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Consistent and Asymptotically Efficient
Localization from Range-Difference Measurements

Guangyang Zeng, Biqiang Mu, Ling Shi, Jiming Chen, and Junfeng Wu

Abstract

We consider signal source localization from range-difference measurements. First, we give some readily-checked conditions
on measurement noises and sensor deployment to guarantee the asymptotic identifiability of the model and show the consistency
and asymptotic normality of the maximum likelihood (ML) estimator. Then, we devise an estimator that owns the same asymptotic
property as the ML one. Specifically, we prove that the negative log-likelihood function converges to a function, which has a
unique minimum and positive definite Hessian at the true source’s position. Hence, it is promising to execute local iterations, e.g.,
the Gauss-Newton (GN) algorithm, following a consistent estimate. The main issue involved is obtaining a preliminary consistent
estimate. To this aim, we construct a linear least-squares problem via algebraic operation and constraint relaxation and obtain a
closed-form solution. We then focus on deriving and eliminating the bias of the linear least-squares estimator, which yields an
asymptotically unbiased (thus consistent) estimate. Noting that the bias is a function of the noise variance, we further devise a
consistent noise variance estimator that involves 3-order polynomial rooting. Based on the preliminary consistent location estimate,
a one-step GN iteration suffices to achieve the same asymptotic property as the ML estimator. Simulation results demonstrate the
superiority of our proposed algorithm in the large sample case.

I. INTRODUCTION

Signal source localization refers to calculating a source’s spatial coordinates with respect to a specific coordinate system by
using some sensors’ measurements. It serves as a fundamental technology in extensive location-aware applications, ranging
from navigation systems [1], battlefield monitoring [2] to social networks [3] and ads recommendation [4]. Range difference,
usually calculated from the time difference of arrival (TDOA), is a widely used measurement for source localization, which
can achieve high localization accuracy [5]–[10]. It does not require synchronization between the source and sensors and thus
can be used in asynchronized or non-cooperative scenarios [11].

TDOA is tightly related to the direction of arrival (DOA), and TDOA localization (considered in this paper) should be
distinguished from DOA estimation. DOA estimation refers to inferring the direction of a source, which is a widely studied
topic. It generally assumes a far-field model where the source is far from the sensor array and the incident waves are parallel to
each other [12]. Then, DOA can be inferred from phase difference (i.e., TDOA) measurements. For example, Zhou et al. [13]
proposed a novel sparse array DOA estimation algorithm via structured correlation reconstruction, which can guarantee general
applicability and a more flexible constraint on the array configuration. Zheng et al. [14] proposed a coarray tensor DOA
estimation algorithm for multi-dimensional structured sparse arrays and investigated an optimal coarray tensor structure for
source identifiability enhancement. However, when TDOA measurements are utilized in source localization where both the
direction and distance of a source need to be estimated, a near-field model is required. The location of the source is obtained
by finding the intersection of several hyperbolas or hyperboloids defined by TDOA measurements. If the source is far from
the sensor array, the estimation of the distance is not reliable [6].

Maximum likelihood (ML) and least squares (LS) are the most common criteria for problem formulation in parameter
inference. When measurement noises are i.i.d. Gaussian random variables, the LS criterion is equivalent to the ML one. Due
to the non-linear property of range-difference measurements, the resulting ML and LS problems are non-convex, whose global
minimizer is difficult to obtain. When utilizing iterative local search methods, an appropriate initial value is needed, otherwise,
it may converge to local minima [15], [16]. Most works transformed the original ML and LS problems into some solvable
problems via various methods, e.g., linear approximation [17], [18], semidefinite programming (SDP) [19]–[23], and spherical
model [7], [24]–[26]. It is noteworthy that since the transformed problems are generally not equivalent to the original, although
they can be optimally solved, their global minimizer does not necessarily coincide with the original one. To the best of our
knowledge, there is no algorithm that can theoretically guarantee obtaining the global minimizer of the ML and LS problems
for TDOA localization.
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The ML estimator is optimal in the statistical sense that under some regularity conditions, it is consistent and asymptotically
normal1. We note that testing these general regularity conditions in range-difference-based localization settings is nontrivial.
In this paper, we provide some readily-checked conditions to guarantee the consistency and asymptotic normality of the ML
estimator. Moreover, we claim that although the ML problem cannot be directly solved, we can devise an estimator that owns
the same asymptotic property as the ML one. We prove that the negative log-likelihood function uniformly converges to a
function with the true source’s location being its unique minimizer. In addition, we show that the function is convex in a
neighborhood (called the attraction region) around the minimizer. Therefore, before using local iterative methods to obtain a
precise solution, the key is to obtain a consistent estimate that will fall into the attraction region as measurements increase.
To this aim, we construct a linear least-squares estimator and analyze its asymptotic bias for bias elimination. There are some
works that derive biases and give bias-reduced solutions. Ho [27] proposed two methods to reduce the bias of the well-known
algebraic explicit solution known as CFS [28]. Wang et al. [29] derived the bias for a non-linear weighted least-squares
(WLS) estimator using the Karush–Kuhn–Tucker (KKT) optimality conditions and first-order Taylor-series expansion. Chen
and Ho [30] analyzed the asymptotic bias for the squared range-difference formulation where the “asymptotic” here means
that the noise intensity is sufficiently small. Zhang et al. [31] approximated the bias from the ML estimation and developed a
bias-reduced iterative constrained WLS algorithm. We remark that the existing bias-reduced methods mostly analyzed the bias
at most up to the second-order statistics of the measurement noises under the assumption that the noise intensity is small. As a
result, the bias-reduced solutions are usually inaccurate in the large noise region—they may even be worse than the estimates
before bias reduction.

In this paper, we propose an exact asymptotic bias elimination method for the large sample case with no restriction on
noise intensity. Specifically, we square the original measurement model and formulate an ordinary LS problem via constraint
relaxation. However, since the transformed noise term does not have zero mean, and the regressor and regressand are correlated,
the closed-form solution is biased. Then, with the prior knowledge of noise variance or a consistent estimate of it, we make the
modified noise term have zero mean and eliminate the asymptotic correlation between the regressor and regressand. In virtue of
the above bias elimination techniques, the resulting solution is asymptotically unbiased and thus is consistent. Further, taking
the preliminary consistent estimate as the initial value, Gauss-Newton (GN) iterations are used to search for the ML solution.
The resulting estimator is asymptotically efficient, i.e., its mean square error (MSE) asymptotically reaches the theoretical
lower bound — Cramer-Rao lower bound (CRLB). This appealing property makes it achieve highly accurate estimation when
the measurement number is large. Note that some of the existing localization systems have a high speed of measurements, e.g.,
the sampling rate of practical Ultra-wideband (UWB) systems can reach 2.3 kHz [32]. Therefore, the proposed asymptotically
efficient estimators can play a valuable role in these systems, especially when the source is static, and a large sample of
measurements can be utilized.

We note that the asymptotically efficient localization based on range measurements has been investigated in [33]. The gap
between range-difference measurement and range measurement is nontrivial. The range model is a single norm function, while
the range-difference model has the form of the subtraction of two norm functions. As a result, model transformation in TDOA
localization leads to the correlation between the regressor and regressand, which makes bias elimination more complicated.
While no such problem arises in range-based localization. We also note that Wang et al. [34] investigated the phase retrieval
problem where an unknown vector is recovered from a system of quadratic equations. The authors proposed a novel algorithm,
termed truncated amplitude flow, that adapts the amplitude-based empirical loss function and proceeds in two stages. It was
proved that as the number of quadratic equations increases, the estimate converges to the true vector (up to a sign) with high
probability, and the computational complexity grows linearly. This is similar to the consistent property of our algorithm. The
main difference between the work and ours lies in the objective function. The objective in [34] contains a modulus of the inner
product of a random vector and the unknown vector, while that in our problem includes the subtraction of two norm functions.
This ultimately leads to the fact that the sign of the unknown vector cannot be recovered in the phase retrieval problem while
being identifiable in the TDOA localization problem. In addition, it also gives rise to nontrivial differences between these two
problems in terms of algorithm development and analysis.

In summary, the main contributions of this paper are listed as follows:
(i). We give some conditions on measurement noises and sensor deployment to ensure the asymptotic identifiability of the

model and prove the consistency and asymptotic normality of the ML estimator. These conditions are specifications of
regularity conditions in the context of TDOA-based localization, which can be readily checked.

(ii). We associate noise variance estimation with a maximum-eigenvalue-related equation rooting problem and prove that the
smallest root is a consistent estimate of the measurement noise variance. Moreover, the problem is converted into a
3-order polynomial rooting problem which can be efficiently solved.

(iii). We propose a closed-form consistent localization method via precise (in the asymptotic sense) bias elimination, where
a noise variance estimate is utilized. Based on the preliminary consistent solution, a one-step GN iteration is sufficient
to achieve the same asymptotic property as the ML estimator.

1Unless otherwise specified, “asymptotically” and “asymptotic” mean that the number of measurements goes to infinity.
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Notations: We use bold lowercase letters to denote vectors, e.g., x, y, z, and bold uppercase letters for matrices, e.g., X, Y,
Z. For a vector x, [x]i presents its i-th element, and ∥x∥ denotes its 2-norm. For a matrix X, [X]ij presents its element that
locates at the i-th row and j-th column. The identity matrix of size n is represented as In. The all-zeros matrix of size n×m
is denoted as 0n×m. For two vectors x,y ∈ Rn, x ⪯ y denotes the pointwise inequality. Let p = (pi)i∈N and q = (qi)i∈N be
two sequences of real numbers. When i ∈ N is clear from the context, we will omit the subscript and write (pi) as a shorthand
of (pi)i∈N. If t−1

∑t
i=1 piqi converges to a real number its limit ⟨p, q⟩t will be called the tail product of p and q. We call

∥p∥t =
√

⟨p, p⟩t, if it exists, the tail norm of p. For a sequence p = (pi) and a scalar c, p− c produces a sequence, of which
the i-th element is pi − c. For a cumulative distribution function Fµ, µ is the measure induced from Fµ, and Eµ[·] denotes
taking the expectation with respect to µ. The notation Xm = Op(cm) means that the sequence of Xm/cm is stochastically
bounded, and Xm = op(cm) means that the sequence of Xm/cm converges to zeros in probability.

II. CONSISTENCY AND ASYMPTOTIC NORMALITY OF THE ML ESTIMATOR

A. Problem formulation

Fig. 1 shows the illustration of source localization using a sensor array, where xo ∈ Rn denotes the coordinates of the
source and ai ∈ Rn, i = 0, 1, . . . ,m are the coordinates of the sensors. In particular, a0 is the reference sensor’s coordinates,
and without loss of generality, we set it to 0. The range-difference measurement between sensor i and the reference one has
the following equation:

di = ∥ai − xo∥ − ∥xo∥+ ri, i = 1, 2, . . . ,m, (1)

where ri represents the measurement noise. For the measurement noises, we make the following assumption.

Assumption 1. The measurement noises ri, i = 1, . . . ,m are i.i.d. Gaussian noises with zero mean and finite variance σ2.

In wireless ranging techniques including UWB and LoRa, the measurement variance largely depends on the bandwidth of
the channel and can be viewed as a constant (irrespective of the distance) when full bandwidth is used [35], [36]. Therefore,
Assumption 1 which assumes that each sensor has the same measurement variance is realistic.

Fig. 1: Illustration of range-difference measurements in the 2D case. The solid dot “•” represents the radiating source and the
hollow dots “◦” represent the sensors.

Based on (1), the ML problem is given as follows:

(ML): minimize
x∈Rn

1

m

m∑
i=1

(di + ∥x∥ − ∥ai − x∥)2. (2)

Denote an optimal solution to problem (2) as an ML estimate. We know that ML estimators are consistent and asymptotically
normal under some regularization conditions [37]. However, it is worth noting that the regularization conditions are highly
abstract and not easy to check in range-difference-based localization settings. In the rest of this section, we will present some
readily-checked conditions associated with the source’s coordinates and sensor deployment to guarantee the consistency and
asymptotic normality of ML estimates.

B. Asymptotic properties of the ML estimate

Assumption 1 is about the measurement noises. In the following, we give assumptions on the source’s coordinates and sensor
deployment.

Assumption 2. The source’s coordinates xo belongs to a compact set X , the coordinates of sensors ai, i = 0, . . . ,m belong
to a bounded set A, and for each i, ai ̸= xo.

Definition 1. The sample distribution function Fm of a sequence (z1, z2, . . .) in Rn is defined as Fm(z) = #/m where # is
the number of vectors in the subsequence (z1, . . . , zm) that satisfy zi ⪯ z.
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Assumption 3. The sample distribution function Fm of the sequence (a1,a2, . . .) converges to a distribution function Fµ, i.e.,
lim

m→∞
Fm(a) = Fµ(a), for all a ∈ Rn.

We denote the probability measure generated by Fµ as µ. In what follows, we give two examples of sensor deployments
that satisfy Assumption 3.

Example 1. When ai, i = 1, . . . ,m are independent realizations of some random vectors with identical distribution function
Fµ, we have lim

m→∞
Fm(a) = Fµ(a) for all a ∈ Rn.

Example 2. Suppose the number of sensors M (excluding the reference one) is fixed, and each sensor makes T i.i.d.
measurements. In this manner, a total of MT TDOA measurements can be used. This setting is realistic when the object
is static or the sampling of the TDOA measurements is sufficiently fast compared to the object’s motion. In this setup, as T
goes to infinity, Fm converges to Fµ, where µ(ai) = 1/M for each i.

For the asymptotic distribution Fµ to which the sample distribution of sensors’ coordinates converge, we make the following
assumption.

Assumption 4. There does not exist any subset S ⊂ Rn listed below such that µ(S) = 1:
(i). A hyperbola (resp. hyperboloid), which passes through a0 and has a focus being xo, for n = 2 (resp. n = 3).
(ii). A line (resp. plane) for n = 2 (resp. n = 3).

Sometimes Assumption 4 is hard to check since the true source’s position xo is unknown. In what follows, we give a stricter
assumption that implies Assumption 4, which requires the notions of conic sections and quadric surfaces.

Assumption 5. There does not exist a conic section (resp. quadric surface) S for n = 2 (resp. n = 3) such that µ(S) = 1.

A conic section is a curve obtained as the intersection of the surface of a cone with a plane, and any point a on it satisfies
a quadratic equation in the form

c1[a]
2
1 + c2[a]1[a]2 + c3[a]

2
2 + c4[a]1 + c5[a]2 + c6 = 0,

for some real coefficients c1, . . . , c6. A quadric surface is a generalization of the conic section and any point a on it satisfies
a quadratic equation in the form

c1[a]
2
1 + c2[a]

2
2 + c3[a]

2
3 + c4[a]1[a]2 + c5[a]1[a]3 + c6[a]2[a]3 + c7[a]1 + c8[a]2 + c9[a]3 + c10 = 0,

for some real coefficients c1, . . . , c10. According to [38], five points in general position uniquely determine a conic section, and
nine points in general position uniquely determine a quadric surface. Therefore, Assumption 5 implies that the measure µ cannot
concentrate on five points (resp. nine points) for n = 2 (resp. n = 3). To test whether a set of k sensors, indexed as a1, . . . ,ak,
form a conic section, we can test the rank of the matrix [v1, . . . ,vk]

⊤, where v⊤
i =

[
[ai]

2
1, [ai]1[ai]2, [ai]

2
2, [ai]1, [ai]2, 1

]
. If

the rank is six, then the sensors do not locate on a conic section. Note that Assumption 5 is an asymptotic condition. To verify
it for n = 2, we can test whether the rank of the matrix Eµ[v(a)v(a)

⊤] is six, where v(a)⊤ =
[
[a]21, [a]1[a]2, [a]

2
2, [a]1, [a]2, 1

]
and Eµ is taken over a with respect to µ. If the rank is six, then Assumption 5 holds. The verification for n = 3 is similar.
Since a hyperbola (resp. hyperboloid) and a line (resp. plane) are both (degenerate) conic sections (resp. quadric surfaces),
Assumption 5 is a sufficient condition for Assumption 4. Hence, we can verify Assumption 5, instead of directly checking
Assumption 4. How to verify all of the proposed assumptions will be illustrated in the simulation part.

Let fi(x) := ∥ai − x∥ − ∥x∥ and f(x) := (fi(x)). Assumption 3 along with Assumption 2 ensure that the tail norm
∥f(x)− f(xo)∥t exists for all x ∈ Rn. This is based on the Helly-Bray theorem [39] which presents the convergence of the
sample mean of any bounded, continuous, and real-valued function. We remark that the tail products and tail norms involved
in the rest of this paper all exist given Assumptions 3 and 2. The following lemma is on the asymptotic identifiability of
model (1).

Lemma 1. Given Assumptions 1-3, 4(i), the source is asymptotically uniquely localizable. Or equivalently, ∥f(x)− f(xo)∥2t
has a unique minimum at x = xo.

Proof. By definition, we have

∥f(x)− f(xo)∥2t = Eµ

[
(∥a− x∥ − ∥x∥ − ∥a− xo∥+ ∥xo∥)2

]
,

where Eµ is taken over a with respect to µ, and ∥f(xo)− f(xo)∥2t = 0. For any x, define Ax = {a ∈ A | ∥a−x∥−∥a−xo∥ =

∥x∥−∥xo∥}. Suppose there is an x′ ̸= xo such that Eµ

[
(∥a− x′∥ − ∥x′∥ − ∥a− xo∥+ ∥xo∥)2

]
= 0. Then, µ(Ax′) = 1. Note

that Ax′ is the hyperbola (hyperboloid) with xo and x′ being its foci. This contradicts Assumption 4(i). Hence, ∥f(x)− f(xo)∥2t
has a unique minimum at x = xo.
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In Theorem 2 of Section III, we show that the objective function in the ML problem (2) converges to ∥f(x)− f(xo)∥2t +σ2.
Since the ML estimate minimizes the objective function, Lemma 1 guarantees that the ML estimate is consistent, i.e., as the
number of measurements increases, it converges to the true value xo. Further, let f ′

j(x) = (f ′
ji(x)) be a sequence with respect

to i, where

f ′
ji(x) =

∂fi(x)

∂[x]j
,

and M(x) ∈ Rn×n be a matrix of which [M(x)]jk =
〈
f ′
j(x), f

′
k(x)

〉
t
. Then the following lemma holds.

Lemma 2. Given Assumptions 1-3, 4(ii), the matrix M(xo) is non-singular.

Proof. Here, we give the proof of the 2D case. The argument of the 3D case is similar and will be omitted. For any x ̸= 0, define
A⊥

x = {a ∈ A | x⊤
(

xo−a
∥xo−a∥ − xo

∥xo∥

)
= 0}, and A⊥

x = A\A⊥
x , where \ denotes set difference. Note that x⊤ xo−a

∥xo−a∥ = x⊤ xo

∥xo∥
implies the projection of x onto the vector xo − a is a constant. Therefore, the set A⊥

x is a subset of a line. In virtue of
Assumption 4(ii), we have that for any x ̸= 0, µ

(
A⊥

x

)
> 0. Then we can decompose M(xo) as

M(xo) = lim
m→∞

1

m

m∑
i=1

∇fi(x
o)∇fi(x

o)⊤

=Eµ

[(
xo − a

∥xo − a∥
− xo

∥xo∥

)(
xo − a

∥xo − a∥
− xo

∥xo∥

)⊤
]

=

∫
A⊥

x

(
xo − a

∥xo − a∥
− xo

∥xo∥

)(
xo − a

∥xo − a∥
− xo

∥xo∥

)⊤

dµ(a)︸ ︷︷ ︸
:=M⊥

x (xo)

+

∫
A⊥

x

(
xo − a

∥xo − a∥
− xo

∥xo∥

)(
xo − a

∥xo − a∥
− xo

∥xo∥

)⊤

dµ(a)︸ ︷︷ ︸
:=M⊥

x (xo)

Since µ
(
A⊥

x

)
> 0, we have M⊥

x (x
o) ̸= 0. Therefore,

x⊤M(xo)x = x⊤
(
M⊥

x (x
o) +M⊥

x (x
o)
)
x

= x⊤M⊥
x (x

o)x

> 0,

which implies M(xo) is positive definite and completes the proof.

Now, we are on the point to depict the asymptotic property of the ML estimator that optimally solves (2). Denote the ML
estimate as x̂ML

m . Under Assumptions 1-3, 4(i-ii), the ML estimate x̂ML
m enjoys the following consistency and asymptotic

normality. The proof is straightforward by checking conditions in [40, Theorem 3].

Theorem 1 (Consistency and asymptotic normality). Under Assumptions 1-3, 4(i-ii), we have x̂ML
m → xo with probability one

as m → ∞. Moreover, √
m(x̂ML

m − xo) → N (0, σ2M−1(xo)) as m → ∞. (3)

The matrix M(xo) is tightly related to the Fisher information matrix F of model (1). To derive the Fisher information matrix,
recall that di = ∥ai − xo∥ − ∥xo∥ + ri. Let d = [d1, . . . , dm]⊤. Since ri ∼ N (0, σ2) are i.i.d., we obtain the log-likelihood
function as follows

ℓ(d;xo) = log

(
m∏
i=1

1√
2πσ

e−
(di−∥ai−xo∥+∥xo∥)2

2σ2

)

= m log
1√
2πσ

−
m∑
i=1

(di − ∥ai − xo∥+ ∥xo∥)2

2σ2
,

which gives
∂ℓ(d;xo)

∂xo
= − 1

σ2

m∑
i=1

ri

(
xo

∥xo∥
− xo − ai

∥xo − ai∥

)
.
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Then we obtain the Fisher information matrix

F =E

[
∂ℓ(d;xo)

∂xo

(
∂ℓ(d;xo)

∂xo

)⊤
]

=
m

σ2

xoxo⊤

∥xo∥2
+

1

σ2

m∑
i=1

(xo − ai)(x
o − ai)

⊤

∥xo − ai∥2

− 1

σ2

m∑
i=1

xo(xo − ai)
⊤ + (xo − ai)x

o⊤

∥xo∥∥xo − ai∥
.

The CRLB is given by the trace of the inverse of the Fisher information matrix, i.e., CRLB = tr(F−1). From (3) we have
x̂ML
m converges to the true value xo with the asymptotic covariance of σ2

mM−1(xo). Further combining the definition of M(x),
it holds that lim

m→∞
mF−1 = σ2M−1(xo), which implies that the ML estimator x̂ML

m is asymptotically efficient.
Till now, we have given some assumptions on the sensors’ coordinates and the measurement noises under which the ML

estimate is consistent and asymptotically normal. However, due to the norm functions in the objective, the ML problem (2) is
non-convex and hard to solve. In the following section, we will introduce a two-step estimation scheme that can achieve the
same asymptotic property as the ML estimate.

III. A TWO-STEP ESTIMATOR

In this section, we introduce a two-step estimation scheme, which can realize the same asymptotic property that the ML
estimate possesses, i.e., it achieves the CRLB asymptotically. Before that, we show the convergence of the objective function
(denoted as Pm(x)) of the ML problem (2).

Theorem 2. Given Assumptions 1-3, 4(i-ii), the negative log-likelihood function Pm(x) converges uniformly to P (x) :=
∥f(xo)− f(x)∥2t + σ2 on X . In addition, ∇2P (xo) = 2M(xo).

Proof. The proof is based on the following lemma.

Lemma 3 ( [33, Lemma 4]). Let {Xk} be a sequence of independent random variables with E[Xk] = 0 and E
[
Xk

2
]
≤ φ < ∞

for all k. Then, there holds
∑m

k=1 Xk/
√
m = Op(1).

Note that di = ∥ai − xo∥ − ∥xo∥+ ri. Let r = (ri). We have

Pm(x) =
1

m

m∑
i=1

(di + ∥x∥ − ∥ai − x∥)2

=
1

m

m∑
i=1

(fi(x
o)− fi(x) + ri)

2

→ ∥f(xo)− f(x)∥2t + ⟨f(xo)− f(x), r⟩t + ∥r∥2t
= P (x),

uniformly for x ∈ X , where ⟨f(xo)− f(x), r⟩t = 0 according to Lemma 3. Since ∥f(xo) − f(x)∥2t has a unique minimum
at x = xo (Lemma 1), so does P (x).

Next, we show the positive definiteness of ∇2P (xo). Note that ∇Pm(x̂ML
m ) = 0. The Taylor expansion of Pm(x) in a small

neighborhood of x̂ML
m is

Pm(x) = Pm(x̂ML
m ) +

1

2
∥x− x̂ML

m ∥2∇2Pm(x̂ML
m ) + o(∥x− x̂ML

m ∥2),

where ∇2Pm(x) = 1
m

∑m
i=1 ∇fi(x)∇fi(x)

⊤ −∇2fi(x)(di − fi(x)). Note that

∇2Pm(xo) =
2

m

m∑
i=1

∇fi(x
o)∇fi(x

o)⊤ −∇2fi(x
o)ri

→ 2M(xo).

Since Pm(x) converges uniformly to P (x) on X , and ∇2Pm(x) convergences uniformly on X (by combining Assumptions 2,3,
and the Helly-Bray theorem), we have ∇2Pm(xo) → ∇2P (xo), which implies ∇2P (xo) = 2M(xo). From Lemma 2 we know
that M(xo) is positive definite. Hence, ∇2P (xo) is positive definite.

An example of Pm(x) is depicted in Fig. 2, from which we can see the convergence of Pm(x). From Theorem 2 we know
that although P (x) is non-convex, it can be approximated by a convex function in a neighborhood around the global minimum
xo. When using local iterative methods, e.g., GN iterations, if the initial value falls within this neighboring attraction region,
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(a) m = 4 (b) m = 40

(c) m = 400 (d) m = 4000

Fig. 2: Contours of the objective function (2) and consistent estimates in the 2D case.

the global minimum can be found. Then the question is how to obtain a desirable initial value. A solution is to devise a
consistent estimator, ensuring that with the increase of measurement number, the estimate can converge to the true value to
which the ML solution also converges. Formally, the two-step estimation scheme is as follows [41]:
Step 1. Determine a globally consistent estimate for the source coordinates.
Step 2. Use this preliminary estimate as an initial value for some algorithms that determine the ML estimator.

In Step 2, the GN algorithm is often used to improve the accuracy of the consistent estimate obtained in Step 1. The GN
iterations associated with the ML problem (2) have the following iterative form:

x̂m(k + 1) = x̂m(k) +
(
J⊤(k)J(k)

)−1
J⊤(k)(d− fk), (4)

where

fk = [f1(x̂m(k)), . . . , fm(x̂m(k))]
⊤
,

J(k) = [∇f1(x̂m(k)), . . . ,∇fm(x̂m(k))]
⊤
.

The two-step scheme described above has the attractive property that only a one-step GN iteration is sufficient to theoretically
guarantee that the resulting two-step estimate has the same asymptotic property as the ML solution [42]. The conclusion is
summarized in the following result.

Lemma 4 ( [42, Theorem 4.3]). Suppose that x̂m is a
√
m-consistent estimate of xo, i.e., x̂m − xo = Op(1/

√
m). Denote

the one-step GN iteration of x̂m by x̂GN
m . Then, under Assumptions 1-3, 4(i-ii), we have

x̂GN
m − x̂ML

m = op(1/
√
m).

That is x̂GN
m has the same asymptotic property that x̂ML

m possesses.
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The same asymptotic property means that x̂GN
m is also consistent and asymptotically efficient. From Lemma 4 we know that

the key in the two-step estimation scheme is to obtain a
√
m-consistent estimate in the first step. In the subsequent section,

we will propose such an estimator.

IV. BIAS ELIMINATION AND CLOSED-FORM CONSISTENT LOCALIZATION METHOD

In this section, we will devise a
√
m-consistent estimator. First, we relax the original non-convex problem into a linear

least-squares problem. We then analyze and derive the bias of the resulting least-squares solution by virtue of its closed-form
expression. By eliminating the bias, we obtain an asymptotically unbiased (thus consistent) estimate.

Specifically, by moving ∥xo∥ in (1) to the left side and then squaring both sides, we obtain the modified model:

d2i − ∥ai∥2 = −2di∥xo∥ − 2a⊤i x
o + ei, (5)

where ei = 2∥ai−xo∥ri+ r2i . Since all items related to ri are contained in ei, ei characterizes the noise in (5). For model (5),
on the one hand, the mean of the noise term ei is σ2, not 0; on the other hand, the regressor term [−2di,−2a⊤i ] is correlated
with the noise term ei. As a result, the least-squares solution based on (5) is biased and thus not consistent. With the prior
knowledge of the measurement noises’ variance σ2, we can subtract it from both sides of (5), yielding

d2i − ∥ai∥2 − σ2 = −2di∥xo∥ − 2a⊤i x
o + ϵi, (6)

where ϵi = ei − σ2 has zero mean. Let yo = [xo⊤, ∥xo∥]⊤. By stacking (6) for m sensors, we obtain the following matrix
form:

b = Ayo + ϵ, (7)

where

A =

−2a⊤1 −2d1
...

...
−2a⊤m −2dm

 ,b =

 d21 − ∥a1∥2 − σ2

...
d2m − ∥am∥2 − σ2

 , ϵ =

 ϵ1...
ϵm

 .

Since the sensors are not collinear (coplanar) and di’s contain random noises, the matrix A⊤A is almost surely invertible.
Then the closed-form solution can be obtained

ŷB
m = (A⊤A)−1A⊤b. (8)

Since the regressor A which contains di is correlated with the noise term ϵ, ŷB
m is biased. In what follows, we will eliminate

the bias of ŷB
m and obtain a consistent estimate. Before that, we rephrase (6) as follows:

d2i − ∥ai∥2 − σ2 = −2doi ∥xo∥ − 2a⊤i x
o + ηi, (9)

where ηi = ϵi − 2∥xo∥ri and doi = ∥ai − xo∥ − ∥xo∥. The matrix form of (9) is

b = Aoyo + η, (10)

where

Ao =

−2a⊤1 −2do1
...

...
−2a⊤m −2dom

 ,η =

 η1...
ηm

 .

Lemma 5. Given Assumption 5, the matrix Ao⊤Ao is invertible.

Proof. Suppose Ao⊤Ao is singular, i.e., Ao is not full column rank. There exists a y ̸= 0 such that Aoy = 0, i.e., −2a⊤i [y]1:n =
2(∥xo − ai∥ − ∥xo∥)[y]n+1 for all i ∈ {1, . . . ,m}. By some algebraic operations, we obtain

(a⊤i [y]1:n + 2[y]n+1∥xo∥)[y]⊤1:nai + [y]2n+1(2x
o − ai)

⊤ai = 0,

which implies ai locate on a conic section (when n = 2) or a quadric surface (when n = 3), which contradicts Assumption 5
and completes the proof.

Then another closed-form solution can be obtained

ŷUB
m = (Ao⊤Ao)−1Ao⊤b. (11)

For the estimate (11), we have the following theorem.

Theorem 3. The estimate ŷUB
m is

√
m-consistent, i.e., ŷUB

m − yo = Op(1/
√
m).
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Proof. Recall that ŷUB
m = (Ao⊤Ao)−1Ao⊤b =

(
1
mAo⊤Ao

)−1 ( 1
mAo⊤b

)
. For 1

mAo⊤b we have

1

m
Ao⊤b =

1

m
Ao⊤

 −2do1∥xo∥ − 2a⊤1 x
o + η1

...
−2dom∥xo∥ − 2a⊤mxo + ηm


=

1

m
Ao⊤Ao

[
xo

∥xo∥

]
+

1√
m
Op (1) ,

where the second equality is based on Lemma 3. Thus, we obtain

√
m
(
ŷUB
m − yo

)
=

(
1

m
Ao⊤Ao

)−1

Op (1) = Op (1) ,

where the second equality holds because 1
mAo⊤Ao converges to a constant matrix whose elements have the form of tail

products. Hence, ŷUB
m converges to yo at a rate of 1/

√
m, which completes the proof.

Although we have proven ŷUB
m is

√
m-consistent, the involved matrix Ao is the noise-free counterpart of A and is unknown

in practice. Note that the available information is A and b. The main idea of bias elimination is to analyze the gap between
1
mA⊤A and 1

mAo⊤Ao and that between 1
mA⊤b and 1

mAo⊤b. By subtracting the gaps, we can eliminate the bias of ŷB
m and

achieve the solution ŷUB
m asymptotically. Let

G =

01×n − 2
...

...
01×n − 2

 .

We propose the following bias-eliminated estimate

ŷBE
m =

(
1

m
A⊤A− σ2

m
G⊤G

)−1(
1

m
A⊤b− 2σ2

m
G⊤d

)
. (12)

Theorem 4. The bias-eliminated estimate ŷBE
m is

√
m-consistent, i.e., ŷBE

m − yo = Op(1/
√
m).

Proof. Let

∆A = A−Ao =

01×n − 2r1
...

...
01×n − 2rm

 .

Then we can decompose 1
mA⊤A as

1

m
A⊤A =

1

m
(Ao +∆A)⊤(Ao +∆A)

=
1

m
Ao⊤Ao +

1

m
∆A⊤∆A+Op

(
1√
m

)
=

1

m
Ao⊤Ao +

σ2

m
G⊤G+Op

(
1√
m

)
,

where the second and third equalities are based on Lemma 3. Similarly, 1
mA⊤b can be decomposed as

1

m
A⊤b =

1

m
(Ao +∆A)⊤b

=
1

m
Ao⊤b+

1

m
∆A⊤

 −2do1∥xo∥ − 2a⊤1 x
o + η1

...
−2dom∥xo∥ − 2a⊤mxo + ηm


=

1

m
Ao⊤b+

1

m
∆A⊤

 2do1r1
...

2domrm

+Op

(
1√
m

)

=
1

m
Ao⊤b+

2σ2

m
G⊤do +Op

(
1√
m

)
=

1

m
Ao⊤b+

2σ2

m
G⊤d+Op

(
1√
m

)
,
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where do = [do1, · · · , dom]⊤, and the third, fourth, and fifth equalities are based on Lemma 3 and the fact that E[r3i ] = 0.
Combing the above decomposition, we have

ŷBE
m =

(
1

m
A⊤A− σ2

m
G⊤G

)−1(
1

m
A⊤b− 2σ2

m
G⊤d

)
=

(
1

m
Ao⊤Ao +Op

(
1√
m

))−1(
1

m
Ao⊤b+Op

(
1√
m

))
= ŷUB

m +Op

(
1√
m

)
.

Since ŷUB
m is

√
m-consistent, so is ŷBE

m , which completes the proof.

Note that in the bias-eliminated solution (12), we require prior knowledge of the noise variance. When the noise variance
σ2 is not available, we need to use an estimated value. The following corollary is an extension of Theorem 4.

Corollary 1. The following bias-eliminated estimate ŷBE
m is still

√
m-consistent if σ̂2

m is a
√
m-consistent estimate for σ2:

ŷBE
m =

(
1

m
A⊤A− σ̂2

m

m
G⊤G

)−1(
1

m
A⊤b(σ̂2

m)− 2σ̂2
m

m
G⊤d

)
, (13)

where b(σ̂2
m) is the vector obtained by replacing σ2 with σ̂2

m in b.

The proof is the same as that of Theorem 4 by utilizing the facts that σ̂2
m

m G⊤G − σ2

mG⊤G = Op(1/
√
m), σ̂2

m

m G⊤d −
σ2

mG⊤d = Op(1/
√
m), and 1

mA⊤b(σ̂2
m)− 1

mA⊤b = Op(1/
√
m).

V. CONSISTENT NOISE VARIANCE ESTIMATION

According to Corollary 1, if a
√
m-consistent estimate of noise variance σ̂2

m is available, we can use this estimate to conduct
the bias elimination. In this section, we will devise such a σ̂2

m. Define

Ã =

−2a⊤1 1 −2d1 d21 − ∥a1∥2
...

...
...

...
−2a⊤m 1 −2dm d2m − ∥am∥2

 , (14)

and

S(z) =

[
0(n+1)×(n+1) 0(n+1)×2

02×(n+1) S22(z)

]
,

S22(z) =

[
4z −4d̄z

−4d̄z 4d2z − 2z2

]
,

(15)

where d̄ =
∑m

i=1 di/m and d2 =
∑m

i=1 d
2
i /m. Further, let Q = Ã⊤Ã/m. If the sensors ai’s are not collinear (resp. coplanar)

in the 2D (resp. 3D) case, the first n + 1 columns of Ã are linearly independent. Further, note that the last two columns of
Ã consist of random noises. As a result, Ã has full column rank almost surely if there are at least n+ 3 sensors that are not
collinear (resp. coplanar) in the 2D (resp. 3D) case. Hence, given Assumption 4(ii), there exists m0 > 0 such that the matrix
Q is positive definite for any m ≥ m0. Since Q is positive definite, the eigenvalues of Q−1S(z) are all real numbers. Let
λmax(Q

−1S(z)) denote the largest eigenvalue of Q−1S(z). The following theorem gives a
√
m-consistent estimator for the

noise variance.

Theorem 5. The set Z = {z ∈ R | λmax(Q
−1S(z)) = 1} is non-empty. Let σ̂2

m = min Z , then σ̂2
m − σ2 = Op(1/

√
m).

The proof of Theorem 5 is presented in Appendix A.
Now we explicitly illustrate how to calculate the root of λmax(Q

−1S(z)) = 1. We express Q and its inverse as

Q =

[
Q11 Q12

Q21 Q22

]
, Q−1 =

[
∗ ∗
∗ (Q/Q22)

−1

]
,

where Q11 ∈ R(n+1)×(n+1), Q22 ∈ R2×2, and Q/Q22 = Q22−Q21Q
−1
11 Q12 is the Schur complement of Q22 of Q. Utilizing

the structure of S(z), we obtain

det
(
λIn+3 −Q−1S(z)

)
= λn+1det

(
λI2 − (Q/Q22)

−1S22(z)
)
.

Therefore, λmax(Q
−1S(z)) is the largest root of the following polynomial with variable λ:

det (λ(Q/Q22)− S22(z)) = 0. (16)
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Note that Q/Q22 is symmetric and we express it as

Q/Q22 =

[
q1 q2
q2 q3

]
∈ R2×2. (17)

Let c1 = q1q3 − q22 , c2 = 4q1d2 + 4q3 + 8q2d̄, and c3 = 16d2 − 16d̄. Equation (16) yields

c1λ
2 + (2q1z

2 − c2z)λ− 8z3 + c3z
2 = 0. (18)

By setting the largest root of (18) as 1, we obtain the following equation:

c2z − 2q1z
2 +

√
∆

2c1
= 1, (19)

where ∆ = (2q1z
2 − c2z)

2 − 4c1(c3z
2 − 8z3). Equivalently, we can resort to solving the following 3-order polynomial and

choose the solutions that satisfy 2c1 + 2q1z
2 − c2z > 0:

32c1z
3 − (4c1c3 + 8q1c1)z

2 + 4c1c2z − 4c21 = 0. (20)

Note that the set of the roots of (20) that satisfy 2c1+2q1z
2−c2z > 0 is Z . According to Theorem 5, Z is non-empty. Finally,

the noise variance estimation is set as σ̂2
m = min Z . The noise variance estimation procedure is summarized in Algorithm 1.

The whole procedure of the proposed two-step estimator is summarized in Algorithm 2. In summary, our proposed estimator
includes three procedures—noise variance estimation, bias-eliminated solution calculation (13), and a one-step GN iteration (4).
Now we analyze the time complexity of our algorithm. In Algorithm 1, note that d̄ =

∑m
i=1 di/m, d2 =

∑m
i=1 d

2
i /m, and

Ã ∈ Rm×(n+3). Hence, Line 1 and Line 2 have O(m) (linear) time complexity. For Lines 3, 4, and 5, since Q ∈ R(n+3)×(n+3)

and (20) is a cubic equation in one variable, they cost O(1) (constant) time. As a result, the whole time complexity of
Algorithm 1 is O(m). In Algorithm 2, Line 1 executes Algorithm 1, which has O(m) time complexity. Note that A,G ∈
Rm×(n+1) and b,d ∈ Rm×1. Hence, the time complexity of Line 2 is O(m). Similarly, the time complexity of Line 4 is
also O(m). Finally, Line 3 costs O(1) time. Therefore, Algorithm 2 (the whole algorithm) has overall O(m) time complexity,
which is appealing in the large sample case.

Algorithm 1 Noise variance estimation

1: Calculate d̄ and d2 in (15);
2: Calculate Q = Ã⊤Ã/m based on (14);
3: Calculate Q/Q22 in (17) and c1, c2, c3 in (18);
4: Solve (20) and collect the roots that satisfy 2c1 + 2q1z

2 − c2z > 0 as Z;
5: Set σ̂2

m = min Z .

Algorithm 2 Consistent and asymptotically efficient estimator

Input: sensor coordinates (ai)
m
i=1 and range-difference measurements (di)

m
i=1.

Output: source location estimate x̂GN
m .

1: Apply Algorithm 1 to obtain an estimate σ̂2
m of the noise variance σ2;

2: Calculate the bias-eliminated estimate ŷBE
m according to (13);

3: Set x̂BE
m = [ŷBE

m ]1:n;
4: Apply a one-step GN iteration (4) to obtain x̂GN

m .

VI. SIMULATIONS

In this section, we perform simulations to verify our theoretical developments. The algorithms compared with ours (denoted as
Bias-Eli) include: (a) CLS: non-convex optimization-based method that optimally solves the spherical least-squares problem [7];
(b) GTRS-MPR: modified polar representation solved by generalized trust region subproblem (GTRS) algorithm [6]; (c)
BiasRed: bias-reduced solution based on expected bias approximation [27]. At each sensor configuration, the bias and root
mean square error (RMSE) of an estimator x̂ are approximated as

∆(x̂) =

∣∣∣∣∣∣ 1N
N∑
j=1

(x̂(ωj)− xo)

∣∣∣∣∣∣ , Bias(x̂) ≈
n∑

i=1

[∆(x̂)]i,

RMSE(x̂) ≈

√√√√ 1

N

N∑
j=1

∥x̂(ωj)− xo∥2,

where N is the number of Monte Carlo experiments over measurement noises, and x̂(ωj) is the estimate obtained in the j-th
Monte Carlo test. For RMSE, we take the root-CRLB (RCRLB) as its baseline.



12

101 102 103

1

2

3

4

5

6

7

B
ia

s
(m

)

Bias-Eli

CLS

GTRS-MPR

BiasRed

Fig. 3: Bias comparison in uniformly distributed case.
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A. Uniformly distributed sensors

In this subsection, as in Example 1, we generate sensors uniformly distributed on the surface of a cube whose center is the
origin and edges are 100m (the reference sensor locates in the origin). The coordinates of the source is xo = [15, 15, 15]⊤,
and the standard deviation of Gaussian noises is σ = 10. We set the number of sensors m as 10, 30, 100, 300, 1000, and
3000 respectively, and for each m, we run 1000 Monte Carlo tests to evaluate biases and RMSEs. In each Monte Carlo test,
sensor positions and measurement noises are randomly generated. Now we verify the assumptions proposed in Section II.
The Gaussian noise assumption (Assumption 1) and the compact and bounded assumption (Assumption 2) are straightforward
from this setting. Since the sensors are uniformly generated on the surface of a cube, its sample distribution converges to a
uniform distribution over this cube surface whose probability density function is fµ(a) = 1

6×1002 for a on the cube surface, and
fµ(a) = 0, otherwise. Hence, Assumption 3 holds. Note that the cube surface is not a quadric surface. Therefore, Assumption 5
holds, which implies Assumption 4. Therefore, all of the required assumptions have been verified.

Next, we present the simulation results. From Table I we see that our noise variance estimator is
√
m-consistent. The biases

under varying m are presented in Fig. 3. We see that the proposed Bias-Eli estimator is biased when m is relatively small,
while it becomes less biased as m increases. This is because σ̂2

m

m G⊤G in (12) characterizes the gap between 1
mA⊤A and

1
mAo⊤Ao consistently only in the asymptotic case; it may not be precise when the measurement number is small. So does
2σ̂2

m

m G⊤d. For the other estimators, their biases converge to nonzero values, which makes them not consistent (as shown in
Fig. 4).

TABLE I: RMSE of noise variance estimate.

m = 10 m = 30 m = 100 m = 300 m = 1000 m = 3000
63.1336 30.9802 16.5915 9.5205 5.4593 3.0107

The RMSEs of the compared estimators under varying m are plotted in Fig. 4. Since the proposed Bias-Eli solution is
asymptotically unbiased, it is consistent, exhibiting a continuously decreasing straight line in the double logarithmic coordinate
system. Moreover, the proposed two-step estimator which executes a one-step GN iteration on the basis of the Bias-Eli solution
can achieve the RCRLB asymptotically, verifying the claim in Lemma 4. As has been discussed, the other estimators are not
asymptotically unbiased. As a result, they are not consistent, and their RMSEs will be dominated by the asymptotic biases in
the large sample case.

B. Position-fixed sensors

In the above subsection, we suppose the sensors are uniformly distributed in a region as Example 1 illustrates. In this
subsection, we adopt the scheme in Example 2 and fix 10 sensors at

a1 = [50, 0, 50]⊤, a2 = [50, 50,−50]⊤, a3 = [50,−50, 50]⊤,

a4 = [50, 0, 0]⊤, a5 = [50, 50, 50]⊤, a6 = [−50, 0,−50]⊤,

a7 = [−50,−50, 50]⊤, a8 = [−50, 50,−50]⊤,

a9 = [−50, 0, 0]⊤, a10 = [−50,−50,−50]⊤.

(21)
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Each sensor makes total T rounds of i.i.d. observations, and with the increase of T , the range-difference measurements can
be large enough. The coordinates of the source is xo = [52, 52, 52]⊤, and the standard deviation of noises is σ = 5. The
measurement number T of each sensor is set to 1, 3, 10, 30, 100, and 300 respectively, and for each T , we run 1000
Monte Carlo tests to evaluate biases and RMSEs. Now we verify the assumptions proposed in Section II. The Gaussian noise
assumption (Assumption 1) and the compact and bounded assumption (Assumption 2) are straightforward from this setting.
Note that there are 10 sensors, and each sensor makes T measurements. It is equivalent to deploying T sensors at each of the
10 positions and each sensor making one measurement. Then, as T increases, the sample distribution of 10T sensors converges
to the distribution whose probability measure is µ(a) = 1

10 for a that belongs to the set of the 10 positions in (21), and
µ(a) = 0, otherwise. Hence, Assumption 3 holds. To verify Assumption 5, we adopt the algebraic method described below
this assumption in Section II. In this setting, we have Eµ[v(a)v(a)

⊤] =
∑10

i=1 v(ai)v(ai)
⊤/10, where ai’s are listed in (21).

One can verify that the rank of the matrix Eµ[v(a)v(a)
⊤] is 10, i.e., Assumption 5 holds, which implies that Assumption 4

also holds. Therefore, all of the required assumptions have been verified.
Next, we present the simulation results. The biases under varying T are presented in Fig. 5. Same as before, our Bias-Eli

estimator is asymptotically unbiased. For the CLS and GTRS-MPR estimators, their biases converge to nonzero values, which
makes them not consistent (as shown in Fig. 6). It is noteworthy that the bias of the BiasRed estimator seems to diverge as T
increases. The reason may be that a small intensity of noises is assumed in [27], and the bias-reduced solution is obtained by
ignoring the second-order noise terms. In our setting, the noises are not necessarily small enough to apply the result in [27].
The approximation error by ignoring the second-order noise terms may be unstable and increase with m. As a result, the bias
of the BiasRed estimator increases with m.

The RMSEs of the compared estimators under varying T are plotted in Fig. 6. Our first-step estimate Bias-Eli is consistent,
and an additional one-step GN iteration can asymptotically achieve the RCRLB. However, the compared algorithms are not
consistent. As discussed above, they are biased even in the asymptotic case, making their RMSEs converge to a nonzero value.
It is worth noting that the proposed two-step estimate and the GTRS-MPR solution outperform the RCRLB in the small T
region. This is because the estimators are biased in the finite sample case and their variances are not necessarily greater than
the CRLB. Besides, we note that the BiasRed estimator, which is based on the assumption of small noise intensity, seems not
very stable in this setting, owning a relatively large error.

Next, we set xo = [51, 51, 51]⊤ and compare the asymptotic RMSEs under varying noise intensities in the large sample
case. We let T = 100, and σ is set as 0.1, 0.2, 0.5, 1, 2, and 5 respectively. For each choice of σ, 1000 Monte Carlo tests are
executed to evaluate RMSEs. Besides our algorithm, we also perform a one-step GN iteration for the compared algorithms. The
result is presented in Fig. 8 where we take the x-axis as 10 log10(1/σ

2). In the small noise region, all estimators can achieve
the RCRLB. This phenomenon arises from the fact that when the intensity of noises is small, the bias of these estimators
is negligible, and the RMSE is dominated by their covariance. With the increase in noise intensity, the bias plays a more
important role. As a result, the RMSE of the compared algorithms which do not appropriately eliminate the bias deviates
from the RCRLB in the large noise region. However, owing to elaborate bias elimination, our estimator achieves the RCRLB
consistently irrespective of the noise intensity.

Till now, we have used the estimated noise variance σ̂2
m in our proposed Bias-Eli estimator. Here, we compare it (denoted

as Bias-Eli(σ̂2
m) in Fig. 7) with the Bias-Eli solution utilizing the true noise variance σ2 (denoted as Bias-Eli(σ2) in Fig. 7).

Since the estimator Bias-Eli(σ2) does not need to estimate the noise variance, it could have smaller RMSEs than Bias-Eli(σ̂2
m).

However, it is not the case in our simulation as shown in Fig. 7, where Fig. 7(a) and 7(b) present the RMSE under varying



14

100 101 102

100

R
M

S
E

(m
)

(a) σ = 2

-15 -10 -5 0 5 10 15 20
10-2

10-1

100

R
M

S
E

(m
)

(b) T = 100

Fig. 7: Comparison with Bias-Eli estimator using the true noise variance.
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Fig. 8: Asymptotic RMSE comparison under varying noise intensities.

measurement numbers (σ = 2) and varying noise intensities (T = 100), respectively. In both cases, the two estimators have
negligible differences, which shows the superiority of the proposed noise variance estimation algorithm.

TABLE II: CPU Time comparison among different algorithms. Each algorithm is executed 1000 times to compute the average
CPU time. The unit adopted is seconds.

T = 1 T = 3 T = 10 T = 30 T = 100 T = 300
CLS 0.2903 0.2910 0.2924 0.2923 0.2956 0.3056

GTRS-MPR 0.00047 0.00052 0.0013 0.0065 0.1851 5.1265
BiasRed 0.00018 0.00024 0.0010 0.0104 0.3858 13.0656

Bias-Eli+GN 0.00015 0.00025 0.00063 0.0016 0.0037 0.0102

Last, we compare the CPU time of different algorithms. All algorithms are executed in Matlab codes, and the CPU type is
Intel Core i7-10700. For the compared three estimators, we directly use the open-source codes provided by the authors. Each
algorithm is executed 1000 times to compute the average CPU time, and the result is listed in Table II. We see that the BiasRed
estimator costs the least or second least time when T is small. However, as T increases, its CPU time grows dramatically,
and it becomes the most time-consuming one when T exceeds 100. The CPU time of our proposed algorithm is constantly
the least, except for the case of T = 3 being the second least. In addition, it increases linearly with respect to T , coinciding
with the theoretical analysis. In the case of T = 300, i.e., m = 3000, our algorithm can still achieve a rate of 100 Hz and is
suitable for real-time applications. Similar to the BiasRed method, the CPU time of the GTRS-MPR algorithm also exhibits a
nonlinear increasing trend. The CPU time of the CLS algorithm seems to be constant. This is because it involves solving two
linear matrix inequalities, which are realized using a CVX toolbox. The calling of the CVX toolbox is heavily time-consuming
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and dominates the CPU time. In summary, our algorithm has an advantage in time complexity and is especially desirable in
the large sample case.

VII. CONCLUSION

In this paper, we have proposed a consistent and asymptotically efficient localization estimator based on range-difference
measurements. The existence of such an estimator is guaranteed by some readily-checked conditions on measurement noises
and sensor deployment. By noting the convergence of the negative log-likelihood function, we first obtained a

√
m-consistent

solution and then applied GN iterations to refine it. Specifically, the
√
m-consistent solution is calculated via bias elimination.

By solving a 3-order polynomial, we obtained a consistent estimate of noise variance, which forms the foundation of a consistent
bias estimate. Following the preliminary consistent solution, we showed from both theoretical and experimental aspects that
a one-step GN iteration would suffice to attain asymptotic efficiency. In addition, the proposed algorithm has O(m) time
complexity and costs much less time than the compared algorithms in the large sample case.

APPENDIX A
PROOF OF THEOREM 5

Let C(z) = Q − S(z). The value λmax(Q
−1S(z)) largely depends on the property of C(z), which is summarized in the

following lemma.

Lemma 6. The value λmax(Q
−1S(z)) depends on the eigenvalues of C(z). Specifically,

(i). If C(z) is positive definite, then λmax(Q
−1S(z)) < 1.

(ii). If C(z) is indefinite, then λmax(Q
−1S(z)) > 1.

(iii). If C(z) is positive semi-definite, then λmax(Q
−1S(z)) = 1.

Proof. First, when C(z) is positive definite, suppose λmax(Q
−1S(z)) ≥ 1, i.e., λmax(Q

− 1
2S(z)Q− 1

2 ) ≥ 1. Let v = Q
1
2y be

an eigenvector associated with λmax(Q
− 1

2S(z)Q− 1
2 ). Since Q = C(z) + S(z), we have

∥v∥2 = v⊤Q− 1
2C(z)Q− 1

2v + v⊤Q− 1
2S(z)Q− 1

2v

≥ y⊤C(z)y + ∥v∥2

> ∥v∥2,

which leads to a contradiction. Thus, λmax(Q
−1S(z)) < 1.

Secondly, when C(z) is indefinite, suppose λmax(Q
−1S(z)) ≤ 1. There exists a y ̸= 0 such that y⊤C(z)y < 0. Let

v = Q
1
2y, as a result,

∥v∥2 = y⊤C(z)y + v⊤Q− 1
2S(z)Q− 1

2v

< ∥v∥2,

which leads to a contradiction. Thus, λmax(Q
−1S(z)) > 1.

Finally, when C(z) is positive semi-definite and singular, by using a similar argument with that of the positive definite case,
we obtain λmax(Q

−1S(z)) ≤ 1. Further, there exists a y ̸= 0 such that C(z)y = 0. Noting that C(z) = Q− S(z), we have
Q−1S(z)y = y, which implies λmax(Q

−1S(z)) = 1 and completes the proof.

We first consider the asymptotic case. Let Q∞ = limm→∞ Q, S∞(z) = limm→∞ S(z), and C∞(z) = limm→∞ C(z). We
have the following lemma.

Lemma 7. It holds that min{z | λmax(Q
−1
∞ S∞(z)) = 1} = σ2.

Proof. Based on Lemma 3, we have

Ã⊤Ã

m
=

Ão⊤Ão

m
+ S(σ2) +Op

(
1√
m

)
,

where

Ão =

−2a⊤1 1 −2do1 −2a⊤1 x
o + σ2 − 2do1∥xo∥

...
...

...
...

−2a⊤m 1 −2dom −2a⊤mxo + σ2 − 2dom∥xo∥


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is the noise-free counterpart of Ã. Since the last column of Ão is a linear combination of the former columns, Ão⊤Ão/m is sin-
gular, so is the asymptotic case, i.e., C∞(σ2) = Q∞−S∞(σ2) = limm→∞ Ão⊤Ão/m is singular. Hence, λmax(Q

−1
∞ S∞(σ2)) =

1 based on Lemma 6. For z < σ2,

C∞(z) = Q∞ − S∞(z)

= C∞(σ2) + S∞(σ2)− S∞(z)

= C∞(σ2) + (σ2 − z)

[
0(n+1)×(n+1) 0(n+1)×2

02×(n+1) R(σ2 + z)

]
,

in which R(z) =

[
4 −4do

−4do 4(do2 + σ2)− 2z

]
, and

det(R(σ2 + z)) = 16(do2 + σ2)− 8(σ2 + z)− 16do
2

= 16(do2 − do
2
) + 8(σ2 − z)

> 0,

where do =
∑m

i=1 d
o
i /m and do2 =

∑m
i=1 d

o
i
2/m. Therefore, R(σ2 + z) ≻ 0 for z < σ2, and S∞(σ2)− S∞(z) ⪰ kS∞(σ2)

for a small k ∈ (0, 1). In addition,

C∞(σ2) + kS∞(σ2) = (1− k)C∞(σ2) + kQ∞ ≻ 0

for every k ∈ (0, 1). As a result,

C∞(z) = C∞(σ2) + S∞(σ2)− S∞(z)

⪰ C∞(σ2) + kS∞(σ2)

≻ 0.

That is, for z < σ2, λmax(Q
−1
∞ S∞(z)) < 1 (based on Lemma 6), which implies σ2 = min{z | λmax(Q

−1
∞ S∞(z)) = 1}.

In the finite-sample case, the two eigenvalues of S(z) associated with S22(z) are

λl = −(z2 − 2z − 2d2z)−
√
∆,

λu = −(z2 − 2z − 2d2z) +
√
∆,

where ∆ = (z2 − 2z − 2d2z)2 + 8z3 + 16d̄ 2z2 − 16d2z2. As z increases, λl goes to negative infinity, while λu tends to
positive infinity. When λu > λmax(Q), C(z) = Q−S(z) is indefinite. Further combining the facts that C(0) = Q is positive
definite and the eigenvalues of C(z) are continuous with respect to z, there exists a zm > 0 such that C(zm) ⪰ 0. Thus, the
set {z | λmax(Q

−1S(z)) = 1} is non-empty, and σ̂2
m = min{z | λmax(Q

−1S(z)) = 1} exists. Since Q and S(z) converge to
Q∞ and S∞(z) with the rate Op(1/

√
m) based on Lemma 3 and min{z | λmax(Q

−1S(z)) = 1} is a continuous function of
Q and S(z), the estimate σ̂2

m shares the same rate of convergence, i.e., σ̂2
m − σ2 = Op(1/

√
m), which completes the proof.
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