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ABSTRACT

Optimization problems are a staple of today’s scientific and technical landscape. However, at present,
solvers of such problems are almost exclusively run on digital hardware. Using Turing machines
as a mathematical model for any type of digital hardware, in this paper, we analyze fundamental
limitations of this conceptual approach of solving optimization problems. Since in most applications,
the optimizer itself is of significantly more interest than the optimal value of the corresponding
function, we will focus on computability of the optimizer. In fact, we will show that in various
situations the optimizer is unattainable on Turing machines and consequently on digital computers.
Moreover, even worse, there does not exist a Turing machine, which approximates the optimizer
itself up to a certain constant error. We prove such results for a variety of well-known problems from
very different areas, including artificial intelligence, financial mathematics, and information theory,
often deriving the even stronger result that such problems are not Banach-Mazur computable, also
not even in an approximate sense.

Keywords Optimization · Information Theory · Artificial Intelligence · Computability · Turing Machine · Digital
Computing

1 Introduction

Optimization is at the heart of basically any problem from science or industry; even the entire field of deep learning
could not exist without optimization approaches. The numerical solvers of optimization problems are almost exclu-
sively implemented on today’s computers, i.e., on digital hardware such as CPUs or GPUs. However, the question of
whether and which limitations this imposes is currently wide open. Since digital hardware is only able to handle dis-
crete quantities (resp. bits) with arbitrary accuracy, solving optimization problems which admit continuous solutions
requires approximations of the true solution. It is therefore of tremendous importance to mathematically analyze how
large this misalignment between continuous-natured optimization problems and numerical solvers on digital hardware
for those really is.

In this paper we aim to provide a systematic approach to this problem from a computability viewpoint, studying
whether there even do exist limits of computability due to the digital nature of the current hardware in contrast to the
often continuous nature of optimization problems. Our results will unfortunately reveal that computability is indeed a
major issue, as it will turn out that often the optimizers are not computable on digital hardware modeled by a Turing
machine.

1.1 Optimization Problems

Optimization is an area with a long and rich history. By optimization problems, we refer to the minimization or
maximization of some functional F : X × Y → R over a solution space X ⊂ R

n and a parameter space Y ⊂ R
m for
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Computability of Optimizers

n,m ∈ N, i.e.,

min
x∈X(y)

F (x, y) or max
x∈X(y)

F (x, y), (1)

where y ∈ Y is a parameter in the parameter space and X(y) ⊂ X is a subset of the solution space, depending on y.
This general form allows to treat most problems from applications [1].

Two main problem settings can be identified in this context: The first asks for the optimal value or an approximation
of it, i.e., constructing or approximating a function ϕ : Y → R such that

∀y∈Y : ϕ(y) = min
x∈X(y)

F (x, y) or max
x∈X(y)

F (x, y). (2)

The second problem setting aims to find an optimizer, i.e., to construct or approximate a function G : Y → X such
that

∀y∈Y : ϕ(y) = F (G(y), y), (3)

where ϕ is the function defined by Equation (2). It is evident that constructing a function G yields a construction of a
function ϕ. However, in general, the opposite direction does not hold. It is in this sense that finding ϕ is “easier” than
finding G.

Optimization problems suffer the same curse as many other problems of wide interest, namely there does in general
not exist a closed-form solution for either ϕ or G. Therefore, solutions usually have to be approximated by numerical
algorithms run on today’s computers. For a wide variety of optimization problems, established algorithms that aim
to approximate the optimal solution do exist. A classical class of approaches are iterative solvers, which construct a
sequence of approximators. In some cases, it has been proven that this sequence does indeed converge to the optimizer
[2][3].

Depending on the application, either the function G or the function ϕ is of greater interest. Examples for the former
are portfolio optimization or compressed sensing and, for the latter exemplary problems are computing the capacity of
a channel or solving a deep learning problem. In practice, one often approximates G by an iterative scheme to obtain
a sequence Gn : Y → X and, correspondingly, ϕn : Y → R through ϕn(y) := F (Gn(y), y). Depending on the
applied algorithm, one might obtain one or a combination of the following guarantees:

• ∀y∈Y : ϕn(y)→ ϕ(y) with or without known convergence speed,

• ∀y∈Y : Gn(y)→ G(y) with or without known convergence speed.

Notice that in this case “known convergence speed” of a convergent Banach space sequence an → a refers to having
an explicit description of a function f : N→ R+ such that limn→∞ f(n) = 0 and ‖an − a‖ ≤ f(n) for all n ∈ N.

1.2 Computability

Computability asks the question of how to mathematically model and analyze computations on perfect digital hardware.
The term “perfect” refers to the assumption that there are no limitations regarding storage, computing power, and
energy. Additionally, perfect digital hardware is assumed to never make a mistake in a numerical calculation. The
only limitation is the fact that the number of calculation steps has to be finite.

It is evident that such a computability model is vastly superior to real-world digital hardware, i.e., real-world computers.
Hence any practical algorithm can also be run on perfect digital hardware. Turing machines [4] are a version of perfect
digital hardware and are considered the de-facto standard model for today’s digital computers. A Turing machine is a
mathematical model of a machine capable of calculations by manipulating symbols on a strip of tape by only using a
single reading head and a single internal state. Thus exploring the limitations of Turing machines allows to reveal the
limitations of the computational abilities of today’s most custom hardware.

1.3 Previous Work

The earliest non-computability result has been provided by Church [5] and Turing [4] [6], by (independently of each
other) proving non-computability of the Entscheidungsproblem. Since then the question of computability has been a
staple in theoretical computer science and computer engineering and even found its way into the field of mathematical
analysis [7].

Non-computability results for optimization problems have already been formulated in [7], [8], [9], [10], [11], [12],
[13], and [14]. The author of [7] proves non-Borel-Turing computability for functions with certain discontinuities.
Using these results [10] deducts non-Borel-Turing computability of linear programs with real coefficients. In [9] the
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stronger non-Banach-Mazur computability, as well as non-approximability, for inverse problems in the so-called lasso
formulation is derived. The authors of [13], [11] and [12] provide results on non-Banach-Mazur computability for
selected problems in information theory and related fields. Finally, [14] proves non-computability for the specific
case of finding neural networks to solve inverse problems. However, a more refined notion of non-computability is
deployed, leading to a more nuanced result than the one obtained in this paper.

However, each of these results focuses on a special problem setting, leaving the question whether there exists a general
comprehensive theory for non-computability for optimization problems wide open. In addition, most results are stated
for non-Borel-Turing computability, yielding the question whether such a general theory can be formulated even for
non-Banach-Mazur computability and non-approximability.

1.4 Our Contributions

In this paper, we develop such a general and comprehensive theory for non-computability or non-approximability for
optimization problems in the more general setting of non-Banach-Mazur computability.

As mentioned in Subsection 1.1, for a given optimization problem (1), some approaches focus on finding the function
ϕ (2), whereas others aim for computing G (3). Since (3) implies that computing ϕ is “easier” than computing G, a
significant amount of research in optimization has (successfully) focused on finding ϕ over finding G. Naturally, the
question arises whether G can be non-computable even if ϕ is computable. Hence the focus of this paper is on the
question of computability of G independently of ϕ.

As our main result, in Theorem 1, we prove that surprisingly for a large class of optimization problems finding the
optimizer, described by the function G : Y → X , or even approximating it up to a constant error in a computable
manner is not possible. While this is a result with far-reaching consequences (see Subsection 1.5), it fortunately does
not automatically imply that the optimal value, i.e., a function ϕ : Y → R (2) or an approximation of it is non-
computable. On the contrary, in Section 4 we present a selection of optimization problems, in which optimizers are
non-computable and non-approximable, while the corresponding optimal values are in fact computable.

We also present and discuss several applications of Theorem 1, showing non-computability and non-approximability
for a selection of optimization problems (see Section 4). Intriguingly, most of such problems are even convex opti-
mization problems. More detailed, we show non-Banach-Mazur computability and non-approximability for neural
networks 4.1, portfolio optimization 4.2, capacity maximizing distributions 4.3, Wasserstein 4.4 distance, a lattice
problem 4.5, and linear programs 4.6. Several of those examples also give evidence of the fact that our framework is
comprehensive and includes some known results such as from [10], [13], and [15] as special cases.

1.5 Impact of our Results

We believe our results impact applications in several ways. In the following, we briefly discuss the most serious
aspects.

• Impossibility of general algorithms. We prove non-existence of algorithms, which find or even approximate
the optimizer, i.e., the search for such algorithms is in general futile. This even applies in the numerous cases,
where the optimal value can be calculated or approximated by computable means. Especially for existing
iterative algorithms, which are known to converge to the optimizer, our main result implies non-existence of
a computable stop criterion, which ensures an arbitrarily small approximation error.

• Limitations of digital hardware. Our results are a consequence of considering general real-valued parameters
instead of choosing a discrete space for Y . Consequently, non-computability results from the error caused by
the digital nature of Turing machines aiming to approximate real numbers. This motivates the use of analog
computer models such as the Blum-Shub-Smale machine [16] or quantum computers [17].

• Importance of prior information. Our results can be interpreted as a form of the “no free lunch” result [18].
Without additional restrictions, for instance, concerning structure or regularity of the solution space X or the
parameter space Y , an algorithm, which finds or approximates an optimizer, cannot exist. This stresses the
importance of prior knowledge.

We also believe that our results are of relevance for areas outside of optimization theory.

• Trustworthiness and Robustness Certificates. In the context of trustworthiness of 6G-based communication
[19][20] and artificial intelligence [21], our result is particularly concerning, since the absence of approxima-
tion guarantees might imply the absence of rigorous certificates. But the increased use of automatic systems
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makes trustworthy systems necessary, since large parts of sensitive areas, e.g., medicine, infrastructure, and
autonomous vehicles and robots are hoping on these highly automated technologies.

• Simulations. Most simulations rely on forms of physics-based approximations. For those, it needs to be
ensured that the approximated simulation is close to the real world. Our results imply that this type of ap-
proximation might not always be reliable. The negative impact of this problem is presumably even amplified
in the context of synthetic data engines, e.g., Nvidia’s Omniverse [22], which are simulations used to create
data for machine learning tasks.

1.6 Outline

We introduce the computability framework in Section 2. In particular, we define Borel-Turing computability of a
function and the more general Banach-Mazur computability notion of a function. We present our main theorem in
Section 3 and provide conditions for non-Banach-Mazur and non-Borel-Turing computable functions in a general
manner. In Section 4, we then introduce a list of prominent optimization problems, with some background. All these
problems will turn out to be non-Banach-Mazur computable and, in fact, not even approximable by a Banach-Mazur
computable function.

2 Introduction to Computability

In practice, most problems do not possess a closed-form solution. Hence finding approximative solutions is a necessity.
Most approximative algorithms are designed to be run on Turing machines as an idealized model of today’s digital
hardware. Historically, there has been a family of computing models, e.g., µ-recursive functions [23] and λ-Calculus
[24], which turned out to be equivalent to Turing machines. Although non-equivalent computing models exist, e.g.,
quantum computers[17], we will restrict ourselves to Turing machines, since digital hardware is the predominant
hardware used today in real-life.
A comprehensive and formal introduction on the subject of computability can be found in [25]. We start with a basic
definition.

Definition 1. A function f : N→ N is called recursive or computable, if there exists a Turing machine, which, given
the input x ∈ N, leaves f(x) on its tape after termination. With slight abuse of notation, we equate a recursive function
with its corresponding Turing machine.

2.1 Computable Numbers

Turing defined all rational numbers to be computable. The idea is that rational numbers can be used to approximate
some real numbers arbitrarily well in a manner, which still allows digital computations. With this application in mind,
Turing introduced the Turing machine in [4]. We take over Turing’s definition here.

Definition 2. A sequence of rational numbers (rn)n∈N is computable, if there exist recursive functions s, p, q : N→ N

such that

∀k∈N : qk = (−1)s(k) p(k)
q(k)

.

Also, we adopt a version of convergence, which is more natural for Turing machines.

Definition 3. A sequence of real numbers (xn)n∈N does converge effectively to a limit x ∈ R, if

∀n∈N : |xn − x| ≤ 2−n.

Using the definition of computable rational sequences and effective convergence, we can define a real number to be
computable if a Turing machine can approximate it with exponentially growing precision.

Definition 4. A real number x ∈ R is called computable, if there exists a rational computable sequence (qn)n∈N,
such that

qn → x,

where the convergence is effective. The sequence (qn)n∈N is called a representation of x. We refer to the set of
computable real numbers Rc.

We remark that Rc ⊂ R is a computable, dense set with field structure, i.e., closed under addition, subtraction,
multiplication, and division, with exception of dividing through zero. Additionally, Rc is closed under effective
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convergence.
This definition is equivalent to the existence of a Turing machine, which outputs the base-2 representation of a real
number up to the nth decimal place when getting n on its input band. Similarly, we define a real sequence to be
computable if a Turing machine can approximate each member of the sequence with exponentially growing precision.

Definition 5. A sequence of real numbers (xn)n∈N is computable, if there exists a rational computable double se-
quence (qn,k)n,k∈N such that

∀k,n∈N : |qn,k − xn| ≤ 2−k.

Notice that all these definitions can be extended to vector-valued quantities and sequences if every component satisfies
the according definition.

2.2 Computable Functions

We start with the following definition of a computable function, which goes back to Turing [4] himself.

Definition 6. Let N,M ∈ N. A function f : RN
c → R

M
c is Borel-Turing computable, if there exists a Turing machine,

which transforms all representations (rn)n∈N of a vector x ∈ R
N
c to representations of f(x).

The following is a generalization of Borel-Turing computability, which involves the use of computable real sequences.

Definition 7. Let N,M ∈ N. A function f : RN
c → R

M
c is Banach-Mazur computable, if for every computable real

vector-valued sequence (an)n∈N, the sequence (f(an))n∈N ⊂ R
M is computable.

We want to mention that all Borel-Turing computable functions are automatically also Banach-Mazur computable.

2.3 Decidable Sets

The most common definition of decidable sets concerns subsets of natural numbers.

Definition 8. A set A ⊂ N is called decidable, if the function 1A : N→ N, defined by

1A(n) :=

{

1, n ∈ A,

0, n ∈ Ac,

is recursive.

Definition 9. A set A ⊂ N is called semi-decidable, if there exists a Turing machine TMA such that T MA(n)
outputs 1, if n ∈ A, and TMA(n) does not terminate, if n ∈ Ac.

Note that the halting problem for Turing machines implies the existence of sets, which are semi-decidable but not
decidable. We can naturally extend this notion to subsets of Rn

c for any n ∈ N.

Definition 10. Given B ⊂ R
n
c , a set A ⊂ B is called (semi-)decidable, if there exists a Turing machine T MA such

that TMA(x) outputs 1, if x ∈ A and TMA(x) outputs 0 (resp. does not terminate), if x ∈ B\A. T MA(x) can
either output an arbitrary symbol or not terminate for x ∈ Bc.

Intuitively, a Turing machine aims to decide if x ∈ A, using the prior information x ∈ B.

3 Main Results

In this section, we develop a theory that allows to check for non-computability and even non-approximability of
optimizers in a very flexible manner. Our results can be applied to a broad class of optimization problems with very
different backgrounds, as we will see in Section 4.
We now consider general optimization problems with some parameter space Y ⊂ R

m
c and solution space X ⊂ R

n
c

over the continuous function F : X × Y → Rc. Additionally, with slight abuse of notation, we call X(y) ⊂ X
a subset of X depending on y ∈ Y , i.e., we have a map Y → 2X , y 7→ X(y). For example in the case of linear
programs, Y usually describes the linear inequalities, as well as the objective function and X , usually describes the
space of solution vectors.
Given a fixed y ∈ Y , we are interested in optimization problems of the form

min
x∈X(y)

F (x, y) or max
x∈X(y)

F (x, y).

Most optimization problems can be written this way.
Usually, the existence of an optimizer is ensured through compactness of X or X(y). Note that compactness only
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proves abstract existence, but does not provide a description or approximation of the optimizer itself. In this paper, we
use the following definition, if the optimization problem and its parameter space are clear,

Opt(y) := {x ∈ X(y)|F (x, y) = max
x′∈X(y)

F (x′, y)}.

The goal of optimization is to find a function G : Y → X such that

∀y∈Y : G(y) ∈ Opt(y)

or at least an approximation of G, i.e., a function G∗ : Y → X such that G and G∗ are close. In our case we define
closeness by

‖G−G∗‖∞ = sup
y∈Y
|G(y) −G∗(y)| < α

for some α > 0.

Theorem 1 (Main Theorem). Let X,Y,X(y) and F be as described above. Let G : Y → X such that, for all y ∈ Y ,
we have G(y) ∈ Opt(y). Now let Y1, Y2 ⊂ Y , y∗1 ∈ Y1, y

∗
2 ∈ Y2 and y∗ ∈ Y , and γ : [−1, 1] → Y , a Turing

computable, continuous path such that:

(i) Y1 ∩ Y2 = ∅ and G(Y1) ∩G(Y2) = ∅,

(ii) inf
y1∈Y1y2∈Y2

‖y1 − y2‖ = 0,

(iii) inf
y1∈Y1y2∈Y2

‖G(y1)−G(y2)‖ = κ > 0,

(iv) γ(−1) = y∗1 , γ(1) = y∗2 , γ(t0) = y∗,
for some t0 ∈ (−1, 1),

(v) γ([−1, t0)) ⊂ Y1 and γ((t0, 1]) ⊂ Y2,

(vi) G(Y1) ⊂ G(Y1) ∪G(Y2) is decidable.

Then G cannot be Borel-Turing computable. In fact, there does not even exist a Borel-Turing computable function,
which can approximate G by up to an absolute error of α < κ

2 , i.e. there does not exist a Borel-Turing computable
function G∗ : Y → X such that ‖G−G∗‖∞ ≤ α. If we replace condition (vi) by

(vii) Y1 ⊂ Y1 ∪ Y2 is decidable,

then G can even not be Banach-Mazur computable. In fact, there does not even exist a Banach-Mazur com-
putable function, which can approximate G by up to an absolute error of α < κ

2 .

This has noteworthy consequences for computable stop criteria for iterative algorithms, which are guaranteed to con-
verge to the optimizer. Let G : Y → X and ϕ : Y → R be defined as in 3 and 2. Assume for a given optimization
problem that there exists an iterative scheme, that yields functions Gn : Y → X and consequently ϕn : Y → R, such
that

∀y∈Y : ϕn(y)→ ϕ(y) with known convergence speed and ∀y∈Y : Gn(y)→ G(y).

This is the case for multiple optimization problems, examples being the Blahut-Arimoto algorithm for the capacity of
a channel [26][2] and Cover’s algorithm for portfolio optimization [3]. Now proving the non-computability and non-
approximability of the function G in this setup implies that even though there exist computable Gn, which converge
pointwise to the sought function G, there can be no computable stop criterion, which guarantees the error ‖Gn(y) −
G(y)‖ for all y ∈ Y to be small. Here being able to bound the error ‖ϕn(y)− ϕ(y)‖ for all y ∈ Y is irrelevant.

4 Applications

We can use Theorem 1 in a wide variety of cases. In this section, we will provide a small sample of a few famous
problems from a broad range of topics.

4.1 Neural Networks

Neural networks have seen a tremendous rise in popularity and successes in a wide variety of different areas, such as
image processing [27], games [28][29] and PDEs [30]. At the same time, there seem to be some inherent problems

6



Computability of Optimizers

with neural networks, like instability [31]. Consequently, the question if these problems might be an inherent property
of neural networks was asked and some results seem to indicate that this is indeed the case [32][9]. We are continuing
these results by showing a type of non-computability of neural networks, which, to our best knowledge, has been not
shown before. A (feed-forward) neural network can be defined as functions Φ : Rn → R

m of the form

Φ(x) := (AL ◦ ρ ◦AL−1 ◦ . . . ◦ ρ ◦A1)(x)

where L ∈ N and
∀l=1,...,L : Alx = Wlx+ bl, Wl ∈ R

nl×nl−1

c , bl ∈ R
nl
c

with n0 = n, nL = m and ρ : R → R is a (non-linear) activation function, applied component-wise. For a more
general theory on neural networks, we refer to [33].
In our setting we fix ρ(x) = ReLU(x) = max(0, x), for x ∈ R, which is a very popular choice for neural networks
[34]. The matrix Al is called weight matrix and bl is called bias vector. These are typically the free parameters of
a neural network. A choice of L and n0, . . . , nL is called an architecture of a neural network. We define the set of
neural networks with architecture n0, . . . , nL as NN n0,...,nL

. Now training a neural network with fixed architecture
consists of minimizing a loss function over a data set (xi, yi)i=1,...,d, where xi ∈ R

n and yi ∈ R
m for i = 1, . . . , d. A

popular choice for a loss function to minimize is

min
Φ∈NNn0,...,nL

W (Φ, (xi, yi)i=1,...,d) :=
1

d

d
∑

i=1

‖Φ(xi)− yi‖2.

Minimization is done only approximately by using a particular form of gradient descent, namely, stochastic gradient
descent [35][36].
For our setting, we ignore all biases, i.e. assume bl = 0 for all l. Additionally, we set all entries of the last layer, i.e.,
AL, to 1. For the following theorem, we consider the fixed architecture L = 2, n0 = 3, n1 = 3, n2 = 1.

Theorem 2 (Neural Network). Given d ≥ 14 and a data set D =
∏d

i=1(xi, yi) ∈ (R3
c ×Rc)

d, consider the minimiza-
tion problem

min
Φ∈R

3×3
c

d
∑

i=1

(ρ(Φxi)− yi)
2.

Let G : (R3
c × Rc)

d → R
3×3
c such that, for all D ∈ (R3

c × Rc)
d, we have: G(D) ∈ Opt(D). Then G is not Banach-

Mazur computable.
All functions G∗ : (R3

c × Rc)
d → R

3×3
c satisfying

‖G−G∗‖∞ ≤ α < 4

are also not Banach-Mazur computable.

This theorem proves that no perfect loss-minimizing algorithms for neural networks in the special case of a shallow
neural network with the architecture above can exist. While this does not have to imply the same for wider and deeper
neural networks, it is to be expected to also hold in more complicated cases. Intuitively, calculating loss-minimizing
neural networks gets "harder" with more parameters. Consequently, we expect similar results to hold true for general
neural networks. Note that this theorem does not imply non-approximability of neural networks interpreted as a
function, but the non-approximability of its weights. While this might be seen as a limitation of this theorem, since
one is usually more interested in the neural network as a function itself instead of the precise weights, it cautions us
against methods, which use or manipulate weights of a trained neural network directly as it is the case in, e.g., Dropout
[37] and Layer-Wise Relevance Propagation [38]. Additionally, the non-approximability of weights points towards a
fragile nature of neural networks and urges the need to ensure that the corresponding neural network function is
indeed a good approximation of the desired function. Also if there would be some computable way to always recover
all possible weight configurations given a neural network function, this would imply non-approximability of the neural
network function itself. We believe even more non-computability results for deep learning exist and some inherent
problems such as, e.g., instability [31] might be a fundamental flaw of neural networks on digital hardware, which are
impossible to overcome completely.

4.2 Financial Mathematics - Information Theory

In portfolio optimization, the stock market can be modeled by a random vector X ∈ R
m
+ , where each component

describes a separate stock. A portfolio b ∈ R
m
+ is a vector such that

∑

i bi = 1, which describes the allocation of the

available funds. The vector btX describes the evolution of the portfolio after one time step. Due to the multiplicative
nature of investments, it is natural to maximize the convex functional [3][39]

max
b

E[log(btX)],
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which is the expected return after one time step. A well-known approach to this optimization problem is an iterative
algorithm found by Cover [3] in 1984. Cover’s algorithm uses similar ideas as the Blahut-Arimoto algorithm [2][26]
from information theory.
We will show that even though such an effective algorithm exists, finding a maximizing portfolio is non-computable in
general. This implies no approximation guarantee for optimal portfolios in Cover’s algorithm - or any other algorithm
- can be made.
We consider the case of a discrete random vector X(·) =∑n

i=1

∑m
j=1 pi,jδxi,j

(·)ej , where pi,j > 0 are probabilities,

i.e.,
∑

i,j pi,j = 1, and xi,j ∈ R+ are the possible outcomes. Also ej ∈ R
m are the standard basis vectors and we

assume ∀j,i1 6=i2 : xi1,j 6= xi2,j . We define this set of discrete random vectors as Dn,m.

Theorem 3 (Log-Optimal Portfolio). Let X ∈ Dn,m. Define W : {b ∈ R
m
+ |
∑

i bi = 1} → R by

W (b) := E[log(btX)],

and consider the corresponding maximization problem. For all n,m ∈ N+ with m > 1 define a function G : Dn,m →
{b ∈ R

m
+ |
∑

i bi = 1} such that for all y ∈ Dn,m, it holds G(y) ∈ Opt(y). Then G is not Banach-Mazur computable.
All functions G∗ : Dn,m → {b ∈ R

m
+ |
∑

i bi = 1} satisfying

‖G−G∗‖∞ ≤ α < 1

are also not Banach-Mazur computable.

4.3 Optimal Input Distribution - Information Theory

In information theory, a point-to-point channel with one receiver and one transmitter is modeled by two discrete
random variables X and Y over the probability spaces X and Y . If we choose X and Y to be finite, we are describing
a discrete memoryless channel (DMC). The channel itself is then given by a stochastic matrix W ∈ R

m×n, where
|X | = n and |Y| = m. X , Y and W are related by

W (x) = P (Y |X = x).

We define the mutual information of two discrete random variables X , Y over X , Y as

I(X,Y ) =
∑

x∈X

∑

y∈Y
P(X,Y )(x, y) log

(

P(X,Y )(x, y)

PX(x)PY (y)

)

,

where P(X,Y ) is the probability mass function of (X,Y ), and PX and PY are the probability mass functions of X and

Y . Now the capacity C(W ) of a DMC W is the maximal mutual information over all possible distributions over X
C(W ) := max

X∈P(X )
I(X,Y ).

The capacity of a DMC is well established and goes back to Shannon [40]. Also, more recently, the capacity has been
considered in more complicated settings [41][42]. Trying to find the capacity of a DMC is a classical optimization
problem for which a well-known approach using an iterative algorithm with convergence guarantee exists [2][26].
We will show that even though such an effective algorithm exists, it is still impossible to compute a maximizing
distribution in general or give an approximation guarantee. This was already proven using the same construction in
[13], we will repeat the proof and show how this is a special case of Theorem 1.

Theorem 4 (Channel Capacity). Let X and Y be finite sets, such that |X | = n ≥ 3 and |Y| = m ≥ 2 and W is
a stochastic matrix. We define P(X ) := {random variables in X} and P(Y) := {random variables in Y}. Since
discrete random vectors can be identified by their probabilities for each event, i.e., we uniquely describe Y ∈ P(Y)
by the vector (P (Y = y1), . . . , P (Y = ym)) ∈ R

m
c , with slight abuse of notation we equate those two objects by

P(Y)=̂{(v1, . . . , vm) ∈ R
m
c |

m
∑

i=1

vi = 1, ∀i : vi ≥ 0}

and analogously for P(X ). Also, defineW as the set of all stochastic matrices in R
m×n
c . Let G : W → P(X ) be a

function, such that, regarding the maximization problem

max
X∈P(X )

I(X,Y ),

for all W ∈ W we have G(W ) ∈ Opt(W ). Then G is not Banach-Mazur computable.
All functions G∗ :W → P(X ) satisfying

‖G−G∗‖∞ ≤ α < 1

are also not Banach-Mazur computable.
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4.4 Wasserstein Distance

The Wasserstein-1 distance, originally formulated by Kantorovich [43] and Vaserstein [44] to tackle optimal transport
problems, is a metric defined on the set of real probability distributions with finite first moment, i.e. ,

P1 := {π probability distributions| inf
c∈R

∫

|x− c|dπ(x) <∞}.

One way to define the Wasserstein-1 metric W1 is by

W1(π1, π2) := sup
f∈Lip1

|Ex∈π1
[f(x)]− Ex∈π2

[f(x)]| ,

where π1, π2 ∈ P1 and
Lip1 := {f : R→ R|∀x,y∈R : |f(x)− f(y)| ≤ |x− y|}.

This is the Kantorovich-Rubenstein duality formulation of the Wasserstein-1 distance. Recently this formulation of
the Wasserstein distance came to particular interest in the context of Wasserstein-GANs [45]. The basic idea is to
train a neural network, which is able to discriminate between the distribution of "nice" objects and the distribution of
"adversarial" objects. This is done by maximizing over |Ex∈π1

[f(x)]− Ex∈π2
[f(x)]|, where f is the neural network

to be trained and adding some regularizer to ensure that the Lipschitz constant is close to 1. We consider the follow-
ing relaxed setting. First, we only consider probability distribution with computable density functions, supported in
[− 1

2 ,
1
2 ],

P ([−1/2, 1/2]) :=
{

f : [−1/2, 1/2]→ R+|
∫

f = 1, f Borel-Turing computable
}

.

Second, we restrict ourselves to a function space F ⊂ Lip1, which is made of Borel-Turing computable functions. The
only additional assumption on F is:

∃f1,f2∈F : ∃c1,c2∈R : ∀x∈[−1/2,1/2] : f1(x) = x+ c1 and f2(x) = |x|+ c2.

This assumption holds in the example case of normalized neural networks.
We will show that calculating such a Wasserstein maximizer, or even approximating it is not possible with a Turing
machine in these settings.

Theorem 5 (Wasserstein distance). We define

W
′
1(π1, π2) := sup

f∈F

|Ex∈π1
[f(x)]− Ex∈π2

[f(x)]| .

Let p1, p2 ∈ P [− 1
2 ,

1
2 ] be two computable probability densities. Then the problem of finding a function f ∈ F, such

that W′
1(π1, π2) = Ex∈π1

[f(x)] − Ex∈π2
[f(x)] or |W′

1(π1, π2) − Ex∈π1
[f(x)] + Ex∈π2

[f(x)]| ≤ α <
√
5

8
√
3

is not

Banach-Mazur computable.

It might very well happen that such a maximizing function does not exist at all. In this case, finding such a function is
trivially non-computable. However, we prove that finding such a maximizing function might not be computable even
in the case a computable maximizing function does exist.

4.5 Lattice Problem for Cryptographic Applications

The basic idea of encryption is to apply a function F to a message m together with a (secret) key k to obtain an
encrypted message F (k,m) = e. Ideally, it is hard to recover m from e without knowledge of k and easy to do
with knowledge of k. Usually, F is motivated by using problems that are hard or suspected to be hard for all Turing
machines to solve [46] [47] [48]. So complexity and computability questions on Turing machines are central for well
working encryption schemes. We focus on the question of computability of one particular problem from the family of
lattice problems.
Lattice problems have become a topic of interest with the rising feasibility of quantum computers. Since quantum
computers are able to crack conventional encryptions efficiently [49][50], lattice problems are seen as a new viable
source for encryptions. It is wildly believed, but not proven, that lattice problems are hard to solve not only for Turing
machines [51] but also for quantum computers.
Different optimization problems are highly relevant candidates for post-quantum cryptography, among others [52]
are the shortest vector problem, the shortest independent vector problem, the closest vector problem, and the short
generator principal ideal problem. Since Regev’s discoveries [52], tremendous efforts have been made to solve the
mentioned problems [53][54]. We consider the shortest independent vectors problem (SIVP), for which a randomized

9
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algorithm with exponential runtime exists if the complexity of the input is bounded [55].
To formulate the SIVP, we first have to define lattices over a field. Commonly, finite fields such as Z/pZ, where p ∈ N

is a large prime number, are considered for the message space. In the following, we consider lattices over the field of
real computable numbers Rc. As we will see, the transition from large p to the "continuous" field Rc is problematic,
and the corresponding optimization problem becomes non-computable on Turing machines, while for finite fields there
have been recent successes [53][54]. Given n ∈ N and a basis B = {b1, . . . , bn} ⊂ R

n
c , we define the corresponding

lattice as

Λ(B) :=

{

n
∑

i=1

λibi ∈ R
n
c |∀i=1,...,n : λi ∈ Z

}

.

Now define B(B) to be the set of bases in Λ(B):

B(B) = {β ⊂ Λ(B)|β is basis of Rn
c }.

The SIVP is described by the minimization problem

min
β∈B(B)

∑

b∈β

‖b‖2.

Theorem 6 (SIVP). Let n ∈ N and define V as the set of all bases in R
n. Let G : V → V such that regarding SIVP

and all bases B ∈ V we have G(B) ∈ Opt(B). Then G is not Banach-Mazur computable.
All functions G∗ : V → V satisfying

‖G−G∗‖∞ ≤ α <

√
2

2
are also not Banach-Mazur computable.

4.6 Linear Program

Linear programs are one of the most fundamental optimization problems in mathematics and are well-studied. Al-
though the most commonly used algorithm for linear programs is the simplex algorithm by Dantzig in 1947 [56], it is
not the fastest algorithm in terms of O-notation. Indeed, Khachiyan proposed in 1979 an interior point algorithm [57],
which ensures polynomial runtime. It is hard to understate the importance of this discovery for discrete mathematics.
But some caveat remains until today — most known algorithms deal only with integer coefficients. And even in this
case, the question remains if there exists an algorithm such that linear programs are solvable strongly polynomial. The
latter question has been cited by Smale in 1998 [58] among the 18 greatest problems for the 21st century.
For linear programs with real computable coefficients, we will show that the solution is not even Banach-Mazur com-
putable. We remark that the non-computability of linear programs has been already mentioned in [10].

Theorem 7 (Linear program with real coefficients). Let S(A, y) := {x ∈ R
n
c |Ax ≤ y}, where the inequality holds

componentwise, with A ∈ R
m×n
c , y ∈ R

m
c and c ∈ R

n
c . Consider the maximization problem

max
x∈S(A,y)

c · x.

Describing all coeffcients by the tuple (A, y, c), we define the parameter space as Rmn+m+n
c .

Let G : Rmn+m+n
c → R

n
c which outputs a maximizer for a given coefficient (A, y, c), i.e.

∀(A,y,c)∈R
mn+m+n
c

: G(A, y, c) ∈ Opt(A, y, c).

Then G is not Banach-Mazur computable.
All functions G∗ : Rmn+m+n

c → R
n
c satisfying

‖G−G∗‖∞ ≤ α <
1

2
are also not Banach-Mazur computable.

5 Future Work

We believe that our results can be extended in multiple directions.

• Other optimization problems. We believe more optimization problems are not computable. Using the char-
acterization of Theorem 1, it might be possible to characterize non-computable optimization problems even
more precisely.

• Different computing models. The question of computability for other computation models should allow to
characterize the difference between Turing machines and other computation models more precisely. The
question of stronger computation models could be vital to finding methods, which could actually calculate
optimizers in a reliable and practically feasible way.

10
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6 Proof of Theorem 1

Proof. We start by assuming (vi) and showing that G is not Borel-Turing computable. Towards a contradiction -

assume that there exists such a G, which is Borel-Turing computable. WLOG we can assume t0 6= k
2n for all n, k ∈ Z.

Otherwise we rescale γ slightly.

Define TMγ to be the Turing machine, which takes any representation (r1, r2, . . .) of a number x ∈ Rc ∩ [−1, 1] and
outputs a representation of γ(x). We define TMG analogously.

Then define TMk
γ to be the Turing machine, which is identical to T Mγ , but only requires the first l numbers of a

representation (r1, . . . , rl) of x for a suitable large l ∈ N. Then it outputs the first k numbers of a representation of

G(x) after finitely many steps. If TMk
γ does not get a suitable count of numbers of a representation to calculate k

numbers, it outputs an exception. We define TMk
G analogously.

Define TMG(Y1) as the Turing machine, which takes the first k numbers of a representation (r1, . . . , rk) of

x ∈ G(Y1) ∪G(Y2) and then outputs one of the following after a finite amount of steps:

1. Decides that x ∈ G(Y1).

2. Decides that x /∈ G(Y1).

3. Throws an exception, if k is not large enough to decide.

By assumption (vi), there exists some k ∈ N large enough such that TMG(Y1) does not throw an exception. This k
might depend on x.
Now define a sequence (an, bn, cn)n∈N recursively by

(a1, b1, c1) = (−1, 0, 1),

(an+1, cn+1) =

{

(bn, cn), if γ(bn) ∈ Y1

(an, bn), if γ(bn) ∈ Y2
,

bn+1 =
an+1 + bn+1

2
.

Then the following statements are true:

1. an is a computable rational sequence.

2. an → t0 effectively.

3. γ(an) ∈ Y1 for infinitely many n ∈ N.

4. γ(an) ∈ Y2 for infinitely many n ∈ N.

The same also holds for bn and cn. To prove statement 1 we define the following Turing machine:

11
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Algorithm 1 Recursively calculate (an, bn, cn)n∈N

Require: (an, bn, cn)
1: k ← 1
2: l ← 1
3: while True do
4: if TMk

G(T Ml
γ(bn)) throws exception then

5: l ← l + 1
6: else
7: (r1, . . . , rk)← TMk

G(T Ml
γ(bn))

8: if TMG(Y1)(r1, . . . , rk) throws exception then
9: k ← k + 1

10: else
11: if (r1, . . . , rk) is in G(Y1) then

12: return (bn,
bn+cn

2 , cn)
13: else
14: return (an,

an+bn
2 , bn)

15: end if
16: end if
17: end if
18: end while

Note that T Ml
γ(bn) never throws an exception, since bn is rational, so bn itself is a full representation of bn.

Statement 2 follows by using |an− cn| = 2−n+2, which implies |t0− an|, |t0− cn| ≤ 2−n+2 and |t0− bn| ≤ 2−n+1.

Statements 3 and 4 follow from our initial assumption t0 6= k
2n for any k, n ∈ N. So t0 is computable with

(an)n∈N, (bn)n∈N and (cn)n∈N being representations.
This implies y∗ is computable using the representation T Mγ(b1, b2, . . .). Define the subsequences bαn

and bβn
, such

that

1. {αn|n ∈ N} ∪ {βn|n ∈ N} = N

2. {αn|n ∈ N} ∩ {βn|n ∈ N} = ∅

3. (αn)n∈N, (βn)n∈N are strictly monotonic increasing

4. ∀n : γ(bαn
) ∈ Y1 ∧ γ(bβn

) ∈ Y2.

By assumption (vi), the subsequences bαn
and bβn

are computable, simply by adding a variable, which saves the
condition checked in line 11 of algorithm 1.
Now by assumption (iii), either ‖G(y∗)−G(γ(bαn

))‖ ≥ κ
2 or ‖G(y∗)−G(γ(bβn

))‖ ≥ κ
2 has to be true for all n ∈ N

uniformly.
WLOG assume that for all natural n it holds ‖G(y∗) − G(γ(bαn

))‖ ≥ κ
2 . Let A ⊂ N be a semi-decidable but not

decidable set with a matching Turing-machine TMA. Define the following computable double sequence:

zn,k :=

{

s, if TMA(n) stops after s ≤ k steps

k, else
.

Then consider the computable double sequence (τn,k)n,k∈N := (bαzn,k
)n,k∈N ∈ Y1. Define

τn :=

{

τn,s, if TMA(n) stops after s steps

t0, else
.

Then we can show

τn,k → τn,

where the convergence is effective. This is obvious for n ∈ A and for n /∈ A we can use ‖bαk
− t0‖ ≤ 2−k+2.

So (τn)n∈N is a computable sequence. Then (G(γ(τn)))n∈N is also a computable sequence by assumption and as an

12
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implication also (‖G(γ(τn))−G(γ(t0))‖)n∈N. Now notice that the following holds

zn := ‖G(γ(τn))−G(γ(t0))‖
{≥ κ

2 , if n ∈ A

= 0, if n /∈ A
.

Using this property of (zn)n∈N we can define a Turing machine, which makes A recursive. Let (rn,k)n,k∈N be a
computable double sequence such that

|rn,k − zn| ≤ 2−k

and T Mr be the Turing machine, for which ∀n,k∈N : T Mr(n, k) = rn,k. Choose a computable δ ∈ Rc s.t.
κ
2 ≥ δ > 0 and choose B ∈ N s.t. 2−B+1 < δ. We call TM<δ the Turing machine, which decides after a finite
amount of steps, if an input is smaller than δ. Otherwise it might run indefinitely. Define TM>δ analogously. Now
define the Turing machine

Algorithm 2 Check if n ∈ A or n /∈ A

Require: n ∈ N

1: rn,B ← TM(n,B)
2: run TM<δ(rn,B)
3: run TM>δ(rn,B)
4: if TM>δ(rn,B) terminates then
5: return n ∈ A
6: end if
7: if TM<δ(rn,B) terminates then
8: return n /∈ A
9: end if

This Turing machine decides for any n ∈ N if n ∈ A or n /∈ A. This implies the recursivity of A. So G is not
Turing-computable by contradiction.

To prove non-approximability notice max(‖G(y∗) − G(γ(bαn
))‖, ‖G(y∗) − G(γ(bβn

))‖) ≥ κ
2 . Then consider the

computable double sequence (τn,k)n,k∈N defined by

∀n,k∈N : τ2n,k := bαzn,k
∈ Y1 ∧ τ2n+1,k := bβzn,k

∈ Y2

Define

τn =

{

τn,s, if TMA(⌊n2 ⌋) stops after s steps

t0, else

Then we can show
τn,k → τn,

where the convergence is effective. So (τn)n∈N is a computable sequence. Then (G(γ(τn)))n∈N is also a computable
sequence, since G is Turing-computable and as a consequence also Banach-Mazur computable, and as an implication
also (‖G(γ(τn))−G(γ(t0))‖)n∈N. Now similarly to before we define:

zn = ‖G(γ(τn))−G(γ(t0))‖.
Then similarly to before it holds

max(z2n, z2n+1)

{

= 0, if n ∈ A

≥ κ
2 , if n /∈ A

.

Now assume there exists a Turing-computable function G∗, which approximates G up to an absolute error α < κ
2 , i.e.,

‖G∗ −G‖∞ ≤ α < κ
2 . Then, for n ∈ A it holds

κ ≤‖G(γ(τ2n)) −G(γ(τ2n+1))‖
≤‖G(γ(τ2n)) −G∗(γ(τ2n))‖
+‖G∗(γ(τ2n))−G∗(γ(τ2n+1))‖
+‖G∗(γ(τ2n+1))−G(γ(τ2n+1))‖
≤2α+ ‖G∗(γ(τ2n))−G∗(γ(τ2n+1))‖.

Rearranging this inequality yields

0 < κ− 2α ≤ ‖G∗(γ(τ2n))−G∗(γ(τ2n+1))‖.
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Combining this result with the case n ∈ A yields

‖G∗(γ(τ2n))−G∗(γ(τ2n+1))‖
{≥ κ− 2α, if n ∈ A

= 0, if n /∈ A
.

Now choose a computable δ ∈ Rc s.t. 0 < δ < κ− 2α, which makes A recursive by using algorithm 2 as before.

Now we prove the non-Banach-Mazur computability of G under assumption (vii). This case is similar to the
last case but slightly simpler, since we don’t have to use TMG to calculate bn. Define the Turing machine

Algorithm 3 Recursively calculate (an, bn, cn)n∈N

Require: (an, bn, cn)
1: k ← 1
2: while True do
3: (r1, . . . , rk)← TMk

γ(bn)
4: if TMY1

(r1, . . . , rk) throws exception then
5: k ← k + 1
6: else
7: if (r1, . . . , rk) is in Y1 then

8: return (bn,
bn+cn

2 , cn)
9: else

10: return (an,
an+bn

2 , bn)
11: end if
12: end if
13: end while

Now we can repeat the same argumentation as before with algorithm 1, i.e., define computable sequences (τn)n∈N,
such that ‖G(γ(τn)) − G(γ(t0))‖ is zero for n /∈ A and ≥ κ

2 otherwise. Then using algorithm 2 one can prove the
recursivity of A.

7 Proofs of applications

7.1 Neural Network

Proof of Theorem 2. The construction used in this proof is inspired by Example 2.5 in [15].

We use the term "neural network" and its weights in R
3×3 interchangeably. Define for ǫ ∈ [0, 1] ∩ Rc:

γǫ
1 :=

(

1, 1,
ǫ

2

)

, γǫ
2 =

(

−1, 1, ǫ
3

)

, γǫ
3 =

(

0,−2, ǫ
6

)

,

Γǫ
1 := [γǫ

1|γǫ
2|γǫ

3]
T ,

Γǫ
2 := [−γǫ

1| − γǫ
2| − γǫ

3]
T .

Now note that γǫ
1 + γǫ

2 + γǫ
3 = (0, 0, ǫ). This implies for ρ = ReLU and x ∈ R

3,

ρ(〈γǫ
1, x〉) + ρ(〈γǫ

2, x〉) + ρ(〈γǫ
3, x〉) = ρ(〈−γǫ

1, x〉) + ρ(〈−γǫ
2, x〉) + ρ(〈−γǫ

3, x〉) + 〈(0, 0, ǫ), x〉.
We define the realizationR : R3×3 → [R3 → R

3] of weights to be the corresponding neural network function, i.e.

(R([a|b|c]T ))(x) = ρ(〈a, x〉) + ρ(〈b, x〉) + ρ(〈c, x〉).
Define F ǫ

1 , F
ǫ
2 : R3 → R by F ǫ

1 = R(Γǫ
1) and F ǫ

2 = R(Γǫ
2) = R(Γǫ

1)− 〈(0, 0, ǫ), ·〉.
We introduce Lemma A.3 from [15], which in our special case can be written the following way.

Lemma (Lemma A.3 from [15]). Let [a1|a2|a3]T , [a′1|a′2|a′3]T ∈ R
3×3 be two neural networks with identical realiza-

tion, i.e.,
∀x∈R3 : (R([a1|a2|a3]T ))(x) = (R([a′1|a′2|a′3]T ))(x).

If the vectors a1, a2 and a3 are linearly independent, then there exist a permutation π : {1, 2, 3} → {1, 2, 3}, such
that

a1 = a′π(1), a2 = a′π(2), a3 = a′π(3).
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Now since γǫ
1, γ

ǫ
2, γ

ǫ
3 are linearly independent, by Lemma A.3 from [15] Γǫ

1 is the only way to parameterize the
function F ǫ

1 with a neural network in R
3×3 except permutations and trivial scalings of the last layer, which we can

ignore since we set the last layer to be constantly 1. The same holds forR(Γǫ
2).

Now define the datasets

Aǫ
1 =

{

((ǫ, 0,−4) , 0) , ((ǫ, 0,−2) , 0) , ((ǫ, 0,−1) , 0.5ǫ) ,

((ǫ, 0, 0), ǫ),

(

(ǫ, 0, 1) ,
5

3
ǫ

)

, ((ǫ, 0, 3) , 3ǫ) , ((ǫ, 0, 6) , 6ǫ)

}

,

Aǫ
2 =

{

((ǫ, 0,−4) , 4ǫ) , ((ǫ, 0,−2) , 2ǫ) , ((ǫ, 0,−1) , 1.5ǫ) ,

((ǫ, 0, 0), ǫ),

(

(ǫ, 0, 1) ,
2

3
ǫ

)

, ((ǫ, 0, 3) , 0) , ((ǫ, 0, 6) , 0)

}

,

Bǫ
1 =

{

((0, ǫ,−6), 0), ((0, ǫ,−3), 0),
(

(0, ǫ,−2.5), 1
6
ǫ

)

,

(

(0, ǫ,−2), 1
3
ǫ

)

, ((0, ǫ, 6), 7ǫ), ((0, ǫ, 12), 12ǫ), ((0, ǫ, 18), 18ǫ)

}

,

Bǫ
2 =

{

((0, ǫ,−6), 6ǫ), ((0, ǫ,−3), 3ǫ),
(

(0, ǫ,−2.5), 8
3
ǫ

)

,

(

(0, ǫ,−2), 7
3
ǫ

)

, ((0, ǫ, 6), ǫ), ((0, ǫ, 12), 0), ((0, ǫ, 18), 0)

}

,

and Dǫ
1 = Aǫ

1 ∪Bǫ
1, as well as Dǫ

2 = Aǫ
2 ∪Bǫ

2.
We will show that the only neural networks in R

3×3, which fit Dǫ
1 resp. Dǫ

2 are Γǫ
1 resp. Γǫ

2, as well as trivial
permutations of these. We proof this for Dǫ

1, the analogous statement for Dǫ
2 follows by symmetry.

By Lemma A.3 from [15] it suffices to proof that ρ(〈γǫ
1, x〉) + ρ(〈γǫ

2, x〉) + ρ(〈γǫ
3, x〉) is the only function realized by

a neural network in R
3×3, which fits Dǫ

1. So let Γ ∈ R
3×3
c be a neural network s.t. ∀(x,y)∈Dǫ

1
R(Γ)(x) = y. Now note,

that the coordinates of Aǫ
1 all lie on the line g = {(1, 0, t) ∈ R

3|t ∈ R}. NowR(Γ)|g : g → R can be interpreted as a
function R→ R, using the parametrization of g. We write with slight abuse of notation for t ∈ R

R(Γ)|g(t) = R(Γ)((1, 0, t)).
Since Γ has only 3 hidden neurons,R(Γ)|g is a continuous piecewise linear function with at most 3 non-differentiable
points.
Now by the choice of Aǫ

1, the only continuous piecewise linear function with at most 3 non-differentiable points fitting
all data points of Aǫ

1 is f : R→ R defined by

f(t) :=















0 , t ≤ − 2
ǫ

1 + t ǫ2 ,− 2
ǫ < t ≤ 0

1 + t 2ǫ3 , 0 < t ≤ 3
ǫ

tǫ , 3
ǫ < t

.

This implies f = R(Γ)|g . Now by using homogeneity of the ReLU function, i.e., for all λ ∈ R+ and v ∈ R
3 we use

R(Γ)(λv) = λR(Γ)(v), we get for x > 0 and y ∈ R

R(Γ)(x, 0, y) =















0 , y ≤ − 2
ǫx

x+ ǫ
2y ,− 2

ǫx < y ≤ 0

x+ 2ǫ
3 y , 0 < y ≤ 3

ǫx

ǫy , 3ǫx < y

.
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Since Γ has only 3 hidden nodes and the above description reveals the 3 lines of non-differentiability on the plane
E1 = {(x, 0, y)|x, y ∈ R}

s1 = {
(

t
ǫ

3
, 0,−t

)

|t ∈ R},

s2 = {
(

t
ǫ

2
, 0, t

)

|t ∈ R},
s3 = {(t, 0, 0)|t ∈ R}.

This implies

R(Γ)((x, 0, y)) = ρ
(

α
(

x− y
ǫ

3

))

+ ρ
(

β
(

x+ y
ǫ

2

))

+ ρ(γy)

for some unknown α, β, γ ∈ R.
Since R(Γ)(x, 0, y) = 0 for all y ≤ − 2

ǫx < 0 this implies α,−β, γ < 0, i.e., in this region all hidden nodes are not

activated. Using RΓ(x, 0, y) = x + y ǫ
2 for all − 2

ǫx < y ≤ 0, this implies in this region all but one hidden node are
not activated since this is the region neighboring to the zero region above. The activated neuron is clear by looking at
the line of non-differentiability {(x, y) ∈ R

2|y = − 2
ǫx}. So we know that

RΓ(x, 0, y) = ρ
(

β
(

x+ y
ǫ

2

))

for all − 2
ǫx < y ≤ 0. So this implies β = 1. Repeating this line of argumentation we see that for 0 < y ≤ 3

ǫx now
two neurons are activated. The second neuron has to be the term ρ(γy) by looking at the line of non-differentiability
again, i.e.,

RΓ(x, 0, y) =
(

x+ y
ǫ

2

)

+
ǫ

6
y

=ρ
(

β
(

x+ y
ǫ

2

))

+ ρ(γy),

which implies γ = ǫ
6 .

Repeating this argument a final time shows α = −1. So it holds

RΓ(x, 0, y) = ρ
(

x+ y
ǫ

2

)

+ ρ
(

y
ǫ

3
− x
)

+ ρ
( ǫ

6
y
)

.

Now repeating the argument for Bǫ
1 yields

RΓ(0, x, y) = ρ
(

x+ y
ǫ

2

)

+ ρ
(

x+ y
ǫ

3

)

+ ρ
(

−2x+
ǫ

6

)

.

Now since all coefficients of the z-coordinate (namely ǫ
2 ,

ǫ
3 , and ǫ

6 ) are unique there is a unique way to combine both
descriptions to

RΓ(x, y, z) =ρ
(

x+ y + z
ǫ

2

)

+ ρ
(

−x+ y + z
ǫ

3

)

+ρ
(

−y + z
ǫ

6

)

,

which shows the uniqueness of the minimizer on Dǫ
1.

We can analogously proof the uniqueness of the optimizer for Dǫ
2.

Now define X = R
3×3
c , Y = (R3 × R)d and F : X × Y → R by

F (Γ, ((x1, y1), . . . , (xd, yd))) =

d
∑

i=1

|R(Γ)(xi)− yi|2.

And define Y1 = {Dǫ
1|1 > ǫ > 0} and Y2 = {Dǫ

2|1 > ǫ > 0} as well as the computable curve γ : [−1, 1]→ Y by

γ(x) =

{

D
( 1
2
−t)/100

1 , if t ∈ [0, 12 ]

D
(t− 1

2
)/100

2 , if t ∈ (12 , 1]
.

We proved for ǫ > 0

Opt(Dǫ
1) ={[γǫ

σ(1)|γǫ
σ(2)|γǫ

σ(3)]
T ∈ R

3×3
c |σ ∈ S3},

Opt(Dǫ
2) ={[−γǫ

σ(1)| − γǫ
σ(2)| − γǫ

σ(3)]
T ∈ R

3×3
c |σ ∈ S3},

where S3 = {σ : {1, 2, 3} → {1, 2, 3}|σ bijiective} is the permutation group of 3 elements. So this implies

min
y1∈Opt(Dǫ

1
),y2∈Opt(Dǫ

2
)
‖y1 − y2‖1 = 8 > 0.

Now applying Theorem 1 finishes our proof.
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7.2 Financial Mathematics

Proof of Theorem 3. First note we can assume WLOG m = 2 since for m > 2 we can choose the xi,j = ǫ for arbitrary
small ǫ > 0, i = 1, . . . , n and j > 2. In this case, the optimizer would ignore the returns for Xj , j > 2. Now choose

for α > 0, xi,1 = i and xi,2 = iα as well as pi,1 = pi,2 = 1
n . Then it holds

W (b) =
1

n

n
∑

i=1

log (b1i+ b2iα) .

Now set b2 = 1− b1 and observe

W (b) =
1

n

n
∑

i=1

log (b1i+ (1− b1)iα)

=
1

n

n
∑

i=1

log (i(b1 + (1− b1)α)) .

Here you can see

Opt(Xα) =







{(1, 0)}, α < 1

{(b1, 1− b1)|b1 ∈ [0, 1]}, α = 1

{(0, 1)}, α > 1

.

So define X = {b ∈ R
m
+ |
∑

i bi = 1}, Y = {discrete random vectors in R
m
+ with n outcomes}, Y1 = {Xα|α > 0},

and Y2 = {Xα|α < 0}. The computable path is defnied as γ : [−1, 1] → Y , γ(t) = Xt. Y1 ⊂ Y1 ∪ Y2 is decidable
by checking if α is positive or negative. Now using

inf
y1∈Y1,y2∈Y2

‖Opt(y1)−Opt(y2)‖1 = 2

we can apply Theorem 1 to conclude the proof.

7.3 Information Theory

Proof of Theorem 4. We start with the case n = 3 and m = 2. Define

W∗ =

(

1 0 0
0 1 1

)

and also

W1,µ =

(

1 0 µ
0 1 1− µ

)

, W2,µ =

(

1 µ 0
0 1− µ 1

)

for µ ∈ (0, 1). Let

P1 =

{

(p1, p2, p3) ∈ P(X )|p1 =
1

2
, p2 + p3 =

1

2

}

and

P1 =

{

(p1, p2, p3) ∈ P(X )|p2 =
1

2
, p1 + p3 =

1

2

}

.

We now show Opt(W1,µ) = P1 and Opt(W2,µ) = P2. For this we define

W∗ =

(

1 0 0
0 1 1

)

, Ŵ =

(

1 0 1
0 1 0

)

.

17



Computability of Optimizers

For p = (p1, p2, p3) ∈ P(X ) we consider

I(p,W∗) =p1 · 1 · log
1 · p1
p1 · p1

+ p2 · 1 · log
1 · p2

p2(p2 + p3)

+p3 · 1 · log
1 · p3

p3(p2 + p3)

=p1 · 1 · log
1 · p1
p1 · p1

+ p2 · 1 · log
1 · p2

p2(p2 + p3)

+p3 · 1 · log
1 · p3

p3(p2 + p3)

=p1 log
1

p1
+ (p2 + p3) log

1

p2 + p3

=p1 log
1

p1
+ (1− p1) log

1

1− p1
=h2(p1)

Where h2 is the binary entropy function. Is is well known that h2(x) is maximal if and only if x = 1
2 . This immediately

implies

Opt(W ∗) = P1

and analogously

Opt(Ŵ ) = P2.

Now using

W1,µ = (1 − µ)W∗ + µŴ

as well as convexity it holds for p ∈ P(X )

I(p,W1,µ) ≤ (1− µ)I(p,W∗) + µI(p, Ŵ ).

So for µ ∈ (0, 1) we have

Opt(W1,µ) = P1 ∩ P2 =











1
2
1
2
0











.

Analogously we can proof for µ ∈ (0, 1)

Opt(W2,µ) =











1
2
0
1
2











.

Now we can set X = P(X ), Y = {M ∈ R
m×n
c |M is stochastic matrix}, Y1 = {W1,µ|µ ∈ (0, 1)}, Y2 = {W2,µ|µ ∈

(0, 1)} as well as γ : (−1, 1)→ Y defined by

γ(t) =







W1,−t, t < 0

W∗, t = 0

W2,t, t > 0

.

It holds

inf
y1∈Opt(Y1),y2∈Opt(Y2)

‖y1 − y2‖2 > 2.

Since Y1 ⊂ Y1∪Y2 is decidable by checking if for W ∈ Y1 ∪Y2 either (W )1,2 > 0 or (W )1,3 > 0, theorem 1 finishes
the proof for n = 3 and m = 2.
For the cases of n > 3 or m > 2, we can reduce them to the case we just proved by using the following construction.

Let W ∈ R
2×3 be a stochastic matrix for a DMC. Let W ∈ R

m×n be the a stochastic matrix defined by

W (y|x) =







W (y|x), y ∈ {1, 2}, x ∈ {1, 2, 3}
W (y|1), y ∈ {1, . . . ,m}, x ∈ {4, . . . , n}
0, y ∈ {3, . . . ,m}, x ∈ {1, . . . , n}
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Now assume G :W → P(X ) to be a function, such that for all W ∈ W we have G(W ) ∈ Opt(W ). Now let

G(W ) =







g1(W )
...

gn(W )







and define the functions

g∗1(W ) := g1(W ) +

n
∑

x=4

px(W ),

g∗2(W ) := g2(W ),

g∗3(W ) := g3(W ).

Now consider the function

G′(W ) :=





g∗1(W )
g∗2(W )
g∗3(W )



 ,

which is a composition of the following components: 1. the function W → W , described by the construction above;
2. the function G; 3. the functions g∗i for i = 1, 2, 3.
Note that the first and third component is Banach-Mazur computable. So G′ is Banach-Mazur computable if and only

if the function G is Banach-Mazur computable. But we have G′(W ) ∈ Opt(W ), which implies that G′ cannot be
Banach-Mazur computable and consequently G cannot be Banach-Mazur computable.
Analogously we can show, that any function G∗ :W → P(X ), satisfying ‖G−G∗‖∞ < 1 cannot be Banach-Mazur
computable.

7.4 Wasserstein Distance

Proof of Theorem 5. Define for probabilty distributions π1 and π2 ∈ P [−1/2, 1/2] and f ∈ F the function

W (π1, π2, f) := |Ex∈π1
[f(x)] − Ex∈π2

[f(x)]|.

Define the following equivalence relation ∼ on F:
For f, g ∈ F, f ∼ g holds iff

∃c∈R : f = g + c ∨ f = −g + c.

Define the corresponding equivalence class [f ] = {g ∈ F|f ∼ g} and F/ ∼:= {[f ]|f ∈ F}.
Now note that f ∼ g implies W (π1, π2, f) = W (π1, π2, g).
Define for ǫ ≥ 0 the following density functions, which are in P [−1/2, 1/2]:

p1,ǫ(x) = 1 + ǫx,

as well as

p2,ǫ(x) =

{

1 + ǫ+ 4ǫx, − 1
2 ≤ x < 0

1 + ǫ− 4ǫx, 0 ≤ x ≤ 1
2

,

and

p∗(x) = p1,0(x) = p2,0(x) = 1[− 1
2
, 1
2
](x),

and π1,ǫ, π2,ǫ, π∗ to be the corresponding probability distributions. Now notice that

Opt(π1, π2) = {f ∈ F|W (π1, π2, f) = W
′
1(π1, π2)}.

We want to show

Opt(π1,ǫ, π∗) = [id|[− 1
2
, 1
2
]]

and

Opt(π2,ǫ, π∗) = [| · ||[− 1
2
, 1
2
]].
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Proof of Opt(π1,ǫ, π∗) = [id|[− 1
2
, 1
2
]]:

For any f ∈ F it holds

W (π1,ǫ, π∗, f) = ǫ

∣

∣

∣

∣

∣

∫ 1
2

− 1
2

f(x)xdx

∣

∣

∣

∣

∣

=ǫ

∣

∣

∣

∣

∣

∫ 1
2

− 1
2

(f(x) − f(0))xdx

∣

∣

∣

∣

∣

≤ǫ
∫ 1

2

− 1
2

x2

=
ǫ

12
.

Notice that W (π1,ǫ, π∗, f) = ǫ
12 if f ∈ F with f(x) = x+ c for all x ∈ [− 1

2 ,
1
2 ] and some c ∈ R. By assumption such

a function f ∈ F exists. So the inequality above becomes an equality for all maximizers f ∈ F. This implies that the
only maximizers are functions with constant slope ±1 in the domain [− 1

2 ,
1
2 ], i.e., all functions in [id[−1/2,1/2]].

Proof of Opt(π2,ǫ, π∗) = [| · ||[− 1
2
, 1
2
]]:

Again we calculate for arbitrary f ∈ F:

W (π2,ǫ, π∗, f) =

∣

∣

∣

∣

∣

∫ 1
2

− 1
2

f(x)(1 − p2,ǫ(x))dx

∣

∣

∣

∣

∣

=ǫ

∣

∣

∣

∣

∣

∫ 0

− 1
2

f(x)(1 + 4x)dx+

∫ 1
2

0

f(x)(1 − 4x)dx

∣

∣

∣

∣

∣

=ǫ

∣

∣

∣

∣

∣

∫ 0

− 1
2

(f(x)− f(−1/4)) (1 + 4x)dx+

∫ 1
2

0

(f(x)− f(1/4))(1− 4x)dx

∣

∣

∣

∣

∣

≤ǫ
∫ 0

− 1
2

|f(x)− f(−1/4)||1 + 4x|dx+ ǫ

∫ 1
2

0

|f(x) − f(1/4)||1− 4x|dx

=ǫ

(

∫ − 1
4

− 1
2

|f(x)− f(−1/4)|(−1− 4x)dx+

∫ 0

− 1
4

|f(x)− f(−1/4)|(1 + 4x)dx

+

∫ 1
4

0

|f(x) − f(1/4)|(1− 4x)dx+

∫ 1
2

1
4

|f(x)− f(1/4)|(4x− 1)dx

)

≤ǫ
(

∫ − 1
4

− 1
2

|x+ 1/4|(−1− 4x)dx+

∫ 0

− 1
4

|x+ 1/4|(1 + 4x)dx

+

∫ 1
4

0

|x− 1/4|(1− 4x)dx +

∫ 1
2

1
4

|x− 1/4|(4x− 1)dx

)

≤ǫ
(

∫ − 1
4

− 1
2

(x+ 1/4)(1 + 4x)dx +

∫ 0

− 1
4

(x+ 1/4)(1 + 4x)dx

+

∫ 1
4

0

(x− 1/4)(4x− 1)dx+

∫ 1
2

1
4

(x− 1/4)(4x− 1)dx

)

=ǫ

(

∫ 0

− 1
2

(x+ 1/4)(1 + 4x)dx +

∫ 1
2

0

(x− 1/4)(4x− 1)dx

)

=
ǫ

12
.

Notice that W (π2,ǫ, π∗, f) = ǫ
12 for f ∈ F s.t. ∀x∈[− 1

2
, 1
2
] : f(x) = |x|. So the inequality becomes an equality for all

maximizers f ∈ F. That implies that the only maximizers are functions that are linear with fixed slope ±1 in [− 1
2 , 0]

and [0, 1
2 ]. So the only possible optimizers are in the equivalence class [| · ||[− 1

2
, 1
2
]] and [id|[− 1

2
, 1
2
]]. A short calculation
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reveals that the latter is not an optimizer.
Now define X = F, Y = P [−1/2, 1/2], Y1 = {π1,ǫ|1 > ǫ > 0} and Y2 = {π2,ǫ|1 > ǫ > 0}. Choose

γ(t) =

{

π1, 1
2
−t, t ∈ [0, 1

2 ]

π2,t− 1
2
, t ∈ [ 12 , 1]

,

which is a computable path. It holds

inf
y1∈Opt(Y1),y2∈Opt(Y2)

‖y1 − y2‖L2([− 1
2
, 1
2
]) =

√
5

4
√
3
.

Note that Y1 ⊂ Y1 ∪ Y2 is decidable by checking if f(1/2) is positive or negative. Now we can use Theorem 1. This
time we have to be careful since Theorem 1 only holds in the finite-dimensional case X ⊂ R

n
c , Y ⊂ R

m
c . We can

easily expand Theorem 1 for general Banach spaces with computable structure using identical arguments. For more
information on computability on Banach spaces we refer to [25] and [7].

7.5 Lattice Problem for Cryptographic Applications

Proof of Theorem 6. We slightly change the notation here. Instead of bases, we consider ordered bases. This differ-
ence is only semantic and allows us to apply Theorem 1 more easily and does not change the nature of the optimization

problem. Define the bases B1
λ = ((1, 1), (−1−λ, 0)),B2

λ = ((−1−λ, 0), (1, 1)) for λ ∈ [0, 1/2]. Then for λ =
√
2−1

the minimizing bases are
((−λ, 1), (1, 1)) and ((−λ, 1), (1 + λ, 0))

as well as
((1, 1), (−λ, 1)) and ((1 + λ, 0), (−λ, 1)).

For λ ∈ [0,
√
2− 1) the minimizing bases are

((−λ, 1), (1 + λ, 0)) and ((1 + λ, 0), (−λ, 1)).
For λ ∈ (

√
2− 1, 1/2] the minimizing bases are

((−λ, 1), (1, 1)) and ((1, 1), (−λ, 1)).
Now define the computable path γ : [−1, 1]→ {ordered bases of R2}

γ(x) := Bx/100+
√
2−1

So defining X = Y = {ordered bases of R2} ⊂ R
4, Y1 = {B1

λ, B
2
λ|λ ∈ (0,

√
2 − 1)} and Y2 = {B1

λ, B
2
λ|λ ∈

(
√
2− 1, 1/2)}, we see γ([−1, 0)) ⊂ Y1 and γ((0, 1]) ⊂ Y2. It holds

inf
y1∈Opt(Y1),y2∈Opt(Y2)

‖y1 − y2‖L2([− 1
2
, 1
2
]) =
√
2.

Now Y1 ⊂ Y1 ∩ Y2 is decidable by checking the first component of the vector (−1− λ, 0) and comparing it with
√
2.

So by Theorem 1, finding the optimizer is not Banach-Mazur computable.

7.6 Linear Program

Proof of Theorem 7. Define for ǫ ∈ (−1, 1) the linear Program

maximize x1

subject to x1 ≥ 0

x1 + ǫx2 ≤ 1

0 ≤ x2 ≤ 1,

which can be coded by the parameter set

c =(1, 0), Aǫ =







−1 0
1 ǫ
0 −1
0 1






, y =







0
1
0
1






.
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We define Λǫ := (c, Aǫ, y) as well as the disjoint sets Yi = {Λ(−1)i+1ǫ|ǫ ∈ (0, 1)} for i = 1, 2. Then Opt(Y1) =

{(1, 0)} and Opt(Y2) = {(1 + ǫ, 1)|ǫ ∈ (0, 1)}. Define the computable path γ : (−1, 1)→ R
n
c × R

m×n
c × R

m
c by

γ(t) = Λt.

Now note that

(1) Y1 ⊂ Y1 ∪ Y2 is decidable by checking if (Aǫ)1,1 is positive or negative.

(2) γ((−1, 0)) ⊂ Y2 and γ((0, 1)) ⊂ Y1.

(3) infy1∈Opt(Y1),y2∈Opt(Y2) ‖y1 − y2‖ = 1.

So by applying Theorem 1, G is neither Banach-Mazur computable nor α < 1
2 approximable by a Banach-Mazur

computable function.
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