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Mismatched Rate-Distortion Theory:

Ensembles, Bounds, and General Alphabets
Millen Kanabar and Jonathan Scarlett

Abstract

In this paper, we consider the mismatched rate-distortion problem, in which the encoding is done using a codebook,

and the encoder chooses the minimum-distortion codeword according to a mismatched distortion function that differs

from the true one. For the case of discrete memoryless sources, we establish achievable rate-distortion bounds using

multi-user coding techniques, namely, superposition coding and expurgated parallel coding. We study examples where

these attain the matched rate-distortion trade-off but a standard ensemble with independent codewords fails to do so.

On the other hand, in contrast with the channel coding counterpart, we show that there are cases where structured

random codebooks can perform worse than their unstructured counterparts. In addition, in view of the difficulties in

adapting the existing and above-mentioned results to general alphabets, we consider a simpler i.i.d. random coding

ensemble, and establish its achievable rate-distortion bounds for general alphabets.

I. INTRODUCTION

Rate-distortion theory is one of the most fundamental topics in information theory, and since its introduction [1],

an extensive and diverse range of rate-distortion settings have been considered. In this paper, we are interested in a

setting studied by Lapidoth [2], in which the encoding is mismatched, i.e., it is done with respect to an “incorrect”

distortion measure d0 that may be different from the true measure d1. As discussed in [2], [3], this problem can

arise when the true distortion measure is not known when designing the encoder/decoder, or when the optimal

encoder is ruled out due to implementation constraints (e.g., finite-precision arithmetic). More broadly, the problem

is fundamental in nature, and may provide useful tools for other problems involving compression and/or imperfect

encoding rules, e.g. estimation from compressed data [4], [5].

The mismatched rate-distortion problem serves as a natural counterpart to mismatched decoding in channel coding

[3]. However, different aspects turn out to be much easier in one problem than the other. For instance, an important

conjecture on the tightness of a multi-letter achievable rate [6], [7] remains open in channel coding, but its analog

was resolved in the rate-distortion setting [2]. On the other hand, general alphabets have been studied in detail in

channel coding [8], [9], but appear to be more challenging in the rate-distortion problem.

In this paper, we study the following lesser-understood aspects of the mismatched rate-distortion problem: (i)

multi-user coding techniques in the case of discrete memoryless sources, and (ii) regular random coding techniques
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in the case of general alphabets. These aspects have been studied extensively in the mismatched channel coding

problem [9]–[11], and their counterparts in mismatched rate-distortion theory were included in a list of open

problems in [3, Ch. 10]. Regarding multi-user coding techniques, a simple example consisting of parallel sources in

[2] demonstrated that such techniques can be beneficial, but general results have remained unexplored. Regarding

general alphabets, we are not aware of any existing results for the setup we consider, but this direction has been

explored in related rate-distortion settings with only a single distortion function (e.g., see [12], [13]).

Briefly, our main contributions are as follows:

• For discrete memoryless sources, we derive two new achievability results on the mismatched distortion-rate

function based on superposition coding and expurgated parallel coding.

• We demonstrate that, in contrast to the channel coding problem, introducing structure into the codebook (i.e.,

statistical dependencies between the random codewords) can be detrimental to the rate-distortion trade-off.

• On the positive side, we explore examples where multi-user techniques provide a strict improvement compared

to the ensemble with independent codewords, one of which is conceptually very different from the known

parallel source example.

• In view of difficulties in generalizing the existing and above-mentioned achievability results to general alpha-

bets, we study the simpler i.i.d. random coding ensemble, and establish an achievable rate that extends to

general alphabets.

A. Problem Setup

Consider a discrete memoryless source (DMS) where each symbol is drawn independently from a source

distribution ΠX(x) over a finite alphabet X . The distribution of the resulting n-letter sequence X is then given by

Πn
X(x) =

∏n
i=1 ΠX(xi). The encoder maps x to an index m ∈ {1, 2, . . . ,M} for some integer M , and the rate of

the encoder is given by R = 1
n logM .

The choice of m is dictated by a codebook C = {x̂(1), . . . , x̂(M)}, where each codeword lies in X̂n for some

reconstruction alphabet X̂ . We assume that the encoder chooses, for some non-negative encoding metric d0 :

X × X̂ → R≥0,

m = arg min
1≤j≤M

dn0 (x, x̂(j)), dn0 (x, x̂) =

n∑
i=1

d0(xi, x̂i). (1)

The distortion incurred is given by dn1 (x, x̂) =
∑n
i=1 d1(xi, x̂i) for some true non-negative distortion measure

d1 : X × X̂ → R≥0. If d0 = d1 then this is a standard rate-distortion problem, but otherwise, the encoding is said

to be mismatched.

The choice of tie-breaking strategy in (1) can sometimes be significant (see Appendix C for an example), and

we will consider the following possible choices:

• Following [2], the pessimistic strategy assumes that any ties in (1) always lead to the worst-case value of dn1

with respect to those tied codewords.

• Alternatively, ties may be broken uniformly at random.
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• For convenience, in one of our results, we will assume that ties are always broken by choosing the tied

codeword with the lowest index in {1, . . . ,M}.

Except where stated otherwise, the achievability results that we state hold regardless of the tie-breaking strategy,

i.e., even under pessimistic tie-breaking. The focus on the pessimistic rule in [2] was primarily for the purpose of

proving a multi-letter converse.

Definition 1 (Mismatched distortion-rate and rate-distortion functions). A rate-distortion pair (R,D1) is said to

be achievable if, for any δ > 0, there exists a sequence of codebooks indexed by n with M ≤ en(R+δ) codewords

such that

P
[

1

n
dn1 (X, X̂) ≥ D1 + δ

]
≤ δ (2)

for sufficiently large n, where X ∼ Πn
X and X̂ is the resulting estimate via (1). The rate-distortion function R∗(D1)

is defined as the smallest rate such that (R,D1) is achievable. The distortion-rate function D∗1(R) is defined as

the smallest distortion D1 such that (R,D1) is achievable.

B. Related Work

Our work is most closely related to that of Lapidoth [2], whose main achievability result for constant-composition

(or near-constant composition) coding is stated below in Lemma 2.1 It was also shown in [2] that this result can be

improved by applying it to the the product source (π2
X , π3

X , and so on) and that the resulting achievable distortion

has a matching converse in the limit of an increasing product. We will also build on two example sources studied

in [2].

To our knowledge, follow-up works of [2] in settings with multiple distortion measures have remained fairly

limited, at least in aspects that are of direct relevance to our work. Related problems were studied for joint source-

channel coding and strategic communication in [14], [15]. Another interesting related setup was recently considered

in [16], in which the distortion measure is unknown when designing the codebook, but is revealed to the encoder

at runtime.

Another prominent form of mismatch in the literature is that in which there is only a single distortion measure,

but the codebook is designed for the wrong source or is required to work for multiple different sources [2], [12],

[13], [17]–[22]. We will make use of several useful auxiliary results from [12], [13] that fall in this category, even

though we consider a different setup with two distortion measures.

When it comes to continuous sources, perhaps the most well-known result concerns the performance of Gaussian

codes applied to non-Gaussian sources with the standard squared-distance distortion measure [2], [17], [18]. To our

knowledge, the setup we consider has not been considered previously with continuous (or more general) alphabets.

Another line of works has studied universal codes for rate-distortion theory [12], [13], [17], [18], [23], [24], with

the goal of finding codes that work well simultaneously for a large class of sources. In this setting, the encoder

and decoder may be designed specifically to achieve this goal, in contrast with our study of mismatched encoding.

1More precisely, our setup is a slightly simplified version of that in [2]; in our setup, the decoder must output the selected codeword directly,

whereas in [2], additional post-processing is allowed. As noted in [3], the analysis and results of [2] still apply with only minor changes.
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Finally, our problem setup serves as a natural counterpart to mismatched decoding in channel coding, for which

multi-user ensembles were studied in [9]–[11], and general alphabets were studied in [8], [9], [25], [26], among

others. See [3] for a survey of this topic.

C. Notation

Our analysis will be based on the method of types [27]. For a given type PU (i.e., a possible empirical distribution

with block length n), we let T n(PU ) denote the set of sequences u whose empirical distribution is PU , and similarly

for joint types. For a fixed sequence u whose empirical distribution matches the marginal of some joint type PUX ,

we let T nu (PUX) denote the set of all x sequences such that (u,x) has joint empirical distribution PUX . The

marginals of a joint distribution PUX are written as PU and PX .

The set of distributions on a given alphabet is denoted by P(·), and the set of types is denoted by Pn(·).

Logarithms and information quantities have base e except where stated otherwise. We make use of the binary

entropy function H2(a) (i.e., the entropy with probabilities (a, 1 − a)) and the ternary entropy function H3(a, b)

(i.e., the entropy with probabilities (a, b, 1− a− b)).

II. RANDOM CODING WITH INDEPENDENT CODEWORDS

As a precursor to our main results, we overview the achievable distortion-rate function derived in [2] based on

constant-composition random coding, and present a closely-related result for i.i.d. random coding.

A. Constant-Composition Ensemble

Consider an auxiliary distribution QX̂ ∈ P(X̂ ), and let QX̂,n ∈ Pn(X̂ ) be a type with the same support as QX̂
such that ‖QX̂,n−QX̂‖∞ ≤

1
n . In the constant-composition ensemble, we draw each codeword independently from

PX̂(x̂) =
1

|T n(QX̂,n)|
1{x̂ ∈ T n(QX̂,n)}, (3)

where T n(QX̂,n) is the type class corresponding to QX̂,n. The following lemma is stated in [3, Lemma 4.3] based

on the analysis of [2].

Lemma 1 (Occurrences of joint types [2], [3]). Fix ΠX , QX̂ , and R, and consider a random codebook Cn =

{X(1), . . . ,X(M)} with M = benRc codewords of length n drawn independently from PX̂ in (3). For any δ > 0,

conditioned on any X = x with x ∈ T (PX,n) for some type PX,n, the following statements hold with probability

approaching one as n→∞:

1) For all x̂ ∈ Cn, if (x, x̂) ∈ T n(P̃XX̂) for some P̃XX̂ ∈ Pn(X × X̂ ), then it must hold that P̃X = PX,n and

P̃X̂ = QX̂,n.

2) Defining the set

S⊇n,δ =
{
P̃XX̂ ∈ Pn(X × X̂ ) : P̃X = PX,n, P̃X̂ = QX̂,n, IP̃ (X, X̂) ≤ R+ δ

}
, (4)

all joint types P̃XX̂ induced by the codewords (i.e., (x, x̂) ∈ T n(P̃XX̂) for some codeword x̂) must satisfy

PXX̂ ∈ S
⊇
n (PX,n).
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3) For any joint type P̃XX̂ in the set

S⊆n,δ =
{
P̃XX̂ ∈ Pn(X × X̂ ) : P̃X = PX,n, P̃X̂ = QX̂,n, IP̃ (X, X̂) ≤ R− δ

}
, (5)

there exists at least one codeword x̂ ∈ Cn for which (x, x̂) ∈ T n(P̃XX̂).

Once this lemma is established, the intuition is that the encoder chooses some codeword inducing a joint type P̃XX̂
that minimizes the d0-distortion EP̃ [d0(X, X̂)] subject to the above constraints, and these constraints asymptotically

simplify to P̃X = ΠX , P̃X̂ = QX̂ , and IP̃ (X; X̂) ≤ R as n → ∞ and δ → 0. Then, the d1-distortion is upper

bounded by the maximum d1-distortion among all such minimizers, leading to the following.

Lemma 2. (Achievability via the constant-composition ensemble [2]) Under the mismatched rate-distortion setup

with a discrete memoryless source ΠX and distortion measures (d0, d1), the following distortion is achievable at

rate R via constant-composition random coding with an auxiliary distribution QX̂ ∈ P(X̂ ):

D1(QX̂ , R) = max
P̃XX̂∈P̃

EP̃ [d1(X, X̂)], (6)

where

P̃ =

{
P̃XX̂ : P̃XX̂ ∈ arg min

P̃XX̂ : P̃X=ΠX ,P̃X̂=QX̂ ,

IP̃ (X;X̂)≤R

EP̃ [d0(X, X̂)]

}
. (7)

Consequently, we have D∗1(R) ≤ minQX̂ D1(QX̂ , R).

Formalizing the above intuition requires a rather technical continuity argument to transfer from joint types to

general joint distributions and replace δ by zero. Since these details were omitted in [3] and are slightly different

from [2] due to the different ensemble used (constant-composition vs. nearly-constant composition), we provide an

overview in Appendix D, along with a discussion of how to adapt it to the other ensembles we consider.

B. i.i.d. Ensemble

While Lapidoth’s results are based on the constant-composition ensemble (or very closely related ensembles),

an even more common approach in general information theory problems is the i.i.d. random coding ensemble, in

which each codeword is independently drawn from

PX̂(x̂) =

n∏
i=1

QX̂(x̂i) (8)

for some auxiliary distribution QX̂ . Note that unlike constant-composition coding, this ensemble naturally applies to

continuous (or more general) alphabets. Accordingly, it will be our main focus when considering general alphabets

in Section IV.

For discrete memoryless sources, the following result follows via an almost identical argument to that of Lemma

2 (see [2] and [3, Ch. 4]), so the details are omitted.
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Lemma 3. (Achievability via the i.i.d. ensemble) Under the mismatched rate-distortion setup with a discrete

memoryless source ΠX and distortion measures (d0, d1), the following distortion is achievable at rate R via

i.i.d. random coding with an auxiliary distribution QX̂ ∈ P(X̂ ):

Diid
1 (QX̂ , R) = max

P̃XX̂∈P̃iid

EP̃ [d1(X, X̂)], (9)

where

P̃ iid =

{
P̃XX̂ : P̃XX̂ ∈ arg min

P̃XX̂ : P̃X=ΠX ,

D(P̃XX̂‖ΠX×QX̂)≤R

EP̃ [d0(X, X̂)]

}
. (10)

Consequently, we have D∗1(R) ≤ minQX̂ D
iid
1 (QX̂ , R).

Intuitively, the constraint P̃X̂ = QX̂ is absent in (10) because the codewords no longer necessarily have an

empirical distribution equal to (or close to) QX̂ . In addition, the mutual information IP̃ (X; X̂) is replaced by

D(P̃XX̂‖ΠX ×QX̂), since the two are no longer equivalent when P̃X̂ may differ from QX̂ .

As we will see via a more general discussion in Section III-C, neither the i.i.d. nor constant-composition ensembles

are guaranteed to outperform one another in general.

III. MULTI-USER RANDOM CODING TECHNIQUES

In this section, we present two achievability results based on multi-user coding techniques that were previously

used for mismatched channel coding [9]–[11], namely, superposition coding and parallel coding. We also briefly

mention that connections and differences between these ensembles (and other closely related ensembles) have been

explored in detail in matched multi-user problems, e.g., see [28]–[30] and the references therein.

A. Superposition Coding

1) Codebook construction: The ensemble is defined in terms of an auxiliary alphabet U , an auxiliary codeword

distribution PU ∈ P(Un) and a conditional codeword distribution PX̂|U ∈ P(X̂n|Un). We fix (R0, R1) and

generate the codebook in the following manner:

• First, M0 = benR0c codewords are drawn uniformly and independently from the n-letter distribution PU ,

generating {U (i)}1≤i≤M0 .

• For each u(i) ∈ {U (i)}1≤i≤M0 , M1 = benR1c codewords are drawn uniformly and conditionally independently

from the n-letter conditional distribution PX̂|U (·|u(i)), generating {X̂(i,j)}1≤i≤M0
1≤j≤M1

.

For a given (joint) input distribution QUX̂ ∈ P(U × X̂ ), let QUX̂,n ∈ Pn(U × X̂ ) be a joint type such that

‖QUX̂,n −QUX̂‖∞ ≤
1
n . We then consider the following (constant-composition) choices of PU and PX̂|U :

PU (u) =
1

|T n(QU,n)|
1{u ∈ T n(QU,n)} (11)

PX̂|U (x̂|u) =
1

|T nu (QUX̂,n)|
1{(u, x̂) ∈ T n(QUX̂,n)}. (12)
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The encoder maps a sequence x ∈ Xn to (m0,m1) such that (m0,m1) = arg min(i,j) d
n
0 (x, , X̂(i,j)), and the

corresponding reconstruction sequence x̂ is given by x̂ = X̂(m0,m1). The rate is given by

R =
1

n
log(M0M1) = R0 +R1. (13)

Under this ensemble, we have the following achievability result, which we compare to Lemma 2 in Sections

III-C and III-D.

Theorem 1. (Achievability for Superposition Coding) Under the superposition coding ensemble described above

with input distribution QUX̂ ∈ P(U × X̂ ) and rates R0 and R1, the following distortion is achievable at rate

R = R0 +R1:

D1(QUX̂ , R0, R1) = max
P̃XUX̂∈P̃

EP̃ [d1(X, X̂)], (14)

where

P̃ =


P̃XUX̂ : P̃XUX̂ ∈ arg min

P̃XUX̂ : P̃X=ΠX ,

P̃UX̂=QUX̂ ,
IP̃ (X;U)≤R0,

IP̃ (X;U,X̂)≤R0+R1

EP̃ [d0(X, X̂)]


. (15)

Consequently, we have D∗1(R) ≤ min(QUX̂ ,R1,R2) :
R1+R2=R

D1(QUX̂ , R0, R1).

We provide a short proof outline here, and defer the full details to Appendix E. The analysis is based on the

method of types. The marginal constraints in (15) essentially follow immediately by construction. The main effort

is in showing that joint types with IP̃ (X;U) ≤ R0 − δ and IP̃ (X;U, X̂) ≤ R0 + R1 − δ occur, but those with

IP̃ (X;U) ≥ R0 + δ or IP̃ (X;U, X̂) ≥ R0 +R1 + δ do not, in analogy with Lemma 1. For both the existence and

non-existence claims, we analyze the probability Pexistence = P
[⋃

i,j

{
(x,U (i), X̂(i,j)) ∈ T n(P̃XUX̂)

}]
for fixed

P̃XUX̂ , seeking to show that the probability rapidly approaches zero (non-existence) or one (existence). We can

upper bound Pexistence using the truncated union bound P
[⋃

iAi
]
≤ min{1,

∑
i P[Ai]} separately for the sums over

i and j, and we can get an essentially matching lower bound using the independence properties in the codebook

construction. Once that is done, the desired result is attained by first applying standard exponentially tight bounds

on the relevant type class probabilities, and then using a continuity argument similar to that of Lapidoth [2].

B. Expurgated Parallel Coding

We consider a codebook generated from two auxiliary codebooks of size M1 and M2 over auxiliary alphabets

X̂1 and X̂2, along with a function ψ : X1×X2 → X̂ mapping to the reconstruction alphabet. Specifically, following

analogous ideas used in mismatched channel coding [10], the codebook is generated as follows:

• For ν = 1, 2, auxiliary constant-composition codebooks {X̂(i)
ν }Mν

i=1 with input distributions QXν and with

Mν codewords each are generated, each independently drawn uniformly over the type class T n(QXν ,n) with

‖Qν,n −Qν‖∞ ≤ 1
n .
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• An initial codebook of size M1M2 is constructed as X̂(i,j) = ψn(X̂
(i)
1 , X̂

(j)
2 ) for 1 ≤ i ≤M1, 1 ≤ j ≤M2,

where ψn(·, ·) applies the function ψ entry-by-entry.

• The codebook is then expurgated, keeping only the codewords X̂(i,j) whose corresponding pairs (X̂
(i)
1 , X̂

(j)
2 )

have empirical distributions within δ > 0 of QX̂1
×QX̂2

in `∞-norm. Let I denote the set of (i, j) pairs that

are kept.

An input sequence x is mapped to (m1,m2) such that

(m1,m2) = arg min
(i,j)∈I

dn0
(
x, ψn(X̂

(i)
1 , X̂

(j)
2 )
)
. (16)

The reconstruction sequence is given as X̂ = ψn(X̂
(m1)
1 , X̂

(m2)
2 ), and the rate is given by R = 1

n log |I|. While this

technically means that the rate is random, it will turn out that R approaches R1 +R2 with probability approaching

one, where Rν = 1
n logMν .

Under this ensemble, we have the following achievability result, which we compare to Lemma 2 in Sections

III-C and III-D.

Theorem 2. (Achievability for Expurgated Parallel Coding) For given auxiliary distributions QX1
, QX2

, function

ψ(· ) and rates R1, R2, using expurgated parallel coding, the following distortion is achievable at rate R = R1+R2:

D1(QX1
, QX2

, ψ,R1, R2) = max
P̃XX̂1,X̂2

∈P̃
EP̃ [d1(X,ψ(X̂1, X̂2))], (17)

where

P̃ =



P̃XX̂1X̂2
: P̃XX̂1X̂2

∈ arg min
P̃XX̂1X̂2

:P̃X=ΠX ,

P̃X̂1X̂2
=QX̂1

×QX̂2
,

IP̃ (X;X̂1)≤R1,

IP̃ (X;X̂2)≤R2,

IP̃ (X;X̂1,X̂2)≤R1+R2

EP̃ [d0(X,ψ(X̂1, X̂2))]



. (18)

Consequently, we have D∗1(R) ≤ min(QX̂1
,QX̂2

,ψ,R1,R2) :

R1+R2=R

D1(QX̂1
, QX̂2

, ψ,R1, R2).

Once again, we only provide a short proof outline here, and defer the full details to Appendix E. The main steps

are analogous to those of Theorem 1, but in this case, the independence structure is different, since the codewords

X̂(i,j) and X̂(i′,j′) are dependent whenever i = i′ or j = j′. We can still use the truncated union bound to upper

bound the relevant existence probabilities, whereas the lower bound instead uses de Caen’s inequality [32]. This is

done in the same way as [9], and while the precise bound used in [9] is slightly too loose due to a factor of 1
4 , we

can easily sharpen their analysis by avoiding a step of the form a+ b+ c+ d ≤ 4 max{a, b, c, d}. By doing so and

again using standard properties of types followed by a continuity argument, we obtain the desired result.

C. Structured vs. Unstructured Random Codebooks

In the channel coding problem with mismatched decoding, it is known that (analogs of) the above ensembles

never provide an achievable rate worse than that of independent constant-composition codewords with the same
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marginal codeword distribution. It is therefore natural to ask whether the same holds for mismatched rate-distortion

theory.

In fact, it is straightforward to see that for fixed choices of parameters (QUX̂ , R0, R1) or (QX̂1
, QX̂2

, R1, R2, ψ),

the answer is negative. To see this, fix the encoding function d0, and consider any setup in which (7) has a unique

minimizer P̃ ∗
XX̂

, and (15) or (18) has a unique minimizer with a joint marginal P̃ ∗∗
XX̂

that differs from P̃ ∗
XX̂

. The

existence of examples satisfying these requirements can be inferred from [2] or from Section III-D to follow.

Then, consider the following possibilities for the true distortion function:

d∗1(x, x̂) = log P̃ ∗
XX̂

(x, x̂), d∗∗1 (x, x̂) = log P̃ ∗∗
XX̂

(x, x̂). (19)

The non-negativity of KL divergence implies that any maximization problem of the form maxP EP
[

logQ(X)]

is uniquely maximized by P = Q, and hence, we conclude that P̃ ∗
XX̂

yields strictly higher distortion under d∗1,

whereas P̃ ∗∗
XX̂

yields strictly higher distortion under d∗∗1 . Hence, there is no general inequality between the achievable

mismatched distortion functions.

On the other hand, when the parameters (QUX̂ , R0, R1) or (QX̂1
, QX̂2

, R1, R2, ψ) are optimized, we can easily

guarantee being at least as good as the existing bound in Lemma 2. This is because the superposition coding

ensemble becomes equivalent to having independent codewords when R0 = 0 (or R1 = 0), and similarly for

expurgated parallel coding with R2 = 0 and ψ(x1, x2) = x1 (or R1 = 0 and ψ(x1, x2) = x2).

More importantly, the benefit of multi-user coding techniques is seen by constructing examples where they

provably meet the matched rate distortion function but the existing bound fails to do so. In the next subsection,

we revisit one such example from [2] for expurgated parallel coding, and provide a new example of this kind for

superposition coding.

We note that the preceding discussion not only applies to independent codewords vs. multi-user coding techniques,

but also to i.i.d. vs. constant-composition random coding. For fixed QX̂ and general choices of d0 and d1, it was

already noted in [3] that neither ensemble is guaranteed to outperform the other, and the above arguments provide

another way of seeing this. On the other hand, when d0 = d1, the i.i.d. ensemble is always as good or better,

because the minimum in (10) is less constrained compared to (7), meaning there are more joint distributions to

choose from for making EP̃ [d0(X, X̂)] small. Intuitively, the added diversity in the i.i.d. random codebook leads

to better (or equal) performance when the correct distortion measure is used for encoding, whereas when d0 6= d1,

the situation is more subtle depending on how the encoder may be led astray by the mismatch. In Appendix C, we

give an example with d0 6= d1 where the constant-composition ensemble is strictly better.

D. Examples

In this subsection, we present examples that illustrate improvements in the distortion-rate function when using

the codebook generation techniques described in the previous section.

1) Parallel Binary Source: Consider a source with X = {0, 1}2 as both the source and reconstruction alphabet,

with ΠX(x) = 1
4 for each x. As in [2], we consider the encoding metric

d0(x, x̂) = λ1{x1 6= x̂1}+ (1− λ)1{x2 6= x̂2}, (20)
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and a distortion metric of

d1(x, x̂) =
1

2
(1{x1 6= x̂1}+ 1{x2 6= x̂2}). (21)

For convenience we switch to working in bits (rather than nats) in this example. It was shown in [2] that the

achievable distortion with independent codewords (Lemma 2) simplifies to

D1(QX̂ , R) =
1

2
(δ̃∗1 + δ̃∗2) (22)

(δ̃∗1 , δ̃
∗
2) = arg min

(δ̃1,δ̃2) : (1−H2(δ̃1))+(1−H2(δ̃2))≤R
λδ̃1 + (1− λ)δ̃2, (23)

whereas the matched distortion-rate function is given by D∗1 such that

2(1−H2(D∗1)) = R. (24)

The fact that parallel coding outperforms this result and attains the matched performance was already noted in [2]

using direct arguments, namely, the fact that the two encoding metrics are equivalent when the codebook has a

product structure. Here we outline how the same (with expurgation) can be established via the analytical expression

in Theorem 2, thus serving as a sanity check for this general result.

Consider taking ψ(x1, x2) = (x1, x2) and QX̂ν =
(

1
2 ,

1
2

)
(ν = 1, 2) in Theorem 2. As was noted in [2], the

independence of X1 and X2 is sufficient to lower bound IP̃ (X; X̂1, X̂2) by IP̃ (X1; X̂1)+IP̃ (X2; X̂2). In addition,

we trivially have IP̃ (X; X̂ν) ≥ IP̃ (Xν ; X̂ν) for ν = 1, 2. Since both X and X̂ follow the uniform distribution

on {0, 1}2, the relevant marginals P̃X̂ν |Xν must follow a binary symmetric channel law. Denoting the associated

crossover probabilities by δ̃1 and δ̃2, it follows that

IP̃ (X; X̂1, X̂2) ≥ (1−H2(δ̃1)) + (1−H2(δ̃2)), (25)

IP̃ (X; X̂ν) ≥ 1−H2(δ̃ν), ν = 1, 2. (26)

Again following [2], we observe that these bounds hold with equality when the underlying BSCs are independent,

and that such independence must hold under the optimal P̃XX̂1X̂2
. This is because if any dependence were present,

moving to the independent version would allow us to decrease R1 and/or R2 without increasing the distortion.

In view of (25)–(26) holding with equality, we are now left with the following analog of (22)–(23):

D1(QX1
, QX2

, ψ,R1, R2) =
1

2
(δ̃∗1 + δ̃∗2) (27)

(δ̃∗1 , δ̃
∗
2) = arg min

(δ̃1,δ̃2) : 1−H2(δ̃1)≤R1,1−H2(δ̃2)≤R2

λδ̃1 + (1− λ)δ̃2, (28)

where the constraint (1−H2(δ̃1))+(1−H2(δ̃2)) ≤ R1 +R2 is omitted because it is automatically guaranteed by the

other two. Finally, we set R1 = R2 = R
2 , and observe that the minimum in (28) amounts to separate minimizations

over the two parameters, each giving an optimal value of δ̃ν that satisfies 1−H2(δ̃ν) = R/2. In view of (24), the

resulting d1-distortion coincides with that attained in the matched case, as desired.
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2) Uniform Ternary Source: Consider the uniform ternary source with ΠX(x) = 1
3 for x ∈ {0, 1, 2}. We consider

an encoding metric d0(x, x̂) = 1{x 6= x̂} and a true distortion measure d1(x, x̂) = 1{x 6= x̂, x 6= 2}. Moreover,

we consider the case that both ΠX and QX̂ are uniform:

ΠX = QX =
[

1
3

1
3

1
3

]
. (29)

We first outline the results for the matched setting, and for unstructured random coding with mismatch (Lemma 2),

and then turn to our own achievability result (Theorem 1).

Matched distortion-rate function. In the matched setting with distortion d1 only, the achievable distortion-rate

function with a fixed codeword distribution QX̂ is given as follows (e.g., see [12], or Lemma 2 with d0 = d1):

D∗1(QX̂ , R) = min
P̃XX̂ :IP̃ (X;X̂)≤R
P̃X=ΠX ,P̃X̂=QX̂

EP̃ [d1(X, X̂)]. (30)

Standard constant-composition coding. The achievable mismatched distortion-rate function achieved using

standard constant-composition coding (i.e., independent codewords) was characterized by Lapidoth [2], who showed

that that there is a unique P̃XX̂ ∈ P̃ minimizing E[d0(X, X̂)] in (6), with P̃X̂|X being a ternary symmetric channel

with some cross-symbol transition probability δ∗ such that IP̃ (X; X̂) = R. The resulting distortion-rate function

is given by D∗1(R) = 2δ∗

3 , where δ∗ implicitly depends on R. It is shown in [3, Fig. 4.2] that the resulting

rate-distortion trade-off is strictly worse than the matched case (for uniform ternary QX̂ ).

Superposition coding. We take the auxiliary distribution QUX̂ as

QUX̂ =

 1
3

1
3 0

0 0 1
3

 , (31)

with the rows indexed by U and columns by X̂ . We then have the following result for superposition coding.

Lemma 4. In the ternary source example described above, for any rate R, there exists 0 ≤ R0 ≤ R such that the

distortion-rate function for mismatched encoding using superposition coding, with QUX̂ as described in (31) and

R1 = R − R0, equals the distortion-rate function of the matched case (where d1 is used for encoding) with QX̂

being the X̂-marginal of (31).

The proof is given in Appendix A, and we provide only a brief outline here. We first characterize the mutual

information terms associated with the joint distribution optimizing the matched distortion-rate function (see (30)).

This joint distribution has an associated value of I(X;U), and we take R0 to be this value. We then study

analogous mutual information terms associated with the mismatched distortion-rate function (14), and combine

them to deduce that the matched and mismatched solutions are in fact identical (particularly with the help of the

constraint IP̃ (X;U) ≤ R0 in (15)).

By Lemma 4, at least for this fixed auxiliary distribution QX̂ , we have established an example where standard

constant-composition coding falls short of the matched performance, but superposition coding does not. This example

is significantly different from the parallel source example, in that the result does not appear to follow from any

direct arguments, and R0 needs to be carefully chosen to obtain the desired result.
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IV. GENERAL ALPHABETS

In this section, we turn to general alphabets (in particular, possibly countably infinite or continuous), which

have been extensively studied in the mismatched channel coding problem [8], [9], [25], [26], [33], but to our

knowledge, not for the mismatched rate-distortion problem that we consider. On the other hand, this direction has

been considered for a distinct notion of mismatched rate-distortion in [12], [13]; specifically, while these works

consider d0 = d1, they use “mismatched codebooks” in the sense of having a suboptimal choice of QX̂ . Our

analysis will directly build on the results from these works.

For the purpose of capturing the examples of practical interest, it is useful to think of ΠX and QX̂ as being

mass functions for finite or countably infinite alphabets, and density functions for continuous alphabets. Formally,

however, since we build on the tools in [13], the alphabets may be as general as those therein, where the only

restriction is that the source and reconstruction alphabets are Polish spaces such that all singletons are measurable.

A. Alternative Expression for the i.i.d. Ensemble

Extending the constant-composition result from Lemma 2 to general alphabets appears to be difficult (and

Theorems 1 and 2 even more so). One might consider using cost-constrained random coding [8], [9], but the

difficulty is that compared to channel coding, the techniques needed for the achievability result and ensemble

tightness are reversed. The ensemble tightness of cost-constrained random coding for channel coding currently

remains open, and accordingly, establishing an achievability result in the setting that we consider is similarly

challenging.

In view of this difficulty, in the remainder of this section, we consider the simpler i.i.d. random coding ensemble

(see Section II-B), for which we present a useful reformulation of Lemma 3. Here we make use of the matched

d0-distortion function with fixed QX̂ , defined as

Diid
0 (QX̂ , R) = min

P̃XX̂ : P̃X=ΠX

D(P̃XX̂‖ΠX×QX̂)≤R

EP̃ [d0(X, X̂)]. (32)

Moreover, as in [12], [13], we restrict our attention to rates (and their associated distortion levels) in a restricted

range. Specifically, we define the following extreme values of the d0-distortion:2

D0,min = EΠ[essinfX̂∼Qd0(X, X̂)], D0,prod = EΠ×Q[d0(X, X̂)]. (33)

Intuitively, D0,min is the average d0-distortion that would be attained by an infinite-length codebook, and D0,prod

is the average distortion that would be attained by a codebook with just a single random codeword. Accordingly,

we consider rates in the interval R ∈ (0, Rmax), where

Rmax = lim
D0→D0,min

Riid(QX̂ , D0) (34)

with the limit taken from above, and where Riid is the matched rate-distortion function defined as [12]

Riid(QX̂ , D0) = min
P̃XX̂ : P̃X=ΠX ,

EP̃ [d0(X,X̂)]≤D0

D(P̃XX̂‖ΠX ×QX̂). (35)

2In the finite-alphabet case, we can replace essinf
X̂∼Q by a minimum over the support of Q

X̂
.
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Working in the range R ∈ (0, Rmax) (corresponding to d0-distortion in (D0,min, D0,prod)) turns out to give a unique

minimizer in (10), whereas for higher rates this is not necessarily the case (see Appendix C for an example).

Although Lemma 3 is stated for discrete memoryless sources, the expressions in (9)–(10) can still be taken as

valid definitions for general memoryless sources. We proceed by stating an equivalent form for Diid
1 (9), and then

turn to proving a counterpart to Lemma 3 for general alphabets.

Lemma 5. Consider the mismatched rate-distortion problem with a given source ΠX and auxiliary distribution

QX̂ , and suppose that D0,prod <∞ and R ∈ (0, Rmax) with Rmax given in (34). Then, the quantity Diid
1 (QX̂ , R)

in (9) can equivalently be expressed as

Diid
1 (QX̂ , R) = EP̃∗ [d1(X, X̂)], (36)

where P̃ ∗
XX̂

is defined according to the Radon-Nikodym derivative3

dP̃ ∗
XX̂

d(ΠX ×QX̂)
(x, x̂) =

eλ
∗d0(x,x̂)

EQ[eλ∗d0(x,X̂)]
, (37)

and where λ∗ ≤ 0 is the unique value such that the function Λ(λ) = EΠ

[
logEQ[eλd0(X,X̂)]

]
satisfies Λ′(λ) = D0,

with D0 = Diid
0 (QX̂ , R).

The proof is given in Appendix B, and makes use of various findings from [12], in which the matched setting is

considered (i.e., d0 = d1, but we will use d0 when discussing this setting), and the joint distribution P̃ ∗
XX̂

is utilized.

The authors of [12] show that the rate-distortion function is given in (35), and provide the following equivalent

“dual” expression:

Riid(QX̂ , D0) = sup
λ≤0
{λD0 − Λ(λ)}. (38)

Thus, in our setting, the definition of λ∗ in Lemma 5 follows naturally from solving the maximum (38); the

existence and uniqueness of λ∗ (as per its definition) when D0 ∈ (D0,min, D0,prod) is established in [12]. Once λ∗

is specified, the joint distribution in (37) is also specified. With the preceding findings and definitions in place, the

proof of Lemma 5 amounts to showing that P̃ ∗
XX̂

is the unique minimizer in (10).

B. Achievability Result for General Alphabets

Analogous to D0,prod in (33), we define

D1,prod = EΠ×Q[d1(X, X̂)], (39)

and we impose the assumption that D1,prod <∞, along with D0,prod <∞ (as hinted above, this is also assumed

for the single distortion measure considered in [12], [13]).

Our main result for general alphabets is stated as follows.

3For mass functions or density functions, we can simplify this expression to P̃ ∗
XX̂

(x, x̂) =
ΠX (x)Q

X̂
(x̂)eλ

∗d0(x,x̂)

EQ[eλ
∗d0(x,X̂)]

.
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Theorem 3. (Achievable Distortion with General Alphabets) Consider the general-alphabet mismatched rate-

distortion setup with fixed ΠX and QX̂ satisfying D0,prod < ∞ and D1,prod < ∞, let R ∈ (0, Rmax) with

Rmax defined in (34), and suppose that ties are broken in (1) by choosing the tied codeword with the smallest

index. Then, the distortion Diid
1 (QX̂ , R) is achievable under i.i.d. random coding, where Diid

1 can be equivalently

be expressed in the form (9)–(10) or (36)–(37).

The proof is given in Appendix B, and utilizes an almost-sure convergence result from [13] regarding the

empirical distribution of (X, X̂) when X̂ is the first codeword in an infinite-length codebook to attain a pre-

specified distortion level D0. As noted in [13], their result generalizes and strengthens an earlier “favorite type”

theorem for the finite-alphabet setting [34].

In our analysis, we slightly adapt the result of [13] to characterize the empirical d1-distortion induced by (X, X̂)

(whereas [13] focuses on probabilities of events). However, even after doing so, a notable difficulty is that in our

setting D0 is not pre-specified, as we consider the minimum-distortion encoder with a fixed rate R. To address this,

we consider an intersection of events (each corresponding the adapted result of [13] with a different D0 value) over

a rational subset of D0 values, noting that a countable intersection of almost-sure events also holds almost surely.

From there, the proof consists of arguing that (i) with a fixed rate R, the d0-distortion of the selected codeword

approaches Diid
0 (QX̂ , R) in (32), and (ii) via the preceding almost-sure event and a somewhat technical continuity

argument, the corresponding d1-distortion converges to Diid
1 (QX̂ , R).

C. Example: Gaussian Source with a Mismatched Distortion Function

As an example of Theorem 3, we consider the case that X ∼ N(0, σ2), X̂ ∼ N(0, τ2), and d0(x, x̂) = (x− x̂)2,

for some σ2, τ2 > 0. We will consider both the matched case (corresponding to d1 = d0), and the mismatched case

with d1(x, x̂) = 1{sign(x) 6= sign(x̂)} (i.e., the true distortion only seeks that the signs be recovered correctly).

This can be viewed a toy example of a scenario in which the compression is performed assuming the goal of

accurate estimation, but it is then used only for the purpose of binary classification.

In the matched case where d1 is also used for encoding (i.e., d0 plays no role), the problem becomes equivalent

to compressing an equiprobable binary source, and the rate-distortion function is R∗(D1) = log 2 − H2(D1) for

D1 ∈
[
0, 1

2

]
[35, Sec. 10.3.1].

Moreover, when d0 is used for both encoding and for measuring the final distortion (i.e., d1 plays no role), the rate-

distortion trade-off for i.i.d. random coding was characterized in [12, Ex. 1]: We have D0,min = 0, D0,prod = σ2+τ2,

and the following for D0 ∈ (D0,min, D0,prod) when Riid is measured in nats:

Riid(QX̂ , D0) =
1

2
log

v

D0
− (v −D0)(v − σ2)

2vτ2
, (40)

v =
1

2

(
τ2 +

√
τ4 + 4D0σ2

)
. (41)

Using this finding as a starting point, in the mismatched setting with the above choices of d0 and d1, we can

evaluate the rate-distortion curve as follows:
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• Sweep over a range of values λ ≤ 0 and consider the corresponding joint distributions in P̃ ∗
XX̂

in (37)

(implicitly depending on λ).

• Observe that due to the assumptions X ∼ N(0, σ2), X̂ ∼ N(0, τ2), and d0(x, x̂) = (x−x̂)2, all of the terms in

(37) give an expression whose exponent is quadratic with respect to x and x̂. Thus, P̃ ∗
XX̂

is a bivariate Gaussian

distribution whose parameters (µ∗X , µ
∗
X̂
, σ∗X .σ

∗
X̂
, ρ∗) (with ρ∗ ∈ [−1, 1] being the correlation coefficient) can

be computed as a function of (σ, τ, λ∗). Omitting the tedious calculations, we state the resulting parameters

as follows. The coefficients to −x2, −x̂2, and −xx̂ in the exponent in (37) are easily computed to be

a =
1

2σ2
− λ, b =

1

2τ2
− λ, c = 2λ (42)

(with the remaining coefficients to x and x̂ being zero), and from these values, the desired parameters can be

shown to be as follows:

µ∗X = 0, µ∗
X̂

= 0, (σ∗X)2 =

√
2b

4ab− c2
, (σ∗

X̂
)2 =

√
2a

4ab− c2
, ρ∗ =

−c
2
√
ab
. (43)

• Given the parameters in (43), we can readily compute the d0-distortion as D0 = (σ∗X)2 + (σ∗
X̂

)2 − 2ρ∗σ∗Xσ
∗
X̂

(by expanding the square in E[(X − X̂)2]), and the d1-distortion as the probability of the bivariate Gaussian

lying in the second or forth quadrant of R2 (e.g., using standard libraries for computing the multivariate CDF).

• With D0 now known, the corresponding rate can be obtained by numerically inverting (40), e.g., using a binary

search procedure.

The resulting rate-distortion curves are illustrated in Figure 1 (after converting from nats to bits) under the choices

σ2 = τ2 = 1. Although nearest-neighbor encoding (i.e., using d0) may sound reasonable for the purpose of

preserving signs, it is seen to be highly suboptimal here. This is particularly the case at low distortion levels, where

the rate becomes unbounded in the mismatched case, despite a rate of one being trivial. Intuitively, this is because

typical X sequences contain many low-valued entries, and using the nearest-neighbor encoder is likely to flip their

signs unless there are a huge number of codewords to choose from (i.e., a high rate).

V. CONCLUSION

We have studied multi-user coding techniques and general alphabets for the mismatched rate-distortion problem,

and established several new results that serve as natural counterparts to those that were previously known for

mismatched channel coding. Several possible directions remain for future work, including (i) studying the refined

superposition coding ensemble considered for channel coding in [9]; (ii) establishing conditions under which the

various ensembles provably outperform one another; and (iii) attaining general-alphabet counterparts of the rate-

distortion curves achieved by the constant constant-composition and/or multi-user ensembles.

APPENDIX A

ANALYSIS OF THE UNIFORM TERNARY SOURCE EXAMPLE

In this section, we study the ternary source example of Example III-D2, and prove Lemma 4 therein. Throughout

this appendix, all information measures are in units of nats.
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Figure 1. Rate-distortion curves for the Gaussian source with σ2 = τ2 = 1; in the mismatched case, the distortion is 0-1 valued based on the

signs.

A. Alternative Expressions

Since both the X-marginal and X̂-marginal of P̃XX̂ are uniform, we can express P̃XX̂ in the following form:

P̃XX̂ =


1
3 − p01 − p02 p01 p02

p10
1
3 − p10 − p12 p12

p01 + p02 − p10 p10 + p12 − p01
1
3 − p02 − p12

 , (44)

where we write the joint distribution in matrix form with rows indexed by x and columns indexed by x̂, and

(p01, p10, p02, p12) are constrained to take values such that all elements of the matrix are non-negative. In this

notation, the matched distortion in (30) can be rewritten as

D∗1(QX̂ , R) = min
P̃XX̂ :IP̃ (X;X̂)≤R

p01 + p10 + p02 + p12. (45)

To make this more explicit, we write IP̃ (X; X̂) in terms of the ternary entropy function H3(a, b) (i.e., the entropy

with probabilities (a, b, 1− a− b)) as follows:

IP̃ (X; X̂) = HP̃ (X̂)−HP̃ (X̂|X) (46)

= log 3−HP̃ (X̂|X) (47)

= log 3−
∑
x

ΠX(x)HP̃ (X̂|X = x) (48)

= log 3− 1

3

(
H3(3p01, 3p02) +H3(3p10, 3p12)

+H3(3p02 + (3p01 − 3p10), 3p12 − (3p01 − 3p10))
)

(49)

≥ log 3− 1

3

(
2H3

(
3
p01 + p10

2
, 3
p02 + p12

2

)
+H3

(
3
p02 + p12

2
, 3
p02 + p12

2

))
, (50)

where (49) follows since each H(X̂|X = x) is the ternary entropy associated with multiplying the relevant row of

(44) by 3 (i.e., dividing by ΠX(x) = 1
3 ), and (50) follows by applying Jensen’s inequality to the first two terms,
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and using H3(a, b) ≤ H3

(
a+b

2 , a+b
2

)
(again exploiting the concavity of entropy) in the third term. Moreover, since

the ternary entropy function is strictly concave, equality holds if and only if p01 = p10 and p02 = p12.

B. Analysis of the Matched Performance

As a step towards proving Lemma 4, which states that the matched performance is attainable even in the presence

of mismatch, it is useful to first study the minimization problem (30) associated with the matched setting. We present

several useful lemmas regarding this.

Lemma 6. In the present ternary source example, for R ∈ [0, log 3], any distribution achieving the minimum in

(30) satisfies both p01 = p10 and p02 = p12 when expressed as given in (44).

Proof. This result trivially holds for R = log 3, since the constraint IP̃ (X; X̂) ≤ R is then satisfied by all valid

distributions of the form (44). Selecting X̂ = X (i.e., p01 = p02 = p10 = p12 = 0) satisfies this with zero distortion.

Conversely, if D∗1 = 0 then the choice of distortion function implies that p01 = p02 = p10 = p12 = 0 (see (44)),

which in turn implies X̂ = X and R = log 3. Thus, whenever R < log 3, it must be the case that D∗1(QX , R) > 0,

and we focus on this scenario in the rest of the analysis.

Fix R < log 3, and assume for contradiction that some distribution P̃a is asymmetric (in the sense that p01,a 6=

p10,a and/or p02,a 6= p12,a) but achieves the minimum in (30). We define the symmetrized version P̃s =
P̃a+P̃ ′a

2 ,

where P̃ ′a is the distribution with p′01,a = p10,a, p′10,a = p01,a, p′02,a = p12,a, and p′12,a = p02,a (i.e., the suitable

pairs are interchanged). Observe that P̃s is symmetric in the sense that p01,s = p10,s and p02,s = p12,s.

We now have the following:

IP̃s(X; X̂) < IP̃a(X; X̂) = IP̃ ′a
(X; X̂), (51)

where the inequality follows from (50) (and the condition for strict inequality stated just after), and the equality

follows since the mutual information is invariant to interchanging the pairs as described above (see (49)). Moreover,

since the distortion is given by p01 + p10 + p02 + p12 (see (45)), we have EP̃a [d1(X; X̂)] = EP̃s [d1(X; X̂)]. Thus,

the fact that IP̃a(X; X̂) ≤ R implies that IP̃s(X; X̂) < R, which implies that P̃s also achieves the minimum in

(30).

If p01,s > 0, then from the continuity of mutual information, there exists some p†01,s < p01,s such that the

corresponding mutual information still satisfies IP̃ †s (X; X̂) ≤ R (with p†02,s = p02,s). The corresponding value of

EP̃ †s [d1(X; X̂)] is then smaller than that of P̃a, thus contradicting the assumption that P̃a achieves the minimum.

If p01,s = 0, then we must have p02,s, since we have assumed that we are not in the zero-distortion region. Then,

by the same reasoning as the case where p01,s > 0, we find that there exists p†02,s < p02,s such that IP̃ †(X; X̂) ≤ R.

This leads to a distortion smaller than the minimizing distribution, arriving at a contradiction and completing the

proof.

Lemma 7. In the present ternary source example, for R ∈ [0, log 3], any distribution achieving the minimum in

(30) satisfies IP̃ (X; X̂) = R.
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Proof. Suppose for contradiction that there exists a distribution P̃s (assumed symmetric according to Lemma 6)

achieving the minimum with IP̃s(X; X̂) < R. Then, from the analysis in the proof of Lemma 6, there exists a

distribution P̃ ′s such that EP̃ ′s [d1(X, X̂)] < EP̃s [d1(X, X̂)] and IP̃ (X; X̂) ≤ R. This is a contradiction, since we

have assumed that P̃s achieves the minimum.

In view of Lemma 6, we can reduce the four parameters (p01, p10, p02, p12) in (44) to just two parameters

(p01, p02). To satisfy the constraint of non-negative matrix entries, we require the following:

0 ≤ p01 + p02 ≤
1

3
(52)

0 ≤ p02 ≤
1

6
. (53)

Moreover, the symmetry from Lemma 6 implies that (50) holds with equality, and the mutual information becomes

IP̃ (X; X̂) = log 3− 1

3
(2H3 (3p01, 3p02) +H3 (3p02, 3p02)) . (54)

Hence, (45) reduces to minimizing 2(p01 + p02) subject to (52)–(53), as well as (54) being at most R.

From the two-parameter expression (54), we can readily evaluate the partial derivatives with respect to p01 and

p02 (the details amount to standard calculus and are omitted):

∂

∂p01
IP̃ (X; X̂) = 2 log

(
p01

1
3 − p01 − p02

)
, (55)

∂

∂p02
IP̃ (X; X̂) = 2 log

(
p2

02

( 1
3 − p01 − p02)( 1

3 − 2p02)

)
. (56)

Our final useful lemma regarding the matched case is as follows.

Lemma 8. In the present ternary source example with R ∈ [0, log 3], the optimal value of p02 for a distribution

achieving the matched distortion-rate function, when d1 is used as the distortion metric, is at most 1
9 .

Proof. We first note that the constraint p01 +p02 ≤ 1
3 in (52) is inactive, because the choice p01 = p02 = 1/9 gives

a smaller value of distortion (namely, 2p01 + 2p02) compared to any pair (p01, p02) such that p01 + p02 = 1/3, and

is guaranteed to be feasible since it gives IP̃ (X, X̂) = 0.

Moreover, the constraint p02 ≤ 1
6 in (53) is inactive, since for any fixed value of p01, (56) implies that IP̃ (X, X̂)

increases to its value at p02 = 1
6 infinitely sharply. Hence, when p02 = 1

6 , we can hold p01 constant and slightly

decrease p02, thereby decreasing both IP̃ (X; X̂) and the distortion.

We also claim that in the positive-distortion regime (i.e., p01 + p02 > 0), neither of p01 and p02 can be 0. This

is seen by fixing p01 + p02 to a positive value psum and observing from (55)–(56) that

lim
p0ν→0

∂IP̃ (X; X̂)

∂p0ν
→ −∞, ν = 1, 2; (57)

whereas the partial derivative at p0ν = psum (ν = 1, 2) is bounded and finite. If only one of the two is zero (say

p01), we see that increasing p01 and decreasing p02 by the same small quantity leads to a net decrease in IP̃ (X; X̂)

while keeping the distortion constant, contradicting the fact that IP̃ (X; X̂) = R (from Lemma 7).
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Combining the preceding paragraphs, we have shown that the solution to the symmetrized version of (45) is

unchanged when the constraints in (52)–(53) are dropped altogether. Hence, we are left with studying the simplified

problem

min
(p01,p02) : log 3− 1

3 (2H3(3p01,3p02)+H3(3p02,3p02))≤R
2(p01 + p02), (58)

where the expression in the constraint comes from (54).

Applying the KKT optimality conditions to (58), we find that there exists λ > 0 such that

∇IP̃∗(X; X̂) = − 1

λ

2

2

 , (59)

from which it follows that

∂

∂p01
IP̃∗(X; X̂)

∣∣∣∣
p∗01

=
∂

∂p02
IP̃∗(X; X̂)

∣∣∣∣
p∗02

(60)

=⇒ p∗01 =
(p∗02)2

1
3 − 2p∗02

, (61)

where (61) follows by equating (55) with (56) and simplifying.

A simple analysis of the derivative of (61) reveals that p∗01 is a strictly increasing function of p∗02 in the admissible

range p∗02 ∈
[
0, 1

6

]
, and therefore, so is the distortion. On the other hand, we know that p∗01 = p∗02 = 1

9 corresponds

to a rate of zero. By the non-increasing nature of the distortion-rate function, we conclude that distortion cannot

exceed its zero-rate value, and therefore, p02 (and in fact, also p01) cannot exceed 1
9 .

C. Analysis of Superposition Coding

Since the X-marginal and X̂-marginal are still uniform here, we can again consider P̃XX̂ in the form given in

(44). Moreover, the following analog of Lemma 6 holds.

Lemma 9. Consider the minimization problem with respect to P̃XUX̂ in (15). In the present ternary source example,

P̃XUX̂ is uniquely determined by P̃XX̂ , and any distribution achieving the minimum satisfies both p01 = p10 and

p02 = p12 when P̃XX̂ is expressed as given in (44).

Proof. The choice of QUX̂ in (31) implies that U is deterministic given X̂ , which means that once P̃XX̂ is specified,

so is P̃XUX̂ (recalling that we constrain P̃UX̂ = QUX̂ ). This proves the first claim.

For the second claim, the proof is similar to that of Lemma 6, so we only outline the differences. In the

symmetrization step, interchanging p01 ↔ p10 and/or p02 ↔ p12 still does not impact the distortion (this time d0

instead of d1). Since U is deterministic given X̂ , the mutual information I(X;U, X̂) reduces to I(X; X̂), so can

be handled similarly to the matched case. Moreover, using the fact that U = 1{X̂ = 2}, we find that the marginal

P̃UX can be obtained by combining the first two columns of (44) to obtain

P̃XU =


1
3 − p02 p02

1
3 − p12 p12

p02 + p12
1
3 − p02 − p12

 , (62)
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which has no dependence on (p01, p10). Then, following similar steps to (46)–(50) (see also (70) below), we obtain

that IP̃ (X;U) is invariant to interchanging p02 ↔ p12, and can always be made smaller by symmetrizing with

respect to this interchanging (or it remains the same if such symmetry already held).

With these findings in place, the symmetrization argument follows in the same way as the proof of Lemma 6,

considering both mutual information terms when handling (p02, p12), but only considering IP̃ (X; X̂) when handling

(p01, p10) (since IP̃ (X;U) does not depend on these values).

Using Lemma 9 and recalling the choice of QUX̂ in (31), Theorem 1 simplifies as follows:

D∗1(QUX̂ , R0, R1) = max
(p01,p02) : P̃XUX̂∈P̃

2(p01 + 2p02), (63)

where

P̃ =

 arg min
(p01,p02) : IP̃ (X;U)≤R0

IP̃ (X;U,X̂)≤R

2(p01 + p02)

 , (64)

and where the correspondence between (p01, p02) and P̃XUX̂ is as follows:

PU (0) =
2

3
, PU (1) =

1

3
, (65)

P̃XX̂|U=0 =
3

2


1
3 − p01 − p02 p01 0

p01
1
3 − p01 − p02 0

p02 p02 0,

 , P̃XX̂|U=1 = 3


0 0 p02

0 0 p02

0 0 1
3 − 2p02.

 (66)

Once again, p01 and p02 are constrained such that the matrix entries are non-negative.

With this symmetrization in place, the marginal distribution P̃XU shown in (62) simplifies to

PXU =


1
3 − p02 p02

1
3 − p02 p02

2p02
1
3 − 2p02

 , (67)

which yields the following (with H2(·) being the binary entropy function):

IP̃ (X;U) = H(U)−H(U |X) (68)

= log 3− 2

3
log 2−

∑
x

H(U |X = x)ΠX(x) (69)

= log 3− 2

3
log 2− 1

3
(2H2(3p02) +H2(6p02)), (70)

since each H(U |X = x) is the binary entropy associated with multiplying the relevant row of (67) by 3 (i.e.,

dividing by ΠX(x) = 1
3 ). Moreover, we have already established that IP̃ (X;U, X̂) = IP̃ (X; X̂). Using these

results, we are now in a position to prove our main finding.

Proof of Lemma 4. Recall that we simplified the d1-distortion to 2(p01 + p02) using (44) with p01 = p10 and

p02 = p12. For the d0-distortion, the first two entries in the final row also contribute, giving a value of 2(p01 +2p02).
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Figure 2. I
P̃

(X;U) vs. p02 for superposition coding in the ternary source example.

As with Lemma 6, since X = X̂ trivially satisfies all constraints when R = log 3, we focus on the cases where

R < log 3, and consequentially, p01 + p02 > 0.

We claim that the simplified matched problem (58) is uniquely minimized by some values p∗01,m and p∗02,m. To

see this, assume by contradiction that there are multiple minimizers. The average of any two of these will have the

same distortion as the minimum, while IP̃ (X; X̂) = log 3− 1
3 (2H3 (3p01, 3p02) +H3 (3p02, 3p02)) will be strictly

less than R (due to strict concavity), contradicting Lemma 7.

We note from from Lemma 8 that p∗02,m ≤ 1
9 , and we consider the following choice of the parameter R0 = R−R1

in superposition coding:

R0 = IP̃∗m
(X;U), (71)

where IP̃∗m(X;U) is the value obtained on substituting p∗02,m in (70). For all (p01, p02) distinct from (p∗01,m, p
∗
02,m)

such that IP̃ (X;U) ≤ R0 and IP̃ (X; X̂) ≤ R, we have

p∗01,m + p∗02,m < p01 + p02, (72)

since the minimizer of d1 for the matched case is unique. Moreover, we claim that

p∗02,m ≤ p02. (73)

This is seen by combining the fact that p∗02,m ≤ 1
9 (established above) with the fact that IP̃ (X;U) is monotonically

decreasing for p02 ≤ 1
9 (see Figure 2; an analytical proof is also straightforward). Thus, under the constraint

IP̃ (X;U) ≤ R0, it is not feasible to go below p∗02,m.

Since the d0-distortion equals 2(p01 + 2p02), we conclude from (72)–(73) that every feasible pair (p01, p02) 6=

(p∗01,m, p
∗
02,m) attains a strictly higher d0-distortion than (p∗01,m, p

∗
02,m). This means (p∗01,m, p

∗
02,m) is also uniquely

optimal for the d0-minimization problem in (64), and thus, the same d1-distortion is attained under mismatched

encoding as that of matched encoding.
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APPENDIX B

PROOFS FOR THE GENERAL ALPHABET SETTING

We will be interested in events that hold asymptotically almost surely with respect to X , i.e., if we view X as

the first n entries of an infinitely long i.i.d. sequence X∞1 = (X1, X2, . . . ), then there exists a subset X∞typ of such

sequences such that P[X∞1 ∈ X∞typ] = 1, and such that the desired event holds for all sequences in X∞typ. When

this is the case, we say that the event holds Π∞X -almost surely (Π∞X -a.s.), or for Π∞X -almost all x.

A. Auxiliary Results

We first provide some useful auxiliary results from the works [12], [13], which consider “mismatched codebooks”

in a setting with only a single distortion function d0. We start with two simple results from [12].

Lemma 10. (Asymptotic Distortion Ball Probability [12, Thm. 1]) Consider any i.i.d. source4 X ∼ Πn
X such

that D0,prod < ∞, and for some auxiliary distribution QX̂ , let X̂ ∼ Qn
X̂

be independent of X . Then, for any

D ∈ (D0,min, D0,prod), it holds for Π∞X -almost all x that

− 1

n
logP

[
dn0 (x, , X̂) ≤ nD0 |X = x

]
→ Riid(QX̂ , D0), (74)

as n→∞, where Riid is defined in (35).

Lemma 11. (Primal-Dual Equivalence [12, Thm. 2]) For any ΠX and QX̂ such that D0,prod <∞, the expressions

(35) and (38) are equal for all D0 ∈ (D0,min, D0,prod).

Noting that Riid(QX̂ , ·) and Diid
0 (QX̂ , ·) (see (32)) are functional inverses of each other, the following result

readily follows from Lemma 10; recall that Rmax is defined in (34).

Corollary 1. (Achievable Matched Distortion for a Fixed Rate) For any source X ∼ Πn
X and auxiliary distribution

QX̂ such that D0,prod <∞, under the i.i.d. ensemble with rate R ∈ (0, Rmax), it holds with probability approaching

one that the codeword X̂∗ with the smallest d0-distortion satisfies 1
nd0(X, X̂∗)→ Diid

0 (QX̂ , R) as n→∞.

We now state a less elementary result concerning the first codeword in an infinitely long codebook whose

normalized distortion is no higher than a pre-specified threshold D0; note that for D0 ∈ (D0,min, D0,prod), an

infinitely long codebook will always contain such a codeword.

Lemma 12. (Empirical Distribution for the First Matching Codeword [13, Thm. 2]) Suppose that D0,prod <∞, and

fix D0 ∈ (D0,min, D0,prod). Consider an infinite codebook C = (X̂1, X̂2, . . . ) independently drawn from Qn
X̂

, and

let P̂n be the empirical distribution of (X, X̂∗) with X̂∗ being the first codeword in C satisfying dn0 (X, X̂) ≤ nD0.

Then, we have the following:

(i) For any measurable set E (not depending on n) and any δ > 0, it holds for Π∞X -almost all x that

P
[∣∣P̂n(E)− P̃ ∗

XX̂
(E)
∣∣ > δ |X = x

]
→ 0, (75)

4In [12] and [13], more general sources beyond i.i.d. are also considered.
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where the convergence to zero as n → ∞ is exponentially fast in n, and P̃ ∗
XX̂

is defined in (37) with λ∗

defined according to D0.

(ii) It holds with probability one that P̂n converges in distribution to P̃ ∗
XX̂

as n→∞.

The formal statement in [13] actually concerns the empirical distribution of X̂ alone, instead of the joint empirical

distribution of (X, X̂). However, the proof therein readily gives the form stated above. Specifically, the proof of

[13, Thm. 3] (a conditional limit theorem from which [13, Thm. 2] follows almost immediately) shows that a certain

asymptotic distribution on X̂ must equal P̃ ∗
X̂

by first showing the stronger result that the asymptotic distribution

on (X, X̂) must equal P̃ ∗
XX̂

. We obtain Lemma 12 by skipping this step and directly using this stronger result.

In our setting, we are not directly interested in probabilities with respect to P̂n, but instead, the average of d1

with respect to P̂n (i.e., 1
nd

n
1 (x, x̂)). The convergence result in the second part of Lemma 12 implies an analogous

convergence result for 1
nd

n
1 (x, x̂) in the case that d1 is bounded and continuous, but these requirements rule out

standard distortion functions such as d1(x, x̂) = (x− x̂)2. Fortunately, Lemma 12 admits a natural counterpart for

averages instead of probabilities without such requirements, which we state as follows.

Lemma 13. (Empirical Averages for the First Matching Codeword [13, Thm. 2]) Suppose that D0,prod <∞ and

D1,prod < ∞, and fix D0 ∈ (D0,min, D0,prod). Consider an infinite codebook C = (X̂1, X̂2, . . . ) independently

drawn from Qn
X̂

, and let P̂n be the empirical distribution of (X, X̂∗) with X̂∗ being the first codeword in C

satisfying dn0 (X, X̂) ≤ nD0. Then, we have the following:

(i) The empirical d1-distortion satisfies for any δ > 0 and Π∞X -almost all x that

P
[∣∣d1(P̂n)− d1(P̃ ∗

XX̂
)
∣∣ > δ |X = x

]
→ 0, (76)

where we use the shorthand d1(P ) = EP [d1(X, X̂)], P̃ ∗
XX̂

is defined in (37) with λ∗ defined according to

D0, and the convergence to zero as n→∞ in (76) is exponentially fast in n.

(ii) It holds with probability one that d1(P̂n)→ d1(P̃ ∗
XX̂

) as n→∞.

The proof of this result follows the exact same steps as those of Lemma 12 (given in [13]) based on large

deviations theory. Accordingly, we do not repeat the analysis here, but we provide the main ideas and differences

in Appendix B-D.

B. Proof of Lemma 5 (Reformulation for the i.i.d. Ensemble)

Recall the two equivalent expressions for Riid(QX̂ , D0) in (35) and (38). As stated following (38), it is known

from [12] that the supremum in (38) is uniquely attained by some λ∗ satisfying Λ′(Λ) = D0 when D0 ∈

(D0,min, D0,prod), where Λ(λ) = EΠ

[
logEQ[eλd0(X,X̂)]

]
. Moreover, it is shown in [12] that the unique corre-

sponding minimizer in (35) is P̃ ∗
XX̂

, defined in (37). In view of these known results, it is then natural that the

formulation in Lemma 3 reduces to that in Lemma 5. We now proceed by showing this formally.
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While we build on [12], a key issue that we need to address is that their results concern the rate after specifying

D0, whereas in (10) we have specified R but not D0. Recall that we are interested in solutions to

min
P̃XX̂ : P̃X=ΠX ,

D(P̃XX̂‖ΠX×QX̂)≤R

EP̃ [d0(X, X̂)] (77)

Notice that this is precisely the definition of Diid
0 (QX̂ , R), so the resulting minimum value is trivially D0 =

Diid
0 (QX̂ , R). It remains to show that the minimizer is P̃ ∗

XX̂
with λ∗ chosen according to this value of D0, and

that this minimizer is unique.

As outlined above, we know from [12] that P̃ ∗
XX̂

is the unique minimizer of the problem

min
P̃XX̂ : P̃X=ΠX ,

EP̃ [d0(X,X̂)]≤D0

D(P̃XX̂‖ΠX ×QX̂). (78)

Moreover, the minimum value is R, since the assumption R ∈ (0, Rmax) implies that we are in the regime where the

inequality constraint in (77) is active (this was also noted in [12]). To show that P̃ ∗
XX̂

also minimizes (77), suppose

for contradiction that there were to exist a feasible distribution P̃ ′
XX̂

in (77) with value EP̃ ′ [d0(X, X̂)] < D0.

Then, for ε sufficiently small, it must hold that the distribution P̃ ′′
XX̂

= (1 − ε)P̃ ′
XX̂

+ ε(ΠX × QX̂) satisfies

EP̃ ′′ [d0(X, X̂)] ≤ D0. But then, we have

D(P̃ ′′
XX̂
‖ΠX ×QX̂) = D

(
(1− ε)P̃ ′

XX̂
+ ε(ΠX ×QX̂)

∥∥(1− ε)(ΠX ×QX̂) + ε(ΠX ×QX̂)
)

(79)

≤ (1− ε)D(P̃ ′
XX̂
‖ΠX ×QX̂) ≤ (1− ε)R, (80)

where we applied the convexity of KL divergence and εD(ΠX × QX̂‖ΠX × QX̂) = 0. This means that P̃ ′′
XX̂

is

feasible in (78) but yields a smaller objective than the optimal value of R, which is a contradiction, and establishes

the desired claim.

For uniqueness, recall that we are in the regime where the inequality constraint in (77) is active, and note that

if there is another optimal distribution P̃ †
XX̂

distinct from P̃ ∗
XX̂

, then they must both yield the same values of

D(P̃ ′
XX̂
‖ΠX ×QX̂) and EP̃ [d0(X, X̂)]. However, this would mean that P̃ †

XX̂
is also optimal in (78), contradicting

the uniqueness known from [12].

Having established that P̃ ∗
XX̂

is uniquely optimal in (10), the lemma follows.

C. Proof of Theorem 3

We would like to use Lemma 13 with D0 = Diid
0 (QX̂ , R) to conclude that P̂n behaves similarly to P̃ ∗

XX̂
,

implying that the d1-distortion incurred is EP̃∗ [d1(X, X̂)]. The difficulty is that we are in the fixed-rate setting,

whereas Lemma 13 holds for the fixed-distortion setting. Since there is a continuum of possible D0 values, we

cannot directly deduce that Lemma 13 holds for the actual d0-distortion value incurred by the source and the chosen

codeword. To circumvent this, we extend the almost-sure event to a countably infinite set, as well as exploiting our

tie-breaking strategy that chooses the first index.

We first state the following corollary of Lemma 13.
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Corollary 2. (Uniform Guarantee over Rational D0 Values) Fix any D∞0 ∈ (D0,min, D0,prod), and let δ > 0 be

sufficiently small such that [D∞0 −δ,D∞0 +δ] ⊆ (D0,min, D0,prod). Consider an infinite codebook C = (X̂1, X̂2, . . . )

independently drawn from Qn
X̂

. Let P̃ (D0)

XX̂
be as defined in (37) with an explicit dependence on D0, and let P̂ (D0)

n

be the empirical distribution of (X, X̂∗(D0)) with X̂∗(D0) being the first codeword in C satisfying dn0 (X, X̂) ≤

nD0. Then, with probability one, it holds simultaneously for all rational values of D0 ∈ [D∞0 − δ,D∞0 + δ] that

d1(P̂
(D0)
n )→ d1(P̃

(D0)

XX̂
) as n→∞.

Proof. Observe that we restrict D0 to ensure that D0 ∈ (D0,min, D0,prod). For any such value of D0, Lemma 13

gives the desired convergence of d1(P̂
(D0)
n ) to d1(P̃

(D0)

XX̂
) almost surely. We can then take the intersection over

countably many values of D0 (since we are restricting to rational numbers), and the corollary follows since a

countable intersection of almost-sure events still holds almost surely.

Let D∗0,n = 1
nd

n
0 (X, X̂∗) be the d0-distortion incurred at block length n. We know from Corollary 1 that with

probability 1− o(1), it holds that D∗0,n = D∞0 · (1 + o(1)), where D∞0 = Diid
0 (QX̂ , R). Hence, for any δ > 0, we

can assume that D∗0,n ∈ [D∞0 − δ,D∞0 + δ] for sufficiently large n. In addition, we note that this choice of D∞0

satisfies the condition D∞0 ∈ (D0,min, D0,prod) in Corollary 2, due to the fact that R ∈ (0, Rmax). Thus, Corollary

2 reveals that d1(P̂
(D0)
n )→ d1(P̃

(D0)

XX̂
) for all rational values of D0 ∈ [D∞0 − δ,D∞0 + δ], with probability one.

With D∗0,n being the minimum d0-distortion induced by the codebook, we let D∗∗0,n be a rational number arbitrarily

close to D∗0,n, and we require it to be sufficiently close such that D∗∗0,n is below all the other distortion levels (not

equal to D∗0,n) induced by the codewords. Since the rationals are dense, this is always possible. There may potentially

be multiple codewords with distortion D∗0,n, but even if this is the case, our assumed tie breaking strategy (namely,

choosing the smallest index) implies that X̂∗ must be the first codeword having distortion at most D∗∗0,n. By the

conclusion of the previous paragraph, it follows that the d1-distortion incurred is d1(P̃
(D∗∗0,n)

XX̂
) · (1 + o(1)).

To deduce the distortion level in (36) (with D0 replaced by D∞0 ), it remains to argue that d1(P̃
(D∗∗0,n)

XX̂
) ·(1+o(1))

reduces to d1(P̃ ∗
XX̂

) · (1 + o(1)), where in the latter expression, P̃ ∗
XX̂

is defined with respect to D∞0 . To see

this, recall that we already established D∗0,n = D∞0 · (1 + o(1)) (with probability approaching one), which in turn

implies that the rational rounded version can also be chosen to satisfy D∗∗0,n = D∞0 · (1 + o(1)). It is shown in [12,

Sec. II-B] that the function Λ(·) defining λ∗ in (37) satisfies Λ′′(λ) > 0 for all λ < 0. Thus, with λ∗ being the

solution to Λ′(λ) = D0 with D0 ∈ (D0,min, D0,prod), we have that λ∗ is a continuous function of D0. Thus, with

D∗∗0,n → D∞0 , the corresponding λ∗ value similarly approaches the value corresponding to D∞0 .

We now argue that the right-hand side of (37) is continuous with respect to λ∗ for ΠX -almost all x and any x̂.

Observe that this ratio is non-negative and is the reciprocal of EQ[eλ
∗(d0(x,X̂)−d0(x,x̂))], which is a convex function

of λ∗ and is therefore continuous in the region where it is finite. Thus, since the numerator in (37) is a fixed

positive constant, it only remains to handle the possibility of dividing by zero or infinity. However, we claim that

the denominator EQ[eλ
∗d0(x,X̂)] is at most one, and is bounded away from zero for ΠX -almost all x. The former

property follows from λ∗ ≤ 0 and d0(·, ·) ≥ 0, and the latter follows from EΠ×Q[eλ
∗d0(X,X̂)] ≥ eλ

∗D0,prod via

Jensen’s inequality. The desired continuity with respect to λ∗ readily follows.

December 20, 2022 DRAFT



26

This pointwise convergence for the Radon-Nikodym derivative implies that the distortion d1(P̃
(D∗∗0,n)

XX̂
) · (1+o(1))

reduces to d1(P̃ ∗
XX̂

) · (1 +o(1)) = EP̃∗ [d1(X, X̂)] · (1 +o(1)), where P̃ ∗
XX̂

is defined with respect to D∞0 as stated

above. This completes the proof of Theorem 3; we derived the form given in (36)–(37), but by Lemma 5, the form

(9)–(10) is equivalent.

D. Discussion on Lemma 13 (Empirical Averages for the First Matching Codeword)

The proof of Lemma 12 in [13] is based on applying a conditional large-deviations analysis to the two-dimensional

vector
(

1
nd

n
0 (x, X̂), P̂n(E)

)
, where X̂ ∼ Qn

X̂
and the conditioning is on the event dn0 (x, X̂) ≤ nD0 (and X = x).

The conditioning event dn0 (x, X̂) ≤ nD0 comes from X̂ being defined in Lemma 12 to be the first codeword

satisfying this property.

Here we outline how a similar approach can be taken for Lemma 13, considering the two-dimensional vector(
1
nd

n
0 (x, X̂), 1

nd
n
1 (x, X̂)

)
, written as (d0(P̂n), d1(P̂n)) for short. According to the conditioning event d0(P̂n) ≤

D0 and the definition of conditional probability, we are interested in the ratio

P
[
d0(P̂n) ≤ D0 and d1(P̂n) ≤ d1(P̃ ∗

XX̂
)− δ

]
P[d0(P̂n) ≤ D0]

, (81)

as well as the analog with the second event replaced by d1(P̂n) ≥ d1(P̃ ∗
XX̂

) + δ. The two are handled similarly,

so we focus only on (81). The denominator is a standard quantity characterized in [12], so the main challenge is

in upper bounding the numerator.

The relevant log-moment generating function is

Λ̃n(λ) = logEQn
X̂

[
eλ0d0(P̂n)+λ1d1(P̂n)

]
, (82)

where λ = (λ0, λ1) ∈ (−∞, 0]2, and by the ergodic theorem, 1
nΛn(nλ) converges almost surely to the following

for Π∞X -almost all x (analogous to [13, Eq. (22)]):

Λ̃(λ) = EΠ[logEQ[eλ0d0(X,X̂)+λ1d1(X,X̂)]]. (83)

Since d0 and d1 are non-negative and λ ∈ (−∞, 0]2, we have Λ̃(λ) ≤ 0. On the other hand, by Jensen’s inequality,

Λ̃(λ) ≥ λ0D0,prod + λ1D1,prod; thus, the assumptions D0,prod < ∞ and D1,prod < ∞ are sufficient to ensure

finite Λ̃(λ). This is the only assumption made in Lemma 13 that is absent in Lemma 12.

Rather than giving the technical details of the large-deviations analysis, we provide the main intuition. It is

known that it weren’t for the event d1(P̂n) ≤ d1(P̃ ∗
XX̂

)−δ in the numerator of (81), the limiting distribution of P̂n

would be P̃ ∗
XX̂

given in (37) [12], [13]. The idea is that the event d1(P̂n) ≤ d1(P̃ ∗
XX̂

)− δ makes this distribution

infeasible, and accordingly, P̂n is forced towards a slightly different distribution. This makes the exponent of the

numerator in (81) strictly larger than that of the denominator, giving the desired exponential decay to zero in the

first part of Lemma 13.

By the same argument as that used for Lemma 12 (see [13]), the second part of Lemma 13 follows easily from

the first: Summing the left-hand side of (76) over all n gives a finite value due to the exponential decay, and then

the Borel-Cantelli lemma implies that with probability one, the event
∣∣d1(P̂n)− d1(P̃ ∗

XX̂
)
∣∣ > δ occurs for at most

finitely many n. Since δ is arbitrarily small, it follows that d1(P̂n)→ d1(P̃ ∗
XX̂

) almost surely, as desired.
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APPENDIX C

EXAMPLE ON THE IMPACT OF TIE-BREAKING

Consider the binary symmetric source with ΠX =
(

1
2 ,

1
2

)
, and let QX̂ =

(
1
2 ,

1
2

)
. Suppose that d1 is the Hamming

distortion, but d0(x, x̂) = 1{x = 0 ∩ x̂ = 1}, i.e., only 0 → 1 flips are penalized. For this source with minimum

d1-distortion encoding (i.e., the matched case), it known that the optimal rate-distortion trade-off is given as follows

(measuring information in bits):

R = 1−H2(D1) (84)

for D1 ∈
[
0, 1

2

]
, and moreover, the choice QX̂ =

(
1
2 ,

1
2

)
is optimal [35, Sec. 10.3.1].

We investigate the impact of tie-breaking on the constant-composition ensemble (Lemma 2) and the i.i.d. ensemble

(Lemma 3), but instead of using the equations in the associated lemmas, we find it more convenient to use direct

arguments. We keep some steps slightly informal to convey the key ideas without being overly technical.

We start with the constant-composition ensemble. Suppose that X is a typical sequence with half 0s and half 1s

(the case of 1
2 ± δ is similar). Then, since each X̂ is a constant-composition codeword according to QX̂ =

(
1
2 ,

1
2

)
,

we have that the fraction of indices where (x, x̂) = (0, 1) is the same as the number of indices where (x, x̂) = (1, 0).

This further implies that the minimum d0-distortion rule is the same as the minimum d1-distortion rule – the latter

is simply double the former. Accordingly, the “mismatched” encoding is in fact matched encoding, and combining

this with the optimality of QX̂ mentioned above, we conclude that we attain the matched rate-distortion trade-off

stated in (84).

For the i.i.d. ensemble, we split the analysis into several cases:

• Suppose that R ∈
(
0, 1

2 ), and consider a typical X sequence with half 0s and half 1s. For the length-n2
subsequence corresponding to zeros, a standard property of types [36, Ch. 2] reveals that the probability of

having an α fraction of 0s is roughly 2−
n
2 (1−H2(α)). Thus, with 2nR codewords, the smallest α (corresponding

to minimum d0-distortion encoding) yields

R =
1

2
(1−H2(α)) ⇐⇒ H2(α) = 1− 2R. (85)

Moreover, we claim that the resulting d1-distortion incurred is

D1 =
α

2
+

1

4
. (86)

To see this, first note that the α
2 term comes directly from 0 → 1 flips from X to X̂ , with division by two

since α is defined with respect to the length-n2 subsequence. Moreover, this α-fraction event is a rare event,

and with high probability there will only be few codewords (if not just one) meeting this α-distortion level.

Accordingly, since the encoder ignores the entries where X equals one, the corresponding X̂ entries will

simply exhibit “typical” behavior, i.e., roughly half 0s and half 1s, contributing roughly 1
4 to the d1-distortion.

• Suppose that R ∈
(

1
2 , 1
)
, and again consider a typical X sequence with half 0s and half 1s. Since any particular

length-n2 subsequence of X̂ has probability 2−
n
2 , the condition R > 1

2 implies that with high probability, the

selected codeword according to the minimum d0-distortion rule will achieve dn0 (X, X̂) = 0, i.e., all values
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match in the subsequence where X is zero. In fact, there will be exponentially many candidates meeting this

condition, and accordingly, the analysis crucially depends on the tie-breaking strategy:

– Under pessimistic tie breaking, the selected X̂ will be the one with the highest d1-distortion, i.e., having

the fewest matches in the subsequence where X is one. Since roughly a fraction 2−
n
2 of the codewords

achieve zero d0-distortion, there are effectively 2n(R− 1
2 ) sub-codewords to choose from. By a standard

property of types, the probability of one such sub-codeword having a β ∈
[
0, 1

2

]
fraction of matches is

roughly 2−
n
2 (1−H2(β)), so the one with the fewest matches will yield

R− 1

2
=

1

2
(1−H2(β)) ⇐⇒ H2(β) = 2− 2R. (87)

Then, the resulting d1-distortion incurred is

D1 =
1− β

2
, (88)

where the division by two corresponds to considering the length-n2 subsequence where X equals one.

– Under uniformly random tie breaking, with high probability, the selected codeword will be one with typical

behavior in the entries where X is one, so the distortion will be 1
4 (i.e., roughly half flips in the relevant

half of the codeword).

The resulting rate-distortion curves are shown in Figure 3. Note that the sharp transition at R = 1
2 is due to a

sudden change in what dictates the d1-distortion: For R slightly smaller, the behavior is dictated by the fraction of

matches where X is zero (with nearly all matches), whereas for R slightly larger, it is dictated by the fraction of

matches where X is one (with roughly half matches).

This example highlights that the pessimistic choice of tie-breaking strategy can in fact have a significant impact

in certain scenarios. We note that the change in behavior at R = 1
2 corresponds exactly to the fact that Rmax given

in (34) equals 1
2 in this example. For R ∈ (0, Rmax) the set P̃ iid in Lemma 3 is a singleton, in concordance with

the uniqueness property associated with P̃ ∗
XX̂

stated following Lemma 5. For R > Rmax this is no longer the case,

and the tie-breaking strategy plays a significant role.

APPENDIX D

CONTINUITY ARGUMENT IN ACHIEVABILITY ANALYSIS

In this appendix, we describe the technical details of how Lemma 2 follows from Lemma 1, and discuss the

analogous steps for the other ensembles that we consider. We closely follow the steps of Lapidoth [2] with some

minor modifications. We assume that R > 0, since for R = 0 there is only one codeword and the analysis is trivial.

Recall the sets S⊇n,δ and S⊆n,δ defined in (4)–(5) in Lemma 1, where PX,n represents the type of X . By the law

of large numbers, we can assume that PX,n converges to ΠX as n → ∞. We proceed by implicitly conditioning

on this being true, and on the high-probability events in Lemma 1 holding true. We proceed in several steps.

Step 1. Define

S⊆δ =
{
P̃XX̂ ∈ P(X × X̂ ) : P̃X = ΠX , P̃X̂ = QX̂ , IP̃ (X, X̂) ≤ R− δ

}
, (89)
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Figure 3. Mismatched rate-distortion curves for the binary symmetric source.

which is analogous to S⊆n,δ but with general distributions instead of types. Moreover, let

D⊆0,δ = min
P̃XX̂∈S

⊆
δ

EP̃ [d0(X, X̂)]. (90)

Defining P̃ ∗
XX̂

to be the joint type induced by X and the selected codeword X̂ , we claim that

EP̃∗ [d0(X, X̂)] ≤ D⊆0,δ + δ, (91)

where here and subsequently, all statements are taken to mean for n sufficiently large. To see this, note from

Lemma 1 that EP̃∗ [d0(X, X̂)] is least as small as the smallest d0-distortion incurred within S⊆n,δ , which in turn can

approximate any joint distribution in S⊆δ arbitrarily closely when n is large enough (note also that EP̃ [d0(X, X̂)]

is continuous with respect to P̃XX̂ in the finite-alphabet setting, as is IP̃ (X; X̂)).

Step 2. Define

S⊇δ =
{
P̃XX̂ ∈ P(X × X̂ ) : P̃X ∈ Bδ(ΠX), P̃X̂ ∈ Bδ(QX̂), IP̃ (X; X̂) ≤ R+ δ

}
, (92)

where Bδ(PZ) denotes the set of all distributions with the same support as PZ and probabilities that differ from

PZ at most δ entry-wise. Moreover, let

D⊇0,δ = min
P̃XX̂∈S

⊇
δ

EP̃ [d0(X, X̂)]. (93)

The goal of this step is to show that both D⊆0,δ and D⊇0,δ approach the following value as δ → 0:

D∗0 = min
P̃XX̂ : P̃X=ΠX ,P̃X̂=QX̂

IP̃ (X;X̂)≤R

EP̃ [d0(X, X̂)]. (94)

For D⊆0,δ , this follows from the fact that D⊆0,δ is continuous in δ ∈ [0, R], which follows from (89)–(90) and the

continuity of mutual information and EP̃ [d0(X, X̂)].5

5In general, more care may be needed if S⊆δ were to be empty for δ > 0 but non-empty for δ = 0. However, we are focusing on the case

that R > 0, so this does not occur (a small neighborhood of ΠX ×QX̂ is always included).
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For D⊇0,δ , we form upper and lower bounds that asymptotically match. For the upper bound, since ∪δ>0D
⊇
0,δ

precisely equals the constraint set in (94), it immediately follows that lim supδ→0D
⊇
0,δ ≤ D∗0 . For the other

direction, we know that for any sequence {δi}i≥1 converging to zero, if P̃ (i)

XX̂
is the corresponding sequence of

minimizers achieving {D⊇0,δi}i≥1, then by the compactness of the probability simplex there must exist a convergent

subsequence. The convergence must be to a distribution satisfying the constraints in (94), and it follows that

lim infδ→0D
⊇
0,δ ≥ D∗0 . Combining the two limits gives limδ→0D

⊇
0,δ = D∗0 .

Step 3. From Step 1, Lemma 1, and the fact that PX,n → ΠX and QX̂,n → QX̂ , we know that the true induced

joint type P̃ ∗
XX̂

lies in the set

P̃⊇δ =
{
P̃XX̂ ∈ P(X × X̂ ) : P̃X ∈ Bδ(ΠX), P̃X̂ ∈ Bδ(QX̂), IP̃ (X; X̂) ≤ R+ δ,EP̃ [d0(X, X̂)] ≤ D⊆0,δ + δ

}
.

(95)

Hence, the d1-distortion incurred is at most max
P̃XX̂∈P̃

⊇
δ
EP̃ [d1(X, X̂)]. Moreover, from Step 2, we know that

∩δ>0P̃⊇δ = P̃ , where P̃ is defined in (7). Accordingly, using compactness and continuity in the same way as Step

2, we obtain

lim
δ→0

max
P̃XX̂∈P̃

⊇
δ

EP̃ [d1(X, X̂)] = max
P̃XX̂∈P̃

EP̃ [d1(X, X̂)], (96)

which equals the desired value stated in Lemma 2.

Other ensembles. For the i.i.d. ensemble (Lemma 3), the constraints on P̃X̂ are absent, but there are otherwise

no significant differences in the analogous steps to those above. For the multi-user ensembles (Section III), the only

significant difference is that there are multiple mutual constraints instead of just one. This does not significantly

affect the analysis, except possibly in the argument directly after (94). In accordance with Footnote 5, in principle

we may need to be careful with S⊆δ being empty whenever δ > 0. However, this will not be the case when all the

rates defining the ensemble are positive, since a suitable neighborhood of the product distribution6 (intersected with

the marginal constraints) will always be included. On the other hand, if any of the rates are zero (i.e., R0 or R1 in

superposition coding, R1 or R2 for expurgated parallel coding), then the ensemble reduces to that of independent

codewords anyway, and the distortion achieved reduces to that of Lemma 2.

For expurgated parallel coding, we also have the constraint P̃X̂1X̂2
∈ Bδ(QX̂1

×QX̂2
), which is slightly different

from the equality constraints in the other ensembles. This is easily handled in the same way to how we used Bδ(·)

in (92), and in fact, Lapidoth’s original analysis [2] was also based on an ensemble that leads to similar constraints

(instead of equality constraints).

APPENDIX E

ACHIEVABILITY PROOFS FOR MULTI-USER ENSEMBLES

A. Proof of Theorem 1 (Superposition Coding)

The main step of the analysis is to establish a counterpart to Lemma 1, but now concerning the joint types P̃XUX̂
induced by triplets (x,U (i), X̂(i,j)), with i = 1, . . . ,M0 and j = 1, . . . ,M1. Throughout the bulk of the analysis,

6The product distribution is ΠX ×QX̂ under independent codewords, ΠX ×QUX̂ for superposition coding, and ΠX ×QX̂1
×Q

X̂2
for

expurgated parallel coding. Under these choices, all of the relevant mutual information terms become zero.
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we condition on a fixed X = x, whose type we denote by PX,n.

The relevant marginal constraints follow immediately by construction: Any joint type P̃XUX̂ that occurs must

satisfy P̃X = PX,n and P̃UX̂ = QUX̂,n (see (12)). The non-trivial part is to establish that all such joint types with

IP̃ (X;U) ≤ R0 − δ and IP̃ (X;U, X̂) ≤ R0 +R1 − δ occur, and all such joint types with IP̃ (X;U) ≥ R0 + δ or

IP̃ (X;U, X̂) ≥ R0 +R1 + δ do not, where δ > 0 is arbitrarily small.

To do so, we fix a joint type P̃XUX̂ satisfying the above marginal constraints, and consider the probability

Pexistence = P
[⋃
i,j

{
(x,U (i), X̂(i,j)) ∈ T n(P̃XUX̂)

}]
. (97)

To lighten notation, we define the following events:

Ei =
⋃
j

{
(x,U (i), X̂(i,j)) ∈ T n(P̃XUX̂)

}
, (98)

Eij = {(x,U (i), X̂(i,j)) ∈ T n(P̃XUX̂)}. (99)

By separating the unions over i and j, we obtain

Pexistence = P
[⋃

i

Ei
]

= 1− (1− P[E1])M0 , (100)

where we used the fact that the events E1, . . . , EM0
are independent under the superposition codebook distribution

Moreover, we can characterize P[E1] by writing

P[E1] = P
[
(x,U) ∈ T n(P̃XU )

]
P
[⋃

j

{
(x,u, X̂(j)) ∈ T n(P̃XUX̂)

}]
, (101)

where in the first probability, U is a shorthand for U (i), and in the second probability we implicitly condition on

an arbitrary fixed realization U = u, and write X(j) as a shorthand for X̂(i,j). Due to the conditioning on (x,u),

the union over j is now a union of independent events, meaning that the truncated union bound is tight to within

a factor of 1
2 [37], i.e.,

P[E1] = P
[
(x,U) ∈ T n(P̃XU )

]
× αmin{1,M1P[(x,u, X̂ ∈ T n(P̃XUX̂)]} (102)

for some α ∈
[

1
2 , 1
]
, where X̂ = X̂(1). By standard properties of types [36, Ch. 2], the probabilities in this

expression behave as

P
[
(x,U) ∈ T n(P̃XU )

]
= e−nI(U ;X)+o(n), (103)

P[(x,u, X̂ ∈ T n(P̃XUX̂)] = e−nI(X;X̂|U)+o(n). (104)

To prove the non-existence claim, we first apply the union bound to (100) to obtain Pexistence ≤ M0P[E1]. If

IP̃ (X;U) ≥ R0+δ, then by upper bounding the minimum in (102) by one and using (103), we get that Pexistence →

0 exponentially fast. Similarly, if IP̃ (X;U, X̂) ≥ R0 +R1 + δ, then we upper bound the minimum in (102) by the

second term, and apply (103)–(104) and the chain rule for mutual information to get P[E1] ≤M1e
−nI(X;U,X̂)+o(n),

which again yields Pexistence → 0 exponentially fast. Due to the exponentially fast decay, we can safely take a

union bound over all (polynomially many) joint types to establish the desired non-existence result.
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To prove the existence claim, we consider two cases depending on whether the minimum in (102) is achieved

by the first or second term. If the minimum equals one, then we combine (103) with (100) to obtain

Pexistence ≥ 1− (1− αe−nI(U ;X)+o(n))M0 . (105)

Since M0 = enR0 with R0 ≥ IP̃ (X;U)− δ, it follows that Pexistence → 1 faster than exponentially.7 By a similar

argument, when the minimum in (102) equals the second term, we use R0 + R1 ≥ IP̃ (X;U, X̂) − 2δ, and we

combine (103)–(104) with (100) to obtain Pexistence → 1 faster than exponentially. By a union bound over all of

the relevant joint types, we deduce that they all must occur in the codebook with high probability, as desired.

Having established the existence and non-existence of types within “inner” and “outer” sets that nearly match

(in analogy with Lemma 1), Theorem 1 now follows from a similar continuity argument to the case of independent

codewords; see Appendix D for details.

B. Proof of Theorem 2 (Expurgated Parallel Coding)

We make use of the following lower bound on the probability of a union.

Lemma 14 (de Caen’s bound [32]). For any finite sequence of events A1, . . . ,AN on a probability space, we have

P

[
N⋃
l=1

Al

]
≥

N∑
l=1

P[Al]2∑N
l′=1 P[Al ∩ Al′ ]

. (106)

We condition on an arbitrary fixed realization of x, and consider joint types P̃XX̂1X̂2
whose X-marginal matches

the type of x, and whose other marginals coincide with QX̂1
and QX̂2

. Given such a joint type P̃XX̂1,X̂2
, we are

interested in the following existence probability:

Pexistence = P
[ M1⋃
i=1

M2⋃
j=1

Eij(P̃XX̂1,X̂2
)

]
, (107)

Eij(P̃XX̂1,X̂2
) = {(x, X̂(i)

1 , X̂
(j)
2 ) ∈ T n(P̃XX̂1X̂2

)}, (108)

where we again implicitly condition on X = x. The initial steps follow those of the analogous ensemble for

channel coding [9]. Considering the probability of the intersection P[Eij(P̃XX̂1X̂2
)∩ Ei′j′(P̃XX̂1X̂2

)], we have the

following four cases:

1) (i = i′, j = j′) In this case, the intersection is just the event itself, and we have

Ψ00 , P[(x, X̂1, X̂2) ∈ T n(P̃XX̂1X̂2z
)], (109)

where (X̂1, X̂2) denotes an arbitrary fixed (X̂
(i)
1 , X̂

(j)
2 ) pair.

2) (i 6= i′, j = j′) In this case, the probability of the intersection is given by

Ψ01 , P[(x, X̂2) ∈ T n(P̃XX̂2
)] · P[(x, X̂1, x̂2) ∈ T n(P̃XX̂1X̂2

)]2, (110)

where x̂2 is an arbitrary fixed sequence such that (x, x̂2) ∈ T n(P̃XX̂2
).

7Given b > a > 0, note that (1−e−an)e
bn

=
(
(1−e−an)e

an)e(b−a)n , and then use the fact that (1−e−an)e
an

approaches 1
e
∈ (0, 1).
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3) (i = i′, j 6= j′) In this case, the probability of the intersection is given by

Ψ10 , P[(x, X̂1) ∈ T n(P̃XX̂1
)] · P[(x, x̂1, X̂2) ∈ T n(P̃XX̂1X̂2

)]2, (111)

where x̂1 is an arbitrary fixed sequence such that (x, x̂1) ∈ T n(P̃XX̂1
).

4) (i 6= i′, j 6= j′) In this case, the probability of the intersection is given by Ψ11 = Ψ2
00, due to independence.

From Lemma 14, identifying l with (i, j), N with M1M2, and Eij(P̃XX̂1X̂2
) with Al, we have

Pexistence ≥
M1∑
i=1

M2∑
j=1

Ψ2
00

Ψ00 +
∑M1

i=1 Ψ10 +
∑M2

j=1 Ψ01 +
∑M1

i=1

∑M2

j=1 Ψ11

(112)

=
M1M2Ψ2

00

Ψ00 +M1Ψ10 +M2Ψ01 +M1M2Ψ2
00

(113)

=
1

1
M1M2Ψ00

+ Ψ10

M2Ψ2
00

+ Ψ01

M1Ψ2
00

+ 1
(114)

We now observe from (109)–(111) that

Ψ2
00 = P[(x, X̂2) ∈ T n(P̃XX̂2

)] ·Ψ01 (115)

= P[(x, X̂1) ∈ T n(P̃XX̂1
)] ·Ψ10, (116)

which implies that (114) can be rewritten as

Pexistence ≥
1

1

M1M2P[(x,X̂1,X̂2)∈T n(P̃XX̂1X̂2
)]

+ 1

M2P[(x,X̂2)∈T n(P̃XX̂2
)]

+ 1

M1P[(x,X̂1)∈T n(P̃XX̂1
)]

+ 1
. (117)

Fix an arbitrarily small constant δ > 0, and suppose that IP̃ (X;X1) ≤ R1 − δ, IP̃ (X;X2) ≤ R2 − δ

and IP̃ (X;X1, X2) ≤ R1 + R2 − δ. For independently chosen X̂1 and X̂2, the probability of inducing the

joint type P̃XX̂ν behaves as e−nIP̃ (X;Xν)+o(n) and similarly, the probability of inducing P̃XX̂1X̂2
behaves as

e−nIP̃ (X;X̂1,X̂2)+o(n) [9]. As a result, we deduce that Pexistence tends to one exponentially fast as n grows large. By

a union bound over all of the relevant joint types, we deduce from (117) that they all must occur in the codebook

(before expurgation) with high probability, as desired.

For the non-existence part, the argument is simpler, only requiring standard upper union bounds. Specifically,

we can apply a union bound over all (i, j) to get an upper bound of M1M2P[(x, X̂1, X̂2) ∈ T n(P̃XX̂1X̂2
)]. We

can also upper bound the existence probability for triplets (x, X̂1, X̂2) by the existence probability for pairs, i.e.,

(x, X̂1) or (x, X̂2). Thus, M1P[(x, X̂1) ∈ T n(P̃XX̂1
)] and M2P[(x, X̂2) ∈ T n(P̃XX̂2

)] are also upper bounds

on Pexistence, and the desired non-existence claim readily follows similarly to the superposition coding ensemble.

We also need to consider the effect of the expurgation step in the ensemble. Trivially, after expurgation, for any

joint type having an (X̂1, X̂2) marginal whose `∞-norm to QX̂1
×QX̂2

exceeds δ, the joint type will not appear

after expurgation. In contrast, if this `∞-norm is δ or smaller and the joint type occurred before expurgation, then

it will also occur after expurgation. Hence, expurgation simply imposes the additional constraint |P̃X̂1X̂2
(x̂1, x̂2)−

QX̂1
(x̂1)QX̂2

(x̂2)| ≤ δ for all (x̂1, x̂2).

Finally, we note that with probability approaching one, expurgation does not impact the asymptotic rate. This is

because by the law of large numbers, the probability of any specific (X̂
(i)
1 , X̂

(j)
2 ) being expurgated tends to zero.

Hence, by Markov’s inequality, the probability of more than half the pairs being expurgated approaches zero.
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Having established the existence and non-existence of types with near-matching “inner” and “outer” sets (in

analogy with Lemma 1), Theorem 1 now follows from a similar continuity argument to the case of independent

codewords; see Appendix D for details.
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