neural network is a more compli-

cated problem. To the best of our knowledge, it has not been systematically studied in

the literature. We provide a particular specification below that ensures the consistency of

the estimated representation. However, this specification is not necessarily optimal, it only

represents our first attempt to tackle this difficult problem.

We make the following basic assumptions about the target parameter and the model.

(A1) The target representation R∗ is Lipschitz continuous with Lipschitz constant L1.

(A2) For every R ∈ R ≡ RH,W,S , we assume the density ratio r(z) =
dµR(X)

dγd
(z) to be Lip-

schitz continuous with Lipschitz constant L2, and c1 ≤ r(z) ≤ c2 for some constants
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0 < c1 ≤ c2 <∞.

(A3) supp(µX) is contained in a compact set, say [−B1, B1]p with a finite B1 and denote

its density function as fX(x). Y is bounded almost surely, say ‖Y ‖ ≤ C1 a.s..

Let B2 = max{|f ′(c1)|, |f ′(c2)|} and B3 = max|s|≤2B2 |f ∗(s)|. For the KL-divergence, we

have B2 = max{log c1, log c2}+ 1 and B3 = exp(2B2). We specify the network parameters

of the representer Rθ and the discriminator Dφ as follows.

(N1) Representer network R ≡ RH,W,S parameters: depth H = O(log n) width W =

O(n
p

2(2+p)/ log n), size S = O(dn
p

2+p/ log4(npd)), and ‖R‖L∞ ≤ 2‖R∗‖L∞ ,∀R ∈ R.

(N2) Discriminator network D ≡ DH̃,W̃,S̃ parameters: depth H̃ = O(log n), width W̃ =

O(n
d

2(2+d)/ log n), size S̃ = O(n
d

2+d/ log4(npd)), and ‖D‖L∞ ≤ 2B2,∀D ∈ D.

We again note that these specifications of the network parameters are not necessar-

ily unique or optimal. Our goal here is to provide theoretical support for the proposed

method in the sense that there exist networks with the above specifications leading to the

consistency of the estimated representation map.

Theorem 4.1. Set λ = O(1). Suppose conditions (A1)-(A3) hold and set the network

parameters according to (N1)-(N2). Then E{Xi,Yi,Wi}ni=1
[L(R̂θ)− L(R∗)]→ 0.

The proof of this theorem is given in the appendix. Conditions (A1) and (A2) are

regularity conditions that are often assumed in nonparametric estimation problems. The

result established in Theorem 4.1 shows that the learned DDRM achieves asymptotic suf-

ficiency under the conditions (A1) and (A2) and with the specifications (N1) and (N2) for

the network parameters.

There have been intensive efforts devoted to understanding the theoretical properties

of deep neural network models in recent years. Several stimulating papers have studied the
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statistical convergence properties of nonparametric regression using neural networks (Bauer

and Kohler, 2019; Schmidt-Hieber, 2020; Farrell et al., 2021; Jiao et al., 2021). There have

also been some recent works on the non-asymptotic error bounds of GANs. For example,

Zhang et al. (2018) considered the generalization error of GANs. Liang (2020) studied the

rates of convergence for learning distributions implicitly with GAN under several forms of

the integral probability metrics. Bai et al. (2019) analyzed the estimation error bound of

GANs under the Wasserstein distance for a special class of distributions implemented by a

generator. Chen et al. (2020) studied the convergence rates of GAN distribution estimators

when both the evaluation class and the target density class are Hölder classes.

In the present problem, the objective function (9) is the combination of a loss that is a

U -process indexed by a class of neural networks and a GAN-type loss indexed by two classes

of neural networks. This objective function is more complicated than the least squares loss

or the GAN loss analyzed in the aforementioned works. Therefore, the problem here is

more difficult. To the best of our knowledge, the consistency property of the excess risk of

the minimizer of such an objective function has not been analyzed in the literature.

5 Computation

Lemma 3.1 implies that training of φ with fixed θ is to push forward the distribution of

R(X) to the reference distribution γd = N(0, Id). For this purpose, we need to estimate an

optimal discriminator Dφ approximating the optimal dual function D(z) = f ′(r(z)), where

r(z) is the ratio for the density of µRθ(x) over the density of γd. Note that f ′ is a strictly

increasing function if f is strictly convex, which is true for all the commonly used divergence

measures. Thus the problem of estimating the discriminator is essentially that of estimating

the density ratio. Therefore, in our implementation, we utilize the computationally stable
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particle method based on gradient flow in probability measure spaces (Gao et al., 2019,

2020). The key idea of this particle method is to seek a sequence of nonlinear but simpler

residual maps, T(z) = z + sv(z), where s > 0 is a small step size, pushing the samples

from µRθ(x) to the target distribution γd along a velocity fields v(z) = −∇f ′(r(z)) that

most decreases the f -divergence Df (·||γd∗) at µRθ(X) (Gao et al., 2019). The residual maps

can be estimated via deep density-ratio estimation. Specifically, the estimated residual

maps take the form T(z) = z + sv̂(z), z ∈ Rd, where v̂(z) = −∇f ′(r̂(z)). Here r̂(z) is an

estimated density ratio of the density of Rθ(x) at the current value of θ over the density of

the reference distribution. The estimator r̂(z) is constructed as follows. Let Zi = Rθ(Xi)

and generate Wi ∼ γd, i = 1, 2, . . . , n. We solve

D̂φ ∈ arg min
Dφ

1

n

n∑
i=1

{log[1 + exp(Dφ(Zi))] + log[1 + exp(−Dφ(Wi))]} (11)

with stochastic gradient descent (SGD). Then the estimated density ratio r̂(z) = exp(−D̂φ(z)).

Here we note that the population version of the loss function in (11) is minimized at

− log(r(z)). Therefore, D̂φ(z) in (11) provides a good estimator of − log(r(z)). See Gao

et al. (2020) for a detailed description of this particle approach. Here, we use this approach

to transform Zi = Rθ(Xi), i = 1, . . . , n into Gaussian samples (we still denote them as Zi)

directly. Once this is done, we update θ via minimizing the loss

1

n

n∑
i=1

‖Rθ(Xi)− Zi‖2 − λV̂n[Rθ(X), Y ].

We depict the DDR algorithm in the flowchart in Figure 1 and give a detailed description

below. Pseudo-code for the DDR algorithm

• Input {Xi, Yi}ni=1. Tuning parameters: s, λ, d. Sample {Wi}ni=1 ∼ γd.
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• Outer loop for θ

– Inner loop (particle method)

∗ Let Zi = Rθ(Xi), i = 1, . . . , , n.

∗ Solve D̂φ ∈ arg minDφ

1
n

∑n
i=1 {log[1 + exp(Dφ(Zi))] + log[1 + exp(−Dφ(Wi))]} .

∗ Define the residual map T(z) = z − s∇f ′(r̂(z)) with r̂(z) = exp(−D̂φ(z)).

∗ Update the particles Zi = T(Zi), i = 1, 2, ..., n.

– End inner loop

– Update θ via minimizing −V̂n[Rθ(X), Y ]+λ
∑n

i=1 ‖Rθ(Xi)−Zi‖2/n using SGD.

• End outer loop

Figure 1: Flow chart for deep dimension reduction (DDR)

6 Numerical experiments

We evaluate the performance of DDR using simulated and benchmark real data. Since

DDR is not trying to estimate a classifier or a regression function directly, but rather

to learn a representation with the desired properties of sufficiency, low-dimensionality and

disentanglement, we design the experiments to evaluate the performance of the learned rep-

resentations based on DDR in terms of prediction when using these representations. The
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Table 2: Summary information of DDR and compared methods. X l and Xu represent
labeled and unlabeled data, respectively, while Y l represents labeled targets.
Method Name Input Supervision Based Model

DDR Deep Dimension Reduction X l, Y l Supervised Neural networks
NN Neural Networks X l, Y l Supervised Neural networks
dCorAE Distance Correlation Autoencoder X l, Y l Supervised Neural networks
OLS Ordinary Least Squares X l, Y l Supervised Linear
SIR Sliced Inverse Regression X l, Y l Supervised Linear
SAVE Sliced Average Variance Estimation X l, Y l Supervised Linear
GSIR Generalized Sliced Inverse Regression X l, Y l Supervised Kernel
GSAVE Generalized Sliced Average Variance Estimation X l, Y l Supervised Kernel
Semi-VAE Semi-supervised Variational Autoencoders X l, Y l and Xu Semi-supervised Neural networks
InfoVAE Information Maximizing Variational Autoencoders X l, Y l and Xu Semi-supervised Neural networks
PCA Principal Component Analysis X l and Xu Unsupervised Linear
SPCA Sparse Principal Component Analysis X l and Xu Unsupervised Linear

results demonstrate that a simple classification or regression model using the learned rep-

resentations performs better than or comparably with the best classification or regression

methods using deep neural networks. Details on the network structures and hyperparame-

ters are included in the appendix. Summary information of DDR and compared methods,

including the names of methods, their input, learning types, and models of methods, is

given in Table 2. Our experiments were conducted on Nvidia DGX Station workstation

using a single Tesla V100 GPU unit.

6.1 Simulated data

In this subsection, we evaluate DDR on simulated regression and classification problems.

Regression I. We generate 10, 000 data points from two models:

Model (a). Y = x1[0.5 + (x2 + 1.5)2]−1 + (1 + x2)2 + σε, where X ∼ N (0, I20);

Model (b). Y = sin2 (πX1 + 1) + σε, where X ∼ Uniform[0, 1]20.

In both models, ε ∼ N (0, I). We use a 3-layer network with ReLU activation for Rθ

and a single hidden layer ReLU network for Dφ. We compare DDR with four prominent
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sufficient dimension reduction methods: sliced inverse regression (SIR) (Li, 1991), sliced

average variance estimation (SAVE) (Cook and Weisberg, 1991), generalized sliced inverse

regression (GSIR) and generalized sliced average variance estimation (GSAVE) (Lee et al.,

2013; Li, 2018). SIR slices the range of Y and obtains the crude estimation of the inverse

regression E(X|Y ). Then the eigenvectors of the covariance matrix Cov(E(X|Y )) that lie

in the central subspace of data can be estimated via weighted PCA. SIR is a first moment

method to estimate the central subspace from E(X|Y ), while SAVE is a second moment

method to estimate the space from V ar(E(X|Y )) that is primarily used to solve symmetric

data problems. Similarly, SAVE also utilizes the weighted PCA to estimate eigenvectors

that lie in the central subspace. GSIR and GSAVE are generalized versions of SIR and

SAVE, respectively. Both of them estimate central subspace in the reproducing kernel

Hilbert space (RKHS) instead of using the covariance matrix in both SIR and SAVE. Also,

we compare DDR with two deep learning based methods: neural networks (NN) with least

square (LS) loss as the last layer, denoted as NN+LS, and distance correlation autoencoder

(dCorAE) (Wang et al., 2018). dCorAE targets at two objectives for both reconstruction

and classification, presenting a trade-off between two tasks during training.

Table 3: Average prediction errors and their standard errors (based on 5-fold validation)

Model (a) Model (b)

Method σ = 0.1 σ = 0.4 σ = 0.8 σ = 0.05 σ = 0.1 σ = 0.2

DDR 0.127 ± .005 0.555 ± .010 1.088 ± .009 0.052 ± .001 0.105 ± .003 0.241 ± .010
NN+LS 0.147 ± .028 0.575 ± .008 1.150 ± .013 0.053 ± .001 0.107 ± .002 0.242 ± .010
dCorAE 0.153 ± .015 0.549 ± .012 1.101 ± .015 0.065 ± .001 0.135 ± .001 0.275 ± .004
SIR 1.484 ± .047 1.599 ± .050 1.712 ± .037 0.252 ± .002 0.268 ± .002 0.323 ± .005
SAVE 1.482 ± .048 1.588 ± .049 1.715 ± .038 0.252 ± .002 0.268 ± .003 0.323 ± .005
GSIR 1.477 ± .047 1.598 ± .050 1.707 ± .039 0.267 ± .004 0.269 ± .004 0.322 ± .006
GSAVE 1.478 ± .048 2.602 ± .079 2.654 ± .041 0.265 ± .003 0.267 ± .004 0.339 ± .006

We fit a linear model with the learned features and the response variable, and report the
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prediction errors in Table 3. We see that DDR outperforms SIR, SAVE, GSIR, GSAVE,

NN+LS and dCorAE in terms of prediction error.

Regression II. We generate 5000 data points from three simulated models:

Model (a). Y = (x1 + x2)2 + (1 + exp(x1))2 + ε;

Model (b). Y = sin (π (x1 + x2)/10) + x2
1 + ε;

Model (c). Y = (x2
1 + x2

2)
1/2

log (x2
1 + x2

2)
1/2

+ ε,

where ε X and ε ∼ N(0, 0.25 · I10). For the distribution of the 10-dimensional predic-

tor X, we consider three scenarios: Scenario (i): X ∼ N (0, I10); independent Gaussian

predictors; Scenario (ii): X ∼ 1
3
N (−2 · 110, I10) + 1

3
Uniform[−1, 1]10 + 1

3
N (2 · 110, I10),

independent non-Gaussian predictors; Scenario (iii): X ∼ N
(
0, 0.3 · I10 + 0.7 · 1101

>
10

)
.

correlated Gaussian predictors. These models and the distributional scenarios are modified

from (Lee et al., 2013; Li, 2018).

Table 4: Average prediction errors (APE), distance correlation (DC), conditional Hilbert-
Schmidt independence criterion (HSIC) and their standard errors (based on 5-fold valida-
tion)

Model (a) Model (b) Model (c)

Method APE DC HSIC APE DC HSIC APE DC HSIC

Scenario (i)
DDR 6.1 ± 3.5 1.0 ± .0 34.7 ± 3.5 0.3 ± .0 1.0 ± .0 49.1 ±7.7 0.3 ± .0 0.9 ± .0 36.4 ± 2.8
GSIR 28.3 ± 7.5 0.2 ± .0 64.4 ± 2.9 1.4 ± .1 0.1 ± .0 134.8 ±13.5 0.8 ± .0 0.2 ± .0 67.4 ± 3.9
GSAVE 28.3 ± 7.4 0.1 ± .0 72.1 ± 4.1 1.4 ± .0 0.1 ± .0 175.9 ±6.4 0.8 ± .0 0.2 ± .0 66.5 ± 2.8

Scenario (ii)
DDR 183.1 ± 98.7 0.9 ± .1 45.1 ± 3.3 0.4 ± .1 1.0 ± .0 16.8 ±2.0 0.3 ± .1 1.0 ± .0 8.6 ± 0.7
GSIR 664.6 ± 38.1 0.1 ± .0 43.9 ± 2.6 3.3 ± .2 0.1 ± .0 27.6 ±1.7 1.5 ± .1 0.6 ± .0 14.6 ± 0.8
GSAVE 662.0 ± 38.0 0.0 ± .0 48.0 ± 2.7 3.2 ± .2 0.2 ± .0 32.0 ±1.5 2.4 ± .0 0.0 ± .0 15.5 ± 0.6

Scenario (iii)
DDR 12.5 ± 11.1 0.8 ± .3 37.0 ± 4.7 0.3 ± .0 1.0 ± .0 48.6 ±7.1 0.3 ± .1 0.9 ± .1 36.8 ± 5.9
GSIR 32.2 ± 6.1 0.2 ± .1 61.4 ± 6.0 1.0 ± .1 0.2 ± .0 51.3 ±51.3 0.6 ± .0 0.6 ± .0 25.8 ± 25.6
GSAVE 31.8 ± 6.4 0.2 ± .1 60.0 ± 4.4 1.0 ± .0 0.3 ± .0 119.3 ±8.8 0.6 ± .0 0.7 ± .0 54.3 ± 3.8

We compare DDR with generalized sliced inverse regression (GSIR) and generalized

sliced average variance estimation (GSAVE) (Lee et al., 2013; Li, 2018). In DDR, we adopt

a 4-layer network for Rθ and a 3-layer network for Dφ with Leaky ReLU activation. For
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all methods, we fit a linear model with the learned features and the response variable, and

report the prediction error, distance correlation between representation and the response

variable, and conditional Hilbert-Schmidt independence criterion (HSIC) (Fukumizu et al.,

2008). The results are presented in Table 4. The representations learned with DDR present

higher distance correlations with the response and lower conditional HSICs, suggesting

that DDR is capable of better capturing data information and conditional independence

property than other methods. Moreover, DDR significantly outperforms GSIR and GSAVE

in terms of prediction errors in all scenarios.

Classification. We visualize the learned features of DDR on three simulated datasets. We

first generate (1) 2-dimensional concentric circles from two classes as in Figure 2 (a); (2)

2-dimensional moons data from two classes as in Figure 2 (e); (3) 3-dimensional Gaussian

data from six classes as in Figure 2 (i). In each dataset, we generate 5,000 data points for

each class. We next map the data into 100-dimensional space using matrices with entries

i.i.d Unifrom([0, 1]). Finally, we apply DDR to these 100-dimensional datasets to learn

2-dimensional features. We use a 10-layer dense convolutional network (DenseNet) (Huang

et al., 2017a) as Rθ and a 4-layer network as Dφ. We display the evolutions of the learned

2-dimensional features by DDR in Figure 2. For ease of visualization, we push all the

distributions onto the uniform distribution on the unit circle, which is done by normalizing

the standard Gaussian random vectors to length one. Clearly, the learned features for

different classes in the examples are well disentangled.

6.2 Real datasets

We benchmark DDR on a variety of real datasets from both regression and classification

problems. Summary information of those datasets used in the analysis is given in Table 5.
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(a) Epoch = 0 (b) 10 (c) 30 (d) 500

(e) Epoch = 0 (f) 10 (g) 30 (h) 500

(i) Epoch = 0 (j) 10 (k) 30 (l) 500

Figure 2: Evolving learned features at Epoch = 0, 10, 30, and 500. The first, second and
third rows show concentric circles, moons and 3D Gaussian datasets, respectively.

Table 5: Summary information for real datasets.
Dataset Feature size Training size Test size Task

YearPredictionMSD 90 412, 276 103, 069 Regression
Pole-Telecommunication 48 12, 000 3, 000 Regression
MNIST 28× 28× 1 60k 10k Classification with 10 categories
Kuzushiji-MNIST 28× 28× 1 60k 10k Classification with 10 categories
FashionMNIST 28× 28× 1 60k 10k Classification with 10 categories
CIFAR-10 32× 32× 3 50k 10k Classification with 10 categories
CIFAR-100 32× 32× 3 50k 10k Classification with 100 categories

Regression. We benchmark the prediction performance of regression models using the

representations learned based on DDR. Here, we use the YearPredictionMSD dataset1 and

the Pole-Telecommunication dataset2. The YearPredictionMSD dataset contains 515,345

observations with 90 predictors. The problem is to predict the year of song release. The

1The YearPredictionMSD dataset is available at https://archive.ics.uci.edu/ml/datasets/

YearPredictionMSD.
2The Pole-Telecommunication dataset is available at https://www.dcc.fc.up.pt/~ltorgo/

Regression/DataSets.html.
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Pole-Telecommunication dataset consists of 15,000 observations with 48 predictors for de-

termining the placement of antennas. We randomly split the data into five folds to evaluate

the prediction performance using 5-fold cross validation. We employ a 3-layer network for

both Dφ and Rθ on the YearPredictionMSD dataset; a 2-layer network for Dφ and a 4-

layer network Rθ are adopted on the Pole-Telecommunication dataset. In comparison, we

conduct a nonlinear regression using neural networks (NN) with a least squares (LS) loss

in the last layer, denoted as NN + LS. That is, we do not impose any desired characteris-

tics for the learned representations in the pultimate layer. Note that, for both DDR and

NN+LS, we use the same networks to learn representative features. We also consider the

popular dimension reduction methods, including principal component analysis (PCA) and

sparse principal component analysis (SPCA), to obtain data representation. For the com-

parison with supervised dimension reduction methods, we consider SIR and SAVE and the

deep learning based sufficient dimension reduction method dCorAE. For those methods,

we first obtain the estimated representative features and fit a linear regression model of the

response on the learned representations. The average prediction errors and their standard

errors based on DDR, NN+LS, dCorAE, PCA, SPCA, SIR, SAVE and the ordinary least

squares (OLS) regression with the original data are reported in Tables 6 and 7. DDR

outperforms other methods in terms of prediction accuracy.

Table 6: Prediction error ± standard error: YearPredictionMSD dataset

Methods d = 10 d = 20 d = 30 d = 40

DDR 8.8 ± 0.1 8.9 ± 0.1 8.9 ± 0.1 8.8 ± 0.1
dCorAE 8.9 ± 0.1 9.0 ± 0.1 9.2 ± 0.1 8.9 ± 0.1
NN+LS 9.2 ± 0.1 9.3 ± 0.1 9.2 ± 0.1 9.2 ± 0.1
SPCA 10.6 ± 0.1 10.4 ± 0.1 9.6 ± 0.1 10.2 ± 0.1
PCA 10.6 ± 0.1 10.4 ± 0.1 10.3 ± 0.1 10.2 ± 0.1
SIR 9.6 ± 0.1 9.6 ± 0.1 9.6 ± 0.1 9.6 ± 0.1
SAVE 10.3 ± 0.1 9.7 ± 0.1 9.6 ± 0.1 9.6 ± 0.1
OLS ———9.6 ±0.1———
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Table 7: Prediction error ± standard error: Pole-Telecommunication dataset

Methods d = 5 d = 10 d = 15 d = 20

DDR 2.1 ± 0.2 2.1 ± 0.1 2.2 ± 0.1 2.2 ± 0.2
dCorAE 3.1 ± 0.1 3.1 ± 0.3 3.1 ± 0.2 3.0 ± 0.1
NN +LS 3.0 ± 0.5 3.1 ± 1.1 2.7 ± 0.8 3.2 ± 0.6
SPCA 40.3 ± 0.3 40.1 ± 0.3 30.5 ± 0.2 30.5 ± 0.2
PCA 40.3 ± 0.3 40.1 ± 0.3 30.5 ± 0.2 30.5 ± 0.2
SIR 30.4 ± 0.1 30.4 ± 0.1 30.5 ± 0.1 30.5 ± 0.1
SAVE 31.2 ± 0.3 30.5 ± 0.1 30.5 ± 0.1 30.5 ± 0.1
OLS ———30.5 ± 0.2———

Classification I. We benchmark the classification performance of DDR using MNIST

(LeCun et al., 2010), FashionMNIST (Xiao et al., 2017), CIFAR-10, and CIFAR-100

(Krizhevsky and Hinton, 2009) datasets against some existing methods, including neu-

ral networks (NN) with cross entropy (CN) loss as the last layer, denoted as CNN, and

distance correlation autoencoder (dCorAE) (Wang et al., 2018). With CNN, we use the

feature extractor by dropping the last layer for the CN loss of the NN trained for classifi-

cation as networks. Note that, for both DDR and CNN, we apply the same networks to

learn representations.

The MNIST and FashionMNIST datasets consist of 60k and 10k grayscale images with

28 × 28 pixels for training and testing, respectively, while the CIFAR-10 and CIFAR-100

datasets contain 50k and 10k colored images with 32 × 32 pixels for training and testing,

respectively. The representer network Rθ contains 20 layers for MNIST data and 100 layers

for CIFAR-10 data.

To fully utilize computational resources and improve classification accuracy, we further

combine DDR with the CN loss, denoted as DDR+CN, by applying the transfer learning

technique (Torrey and Shavlik, 2010; Pan and Yang, 2009; Tan et al., 2018) on CIFAR-10

and CIFAR-100. Data structures for both CIFAR-10 and ImageNet are the same (with

three channels), which makes the use of transfer learning straightforward by leveraging the
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pretrained model of ImageNet. The pretrained WideResnet-101 model (Zagoruyko and

Komodakis, 2016) on the ImageNet dataset with Spinal FC (Kabir et al., 2020) is chosen

for Rθ. In our experiments for transfer learning, we first train the WideResnet model on

ImageNet. We then use the parameters of the pretrained neural network as the initial-

ization parameters to train CIFAR-10. In contrast to transfer learning, the initialization

parameters of learning from scratch are random. The discriminator network Dφ is a 4-

layer network. The architecture of Rθ and most hyperparameters are shared across all four

methods - DDR, CNN, DDR+CN and dCorAE (Wang et al., 2018). Finally, we use the

k-nearest neighbor (k = 5) classifier on the learned features for all methods.

As shown in Table 8, the classification accuracies of DDR for MNIST and FashionM-

NIST are better than or comparable with those of CNN and dCorAE. As shown in Table 9,

the classification accuracy of DDR using the CN loss outperforms that of CNN on CIFAR-

10 and CIFAR-100. We also calculate the estimated distance correlation (DC) between the

learned features and their labels. Figure 3 shows the values of DC for MNIST, FashionM-

NIST and CIFAR-10 data. Higher DC values mean that the learned features are of higher

quality. DDR and DDR+CN achieves higher DC values.

Because both GSIR and GSAVE require computation of n×n kernel matrices, which is

computationally prohibitive when n = 10, 000 to 60, 000 and p ≈ 1, 000, it does not allow

us to apply both methods to analyze datasets from MNIST, FashionMNIST, CIFAR-10

and CIFAR-100.

Classification II. To compare the performance of DDR with semi-supervised methods,

we benchmark DDR on MNIST dataset with varying amounts of labeled data for training.

In detail, we consider some widely used semi-supervised learning methods, including semi-

supervised variational autoencoders (Semi-VAE) (Kingma et al., 2014) and information

maximizing variational autoencoders (InfoVAE) with the semi-supervised setting (Kingma
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(a) MNIST, 16 (b) MNIST, 32 (c) MNIST, 64 (d) FMNIST, 16 (e) FMNIST, 32 (f) FMNIST, 64

(g) CIFAR (FS), 16 (h) CIFAR (FS), 32 (i) CIFAR (FS), 64 (j) CIFAR (TL), 16 (k) CIFAR (TL), 32 (l) CIFAR (TL), 64

Figure 3: The distance correlations of labels with learned features based on DDR, CNN
and dCorAE with d = 16, 32 and 64 for MNIST, FashionMNIST (FMNIST) and CIFAR-10
(CIFAR) data (FS: from scratch; TL: transfer learning).

Table 8: Classification accuracy for MNIST and FashionMNIST. In the table,
dCor=dCorAE.

MNIST FashionMNIST

d DDR dCor CNN DDR dCor CNN

d = 16 99.41 99.58 99.39 94.44 94.18 94.21
d = 32 99.61 99.54 99.45 94.18 93.89 94.41
d = 64 99.56 99.53 99.49 94.13 94.24 94.38

Table 9: Classification accuracy for CIFAR-10 and CIFAR-100 data.

CIFAR-10 CIFAR-100

Learning from scratch Transfer learning Transfer learning

d dCorAE CNN DDR CNN DDR DDR+CN d dCorAE CNN DDR+CN

d = 16 94.15 94.21 94.29 97.44 97.52 97.68 d = 200 85.39 86.29 86.36
d = 32 94.18 94.92 94.58 97.79 97.33 97.96 d = 300 85.57 85.95 86.04
d = 64 94.66 95.09 94.46 97.90 97.49 97.91 d = 400 85.55 86.21 86.30

et al., 2014; Zhao et al., 2019), and the supervised method, CNN. InfoVAE utilizes all

training images to learn representations, and then trains the k-nearest neighbor (k = 5)

classifier with the learned representations and partially known labels. All four methods

30



share the same network architecture for 50-dimensional learning representation. We adopt

the double-hidden-layer MLP networks, with 600 neurons for each layer, the softplus ac-

tivation function, and the Adam optimizer. For both Semi-VAE and InfoVAE, we apply

a semi-supervised setting to analyze all 60k images with the varying number of labeled

images as the training data and validate the performance using 10k test data. But for both

DDR and CNN, we apply a supervised setting to analyze only data with labels and discard

the rest of images in the training set.

Figure 4: The classification errors comparison on varying amounts of labeled MNIST data.

The prediction accuracy using images with the varying number of labels, from 600 to

10, 000, is shown in Fig. 4. For supervised methods, we observe that the accuracy of

DDR outperforms that of CNN for the varying number of images with labels. When the

proportion of images with labels is low, Semi-VAE performs the best by fully utilizing all 60k

training images. However, the accuracy of Semi-VAE does not improve over the increasing

proportion of images with labels. This is because the objective function of Semi-VAE is

primary to maximize the lower bound of the joint likelihood rather than the classification

loss. In all, compared with semi-supervised learning, DDR uses a small amount of data

with labels in training, but achieves better classification accuracy when the number of

images with labels are larger than 1,000.
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7 Conclusion and future work

Since the framework of supervised dimension reduction was first introduced over twenty

years ago by Li (1991), there have been a variety of important methods developed in this

framework. However, most of the existing works focused on finding linear representations

of the input data. There are two important reasons why it has been difficult to develop

nonparametric supervised representation learning approaches. First, supervised represen-

tation learning is more difficult than and fundamentally different from supervised learning.

Indeed, it is challenging to formulate a clear and simple objective function for supervised

representation learning in the first place. This is in clear contrast to supervised learning,

whose objective is clear-cut. For example, in classification, the objective is to minimize the

misclassification rate or surrogate objective function; in regression, a least squares crite-

rion for the fitting error is usually used. However, how to construct an objective function

for nonparametric supervised representation learning in a principled way has remained an

open question (Bengio et al., 2013; Alain and Bengio, 2016). Second, it is difficult to apply

standard techniques for nonparametric estimation such as smoothing, splines and kernel

methods in multi-dimensional problems. They are either not flexible enough for providing

accurate adaptive and data-driven based approximation to multi-dimensional functions or

are computational prohibitive with high-dimensional data.

In this work, we propose a nonparametric DDR approach to achieving a good data

representation for supervised learning with certain desired characteristics including suf-

ficiency, low-dimensionality and disentanglement. We estimate the representation map

nonparametrically by taking advantage of the powerful capabilities of deep neural net-

works in approximating multi-dimensional functions. The proposed DDR is validated via

comprehensive numerical experiments and real data analysis in the context of regression
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and classification.

Several questions deserve further study. First, it would be interesting to consider other

measures of conditional independence such as conditional covariance operators on reproduc-

ing kernel Hilbert spaces (Fukumizu et al., 2009) and heteroscedastic conditional variance

operator on Hilbert spaces (Lee et al., 2013). It is also possible to use mutual information

for measuring conditional independence (Suzuki and Sugiyama, 2013), although with this

measure the loss function itself needs to be estimated. It would be interesting to develop

algorithms and theoretical understanding of these criteria and evaluate the relative per-

formance of the learned representations based on these different conditional independence

measures.

We used the standard Gaussian as the reference distribution for DDRM to promote

disentanglement of the representation. Another convenient choice is the uniform distri-

bution on the unit cube. It is worth examining whether there is any difference in the

performance of DDR with different reference distributions. Another question is how to

determine the dimension of the learned representation. This is also an important problem

in linear SDR. Since the purpose of dimension reduction is often to build prediction models

in high-dimensional settings, the problem of determining the dimension of the representa-

tion can be best addressed based on cross validation or related data-driven methods in the

model building phase.

Last but not least, due to the non-uniqueness of the target, it is challenging to provide

the consistency of the estimated nonlinear dimension reduction map. It will be interesting

to explore this property in the future work.
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8 Appendix

In the appendix, we show additional experiments using DDR and InfoVAE. In addition,

we provide the implementation details about numerical settings, network structures, SGD

optimizers, and hyper-parameters used in the numerical studies. We also give the detailed

proofs of Lemmas 2.1-3.2 and Theorem 4.1.

8.1 Additional experiments

We make comparisons of DDR and InfoVAE on MNIST, Kuzushiji-MNIST and Fashion-

MNIST. Because InfoVAE is an unsupervised method based on autoencoders with max-

imum mean discrepancy (MMD) loss for constrained representation, we use the semi-

supervised setting of InfoVAE (Kingma et al., 2014; Zhao et al., 2019) in our experiments.

We utilize the double-hidden-layer MLP networks with the softplus activation function,

and the Adam optimizer.

Table 10: MMD metric and classification error for MNIST, Kuzushiji-MNIST and Fashion-
MNIST.

MMD (%) Classification error (%)

#label 600 1000 3000 5000 600 1000 3000 5000

MNIST
DDR 0.0249 0.0242 0.0367 0.127 9.92 6.70 2.80 2.03
InfoVAE 0.0272 0.0273 0.0273 0.0273 13.86 11.27 7.42 6.29

Kuzushiji-MNIST
DDR 0.0214 0.0242 0.0287 0.0247 27.24 22.75 14.04 9.63
InfoVAE 0.0202 0.0202 0.0202 0.0202 34.58 28.57 18.89 15.19

Fashion-MNIST
DDR 0.0278 0.0344 0.0475 0.0474 21.25 18.36 16.40 15.15
InfoVAE 0.0404 0.0404 0.0404 0.0404 21.47 20.27 17.66 16.67

We compare DDR with InfoVAE in terms of classification error and MMD metric, as

shown in Table 10. We observe that DDR and InfoVAE are comparable to learn a standard

Gaussian distribution, but DDR outperforms InfoVAE across all settings in terms of the
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classification accuracy. In DDR, there exists a trade-off between two objectives: learn

a Gaussian distribution and improve the performance of downstream tasks. From the

experimental results, we conclude that DDR can achieve satisfactory prediction accuracy

with mild constraints on the representation distributions.

8.2 Experimental details

8.2.1 Simulation studies

The values of the hyper-parameters for the simulated experiments are given in Table 11,

where λ is the penalty parameter, d is the dimension of the SDRM, n is the mini-batch

size in SGD, T1 is the number of inner loops to push forward particles zi, T2 is the number

of outer loops for training Rθ, and s is the step size to update particles. For the regression

models, the neural network architectures are shown in Table 12.

As shown in Table 13, a multilayer perceptron (MLP) is utilized for the neural structure

Dφ in the classification problem. The detailed architecture of 10-layer dense convolutional

network (DenseNet) (Huang et al., 2017b; Amos and Kolter) deployed for Rθ is shown in

Table 14. For all the settings, we adopted the Adam (Kingma and Ba, 2014) optimizer

with an initial learning rate of 0.001 and weight decay of 0.0001.

Table 11: Hyper-parameters for simulated examples, where s varies according to epoch

s

Task λ d n T1 T2 0-150 151-225 226-500

Regression 1.0 2 or 1 64 1 500 3.0 2.0 1.0
Classification 1.0 2 64 1 500 2.0 1.5 1.0
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Table 12: MLP architectures for Dφ and Rθ in regression

Dφ Rθ

Layers Details Output size Details Output size

Layer 1 Linear, LeakyReLU 16 Linear, LeakyReLU 16
Layer 2 Linear 1 Linear, LeakyReLU 8
Layer 3 Linear d

Table 13: MLP architecture for Dφ in the simulated classification examples and the
benchmark classification datasets

Layers Details Output size

Layer 1 Linear, LeakyReLU 64
Layer 2 Linear, LeakyReLU 128
Layer 3 Linear, LeakyReLU 64
Layer 4 Linear 1

Table 14: DenseNet architecture for Rθ in the simulated classification examples

Layers Details Output size

Convolution 3× 3 Conv 24× 20× 20

Dense Block 1

[
BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 1 36× 20× 20

Transition Layer 1 BN, ReLU, 2× 2 Average Pool,1× 1 Conv 30× 10× 10

Dense Block 2

[
BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 1 18× 10× 10

Transition Layer 2 BN, ReLU, 2× 2 Average Pool, 1× 1 Conv 15× 5× 5

Dense Block 3

[
BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 1 27× 5× 5

Pooling BN, ReLU, 5× 5 Average Pool, Reshape 27
Fully connected Linear 2
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8.2.2 Real datasets

Regression: In the regression problems, hyper-parameters are presented in Table 15. The

Adam optimizer with an initial learning rate of 0.001 and weight decay of 0.0001 is adopted.

The MLP architectures of Dφ and Rθ for the YearPredictionMSD data are shown in Table

16 and for the Pole-Telecommunication data are shown in Table 17.

Table 15: Hyper-parameters for real regression datasets

Dataset λ d n T1 T2 s

YearPredictionMSD 1.0 10, 20, 30, 40 64 1 500 1.0
Pole-Telecommunication 1.0 5, 10, 15, 20 64 1 200 1.0

Table 16: MLP architectures for Dφ and Rθ for YearPredictionMSD data

Dφ Rθ

Layers Details Output size Details Output size

Layer 1 Linear, LeakyReLU 32 Linear, LeakyReLU 32
Layer 2 Linear, LeakyReLU 8 Linear, LeakyReLU 8
Layer 3 Linear 1 Linear d

Table 17: MLP architectures for Dφ and Rθ for Pole-Telecommunication data

Dφ Rθ

Layers Details Output size Details Output size

Layer 1 Linear, LeakyReLU 8 Linear, LeakyReLU 16
Layer 2 Linear d Linear, LeakyReLU 32
Layer 3 Linear, LeakyReLU 8
Layer 4 Linear d
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Classification: We again use Adam as the SGD optimizers for both Dφ and Rθ. Specifi-

cally, learning rate of 0.001 and weight decay of 0.0001 are used for Dφ in all datasets and for

Rθ on MNIST (LeCun et al., 2010). We customized the SGD optimizers with momentum

at 0.9, weight decay at 0.0001, and learning rate ρ in Table 19. For the transfer learning of

CIFAR-10, we use customized SGD optimizer with initial learning rate of 0.001 and mo-

mentum of 0.9 for Rθ. For FashionMNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky

et al., 2012), MLP architectures of the discriminator network Dφ for MNIST, Fashion-

MNIST and CIFAR-10 are given in Table 13. The 20-layer DenseNet networks shown in

Table 20 were utlized for Rθ on the MNIST dataset, while the 100-layer DenseNet networks

shown in Table 21 and 22 are fitted for Rθ on FashionMNIST and CIFAR-10.

Table 18: Hyper-parameters for the classification benchmark datasets

Dataset λ d n T1 T2 s

MNIST 1.0 16, 32, 64 64 1 300 0.1
FashionMNIST 1.0 16, 32, 64 64 1 300 1.0
CIFAR-10 1.0 16, 32, 64 64 1 300 1.0
CIFAR-10 (transfer learning) 0.01 16, 32, 64 64 1 50 1.0

Table 19: Learning rate ρ varies during training.

Epoch 0-150 151-225 226-300

ρ 0.1 0.01 0.001
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Table 20: Architecture for MNIST, reduced feature size is d

Layers Details Output size

Convolution 3× 3 Conv 24× 28× 28

Dense Block 1

[
BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 2 48× 28× 28

Transition Layer 1 BN, ReLU, 2× 2 Average Pool,1× 1 Conv 24× 14× 14

Dense Block 2

[
BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 2 48× 14× 14

Transition Layer 2 BN, ReLU, 2× 2 Average Pool, 1× 1 Conv 24× 7× 7

Dense Block 3

[
BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 2 48× 7× 7

Pooling BN, ReLU, 7× 7 Average Pool, Reshape 48
Fully connected Linear d

Table 21: Architecture for FashionMNIST, reduced feature size is d

Layers Details Output size

Convolution 3× 3 Conv 24× 28× 28

Dense Block 1

[
BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 16 216× 28× 28

Transition Layer 1 BN, ReLU, 2× 2 Average Pool,1× 1 Conv 108× 14× 14

Dense Block 2

[
BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 16 300× 14× 14

Transition Layer 2 BN, ReLU, 2× 2 Average Pool, 1× 1 Conv 150× 7× 7

Dense Block 3

[
BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 16 342× 7× 7

Pooling BN, ReLU, 7× 7 Average Pool, Reshape 342
Fully connected Linear d

39



Table 22: Architecture for CIFAR-10, reduced feature size is d

Layers Details Output size

Convolution 3× 3 Conv 24× 32× 32

Dense Block 1

[
BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 16 216× 32× 32

Transition Layer 1 BN, ReLU, 2× 2 Average Pool,1× 1 Conv 108× 16× 16

Dense Block 2

[
BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 16 300× 16× 16

Transition Layer 2 BN, ReLU, 2× 2 Average Pool, 1× 1 Conv 150× 8× 8

Dense Block 3

[
BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 16 342× 8× 8

Pooling BN, ReLU, 8× 8 Average Pool, Reshape 342
Fully connected Linear d

8.3 Proofs

In this section, we prove Lemmas 2.1 and 3.1, and Theorems 3.2 and 4.1.

8.3.1 Proof of Lemma 2.1

Proof. By assumption µ and γd are both absolutely continuous with respect to the Lebesgue

measure. The desired result holds since it is a special case of the well known results on the

existence of optimal transport (Brenier, 1991; McCann, 1995), see also Theorem 1.28 on

page 24 of (Philippis, 2013) for details.

8.4 Proof of Lemma 3.1

Proof. Our proof follows Keziou (2003). Since f(t) is convex, then ∀t ∈ R, we have

f(t) = f ∗∗(t), where

f ∗∗(t) = sup
s∈R
{st− f ∗(s)}
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is the Fenchel conjugate of f ∗. By Fermat’s rule, the maximizer s∗ satisfies

t ∈ ∂f ∗(s∗),

i.e.,

s∗ ∈ ∂f(t)

Plugging the above display with t = dµZ
dγ

(x) into the definition of f -divergence, we derive

(6).

8.5 Proof of Theorem 3.2

Proof. Without loss of generality, we assume d = 1. For R∗ satisfying (3) and any R ∈ R,

we have R = ρ(R,R∗)R
∗ + εR, where ρ(R,R∗) is the correlation coefficient between R and R∗,

εR = R − ρ(R,R∗)R
∗. It is easy to see that εR R∗ and thus Y εR. As (ρ(R,R∗)R

∗, Y ) is

independent of (εR, 0), then by Theorem 3 of Székely and Rizzo (2009)

V [R,y] =V [ρ(R,R∗)R
∗ + εR,y] ≤ V [ρ(R,R∗)R

∗,y] + V(εR, 0)

=V [ρ(R,R∗)R
∗,y] = |ρ(R,R∗)|V [R∗,y]

≤V [R∗,y].

As R(x) ∼ N (0, 1) and R∗(x) ∼ N (0, 1), then Df (µR(x)‖γd) = Df (µR∗(x)‖γd) = 0, and

L(R)− L(R∗) = V [R∗,y]− V [R,y] ≥ 0.

The proof is completed.
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8.6 Proof of Theorem 4.1

Recall that B2 = max{|f ′(c1)|, |f ′(c2)|}, B3 = max|s|≤2B2 |f ∗(s)|. We set the network

parameters of the representer Rθ and the discriminator Dφ as follows.

(N1) Representer network R ≡ RH,W,S parameters: depth H = O(log n) width W =

O(n
p

2(2+p)/ log n), size S = O(dn
p

2+p/ log4(npd)), and ‖R‖L∞ ≤ B = 2‖R∗‖L∞ ,∀R ∈

R.

(N2) Discriminator network D ≡ DH̃,W̃,S̃ parameters: depth H̃ = O(log n), width W̃ =

O(n
d

2(2+d)/ log n), size S̃ = O(n
d

2+d/ log4(npd)), and ‖D‖L∞ ≤ 2B2,∀D ∈ D.

Before getting into the details of the proof of Theorem 4.1, we first give an outline of

the basic structure of the proof.

Without loss of generality, we assume that λ = 1 and m = 1, i.e. y ∈ R. For any

R̄ ∈ RH,W,S , we have,

L(R̂θ)− L(R∗) = L(R̂θ)− L̂(R̂θ) + L̂(R̂θ)− L̂(R̄) + L̂(R̄)− L(R̄) + L(R̄)− L(R∗)

≤ 2 sup
R∈RH,W,S

|L(R)− L̂(R)|+ inf
R̄∈RH,W,S

|L(R̄)− L(R∗)|, (12)

where we use the definition of R̂θ in (9) and the feasibility of R̄. Next we bound the two

error terms in (12),

• the approximation error: infR̄∈RH,W,S, |L(R̄)− L(R∗)|;

• the statistical error: supR∈RH,W,S |L(R)− L̂(R)|.

Then Theorem 4.1 follows after bounding these two error terms.

A. The approximation error
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Lemma 8.1. Suppose that (A1)-(A3) hold and the network parameters satisfy (N1) and

(N2). Then,

inf
R̄∈RD,W,S,B

|L(R̄)− L(R∗)| ≤ 320C1L1B1

√
pdn−1/(p+2) + o(1). (13)

as n→∞.

Proof. By (3) and (6) and the definition of L, we have

inf
R̄∈RD,W,S,B

|L(R̄)− L(R∗)| ≤ |Df (µR̄θ̄(x)‖γd)|+ |V [R∗(x),y]− V [R̄θ̄(x),y]|, (14)

where R̄θ̄ ∈ RD,W,S,B is specified in Lemma 8.3 below. We finish the proof by (16) in

Lemma 8.4 and (17) in Lemma 8.5, which will be proved below.

Lemma 8.2. For any function f : [−B,B]p → R with Lipschitz constant L there exist a

ReLU network f̄ with depth O(12H + C1,p) and width O(C2,pW) such that

‖f − f̄‖L∞ ≤ 19L
√
pB(HW)−2/p,

where C1,p = 14 + 2p, C2,p = 3p+3.

Proof. This Lemma fellows directly from Theorem 1.1 of Shen (2020)

Lemma 8.3. Suppose that (A1) and (A3) hold and the network parameters satisfy (N1).

Then, There exist a R̄θ̄ ∈ RH,W,S with the network parameters satisfying (N1) such that

‖R̄θ̄ −R∗‖L2(µx) ≤ 19L1B1

√
pdn−

1
p+2 . (15)

Proof. Let R∗i (x) be the i-th entry of R∗(x) : Rd → Rd. By the assumption on R∗, it is
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easy to check that R∗i (x) is Lipschitz continuous on [−B1, B1]d with the Lipschitz constant

L1. By Lemma 8.2, there exists a ReLU network R̄θ̄i with depth O(H) and width O(W)

such that

‖R∗i − R̄θ̄i‖L∞ ≤ 19L1B1
√
p(HW)−2/p.

Then

‖R∗i − R̄θ̄i‖L2(µx) = [

∫
(R∗i (x)− R̄θ̄i(x))2fX(x)dx]1/2

≤ ‖R∗i − R̄θ̄i‖L∞
∫
fX(x)dx

≤ 19L1B1
√
p(HW)−2/p.

Define R̄θ̄ = [R̄θ̄1
, . . . , R̄θ̄d ] ∈ RH,W,S . The above three display implies

‖R̄θ̄ − R̃∗‖L2(µx) ≤ 19L1B1

√
pd(HW)−2/p ≤ 19L1B1

√
pdn−1/(p+2),

where in the last inequality we use the the choice of H and W in (N1).

Lemma 8.4. Suppose that (A1) and (A3) hold and the network parameters satisfy (N1).

Then,

|V [R∗(x),y]− V [R̄θ̄(x),y]| ≤ 320C1L1B1

√
pdn−1/(p+2). (16)

Proof. Recall that Székely et al. (2007)

V [z,y] =E [‖z1 − z2‖|y1 − y2|]− 2E [‖z1 − z2‖|y1 − y3|]

+ E [‖z1 − z2‖]E [|y1 − y2|] ,
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where (zi,yi), i = 1, 2, 3 are i.i.d. copies of (z,y). We have

|V [R∗(x),y]− V [R̄θ̄(x),y]|

≤ |E
[
(‖R∗(x1)−R∗(x2)‖ − ‖R̄θ̄(x1)− R̄θ̄(x2)‖)|y1 − y2|

]
|

+ 2|E
[
(‖R∗(x1)−R∗(x2)‖ − ‖R̄θ̄(x1)− R̄θ̄(x2)‖)|y1 − y3|

]
|

+ |E
[
‖R∗(x1)−R∗(x2)‖ − ‖R̄θ̄(x1)− R̄θ̄(x2)

]
E [‖y1 − y2‖] |

≤ 8C1E
[
|‖R∗(x1)−R∗(x2)‖ − ‖R̄θ̄(x1)− R̄θ̄(x2)‖|

]
≤ 16C1E

[
|‖R∗(x)− R̄θ̄(x)‖

]
≤ 320C1L1B1

√
pdn−1/(p+2)

where in the first and third inequalities we use the triangle inequality, and second one

follows from the boundedness of y, the last inequality is due to (15).

Lemma 8.5. Suppose that (A1) and (A2) hold and the network parameters satisfy (N1).

Then,

|Df (µR̄θ̄(x)‖γd)| → 0, (17)

as n→∞.

Proof. By Lemma 8.3 R̄θ̄ can approximate R∗ arbitrarily well as n→∞, the desired result

follows from the fact that Df (µR∗(x)‖γd) = 0 and the continuity of Df (µR(x)‖γd) on R.

We present the sketch of the proof and omit the details here. Let r∗(z) =
dµR∗(x)

dγd
(z) and

r̄(z) =
dµR̄θ̄(x)

dγd
(z). By definition we have

Df (µR∗(x)‖γd) = EW∼γd [f(r∗(W ))]
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We can represent Df (µR̄θ̄
‖γd) similarly. Therefore,

|Df (µR̄θ̄(x)‖γd)| = |Df (µR̄θ̄(x)‖γd)− Df (µR∗(x)‖γd)|

≤ EW∼γd [|f(r∗(W ))− f(r̄(W ))|]

≤
∫
|f ′(r̃(z))||r∗(z)− r̄(z)|dγd(z)

≤ B2

∫
|r∗(z)− r̄(z)|dγd(z),

where the second inequality we use mean value theorem and boundness assumption on

f ′(r̃) in (A2). Then last inequality goes to zero due to continuity and the fact R̄θ̄ converge

to R∗ as n→∞ by Lemma 8.3.

B. The statistical error

Lemma 8.6. Suppose that (A1)-(A2) hold and the network parameters satisfy (N1) and

(N2). Then,

sup
R∈RH,W,S

|L(R)−L̂(R)| ≤ C13(2B2+B3)n−
1

2+d+19(1+B3)L2

√
d log nn−

1
d+2 +4C6C7C10Bn−

1
p+2

(18)

Proof. By the definition and the triangle inequality we have

E[ sup
R∈RH,W,S

|L(R)− L̂(R)|] ≤ E[ sup
R∈RH,W,S

|V̂n[R(x),y]− V [(R(x),y)|]

+E[ sup
R∈RH,W,S

|D̂f (µR(x)||γd)− Df (µR(x)||γd)|].

We finish the proof based on (19) in Lemma 8.7 and (24) in Lemma 8.8, which will be

proved below.
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Lemma 8.7. Suppose that (A1)-(A2) hold and the network parameters satisfy (N1) and

(N2). Then,

E[ sup
R∈RH,W,S

|V̂n[R(x),y]− V [R(x),y]|] ≤ 4C6C7C10Bn−
1
p+2 . (19)

Proof. We first fix some notation for simplicity. Denote O = (x,y) ∈ Rp × R1 and Oi =

(xi,yi), i = 1, ...n are i.i.d copy of O, and denote µx,y and P⊗n as P and Pn, respectively.

∀R ∈ R ∈ RH̃,W̃,S̃ , let Õ = (R(x),y) and Õi = (R(xi),yi), i = 1, ...n are i.i.d copy of Õ.

Define centered kernel h̄R : (Rp × R1)⊗4 → R as

h̄R(Õ1, Õ2, Õ3, Õ4) = 1
4

∑
1≤i,j≤4,
i 6=j

‖R(xi)−R(xj)‖|yi − yj|

−1
4

∑4
i=1

(∑
1≤j≤4,
j 6=i
‖R(xi)−R(xj)‖

∑
1≤j≤4,
i6=j
|yi − yj|

)
+ 1

24

∑
1≤i,j≤4,
i6=j

‖R(xi)−R(xj)‖
∑

1≤i,j≤4,
i6=j

|yi − yj| − V [R(x),y]

. (20)

Then, the centered U -statistics V̂n[R(x),y]− V [R(x),y] can be represented as

Un(h̄R) =
1

C4
n

∑
1≤i1<i2<i3<i4≤n

h̄R(Õi1 , Õi2 , Õi3 , Õi4).

Our goal is to bound the supremum of the centered U -process Un(h̄R) with the nondegen-

erate kernel h̄R. By the symmetrization randomization Theorem 3.5.3 in De la Pena and

Giné (2012), we have

E[ sup
R∈RH,W,S

|Un(h̄R)|] ≤ C5E[ sup
R∈RH,W,S

| 1

C4
n

∑
1≤i1<i2<i3<i4≤n

εi1h̄R(Õi1 , Õi2 , Õi3 , Õi4)|], (21)

where, εi1 , i1 = 1, ...n are i.i.d Rademacher variables that are also independent with Õi, i =

1, . . . , n. We finish the proof by upper bounding the above Rademacher process with the
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metric entropy of R ∈ RH̃,W̃,S̃ . To this end we need the following lemma.

Lemma 8.8. If ξi, i = 1, ...m are m finite linear combinations of Rademacher variables

εj, j = 1, ..J . Then

Eεj ,j=1,...J max
1≤i≤m

|ξi| ≤ C6(logm)1/2 max
1≤i≤m

(
Eξ2

i

)1/2
. (22)

Proof. This result follows directly from Corollary 3.2.6 and inequality (4.3.1) in De la Pena

and Giné (2012) with Φ(x) = exp(x2).

By Lemma 8.3, we can assume the boundness of R ∈ RH,W,S , i.e., we can assume

‖R‖L∞ ≤ B = 2‖R∗‖L∞ as n large enough. Then by the boundedness assumption on y, we

have that the kernel h̄R is also bounded, say

‖h̄R‖L∞ ≤ C7B. (23)

∀R ∈ RH,W,S , define a random empirical measure (depends on Oi, i = 1, . . . , n)

en,1(R, R̃) = Eεi1 ,i1=1,...,n|
1

C4
n

∑
1≤i1<i2<i3<i4≤n

εi1(h̄R − h̄R̃)(Õi1 , . . . , Õi4)|.

Condition on Oi, i = 1, . . . , n, let C(R, en,1, δ)) be the covering number of RH,W,S with

respect to the empirical distance en,1 at scale of δ > 0. Denote Rδ as the covering set of
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RD,W,S with cardinality of C(R, en,1, δ)). Then,

Eεi1 [ sup
R∈RH,W,S

| 1

C4
n

∑
1≤i1<i2<i3<i4≤n

εi1h̄R(Õi1 , Õi2 , Õi3 , Õi4)|]

≤ δ + Eεi1 [ sup
R∈Rδ

| 1

C4
n

∑
1≤i1<i2<i3<i4≤n

εi1h̄R(Õi1 , Õi2 , Õi3 , Õi4)|]

≤ δ + C6
1

C4
n

(logC(R, en,1, δ))
1/2 max

R∈Rδ

[
n∑

i1=1

∑
i2<i3<i4

(h̄R(Õi1 , Õi2 , Õi3 , Õi4))2]1/2

≤ δ + C6C7B(logC(R, en,1, δ))
1/2 1

C4
n

[
n(n!)2

((n− 3)!)2
]1/2

≤ δ + 2C6C7B(logC(R, en,1, δ))
1/2/
√
n

≤ δ + 2C6C7B(VCR log
2eBn
δVCR

)1/2/
√
n

≤ δ + C6C7C10B(HS logS log
Bn

δDS logS
)1/2/
√
n.

where the first inequality follows from the triangle inequality, the second inequality uses

(22), the third and fourth inequalities follow after some algebra, and the fifth inequality

holds since C(R, en,1, δ) ≤ C(R, en,∞, δ) and the relationship between the metric entropy

and the VC-dimension of the ReLU networks RH,W,S (Anthony and Bartlett, 2009), i.e.,

logC(R, en,∞, δ)) ≤ VCR log
2eBn
δVCR

,

and the last inequality holds due to the upper bound of VC-dimension for the ReLU network

RD,W,S satisfying

C8HS logS ≤ VCR ≤ C9HS logS,

see Bartlett et al. (2019). Then (19) holds by the selection of the network parameters and

set δ = 1
n

and some algebra.
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Lemma 8.9. Suppose that (A1)-(A3) hold and the network parameters satisfy (N1) and

(N2). Then,

E[ sup
R∈RH,W,S

|D̂f (µR(x)||γd)− Df (µR(x)||γd)|] ≤ C14(L2

√
d+B2 +B3)(n

− 2
2+p + log nn−

2
2+d ) (24)

Proof. For every R ∈ RH,W,S , let r(z) =
dµR(x)

dγd
(z), gR(z) = f ′(r(z)). By assumption

gR(z) : Rd → R is Lipschitz continuous with the Lipschitz constant L2 and ‖gR‖L∞ ≤ B2.

By tail probability of Gaussian, we assume without loss of generality that supp(gR) ⊆

[− log n, log n]d. Then, by Lemma 8.2 there exists a D̄φ̄ ∈ DH̃,W̃,S̃ with the network pa-

rameters satisfying (N2) such that for z ∼ γd and z ∼ µR(x),

Ez[|D̄φ̄(z)− gR(z)|] ≤ 19L2

√
d log nn−

1
d+2 . (25)

By the above display, we can further assume that the element in DH̃,W̃,S̃ is bounded by

2B2 as n large enough. For any g : Rd → R, define

E(g) = Ex∼µx [g(R(x))]− EW∼γd [f
∗(g(W ))],

Ê(g) = Ê(g,R) =
1

n

n∑
i=1

[g(R(xi))− f ∗(g(Wi))].

By (6) we have

E(gR) = Df (µR(x)||γd) = sup
measureable D:Rd→R

E(D). (26)
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Then,

|Df (µR(x)||γd)− D̂f (µR(x)||γd)|

= |E(gR)− max
Dφ∈DH̃,W̃,S̃,

Ê(Dφ)|

≤ |E(gR)− sup
Dφ∈DH̃,W̃,S̃,

E(Dφ)|+ | sup
Dφ∈DH̃,W̃,S̃,

E(Dφ)− max
Dφ∈DH̃,W̃,S̃,

Ê(Dφ)|

≤ |E(gR)− E(D̄φ̄)|+ sup
Dφ∈DH̃,W̃,S̃,

|E(Dφ)− Ê(Dφ)|

≤ Ez∼µR(x)
[|gR − D̄φ̄|(z)] + EW∼γd [|f ∗(gR)− f ∗(D̄φ̄)|(W )] + sup

Dφ∈DD̃,W̃,S̃,
|E(Dφ)− Ê(Dφ)|

≤ 19(1 +B3)L2

√
d log nn−

1
d+2 + sup

Dφ∈DH̃,W̃,S̃,B̃
|E(Dφ)− Ê(Dφ)|,

where we use the triangle inequality in the first inequality follows from the triangle inequal-

ity, the second inequality follows from E(gR) ≥ supDφ∈DH̃,W̃,S̃,B̃
E(Dφ) due to (26) and the

triangle inequality, the third inequality follows from the triangle inequality, and the last

inequality follows from (25) and the mean value theorem.

We finish the proof by bounding the second term in probability in the last line above,

i.e., supDφ∈DH̃,W̃,S̃,B̃
|E(Dφ)− Ê(Dφ)|. This can be done by bounding the empirical process

U(D,R) = E[ sup
R∈RH,W,S,B,D∈DH̃,W̃,S̃,B̃

|E(D)− Ê(D)|].

Let S = (x, z) ∼ µx ⊗ γd and Si, i = 1, . . . , n be n i.i.d copy of S. Denote

b(D,R;S) = D(R(x))− f ∗(D(z)).
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Then

E(D,R) = ES[b(D,R;S)]

and

Ê(D,R) =
1

n

n∑
i=1

b(D,R;Si).

Let

G(D×R) =
1

n
E{Si,εi}ni

[
sup

R∈RH,W,S,B,D∈DH̃,W̃,S̃,B̃
|

n∑
i=1

εib(D,R;Si)|

]
be the Rademacher complexity of DH̃,W̃,S̃ ×RH,W,S (Bartlett and Mendelson, 2002). Let

C(D×R, en,1, δ)) be the covering number of DH̃,W̃,S̃×RH,W,S with respect to the empirical

distance (depends on Si)

dn,1((D,R), (D̃, R̃)) =
1

n
Eεi [

n∑
i=1

|εi(b(D,R;Si)− b(D̃, R̃;Si))|]
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at scale of δ > 0. Let Dδ ×Rδ be such a converging set of DH̃,W̃,S̃ ×RH,W,S . Then,

U(D,R) = 2G(D×R)

= 2ES1,...,Sn [Eεi,i=1,...,n[G(R×D)|(S1, ..., Sn)]]

≤ 2δ +
2

n
ES1,...,Sn [Eεi,i=1,...,n[ sup

(D,R)∈Dδ×Rδ

|
n∑
i=1

εib(D,R;Si)||(S1, . . . , Sn)]

≤ 2δ + C12
1

n
ES1,...,Sn [(logC(D×R, en,1, δ))

1/2 max
(D,R)∈Dδ×Rδ

[
n∑
i=1

b2(D,R;Si)]
1/2]

≤ 2δ + C12
1

n
ES1,...,Sn [(logC(D×R, en,1, δ))

1/2
√
n(2B2 +B3)]

≤ 2δ + C12
1√
n

(2B2 +B3)(logC(D, en,1, δ) + logC(R, dn,1, δ))
1/2

≤ 2δ + C13
2B2 +B3√

n
(HS logS log

Bn
δHS logS

+ H̃S̃ log S̃ log
2B2n

δH̃S̃ log S̃
)1/2

where the first equality follows from the standard symmetrization technique, the first in-

equality holds due to the iteration law of conditional expectation, the second inequal-

ity follows from the triangle inequality, and the third inequality uses (22), the fourth

inequality uses the fact that b(D,R;S) is bounded, i.e., ‖b(D,R;S)‖L∞ ≤ 2B2 + B3,

and the fifth inequality follows from some algebra, and the sixth inequality follows from

C(R, en,1, δ) ≤ C(R, en,∞, δ) (similar result for D) and logC(R, en,∞, δ)) ≤ VCR log 2eBn
δVCR

,

and RH,W,S,B satisfying C8HS logS ≤ VCR ≤ C9HS logS, see Bartlett et al. (2019).

Then (24) follows from the above display with the selection of the network parameters of

DH̃,W̃,S̃ ,RH,W,S and with δ = 1
n
.

Finally, Theorem 4.1 is a direct consequence of (13) in Lemma 8.1 and (18) in Lemma

8.6. This completes the proof of Theorem 4.1. �
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